WO2017169514A1 - 複合フィルタ装置、高周波フロントエンド回路及び通信装置 - Google Patents

複合フィルタ装置、高周波フロントエンド回路及び通信装置 Download PDF

Info

Publication number
WO2017169514A1
WO2017169514A1 PCT/JP2017/008559 JP2017008559W WO2017169514A1 WO 2017169514 A1 WO2017169514 A1 WO 2017169514A1 JP 2017008559 W JP2017008559 W JP 2017008559W WO 2017169514 A1 WO2017169514 A1 WO 2017169514A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
filter device
composite filter
passband
film
Prior art date
Application number
PCT/JP2017/008559
Other languages
English (en)
French (fr)
Inventor
真理 佐治
潤平 安田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to KR1020187024728A priority Critical patent/KR102076960B1/ko
Priority to CN201780017325.2A priority patent/CN109075772B/zh
Publication of WO2017169514A1 publication Critical patent/WO2017169514A1/ja
Priority to US16/125,885 priority patent/US11088673B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6406Filters characterised by a particular frequency characteristic
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02559Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02637Details concerning reflective or coupling arrays
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02834Means for compensation or elimination of undesirable effects of temperature influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14538Formation
    • H03H9/14541Multilayer finger or busbar electrode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6436Coupled resonator filters having one acoustic track only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • H03H9/725Duplexers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/877Conductive materials

Definitions

  • the present invention relates to a composite filter device in which a plurality of band-pass filters are connected to an antenna terminal, and a high-frequency front-end circuit and a communication device including the composite filter device.
  • a transmission filter and a reception filter are connected to an antenna terminal.
  • the transmission filter uses Rayleigh waves propagating through the LiNbO 3 substrate.
  • the transmission filter includes a ladder type filter having a plurality of elastic wave resonators.
  • a SiO 2 film is provided so as to cover the IDT electrode of each acoustic wave resonator.
  • Patent Document 2 discloses a carrier aggregation circuit in which first and second filters are connected to an antenna terminal.
  • the first filter has a first frequency band.
  • the second filter has a second frequency band different from the first frequency band.
  • Each of the first and second filters is part of a duplexer.
  • JP 2012-175315 A Japanese Patent Laying-Open No. 2015-204629
  • the bandpass filter described in Patent Document 1 is as shown in Patent Document 2.
  • the Sezawa wave which is a higher-order mode of the Rayleigh wave, appears around 1.2 times the frequency of the Rayleigh wave, and this response becomes an unnecessary wave.
  • the filter characteristics There was a problem of adversely affecting the filter characteristics. Specifically, when two filters having different frequency bands are connected to the antenna terminal, the response of the Sezawa wave of one filter with a lower frequency band is within the pass band of the other filter with a higher frequency band. By appearing, the insertion loss of the other filter having a high frequency band may be deteriorated. In particular, when the response of the Sezawa wave matches the center frequency of the pass band of the other filter having a higher frequency band, the deterioration of the insertion loss of the other filter having the higher frequency band becomes significant.
  • the composite filter device is a composite filter device used for carrier aggregation, and is composed of an antenna common terminal connected to an antenna and a plurality of bands connected to the antenna common terminal and having different pass bands.
  • a plurality of bandpass filters wherein the plurality of bandpass filters are connected to the antenna common terminal, the first bandpass filter having a first passband, and the first passband.
  • a second band-pass filter having a second pass band having a higher frequency than the first band-pass filter includes an elastic wave resonator
  • the elastic wave resonator includes: a LiNbO 3 substrate, and the IDT electrode provided on the LiNbO 3 substrate, a silicon oxide covering the IDT electrode in the LiNbO 3 substrate Has a dielectric film that is a component, the said elastic wave resonator utilizes the Rayleigh wave propagating through the LiNbO 3 substrate, the frequency of the Sezawa wave of the first band-pass filter f1 ' When the center frequency of the second passband is f2, f1 ′ is present at a position different from f2.
  • the IDT electrode includes a first metal film mainly composed of one kind of metal among Pt, Mo, and Cu, and
  • the center frequency is f1
  • f1 ′ / f1 is y
  • the film thickness of the dielectric film is x
  • the first metal film is made of the metal and film thickness shown in Table 1 below, it is shown in Table 1 below.
  • y is a value different from f2 / f1.
  • x4 represents the fourth power of x
  • x3 represents the third power of x
  • x2 represents the second power of x.
  • f1 in another specific aspect of the composite filter device according to the present invention, f1 'exists outside the second passband.
  • f1 ⁇ f1 ′ ⁇ f2 is satisfied when the center frequency of the first passband is f1. In this case, even at high temperatures, the other band-pass filters are less likely to be adversely affected by the response of Sezawa waves.
  • f1 ⁇ f2 ⁇ f1 ' is satisfied when the center frequency of the first passband is f1.
  • the first bandpass filter has a ladder filter connected to the antenna common terminal.
  • the ladder-type filter has a plurality of series arm resonators, and among the plurality of series arm resonators, the series closest to the antenna common terminal.
  • the arm resonator is composed of the elastic wave resonator. In this case, other band-pass filters are less likely to be adversely affected by the response of the Sezawa wave.
  • the first band-pass filter is a longitudinally coupled resonator type in which the first filter is connected to a side opposite to the antenna common terminal of the ladder filter. It has an elastic wave filter.
  • the dielectric film is made of silicon oxide.
  • TCF frequency temperature coefficient
  • the IDT electrode has a first metal film mainly composed of one kind of metal of Pt, Mo, and Cu, and f1 ′ / f1
  • y is the film thickness of the dielectric film
  • x is the lower limit of the frequency of the second passband
  • the first metal film is made of the metal and film thickness shown in Table 2 below.
  • y is smaller than f2L / f1.
  • x4 represents the fourth power of x
  • x3 represents the third power of x
  • x2 represents the second power of x. In this case, it is difficult for the other band-pass filters to be adversely affected by the response of the Sezawa wave.
  • the IDT electrode has a first metal film mainly composed of one kind of metal of Pt, Mo, and Cu, and f1 ′ / f1
  • y is the film thickness of the dielectric film
  • x is the upper limit of the frequency of the second passband
  • the first metal film is made of the metal and film thickness shown in Table 3 below.
  • the y is larger than f2H / f1.
  • x4 represents the fourth power of x
  • x3 represents the third power of x
  • x2 represents the second power of x.
  • the composite filter device includes a second metal film that is laminated on the first metal film and has an electric resistance lower than that of the first metal film.
  • the second metal film is made of an alloy mainly composed of Al or Au.
  • the first metal film is made of an alloy mainly composed of Mo and Nb.
  • the high-frequency front-end circuit includes a composite filter device configured according to the present invention and at least one of a switch, a power amplifier, an LNA, a diplexer, a circulator, and an isolator.
  • the communication device includes a high-frequency front-end circuit configured according to the present invention, an RFIC, and a BBIC.
  • the Sezawa wave of a bandpass filter using a Rayleigh wave has an adverse effect on a bandpass filter having a higher frequency band than the bandpass filter using the Rayleigh wave. It is difficult to provide a composite filter device, and a high-frequency front-end circuit and a communication device including the composite filter device.
  • FIG. 1 is a schematic circuit diagram of a composite filter device according to a first embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing a composite filter as an example constituting the composite filter device of the present invention.
  • FIG. 3 is a schematic plan view showing an electrode structure of an acoustic wave resonator used in the first embodiment of the present invention.
  • FIG. 4 is a schematic partial cutaway front sectional view of an acoustic wave resonator constituting the first reception filter of the composite filter device according to the first embodiment of the present invention.
  • FIG. 5 is a diagram showing the relationship between the SiO 2 film thickness and f1 ′ / f1 when the film thickness of Pt, which is the first metal film, is changed.
  • FIG. 1 is a schematic circuit diagram of a composite filter device according to a first embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing a composite filter as an example constituting the composite filter device of the present invention.
  • FIG. 3 is a
  • FIG. 6 is a diagram showing the relationship between the SiO 2 film thickness and f1 ′ / f1 when the film thickness of Mo, which is the first metal film, is changed.
  • FIG. 7 is a diagram showing the relationship between the SiO 2 film thickness and f1 ′ / f1 when the film thickness of Cu as the first metal film is changed.
  • FIG. 8 is a schematic circuit diagram of a composite filter device according to the second embodiment of the present invention.
  • FIG. 9 is a schematic circuit diagram of a composite filter device, a high-frequency front end circuit, and a communication device according to an embodiment of the present invention.
  • FIG. 10 is a schematic circuit diagram of a composite filter device according to the third embodiment of the present invention.
  • FIG. 11 is a circuit diagram showing a carrier aggregation circuit as an example constituting the composite filter device of the present invention.
  • FIG. 12 is a schematic circuit diagram of a communication device according to a modification of the communication device shown in FIG.
  • FIG. 1 is a schematic circuit diagram of a composite filter device according to a first embodiment of the present invention.
  • the composite filter device 1 is a carrier aggregation composite filter device.
  • This composite filter device 1 has an antenna common terminal 2 as a common terminal.
  • the antenna common terminal 2 is connected to first to third reception filters 3a, 4, 13 and a transmission filter 3b.
  • only a plurality of reception filters may be connected to the antenna common terminal 2.
  • the first to third reception filters 3a, 4, 13 and the transmission filter 3b are schematically shown in blocks.
  • the first to third reception filters 3a, 4, 13 and the transmission filter 3b are provided to support a plurality of carriers, that is, communication systems.
  • the first reception filter 3 a and transmission filter 3 b constitute a composite filter 3.
  • the first reception filter 3a is a first band pass filter having a first pass band.
  • the first passband is a Band3 reception frequency band, which is a frequency band of 1805 MHz to 1880 MHz.
  • the second reception filter 4 is a second band pass filter having a second pass band.
  • the second passband is a Band7 reception frequency band, which is a frequency band of 2620 MHz to 2690 MHz. Accordingly, the second passband has a higher frequency than the first passband.
  • the first reception filter 3a has a structure in which an IDT electrode and a SiO 2 film are stacked on a LiNbO 3 substrate. Rayleigh waves propagating on the LiNbO 3 substrate are used. However, when an AC voltage is applied to the IDT electrode, not only the Rayleigh wave but also the Sezawa wave that is a higher order mode is excited.
  • the feature of this embodiment is that when the frequency of the Sezawa wave in the first reception filter 3a is f1 ′ and the center frequency of the second passband in the second reception filter 4 is f2, f1 ′ is f2.
  • the thickness of the constituent material of the IDT electrode, the IDT electrode, and the SiO 2 film is set so as not to overlap. Therefore, in this embodiment, f1 ′ exists at a position different from f2. Therefore, the insertion loss of the second reception filter 4 is unlikely to deteriorate due to the influence of the Sezawa wave response in the first reception filter 3a. That is, it is difficult for the second reception filter 4 to be adversely affected by the response of the Sezawa wave in the first reception filter 3a. From the viewpoint of making the influence of the response of the Sezawa wave to the second reception filter 4 even more difficult, it is preferable that f1 ′ exists outside the second passband.
  • f1 'and f2 preferably satisfy f1 ⁇ f1' ⁇ f2 when the center frequency of the first passband in the first reception filter 3a is f1. Since the frequency temperature coefficient (TCF) of the higher order mode is negative, f1 'shifts to the lower frequency side as the element temperature becomes higher. Therefore, when f1 ⁇ f1 ′ ⁇ f2 is satisfied, the second reception filter 4 is hardly adversely affected by the response of the Sezawa wave even at a high temperature. However, in the present invention, it is only necessary that f1 'exists at a position different from f2, and f1 ⁇ f2 ⁇ f1' may be satisfied.
  • f1 ′ is further outside the second passband. In this case, even at a high temperature, the second reception filter 4 is hardly adversely affected by the response of the Sezawa wave.
  • specific means for preventing f1 'and f2 from overlapping each other will be described.
  • FIG. 2 is a circuit diagram showing a composite filter as an example constituting the composite filter device of the present invention. Specifically, FIG. 2 is a circuit diagram showing the composite filter 3.
  • the composite filter 3 includes the first reception filter 3a and the transmission filter 3b.
  • the composite filter 3 has a common terminal 7.
  • the common terminal 7 is connected to the antenna common terminal 2 shown in FIG.
  • An impedance matching inductor L is connected between the common terminal 7 and the ground potential.
  • a first reception filter 3 a is connected between the common terminal 7 and the reception terminal 5.
  • a transmission filter 3 b is connected between the common terminal 7 and the transmission terminal 6.
  • a plurality of series arm resonators S11 to S16 and a plurality of parallel arm resonators P11 to P13 are connected to the common terminal 7.
  • a ladder filter 9 is connected to the common terminal 7.
  • the ladder type filter 9 includes series arm resonators S1 and S2 and parallel arm resonators P1 and P2.
  • the series arm resonators S1 and S2 and the parallel arm resonators P1 and P2 are each composed of a 1-port elastic wave resonator.
  • the 1-port acoustic wave resonator has an electrode structure shown in FIG. As shown in FIG. 3, reflectors 11 and 12 are provided on both sides of the IDT electrode 10 in the elastic wave propagation direction. Thereby, a 1-port elastic wave resonator is configured.
  • a longitudinally coupled resonator type acoustic wave filter 8 is connected between the ladder type filter 9 and the receiving terminal 5.
  • the longitudinally coupled resonator type acoustic wave filter 8 includes acoustic wave filter portions 8a and 8b.
  • Each of the elastic wave filter units 8a and 8b is configured by arranging five elastic wave resonators in the elastic wave propagation direction and longitudinally coupling them. More specifically, the acoustic wave filter units 8a and 8b are 5IDT type acoustic waves having five IDT electrodes arranged in the propagation direction of the surface acoustic wave and reflectors provided on both sides of the five IDT electrodes. It is a filter.
  • the second and third reception filters 4 and 13 are schematically shown as blocks, but are configured in the same manner as the first reception filter 3a.
  • all the acoustic wave resonators constituting the series arm resonators S1 and S2, the parallel arm resonators P1 and P2, and the longitudinally coupled resonator type acoustic wave filter 8 are specified as described below. It consists of an acoustic wave resonator. Accordingly, the above-described f1 'is adjusted so as to exist at a position different from f2.
  • the structure of a specific elastic wave resonator will be described as a representative of the series arm resonator S1.
  • FIG. 4 is a schematic partial cutaway front sectional view of an acoustic wave resonator constituting the first reception filter of the composite filter device according to the first embodiment of the present invention.
  • an IDT electrode 23 is provided on the LiNbO 3 substrate 22.
  • a dielectric film 24 made of SiO 2 is laminated so as to cover the IDT electrode 23. By laminating the dielectric film 24, the absolute value of the frequency temperature coefficient can be further reduced.
  • a SiN film 25 is stacked on the dielectric film 24. However, the SiN film 25 may not be provided.
  • the IDT electrode 23 includes first and second metal films 23a and 23b.
  • a second metal film 23b is stacked on the first metal film 23a.
  • the first metal film 23a is a Pt film.
  • the second metal film 23b is an Al film. Therefore, the second metal film 23b has a lower electrical resistance than the first metal film 23a.
  • the second metal film 23b preferably has a lower electrical resistance than the first metal film 23a.
  • the film thickness of the first metal film 23a (hereinafter sometimes referred to as Pt film thickness) and the film of the dielectric film 24 so that f1 ′ exists at a position different from f2.
  • the thickness (hereinafter, sometimes referred to as SiO 2 film thickness) is set. This makes it difficult for the second reception filter 4 to be adversely affected by the response of the Sezawa wave in the first reception filter 3a.
  • the film thickness of the first metal film 23a and the dielectric film 24 is a ratio to the wavelength ⁇ determined by the electrode finger pitch of the IDT electrode 23.
  • the film thickness of the dielectric film 24 indicates the distance D between the first and second main surfaces 24a and 24b in the dielectric film 24.
  • the first and second main surfaces 24a and 24b are opposed to each other, and the first main surface 24a is a main surface on the LiNbO 3 substrate 22 side.
  • the first reception filter 3a is a Band3 reception filter
  • the second reception filter 4 is a Band7 reception filter.
  • the center frequency f1 of the reception frequency band of Band3 that is the first passband is 1842.5 MHz.
  • FIG. 5 is a diagram showing the relationship between the SiO 2 film thickness and f1 ′ / f1 when the film thickness of Pt, which is the first metal film, is changed.
  • f1 ′ / f1 can be obtained from the ratio of the sound speed of the Sezawa wave to the sound speed of the Rayleigh wave (the speed of sound of the Sezawa wave / the speed of sound of the Rayleigh wave).
  • f1 '/ f1 is approximated by the following equation (1).
  • y is f1 ′ / f1
  • x is the SiO 2 film thickness.
  • all the acoustic wave resonators constituting the series arm resonators S1 and S2, the parallel arm resonators P1 and P2, and the longitudinally coupled resonator type acoustic wave filter 8 are the above-described specific wave resonators. It consists of an acoustic wave resonator.
  • at least one resonator constituting the series arm resonators S1 and S2, the parallel arm resonators P1 and P2, and the longitudinally coupled resonator type acoustic wave filter 8 is the specific acoustic wave resonance. It only has to be a child. From the viewpoint of further effectively suppressing the influence of the response of the Sezawa wave on the second reception filter 4, it is preferable that at least the longitudinally coupled resonator type elastic wave filter 8 is constituted by the specific resonator.
  • the return loss on the antenna common terminal 2 side of the ladder filter 9 has the highest response of the higher-order mode generated from the series arm resonator S1 closest to the antenna common terminal 2, so that the series closest to the antenna common terminal 2 is connected.
  • the arm resonator S1 is preferably made of the specific acoustic wave resonator.
  • the first metal film 23a is made of Pt, but other metals may be used.
  • the first metal film 23a is a metal film mainly composed of one kind of metal among Pt, Cu, and Mo. In that case, good filter characteristics by Rayleigh waves can be obtained.
  • the phrase “mainly composed of metal” means that the metal is not limited to only the metal but includes an alloy containing 50 wt% or more of the metal. Further, when the first metal film 23a and another metal heavier than Al are laminated, the weight of the first metal film 23a calculated from the film thickness and density of the first metal film 23a, and the Al.
  • the sum of the weight of the metal film heavier than Al calculated by the film thickness and density of the heavy metal film is divided by the density of the first metal film 23a, thereby converting to the film thickness of the first metal film 23a. This is equivalent to the film thickness of the first metal film 23a.
  • the second metal film 23b is made of Al, but other metals may be used.
  • the second metal film 23b is preferably an alloy mainly composed of Al or Au.
  • the second metal film 23b may not be provided.
  • the dielectric film 24, which is a SiO 2 film, is provided so as to cover the IDT electrode 23.
  • a dielectric film mainly composed of silicon oxide other than the SiO 2 film is used. You can also.
  • the dielectric film containing silicon oxide as a main component means that it is not limited to SiO 2 but may be a film made of a dielectric material containing 50% by weight or more of SiO x (x is an integer).
  • a combination of reception filters Band3 and Band7 is used, but for example, a combination of Bands shown in Table 4 below may be used.
  • Table 4 for example, when described as Band39-Band41, it means that the first bandpass filter is a Band39 reception filter and the second bandpass filter is a Band41 reception filter. is doing.
  • f2 is the center frequency of the second pass band of the second reception filter 4, but the lower limit value of the frequency of the second pass band of the second reception filter 4 (pass By positioning f1 ′ on the lower frequency side than the lowest frequency in the band, higher-order modes generated by the first reception filter 3a in all regions in the second passband of the second reception filter 4 It is possible to suppress the deterioration of loss due to.
  • the ratio of f2L and f1 (f2L / f1) in a typical Band combination is shown in Table 4 above, but it is not necessarily selected from the Band listed in Table 4.
  • each film thickness is a ratio to the wavelength ⁇ determined by the electrode finger pitch of the IDT electrode 23.
  • f1 and f2 are in the relationships shown in Table 4 above, and the first metal film 23a is made of the metal and film thickness shown in Table 5, in the formula shown in Table 5, y is The value of x is determined so as to be larger than f2 / f1. At this time, f1, f1 ', and f2 satisfy f1 ⁇ f2 ⁇ f1'.
  • Each film thickness is a ratio to the wavelength ⁇ determined by the electrode finger pitch of the IDT electrode 23.
  • the second reception filter 4 is less likely to be adversely affected by the response of the Sezawa wave in the first reception filter 3a. it can.
  • the center frequency f1 of the reception frequency band of Band 25, which is the first pass band is 1962.5 MHz.
  • Pt is used for the first metal film 23a
  • the Pt film thickness is 2.0%
  • f1 '/ f1 is approximated by the following formula (4).
  • y is f1 ′ / f1
  • x is the SiO 2 film thickness.
  • the combination of reception filters of Band 25 and Band 30 is used, but for example, the combination of Band shown in Table 4 may be used. Further, it is not always necessary to select from the Bands described in Table 4.
  • f2 is the center frequency of the second passband of the second reception filter 4, but the upper limit value of the frequency of the second passband of the second reception filter 4 ( By positioning f1 ′ at a frequency higher than the highest frequency in the passband), higher-order modes generated by the first reception filter 3a in all regions within the second passband of the second reception filter 4 It is possible to suppress the deterioration of loss due to. That is, when the upper limit value of the frequency of the second pass band of the second reception filter 4 is f2H, the IDT electrode is Pt, and the Pt film thickness is 2.0%, the following formula (6) is satisfied. By using such a SiO 2 film thickness, it is possible to satisfy f1 ⁇ f2H ⁇ f1 ′.
  • the ratio of f2H and f1 in a typical Band combination is shown in Table 4 above, but it is not necessarily selected from the Band shown in Table 4.
  • FIG. 5 the case where Pt is used for the first metal film 23a has been described as an example.
  • FIGS. 6 and 7 are used.
  • F1 ′ can be in a position different from f2.
  • f1 ⁇ f1 ' ⁇ f2 or f1 ⁇ f2 ⁇ f1' is satisfied by setting the film thicknesses of the first metal film and the dielectric film as described above. Thereby, it is possible to prevent the second band-pass filter from being adversely affected by the response of the Sezawa wave in the first band-pass filter.
  • the frequency f1 'of the Sezawa wave is a frequency that maximizes the reflection characteristic on the input terminal side.
  • FIG. 8 is a schematic circuit diagram of a composite filter device according to the second embodiment of the present invention.
  • the composite filter device 51 is a carrier aggregation composite filter device.
  • This composite filter device 51 has an antenna common terminal 52 as a common terminal.
  • a plurality of composite filters 53 to 57 are connected to the antenna common terminal 52.
  • Each of the composite filters 53 to 57 includes reception filters 53a, 54a, 55a, 56a, and 57a, and transmission filters 53b, 54b, 55b, 56b, and 57b, respectively.
  • any one of the reception filters 53a to 57a is a first band-pass filter according to the present invention, and at least one of the remaining reception filters 53a to 57a or transmission filters 53b to 57b. May be the second band-pass filter of the present invention. Thereby, it is possible to prevent the second band-pass filter from being adversely affected by the response of the Sezawa wave in the first band-pass filter.
  • the communication band to which the pass band of the transmission filter belongs is different from the communication band to which the pass band of the reception filter belongs.
  • FIG. 10 is a schematic circuit diagram of the composite filter device according to the third embodiment.
  • FIG. 11 is a circuit diagram showing a carrier aggregation circuit as an example constituting the composite filter device.
  • the carrier aggregation composite filter device 61 includes the first reception filter 63 and the second reception filter 64.
  • the carrier aggregation composite filter device 61 has a common terminal 77.
  • the common terminal 77 is connected to the antenna common terminal 2.
  • An impedance matching inductor L is connected between the common terminal 77 and the ground potential.
  • a first reception filter 63 is connected between the common terminal 77 and the reception terminal 62a.
  • a second reception filter 64 is connected between the common terminal 77 and the reception terminal 62b.
  • a ladder filter 68 is connected to the common terminal 77.
  • the ladder filter 68 includes a plurality of series arm resonators S61 and S62 and a parallel arm resonator P61.
  • the parallel arm resonator P61 is connected between a connection point between the series arm resonator S61 and the series arm resonator S62 and the ground potential.
  • a longitudinally coupled resonator type acoustic wave filter 66 is connected to the opposite side of the ladder type filter 68 from the antenna common terminal 2.
  • the longitudinally coupled resonator type elastic wave filter 66 and the ladder type filter 68 constitute a pass band.
  • a series arm resonator S63 is connected between the longitudinally coupled resonator type acoustic wave filter 66 and the receiving terminal 62b.
  • a parallel arm resonator P62 is connected between the connection point between the series arm resonator S63 and the receiving terminal 62b and the ground potential. The passband is adjusted by the series arm resonator S63 and the parallel arm resonator P62.
  • a ladder filter 69 is connected to the common terminal 77.
  • the ladder type filter 69 includes series arm resonators S65 and S66 and a parallel arm resonator P63.
  • a longitudinally coupled resonator type acoustic wave filter 67 is connected to the opposite side of the ladder type filter 69 from the antenna common terminal 2.
  • a pass band is configured by the longitudinally coupled resonator type acoustic wave filter 67 and the ladder type filter 69.
  • a series arm resonator S64 is connected between the longitudinally coupled resonator type acoustic wave filter 67 and the receiving terminal 62a.
  • a parallel arm resonator P64 is connected between the connection point between the series arm resonator S64 and the receiving terminal 62a and the ground potential. The passband is adjusted by the series arm resonator S64 and the parallel arm resonator P64.
  • the third reception filter 65 is schematically shown as a block, but is configured in the same manner as the first reception filter 63.
  • the elastic wave resonators constituting the series arm resonators S64 to S66, the parallel arm resonators P63 and P64, and the longitudinally coupled resonator type elastic wave filter 67 are used in the first embodiment. It consists of a specific elastic wave resonator similar to the above. Accordingly, the insertion loss of the second reception filter 64 is hardly deteriorated due to the influence of the response of the Sezawa wave in the first reception filter 63.
  • At least one resonator constituting the series arm resonators S64 to S66, the parallel arm resonators P63 and P64, and the longitudinally coupled resonator type acoustic wave filter 67 may be the specific acoustic wave resonator.
  • the deterioration of the insertion loss of the second reception filter due to the response of the Sezawa wave in the first reception filter is particularly significant. Therefore, in this embodiment, deterioration of the insertion loss of the second reception filter 64 can be particularly effectively suppressed.
  • any one of a plurality of bandpass filters connected to the antenna common terminal, which is a common terminal, is a first bandpass filter, and at least one of the other bandpass filters. May be a second band-pass filter.
  • the number of filters connected to the antenna common terminal is not particularly limited.
  • An impedance adjustment matching circuit may be provided between the antenna common terminal and each filter.
  • the matching circuit can be composed of L and C, and may be connected in series to the filter or may be connected in parallel. It may be connected both in series and in parallel.
  • Each filter may be configured on the same chip.
  • the specific form of the filter device is not particularly limited as long as the composite filter device of the present invention includes the first and second band-pass filters connected to the antenna common terminal. Therefore, the composite filter device is a multiplexer, a dual filter, or the like, and can be used for a carrier aggregation circuit, a high-frequency front-end circuit or a high-frequency front-end module, a communication device such as a mobile phone or a smartphone.
  • FIG. 9 is a schematic circuit diagram of a composite filter device, a high-frequency front end circuit, and a communication device according to an embodiment of the present invention.
  • the high-frequency front end circuit 32 includes the composite filter device 1 described above.
  • An LNA 36 Low Noise Amplifier
  • a switch 37 SW are connected to the composite filter device 1.
  • the high-frequency front-end circuit 32 may include a diplexer, a circulator, an isolator, or the like.
  • the communication device 31 is a mobile phone, a smartphone, a vehicle-mounted communication device, a communication device for healthcare, or the like, and includes a high-frequency front-end circuit 32, RF stage ICs such as RFIC 34 and BBIC 38. (Base Band IC), CPU 39 and display 35 are provided.
  • RF stage ICs such as RFIC 34 and BBIC 38. (Base Band IC)
  • CPU 39 and display 35 are provided.
  • a power amplifier 33 and an LNA 36 are connected to the RFIC 34. Further, a BBIC 38 (Base Band IC) is connected to the RFIC 34.
  • the composite filter 3 is connected to the power amplifier 33 and the LNA 36.
  • the composite filter 3 includes a reception filter 3a and a transmission filter 3b. Note that the communication device 31 may include a plurality of the composite filters.
  • the high-frequency front-end circuit 32 and the communication device 31 are configured by the composite filter device 1 described above.
  • the composite filter device 1 since the second band-pass filter is hardly adversely affected by the response of the Sezawa wave in the first band-pass filter, the high-frequency front-end circuit 32 and the communication device 31 are excellent in reliability. ing.
  • the communication apparatus may have the composite filter apparatus 61 of 3rd Embodiment like the modification of the communication apparatus shown in FIG.
  • Communication apparatus 32 ... High frequency front end circuit 33 ... Power amplifier 34 ... RFIC 35 ... Display 36 ... LNA 37 ... Switch 38 ... BBIC 39 ... CPU 53-57 ... Composite filters 53a-57a ... Reception filters 53b-57b ... Transmission filter 61 ... Composite filter devices 62a, 62b ... Reception terminals 63, 64, 65 ... First, second and third reception filters 66, 67 ... Longitudinal coupled resonator type acoustic wave filters 68, 69 ... Ladder type filter 77 ... Common terminals P1, P2, P11 to P13, P61 to P64 ... Parallel arm resonators S1, S2, S11 to S16, S61 to S66 ... Series arm resonance Child

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Transceivers (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Secondary Cells (AREA)

Abstract

レイリー波を利用している帯域通過型フィルタのセザワ波により、該レイリー波を利用している帯域通過型フィルタよりも高い周波数帯域を有する帯域通過型フィルタに悪影響が及ぼされ難い、複合フィルタ装置を提供する。 キャリアアグリゲーションに用いられる複合フィルタ装置であって、アンテナ共通端子2と、第1の通過帯域を有する、第1の帯域通過型フィルタ3aと、第1の通過帯域よりも周波数が高い、第2の通過帯域を有する、第2の帯域通過型フィルタ4と、を備え、第1の帯域通過型フィルタ3aは、弾性波共振子を含み、該弾性波共振子は、LiNbO基板と、LiNbO基板上に設けられたIDT電極と、IDT電極を覆っている酸化ケイ素を主成分とする誘電体膜と、を有し、第1の帯域通過型フィルタ3aのセザワ波の周波数をf1'とし、第2の通過帯域の中心周波数をf2としたときに、f1'がf2と異なる位置に存在している、複合フィルタ装置1。

Description

複合フィルタ装置、高周波フロントエンド回路及び通信装置
 本発明は、アンテナ端子に複数の帯域通過型フィルタが接続されている、複合フィルタ装置、並びに該複合フィルタ装置を備える高周波フロントエンド回路及び通信装置に関する。
 従来、アンテナ端子に複数の帯域通過型フィルタが接続されている、複合フィルタ装置が用いられている。
 下記の特許文献1に記載のデュプレクサでは、アンテナ端子に、送信フィルタ及び受信フィルタが接続されている。送信フィルタは、LiNbO基板を伝搬するレイリー波を利用している。送信フィルタは、複数の弾性波共振子を有するラダー型フィルタからなる。各弾性波共振子のIDT電極を覆うように、SiO膜が設けられている。
 下記の特許文献2には、アンテナ端子に第1及び第2のフィルタが接続されているキャリアアグリゲーション回路が開示されている。第1のフィルタは、第1の周波数帯を有する。第2のフィルタは、第1の周波数帯とは異なる第2の周波数帯を有する。第1及び第2のフィルタは、それぞれ、デュプレクサの一部である。
特開2012-175315号公報 特開2015-204629号公報
 そして、特許文献1に記載のようなレイリー波を利用した従来の帯域通過型フィルタをデュプレクサとして使用する場合には問題とならないが、特許文献1に記載の帯域通過型フィルタを特許文献2のようなキャリアアグリゲーション回路に用いた場合には、レイリー波の高次モードであるセザワ波が、レイリー波の周波数のおよそ1.2倍の周波数付近に出現し、この応答が不要波となって、他のフィルタ特性に悪影響を及ぼす、という問題があった。具体的には、互いに異なる周波数帯を有する2つのフィルタがアンテナ端子に接続されている場合、周波数帯域が低い一方のフィルタのセザワ波の応答が、周波数帯域が高い他方のフィルタの通過帯域内に出現することで、周波数帯域が高い他方のフィルタの挿入損失を劣化させることがあった。特に、セザワ波の応答が、周波数帯域が高い他方のフィルタの通過帯域の中心周波数と一致すると、周波数帯域が高い他方のフィルタの挿入損失の劣化が顕著になる。
 本発明の目的は、レイリー波を利用している帯域通過型フィルタのセザワ波により、該レイリー波を利用している帯域通過型フィルタよりも高い周波数帯域を有する帯域通過型フィルタに悪影響が及ぼされ難い、複合フィルタ装置、並びに該複合フィルタ装置を備える高周波フロントエンド回路及び通信装置を提供することにある。
 本発明に係る複合フィルタ装置は、キャリアアグリゲーションに用いられる複合フィルタ装置であって、アンテナに接続されるアンテナ共通端子と、前記アンテナ共通端子に接続されており、かつ通過帯域がそれぞれ異なる複数の帯域通過型フィルタと、を備え、前記複数の帯域通過型フィルタは、第1の通過帯域を有する、第1の帯域通過型フィルタと、前記アンテナ共通端子に接続されており、前記第1の通過帯域よりも周波数が高い、第2の通過帯域を有する、第2の帯域通過型フィルタと、を含み、前記第1の帯域通過型フィルタは、弾性波共振子を含み、前記弾性波共振子は、LiNbO基板と、前記LiNbO基板上に設けられたIDT電極と、前記LiNbO基板上において前記IDT電極を覆っている酸化ケイ素を主成分とする誘電体膜と、を有し、前記弾性波共振子は、前記LiNbO基板を伝搬するレイリー波を利用しており、前記第1の帯域通過型フィルタのセザワ波の周波数をf1’とし、前記第2の通過帯域の中心周波数をf2としたときに、f1’がf2と異なる位置に存在している。
 本発明に係る複合フィルタ装置のある特定の局面では、前記IDT電極が、Pt、Mo及びCuのうち1種の金属を主体とする第1の金属膜を有し、前記第1の通過帯域の中心周波数をf1、f1’/f1をy、前記誘電体膜の膜厚をxとし、前記第1の金属膜が下記の表1に示す金属及び膜厚からなるときに、下記表1に示す式において、前記yがf2/f1と異なる値である。なお、下記表1において、x4はxの4乗を示し、x3はxの3乗を示し、x2はxの2乗を示す。
Figure JPOXMLDOC01-appb-T000004
 本発明に係る複合フィルタ装置の他の特定の局面では、f1’が前記第2の通過帯域外に存在している。
 本発明に係る複合フィルタ装置の別の特定の局面では、前記第1の通過帯域の中心周波数をf1としたときに、f1<f1’<f2を満たしている。この場合、高温においても、セザワ波の応答により、他の帯域通過型フィルタに悪影響がより一層及ぼされ難い。
 本発明に係る複合フィルタ装置の別の特定の局面では、前記第1の通過帯域の中心周波数をf1としたときに、f1<f2<f1’を満たしている。
 本発明に係る複合フィルタ装置の他の特定の局面では、前記第1の帯域通過型フィルタが、前記アンテナ共通端子に接続されているラダー型フィルタを有する。
 本発明に係る複合フィルタ装置のさらに他の特定の局面では、前記ラダー型フィルタが、複数の直列腕共振子を有し、前記複数の直列腕共振子のうち、前記アンテナ共通端子に最も近い直列腕共振子が前記弾性波共振子からなる。この場合、セザワ波の応答により、他の帯域通過型フィルタに悪影響がより一層及ぼされ難い。
 本発明に係る複合フィルタ装置のさらに他の特定の局面では、前記第1の帯域通過型フィルタが、前記ラダー型フィルタの前記アンテナ共通端子とは逆の側に接続されている縦結合共振子型弾性波フィルタを有する。
 本発明に係る複合フィルタ装置のさらに他の特定の局面では、前記誘電体膜が、酸化ケイ素からなる。この場合、周波数温度係数(TCF)の絶対値をより一層小さくすることができる。
 本発明に係る複合フィルタ装置のさらに他の特定の局面では、前記IDT電極が、Pt、Mo及びCuのうち1種の金属を主体とする第1の金属膜を有し、f1’/f1をyとし、前記誘電体膜の膜厚をxとし、前記第2の通過帯域の周波数の下限値をf2Lとし、前記第1の金属膜が下記の表2に示す金属及び膜厚からなる場合に、下記表2に示す式において、前記yがf2L/f1より小さくされている。なお、下記表2において、x4はxの4乗を示し、x3はxの3乗を示し、x2はxの2乗を示す。この場合、セザワ波の応答により、他の帯域通過型フィルタに悪影響がさらに一層及ぼされ難い。
Figure JPOXMLDOC01-appb-T000005
 本発明に係る複合フィルタ装置のさらに他の特定の局面では、前記IDT電極が、Pt、Mo及びCuのうち1種の金属を主体とする第1の金属膜を有し、f1’/f1をyとし、前記誘電体膜の膜厚をxとし、前記第2の通過帯域の周波数の上限値をf2Hとし、前記第1の金属膜が下記の表3に示す金属及び膜厚からなる場合に、下記表3に示す式において、前記yがf2H/f1より大きくされている。なお、下記表3において、x4はxの4乗を示し、x3はxの3乗を示し、x2はxの2乗を示す。
Figure JPOXMLDOC01-appb-T000006
 本発明に係る複合フィルタ装置のさらに他の特定の局面では、前記第1の金属膜上に積層されており、前記第1の金属膜より電気抵抗が低い、第2の金属膜を有する。好ましくは、前記第2の金属膜が、AlまたはAuを主体とする合金からなる。
 本発明に係る複合フィルタ装置のさらに別の特定の局面では、前記第1の金属膜が、MoとNbを主体とする合金からなる。
 本発明に係る高周波フロントエンド回路は、本発明に従って構成される複合フィルタ装置と、スイッチ、パワーアンプ、LNA、ダイプレクサ、サーキュレーター及びアイソレーターのうちの少なくとも1つと、を備える。
 本発明に係る通信装置は、本発明に従って構成される高周波フロントエンド回路と、RFICと、BBICと、を備える。
 本発明によれば、レイリー波を利用している帯域通過型フィルタのセザワ波により、該レイリー波を利用している帯域通過型フィルタよりも高い周波数帯域を有する帯域通過型フィルタに悪影響が及ぼされ難い、複合フィルタ装置、並びに該複合フィルタ装置を備える高周波フロントエンド回路と通信装置を提供することが可能となる。
図1は、本発明の第1の実施形態に係る複合フィルタ装置の略図的回路図である。 図2は、本発明の複合フィルタ装置を構成する一例としての複合フィルタを示す回路図である。 図3は、本発明の第1の実施形態で用いられている弾性波共振子の電極構造を示す模式的平面図である。 図4は、本発明の第1の実施形態に係る複合フィルタ装置の第1の受信フィルタを構成している弾性波共振子の模式的部分切欠正面断面図である。 図5は、第1の金属膜であるPtの膜厚を変化させたときの、SiO膜厚と、f1’/f1との関係を示す図である。 図6は、第1の金属膜であるMoの膜厚を変化させたときの、SiO膜厚と、f1’/f1との関係を示す図である。 図7は、第1の金属膜であるCuの膜厚を変化させたときの、SiO膜厚と、f1’/f1との関係を示す図である。 図8は、本発明の第2の実施形態に係る複合フィルタ装置の略図的回路図である。 図9は、本発明の一実施形態に係る複合フィルタ装置、高周波フロントエンド回路及び通信装置の略図的回路図である。 図10は、本発明の第3の実施形態に係る複合フィルタ装置の略図的回路図である。 図11は、本発明の複合フィルタ装置を構成する一例としてのキャリアアグリゲーション回路を示す回路図である。 図12は、図9に示す通信装置の変形例に係る通信装置の略図的回路図である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。
 [複合フィルタ装置]
 (第1の実施形態)
 図1は、本発明の第1の実施形態に係る複合フィルタ装置の略図的回路図である。複合フィルタ装置1は、キャリアアグリゲーション用複合フィルタ装置である。この複合フィルタ装置1は、共通端子としてのアンテナ共通端子2を有する。アンテナ共通端子2に、第1~第3の受信フィルタ3a,4,13及び送信フィルタ3bが接続されている。もっとも、本発明においては、アンテナ共通端子2に複数の受信フィルタのみが接続されていてもよい。
 図1では、第1~第3の受信フィルタ3a,4,13及び送信フィルタ3bをブロックで略図的に示している。第1~第3の受信フィルタ3a,4,13及び送信フィルタ3bは、複数のキャリア、すなわち通信方式に対応するために設けられている。
 第1の受信フィルタ3a及び送信フィルタ3bは、複合フィルタ3を構成している。
 第1の受信フィルタ3aは、第1の通過帯域を有する、第1の帯域通過型フィルタである。第1の通過帯域は、Band3の受信周波数帯域であり、1805MHz~1880MHzの周波数帯域である。また、第2の受信フィルタ4は、第2の通過帯域を有する、第2の帯域通過型フィルタである。第2の通過帯域は、Band7の受信周波数帯域であり、2620MHz~2690MHzの周波数帯域である。従って、第2の通過帯域は、第1の通過帯域より周波数が高い。 
 第1の受信フィルタ3aは、LiNbO基板上にIDT電極及びSiO膜を積層した構造を有する。LiNbO基板上を伝搬するレイリー波が利用されている。もっとも、IDT電極に交流電圧を印加すると、レイリー波だけでなく、その高次モードであるセザワ波も励振されることになる。
 本実施形態の特徴は、第1の受信フィルタ3aにおけるセザワ波の周波数をf1’とし、第2の受信フィルタ4における第2の通過帯域の中心周波数をf2としたときに、f1’がf2と重ならないように、IDT電極の構成材料、IDT電極及びSiO膜の膜厚が設定されていることにある。従って、本実施形態においては、f1’がf2と異なる位置に存在している。そのため、第1の受信フィルタ3aにおけるセザワ波の応答の影響により、第2の受信フィルタ4の挿入損失が劣化し難い。すなわち、第1の受信フィルタ3aにおけるセザワ波の応答により、第2の受信フィルタ4に悪影響が及ぼされ難い。第2の受信フィルタ4へのセザワ波の応答の影響をより一層及ぼし難くする観点から、f1’は、第2の通過帯域外に存在していることが好ましい。
 なお、f1’及びf2は、第1の受信フィルタ3aにおける第1の通過帯域の中心周波数をf1としたときに、f1<f1’<f2を満たしていることが好ましい。高次モードの周波数温度係数(TCF)は負であるので、f1’は素子温度が高温になればなるほど低周波数側にシフトする。そのため、f1<f1’<f2を満たしている場合、高温においても、セザワ波の応答により、第2の受信フィルタ4に悪影響が及ぼされ難い。もっとも、本発明においては、f1’がf2と異なる位置に存在していればよく、f1<f2<f1’を満たしていてもよい。また、f1<f1’<f2の場合においては、f1’は、さらに第2の通過帯域外にあることが好ましい。この場合、高温においても、セザワ波の応答により、第2の受信フィルタ4に悪影響がより一層及ぼされ難い。以下、複合フィルタ装置1を構成している複合フィルタについて詳述した上で、f1’及びf2が重ならないようにするための具体的な手段について説明する。
 図2は、本発明の複合フィルタ装置を構成する一例としての複合フィルタを示す回路図である。具体的に、図2は、複合フィルタ3を示す回路図である。
 上述したように、複合フィルタ3は、第1の受信フィルタ3aと、送信フィルタ3bとを有する。複合フィルタ3は、共通端子7を有する。共通端子7は、図1に示すアンテナ共通端子2に接続されている。共通端子7とグラウンド電位との間にインピーダンス整合用インダクタLが接続されている。
 共通端子7と受信端子5との間に第1の受信フィルタ3aが接続されている。共通端子7と送信端子6との間に送信フィルタ3bが接続されている。
 送信フィルタ3bにおいては、共通端子7に複数の直列腕共振子S11~S16及び複数の並列腕共振子P11~P13が接続されている。
 第1の受信フィルタ3aにおいては、共通端子7にラダー型フィルタ9が接続されている。ラダー型フィルタ9は、直列腕共振子S1,S2及び並列腕共振子P1,P2を有する。直列腕共振子S1,S2及び並列腕共振子P1,P2は、いずれも、1ポート型弾性波共振子からなる。1ポート型弾性波共振子は、図3に示す電極構造を有する。図3に示すように、IDT電極10の弾性波伝搬方向両側に反射器11,12が設けられている。それによって、1ポート型弾性波共振子が構成されている。
 また、ラダー型フィルタ9と受信端子5との間に縦結合共振子型弾性波フィルタ8が接続されている。縦結合共振子型弾性波フィルタ8は、弾性波フィルタ部8a,8bを有する。弾性波フィルタ部8a,8bは、それぞれ、5つの弾性波共振子を弾性波伝搬方向に配列して縦結合させることにより構成されている。より具体的に、弾性波フィルタ部8a,8bは、弾性表面波の伝搬方向に配列された5つのIDT電極と、5つのIDT電極の両側に設けられた反射器とを有する5IDT型の弾性波フィルタである。なお、図1では、第2及び第3の受信フィルタ4,13をブロックで略図的に示しているが、第1の受信フィルタ3aと同様に構成されている。
 複合フィルタ装置1においては、直列腕共振子S1,S2、並列腕共振子P1,P2及び縦結合共振子型弾性波フィルタ8を構成している全ての弾性波共振子が、以下に述べる特定の弾性波共振子からなる。それによって、上述したf1’がf2と異なる位置に存在するように調整されている。以下、直列腕共振子S1を代表して、特定の弾性波共振子の構造を説明することとする。
 図4は、本発明の第1の実施形態に係る複合フィルタ装置の第1の受信フィルタを構成している弾性波共振子の模式的部分切欠正面断面図である。図4に示すように、LiNbO基板22上にIDT電極23が設けられている。IDT電極23を覆うようにSiOからなる誘電体膜24が積層されている。誘電体膜24を積層することにより、周波数温度係数の絶対値をより一層小さくすることができる。誘電体膜24上に、SiN膜25が積層されている。もっとも、SiN膜25は、設けられなくともよい。
 IDT電極23は、第1及び第2の金属膜23a,23bを有する。第1の金属膜23a上に、第2の金属膜23bが積層されている。本実施形態では、第1の金属膜23aは、Pt膜である。また、第2の金属膜23bは、Al膜である。従って、第2の金属膜23bは、第1の金属膜23aより電気抵抗が低い。このように、第2の金属膜23bは、第1の金属膜23aより電気抵抗が低いことが好ましい。
 複合フィルタ装置1においては、f1’がf2と異なる位置に存在するように、第1の金属膜23aの膜厚(以下、Pt膜厚という場合があるものとする)及び誘電体膜24の膜厚(以下、SiO膜厚という場合があるものとする)が設定されている。それによって、第1の受信フィルタ3aにおけるセザワ波の応答により、第2の受信フィルタ4に悪影響が及ぼされ難くされている。なお、第1の金属膜23a及び誘電体膜24の膜厚は、IDT電極23の電極指ピッチで定まる波長λに対する比率である。また、誘電体膜24の膜厚は、誘電体膜24における第1及び第2の主面24a,24b間の距離Dを示すものとする。第1及び第2の主面24a,24bは、互いに対向しており、第1の主面24aがLiNbO基板22側の主面である。
 以下、f1’がf2と異なる位置に存在するように、第1の金属膜23aの膜厚及びSiO膜厚を設定する方法について説明する。
 上述したように、本実施形態では、第1の受信フィルタ3aがBand3の受信フィルタであり、第2の受信フィルタ4が、Band7の受信フィルタである。第1の通過帯域であるBand3の受信周波数帯域の中心周波数f1は、1842.5MHzである。また、第2の通過帯域であるBand7の受信周波数帯域の中心周波数f2は、2655MHzである。従って、本実施形態においては、f2/f1=1.441である。
 図5は、第1の金属膜であるPtの膜厚を変化させたときの、SiO膜厚と、f1’/f1との関係を示す図である。f1’/f1は、レイリー波の音速に対するセザワ波の音速の比(セザワ波の音速/レイリー波の音速)により求めることができる。
 ここで、f1<f1’<f2とすることにより、f1’がf2と異なる位置に存在するようにするためには、以下のようにすればよい。f1<f1’<f2のとき、1<f1’/f1<f2/f1なので、f2/f1=1.441を代入すると、1<f1’/f1<1.441となる。1<f1’/f1<1.441を満たすためには、図5にAで示す直線f2/f1が1.441である場合(f1’/f1=1.441)より下側の領域であればよい。
 具体的に、Pt膜厚が0.5%の場合には、f1’/f1は、下記式(1)で近似される。
 y = 0.00000096 × x - 0.00011979 × x
+ 0.00535955 × x - 0.10212558 × x
+ 1.91148793 …式(1)
 ここで、yはf1’/f1、xはSiO膜厚である。この関数により表されるSiO膜の膜厚とPt膜厚の条件がf2/f1=f1’/f1=1.441より下側の領域にある場合、すなわち、下記式(2)を満たすように第1の金属膜であるPt膜厚及びSiO膜厚を設定することで、f1<f1’<f2とすることができる。
 1.441 > 0.00000096 × x-0.00011979 × x+ 0.00535955 × x - 0.10212558 × x
+ 1.91148793 …式(2)
 f1<f1’<f2を満たすことで、第1の受信フィルタ3aにおけるセザワ波の応答により、第2の受信フィルタ4に悪影響が及ぼされ難くすることができる。
 なお、本実施形態においては、直列腕共振子S1,S2、並列腕共振子P1,P2及び縦結合共振子型弾性波フィルタ8を構成している全ての弾性波共振子が、上記の特定の弾性波共振子からなる。もっとも、本発明においては、直列腕共振子S1,S2、並列腕共振子P1,P2及び縦結合共振子型弾性波フィルタ8を構成している少なくとも1つの共振子が、上記特定の弾性波共振子であればよい。セザワ波の応答の第2の受信フィルタ4への影響をより一層効果的に抑制する観点から、少なくとも縦結合共振子型弾性波フィルタ8が上記特定の共振子により構成されていることが好ましい。
 また、ラダー型フィルタ9のアンテナ共通端子2側のリターンロスは、アンテナ共通端子2に最も近い直列腕共振子S1から生じる高次モードのレスポンスが最も大きくなるため、アンテナ共通端子2に最も近い直列腕共振子S1が上記特定の弾性波共振子からなることが好ましい。
 第1の実施形態では、第1の金属膜23aが、Ptからなるが、他の金属を用いてもよい。好ましくは、第1の金属膜23aは、Pt、Cu及びMoのうち1種の金属を主体とする金属膜であることが望ましい。その場合には、レイリー波による良好なフィルタ特性を得ることができる。なお、金属を主体とするとは、当該金属のみからなるものに限らず、当該金属を50重量%以上含む合金をも含むことを意味する。また、第1の金属膜23aと、その他のAlより重い金属を積層した場合には、第1の金属膜23aの膜厚および密度より計算される第1の金属膜23aの重量と、Alより重い金属膜の膜厚及び密度で計算されるAlより重い金属膜の重量との和を、第1の金属膜23aの密度で除すことにより、第1の金属膜23aの膜厚に換算して第1の金属膜23aの膜厚と等価とする。また、第2の金属膜23bは、Alからなるが、他の金属を用いてもよい。好ましくは、第2の金属膜23bは、AlまたはAuを主体とする合金が好ましい。第2の金属膜23bは設けなくともよい。
 また、第1の実施形態では、SiO膜である誘電体膜24がIDT電極23を覆うように設けられていたが、SiO膜以外の酸化ケイ素を主成分とする誘電体膜を用いることもできる。酸化ケイ素を主成分とする誘電体膜とは、SiOに限らず、SiO(xは整数)を50重量%以上含む誘電体材料からなる膜であってもよいことを意味する。
 第1の実施形態では、Band3とBand7の受信フィルタの組み合わせを用いたが、例えば、下記表4に示すBandの組み合わせを用いてもよい。表4において、例えば、Band39-Band41と記載している場合には、第1の帯域通過型フィルタがBand39の受信フィルタであり、第2の帯域通過型フィルタがBand41の受信フィルタであることを意味している。また、各Bandの組み合わせを用いる場合、f1及びf2の比(f2/f1)は、表4に示す関係となる。例えば、Band39-Band41のときは、f2/f1=1.365となる。
Figure JPOXMLDOC01-appb-T000007
 なお、必ずしも表4に記載したBandの中から選ばなくともよい。
 また、第1の実施形態では、f2は第2の受信フィルタ4の第2の通過帯域の中心周波数であったが、第2の受信フィルタ4の第2の通過帯域の周波数の下限値(通過帯域内において最も低い周波数)よりも低い周波数側にf1’を位置させることで、第2の受信フィルタ4の第2の通過帯域内全ての領域において、第1の受信フィルタ3aより生じる高次モードによるロスの劣化を抑制することができる。
 具体的に、第2の受信フィルタ4の第2の通過帯域の周波数の下限値をf2Lとし、第1の金属膜23aをPtとし、Pt膜厚を0.5%とした場合には、下記式(3)を満たすようなx(SiO膜厚)とすることで、f1<f1’<f2Lとすることができる。
 f2L/f1 > 0.00000096 × x 
- 0.00011979 × x+ 0.00535955 × x 
- 0.10212558 × x+ 1.91148793 …式(3)
 ここで、代表的なBandの組み合わせにおけるf2Lとf1の比(f2L/f1)を上記表4に示すが、必ずしも表4に記載のBandから選ばなくともよい。
 本発明においては、f1及びf2が上記表4に示す各関係にあり、第1の金属膜23aが下記の表5に示す金属及び膜厚からなる場合に、下記表5に示す式において、yがf2/f1より小さくなるように、xの値が定められている。このとき、f1,f1’及びf2が、f1<f1’<f2を満たすこととなる。なお、yはf1’/f1である。さらに、各膜厚は、IDT電極23の電極指ピッチで定まる波長λに対する比率である。なお、表5に示す式は例えば、0.25%<Pt≦0.75%のときは、中心であるPt=0.5%のときの近似式を示すものであるが、0.25%<Pt≦0.75%の範囲であれば同様の効果が得られることを確認している。他の範囲についても同様である。ここで、下記表5において、x4はxの4乗を示し、x3はxの3乗を示し、x2はxの2乗を示す。
Figure JPOXMLDOC01-appb-T000008
 また、本発明においては、f1及びf2が上記表4に示す各関係にあり、第1の金属膜23aが表5に示す金属及び膜厚からなる場合に、表5に示す式において、yがf2/f1より大きくなるように、xの値が定められている。このとき、f1,f1’及びf2が、f1<f2<f1’を満たすこととなる。なお、各膜厚は、IDT電極23の電極指ピッチで定まる波長λに対する比率である。
 上記のようにして、f1’がf2と異なる位置に存在するようにすることにより、第1の受信フィルタ3aにおけるセザワ波の応答により、第2の受信フィルタ4に悪影響が及ぼされ難くすることができる。
 特に、f1とf2の差が大きい場合は、f1<f1’<f2となるように調整すればよい。また、f1とf2の差が小さい場合は、f1<f2<f1’となるように調整すればよい。
 以下、具体的に第1の受信フィルタ3aがBand25の受信フィルタであり、第2の受信フィルタ4が、Band30の受信フィルタである場合について説明する。第1の通過帯域であるBand25の受信周波数帯域の中心周波数f1は、1962.5MHzである。また、第2の通過帯域であるBand30の受信周波数帯域の中心周波数f2は、2355MHzである。従って、本実施形態においては、f2/f1=1.20となる。この場合において、第1の金属膜23aに、Ptを用いたときを例に挙げて説明する。f1<f2<f1’のとき、1<f2/f1<f1’/f1なので、f2/f1=1.20を代入すると、1.20<f1’/f1となることが必要となる。1.20<f1’/f1を満たすためには、図5にBで示す破線f2/f1が1.20である場合(f1’/f1=1.20)より上側の領域であればよい。具体的には、Pt膜厚が2.0%の場合には、f1’/f1は、下記式(4)で近似される。
 y = 0.00000109 × x - 0.00014124 × x
+ 0.00650460 × x - 0.12836964 × x
+ 2.20470460 …式(4)
 ここで、yはf1’/f1であり、xはSiO膜厚である。この関数により表されるSiO膜の膜厚とPt膜厚の条件がf2/f1=f1’/f1=1.20より上側の領域にある場合、すなわち下記式(5)を満たすように第1の金属膜の膜厚であるPt膜厚及びSiO膜厚を設定することで、f1<f2<f1’を満たすことがわかる。
 1.20 < 0.00000109 × x- 0.00014124 × x+ 0.00650460 × x - 0.12836964 × x
+ 2.20470460 …式(5)
 上記の具体例では、Band25とBand30の受信フィルタの組み合わせを用いたが、例えば、上記表4に示すBandの組み合わせを用いてもよい。また、必ずしも表4に記載したBandの中から選ばなくともよい。
 また、第1の実施形態では、f2は、第2の受信フィルタ4の第2の通過帯域の中心周波数であったが、第2の受信フィルタ4の第2の通過帯域の周波数の上限値(通過帯域内において最も高い周波数)よりも高い周波数にf1’を位置させることで、第2の受信フィルタ4の第2の通過帯域内全ての領域において、第1の受信フィルタ3aより生じる高次モードによるロスの劣化を抑制することができる。すなわち、第2の受信フィルタ4の第2の通過帯域の周波数の上限値をf2Hとし、IDT電極をPtとし、Pt膜厚を2.0%とした場合には、下記式(6)を満たすようなSiO膜厚とすることで、f1<f2H<f1’とすることができる。
 f2H/f1 < 0.00000109 × x
- 0.00014124 × x+ 0.00650460 × x 
- 0.12836964 × x+ 2.20470460 …式(6)
 ここで、代表的なBandの組み合わせにおけるf2Hとf1の比を上記表4に示すが、必ずしも表4に記載のBandから選ばなくともよい。
 また、図5では、第1の金属膜23aに、Ptを用いたときを例に挙げて説明したが、第1の金属膜23aにMoやCuを用いる場合も、それぞれ、図6及び図7を参照して、f1’をf2と異なる位置にすることができる。
 このように、本発明においては、第1の金属膜及び誘電体膜の膜厚を上記のように設定することにより、f1<f1’<f2又はf1<f2<f1’を満たすことがわかる。それによって、第1の帯域通過型フィルタにおけるセザワ波の応答により、第2の帯域通過型フィルタに悪影響が及ぼされ難くすることができる。
 なお、本発明において、セザワ波が複数のレスポンスを有する場合、あるいは帯域を持って生じた場合には、セザワ波の周波数f1’は、入力端子側の反射特性が最大になる周波数とする。
 (第2の実施形態)
 図8は、本発明の第2の実施形態に係る複合フィルタ装置の略図的回路図である。複合フィルタ装置51は、キャリアアグリゲーション用複合フィルタ装置である。この複合フィルタ装置51は、共通端子としてのアンテナ共通端子52を有する。アンテナ共通端子52に、複数の複合フィルタ53~57が接続されている。各複合フィルタ53~57は、それぞれ、受信フィルタ53a,54a,55a,56a,57aと、送信フィルタ53b,54b,55b,56b,57bとを有する。このような複合フィルタ装置51においても、いずれかの受信フィルタ53a~57aを本発明に従って、第1の帯域通過型フィルタとし、残りの受信フィルタ53a~57aまたは送信フィルタ53b~57bのうち少なくとも1つを本発明の第2の帯域通過型フィルタとしてもよい。それによって、第1の帯域通過型フィルタにおけるセザワ波の応答により、第2の帯域通過型フィルタに悪影響が及ぼされ難くすることができる。なお、各複合フィルタ53~57においては、送信フィルタの通過帯域が属する通信バンドは、受信フィルタの通過帯域が属する通信バンドとは異なる。
 第1の実施形態及び第2の実施形態では、複合フィルタ装置が複合フィルタを有する例を示した。以下においては、複合フィルタを有しない、キャリアアグリゲーション用複合フィルタ装置の実施形態を示す。
 (第3の実施形態)
 図10は、第3の実施形態に係る複合フィルタ装置の略図的回路図である。図11は、複合フィルタ装置を構成する一例としてのキャリアアグリゲーション回路を示す回路図である。
 上述したように、キャリアアグリゲーション用複合フィルタ装置61は、第1の受信フィルタ63と、第2の受信フィルタ64とを有する。キャリアアグリゲーション用複合フィルタ装置61は、共通端子77を有する。共通端子77は、アンテナ共通端子2に接続されている。共通端子77とグラウンド電位との間にインピーダンス整合用インダクタLが接続されている。
 共通端子77と受信端子62aとの間に第1の受信フィルタ63が接続されている。共通端子77と受信端子62bとの間に第2の受信フィルタ64が接続されている。
 第2の受信フィルタ64においては、共通端子77にラダー型フィルタ68が接続されている。ラダー型フィルタ68は、複数の直列腕共振子S61,S62及び並列腕共振子P61を有する。並列腕共振子P61は、直列腕共振子S61と直列腕共振子S62との間の接続点とグラウンド電位との間に接続されている。また、ラダー型フィルタ68のアンテナ共通端子2とは逆側に、縦結合共振子型弾性波フィルタ66が接続されている。第2の受信フィルタ64では、縦結合共振子型弾性波フィルタ66と、ラダー型フィルタ68とにより通過帯域が構成されている。
 また、縦結合共振子型弾性波フィルタ66と受信端子62bとの間に、直列腕共振子S63が接続されている。直列腕共振子S63と受信端子62bとの間の接続点とグラウンド電位との間に、並列腕共振子P62が接続されている。この直列腕共振子S63及び並列腕共振子P62により、通過帯域の調整が図られている。
 第1の受信フィルタ63においては、共通端子77にラダー型フィルタ69が接続されている。ラダー型フィルタ69は、直列腕共振子S65,S66及び並列腕共振子P63を有する。また、ラダー型フィルタ69のアンテナ共通端子2とは逆側に、縦結合共振子型弾性波フィルタ67が接続されている。第1の受信フィルタ63では、縦結合共振子型弾性波フィルタ67と、ラダー型フィルタ69とにより通過帯域が構成されている。
 また、縦結合共振子型弾性波フィルタ67と受信端子62aとの間に、直列腕共振子S64が接続されている。直列腕共振子S64と受信端子62aとの間の接続点とグラウンド電位との間に、並列腕共振子P64が接続されている。この直列腕共振子S64及び並列腕共振子P64により、通過帯域の調整が図られている。
 なお、図11では第3の受信フィルタ65をブロックで略図的に示しているが、第1の受信フィルタ63と同様に構成されている。
 複合フィルタ装置61においては、直列腕共振子S64~S66、並列腕共振子P63,P64及び縦結合共振子型弾性波フィルタ67を構成している全ての弾性波共振子が、第1の実施形態と同様の、特定の弾性波共振子からなる。それによって、第1の受信フィルタ63におけるセザワ波の応答の影響により、第2の受信フィルタ64の挿入損失が劣化し難い。
 もっとも、直列腕共振子S64~S66、並列腕共振子P63,P64及び縦結合共振子型弾性波フィルタ67を構成している少なくとも1つの共振子が、上記特定の弾性波共振子であればよい。
 本実施形態のような、キャリアアグリゲーション用複合フィルタ装置においては、第1の受信フィルタにおけるセザワ波の応答による第2の受信フィルタの挿入損失の劣化が特に顕著となる。よって、本実施形態においては、第2の受信フィルタ64の挿入損失の劣化を特に効果的に抑制することができる。
 本発明においては、共通端子であるアンテナ共通端子に接続されている複数の帯域通過型フィルタのいずれか1つを第1の帯域通過型フィルタとし、他の帯域通過型フィルタのうちの少なくとも1つを第2の帯域通過型フィルタとすればよい。第1及び第2の帯域通過型フィルタを有している限りにおいて、アンテナ共通端子に接続されるフィルタ数は特に限定されない。また、アンテナ共通端子と、各フィルタとの間には、インピーダンス調整用の整合回路が設けられていてもよい。整合回路は、LやCにより構成することができ、フィルタに直列に接続されていてもよく、並列に接続されていてもよい。直列と並列の双方に接続されていてもよい。また、各フィルタは同じチップ上に構成されていてもよい。
 なお、本発明の複合フィルタ装置は、アンテナ共通端子に接続される第1,第2の帯域通過型フィルタを備える限り、そのフィルタ装置の具体的な形態は特に限定されない。従って、複合フィルタ装置は、マルチプレクサ、デュアルフィルタ等であり、キャリアアグリゲーション回路、高周波フロントエンド回路や高周波フロントエンドモジュール、携帯電話やスマートフォン等の通信装置等に用いられ得る。
 [高周波フロントエンド回路及び通信装置]
 図9は、本発明の一実施形態に係る複合フィルタ装置、高周波フロントエンド回路及び通信装置の略図的回路図である。
 図9に示すように、高周波フロントエンド回路32は、上述した複合フィルタ装置1を備える。複合フィルタ装置1に、LNA36(Low Noise Amplifier)及びスイッチ37(SW)が接続されている。
 なお、高周波フロントエンド回路32は、ダイプレクサ、サーキュレーター又はアイソレーター等を含んでいてもよい。
 また、図9に示すように、通信装置31は、携帯電話、スマートフォン若しくは車載用の通信装置又はヘルスケア用の通信装置等であり、高周波フロントエンド回路32、RF段のICであるRFIC34、BBIC38(Base Band IC)、CPU39及びディスプレイ35を備える。
 RFIC34には、パワーアンプ33及びLNA36が接続されている。また、RFIC34に、BBIC38(Base Band IC)が接続されている。パワーアンプ33およびLNA36には、複合フィルタ3が接続されている。複合フィルタ3は、受信フィルタ3aと送信フィルタ3bからなる。なお、通信装置31は、この複合フィルタを複数有していてもよい。
 このように高周波フロントエンド回路32及び通信装置31は、上述した複合フィルタ装置1により構成されている。複合フィルタ装置1では、第1の帯域通過型フィルタにおけるセザワ波の応答により、第2の帯域通過型フィルタに悪影響が及ぼされ難いので、高周波フロントエンド回路32及び通信装置31は、信頼性に優れている。
 なお、図12に示す通信装置の変形例のように、通信装置は第3の実施形態の複合フィルタ装置61を有していてもよい。
1,51…複合フィルタ装置
2,52…アンテナ共通端子
3…複合フィルタ
3a…第1の受信フィルタ
3b…送信フィルタ
4…第2の受信フィルタ
5…受信端子
6…送信端子
7…共通端子
8…縦結合共振子型弾性波フィルタ
8a,8b…弾性波フィルタ部
9…ラダー型フィルタ
10,23…IDT電極
11,12…反射器
13…第3の受信フィルタ
22…LiNbO基板
23a,23b…第1,第2の金属膜
24…誘電体膜
24a,24b…第1,第2の主面
25…SiN膜
31…通信装置
32…高周波フロントエンド回路
33…パワーアンプ
34…RFIC
35…ディスプレイ
36…LNA
37…スイッチ
38…BBIC
39…CPU
53~57…複合フィルタ
53a~57a…受信フィルタ
53b~57b…送信フィルタ
61…複合フィルタ装置
62a,62b…受信端子
63,64,65…第1,第2,第3の受信フィルタ
66,67…縦結合共振子型弾性波フィルタ
68,69…ラダー型フィルタ
77…共通端子
P1,P2,P11~P13,P61~P64…並列腕共振子
S1,S2,S11~S16,S61~S66…直列腕共振子

Claims (16)

  1.  キャリアアグリゲーションに用いられる複合フィルタ装置であって、
     アンテナに接続されるアンテナ共通端子と、
     前記アンテナ共通端子に接続されており、かつ通過帯域がそれぞれ異なる複数の帯域通過型フィルタと、
    を備え、
     前記複数の帯域通過型フィルタは、第1の通過帯域を有する、第1の帯域通過型フィルタと、
     前記アンテナ共通端子に接続されており、前記第1の通過帯域よりも周波数が高い、第2の通過帯域を有する、第2の帯域通過型フィルタと、
    を含み、
     前記第1の帯域通過型フィルタは、弾性波共振子を含み、
     前記弾性波共振子は、
     LiNbO基板と、
     前記LiNbO基板上に設けられたIDT電極と、
     前記LiNbO基板上において前記IDT電極を覆っている酸化ケイ素を主成分とする誘電体膜と、
    を有し、
     前記弾性波共振子は、前記LiNbO基板を伝搬するレイリー波を利用しており、
     前記第1の帯域通過型フィルタのセザワ波の周波数をf1’とし、前記第2の通過帯域の中心周波数をf2としたときに、f1’がf2と異なる位置に存在している、複合フィルタ装置。
  2.  前記IDT電極が、Pt、Mo及びCuのうち1種の金属を主体とする第1の金属膜を有し、
     前記第1の通過帯域の中心周波数をf1、f1’/f1をy、前記誘電体膜の膜厚をxとし、前記第1の金属膜が下記の表1に示す金属及び膜厚からなるときに、下記表1に示す式において、前記yがf2/f1と異なる値である、請求項1に記載の弾性波フィルタ装置。
     なお、下記表1において、x4はxの4乗を示し、x3はxの3乗を示し、x2はxの2乗を示す。
    Figure JPOXMLDOC01-appb-T000001
  3.  f1’が前記第2の通過帯域外に存在している、請求項1又は2に記載の複合フィルタ装置。
  4.  前記第1の通過帯域の中心周波数をf1としたときに、f1<f1’<f2を満たしている、請求項1~3のいずれか1項に記載の複合フィルタ装置。
  5.  前記第1の通過帯域の中心周波数をf1としたときに、f1<f2<f1’を満たしている、請求項1~3のいずれか1項に記載の複合フィルタ装置。
  6.  前記第1の帯域通過型フィルタが、前記アンテナ共通端子に接続されているラダー型フィルタを有する、請求項1~5のいずれか1項に記載の複合フィルタ装置。
  7.  前記ラダー型フィルタが、複数の直列腕共振子を有し、前記複数の直列腕共振子のうち、前記アンテナ共通端子に最も近い直列腕共振子が前記弾性波共振子からなる、請求項6に記載の複合フィルタ装置。
  8.  前記第1の帯域通過型フィルタが、前記ラダー型フィルタの前記アンテナ共通端子とは逆の側に接続されている縦結合共振子型弾性波フィルタを有する、請求項6又は7に記載の複合フィルタ装置。
  9.  前記誘電体膜が、酸化ケイ素からなる、請求項1~8のいずれか1項に記載の複合フィルタ装置。
  10.  前記IDT電極が、Pt、Mo及びCuのうち1種の金属を主体とする第1の金属膜を有し、
     f1’/f1をyとし、前記誘電体膜の膜厚をxとし、前記第2の通過帯域の周波数の下限値をf2Lとし、前記第1の金属膜が下記の表2に示す金属及び膜厚からなる場合に、下記表2に示す式において、前記yがf2L/f1より小さくされている、請求項2~9のいずれか1項に記載の複合フィルタ装置。
     なお、下記表2において、x4はxの4乗を示し、x3はxの3乗を示し、x2はxの2乗を示す。
    Figure JPOXMLDOC01-appb-T000002
  11.  前記IDT電極が、Pt、Mo及びCuのうち1種の金属を主体とする第1の金属膜を有し、
     f1’/f1をyとし、前記誘電体膜の膜厚をxとし、前記第2の通過帯域の周波数の上限値をf2Hとし、前記第1の金属膜が下記の表3に示す金属及び膜厚からなる場合に、下記表3に示す式において、前記yがf2H/f1より大きくされている、請求項2~9のいずれか1項に記載の複合フィルタ装置。
     なお、下記表3において、x4はxの4乗を示し、x3はxの3乗を示し、x2はxの2乗を示す。
    Figure JPOXMLDOC01-appb-T000003
  12.  前記第1の金属膜上に積層されており、前記第1の金属膜より電気抵抗が低い、第2の金属膜を有する、請求項2~11のいずれか1項に記載の複合フィルタ装置。
  13.  前記第2の金属膜が、AlまたはAuを主体とする合金からなる、請求項12に記載の複合フィルタ装置。
  14.  前記第1の金属膜が、MoとNbを主体とする合金からなる、請求項2及び請求項10~13のいずれか1項に記載の複合フィルタ装置。
  15.  請求項1~14のいずれか1項に記載の複合フィルタ装置と、
     スイッチ、パワーアンプ、LNA、ダイプレクサ、サーキュレーター及びアイソレーターのうちの少なくとも1つと、
    を備える、高周波フロントエンド回路。
  16.  請求項15に記載の高周波フロントエンド回路と、
     RFICと、
     BBICと、
    を備える、通信装置。
PCT/JP2017/008559 2016-03-31 2017-03-03 複合フィルタ装置、高周波フロントエンド回路及び通信装置 WO2017169514A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187024728A KR102076960B1 (ko) 2016-03-31 2017-03-03 복합 필터 장치, 고주파 프론트엔드 회로 및 통신 장치
CN201780017325.2A CN109075772B (zh) 2016-03-31 2017-03-03 复合滤波器装置、高频前端电路以及通信装置
US16/125,885 US11088673B2 (en) 2016-03-31 2018-09-10 Composite filter device, high-frequency front end circuit, and communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-070106 2016-03-31
JP2016070106 2016-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/125,885 Continuation US11088673B2 (en) 2016-03-31 2018-09-10 Composite filter device, high-frequency front end circuit, and communication device

Publications (1)

Publication Number Publication Date
WO2017169514A1 true WO2017169514A1 (ja) 2017-10-05

Family

ID=59962968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008559 WO2017169514A1 (ja) 2016-03-31 2017-03-03 複合フィルタ装置、高周波フロントエンド回路及び通信装置

Country Status (4)

Country Link
US (1) US11088673B2 (ja)
KR (1) KR102076960B1 (ja)
CN (1) CN109075772B (ja)
WO (1) WO2017169514A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019171971A1 (ja) * 2018-03-08 2019-09-12 株式会社村田製作所 マルチプレクサ、高周波フロントエンド回路および通信装置
JP2021174999A (ja) * 2020-04-17 2021-11-01 株式会社村田製作所 弾性波装置及び複合フィルタ装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111817688B (zh) * 2020-09-14 2020-12-04 成都频岢微电子有限公司 一种高隔离度声表面波双工器及实现高隔离度的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60169209A (ja) * 1984-02-13 1985-09-02 Murata Mfg Co Ltd 表面波装置
JPH09205337A (ja) * 1995-11-21 1997-08-05 Murata Mfg Co Ltd 表面波装置
WO2009147787A1 (ja) * 2008-06-06 2009-12-10 パナソニック株式会社 弾性波共用器
WO2012098816A1 (ja) * 2011-01-18 2012-07-26 株式会社村田製作所 弾性表面波フィルタ装置
JP2013138333A (ja) * 2011-12-28 2013-07-11 Panasonic Corp 弾性波素子
WO2014125980A1 (ja) * 2013-02-12 2014-08-21 株式会社村田製作所 高周波モジュールおよび通信装置
WO2015041125A1 (ja) * 2013-09-17 2015-03-26 株式会社村田製作所 高周波モジュールおよび通信装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7446629B2 (en) * 2004-08-04 2008-11-04 Matsushita Electric Industrial Co., Ltd. Antenna duplexer, and RF module and communication apparatus using the same
JP4937605B2 (ja) 2006-03-07 2012-05-23 太陽誘電株式会社 弾性境界波デバイス
JP4943137B2 (ja) * 2006-12-25 2012-05-30 京セラ株式会社 分波器および通信装置
CN104601141B (zh) * 2009-05-14 2017-10-03 天工滤波方案日本有限公司 天线共用器
JP5672050B2 (ja) 2011-02-21 2015-02-18 株式会社村田製作所 弾性表面波フィルタ装置
JP6017868B2 (ja) * 2011-11-04 2016-11-02 太陽誘電株式会社 分波器、フィルタ及び通信モジュール
GB2502604B (en) * 2012-05-31 2014-04-30 Broadcom Corp Determination of receiver path delay
JP5597228B2 (ja) * 2012-07-11 2014-10-01 株式会社Nttドコモ フロントエンド回路、インピーダンス調整方法
US9467104B2 (en) * 2014-03-28 2016-10-11 Qualcomm Incorporated Single-input multiple-output amplifiers with simultaneous multiple gain modes
GB2526197B (en) 2014-04-11 2020-11-18 Skyworks Solutions Inc Circuits and methods related to radio-frequency receivers having carrier aggregation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60169209A (ja) * 1984-02-13 1985-09-02 Murata Mfg Co Ltd 表面波装置
JPH09205337A (ja) * 1995-11-21 1997-08-05 Murata Mfg Co Ltd 表面波装置
WO2009147787A1 (ja) * 2008-06-06 2009-12-10 パナソニック株式会社 弾性波共用器
WO2012098816A1 (ja) * 2011-01-18 2012-07-26 株式会社村田製作所 弾性表面波フィルタ装置
JP2013138333A (ja) * 2011-12-28 2013-07-11 Panasonic Corp 弾性波素子
WO2014125980A1 (ja) * 2013-02-12 2014-08-21 株式会社村田製作所 高周波モジュールおよび通信装置
WO2015041125A1 (ja) * 2013-09-17 2015-03-26 株式会社村田製作所 高周波モジュールおよび通信装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019171971A1 (ja) * 2018-03-08 2019-09-12 株式会社村田製作所 マルチプレクサ、高周波フロントエンド回路および通信装置
US11437978B2 (en) 2018-03-08 2022-09-06 Murata Manufacturing Co., Ltd. Multiplexer, high-frequency front-end circuit, and communication device
JP2021174999A (ja) * 2020-04-17 2021-11-01 株式会社村田製作所 弾性波装置及び複合フィルタ装置
JP7188412B2 (ja) 2020-04-17 2022-12-13 株式会社村田製作所 弾性波装置及び複合フィルタ装置

Also Published As

Publication number Publication date
CN109075772A (zh) 2018-12-21
CN109075772B (zh) 2022-07-22
US11088673B2 (en) 2021-08-10
KR102076960B1 (ko) 2020-02-13
US20190007030A1 (en) 2019-01-03
KR20180104730A (ko) 2018-09-21

Similar Documents

Publication Publication Date Title
KR102166218B1 (ko) 필터
JP6683256B2 (ja) マルチプレクサ、高周波フロントエンド回路及び通信装置
JP6791403B2 (ja) マルチプレクサ、高周波フロントエンド回路および通信装置
JP6773128B2 (ja) 弾性波フィルタ装置
JP2017152881A (ja) マルチプレクサ、送信装置および受信装置
KR102312057B1 (ko) 멀티플렉서
KR102320453B1 (ko) 멀티플렉서, 고주파 프론트 엔드 회로 및 통신 장치
WO2019017422A1 (ja) マルチプレクサ、高周波フロントエンド回路および通信装置
US10715108B2 (en) Filter device and multiplexer
WO2018070273A1 (ja) 弾性波フィルタ装置
JP2019106622A (ja) マルチプレクサ、高周波フロントエンド回路及び通信装置
WO2017159408A1 (ja) 弾性波装置、帯域通過型フィルタ及び複合フィルタ装置
US8106725B2 (en) Acoustic wave filter device
US11277116B2 (en) Multiplexer
KR20190112121A (ko) 멀티플렉서, 고주파 프론트 엔드 회로 및 통신 장치
WO2017169514A1 (ja) 複合フィルタ装置、高周波フロントエンド回路及び通信装置
US10938377B2 (en) Surface acoustic wave resonator, surface acoustic wave filter, and duplexer
JP2004023611A (ja) 弾性表面波フィルタ、分波器、通信機
KR102597953B1 (ko) 필터 장치 및 멀티플렉서
US10951194B2 (en) Acoustic wave filter, multiplexer, and communication apparatus
WO2020050401A1 (ja) 弾性波装置、高周波フロントエンド回路及び通信装置
KR102645938B1 (ko) 엑스트랙터
WO2022071185A1 (ja) マルチプレクサ
WO2023054301A1 (ja) 弾性波フィルタ装置およびマルチプレクサ
KR20210011330A (ko) 필터 및 멀티플렉서

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187024728

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774059

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17774059

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP