WO2017169035A1 - ツインスケグ船の船底構造及びツインスケグ船 - Google Patents
ツインスケグ船の船底構造及びツインスケグ船 Download PDFInfo
- Publication number
- WO2017169035A1 WO2017169035A1 PCT/JP2017/002562 JP2017002562W WO2017169035A1 WO 2017169035 A1 WO2017169035 A1 WO 2017169035A1 JP 2017002562 W JP2017002562 W JP 2017002562W WO 2017169035 A1 WO2017169035 A1 WO 2017169035A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- propeller
- ship
- pair
- skegs
- bottom structure
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 19
- 238000005461 lubrication Methods 0.000 claims description 17
- 238000004804 winding Methods 0.000 claims description 12
- 238000005553 drilling Methods 0.000 claims description 8
- 230000008961 swelling Effects 0.000 claims description 2
- 230000000694 effects Effects 0.000 description 11
- 230000000994 depressogenic effect Effects 0.000 description 5
- 230000000630 rising effect Effects 0.000 description 5
- 230000001141 propulsive effect Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B1/00—Hydrodynamic or hydrostatic features of hulls or of hydrofoils
- B63B1/02—Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
- B63B1/04—Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with single hull
- B63B1/08—Shape of aft part
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B1/00—Hydrodynamic or hydrostatic features of hulls or of hydrofoils
- B63B1/32—Other means for varying the inherent hydrodynamic characteristics of hulls
- B63B1/34—Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction
- B63B1/38—Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction using air bubbles or air layers gas filled volumes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T70/00—Maritime or waterways transport
- Y02T70/10—Measures concerning design or construction of watercraft hulls
Definitions
- the present invention relates to a twin skeg bottom structure and twin skeg vessel including a pair of skegs spaced apart in the widthwise direction on the stern side of the bottom of the boat and a propeller separately installed on the stern side of the skeg. .
- twin skeg vessel in which skegs projecting downward are provided on the left and right of the ship body at a distance in the width direction on the stern side (rear side) of the ship bottom and propellers are disposed behind these skegs.
- an inclined surface hereinafter referred to as a "stern inclined surface" which inclines upward toward the stern between the skegs is provided on the bottom of the ship, and a tunnel is formed between the stern inclined surface and both skegs.
- the bottom recess of the shape of a letter is formed.
- an air lubrication system which generates a bubbly flow from the bow side to the stern side and covers the bottom of the vessel with the bubbly flow to reduce the frictional resistance of the hull.
- Propulsion efficiency can be improved by reducing the hull drag (propulsion drag) using an air lubrication system.
- Various twin skeg vessels equipped with an air lubrication system have also been developed (for example, Patent Document 1).
- the propulsive efficiency is improved by providing the stern inclined surface between the left and right skegs to form an upward flow of water toward the propeller, but the propulsive efficiency is further improved. It is requested.
- air bubbles are guided to the space between the propellers together with the water flow by the ship bottom recess between the propellers, and the escape flow of the bubble flow is eliminated by its shape (tunnel-like recess). (In other words, the bubbly flow is restricted from flowing out of the propeller), so the bubbly flow tends to flow into the propeller.
- cavitation may increase, and the risk (propeller erosion, vibration or noise of the hull due to increase in fluctuating pressure) may increase.
- the bottom structure of the twin skeg ship of the present invention comprises a pair of skegs provided at an aft side of the bottom at intervals in the widthwise direction of the hull and a pair of skegs
- a boat bottom structure of a twin skeg vessel comprising: propellers installed individually and rotating inward relative to each other; and an inclined surface formed on the boat bottom between the pair of skegs and inclined upward toward the stern side.
- the cross section of the inclined surface is formed in a flat shape along the hull width direction at the first position, and at the second position closer to the stern than the first position, the hull cross direction is spaced apart It is characterized in that it is formed in a relief shape having a pair of concave portions provided open and concaved upward and a convex portion provided between the pair of concave portions and convex downward.
- the said convex-shaped part is a curved convex-shaped part.
- the second position is set between a position forward of the propeller by 0.5 times the diameter of the propeller and a position forward of the propeller by 1.5 times the diameter of the propeller.
- the said convex-shaped part is a step-shaped convex-shaped part provided with the flat surface in the center in the said ship body width direction.
- the second position is set between a position forward of the propeller by 0.5 times the diameter of the propeller and a position forward of the propeller by 1.5 times the diameter of the propeller.
- the bottom structure of the twin skeg ship of the present invention comprises a pair of skegs provided at an aft side of the bottom at intervals in the width direction of the hull and a stern side of the pair of skegs.
- the bottom structure of a twin skeg vessel comprising: a propeller separately installed on each other and rotating inward relative to each other; and an inclined surface formed on the bottom between the pair of skegs and inclined upward toward the stern side.
- the inclined surface is formed in a flat shape along the hull width direction at the first position, and at the second position closer to the stern than the first position in the hull width direction than the propeller.
- the twin skeg ship of the present invention is characterized by having the ship bottom structure according to any of (1) to (6).
- an inclined surface which inclines upward toward the stern between the pair of skegs is formed on the bottom of the ship, and in the first position, the cross section of the inclined surface has a flat shape along the width direction of the ship.
- a pair of concave portions spaced apart in the width direction of the hull and recessed upward, and a space between the pair of concave portions are provided downward It is formed in the up-and-down shape which has a convex part which becomes convex.
- the upward inclination toward the rear of the inclined surface is steepened by the amount of the concave portion provided on each inward of the skeg, the upward component of the upward flow flowing to the propeller along the inclined surface is large.
- the propeller rotating downward with respect to the upward flow provides a high propulsive force and can improve the propulsion efficiency.
- the convex portion is provided between the concave portions, the flow passage cross-sectional area of the upward flow formed between the skeg and the inclined surface is reduced by the amount of the convex portion. Therefore, the upflow velocity of the concave portion is increased by that amount, and the propulsion efficiency can be improved also in this respect.
- the air bubbles ejected to the bottom of the ship gather and flow in the recess, so that the air bubbles flow out of the propeller to the stern side, Air bubbles can be prevented from flowing into the propeller.
- FIG. 1 is a schematic view showing the entire configuration of a ship according to a first embodiment of the present invention, and a bottom view is also shown below the side view.
- FIG. 2 is a schematic view for explaining the ship bottom structure as the first embodiment of the present invention and the operation and effects thereof, and a cross-sectional shape at position A, B (cross-sectional shape cut perpendicularly to the front and rear direction X)
- the cross-sectional shape at position A is indicated by a solid line
- the cross-sectional shape at position B is indicated by a broken line.
- FIG. 3 is a schematic view for explaining the function and effect of the ship bottom structure according to the first embodiment of the present invention, and shows cross-sectional shapes (cross-sectional shapes cut perpendicularly to the longitudinal direction X) at positions A and B. It is a figure which shows and shows the cross-sectional shape in the position A with a continuous line, and shows the cross-sectional shape in the position B with a broken line.
- FIG. 3 shows cross-sectional shapes (cross-sectional shapes cut perpendicularly to the longitudinal direction X) at positions A and B. It is a figure which shows and shows the cross-sectional shape in the position A with a continuous line, and shows the cross-sectional shape in the position B with a broken line.
- FIG. 4 is a schematic view for explaining a ship bottom structure according to a second embodiment of the present invention and its function and effect, showing cross-sectional shapes at positions A and B (cross-sectional shapes cut perpendicularly to the longitudinal direction X)
- the cross-sectional shape at position A is indicated by a solid line
- the cross-sectional shape at position B is indicated by a broken line.
- FIG. 5 is a schematic view for explaining the function and effect of the ship bottom structure according to the second embodiment of the present invention, and shows cross-sectional shapes (cross-sectional shapes cut perpendicularly to the longitudinal direction X) at positions A and B.
- FIG. 6 is a schematic view for explaining a ship bottom structure according to a third embodiment of the present invention and the operation and effects thereof, and a cross-sectional shape at position A and B (cross-sectional shape cut perpendicularly to the longitudinal direction X)
- the cross-sectional shape at position A is indicated by a solid line
- the cross-sectional shape at position B is indicated by a broken line.
- FIG. 7 is a schematic view for explaining the function and effect of the ship bottom structure according to the third embodiment of the present invention, and shows cross-sectional shapes (cross-sectional shapes cut perpendicularly to the longitudinal direction X) at positions A and B. It is a figure which shows and shows the cross-sectional shape in the position A with a continuous line, and shows the cross-sectional shape in the position B with a broken line.
- a horizontal direction orthogonal to the longitudinal direction of the hull (hereinafter, also referred to as “longitudinal direction") X is taken as a widthwise direction of the hull (hereinafter, also referred to as “widthwise direction” or “shipwise direction”).
- the side closer to the center line CL is described as the inside, and the side away from the center line CL is described as the outside.
- FIG. 1 shows only a part of the air bubble 100
- FIGS. 3, 5 and 7 show the air bubble 100 larger than it actually is.
- FIG. 1 is a schematic side view showing the entire structure of a ship according to a first embodiment of the present invention, and a distribution map of a cross sectional area with respect to the position in the longitudinal direction of the hull is shown below.
- the ship 1 includes a hull 10 which is a main body of the ship 1, a control room 20 in which various controls of the ship 1 are performed, and an air lubrication system 30.
- the ship 1 is a twin skeg vessel, and a skeg 15 projecting downward at the rear side of the bottom 13 is provided in pairs on the left and right sides of the center line CL at intervals in the width direction Y, and each skeg 15
- the propellers 16 rotating inward relative to one another are respectively mounted at the rear of the.
- a rudder 17 for determining the traveling direction of the hull 10 is installed on the rear of each propeller 16.
- inward rotation of the propeller 16 is to rotate inward (on the center line CL side) at the upper portion of the propeller 16.
- the left and right skegs 15 are distinguished, the left side skeg 15 is described as a skeg 15L, and the right side skeg 15 is described as a skeg 15R.
- the left propeller 16 is referred to as a propeller 16L
- the right propeller 16 is referred to as a propeller 16R.
- the basic structure of the hull 10, such as the shape and arrangement of the skegs 15L and 15R and the arrangement of the propellers 16L and 16R, is symmetrical with respect to the center line CL.
- the air lubrication system 30 jets air from the bottom 13 to generate a flow of air bubbles 100 at the boundary between the bottom 13 and the water surface, and the air flow 100 forms a bubble layer covering the bottom 13 with the air flow 100.
- the air lubrication system 30 includes, for example, an air supply source 31 configured by a blower and a compressor, a plurality of bubble ejection parts 33 installed near the bow 11 of the bottom 13, the air supply source 31, and each bubble.
- the air supply passage 32 is connected to the ejection portion 33, and by operating the air supply source 31, the air bubbles 100 are ejected from the bubble ejection portions 33 toward the stern 12.
- an inclined surface (hereinafter also referred to as “stern inclined surface”) 131 is provided between the skegs 15L and 15R of the bottom 13 and inclined upward from the center in the front-rear direction X to the rear.
- a tunnel-like recess 132 is formed between 131 and between the skegs 15L and 15R.
- Position (second position) A and position (first position) B shown in FIG. 1 are positions for defining the shape of the stern inclined surface 131 as described later.
- the position A is a position rearward of the position B and is defined as a position ahead of a position P (hereinafter referred to as "propeller position") P in the longitudinal direction X of the propeller 16 by a predetermined distance LA. It is defined as a position ahead of the position P by a predetermined distance LB.
- the propeller position P refers to the position of the center LP of the propeller 16 in the front-rear direction.
- the predetermined distance LA is set in the range of 0.5 times to 1.5 times the diameter Dp of the propeller 16 (Dp ⁇ 0.5 ⁇ LA ⁇ Dp ⁇ 1.5).
- FIG. 2 is a schematic view showing a cross-sectional shape (a cross-sectional shape cut perpendicular to the front-rear direction X) at positions A and B.
- the cross-sectional shape at position A is shown by a solid line and the cross-sectional shape at position B is shown. Indicated by a broken line.
- Reference numeral 16X denotes a propeller surface drawn when the propeller 16 rotates.
- the stern inclined surface 131 of the bottom 13 has a flat shape at the position B, and the central portion including the center line CL is formed as a flat portion 131f.
- the central portion including the center line CL has a convex portion 131a that is convex downward at a position vertically above the position B, and a convex portion 131a is provided.
- Recesses (concave portions) 131 b are formed between the portion 131 a and the skeg 15 L and between the convex portion 131 a and the skeg 15 R, respectively.
- the stern inclined surface 131 is formed in a relief shape in which the depressions 131b are formed on the inner side of each skeg 15 and the projections 131a are formed between the depressions 131b and 131b. There is.
- the convex portion 131a is a curved convex portion having the lower end 131a_btm at the center line CL, and each hollow portion 131b is continuously provided on the inner wall surface 15in of the skeg 15 and the inner side of the skeg 15 It is a concave portion of a curved shape provided at the root.
- the cross-sectional shape of the stern inclined surface 131 changes continuously along the longitudinal direction X, and changes from the cross-sectional shape at the B position to the cross-sectional shape at the A position It changes gradually.
- the cross-sectional shape of the stern inclined surface 131 from the A position to the propeller surface P is a relief shape in which a convex portion is formed between the depressed portions as in the cross sectional shape of the A position. It is assumed.
- the maximum value of the winding depth ⁇ h1 of the cross-sectional shape obtained by the following equation (1) is the planned spring water h0 (see FIG. 1) It is set to be 4% or more and 6% or less of H1a in the following equation (1) is the height of the lower end 131a_btm of the convex portion 131a in the cross-sectional shape (in other words, the height of the bottom 13 above the centerline CL in the cross-sectional shape).
- H1b in the following equation (1) is the height of the upper end 131b_tp of the recess 131b in the cross-sectional shape (in other words, the maximum height of the bottom 13 in the cross-sectional shape).
- ⁇ h1 h1b ⁇ h1a
- the planned spring water h0 is a spring on the plan and means a draft at a typical loading weight assumed during actual navigation. Further, in FIG. 2, the height h1a of the lower end 131a_btm of the convex portion 131a and the height h1b of the upper end 131b_tp of the depressed portion 131b are shown based on the height of the rotation center Cp of the propeller 16.
- the stern inclined surface 131 has a flat shape at the position B, and the propeller 16 is attached at the position A at the rear of the position B.
- Recesses 131 b were formed immediately inside the skeg 15.
- the upward inclination toward the rear of the stern inclined surface 131 is steeply inclined by the depth (surrounding depth) ⁇ h1 of the depression portion 131b.
- the upward flow Fup flowing from the position B to the position A (that is, rearward) along the stern inclined surface 131 to the propeller 16 can be made stronger than in the case where the recessed portion 131b is not provided. it can.
- the propellers 16L and 16R counter-rotating with respect to the upward flow Fup, a higher propulsive force can be obtained than in the case where the recessed portion 131b is not provided, and the propulsion efficiency can be improved. Furthermore, since the convex portion 131a is provided, the cross-sectional area between the skegs 15, that is, the cross-sectional area of the upflow Fup is reduced by the amount by which the convex portion 131a is present. The upflow Fup can be strengthened, and this also can improve the propulsion efficiency.
- the propulsion efficiency can be optimized. That is, when the winding depth ⁇ h1 is less than 4% of the planned spring water h0, the rising angle of the stern inclined surface 131 can not be sufficiently increased, and a strong rising flow can not be obtained so as to improve the propulsion efficiency. In addition, when the drilling depth ⁇ h1 exceeds 6%, the bottom 13 bulges downward and the inundation area of the bottom 13 increases, and on the contrary the resistance of the hull 10 at the time of navigation increases. .
- the air bubbles 100 ejected from the air bubble ejection part 33 (see FIG. 1) of the air lubrication system 30 are tunnels formed between the stern inclined surface 131 and the skegs 15L and 15R.
- the air bubbles 100 flow in the concave portion 132b, and the air bubbles 100 flow in the recess 131b formed above the propeller surface 16X. Flow to the stern side 12. Therefore, the air bubble 100 can be prevented from flowing into the propeller 16.
- FIGS. 4 and 5 A ship according to a second embodiment of the present invention will be described with reference to FIGS. 4 and 5.
- the same components as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
- the present embodiment mainly differs from the first embodiment in the shape of the convex portion of the cross-sectional shape of the stern inclined surface 131 at the position A.
- the convex portion 231 a includes a flat surface 231 f formed so as to straddle the center line CL, and is configured as a substantially trapezoidal step convex portion in a cross sectional view. ing.
- each recess (concave portion) 231b formed between the convex portion 231a and the inner wall surface 15in of the skeg 15 is the same as that of the first embodiment in that the convex portion 231a includes the flat surface 231f.
- the width dimension is narrower than that of the recessed portion 131 b and sharpened.
- the maximum value of the drilling depth ⁇ h2 obtained by the following equation (2) is 4% or more of the planned spring water h0 (see FIG. 1) And 6% or less.
- ⁇ h2 h2b ⁇ h2a
- H2a in the above equation (2) is the height of the flat surface 231f in the cross-sectional shape (note that if the flat surface 231f is not horizontal but has an inclination, the average height of the flat surface 231f)
- H2b in the above equation (2) is the height of the upper end 231b_tp of the recess 231b in the cross sectional shape (in other words, the maximum height of the bottom 13 in the cross sectional shape).
- the maximum value of the winding depth ⁇ h2 is set to 4% or more and 6% or less of the planned spring water h0 if the winding depth ⁇ h2 is less than 4% of the planned spring water h0, the rising angle of the stern inclined surface 131 is sufficient Can not be increased, and a strong upward flow can not be obtained so as to improve the propulsion efficiency, and if the droop depth ⁇ h2 exceeds 6%, the depression portion 231b becomes excessively large and the flooded area of the bottom 13 of the ship becomes too large. On the contrary, the resistance of the hull 10 at the time of navigation increases. In FIG.
- the height h 2 a of the flat surface 231 f and the height h 2 b of the upper end 231 b tp of the depressed portion 231 b are shown based on the height of the rotation center Cp of the propeller 16. Since the other configuration is the same as that of the first embodiment, the description will be omitted.
- the stern inclined surface 131 is provided with the convex portion 231 a and the recess portion 231 b, and in the area RA (see FIG. 1) Since the maximum value of the height ⁇ h2 is set to be 4% or more and 6% or less of the planned spring water h0, the same effect as that of the first embodiment can be obtained.
- the convex portion 231a is configured to include the flat surface 231f, the internal volume of the convex portion 231a can be increased by the amount of the flat surface 231f, so that the loadable cargo amount of the ship can be increased. Can.
- the convex portion 231a is configured to include the flat surface 231f, the cross-sectional area between the skegs 15, ie, the flow channel cross-sectional area of the upflow Fup, is greater than the first embodiment by the flat surface 231f.
- the upflow Fup can be strengthened by that amount, and the propulsion efficiency can be further improved.
- the air bubbles 100 which are jetted from the air bubble jet portion 33 of the air lubrication system 30 and flow along the stern inclined surface 231 are formed above the propeller surface 16X. Since the air bubbles 100 gather and flow in the depressed portion 231 b, the air bubbles 100 flow to the stern side 12 by passing obliquely inside the propeller 16 obliquely upward. Therefore, the air bubble 100 can be prevented from flowing into the propeller 16.
- the width dimension of the recess 231b is narrowed, the angle toward the top of the recess 231b is relatively acute, and the air bubble 100 that has entered the recess 231b becomes detached from the recess 231b and becomes difficult to flow, Inflow of the propeller 100 into the propeller 16 can be further suppressed.
- the present embodiment mainly differs from the first embodiment in the shape of the convex portion of the cross-sectional shape of the stern inclined surface 131 at the position A. Specifically, as shown in FIG. 6, the cross-sectional shape of the inclined surface 131 at the position A is recessed portions 131 b and 231 b on both sides of the convex portions 131 a and 231 a as in the first embodiment and the second embodiment.
- the recessed portion 331 b is recessed upward from the propeller 16 and is continuous with the inner wall surface 15 in of the skeg 15, and has a curved shape in which the upper end 331 b_tp is positioned on the center line CL. That is, the upper end of the depressed portion 331 b is set to the center line CL side (inner side) than the propeller 16.
- the maximum value of the drilling depth ⁇ h3 obtained by the following equation (3) is 4% or more of the planned spring water h0 (see FIG. 1) And 6% or less.
- h3a is the height of the upper end 331b_tp of the recess 331b (that is, the height of the bottom 13 above the centerline CL)
- ⁇ h 3 h 3 a-h 3 b (3)
- the heights h3a and h3b are shown based on the height of the rotation center Cp of the propeller 16.
- the propulsion efficiency can be optimized without any problems. That is, if the winding depth ⁇ h3 is less than 4% of the planned spring water h0, the winding depth ⁇ h3 is so small that the rising angle of the stern inclined surface 331 can not be sufficiently increased, and a strong upward flow is obtained as the propulsion efficiency can be improved. I can not. Further, if the winding depth ⁇ h3 exceeds 6% of the planned spring water h0, the amount of loadable cargo on the stern side of the hull decreases and the degree of freedom in the arrangement of devices such as a generator is narrowed. Since the other configuration is the same as that of the first embodiment, the description will be omitted.
- the maximum value of the winding depth ⁇ h3 in the range RA (see FIG. 1) Since it is set to be 4% or more and 6% or less of h0, there is no problem that the amount of loadable cargo on the stern side of the hull decreases and the degree of freedom in the arrangement of the generator etc. As in the first embodiment, the propulsion efficiency can be improved. Further, as shown in FIG. 7, the hollow portion 331b provided on the inner side of the propeller 16 is provided, and by setting the winding depth ⁇ h3 in the above range, the loadable cargo amount can be reduced and the device arrangement can be freely performed. It is possible to prevent the air bubble 100 from flowing into the propeller 16 by moving the air bubble 100 to the inside while relaxing the restriction of the degree.
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Ocean & Marine Engineering (AREA)
- Sliding-Contact Bearings (AREA)
Abstract
推進効率を向上できるようにした、ツインスケグ船の船底構造及びツインスケグ船を提供する。 船底(13)の船尾側に船体幅方向に間隔をあけて設けられた一対のスケグ(15L,15R)と、一対のスケグ(15L,15R)の船尾側に個別に設置され、互いに内回りに回転するプロペラと、前記一対のスケグ(15L,15R)の相互間において船底(13)に形成され、前記船尾側に向かって上方傾斜する傾斜面(131)とを備えた、ツインスケグ船の船底構造であって、傾斜面(131)の横断面は、第1位置(B)では、前記船体幅方向に沿った平坦形状に形成され、前記第1位置(B)よりも前記船尾側の第2位置(A)では、前記船体幅方向に間隔をあけて設けられ上方に凹んだ一対の凹状部(131b)と、一対の凹状部(131b)の相互間に設けられ下方に凸となる凸状部(131a)とを有する起伏形状に形成される。
Description
本発明は、船底の船尾側に船体幅方向に間隔をあけて設けられた一対のスケグと、スケグの船尾側に個別に設置されたプロペラとを備えた、ツインスケグ船の船底構造及びツインスケグ船に関する。
船底の船尾側(後ろ側)に、下方に向けて突出したスケグを船体幅方向に間隔をあけて左右一対に設け、これらのスケグの後ろ側にプロペラを配置したツインスケグ船が知られている。ツインスケグ船では、スケグの相互間に、船尾側に向かって上方に傾斜する傾斜面(以下「船尾傾斜面」とよぶ)を船底に設け、この船尾傾斜面と両スケグとの相互間に、トンネル状の船底凹部が形成されている。
船底凹部を形成することで、航行時、船尾傾斜面に沿って後方のプロペラに向かって上昇する水の上昇流が得られる。両プロペラは内回り、つまり、両プロペラの相互間の上昇流に対向して下向きに回転するので、これによって推進効率を向上することができる。
船底凹部を形成することで、航行時、船尾傾斜面に沿って後方のプロペラに向かって上昇する水の上昇流が得られる。両プロペラは内回り、つまり、両プロペラの相互間の上昇流に対向して下向きに回転するので、これによって推進効率を向上することができる。
また、推進効率を向上する技術として、船首側から船尾側に向かう気泡流を発生させて、船底を気泡流で覆うことにより船体摩擦抵抗を低減する空気潤滑システムが知られている。空気潤滑システムを使用して船体摩擦抵抗(推進抵抗)を低減することにより、推進効率を向上することができる。
ツインスケグ船においても、空気潤滑システムを装備したものが種々開発されている(例えば特許文献1)。
ツインスケグ船においても、空気潤滑システムを装備したものが種々開発されている(例えば特許文献1)。
ツインスケグ船では、上述したように左右のスケグの相互間に船尾傾斜面を設けてプロペラに向かう水の上昇流を形成することで推進効率を向上させているが、より一層の推進効率の向上が要望されている。
また、ツインスケグ船において空気潤滑システムを装備した場合、プロペラ相互間の船底凹部により、気泡が水流と共にプロペラ相互間へと案内され、且つ、その形状(トンネル状の凹部)により気泡流の逃げ道がなくなる(つまり気泡流がプロペラ外方に反れて流れることが規制される)ため、気泡流がプロペラに流入しやすい。気泡流がプロペラに流入すると、キャビテーションが増加して、それに伴うリスク(プロペラのエロージョン、変動圧増加による船体の振動や騒音)が高くなるおそれがある。
また、ツインスケグ船において空気潤滑システムを装備した場合、プロペラ相互間の船底凹部により、気泡が水流と共にプロペラ相互間へと案内され、且つ、その形状(トンネル状の凹部)により気泡流の逃げ道がなくなる(つまり気泡流がプロペラ外方に反れて流れることが規制される)ため、気泡流がプロペラに流入しやすい。気泡流がプロペラに流入すると、キャビテーションが増加して、それに伴うリスク(プロペラのエロージョン、変動圧増加による船体の振動や騒音)が高くなるおそれがある。
本発明は、推進効率を向上できるようにした、ツインスケグ船の船底構造及びツインスケグ船を提供することを目的とする。
また、本発明は、空気潤滑システムにより船底に噴出された気泡が、プロペラへ流入することを抑制できるようにした、ツインスケグ船の船底構造及びツインスケグ船を提供することを目的とする。
また、本発明は、空気潤滑システムにより船底に噴出された気泡が、プロペラへ流入することを抑制できるようにした、ツインスケグ船の船底構造及びツインスケグ船を提供することを目的とする。
(1)上記の目的を達成するために、本発明ツインスケグ船の船底構造は、船底の船尾側に船体幅方向に間隔をあけて設けられた一対のスケグと、前記一対のスケグの船尾側に個別に設置され、互いに内回りに回転するプロペラと、前記一対のスケグの相互間において前記船底に形成され、前記船尾側に向かって上方傾斜する傾斜面とを備えた、ツインスケグ船の船底構造であって、前記傾斜面の横断面は、第1位置では、前記船体幅方向に沿った平坦形状に形成され、前記第1位置よりも前記船尾側の第2位置では、前記船体幅方向に間隔をあけて設けられ上方に凹んだ一対の凹状部と、前記一対の凹状部の相互間に設けられ下方に凸となる凸状部とを有する起伏形状に形成されたことを特徴としている。
(2)前記凸状部は、湾曲状凸状部であることが好ましい。
(3)前記第2位置は、前記プロペラから前記プロペラの直径の0.5倍だけ前方の位置と、前記プロペラから前記プロペラの直径の1.5倍だけ前方の位置との間において設定され、前記プロペラと前記第2位置との間の範囲において、下式[1]により規定される抉り深さの最大値が、計画吃水の4%以上且つ6%以下であることが好ましい。
抉り深さ=(前記凹状部の上端の高さ)-(前記凸状部の下端の高さ)…[1]
抉り深さ=(前記凹状部の上端の高さ)-(前記凸状部の下端の高さ)…[1]
(4)前記凸状部は、前記船体幅方向で中央に平坦面を備えたステップ状凸状部であることが好ましい。
(5)前記第2位置は、前記プロペラから前記プロペラの直径の0.5倍だけ前方の位置と、前記プロペラから前記プロペラの直径の1.5倍だけ前方の位置との間において設定され、前記プロペラと前記第2位置との間の範囲において、下式[2]により規定される抉り深さの最大値が、計画吃水の4%以上且つ6%以下であることが好ましい。
抉り深さ=(前記凹状部の上端の高さ)-(前記平坦面の高さ)…[2]
抉り深さ=(前記凹状部の上端の高さ)-(前記平坦面の高さ)…[2]
(6)上記の目的を達成するために、本発明のツインスケグ船の船底構造は、船底の船尾側に船体幅方向に間隔をあけて設けられた一対のスケグと、前記一対のスケグの船尾側に個別に設置され、互いに内回りに回転するプロペラと、前記一対のスケグの相互間において前記船底に形成され、前記船尾側に向かって上方傾斜する傾斜面とを備えた、ツインスケグ船の船底構造であって、前記傾斜面は、第1位置では、前記船体幅方向に沿った平坦形状に形成され、前記第1位置よりも前記船尾側の第2位置では、前記プロペラよりも前記船体幅方向のセンターライン側に上端が配置されると共に上方に凹んだ単一の凹状部を有する凹形状に形成され、前記第2位置は、前記プロペラから前記プロペラの直径の0.5倍だけ前方の位置と、前記プロペラから前記プロペラの直径の1.5倍だけ前方の位置との間において設定され、前記プロペラと前記第2位置との間の範囲において、下式[3]により規定される抉り深さの最大値が、計画吃水の4%以上且つ6%以下であることを特徴としている。
抉り深さ=(前記凹状部の上端の高さ)-(前記横断面における、前記プロペラの回転中心よりもプロペラ半径だけ前記内側の位置における高さ)…[3]
抉り深さ=(前記凹状部の上端の高さ)-(前記横断面における、前記プロペラの回転中心よりもプロペラ半径だけ前記内側の位置における高さ)…[3]
(7)上記の目的を達成するために、本発明のツインスケグ船は(1)~(6)の何れに記載の船底構造を備えたことを特徴としている。
(8)前記船底に気泡を噴出する空気潤滑システムを備えることが好ましい。
本発明によれば、一対のスケグの相互間において船尾側に向かって上方傾斜する傾斜面が船底に形成され、この傾斜面の横断面は、第1位置では、船体幅方向に沿った平坦形状に形成され、第1位置よりも船尾側の第2位置では、船体幅方向に間隔をあけて設けられ上方に凹んだ一対の凹状部と、これらの一対の凹状部の相互間に設けられ下方に凸となる凸状部とを有する起伏形状に形成されている。
これにより、傾斜面の後方に向かう上方傾斜が、スケグのそれぞれの内方に設けられた凹状部がある分だけ急傾斜となるので、傾斜面に沿ってプロペラへ流れる上昇流の上向き成分が大きくなり、上昇流に対し下向きに回転するするプロペラにより高い推進力が得られ、推進効率を向上することができる。
さらに、凹状部の相互間には、凸状部が設けられているので、凸状部が存在する分だけ、スケグと傾斜面との間に形成される上昇流の流路断面積が小さくなって、その分だけ、凹状部の上昇流の速度が速くなり、この点でも推進効率を向上することができる。
これにより、傾斜面の後方に向かう上方傾斜が、スケグのそれぞれの内方に設けられた凹状部がある分だけ急傾斜となるので、傾斜面に沿ってプロペラへ流れる上昇流の上向き成分が大きくなり、上昇流に対し下向きに回転するするプロペラにより高い推進力が得られ、推進効率を向上することができる。
さらに、凹状部の相互間には、凸状部が設けられているので、凸状部が存在する分だけ、スケグと傾斜面との間に形成される上昇流の流路断面積が小さくなって、その分だけ、凹状部の上昇流の速度が速くなり、この点でも推進効率を向上することができる。
さらに、空気潤滑システムを装備した場合には、船底に噴出された気泡が、凹状部に集まって流れるようになるので、気泡は、プロペラの外を通過して船尾側へと流れるようになり、気泡がプロペラへ流入することを抑制できる。
以下、図面を参照して、本発明の各実施の形態について説明する。なお、以下に示す各実施形態はあくまでも例示に過ぎず、以下の各実施形態で明示しない種々の変形や技術の適用を排除する意図はない。以下の各実施形態の構成は、それらの趣旨を逸脱しない範囲で種々変形して実施することができる。
なお、以下の説明では、船舶1の船首11側(進行方向)を前方とし、船尾12側を後方とし、前方を基準に左右を定め、重力の方向を下方とし、その逆を上方として説明する。また、船体前後方向(以下「前後方向」ともいう)Xと直交する水平方向を船体幅方向(以下「幅方向」又は「船幅方向」ともいう)Yとし、船幅方向YのセンターラインCLに近づく側を内側とし、その逆にセンターラインCLから離れる側を外側として説明する。また、便宜上、図1では気泡100を一部のみ示し、図3、5、7では気泡100を実際よりも大きく示す。
なお、以下の説明では、船舶1の船首11側(進行方向)を前方とし、船尾12側を後方とし、前方を基準に左右を定め、重力の方向を下方とし、その逆を上方として説明する。また、船体前後方向(以下「前後方向」ともいう)Xと直交する水平方向を船体幅方向(以下「幅方向」又は「船幅方向」ともいう)Yとし、船幅方向YのセンターラインCLに近づく側を内側とし、その逆にセンターラインCLから離れる側を外側として説明する。また、便宜上、図1では気泡100を一部のみ示し、図3、5、7では気泡100を実際よりも大きく示す。
[1.第1実施形態]
[1-1.船舶の全体構成]
本発明の第1実施形態としての船舶の全体構成について、図1を参照して説明する。
図1は、本発明の第1実施形態としての船舶の全体構成を示す模式な側面図であり、その下方に船体前後方向の位置に関する横断面積の分布図を併せて示す。
船舶1は、図1に示すように、船舶1の本体である船体10と、船舶1の各種制御が行われるコントロールルーム20と、空気潤滑システム30とを備える。
船舶1は、ツインスケグ船であり、船底13の後部側には、下方に突出したスケグ15が、幅方向Yに間隔をあけて、センターラインCLの左右両側に一対に設けられると共に、各スケグ15の後部に、互いに内回りするプロペラ16がそれぞれ取り付けられている。また、各プロペラ16の後方には、船体10の進行方向を定める舵17がそれぞれ設置されている。なお、プロペラ16の内回りとは、プロペラ16の上部において内側(センターラインCL側)へ回転することである。
以下、左右のスケグ15を区別する場合には、左側のスケグ15をスケグ15Lと表記し、右側のスケグ15をスケグ15Rと表記する。同様に左右のプロペラ16を区別する場合には、左側のプロペラ16をプロペラ16Lと表記し、右側のプロペラ16をプロペラ16Rと表記する。
なお、スケグ15L,15Rの形状及び配置、並びに、プロペラ16L,16Rの配置など、船体10の基本的な構造はセンターラインCLに対して対称である。
[1-1.船舶の全体構成]
本発明の第1実施形態としての船舶の全体構成について、図1を参照して説明する。
図1は、本発明の第1実施形態としての船舶の全体構成を示す模式な側面図であり、その下方に船体前後方向の位置に関する横断面積の分布図を併せて示す。
船舶1は、図1に示すように、船舶1の本体である船体10と、船舶1の各種制御が行われるコントロールルーム20と、空気潤滑システム30とを備える。
船舶1は、ツインスケグ船であり、船底13の後部側には、下方に突出したスケグ15が、幅方向Yに間隔をあけて、センターラインCLの左右両側に一対に設けられると共に、各スケグ15の後部に、互いに内回りするプロペラ16がそれぞれ取り付けられている。また、各プロペラ16の後方には、船体10の進行方向を定める舵17がそれぞれ設置されている。なお、プロペラ16の内回りとは、プロペラ16の上部において内側(センターラインCL側)へ回転することである。
以下、左右のスケグ15を区別する場合には、左側のスケグ15をスケグ15Lと表記し、右側のスケグ15をスケグ15Rと表記する。同様に左右のプロペラ16を区別する場合には、左側のプロペラ16をプロペラ16Lと表記し、右側のプロペラ16をプロペラ16Rと表記する。
なお、スケグ15L,15Rの形状及び配置、並びに、プロペラ16L,16Rの配置など、船体10の基本的な構造はセンターラインCLに対して対称である。
空気潤滑システム30は、船底13から空気を噴出して船底13と水面との境界に気泡100の流れを発生させ、この気泡流100により船底13を覆う気泡層を形成することで航行する船体10の摩擦抵抗を低減するものである。
具体的には、空気潤滑システム30は、例えばブロアやコンプレッサにより構成される空気供給源31と、船底13の船首11寄りに設置された複数の気泡噴出部33と、空気供給源31と各気泡噴出部33とを繋ぐ空気供給通路32とを備えて構成され、空気供給源31を作動させることで、各気泡噴出部33から船尾12に向けて気泡100が噴出される。
具体的には、空気潤滑システム30は、例えばブロアやコンプレッサにより構成される空気供給源31と、船底13の船首11寄りに設置された複数の気泡噴出部33と、空気供給源31と各気泡噴出部33とを繋ぐ空気供給通路32とを備えて構成され、空気供給源31を作動させることで、各気泡噴出部33から船尾12に向けて気泡100が噴出される。
また、船底13のスケグ15L,15Rの相互間に、前後方向Xの中央から後方に向かって上方に傾斜する傾斜面(以下「船尾傾斜面」とも呼ぶ)131が設けられており、船尾傾斜面131とスケグ間15L,15Rとの相互間に、トンネル状の凹所132が形成されている。
[1-2.船底構造]
船底13の船尾傾斜面131に関して、図1に加え図2を参照してさらに説明する。
図1に示す位置(第2位置)A及び位置(第1位置)Bは、後述するように船尾傾斜面131の形状を規定するための位置である。
位置Aは、位置Bよりも後方の位置であって、プロペラ16の前後方向Xに関する位置(以下「プロペラ位置」と呼ぶ)Pよりも所定距離LAだけ前方の位置として定義され、位置Bはプロペラ位置Pよりも所定距離LBだけ前方の位置として定義される。
ここで、プロペラ位置Pとはプロペラ16の前後方向の中心LPの位置をいう。また、所定距離LAは、プロペラ16の直径Dpの0.5倍~1.5倍の範囲で設定される(Dp×0.5≦LA≦Dp×1.5)。所定距離LBは、これに限定されるものではないが例えば船長L0の10%として設定される(LB=L0×0.1)。なお、図1では便宜的に所定距離LBを長めに示している。
船底13の船尾傾斜面131に関して、図1に加え図2を参照してさらに説明する。
図1に示す位置(第2位置)A及び位置(第1位置)Bは、後述するように船尾傾斜面131の形状を規定するための位置である。
位置Aは、位置Bよりも後方の位置であって、プロペラ16の前後方向Xに関する位置(以下「プロペラ位置」と呼ぶ)Pよりも所定距離LAだけ前方の位置として定義され、位置Bはプロペラ位置Pよりも所定距離LBだけ前方の位置として定義される。
ここで、プロペラ位置Pとはプロペラ16の前後方向の中心LPの位置をいう。また、所定距離LAは、プロペラ16の直径Dpの0.5倍~1.5倍の範囲で設定される(Dp×0.5≦LA≦Dp×1.5)。所定距離LBは、これに限定されるものではないが例えば船長L0の10%として設定される(LB=L0×0.1)。なお、図1では便宜的に所定距離LBを長めに示している。
図2は位置A,Bにおける横断面形状(前後方向Xに対して垂直に切断した断面形状)を示す模式図であり、位置Aにおける横断面形状を実線で示し、位置Bにおける横断面形状を破線で示す。なお、符号16Xは、プロペラ16が回転時に描くプロペラ面である。
船底13の船尾傾斜面131は、図2に示すように、位置Bでは平坦な形状をしており、センターラインCLを含む中央部が平坦部131fとして形成されている。平坦部131fは、例えばセンターラインCLを中心にプロペラ直径Dpと同じ長さの幅寸法Wfを有している(Wf=Dp)。
船底13の船尾傾斜面131は、図2に示すように、位置Bでは平坦な形状をしており、センターラインCLを含む中央部が平坦部131fとして形成されている。平坦部131fは、例えばセンターラインCLを中心にプロペラ直径Dpと同じ長さの幅寸法Wfを有している(Wf=Dp)。
これに対し、位置Aでは、位置Bよりも鉛直上方において、センターラインCLを含む中央部が下方に凸となる凸状部131aを有しており、凸状部131aを有することで、凸状部131aとスケグ15Lとの間、及び、凸状部131aとスケグ15Rとの間にそれぞれ窪み部(凹状部)131bが形成されている。換言すれば、位置Aでは、船尾傾斜面131は、各スケグ15の内側にそれぞれ窪み部131bが形成され、窪み部131b,131bの相互間に凸状部131aが形成された起伏形状とされている。
本実施形態では、凸状部131aは、センターラインCLに下端131a_btmを有する湾曲形状の凸状部であり、各窪み部131bは、スケグ15の内壁面15inに連設され、スケグ15の内側の付け根部に設けられた湾曲形状の凹状部である。
本実施形態では、凸状部131aは、センターラインCLに下端131a_btmを有する湾曲形状の凸状部であり、各窪み部131bは、スケグ15の内壁面15inに連設され、スケグ15の内側の付け根部に設けられた湾曲形状の凹状部である。
なお、本実施形態では、船尾傾斜面131の横断面形状は、前後方向Xに沿って連側的に変化し、B位置の横断面形状から後方になるにしたがってA位置の横断面形状へと徐々に変化する。また、本実施形態では、A位置からプロペラ面Pにかけての船尾傾斜面131の横断面形状は、A位置の横断面形状と同様に、窪み部の相互間に凸状部が形成された起伏形状とされている。
そして、プロペラ位置Pと位置Aとの間の範囲RA(図1参照)において、下式(1)により求めた横断面形状の抉り深さΔh1の最大値が、計画吃水h0(図1参照)の4%以上且つ6%以下になるように設定される。
下式(1)中のh1aは、横断面形状における凸状部131aの下端131a_btmの高さ(換言すれば横断面形状におけるセンターラインCL上の船底13の高さ)である。下式(1)中のh1bは、横断面形状における窪み部131bの上端131b_tpの高さ(換言すれば、横断面形状における船底13の最大高さ)である。
Δh1=h1b-h1a・・・(1)
なお、計画吃水h0とは、計画上の吃水であり、実航行時に想定される代表的な積載重量時の喫水をいう。
また、図2では、凸状部131aの下端131a_btmの高さh1a及び窪み部131bの上端131b_tpの高さh1bを、プロペラ16の回転中心Cpの高さを基準として示している。
下式(1)中のh1aは、横断面形状における凸状部131aの下端131a_btmの高さ(換言すれば横断面形状におけるセンターラインCL上の船底13の高さ)である。下式(1)中のh1bは、横断面形状における窪み部131bの上端131b_tpの高さ(換言すれば、横断面形状における船底13の最大高さ)である。
Δh1=h1b-h1a・・・(1)
なお、計画吃水h0とは、計画上の吃水であり、実航行時に想定される代表的な積載重量時の喫水をいう。
また、図2では、凸状部131aの下端131a_btmの高さh1a及び窪み部131bの上端131b_tpの高さh1bを、プロペラ16の回転中心Cpの高さを基準として示している。
[1-3.作用・効果]
本発明の第1実施形態によれば、図1及び図2に示すように、船尾傾斜面131を、位置Bでは平坦な形状とし、位置Bよりも後方の位置Aでは、プロペラ16が取り付けられたスケグ15の直ぐ内側に窪み部131bをそれぞれ形成した。これにより、船尾傾斜面131の後方に向かう上方傾斜が、窪み部131bの深さ(抉り深さ)Δh1分だけ急傾斜となる。これにより、船尾傾斜面131に沿って位置Bから位置Aに向かって(つまり後方に向かって)プロペラ16へ流れる上昇流Fupを、窪み部131bを設けない場合よりも強い上昇流とすることができる。
したがって、矢印AL,ARで示すように上昇流Fupに対して対向回転するプロペラ16L,16Rにより、窪み部131bを設けない場合よりも高い推進力が得られ、推進効率を向上することができる。
さらに、凸状部131aが設けられているので、凸状部131aが存在する分だけ、スケグ15の相互間の横断面積、すなわち上昇流Fupの流路断面積が少なくなって、その分だけ、上昇流Fupを強くすることができ、この点でも推進効率を向上することができる。
本発明の第1実施形態によれば、図1及び図2に示すように、船尾傾斜面131を、位置Bでは平坦な形状とし、位置Bよりも後方の位置Aでは、プロペラ16が取り付けられたスケグ15の直ぐ内側に窪み部131bをそれぞれ形成した。これにより、船尾傾斜面131の後方に向かう上方傾斜が、窪み部131bの深さ(抉り深さ)Δh1分だけ急傾斜となる。これにより、船尾傾斜面131に沿って位置Bから位置Aに向かって(つまり後方に向かって)プロペラ16へ流れる上昇流Fupを、窪み部131bを設けない場合よりも強い上昇流とすることができる。
したがって、矢印AL,ARで示すように上昇流Fupに対して対向回転するプロペラ16L,16Rにより、窪み部131bを設けない場合よりも高い推進力が得られ、推進効率を向上することができる。
さらに、凸状部131aが設けられているので、凸状部131aが存在する分だけ、スケグ15の相互間の横断面積、すなわち上昇流Fupの流路断面積が少なくなって、その分だけ、上昇流Fupを強くすることができ、この点でも推進効率を向上することができる。
特に、範囲RA(図1参照)における横断面の抉り深さΔh1の最大値を計画吃水h0の4%以上且つ6%以下に設定しているので、推進効率を最適化することができる。つまり、抉り深さΔh1が計画吃水h0の4%未満では、船尾傾斜面131の上昇角度を十分に増加することができず、推進効率を向上できるほど強い上昇流が得られない。また、抉り深さΔh1が6%を越えると、船底13が下方に過剰に膨らんだ形状となって船底13の浸水面積が増加して、却って、航行時の船体10の抵抗が増大してしまう。
また、図3に示すように、空気潤滑システム30の気泡噴出部33(図1参照)から噴出された気泡100は、船尾傾斜面131とスケグ間15L,15Rとの相互間に形成されたトンネル状の凹所132内を流れるようになるが、この気泡100は、プロペラ面16Xよりも上方に形成される窪み部131bに集まって流れるようになるので、気泡100は、プロペラ16の内側斜め上方を通過して船尾側12へと流れるようになる。
したがって、気泡100がプロペラ16へ流入することを抑制できる。
したがって、気泡100がプロペラ16へ流入することを抑制できる。
[2.第2実施形態]
[2-1.構成]
本発明の第2実施形態の船舶について、図4及び図5を参照して説明する。なお、第1実施形態と同一の構成要素については同一の符号を付し、その説明を省略する。
本実施形態は、第1実施形態に対し、位置Aにおける船尾傾斜面131の横断面形状の凸状部の形状が主に異なる。
具体的には、図4に示すように、凸状部231aは、センターラインCLを跨ぐように形成された平坦面231fを備え、横断面視で略台形状のステップ状凸状部として構成されている。また、凸状部231aとスケグ15の内壁面15inとの間に形成される各窪み部(凹状部)231bの形状は、凸状部231aが平坦面231fを備え分だけ、第1実施形態の窪み部131bに較べて幅寸法が狭くなって鋭角化している。
[2-1.構成]
本発明の第2実施形態の船舶について、図4及び図5を参照して説明する。なお、第1実施形態と同一の構成要素については同一の符号を付し、その説明を省略する。
本実施形態は、第1実施形態に対し、位置Aにおける船尾傾斜面131の横断面形状の凸状部の形状が主に異なる。
具体的には、図4に示すように、凸状部231aは、センターラインCLを跨ぐように形成された平坦面231fを備え、横断面視で略台形状のステップ状凸状部として構成されている。また、凸状部231aとスケグ15の内壁面15inとの間に形成される各窪み部(凹状部)231bの形状は、凸状部231aが平坦面231fを備え分だけ、第1実施形態の窪み部131bに較べて幅寸法が狭くなって鋭角化している。
そして、プロペラ位置Pと位置Aとの間の範囲RA(図1参照)において、下式(2)により求めた抉り深さΔh2の最大値が、計画吃水h0(図1参照)の4%以上且つ6%以下になるように設定される。
Δh2=h2b-h2a・・・(2)
上式(2)中のh2aは、横断面形状における平坦面231fの高さ(なお、平坦面231fが水平ではなく傾斜を有している場合には、平坦面231fの平均高さ)であり、上式(2)中のh2bは、横断面形状における窪み部231bの上端231b_tpの高さ(換言すれば、横断面形状における船底13の最大高さ)である。
Δh2=h2b-h2a・・・(2)
上式(2)中のh2aは、横断面形状における平坦面231fの高さ(なお、平坦面231fが水平ではなく傾斜を有している場合には、平坦面231fの平均高さ)であり、上式(2)中のh2bは、横断面形状における窪み部231bの上端231b_tpの高さ(換言すれば、横断面形状における船底13の最大高さ)である。
抉り深さΔh2の最大値を計画吃水h0の4%以上且つ6%以下に設定しているのは、抉り深さΔh2が計画吃水h0の4%未満では、船尾傾斜面131の上昇角度を十分に増加することができず、推進効率を向上できるほど強い上昇流が得られず、また、抉り深さΔh2が6%を越えると、窪み部231bが過剰に大きくなって船底13の浸水面積が増加して、却って、航行時の船体10の抵抗が増大してしまうからである。
なお、図4では、平坦面231fの高さh2a及び窪み部231bの上端231b_tpの高さh2bを、プロペラ16の回転中心Cpの高さを基準として示している。
この他の構成は第1実施形態と同様なので説明を省略する。
なお、図4では、平坦面231fの高さh2a及び窪み部231bの上端231b_tpの高さh2bを、プロペラ16の回転中心Cpの高さを基準として示している。
この他の構成は第1実施形態と同様なので説明を省略する。
[2-2.作用・効果]
本発明の第2実施形態によれば、図4に示すように、船尾傾斜面131に凸状部231a及び窪み部231bを設けると共に、範囲RA(図1参照)において、横断面形状の抉り深さΔh2の最大値が、計画吃水h0の4%以上且つ6%以下になるように設定しているので、第1実施形態と同様の効果を得ることができる。
加えて、凸状部231aを、平坦面231fを備えて構成したので、平坦面231fの分だけ、凸状部231aの内容積を増やすことができるので船舶の積載可能な貨物量を増加することができる。
さらに、凸状部231aを、平坦面231fを備えて構成した分、平坦面231fの分だけ、第1実施形態よりも、スケグ15の相互間の横断面積、すなわち上昇流Fupの流路断面積が少なくなって、その分だけ、上昇流Fupを強くすることができ、推進効率を一層向上することができる。
本発明の第2実施形態によれば、図4に示すように、船尾傾斜面131に凸状部231a及び窪み部231bを設けると共に、範囲RA(図1参照)において、横断面形状の抉り深さΔh2の最大値が、計画吃水h0の4%以上且つ6%以下になるように設定しているので、第1実施形態と同様の効果を得ることができる。
加えて、凸状部231aを、平坦面231fを備えて構成したので、平坦面231fの分だけ、凸状部231aの内容積を増やすことができるので船舶の積載可能な貨物量を増加することができる。
さらに、凸状部231aを、平坦面231fを備えて構成した分、平坦面231fの分だけ、第1実施形態よりも、スケグ15の相互間の横断面積、すなわち上昇流Fupの流路断面積が少なくなって、その分だけ、上昇流Fupを強くすることができ、推進効率を一層向上することができる。
また、第1実施形態と同様に、図5に示すように、空気潤滑システム30の気泡噴出部33から噴出され、船尾傾斜面231に沿って流れる気泡100が、プロペラ面16Xよりも上方に形成される窪み部231bに集まって流れるようになるので、気泡100は、プロペラ16の内側斜め上方を通過して船尾側12へと流れるようになる。
したがって、気泡100がプロペラ16へ流入することを抑制できる。さらに、窪み部231bの幅寸法が狭くなった分、窪み部231bの上に向く角度が相対的に鋭角化して、窪み部231bに入り込んだ気泡100は窪み部231bから外れて流れにくくなり、気泡100がプロペラ16へ流入することを一層抑制することができる。
したがって、気泡100がプロペラ16へ流入することを抑制できる。さらに、窪み部231bの幅寸法が狭くなった分、窪み部231bの上に向く角度が相対的に鋭角化して、窪み部231bに入り込んだ気泡100は窪み部231bから外れて流れにくくなり、気泡100がプロペラ16へ流入することを一層抑制することができる。
[3.第3実施形態]
[3-1.構成]
本発明の第3実施形態の船舶について、図6及び図7を参照して説明する。なお、上記各実施形態と同一の構成要素については同一の符号を付し、その説明を省略する。
本実施形態は、第1実施形態に対し、位置Aにおける船尾傾斜面131の横断面形状の凸状部の形状が主に異なる。
具体的には、図6に示すように、位置Aにおける傾斜面131の横断面形状は、第1実施形態及び第2実施形態のように凸状部131a,231aの両側に窪み部131b,231bがなく、単一の窪み部(凹所)331bよりなる形状となっている。窪み部331bは、本実施形態では、プロペラ16よりも上方に凹んでおり、スケグ15の内壁面15inに連設され、センターラインCL上に上端331b_tpが位置する湾曲形状となっている。つまり、窪み部331bは、その上端がプロペラ16よりもセンターラインCL側(内側)に設定されている。
[3-1.構成]
本発明の第3実施形態の船舶について、図6及び図7を参照して説明する。なお、上記各実施形態と同一の構成要素については同一の符号を付し、その説明を省略する。
本実施形態は、第1実施形態に対し、位置Aにおける船尾傾斜面131の横断面形状の凸状部の形状が主に異なる。
具体的には、図6に示すように、位置Aにおける傾斜面131の横断面形状は、第1実施形態及び第2実施形態のように凸状部131a,231aの両側に窪み部131b,231bがなく、単一の窪み部(凹所)331bよりなる形状となっている。窪み部331bは、本実施形態では、プロペラ16よりも上方に凹んでおり、スケグ15の内壁面15inに連設され、センターラインCL上に上端331b_tpが位置する湾曲形状となっている。つまり、窪み部331bは、その上端がプロペラ16よりもセンターラインCL側(内側)に設定されている。
そして、プロペラ位置Pと位置Aとの間の範囲RA(図1参照)において、下式(3)により求めた抉り深さΔh3の最大値が、計画吃水h0(図1参照)の4%以上且つ6%以下になるように設定される。
下式(3)において、h3aは、窪み部331bの上端331b_tpの高さ(すなわちセンターラインCL上の船底13の高さ)、h3bは、プロペラ16の回転中心Cpよりもプロペラ半径(=0.5×プロペラ直径Dp)だけ内側の位置における船底13の高さである。
Δh3=h3a-h3b・・・(3)
なお、図6では、前記の高さh3a及びh3bを、プロペラ16の回転中心Cpの高さを基準として示している。
下式(3)において、h3aは、窪み部331bの上端331b_tpの高さ(すなわちセンターラインCL上の船底13の高さ)、h3bは、プロペラ16の回転中心Cpよりもプロペラ半径(=0.5×プロペラ直径Dp)だけ内側の位置における船底13の高さである。
Δh3=h3a-h3b・・・(3)
なお、図6では、前記の高さh3a及びh3bを、プロペラ16の回転中心Cpの高さを基準として示している。
このように、抉り深さΔh3の最大値を計画吃水h0の4%以上且つ6%以下に設定しているので、推進効率を不具合なく最適化することができる。つまり、抉り深さΔh3が計画吃水h0の4%未満では、抉り深さΔh3が小さすぎて船尾傾斜面331の上昇角度を十分に増大できず、推進効率を向上できるほど、強い上昇流が得られない。また、抉り深さΔh3が計画吃水h0の6%を越えると、船体の船尾側における積載可能な貨物量が減少すると共に発電機等の機器配置の自由度を狭めてしまう。
この他の構成は第1実施形態と同様なので説明を省略する。
この他の構成は第1実施形態と同様なので説明を省略する。
[3-2.作用・効果]
本発明の第3実施形態によれば、図6に示すように、船尾傾斜面331に窪み部331bを設けると共に、範囲RA(図1参照)において、抉り深さΔh3の最大値を、計画吃水h0の4%以上且つ6%以下になるように設定しているので、船体の船尾側における積載可能な貨物量が減少すると共に発電機等の機器配置の自由度を狭めてしまうといった不具合なく、第1実施形態と同様に、推進効率を向上することができる。
また、図7に示すように、プロペラ16よりも内側に設けられた窪み部331bを設けると共に、抉り深さΔh3を上記範囲で設定することで、積載可能な貨物量の減少及び機器配置の自由度の制限をそれぞれ緩和しつつ、気泡100を内側に寄せてプロペラ16へ気泡100が流入することを防止できる。
本発明の第3実施形態によれば、図6に示すように、船尾傾斜面331に窪み部331bを設けると共に、範囲RA(図1参照)において、抉り深さΔh3の最大値を、計画吃水h0の4%以上且つ6%以下になるように設定しているので、船体の船尾側における積載可能な貨物量が減少すると共に発電機等の機器配置の自由度を狭めてしまうといった不具合なく、第1実施形態と同様に、推進効率を向上することができる。
また、図7に示すように、プロペラ16よりも内側に設けられた窪み部331bを設けると共に、抉り深さΔh3を上記範囲で設定することで、積載可能な貨物量の減少及び機器配置の自由度の制限をそれぞれ緩和しつつ、気泡100を内側に寄せてプロペラ16へ気泡100が流入することを防止できる。
[4.変形例]
上記各実施形態では、本発明を、空気潤滑システム30を備えた船舶に適用した例を説明したが、本発明は、空気潤滑システム30を備えない船舶に適用することも可能である。本発明を空気潤滑システム30を備えない船舶に適用しても、推進効率を向上する効果が得られる。
上記各実施形態では、本発明を、空気潤滑システム30を備えた船舶に適用した例を説明したが、本発明は、空気潤滑システム30を備えない船舶に適用することも可能である。本発明を空気潤滑システム30を備えない船舶に適用しても、推進効率を向上する効果が得られる。
1 船舶
10,10A 船体
13 船底
131 傾斜面
131a 凸状部
131a_btm 凸状部131aの下端
131b 窪み部(凹状部)
131b_tp 窪み部131bの上端
131f 平坦面
132 凹所
231a 凸状部
231f 平坦面(凸状部231aの下端)
231b 窪み部(凹状部)
231b_tp 窪み部131bの上端
331b 窪み部(凹状部)
331b_tp 窪み部331bの上端
15,15L,15R スケグ
16,16L,16R プロペラ
16X プロペラ面
30 船体摩擦空気潤滑システム
33 気泡噴出部
CL 船幅方向Yのセンターライン
CP プロペラ16の回転中心
A 第2位置
B 第1位置
Dp プロペラ16の直径
h0 計画吃水
h1a 凸状部131aの下端131a_btmの高さ
h1b 窪み部131bの上端131b_tpの高さ
h2a 平坦面231fの高さ
h2b 窪み部231bの上端231b_tpの高さ
h3a 窪み部331bの上端331b_tpの高さ
h3b プロペラ16の回転中心Cpよりもプロペラ半径だけ内側の位置における船底13の高さ
Δh1,Δh2,Δh3 抉り深さ
P プロペラ位置
LA,LB 所定距離
10,10A 船体
13 船底
131 傾斜面
131a 凸状部
131a_btm 凸状部131aの下端
131b 窪み部(凹状部)
131b_tp 窪み部131bの上端
131f 平坦面
132 凹所
231a 凸状部
231f 平坦面(凸状部231aの下端)
231b 窪み部(凹状部)
231b_tp 窪み部131bの上端
331b 窪み部(凹状部)
331b_tp 窪み部331bの上端
15,15L,15R スケグ
16,16L,16R プロペラ
16X プロペラ面
30 船体摩擦空気潤滑システム
33 気泡噴出部
CL 船幅方向Yのセンターライン
CP プロペラ16の回転中心
A 第2位置
B 第1位置
Dp プロペラ16の直径
h0 計画吃水
h1a 凸状部131aの下端131a_btmの高さ
h1b 窪み部131bの上端131b_tpの高さ
h2a 平坦面231fの高さ
h2b 窪み部231bの上端231b_tpの高さ
h3a 窪み部331bの上端331b_tpの高さ
h3b プロペラ16の回転中心Cpよりもプロペラ半径だけ内側の位置における船底13の高さ
Δh1,Δh2,Δh3 抉り深さ
P プロペラ位置
LA,LB 所定距離
Claims (8)
- 船底の船尾側に船体幅方向に間隔をあけて設けられた一対のスケグと、
前記一対のスケグの船尾側に個別に設置され、互いに内回りに回転するプロペラと、
前記一対のスケグの相互間において前記船底に形成され、前記船尾側に向かって上方傾斜する傾斜面とを備えた、ツインスケグ船の船底構造であって、
前記傾斜面の横断面は、
第1位置では、前記船体幅方向に沿った平坦形状に形成され、
前記第1位置よりも前記船尾側の第2位置では、前記船体幅方向に間隔をあけて設けられ上方に凹んだ一対の凹状部と、前記一対の凹状部の相互間に設けられ下方に凸となる凸状部とを有する起伏形状に形成された
ことを特徴とする、ツインスケグ船の船底構造。 - 前記凸状部は、湾曲状凸状部である
ことを特徴とする、請求項1に記載のツインスケグ船の船底構造。 - 前記第2位置は、前記プロペラから前記プロペラの直径の0.5倍だけ前方の位置と、前記プロペラから前記プロペラの直径の1.5倍だけ前方の位置との間において設定され、
前記プロペラと前記第2位置との間の範囲において、下式[1]により規定される抉り深さの最大値が、計画吃水の4%以上且つ6%以下である
ことを特徴とする、請求項2に記載のツインスケグ船の船底構造。
抉り深さ=(前記凹状部の上端の高さ)-(前記凸状部の下端の高さ)…[1] - 前記凸状部は、前記船体幅方向で中央に平坦面を備えたステップ状凸状部である
ことを特徴とする、請求項1に記載のツインスケグ船の船底構造。 - 前記第2位置は、前記プロペラから前記プロペラの直径の0.5倍だけ前方の位置と、前記プロペラから前記プロペラの直径の1.5倍だけ前方の位置との間において設定され、
前記プロペラと前記第2位置との間の範囲において、下式[2]により規定される抉り深さの最大値が、計画吃水の4%以上且つ6%以下である
ことを特徴とする、請求項4に記載のツインスケグ船の船底構造。
抉り深さ=(前記凹状部の上端の高さ)-(前記平坦面の高さ)…[2] - 船底の船尾側に船体幅方向に間隔をあけて設けられた一対のスケグと、
前記一対のスケグの船尾側に個別に設置され、互いに内回りに回転するプロペラと、
前記一対のスケグの相互間において前記船底に形成され、前記船尾側に向かって上方傾斜する傾斜面とを備えた、ツインスケグ船の船底構造であって、
前記傾斜面は、
第1位置では、前記船体幅方向に沿った平坦形状に形成され、
前記第1位置よりも前記船尾側の第2位置では、前記プロペラよりも前記船体幅方向のセンターライン側に上端が配置されると共に上方に凹んだ単一の凹状部を有する凹形状に形成され、
前記第2位置は、前記プロペラから前記プロペラの直径の0.5倍だけ前方の位置と、前記プロペラから前記プロペラの直径の1.5倍だけ前方の位置との間において設定され、
前記プロペラと前記第2位置との間の範囲において、下式[3]により規定される抉り深さの最大値が、計画吃水の4%以上且つ6%以下である
ことを特徴とする、ツインスケグ船の船底構造。
抉り深さ=(前記凹状部の上端の高さ)-(前記横断面における、前記プロペラの回転中心よりもプロペラ半径だけ前記内側の位置における高さ)…[3] - 請求項1~6の何れか一項に記載の船底構造を備えた
ことを特徴とする、ツインスケグ船。 - 前記船底に気泡を噴出する空気潤滑システムを備えた
ことを特徴とする、請求項7に記載のツインスケグ船。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020187025219A KR102124308B1 (ko) | 2016-03-31 | 2017-01-25 | 트윈 스케그선의 선저 구조 및 트윈 스케그선 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016071336A JP6665013B2 (ja) | 2016-03-31 | 2016-03-31 | ツインスケグ船の船底構造及びツインスケグ船 |
JP2016-071336 | 2016-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017169035A1 true WO2017169035A1 (ja) | 2017-10-05 |
Family
ID=59964070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/002562 WO2017169035A1 (ja) | 2016-03-31 | 2017-01-25 | ツインスケグ船の船底構造及びツインスケグ船 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6665013B2 (ja) |
KR (1) | KR102124308B1 (ja) |
WO (1) | WO2017169035A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113799914A (zh) * | 2021-10-29 | 2021-12-17 | 广州文冲船厂有限责任公司 | 一种船艉结构及船舶 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018121414A1 (de) * | 2018-09-03 | 2019-02-14 | Emex Industrie AG | Schiffsrumpf mit einer Erhöhung im Bereich einer Unterseite des Schiffsrumpfs |
CN115285279A (zh) * | 2022-08-16 | 2022-11-04 | 宜昌一凡船舶设计有限公司 | 一种梭形双尾鳍型线船型及梭形双尾鳍设计方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008018812A (ja) * | 2006-07-12 | 2008-01-31 | Shipbuilding Research Centre Of Japan | 大型輸送船 |
JP2012001115A (ja) * | 2010-06-17 | 2012-01-05 | Ihi Corp | ツインスケグ船 |
JP2013159245A (ja) * | 2012-02-06 | 2013-08-19 | National Maritime Research Institute | 二軸船尾双胴型船舶および二軸船尾双胴型船舶の設計方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5073B1 (ja) * | 1970-03-13 | 1975-01-06 | ||
JP2007223557A (ja) | 2006-02-27 | 2007-09-06 | Mitsubishi Heavy Ind Ltd | ツイン・スケグ船 |
JP4934361B2 (ja) | 2006-07-06 | 2012-05-16 | 三井造船株式会社 | 船舶 |
JP6046652B2 (ja) * | 2014-03-04 | 2016-12-21 | 三井造船株式会社 | 船舶 |
-
2016
- 2016-03-31 JP JP2016071336A patent/JP6665013B2/ja active Active
-
2017
- 2017-01-25 KR KR1020187025219A patent/KR102124308B1/ko not_active Expired - Fee Related
- 2017-01-25 WO PCT/JP2017/002562 patent/WO2017169035A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008018812A (ja) * | 2006-07-12 | 2008-01-31 | Shipbuilding Research Centre Of Japan | 大型輸送船 |
JP2012001115A (ja) * | 2010-06-17 | 2012-01-05 | Ihi Corp | ツインスケグ船 |
JP2013159245A (ja) * | 2012-02-06 | 2013-08-19 | National Maritime Research Institute | 二軸船尾双胴型船舶および二軸船尾双胴型船舶の設計方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113799914A (zh) * | 2021-10-29 | 2021-12-17 | 广州文冲船厂有限责任公司 | 一种船艉结构及船舶 |
CN113799914B (zh) * | 2021-10-29 | 2023-01-06 | 广州文冲船厂有限责任公司 | 一种船艉结构及船舶 |
Also Published As
Publication number | Publication date |
---|---|
JP2017178181A (ja) | 2017-10-05 |
KR20180105224A (ko) | 2018-09-27 |
JP6665013B2 (ja) | 2020-03-13 |
KR102124308B1 (ko) | 2020-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5175281B2 (ja) | 船 | |
KR101348081B1 (ko) | 추진기 주변에 계단형식을 갖춘 선미형상을 한 에어 캐비티 및 공기윤활 방식 선박 | |
JP5721675B2 (ja) | プロペラノズル | |
WO2017169035A1 (ja) | ツインスケグ船の船底構造及びツインスケグ船 | |
US6138602A (en) | Catamaran--V boat hull | |
JP6674821B2 (ja) | 船底構造及び船舶 | |
CN101612978B (zh) | 船体结构 | |
JP2009255621A (ja) | 船体摩擦抵抗低減装置 | |
US5427048A (en) | Multi-concave hydrodynamically designed hull | |
RU2610754C2 (ru) | Быстроходное судно | |
US10858069B2 (en) | Marine vessel hull with a longitudinally vented transverse step | |
JP2017178181A5 (ja) | ||
RU2302971C2 (ru) | Корпус судна (варианты) | |
CN108349572A (zh) | 船舶(方案) | |
JP6129373B1 (ja) | 船舶 | |
JP2016516636A (ja) | 底部に空洞を有する船 | |
JP5393160B2 (ja) | 排水量型船舶の船尾形状 | |
RU2695712C1 (ru) | Способ получения дополнительного давления газовоздушной струи для скоростного судна на пневмопотоке под днище | |
KR20180054646A (ko) | 선박 | |
US7338336B2 (en) | Watercraft hull with adjustable keel | |
JP3951979B2 (ja) | 船体形状 | |
KR101323795B1 (ko) | 선박 | |
US10676158B2 (en) | Watercraft using narrowing concave channels | |
JP3210545U (ja) | 繊維強化プラスチック製船舶の船底左右にv型バルジを設け走行性能の向上をはかった船底形状 | |
KR20120126875A (ko) | 가변 챔퍼링된 노즐 구조를 가지는 터널형 스러스터 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 20187025219 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17773585 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17773585 Country of ref document: EP Kind code of ref document: A1 |