WO2017169018A1 - Substrate processing method and substrate processing device - Google Patents

Substrate processing method and substrate processing device Download PDF

Info

Publication number
WO2017169018A1
WO2017169018A1 PCT/JP2017/002402 JP2017002402W WO2017169018A1 WO 2017169018 A1 WO2017169018 A1 WO 2017169018A1 JP 2017002402 W JP2017002402 W JP 2017002402W WO 2017169018 A1 WO2017169018 A1 WO 2017169018A1
Authority
WO
WIPO (PCT)
Prior art keywords
main surface
substrate
organic solvent
pure water
nozzle
Prior art date
Application number
PCT/JP2017/002402
Other languages
French (fr)
Japanese (ja)
Inventor
仁司 中井
泰範 金松
幸嗣 安藤
岩田 智巳
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Priority to CN201780013897.3A priority Critical patent/CN108701604B/en
Priority to KR1020187023962A priority patent/KR102114567B1/en
Publication of WO2017169018A1 publication Critical patent/WO2017169018A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02046Dry cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02343Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a liquid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68764Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching

Definitions

  • the present invention relates to a substrate processing method and a substrate processing apparatus.
  • substrate In a manufacturing process of a semiconductor substrate (hereinafter simply referred to as “substrate”), various processes are performed on the substrate using a substrate processing apparatus. For example, by supplying a chemical solution to a substrate having a resist pattern formed on the surface, a process such as etching is performed on the surface of the substrate. After the chemical solution is supplied, a rinsing process for supplying pure water to the substrate to remove the chemical solution on the surface and a drying process for removing the pure water on the surface by rotating the substrate at a high speed are further performed.
  • JP-A-2014-72439 (Reference 1), after the rinse treatment is performed, pure water is retained on the surface of the substrate to form a paddle-like liquid film, and the pure water contained in the liquid film is further formed.
  • a liquid film of IPA in the paddle state is formed by substituting IPA (isopropyl alcohol) for a liquid with a high hydrophobicity or a large-diameter substrate, the liquid film is cracked when forming a pure water liquid film. It describes the problem that it occurs and the substrate surface is exposed.
  • Document 1 discloses a method of supplying a mixed liquid of pure water and IPA to the surface of the substrate after the rinsing process. In this method, since the mixed liquid has a relatively low surface tension, the surface of the substrate can be spread well and the entire surface of the substrate can be covered with a liquid film containing water.
  • the rotational speed of the substrate is set to be relatively low in order to fill the filler solution between the pattern elements. Therefore, in the substrate processing apparatus having a plurality of cup portions, the filler solution overflowing from the main surface is received by the innermost cup portion.
  • the filler solution may be gelated by being mixed with pure water. In this case, since the drain line provided in the inner cup portion is clogged, it is required to suppress the inflow of pure water into the inner cup portion and prevent the filler solution and pure water from being mixed.
  • an IPA liquid film is formed by supplying IPA onto the main surface in a state where a relatively thick pure water liquid film is formed on the main surface of the substrate that has been rinsed with pure water.
  • IPA liquid film it is necessary to reduce the number of rotations of the substrate, so that the pure water falls into the inner cup portion. Therefore, in order to prevent the filler solution and pure water from being mixed in the inner cup portion, it is required to form a liquid film of IPA without forming a liquid film of pure water.
  • the pattern elements may collapse depending on the shape, size, arrangement, etc. of the pattern elements. It has been confirmed.
  • both nozzles are replaced with a pure water liquid film formed after the supply of pure water.
  • the main surface of the substrate is locally localized while both nozzles are replaced. May dry out and the pattern elements may collapse.
  • the present invention is directed to a substrate processing method in a substrate processing apparatus including an outer cup portion surrounding a periphery of a substrate having a pattern formed on one main surface, and an inner cup portion disposed inside the outer cup portion.
  • a substrate processing apparatus including an outer cup portion surrounding a periphery of a substrate having a pattern formed on one main surface, and an inner cup portion disposed inside the outer cup portion.
  • it is intended to prevent the filler solution and pure water from being mixed in the inner cup portion, and to prevent the pattern elements from collapsing before the filler solution is supplied.
  • the substrate processing method faces upward of the substrate rotated by the substrate rotating mechanism. Supplying pure water to the main surface and receiving the pure water scattered from the main surface by the inner surface of the outer cup portion; b) in the first state, a predetermined organic solvent and pure water; Supplying the mixed liquid mixed to the main surface of the rotating substrate and receiving the mixed liquid scattered from the main surface by the inner side surface of the outer cup portion; and c) the first state.
  • the inflow of pure water into the inner cup portion is suppressed to prevent the filler solution and pure water from mixing, and to prevent the pattern elements from collapsing before the filler solution is supplied. Can do.
  • the substrate processing apparatus further includes a nozzle facing the main surface, and the pure water in the step a), the mixed liquid in the step b), and the c) step.
  • the organic solvent in is discharged from the nozzle.
  • the concentration of the organic solvent in the mixed solution is gradually increased.
  • At least the mixed liquid is discharged from a fixed nozzle fixed at a predetermined position above the main surface, and in parallel with the discharge operation from the fixed nozzle, in the step a)
  • the first nozzle used for supplying the pure water or for supplying the processing liquid prior to the step a) moves from a position facing the main surface to a standby position outside the main surface.
  • the second nozzle disposed at another standby position deviated from above the main surface is moved to a position facing the main surface, and in the step c), the organic solvent is removed from the second nozzle. Is discharged.
  • the substrate processing method faces upward of the substrate rotated by the substrate rotating mechanism. Pure water is continuously supplied to the main surface from a fixed nozzle fixed at a predetermined position above the main surface, and the pure water scattered from the main surface is received by the inner surface of the outer cup portion.
  • Step b) In parallel with the step a), the first nozzle used for supplying the processing liquid prior to the step a) is removed from above the main surface from a position facing the main surface.
  • the present invention is also directed to a substrate processing apparatus.
  • the substrate processing apparatus includes a substrate holding unit that holds the substrate with a main surface of the substrate on which the pattern is formed facing upward, a substrate rotating mechanism that rotates the substrate holding unit together with the substrate, and a periphery of the substrate An outer cup portion that surrounds the inner cup portion, an inner cup portion disposed inside the outer cup portion, an elevating mechanism that moves the inner cup portion relative to the substrate, and pure water to the main surface A pure water supply unit; a mixed solution supply unit that supplies a mixed liquid obtained by mixing a predetermined organic solvent and pure water to the main surface; an organic solvent supply unit that supplies the organic solvent to the main surface; In a first state in which a filler solution supply unit that supplies a filler solution having a specific gravity greater than that of a solvent to the main surface and an upper end of the inner cup portion are disposed below an upper end of the outer cup portion, the substrate The substrate rotated by a rotation mechanism While the pure water, the mixed solution, and the organic solvent are sequential
  • the inner cup portion is moved relative to the substrate by the elevating mechanism while the liquid film of the organic solvent that is received by the inner surface of the cup portion and then covers the main surface is held on the main surface.
  • the inner surface of the inner cup part forms a second state arranged around the substrate, and in the second state, the filler solution supplying part is used to bring the filler solution onto the main surface.
  • a controller that fills the main surface with the filler solution.
  • FIG. 1 is a diagram showing a configuration of a substrate processing apparatus 1 according to an embodiment of the present invention.
  • the substrate processing apparatus 1 includes a spin chuck 22, a spin motor 21, a cup unit 23, and a chamber 5.
  • the disk-shaped substrate 9 is placed on a spin chuck 22 that is a substrate holding unit.
  • the spin chuck 22 holds the substrate 9 in a horizontal posture by sucking and sucking the lower surface of the substrate 9.
  • the main surface 91 of the substrate 9 facing upward is referred to as an “upper surface 91”.
  • a predetermined pattern is formed on the upper surface 91, and the pattern includes, for example, a large number of upright pattern elements.
  • a shaft 221 extending in the vertical direction (vertical direction) is connected to the spin chuck 22.
  • the shaft 221 is perpendicular to the upper surface 91 of the substrate 9, and the central axis J1 of the shaft 221 passes through the center of the substrate 9.
  • a spin motor 21 that is a substrate rotation mechanism rotates a shaft 221. As a result, the spin chuck 22 and the substrate 9 rotate about the central axis J1 that faces in the vertical direction.
  • the cup unit 23 includes a liquid receiving part 230, an inner guard part 241, and an outer guard part 251.
  • the liquid receiving part 230 includes a base part 231, an annular bottom part 232, an inner peripheral wall part 233, and an outer peripheral wall part 234.
  • the base portion 231 has a cylindrical shape centered on the central axis J1.
  • the base portion 231 is fitted into a chamber inner wall portion 53 described later, and is attached to the outer surface of the chamber inner wall portion 53.
  • the annular bottom portion 232 has an annular plate shape centered on the central axis J ⁇ b> 1 and extends outward from the lower end portion of the base portion 231.
  • Both the outer peripheral wall portion 234 and the inner peripheral wall portion 233 are cylindrical with the central axis J1 as the center.
  • the outer peripheral wall portion 234 protrudes upward from the outer peripheral portion of the annular bottom portion 232, and the inner peripheral wall portion 233 protrudes upward between the base portion 231 and the outer peripheral wall portion 234 on the annular bottom portion 232.
  • the base portion 231, the annular bottom portion 232, the inner peripheral wall portion 233, and the outer peripheral wall portion 234 are preferably integrally formed as one member.
  • the inner guard portion 241 and the outer guard portion 251 are both substantially cylindrical members centered on the central axis J1 and surround the spin chuck 22.
  • the inner guard part 241 is disposed between the outer guard part 251 and the spin chuck 22.
  • An engaging portion 242 that forms a minute gap with the inner peripheral wall portion 233 is provided at the lower portion of the inner guard portion 241.
  • the engagement portion 242 and the inner peripheral wall portion 233 are maintained in a non-contact state.
  • the inner guard portion 241 can be moved in the vertical direction by the guard lifting mechanism 26.
  • An engaging portion 252 is also provided at a lower portion of the outer guard portion 251, and a minute gap is formed between the engaging portion 252 and the outer peripheral wall portion 234.
  • the engagement portion 252 and the outer peripheral wall portion 234 are maintained in a non-contact state.
  • the outer guard portion 251 can also be moved in the vertical direction separately from the inner guard portion 241 by the guard lifting mechanism 26.
  • the processing liquid When the processing liquid is supplied to the upper surface 91 of the rotating substrate 9 in a state where the outer guard portion 251 directly faces the substrate 9, the processing liquid scattered from the upper surface 91 is received by the outer guard portion 251.
  • the treatment liquid accumulates in a region between the inner peripheral wall portion 233 and the outer peripheral wall portion 234 in the annular bottom portion 232, and is discharged to the outside through an outer drain line 253 provided in the region.
  • the outer cup portion 25 that surrounds the periphery of the substrate 9 is configured by a part of the liquid receiving portion 230 including the outer peripheral wall portion 234 and the outer guard portion 251.
  • the inner guard portion 241 in a state where the inner guard portion 241 directly faces the substrate 9 in the horizontal direction (see FIG. 4 described later), when the processing liquid is supplied to the upper surface 91 of the rotating substrate 9, the processing liquid splashes from the upper surface 91. Is received by the inner guard portion 241.
  • the processing liquid accumulates in a region between the base portion 231 and the inner peripheral wall portion 233 in the annular bottom portion 232 and is discharged to the outside through an inner drain line 243 provided in the region.
  • the inner cup portion 24 disposed inside the outer cup portion 25 is configured by a part of the liquid receiving portion 230 including the inner peripheral wall portion 233 and the inner guard portion 241.
  • the inner cup portion 24 and the outer cup portion 25 may include other components.
  • three or more cup parts including the inner cup part 24 and the outer cup part 25 may be provided.
  • the chamber 5 includes a chamber bottom 51, a chamber upper bottom 52, a chamber inner wall 53, a chamber outer wall 54, and a chamber canopy 55.
  • the chamber bottom 51 is plate-shaped and covers the lower part of the spin motor 21 and the cup unit 23.
  • the chamber upper bottom 52 has a substantially annular plate shape centered on the central axis J1.
  • the chamber upper bottom 52 covers the upper portion of the spin motor 21 and the lower portion of the spin chuck 22 above the chamber bottom portion 51.
  • the chamber inner wall portion 53 has a substantially cylindrical shape centered on the central axis J1.
  • the chamber inner wall 53 extends downward from the outer periphery of the chamber upper bottom 52 and reaches the chamber bottom 51.
  • the chamber inner wall portion 53 is located on the radially inner side of the cup unit 23.
  • the chamber outer wall portion 54 has a substantially cylindrical shape and is located on the radially outer side of the cup unit 23.
  • the chamber outer wall 54 extends upward from the outer periphery of the chamber bottom 51 and reaches the outer periphery of the chamber canopy 55.
  • the chamber canopy 55 is plate-shaped and covers the cup unit 23 and the spin chuck 22.
  • the chamber outer wall portion 54 is provided with a carry-in / out port 541 for carrying the substrate 9 into and out of the chamber 5. By closing the carry-in / out port 541 with the lid 542, the internal space of the chamber 5 becomes the sealed space 50.
  • the substrate processing apparatus 1 includes a first nozzle 31, a second nozzle 32, a first nozzle moving mechanism 33, a second nozzle moving mechanism 34, a chemical solution supply unit 41, a pure water supply unit 42, and an organic solvent supply.
  • a unit 43 and a filler solution supply unit 44 are further provided.
  • the first nozzle 31 is, for example, a straight nozzle that extends in the vertical direction, and is attached to the arm 331 of the first nozzle moving mechanism 33.
  • the first nozzle moving mechanism 33 rotates the arm 331 around an axis parallel to the central axis J1, thereby causing the first nozzle 31 to face the upper surface 91 of the substrate 9 and from above the upper surface 91. It is selectively placed at the off standby position.
  • the first nozzle 31 disposed at the facing position is opposed to the central portion of the upper surface 91.
  • the standby position is a position away from the substrate 9 in the horizontal direction.
  • the first nozzle moving mechanism 33 can also move the arm 331 up and down.
  • the second nozzle moving mechanism 34 has the same structure as the first nozzle moving mechanism 33, and the second nozzle moving mechanism 34 causes the second nozzle 32 to be opposed to the upper surface 91 of the substrate 9 and the upper surface 91. It is selectively arranged at another standby position deviated from above.
  • the chemical solution supply unit 41 is connected to the connection unit 45 via the on-off valve 450.
  • the pure water supply unit 42 is connected to the connection unit 45 via the flow rate control valve 451 and the open / close valve 452, and the organic solvent supply unit 43 is connected to the connection unit 45 via the flow rate control valve 453 and the open / close valve 454.
  • a flow rate control valve may also be provided between the chemical solution supply unit 41 and the connection unit 45.
  • the connection part 45 is connected to the first nozzle 31 via the on-off valve 459.
  • one multi-valve device is configured by the connection portion 45 and the plurality of on-off valves 450, 452, 454, and 459 provided in the vicinity of the connection portion 45.
  • the filler solution supply unit 44 is connected to the second nozzle 32 via the on-off valve 461.
  • the chemical solution, pure water, organic solvent, and filler solution, which are processing solutions, are supplied to the upper surface 91 of the substrate 9 by the chemical solution supply unit 41, the pure water supply unit 42, the organic solvent supply unit 43, and the filler solution supply unit 44, respectively.
  • FIG. 2 is a diagram showing the flow of processing of the substrate 9 in the substrate processing apparatus 1.
  • an unprocessed substrate 9 is carried into the chamber 5 through the carry-in / out port 541 by an external carrying mechanism, and is held by the spin chuck 22 (step S11).
  • the guard lifting mechanism 26 lowers the inner guard portion 241 and the outer guard portion 251 to prevent the loaded substrate 9 from coming into contact with both (the substrate 9 described later). The same applies to the unloading).
  • the carry-in / out port 541 is closed by the lid 542.
  • the outer guard part 251 rises to the position shown in FIG. 1, and the upper end of the outer guard part 251 is arranged above the substrate 9. Further, the upper end of the inner guard portion 241 is located below the substrate 9. Thereby, the outer cup opposing state which has arrange
  • the first nozzle 31 is disposed at a position facing the central portion of the upper surface 91 of the substrate 9 by the first nozzle moving mechanism 33, and the spin motor 21 rotates the substrate 9 at a predetermined rotational speed (rotational speed). Be started. Then, the chemical liquid is supplied to the internal space of the connecting portion 45 by opening the on-off valve 450, and the chemical liquid is continuously supplied to the upper surface 91 through the first nozzle 31 by opening the on-off valve 459 (step S13). ). The chemical solution on the upper surface 91 spreads to the outer edge portion by the rotation of the substrate 9, and the chemical solution is supplied to the entire upper surface 91 as shown by a thick line in FIG. 3.
  • the chemical liquid scattered from the outer edge portion is received and collected by the inner surface of the outer cup portion 25.
  • the chemical liquid is a cleaning liquid containing, for example, dilute hydrofluoric acid (DHF) or aqueous ammonia.
  • the chemical solution may be used for processing other than cleaning, such as removal or development of the oxide film on the substrate 9 or etching.
  • the supply of the chemical solution is continued for a predetermined time, and then stopped by closing the on-off valve 450.
  • the first nozzle 31 may swing in the horizontal direction by the first nozzle moving mechanism 33 in FIG.
  • Step S14 the rinse process in which the chemical
  • the entire upper surface 91 is covered with pure water.
  • the spin motor 21 continues to rotate the substrate 9 at a relatively high number of rotations (the same applies when supplying a mixed liquid and an organic solvent described later).
  • the outer cup facing state is maintained, and the pure water scattered from the substrate 9 is received by the inner side surface of the outer cup portion 25 and discharged to the outside.
  • the on-off valve 454 is opened while the on-off valve 452 remains open.
  • the organic solvent is also supplied to the internal space of the connection part 45 together with the pure water, and a mixed liquid (diluted organic solvent) obtained by mixing the organic solvent and the pure water is generated in the connection part 45.
  • the organic solvent is, for example, IPA (isopropyl alcohol), methanol, ethanol, acetone or the like, and has a lower surface tension than pure water.
  • IPA is used as the organic solvent.
  • the mixed liquid is continuously supplied to the upper surface 91 via the first nozzle 31, and the mixed liquid scattered from the substrate 9 is received by the inner surface of the outer cup portion 25 (step S15).
  • the control unit 10 controls the opening of the flow control valve 453 connected to the organic solvent supply unit 43 and the opening of the flow control valve 451 connected to the pure water supply unit 42, thereby The mixing ratio of the solvent and pure water, that is, the concentration of the organic solvent in the mixed solution is adjusted.
  • the supply flow rate of the organic solvent from the organic solvent supply unit 43 to the connection unit 45 is gradually (stepwise) increased. Further, the pure water supply flow rate from the pure water supply unit 42 to the connection unit 45 is gradually reduced. Therefore, in step S15, the concentration of the organic solvent in the mixed liquid supplied to the upper surface 91 is gradually increased from near 0% to near 100%.
  • an in-line mixer or the like may be provided between the first nozzle 31 and the connection portion 45.
  • the rotation speed of the substrate 9 is reduced or the rotation of the substrate 9 is stopped. Further, the supply of the organic solvent is also stopped by the flow rate control valve 453. As a result, a relatively thick organic solvent liquid film covering the entire upper surface 91 is formed.
  • the liquid film is a series of layers covering the entire upper surface 91 of the substrate, and is a so-called paddle-shaped liquid film.
  • the guard elevating mechanism 26 raises the inner guard portion 241 from the position shown in FIG. 3 to the position shown in FIG. 4, so that both the upper end of the outer guard portion 251 and the upper end of the inner guard portion 241 become the substrate 9. It is located above. Thereby, the inner cup facing state in which the inner side surface of the inner cup portion 24 is arranged around the substrate 9 is formed (step S17). In the inner cup facing state, the inner guard portion 241 directly faces the substrate 9 in the horizontal direction.
  • the first nozzle 31 located at the opposite position is moved to the standby position off the upper surface 91 by the first nozzle moving mechanism 33.
  • the second nozzle 32 located at another standby position is moved to a facing position facing the central portion of the upper surface 91 by the second nozzle moving mechanism 34. Since the liquid film of the organic solvent is held on the upper surface 91 while the inner guard portion 241 is raised and while the first nozzle 31 and the second nozzle 32 are replaced, the upper surface 91 is not dried.
  • the filler solution supply unit 44 supplies a predetermined amount of the filler solution to the central portion of the upper surface 91 via the second nozzle 32 (step S18).
  • the filler solution contains a polymer such as an acrylic resin.
  • the solvent in the filler solution include alcohol.
  • the filler has solubility in the solvent and, for example, a crosslinking reaction occurs when heated to a predetermined temperature or higher.
  • Rotation of the substrate 9 is continued for a predetermined time even after the supply of the filler solution is completed.
  • the filler solution on the upper surface 91 spreads from the central portion to the outer peripheral portion, and a uniform liquid layer of the filler solution is formed on the organic solvent liquid film on the upper surface 91 (in FIG. These liquid layers are shown.).
  • the inner cup facing state is formed, and the filler solution scattered from the substrate 9 is received by the inner surface of the inner cup portion 24. Further, when the specific gravity of the filler solution is larger than the specific gravity of the organic solvent, the liquid layer of the filler solution and the liquid layer of the organic solvent are switched on the upper surface 91.
  • the filler solution also enters between adjacent pattern elements (small gaps), and the upper surface 91 is filled with the filler solution.
  • substrate 9 in the case of supply of a filler solution is smaller than the rotation speed at the time of the continuous supply of the said chemical
  • the filler solution may be supplied to the upper surface 91 in a state where the rotation of the substrate 9 is stopped, and then the rotation of the substrate 9 may be started.
  • the liquid layer of the organic solvent on the surface is removed by continuing the rotation of the substrate 9 (spin-off).
  • an auxiliary nozzle is provided at a position facing the outer edge portion of the upper surface 91 or the lower surface of the substrate 9, and the filler adhered to the outer edge portion of the substrate 9 by discharging an organic solvent from the auxiliary nozzle.
  • the solution may be removed (edge rinse).
  • the organic solvent at the outer edge is removed by the rotation of the substrate 9 (spin dry).
  • the substrate 9 is carried out of the chamber 5 through the carry-in / out port 541 of FIG. 1 by an external carrying mechanism (step S19).
  • the substrate 9 is baked on an external hot plate, the solvent component in the liquid layer of the filler solution is removed, and the filler is cured (solidified). That is, the solidified filler is filled between adjacent pattern elements.
  • the substrate 9 is transferred to a dry etching apparatus, and the filler is removed by dry etching.
  • the filler is removed in a state where the surface tension of the inclusion does not act on the pattern element.
  • the series of processes after the rinsing process can be regarded as a drying process of pure water (rinsing liquid) adhering to the upper surface 91, and the drying process causes deformation of the pattern elements due to the surface tension of the pure water during the drying process. Is prevented.
  • the removal of the filler may be performed by other methods that do not use a liquid. For example, depending on the type of the filler, the filler is removed by sublimation by heating the filler under reduced pressure.
  • pure water may adhere to the upper portion 249 on the inner side surface of the inner guard portion 241.
  • an organic solvent is supplied onto the upper surface 91 to form a liquid film of the organic solvent.
  • the organic solvent spreads over the entire upper surface 91 so as to enter between the pure water liquid film 911 and the upper surface 91 of the substrate 9.
  • the mixed liquid is not supplied.
  • an inner cup facing state is formed in which the inner surface of the inner cup portion 24 is arranged around the substrate 9.
  • a filler solution is then supplied onto the upper surface 91.
  • the pure water that has dropped into the inner cup portion 24 when the pure water liquid film 911 is formed adheres to the inner surface of the inner cup portion 24 and the filler solution is mixed with the pure water. . Therefore, depending on the type of the filler solution, the filler solution may gel and the inner drain line 243 (see FIG. 1) provided in the inner cup portion 24 may be clogged. Moreover, the pure water adhering to the upper part 249 of the inner surface of the inner guard part 241 may fall on the upper surface 91 filled with the filler solution.
  • Pattern elements can collapse.
  • the cause of the collapse of the pattern element is not necessarily clear, but one reason is that the local area where there is very little pure water (that is, a small amount of pure water that can affect the surface tension of the pattern element). This is a region where there is only a local area, and is hereinafter referred to as “local drying”).
  • the organic solvent supplied to the central portion of the upper surface 91 spreads so as to push out pure water on the upper surface 91 (a thin layer is formed by high-speed rotation of the substrate 9), that is, the organic solvent and the pure solvent.
  • the organic solvent spreads on the upper surface 91 so that the interface with water moves from the vicinity of the center toward the outer edge.
  • the low solubility of the organic solvent and pure water the ease of mixing of both, which can also be regarded as affinity
  • affinity the difference in surface tension between the organic solvent and pure water
  • the substrate processing apparatus 1 of FIG. 1 after the outer cup facing state is formed, the substrate 9 is rotated at a relatively high rotational speed so that the liquid scattered from the upper surface 91 is received by the inner surface of the outer cup portion 25. , Pure water, a mixed solution and an organic solvent are sequentially supplied onto the upper surface 91 of the substrate 9. Then, in the inner cup facing state, the filler solution is supplied to the upper surface 91 and the upper surface 91 is filled with the filler solution.
  • a mixed solution having a higher solubility with pure water than that of the organic solvent or a difference in surface tension with the pure water is smaller than that of the organic solvent is supplied to the upper surface 91 to which the pure water is applied.
  • the filler solution can be appropriately filled in the gaps between the pattern elements.
  • the concentration of the organic solvent in the mixed solution is gradually increased. This ensures a certain solubility between the liquid (pure water or a low-concentration liquid mixture) present on the upper surface 91 and the liquid mixture, and more reliably suppresses local drying of the upper surface 91.
  • a liquid film of an organic solvent can be formed on the upper surface 91.
  • steps S14 to S16 pure water, a mixed liquid, and an organic solvent are sequentially discharged from the same first nozzle 31, so that the processing relating to the discharge of these processing liquids can be simplified.
  • FIG. 7 is a diagram showing another example of the substrate processing apparatus.
  • the substrate processing apparatus 1a of FIG. 7 in addition to the first and second nozzles 31, 32, a third nozzle 32a and a fixed nozzle 35 are provided.
  • the chemical liquid supply unit 41, the pure water supply unit 42, the organic solvent supply unit 43, and the filler solution supply unit 44 are connected to the first nozzle 31, the second nozzle 32, the third nozzle 32a, and the fixed nozzle 35. 1 is different from the substrate processing apparatus 1 of FIG.
  • Other configurations are the same as those of the substrate processing apparatus 1 of FIG. 1, and the same reference numerals are given to the same configurations.
  • the fixed nozzle 35 is fixed to the chamber 5 at a predetermined position above the upper surface 91 of the substrate 9 (above the upper end of the outer cup portion 25 in FIG. 7). Further, the fixed nozzle 35 is disposed at a position that does not overlap the substrate 9 when viewed along the central axis J1.
  • the pure water supply unit 42 is connected to the connection unit 45 via the flow rate control valve 451 and the open / close valve 452, and the organic solvent supply unit 43 is connected to the connection unit 45 via the flow rate control valve 453 and the open / close valve 454. .
  • the connection part 45 is connected to the fixed nozzle 35 via the on-off valve 459.
  • the pure water supply unit 42 is also connected to the first nozzle 31 via the on-off valves 471 and 472.
  • the organic solvent supply unit 43 is also connected to the second nozzle 32 via the on-off valve 473.
  • the chemical solution supply unit 41 is connected to the first nozzle 31 via on-off valves 475 and 472.
  • the filler solution supply unit 44 is connected to the third nozzle 32 a via the on-off valve 476.
  • the second nozzle 32 and the third nozzle 32a are moved by the second / third nozzle moving mechanism 34a.
  • FIG. 8 is a diagram showing a part of the processing flow of the substrate 9 in the substrate processing apparatus 1a, and shows the processing performed between step S13 and step S16 in FIG.
  • the chemical solution is continuously discharged from the first nozzle 31 disposed at the facing position facing the upper surface 91 of the substrate 9.
  • the chemical solution from the first nozzle 31 is supplied to the upper surface 91 of the rotating substrate 9, and the chemical solution scattered from the upper surface 91 is received by the inner surface of the outer cup portion 25 (FIG. 2: step S13).
  • step S21 When the supply of pure water from the fixed nozzle 35 is started, the supply of pure water from the first nozzle 31 is stopped. Subsequently, the first nozzle 31 is moved to a standby position away from the substrate 9 in the horizontal direction by the first nozzle moving mechanism 33 in FIG. 7 (step S21). Further, the second nozzle 32 arranged at another standby position is moved to a facing position facing the central portion of the upper surface 91 by the second and third nozzle moving mechanisms 34a (step S22). Note that pure water may be supplied to the upper surface 91 only from the fixed nozzle 35 after the supply of the chemical solution from the first nozzle 31 is completed.
  • the supply of the processing liquid from the fixed nozzle 35 is continued. Specifically, when the supply of pure water from the fixed nozzle 35 is continued for a predetermined time, the open / close valve connected to the organic solvent supply unit 43 is kept open while the open / close valve 452 connected to the pure water supply unit 42 is kept open. 454 is opened. Thereby, an organic solvent is also supplied to the internal space of the connection part 45, and the liquid mixture which mixed the organic solvent and the pure water is produced
  • the mixed liquid is continuously supplied to the upper surface 91 via the fixed nozzle 35, and the mixed liquid scattered from the substrate 9 is received by the inner surface of the outer cup portion 25 (step S15). At this time, by controlling the opening degree of the flow control valves 451 and 453, the concentration of the organic solvent in the mixed liquid is gradually increased from near 0% to near 100%.
  • the rotation speed of the substrate 9 is reduced or the rotation of the substrate 9 is stopped. Further, the supply of the organic solvent is also stopped. As a result, a relatively thick organic solvent liquid film covering the entire upper surface 91 is formed.
  • the guard lifting mechanism 26 in FIG. 7 raises the inner guard portion 241 to form an inner cup facing state (step S17). Subsequently, by opening the on-off valve 476, a predetermined amount of the filler solution is supplied from the filler solution supply unit 44 to the central portion of the upper surface 91 through the third nozzle 32a (step S18). Thereafter, the rotation of the substrate 9 is stopped, and the substrate 9 is carried out of the chamber 5 by an external transfer mechanism (step S19).
  • the nozzles (the first nozzle 31 and the fixed nozzle 35) that discharge pure water or a liquid containing pure water, and the second nozzle 32 that discharges an organic solvent.
  • the first nozzle 31 used for supplying the chemical liquid to the upper surface 91 moves from the facing position to the standby position in parallel with the discharge operation of the pure water and the mixed liquid from the fixed nozzle 35.
  • the second nozzle 32 arranged at another standby position moves to the facing position. Then, following the discharge of the mixed liquid from the fixed nozzle 35, a pure organic solvent is discharged from the second nozzle 32.
  • the above processing it is possible to prevent the upper surface 91 of the substrate 9 from being dried when the first nozzle 31 and the second nozzle 32 are replaced. Further, the supply of the mixed liquid makes it difficult for the local drying of the upper surface 91 to occur, and the collapse of the pattern element before the supply of the filler solution can be suppressed. Furthermore, the formation of the pure water liquid film 911 can be omitted to suppress the inflow of pure water into the inner cup portion 24, and mixing of the filler solution and pure water can be prevented.
  • the mixed liquid may be discharged from the fixed nozzle 35.
  • pure water is supplied from the first nozzle 31 to the substrate 9 (step S14), and then the liquid mixture is supplied from the fixed nozzle 35 to the substrate 9 (step S15).
  • the movement of the first nozzle 31 used for supplying pure water to the standby position (step S21) and the movement of the second nozzle 32 used for supplying organic solvent to the facing position (step S22) are steps. This is performed in parallel with the operation of discharging the mixed liquid from the fixed nozzle 35 in S15. As described above, by discharging at least the mixed liquid from the fixed nozzle 35, it is possible to prevent the upper surface 91 of the substrate 9 from being dried when the first nozzle 31 and the second nozzle 32 are replaced. .
  • step S15 in FIG. 8 is omitted, and only pure water is discharged from the fixed nozzle 35. Also good.
  • step S13 when the supply of the chemical solution from the first nozzle 31 to the upper surface 91 is completed (FIG. 2: step S13) and the supply of pure water from the fixed nozzle 35 is started (FIG. 8: step S14),
  • the first nozzle 31 is moved to the standby position by the first nozzle moving mechanism 33 (step S21).
  • the second nozzle 32 arranged at another standby position is moved to the facing position by the second / third nozzle moving mechanism 34a (step S22).
  • the organic solvent pure organic solvent
  • the outer cup facing state is maintained while performing steps S13, S14, and S16, and the chemical solution, pure water, and organic solvent scattered from the rotating substrate 9 are placed on the inner surface of the outer cup portion 25. Can be received. Subsequent processing is the same as described above.
  • the first nozzle 31 used for supplying the chemical solution is provided in parallel with the process of continuously supplying pure water from the fixed nozzle 35 to the upper surface 91.
  • the second nozzle 32 arranged at another standby position moves from the opposite position to the standby position, and further moves to the opposite position.
  • a pure organic solvent is discharged from the second nozzle 32 substantially continuously with the discharge of pure water from the fixed nozzle 35.
  • the discharge of pure organic solvent from the second nozzle 32 arranged at the opposite position is started before stopping the discharge of pure water from the fixed nozzle 35. May be.
  • the supply of pure water to the upper surface 91 of the substrate 9 and the supply of the organic solvent to the upper surface 91 are performed partially in parallel.
  • a mixed liquid is substantially generated on the substrate 9, that is, the mixed liquid is supplied to the substrate 9.
  • the discharge of pure water from the fixed nozzle 35 is stopped, and only the pure organic solvent is supplied to the substrate 9.
  • collapse of the pattern element due to local drying of the upper surface 91 can be suppressed.
  • the substrate processing apparatuses 1 and 1a can be variously modified.
  • a pure liquid supply unit 42, an organic solvent supply unit 43, and a connection unit 45 are used as main components, and a mixed liquid supply unit that supplies a mixed liquid to the upper surface 91 is configured.
  • the unit may be realized independently of the pure water supply unit 42 and the organic solvent supply unit 43.
  • the concentration of the organic solvent in the mixed solution may be constant.
  • FIG. 11 and FIG. 12 are diagrams showing experimental results obtained by examining the relationship between the concentration of the organic solvent (here, IPA) in the mixed solution and the solubility between the mixed solution and pure water.
  • IPA organic solvent
  • a tube with a diameter of 19 mm whose one end was closed by a closing member was prepared, and in a state where 15 cc of pure water was stored in the tube extended vertically, the IPA concentration was 10 vol% (volume percent concentration), 20 vol%, 2 cc of a mixed solution of 50 vol% and 100 vol% (a pure organic solvent when the IPA concentration is 100 vol%) was poured along the inner surface of the tube.
  • the closing member is provided with a sampling tube having a diameter of 3 mm, and a small amount of liquid in the vicinity of the interface between the mixed solution and pure water is sampled after 0.5 minutes, 1 minute and 2 minutes from the injection of the mixed solution. And the IPA concentration of the solution was measured. 11 and 12 are extracted at positions of 5 mm and 10 mm from the position of the pure water level (corresponding to the interface between the mixed liquid and pure water) before injection of the mixed liquid toward the closing member side, respectively. The IPA concentration of the obtained liquid is shown.
  • the concentration of the organic solvent in the mixed solution is constant, the concentration is preferably 50 vol% or less and 10 vol% or more in order to more surely suppress local drying. Further, from the viewpoint of efficiently using an organic solvent, the concentration is preferably 30% or less, more preferably 20% or less.
  • an elevating mechanism for elevating and lowering the spin chuck 22 is provided, and the spin chuck 22 and the substrate 9 (see, for example, FIG. 1) are lowered in the opposed state of the outer cup.
  • the inner cup facing state may be formed by raising the substrate 9 relative to the substrate 9.
  • the raising / lowering mechanism in the substrate processing apparatuses 1 and 1a may raise and lower the inner cup portion 24 relative to the substrate 9.
  • the substrate 9 may be held in various ways.
  • the substrate 9 may be held by the substrate holding portion that holds the outer edge portion of the substrate 9 with the main surface on which the pattern is formed facing upward.
  • the substrate processed by the substrate processing apparatus 1 or 1a is not limited to a semiconductor substrate, and may be a glass substrate or another substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Weting (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

According to the present invention, pure water, a liquid mixture, and an organic solvent are sequentially supplied onto a top surface (91) while a substrate (9) rotates at a relatively high rotation speed so that the liquid splashing from the top surface (91) is received by the inner surface of an outside cup part (25) during an outside cup facing state in which the upper end of an inside cup part (24) is disposed lower than the upper end of the outside cup part (25). Next, a filler solution is supplied onto the top surface (91) and the top surface (91) is covered with the filler solution during an inside cup facing state in which the inner surface of the inside cup part (24) is disposed around the substrate (9). Consequently, mixing of the filler solution and the pure water inside the inside cup part (24) is prevented and gelling and the like of the filler solution is also prevented. By supplying the liquid mixture in which the organic solvent and the pure water are mixed, the collapse of pattern elements formed on the top surface (91) is suppressed.

Description

基板処理方法および基板処理装置Substrate processing method and substrate processing apparatus
 本発明は、基板処理方法および基板処理装置に関する。 The present invention relates to a substrate processing method and a substrate processing apparatus.
 従来、半導体基板(以下、単に「基板」という。)の製造工程では、基板処理装置を用いて基板に対して様々な処理が施される。例えば、表面上にレジストのパターンが形成された基板に薬液を供給することにより、基板の表面に対してエッチング等の処理が行われる。薬液の供給後には、基板に純水を供給して表面の薬液を除去するリンス処理や、基板を高速に回転して表面の純水を除去する乾燥処理がさらに行われる。 Conventionally, in a manufacturing process of a semiconductor substrate (hereinafter simply referred to as “substrate”), various processes are performed on the substrate using a substrate processing apparatus. For example, by supplying a chemical solution to a substrate having a resist pattern formed on the surface, a process such as etching is performed on the surface of the substrate. After the chemical solution is supplied, a rinsing process for supplying pure water to the substrate to remove the chemical solution on the surface and a drying process for removing the pure water on the surface by rotating the substrate at a high speed are further performed.
 多数の微細なパターン要素が基板の表面に形成されている場合に、純水によるリンス処理および乾燥処理を順に行うと、乾燥途上において、隣接する2つのパターン要素の間に純水の液面が形成される。この場合に、パターン要素に作用する純水の表面張力に起因して、パターン要素が倒壊する虞がある。そこで、多数のパターン要素間に充填材溶液を充填し、固化した充填材をドライエッチング等により昇華させることにより、乾燥処理におけるパターン要素の倒壊を防止する手法が提案されている。 When a large number of fine pattern elements are formed on the surface of the substrate, if a rinse process and a drying process with pure water are performed in sequence, the level of pure water is between the two adjacent pattern elements in the course of drying. It is formed. In this case, the pattern element may collapse due to the surface tension of pure water acting on the pattern element. In view of this, there has been proposed a technique for preventing the pattern elements from collapsing in the drying process by filling a filler solution between a large number of pattern elements and sublimating the solidified filler by dry etching or the like.
 なお、特開2014-72439号公報(文献1)では、リンス処理の実行後に、基板の表面に純水を滞留させてパドル状態の液膜を形成し、さらに、当該液膜に含まれる純水をIPA(イソプロピルアルコール)で置換することにより、パドル状態のIPAの液膜を形成する際に、疎水性が高い基板や大径の基板では、純水液膜の形成において、液膜に亀裂が生じて基板表面が露出するという問題が記載されている。また、文献1では、リンス処理後に、純水とIPAとの混合液を基板の表面に供給する手法が開示されている。当該手法では、混合液が比較的低い表面張力を有することにより、基板の表面上を良好に広がり、基板の表面の全域を、水を含む状態の液膜で覆うことが可能となる。 In JP-A-2014-72439 (Reference 1), after the rinse treatment is performed, pure water is retained on the surface of the substrate to form a paddle-like liquid film, and the pure water contained in the liquid film is further formed. When a liquid film of IPA in the paddle state is formed by substituting IPA (isopropyl alcohol) for a liquid with a high hydrophobicity or a large-diameter substrate, the liquid film is cracked when forming a pure water liquid film. It describes the problem that it occurs and the substrate surface is exposed. Further, Document 1 discloses a method of supplying a mixed liquid of pure water and IPA to the surface of the substrate after the rinsing process. In this method, since the mixed liquid has a relatively low surface tension, the surface of the substrate can be spread well and the entire surface of the substrate can be covered with a liquid film containing water.
 ところで、充填材溶液を主面上に供給する際には、パターン要素間に充填材溶液を充填するために、基板の回転数が比較的低く設定される。したがって、複数のカップ部を有する基板処理装置では、主面上から溢れる充填材溶液が最も内側のカップ部により受けられる。また、充填材溶液の種類によっては、充填材溶液が純水と混ざることにより、ゲル化する場合がある。この場合、内側カップ部に設けられる排液ラインが詰まってしまうため、内側カップ部内への純水の流入を抑制して、充填材溶液と純水とが混ざることを防止することが求められる。 By the way, when the filler solution is supplied onto the main surface, the rotational speed of the substrate is set to be relatively low in order to fill the filler solution between the pattern elements. Therefore, in the substrate processing apparatus having a plurality of cup portions, the filler solution overflowing from the main surface is received by the innermost cup portion. In addition, depending on the type of the filler solution, the filler solution may be gelated by being mixed with pure water. In this case, since the drain line provided in the inner cup portion is clogged, it is required to suppress the inflow of pure water into the inner cup portion and prevent the filler solution and pure water from being mixed.
 一方、充填材溶液をパターン要素間の間隙に適切に充填するには、充填材溶液を供給する前に、基板の主面上にIPAの液膜を形成することが好ましい。例えば、純水によるリンス処理が行われた基板の主面上に、比較的厚い純水の液膜を形成した状態で、IPAを主面上に供給することにより、IPAの液膜が形成される。しかしながら、純水の液膜の形成では、基板の回転数を小さくする必要があるため、内側カップ部内に純水が落下してしまう。よって、内側カップ部内にて充填材溶液と純水とが混ざることを防止するには、純水の液膜を形成することなく、IPAの液膜を形成することが求められる。実際には、純水によるリンス処理後に、純水の液膜を形成することなく、主面上にIPAを直接供給すると、パターン要素の形状や大きさ、配置等によっては、パターン要素が倒壊することが確認されている。 On the other hand, in order to appropriately fill the gap between the pattern elements with the filler solution, it is preferable to form an IPA liquid film on the main surface of the substrate before supplying the filler solution. For example, an IPA liquid film is formed by supplying IPA onto the main surface in a state where a relatively thick pure water liquid film is formed on the main surface of the substrate that has been rinsed with pure water. The However, in forming the pure water liquid film, it is necessary to reduce the number of rotations of the substrate, so that the pure water falls into the inner cup portion. Therefore, in order to prevent the filler solution and pure water from being mixed in the inner cup portion, it is required to form a liquid film of IPA without forming a liquid film of pure water. Actually, after rinsing with pure water, if IPA is directly supplied on the main surface without forming a liquid film of pure water, the pattern elements may collapse depending on the shape, size, arrangement, etc. of the pattern elements. It has been confirmed.
 また、純水等を吐出するノズルと、IPAを吐出するノズルとが相違する基板処理装置では、純水の供給後に純水の液膜を形成した状態で、両ノズルが入れ替えられる。しかしながら、内側カップ部内にて充填材溶液と純水とが混ざることを防止するために純水の液膜の形成を省略する場合、両ノズルを入れ替えている間に、基板の主面が局所的に乾燥し、パターン要素が倒壊する虞がある。 Also, in a substrate processing apparatus in which a nozzle that discharges pure water or the like is different from a nozzle that discharges IPA, both nozzles are replaced with a pure water liquid film formed after the supply of pure water. However, when the formation of a liquid film of pure water is omitted in order to prevent the filler solution and pure water from being mixed in the inner cup part, the main surface of the substrate is locally localized while both nozzles are replaced. May dry out and the pattern elements may collapse.
 本発明は、一の主面にパターンが形成された基板の周囲を囲む外側カップ部と、外側カップ部の内側に配置される内側カップ部とを備える基板処理装置における基板処理方法に向けられており、内側カップ部内にて充填材溶液と純水とが混ざることを防止するとともに、充填材溶液の供給前におけるパターン要素の倒壊を抑制することを目的としている。 The present invention is directed to a substrate processing method in a substrate processing apparatus including an outer cup portion surrounding a periphery of a substrate having a pattern formed on one main surface, and an inner cup portion disposed inside the outer cup portion. In addition, it is intended to prevent the filler solution and pure water from being mixed in the inner cup portion, and to prevent the pattern elements from collapsing before the filler solution is supplied.
 本発明に係る一の基板処理方法は、a)前記内側カップ部の上端を前記外側カップ部の上端よりも下方に配置した第1の状態において、基板回転機構により回転する前記基板の上方を向く前記主面に純水を供給するとともに、前記主面から飛散する前記純水を前記外側カップ部の内側面により受ける工程と、b)前記第1の状態において、所定の有機溶剤と純水とを混合した混合液を、回転する前記基板の前記主面に供給するとともに、前記主面から飛散する前記混合液を前記外側カップ部の前記内側面により受ける工程と、c)前記第1の状態において、回転する前記基板の前記主面に前記有機溶剤を供給するとともに、前記主面から飛散する前記有機溶剤を前記外側カップ部の前記内側面により受ける工程と、d)前記主面を覆う前記有機溶剤の液膜を前記主面上にて保持しつつ、前記内側カップ部を前記基板に対して相対的に上昇させることにより前記内側カップ部の内側面が前記基板の周囲に配置された第2の状態を形成する工程と、e)前記第2の状態において、前記有機溶剤よりも比重が大きい充填材溶液を前記主面に供給することにより、前記主面上に前記充填材溶液を充填する工程とを備える。 In one substrate processing method according to the present invention, a) In the first state in which the upper end of the inner cup portion is disposed below the upper end of the outer cup portion, the substrate processing method faces upward of the substrate rotated by the substrate rotating mechanism. Supplying pure water to the main surface and receiving the pure water scattered from the main surface by the inner surface of the outer cup portion; b) in the first state, a predetermined organic solvent and pure water; Supplying the mixed liquid mixed to the main surface of the rotating substrate and receiving the mixed liquid scattered from the main surface by the inner side surface of the outer cup portion; and c) the first state. And supplying the organic solvent to the main surface of the rotating substrate and receiving the organic solvent scattered from the main surface by the inner side surface of the outer cup part; and d) covering the main surface The inner side surface of the inner cup portion is disposed around the substrate by raising the inner cup portion relative to the substrate while holding the liquid film of the solvent on the main surface. And e) filling the main surface with the filler solution by supplying the main surface with a filler solution having a specific gravity greater than that of the organic solvent in the second state. And a step of performing.
 本発明によれば、内側カップ部内への純水の流入を抑制して、充填材溶液と純水とが混ざることを防止するとともに、充填材溶液の供給前におけるパターン要素の倒壊を抑制することができる。 According to the present invention, the inflow of pure water into the inner cup portion is suppressed to prevent the filler solution and pure water from mixing, and to prevent the pattern elements from collapsing before the filler solution is supplied. Can do.
 本発明の一の好ましい形態では、前記基板処理装置が、前記主面に対向するノズルをさらに備え、前記a)工程における前記純水、前記b)工程における前記混合液、および、前記c)工程における前記有機溶剤が、前記ノズルから吐出される。 In one preferable mode of the present invention, the substrate processing apparatus further includes a nozzle facing the main surface, and the pure water in the step a), the mixed liquid in the step b), and the c) step. The organic solvent in is discharged from the nozzle.
 この場合に、好ましくは、前記b)工程において前記混合液における前記有機溶剤の濃度が徐々に高められる。 In this case, preferably, in the step b), the concentration of the organic solvent in the mixed solution is gradually increased.
 本発明の他の好ましい形態では、前記主面よりも上方の所定位置に固定された固定ノズルから少なくとも前記混合液が吐出され、前記固定ノズルからの吐出動作に並行して、前記a)工程における前記純水の供給、または、前記a)工程よりも前における処理液の供給に利用された第1ノズルが前記主面に対向する位置から、前記主面の上方から外れた待機位置へと移動され、さらに、前記主面の上方から外れた他の待機位置に配置された第2ノズルが前記主面に対向する位置へと移動され、前記c)工程において、前記第2ノズルから前記有機溶剤が吐出される。 In another preferred embodiment of the present invention, at least the mixed liquid is discharged from a fixed nozzle fixed at a predetermined position above the main surface, and in parallel with the discharge operation from the fixed nozzle, in the step a) The first nozzle used for supplying the pure water or for supplying the processing liquid prior to the step a) moves from a position facing the main surface to a standby position outside the main surface. And the second nozzle disposed at another standby position deviated from above the main surface is moved to a position facing the main surface, and in the step c), the organic solvent is removed from the second nozzle. Is discharged.
 本発明に係る他の基板処理方法は、a)前記内側カップ部の上端を前記外側カップ部の上端よりも下方に配置した第1の状態において、基板回転機構により回転する前記基板の上方を向く前記主面に、前記主面よりも上方の所定位置に固定された固定ノズルから純水を連続的に供給するとともに、前記主面から飛散する前記純水を前記外側カップ部の内側面により受ける工程と、b)前記a)工程に並行して、前記a)工程よりも前における処理液の供給に利用された第1ノズルを前記主面に対向する位置から、前記主面の上方から外れた待機位置へと移動するとともに、前記主面の上方から外れた他の待機位置に配置された第2ノズルを前記主面に対向する位置へと移動する工程と、c)前記第1の状態において、回転する前記基板の前記主面に前記第2ノズルから所定の有機溶剤を供給するとともに、前記主面から飛散する前記有機溶剤を前記外側カップ部の前記内側面により受ける工程と、d)前記主面を覆う前記有機溶剤の液膜を前記主面上にて保持しつつ、前記内側カップ部を前記基板に対して相対的に上昇させることにより前記内側カップ部の内側面が前記基板の周囲に配置された第2の状態を形成する工程と、e)前記第2の状態において、前記有機溶剤よりも比重が大きい充填材溶液を前記主面に供給することにより、前記主面上に前記充填材溶液を充填する工程とを備える。 In another substrate processing method according to the present invention, a) In the first state in which the upper end of the inner cup portion is disposed below the upper end of the outer cup portion, the substrate processing method faces upward of the substrate rotated by the substrate rotating mechanism. Pure water is continuously supplied to the main surface from a fixed nozzle fixed at a predetermined position above the main surface, and the pure water scattered from the main surface is received by the inner surface of the outer cup portion. Step b) In parallel with the step a), the first nozzle used for supplying the processing liquid prior to the step a) is removed from above the main surface from a position facing the main surface. Moving to the standby position and moving the second nozzle disposed at another standby position off the main surface to a position facing the main surface; c) the first state In front of the rotating substrate Supplying a predetermined organic solvent from the second nozzle to the main surface and receiving the organic solvent scattered from the main surface by the inner surface of the outer cup portion; and d) the organic solvent covering the main surface. The inner side surface of the inner cup portion is disposed around the substrate by raising the inner cup portion relative to the substrate while holding the liquid film on the main surface. A step of forming a state; and e) a step of filling the main surface with the filler solution by supplying a filler solution having a specific gravity greater than that of the organic solvent to the main surface in the second state. With.
 本発明は、基板処理装置にも向けられている。基板処理装置は、パターンが形成された基板の主面を上方に向けた状態で前記基板を保持する基板保持部と、前記基板保持部を前記基板と共に回転する基板回転機構と、前記基板の周囲を囲む外側カップ部と、前記外側カップ部の内側に配置される内側カップ部と、前記内側カップ部を前記基板に対して相対的に昇降する昇降機構と、純水を前記主面に供給する純水供給部と、所定の有機溶剤と純水とを混合した混合液を前記主面に供給する混合液供給部と、前記有機溶剤を前記主面に供給する有機溶剤供給部と、前記有機溶剤よりも比重が大きい充填材溶液を前記主面に供給する充填材溶液供給部と、前記内側カップ部の上端を前記外側カップ部の上端よりも下方に配置した第1の状態において、前記基板回転機構により回転する前記基板の前記主面に、前記純水供給部、前記混合液供給部および前記有機溶剤供給部により前記純水、前記混合液および前記有機溶剤を順に供給させつつ、前記主面から飛散する液が前記外側カップ部の内側面により受けられ、その後、前記主面を覆う前記有機溶剤の液膜を前記主面上にて保持しつつ、前記昇降機構により前記内側カップ部を前記基板に対して相対的に上昇させることにより前記内側カップ部の内側面が前記基板の周囲に配置された第2の状態を形成し、前記第2の状態において、前記充填材溶液供給部により前記主面に前記充填材溶液を供給させることにより、前記主面上に前記充填材溶液を充填する制御部とを備える。 The present invention is also directed to a substrate processing apparatus. The substrate processing apparatus includes a substrate holding unit that holds the substrate with a main surface of the substrate on which the pattern is formed facing upward, a substrate rotating mechanism that rotates the substrate holding unit together with the substrate, and a periphery of the substrate An outer cup portion that surrounds the inner cup portion, an inner cup portion disposed inside the outer cup portion, an elevating mechanism that moves the inner cup portion relative to the substrate, and pure water to the main surface A pure water supply unit; a mixed solution supply unit that supplies a mixed liquid obtained by mixing a predetermined organic solvent and pure water to the main surface; an organic solvent supply unit that supplies the organic solvent to the main surface; In a first state in which a filler solution supply unit that supplies a filler solution having a specific gravity greater than that of a solvent to the main surface and an upper end of the inner cup portion are disposed below an upper end of the outer cup portion, the substrate The substrate rotated by a rotation mechanism While the pure water, the mixed solution, and the organic solvent are sequentially supplied to the main surface by the pure water supply unit, the mixed solution supply unit, and the organic solvent supply unit, the liquid scattered from the main surface is the outer surface. The inner cup portion is moved relative to the substrate by the elevating mechanism while the liquid film of the organic solvent that is received by the inner surface of the cup portion and then covers the main surface is held on the main surface. By raising, the inner surface of the inner cup part forms a second state arranged around the substrate, and in the second state, the filler solution supplying part is used to bring the filler solution onto the main surface. And a controller that fills the main surface with the filler solution.
 上述の目的および他の目的、特徴、態様および利点は、添付した図面を参照して以下に行うこの発明の詳細な説明により明らかにされる。 The above object and other objects, features, aspects, and advantages will become apparent from the following detailed description of the present invention with reference to the accompanying drawings.
基板処理装置の構成を示す図である。It is a figure which shows the structure of a substrate processing apparatus. 基板の処理の流れを示す図である。It is a figure which shows the flow of a process of a board | substrate. 基板処理装置を示す断面図である。It is sectional drawing which shows a substrate processing apparatus. 基板処理装置を示す断面図である。It is sectional drawing which shows a substrate processing apparatus. 比較例の処理を説明するための図である。It is a figure for demonstrating the process of a comparative example. 比較例の処理を説明するための図である。It is a figure for demonstrating the process of a comparative example. 基板処理装置の他の例を示す図である。It is a figure which shows the other example of a substrate processing apparatus. 基板の処理の流れの一部を示す図である。It is a figure which shows a part of flow of a process of a board | substrate. 基板処理装置を示す断面図である。It is sectional drawing which shows a substrate processing apparatus. 基板処理装置を示す断面図である。It is sectional drawing which shows a substrate processing apparatus. 混合液における有機溶剤の濃度と、混合液と純水との溶解性との関係を示す図である。It is a figure which shows the relationship between the density | concentration of the organic solvent in a liquid mixture, and the solubility of a liquid mixture and a pure water. 混合液における有機溶剤の濃度と、混合液と純水との溶解性との関係を示す図である。It is a figure which shows the relationship between the density | concentration of the organic solvent in a liquid mixture, and the solubility of a liquid mixture and a pure water.
 図1は、本発明の一の実施の形態に係る基板処理装置1の構成を示す図である。基板処理装置1における各構成要素は、制御部10により制御される。基板処理装置1は、スピンチャック22と、スピンモータ21と、カップユニット23と、チャンバ5とを備える。円板状の基板9は、基板保持部であるスピンチャック22上に載置される。スピンチャック22は、基板9の下面を吸引吸着することにより、基板9を水平な姿勢にて保持する。以下の説明では、上方を向く基板9の主面91を「上面91」という。上面91には、所定のパターンが形成されており、当該パターンは、例えば直立する多数のパターン要素を含む。 FIG. 1 is a diagram showing a configuration of a substrate processing apparatus 1 according to an embodiment of the present invention. Each component in the substrate processing apparatus 1 is controlled by the control unit 10. The substrate processing apparatus 1 includes a spin chuck 22, a spin motor 21, a cup unit 23, and a chamber 5. The disk-shaped substrate 9 is placed on a spin chuck 22 that is a substrate holding unit. The spin chuck 22 holds the substrate 9 in a horizontal posture by sucking and sucking the lower surface of the substrate 9. In the following description, the main surface 91 of the substrate 9 facing upward is referred to as an “upper surface 91”. A predetermined pattern is formed on the upper surface 91, and the pattern includes, for example, a large number of upright pattern elements.
 スピンチャック22には、上下方向(鉛直方向)に伸びるシャフト221が接続される。シャフト221は、基板9の上面91に垂直であり、シャフト221の中心軸J1は、基板9の中心を通る。基板回転機構であるスピンモータ21は、シャフト221を回転する。これにより、スピンチャック22および基板9が、上下方向を向く中心軸J1を中心として回転する。 A shaft 221 extending in the vertical direction (vertical direction) is connected to the spin chuck 22. The shaft 221 is perpendicular to the upper surface 91 of the substrate 9, and the central axis J1 of the shaft 221 passes through the center of the substrate 9. A spin motor 21 that is a substrate rotation mechanism rotates a shaft 221. As a result, the spin chuck 22 and the substrate 9 rotate about the central axis J1 that faces in the vertical direction.
 カップユニット23は、液受け部230と、内側ガード部241と、外側ガード部251とを備える。液受け部230は、ベース部231と、環状底部232と、内側周壁部233と、外側周壁部234とを備える。ベース部231は、中心軸J1を中心とする筒状である。ベース部231は、後述のチャンバ内側壁部53に嵌め込まれて、チャンバ内側壁部53の外側面に取り付けられる。環状底部232は、中心軸J1を中心とする円環板状であり、ベース部231の下端部から外側に広がる。外側周壁部234および内側周壁部233は、共に中心軸J1を中心とする筒状である。外側周壁部234は、環状底部232の外周部から上方に突出し、内側周壁部233は、環状底部232上においてベース部231と外側周壁部234との間にて上方に突出する。ベース部231、環状底部232、内側周壁部233および外側周壁部234は、好ましくは1つの部材として一体的に形成される。 The cup unit 23 includes a liquid receiving part 230, an inner guard part 241, and an outer guard part 251. The liquid receiving part 230 includes a base part 231, an annular bottom part 232, an inner peripheral wall part 233, and an outer peripheral wall part 234. The base portion 231 has a cylindrical shape centered on the central axis J1. The base portion 231 is fitted into a chamber inner wall portion 53 described later, and is attached to the outer surface of the chamber inner wall portion 53. The annular bottom portion 232 has an annular plate shape centered on the central axis J <b> 1 and extends outward from the lower end portion of the base portion 231. Both the outer peripheral wall portion 234 and the inner peripheral wall portion 233 are cylindrical with the central axis J1 as the center. The outer peripheral wall portion 234 protrudes upward from the outer peripheral portion of the annular bottom portion 232, and the inner peripheral wall portion 233 protrudes upward between the base portion 231 and the outer peripheral wall portion 234 on the annular bottom portion 232. The base portion 231, the annular bottom portion 232, the inner peripheral wall portion 233, and the outer peripheral wall portion 234 are preferably integrally formed as one member.
 内側ガード部241および外側ガード部251は、共に中心軸J1を中心とする略円筒状の部材であり、スピンチャック22の周囲を囲む。内側ガード部241は、外側ガード部251とスピンチャック22との間に配置される。内側ガード部241の下部には、内側周壁部233との間にて微小な間隙を形成する係合部242が設けられる。係合部242と内側周壁部233とは、非接触状態が維持される。内側ガード部241は、ガード昇降機構26により、上下方向に移動可能である。外側ガード部251の下部にも係合部252が設けられ、係合部252と外側周壁部234との間にて微小な間隙が形成される。係合部252と外側周壁部234とは、非接触状態が維持される。外側ガード部251も、ガード昇降機構26により、内側ガード部241と個別に上下方向に移動可能である。 The inner guard portion 241 and the outer guard portion 251 are both substantially cylindrical members centered on the central axis J1 and surround the spin chuck 22. The inner guard part 241 is disposed between the outer guard part 251 and the spin chuck 22. An engaging portion 242 that forms a minute gap with the inner peripheral wall portion 233 is provided at the lower portion of the inner guard portion 241. The engagement portion 242 and the inner peripheral wall portion 233 are maintained in a non-contact state. The inner guard portion 241 can be moved in the vertical direction by the guard lifting mechanism 26. An engaging portion 252 is also provided at a lower portion of the outer guard portion 251, and a minute gap is formed between the engaging portion 252 and the outer peripheral wall portion 234. The engagement portion 252 and the outer peripheral wall portion 234 are maintained in a non-contact state. The outer guard portion 251 can also be moved in the vertical direction separately from the inner guard portion 241 by the guard lifting mechanism 26.
 外側ガード部251が基板9と水平方向に直接対向する状態において、処理液が回転する基板9の上面91に供給されると、上面91から飛散する当該処理液は外側ガード部251により受けられる。当該処理液は、環状底部232において内側周壁部233と外側周壁部234との間の領域に溜まり、当該領域に設けられた外側排液ライン253を介して外部に排出される。カップユニット23では、外側周壁部234を含む液受け部230の一部、および、外側ガード部251により、基板9の周囲を囲む外側カップ部25が構成される。 When the processing liquid is supplied to the upper surface 91 of the rotating substrate 9 in a state where the outer guard portion 251 directly faces the substrate 9, the processing liquid scattered from the upper surface 91 is received by the outer guard portion 251. The treatment liquid accumulates in a region between the inner peripheral wall portion 233 and the outer peripheral wall portion 234 in the annular bottom portion 232, and is discharged to the outside through an outer drain line 253 provided in the region. In the cup unit 23, the outer cup portion 25 that surrounds the periphery of the substrate 9 is configured by a part of the liquid receiving portion 230 including the outer peripheral wall portion 234 and the outer guard portion 251.
 また、内側ガード部241が基板9と水平方向に直接対向する状態において(後述の図4参照)、処理液が回転する基板9の上面91に供給されると、上面91から飛散する当該処理液は内側ガード部241により受けられる。当該処理液は、環状底部232においてベース部231と内側周壁部233との間の領域に溜まり、当該領域に設けられた内側排液ライン243を介して外部に排出される。カップユニット23では、内側周壁部233を含む液受け部230の一部、および、内側ガード部241により、外側カップ部25の内側に配置される内側カップ部24が構成される。内側カップ部24および外側カップ部25は、他の構成要素を含んでよい。基板処理装置1では、内側カップ部24および外側カップ部25を含む3以上のカップ部が設けられてもよい。 In addition, in a state where the inner guard portion 241 directly faces the substrate 9 in the horizontal direction (see FIG. 4 described later), when the processing liquid is supplied to the upper surface 91 of the rotating substrate 9, the processing liquid splashes from the upper surface 91. Is received by the inner guard portion 241. The processing liquid accumulates in a region between the base portion 231 and the inner peripheral wall portion 233 in the annular bottom portion 232 and is discharged to the outside through an inner drain line 243 provided in the region. In the cup unit 23, the inner cup portion 24 disposed inside the outer cup portion 25 is configured by a part of the liquid receiving portion 230 including the inner peripheral wall portion 233 and the inner guard portion 241. The inner cup portion 24 and the outer cup portion 25 may include other components. In the substrate processing apparatus 1, three or more cup parts including the inner cup part 24 and the outer cup part 25 may be provided.
 チャンバ5は、チャンバ底部51と、チャンバ上底部52と、チャンバ内側壁部53と、チャンバ外側壁部54と、チャンバ天蓋部55とを備える。チャンバ底部51は、板状であり、スピンモータ21およびカップユニット23の下方を覆う。チャンバ上底部52は、中心軸J1を中心とする略円環板状である。チャンバ上底部52は、チャンバ底部51の上方にて、スピンモータ21の上方を覆うとともにスピンチャック22の下方を覆う。チャンバ内側壁部53は、中心軸J1を中心とする略円筒状である。チャンバ内側壁部53は、チャンバ上底部52の外周部から下方に広がり、チャンバ底部51に至る。チャンバ内側壁部53は、カップユニット23の径方向内側に位置する。 The chamber 5 includes a chamber bottom 51, a chamber upper bottom 52, a chamber inner wall 53, a chamber outer wall 54, and a chamber canopy 55. The chamber bottom 51 is plate-shaped and covers the lower part of the spin motor 21 and the cup unit 23. The chamber upper bottom 52 has a substantially annular plate shape centered on the central axis J1. The chamber upper bottom 52 covers the upper portion of the spin motor 21 and the lower portion of the spin chuck 22 above the chamber bottom portion 51. The chamber inner wall portion 53 has a substantially cylindrical shape centered on the central axis J1. The chamber inner wall 53 extends downward from the outer periphery of the chamber upper bottom 52 and reaches the chamber bottom 51. The chamber inner wall portion 53 is located on the radially inner side of the cup unit 23.
 チャンバ外側壁部54は、略筒状であり、カップユニット23の径方向外側に位置する。チャンバ外側壁部54は、チャンバ底部51の外周部から上方に広がり、チャンバ天蓋部55の外周部に至る。チャンバ天蓋部55は、板状であり、カップユニット23およびスピンチャック22の上方を覆う。チャンバ外側壁部54には、基板9をチャンバ5内に搬入および搬出するための搬出入口541が設けられる。搬出入口541が、蓋部542により閉塞されることにより、チャンバ5の内部空間が密閉空間50となる。 The chamber outer wall portion 54 has a substantially cylindrical shape and is located on the radially outer side of the cup unit 23. The chamber outer wall 54 extends upward from the outer periphery of the chamber bottom 51 and reaches the outer periphery of the chamber canopy 55. The chamber canopy 55 is plate-shaped and covers the cup unit 23 and the spin chuck 22. The chamber outer wall portion 54 is provided with a carry-in / out port 541 for carrying the substrate 9 into and out of the chamber 5. By closing the carry-in / out port 541 with the lid 542, the internal space of the chamber 5 becomes the sealed space 50.
 基板処理装置1は、第1ノズル31と、第2ノズル32と、第1ノズル移動機構33と、第2ノズル移動機構34と、薬液供給部41と、純水供給部42と、有機溶剤供給部43と、充填材溶液供給部44とをさらに備える。第1ノズル31は、例えば上下方向に伸びるストレートノズルであり、第1ノズル移動機構33のアーム331に取り付けられる。第1ノズル移動機構33は、アーム331を中心軸J1に平行な軸を中心として回動することにより、第1ノズル31を、基板9の上面91に対向する対向位置と、上面91の上方から外れた待機位置とに選択的に配置する。対向位置に配置された第1ノズル31は、上面91の中央部に対向する。待機位置は、水平方向において基板9から離れた位置である。第1ノズル移動機構33は、アーム331を上下方向に昇降することも可能である。第2ノズル移動機構34は、第1ノズル移動機構33と同様の構造であり、第2ノズル移動機構34により、第2ノズル32も、基板9の上面91に対向する対向位置と、上面91の上方から外れた他の待機位置とに選択的に配置される。 The substrate processing apparatus 1 includes a first nozzle 31, a second nozzle 32, a first nozzle moving mechanism 33, a second nozzle moving mechanism 34, a chemical solution supply unit 41, a pure water supply unit 42, and an organic solvent supply. A unit 43 and a filler solution supply unit 44 are further provided. The first nozzle 31 is, for example, a straight nozzle that extends in the vertical direction, and is attached to the arm 331 of the first nozzle moving mechanism 33. The first nozzle moving mechanism 33 rotates the arm 331 around an axis parallel to the central axis J1, thereby causing the first nozzle 31 to face the upper surface 91 of the substrate 9 and from above the upper surface 91. It is selectively placed at the off standby position. The first nozzle 31 disposed at the facing position is opposed to the central portion of the upper surface 91. The standby position is a position away from the substrate 9 in the horizontal direction. The first nozzle moving mechanism 33 can also move the arm 331 up and down. The second nozzle moving mechanism 34 has the same structure as the first nozzle moving mechanism 33, and the second nozzle moving mechanism 34 causes the second nozzle 32 to be opposed to the upper surface 91 of the substrate 9 and the upper surface 91. It is selectively arranged at another standby position deviated from above.
 薬液供給部41は、開閉弁450を介して接続部45に接続される。純水供給部42は、流量制御弁451および開閉弁452を介して接続部45に接続され、有機溶剤供給部43は、流量制御弁453および開閉弁454を介して接続部45に接続される。薬液供給部41と接続部45との間にも流量制御弁が設けられてよい。接続部45は、開閉弁459を介して第1ノズル31に接続される。例えば、接続部45、並びに、接続部45に近接して設けられる複数の開閉弁450,452,454,459により、1つの多連弁装置(ミキシングバルブ)が構成される。充填材溶液供給部44は、開閉弁461を介して第2ノズル32に接続される。薬液供給部41、純水供給部42、有機溶剤供給部43および充填材溶液供給部44により、処理液である薬液、純水、有機溶剤および充填材溶液が基板9の上面91にそれぞれ供給される。 The chemical solution supply unit 41 is connected to the connection unit 45 via the on-off valve 450. The pure water supply unit 42 is connected to the connection unit 45 via the flow rate control valve 451 and the open / close valve 452, and the organic solvent supply unit 43 is connected to the connection unit 45 via the flow rate control valve 453 and the open / close valve 454. . A flow rate control valve may also be provided between the chemical solution supply unit 41 and the connection unit 45. The connection part 45 is connected to the first nozzle 31 via the on-off valve 459. For example, one multi-valve device (mixing valve) is configured by the connection portion 45 and the plurality of on-off valves 450, 452, 454, and 459 provided in the vicinity of the connection portion 45. The filler solution supply unit 44 is connected to the second nozzle 32 via the on-off valve 461. The chemical solution, pure water, organic solvent, and filler solution, which are processing solutions, are supplied to the upper surface 91 of the substrate 9 by the chemical solution supply unit 41, the pure water supply unit 42, the organic solvent supply unit 43, and the filler solution supply unit 44, respectively. The
 図2は、基板処理装置1における基板9の処理の流れを示す図である。まず、外部の搬送機構により未処理の基板9が搬出入口541を介してチャンバ5内に搬入され、スピンチャック22にて保持される(ステップS11)。基板9の搬入の際には、ガード昇降機構26により、内側ガード部241および外側ガード部251を下降させることにより、搬入される基板9が両者に接触することが防止される(後述の基板9の搬出において同様)。搬送機構がチャンバ5外に移動すると、搬出入口541が、蓋部542により閉塞される。 FIG. 2 is a diagram showing the flow of processing of the substrate 9 in the substrate processing apparatus 1. First, an unprocessed substrate 9 is carried into the chamber 5 through the carry-in / out port 541 by an external carrying mechanism, and is held by the spin chuck 22 (step S11). When the substrate 9 is loaded, the guard lifting mechanism 26 lowers the inner guard portion 241 and the outer guard portion 251 to prevent the loaded substrate 9 from coming into contact with both (the substrate 9 described later). The same applies to the unloading). When the transport mechanism moves out of the chamber 5, the carry-in / out port 541 is closed by the lid 542.
 続いて、外側ガード部251が図1に示す位置まで上昇し、外側ガード部251の上端が基板9よりも上方に配置される。また、内側ガード部241の上端は基板9よりも下方に位置する。これにより、内側カップ部24の上端を外側カップ部25の上端よりも下方に配置した外側カップ対向状態が形成される(ステップS12)。外側カップ対向状態では、外側ガード部251が基板9と水平方向に直接対向する。 Subsequently, the outer guard part 251 rises to the position shown in FIG. 1, and the upper end of the outer guard part 251 is arranged above the substrate 9. Further, the upper end of the inner guard portion 241 is located below the substrate 9. Thereby, the outer cup opposing state which has arrange | positioned the upper end of the inner side cup part 24 below the upper end of the outer side cup part 25 is formed (step S12). In the outer cup facing state, the outer guard portion 251 directly faces the substrate 9 in the horizontal direction.
 第1ノズル移動機構33により第1ノズル31が、基板9の上面91の中央部に対向する対向位置に配置され、スピンモータ21により、所定の回転数(回転速度)での基板9の回転が開始される。そして、開閉弁450を開くことにより接続部45の内部空間に薬液が供給され、開閉弁459を開くことにより、薬液が第1ノズル31を介して上面91に連続的に供給される(ステップS13)。上面91上の薬液は基板9の回転により外縁部へと広がり、図3中に太線にて示すように、上面91の全体に薬液が供給される。また、外縁部から飛散する薬液は、外側カップ部25の内側面により受けられて回収される。薬液は、例えば、希フッ酸(DHF)またはアンモニア水を含む洗浄液である。薬液は、基板9上の酸化膜の除去や現像、あるいは、エッチング等、洗浄以外の処理に用いられるものであってよい。薬液の供給は所定時間継続され、その後、開閉弁450を閉じることにより停止される。薬液による処理では、図1の第1ノズル移動機構33により、第1ノズル31が水平方向に揺動してもよい。 The first nozzle 31 is disposed at a position facing the central portion of the upper surface 91 of the substrate 9 by the first nozzle moving mechanism 33, and the spin motor 21 rotates the substrate 9 at a predetermined rotational speed (rotational speed). Be started. Then, the chemical liquid is supplied to the internal space of the connecting portion 45 by opening the on-off valve 450, and the chemical liquid is continuously supplied to the upper surface 91 through the first nozzle 31 by opening the on-off valve 459 (step S13). ). The chemical solution on the upper surface 91 spreads to the outer edge portion by the rotation of the substrate 9, and the chemical solution is supplied to the entire upper surface 91 as shown by a thick line in FIG. 3. Further, the chemical liquid scattered from the outer edge portion is received and collected by the inner surface of the outer cup portion 25. The chemical liquid is a cleaning liquid containing, for example, dilute hydrofluoric acid (DHF) or aqueous ammonia. The chemical solution may be used for processing other than cleaning, such as removal or development of the oxide film on the substrate 9 or etching. The supply of the chemical solution is continued for a predetermined time, and then stopped by closing the on-off valve 450. In the treatment with the chemical solution, the first nozzle 31 may swing in the horizontal direction by the first nozzle moving mechanism 33 in FIG.
 薬液による処理が完了すると、開閉弁452を開くことにより接続部45の内部空間にリンス液である純水が供給され、純水が第1ノズル31を介して上面91に連続的に供給される(ステップS14)。これにより、上面91上の薬液が純水により洗い流されるリンス処理が行われる。リンス処理中は、上面91の全体が純水により覆われる。純水の供給中も、スピンモータ21による、比較的高い回転数での基板9の回転が継続される(後述の混合液および有機溶剤の供給時において同様)。また、外側カップ対向状態が維持されており、基板9から飛散する純水は、外側カップ部25の内側面により受けられて、外部に排出される。 When the treatment with the chemical liquid is completed, the pure water as the rinse liquid is supplied to the internal space of the connection portion 45 by opening the on-off valve 452, and the pure water is continuously supplied to the upper surface 91 through the first nozzle 31. (Step S14). Thereby, the rinse process in which the chemical | medical solution on the upper surface 91 is washed away with a pure water is performed. During the rinsing process, the entire upper surface 91 is covered with pure water. During the supply of pure water, the spin motor 21 continues to rotate the substrate 9 at a relatively high number of rotations (the same applies when supplying a mixed liquid and an organic solvent described later). Moreover, the outer cup facing state is maintained, and the pure water scattered from the substrate 9 is received by the inner side surface of the outer cup portion 25 and discharged to the outside.
 純水の供給が所定時間継続されると、開閉弁452を開いたままで、開閉弁454が開かれる。これにより、純水と共に有機溶剤も接続部45の内部空間に供給され、有機溶剤と純水とを混合した混合液(希釈有機溶剤)が接続部45において生成される。有機溶剤は、例えばIPA(イソプロピルアルコール)、メタノール、エタノール、アセトン等であり、純水よりも表面張力が低い。本実施の形態では、有機溶剤としてIPAが利用される。 When the supply of pure water is continued for a predetermined time, the on-off valve 454 is opened while the on-off valve 452 remains open. Thereby, the organic solvent is also supplied to the internal space of the connection part 45 together with the pure water, and a mixed liquid (diluted organic solvent) obtained by mixing the organic solvent and the pure water is generated in the connection part 45. The organic solvent is, for example, IPA (isopropyl alcohol), methanol, ethanol, acetone or the like, and has a lower surface tension than pure water. In this embodiment, IPA is used as the organic solvent.
 混合液は、第1ノズル31を介して上面91に連続的に供給され、基板9から飛散する混合液が、外側カップ部25の内側面により受けられる(ステップS15)。このとき、制御部10が、有機溶剤供給部43に接続された流量制御弁453の開度、および、純水供給部42に接続された流量制御弁451の開度を制御することにより、有機溶剤と純水との混合比、すなわち、混合液における有機溶剤の濃度が調整される。本実施の形態では、有機溶剤供給部43から接続部45への有機溶剤の供給流量が徐々に(段階的に)増大される。また、純水供給部42から接続部45への純水の供給流量が徐々に低減される。したがって、ステップS15では、上面91に供給される混合液における有機溶剤の濃度が、0%近傍から100%近傍まで徐々に高められる。なお、第1ノズル31と接続部45との間にインラインミキサ等が設けられてもよい。 The mixed liquid is continuously supplied to the upper surface 91 via the first nozzle 31, and the mixed liquid scattered from the substrate 9 is received by the inner surface of the outer cup portion 25 (step S15). At this time, the control unit 10 controls the opening of the flow control valve 453 connected to the organic solvent supply unit 43 and the opening of the flow control valve 451 connected to the pure water supply unit 42, thereby The mixing ratio of the solvent and pure water, that is, the concentration of the organic solvent in the mixed solution is adjusted. In the present embodiment, the supply flow rate of the organic solvent from the organic solvent supply unit 43 to the connection unit 45 is gradually (stepwise) increased. Further, the pure water supply flow rate from the pure water supply unit 42 to the connection unit 45 is gradually reduced. Therefore, in step S15, the concentration of the organic solvent in the mixed liquid supplied to the upper surface 91 is gradually increased from near 0% to near 100%. Note that an in-line mixer or the like may be provided between the first nozzle 31 and the connection portion 45.
 純水供給部42から接続部45への純水の供給流量が0となり、接続部45への純水の供給がなくなると、有機溶剤のみ(純粋な有機溶剤)が第1ノズル31を介して上面91に連続的に供給される(ステップS16)。これにより、上面91の全体が有機溶剤により覆われる。基板9から飛散する有機溶剤は、外側カップ部25の内側面により受けられる。 When the supply flow rate of pure water from the pure water supply unit 42 to the connection unit 45 becomes 0 and the supply of pure water to the connection unit 45 ceases, only the organic solvent (pure organic solvent) passes through the first nozzle 31. It is continuously supplied to the upper surface 91 (step S16). Thereby, the whole upper surface 91 is covered with the organic solvent. The organic solvent scattered from the substrate 9 is received by the inner surface of the outer cup portion 25.
 有機溶剤のみの供給開始から所定時間経過すると、基板9の回転数が低減される、または、基板9の回転が停止される。また、流量制御弁453により有機溶剤の供給も停止される。これにより、上面91の全体を覆う比較的厚い有機溶剤の液膜が形成される。液膜は、基板の上面91の全体を覆う一連の層であり、いわゆるパドル状の液膜である。 When a predetermined time has elapsed from the start of supplying only the organic solvent, the rotation speed of the substrate 9 is reduced or the rotation of the substrate 9 is stopped. Further, the supply of the organic solvent is also stopped by the flow rate control valve 453. As a result, a relatively thick organic solvent liquid film covering the entire upper surface 91 is formed. The liquid film is a series of layers covering the entire upper surface 91 of the substrate, and is a so-called paddle-shaped liquid film.
 また、ガード昇降機構26が内側ガード部241を、図3に示す位置から図4に示す位置まで上昇させることにより、外側ガード部251の上端、および、内側ガード部241の上端の双方が基板9よりも上方に位置する。これにより、内側カップ部24の内側面が基板9の周囲に配置された内側カップ対向状態が形成される(ステップS17)。内側カップ対向状態では、内側ガード部241が基板9と水平方向に直接対向する。 Further, the guard elevating mechanism 26 raises the inner guard portion 241 from the position shown in FIG. 3 to the position shown in FIG. 4, so that both the upper end of the outer guard portion 251 and the upper end of the inner guard portion 241 become the substrate 9. It is located above. Thereby, the inner cup facing state in which the inner side surface of the inner cup portion 24 is arranged around the substrate 9 is formed (step S17). In the inner cup facing state, the inner guard portion 241 directly faces the substrate 9 in the horizontal direction.
 対向位置に位置する第1ノズル31は、第1ノズル移動機構33により、上面91の上方から外れた待機位置へと移動する。また、他の待機位置に位置する第2ノズル32が、第2ノズル移動機構34により、上面91の中央部に対向する対向位置へと移動する。内側ガード部241が上昇する間、並びに、第1ノズル31と第2ノズル32とを入れ替える間、有機溶剤の液膜が上面91上にて保持されるため、上面91は乾燥しない。 The first nozzle 31 located at the opposite position is moved to the standby position off the upper surface 91 by the first nozzle moving mechanism 33. In addition, the second nozzle 32 located at another standby position is moved to a facing position facing the central portion of the upper surface 91 by the second nozzle moving mechanism 34. Since the liquid film of the organic solvent is held on the upper surface 91 while the inner guard portion 241 is raised and while the first nozzle 31 and the second nozzle 32 are replaced, the upper surface 91 is not dried.
 続いて、基板9の回転数が増大されるとともに、充填材溶液供給部44により、上面91の中央部に充填材溶液が第2ノズル32を介して所定量だけ供給される(ステップS18)。充填材溶液は、例えばアクリル樹脂等のポリマーを含む。充填材溶液における溶媒として、アルコール等が例示される。充填材は、当該溶媒に対して溶解性を有し、例えば、所定温度以上に加熱することにより架橋反応が生じる。 Subsequently, the number of rotations of the substrate 9 is increased, and the filler solution supply unit 44 supplies a predetermined amount of the filler solution to the central portion of the upper surface 91 via the second nozzle 32 (step S18). The filler solution contains a polymer such as an acrylic resin. Examples of the solvent in the filler solution include alcohol. The filler has solubility in the solvent and, for example, a crosslinking reaction occurs when heated to a predetermined temperature or higher.
 充填材溶液の供給の完了後も、所定時間だけ基板9の回転が継続される。これにより、上面91上の充填材溶液が中央部から外周部へと拡がり、上面91の有機溶剤の液膜上に充填材溶液の均一な液層が形成される(図4では、太線にてこれらの液層を示している。)。基板処理装置1では、内側カップ対向状態が形成されており、基板9から飛散する充填材溶液は、内側カップ部24の内側面により受けられる。また、充填材溶液の比重が有機溶剤の比重よりも大きいことにより、上面91上において充填材溶液の液層と有機溶剤の液層とが入れ替わる。これにより、充填材溶液が、互いに隣接するパターン要素の間(微小な隙間)にも入り込み、上面91上に充填材溶液が充填される。なお、充填材溶液の供給の際における基板9の回転数は、例えば、上記薬液、純水および有機溶剤の連続供給時における回転数よりも小さい。基板9の回転が停止した状態で、充填材溶液が上面91に供給され、その後、基板9の回転が開始されてもよい。 Rotation of the substrate 9 is continued for a predetermined time even after the supply of the filler solution is completed. As a result, the filler solution on the upper surface 91 spreads from the central portion to the outer peripheral portion, and a uniform liquid layer of the filler solution is formed on the organic solvent liquid film on the upper surface 91 (in FIG. These liquid layers are shown.). In the substrate processing apparatus 1, the inner cup facing state is formed, and the filler solution scattered from the substrate 9 is received by the inner surface of the inner cup portion 24. Further, when the specific gravity of the filler solution is larger than the specific gravity of the organic solvent, the liquid layer of the filler solution and the liquid layer of the organic solvent are switched on the upper surface 91. Thereby, the filler solution also enters between adjacent pattern elements (small gaps), and the upper surface 91 is filled with the filler solution. In addition, the rotation speed of the board | substrate 9 in the case of supply of a filler solution is smaller than the rotation speed at the time of the continuous supply of the said chemical | medical solution, a pure water, and an organic solvent, for example. The filler solution may be supplied to the upper surface 91 in a state where the rotation of the substrate 9 is stopped, and then the rotation of the substrate 9 may be started.
 表面の有機溶剤の液層は、基板9の回転が継続されることにより除去される(スピンオフ)。基板処理装置1では、例えば、基板9の上面91または下面の外縁部に対向する位置に補助ノズルが設けられ、補助ノズルから有機溶剤を吐出することにより、基板9の外縁部に付着した充填材溶液が除去されてもよい(エッジリンス)。外縁部の有機溶剤は基板9の回転により除去される(スピンドライ)。 The liquid layer of the organic solvent on the surface is removed by continuing the rotation of the substrate 9 (spin-off). In the substrate processing apparatus 1, for example, an auxiliary nozzle is provided at a position facing the outer edge portion of the upper surface 91 or the lower surface of the substrate 9, and the filler adhered to the outer edge portion of the substrate 9 by discharging an organic solvent from the auxiliary nozzle. The solution may be removed (edge rinse). The organic solvent at the outer edge is removed by the rotation of the substrate 9 (spin dry).
 基板9の回転が停止されると、外部の搬送機構により、図1の搬出入口541を介して基板9がチャンバ5外に搬出される(ステップS19)。基板9は、外部のホットプレートにてベークされ、充填材溶液の液層における溶媒成分が除去されるとともに、充填材が硬化(固化)する。すなわち、隣接するパターン要素間に固化した充填材が充填される。基板9は、ドライエッチング装置へと搬送され、ドライエッチングにより充填材が除去される。 When the rotation of the substrate 9 is stopped, the substrate 9 is carried out of the chamber 5 through the carry-in / out port 541 of FIG. 1 by an external carrying mechanism (step S19). The substrate 9 is baked on an external hot plate, the solvent component in the liquid layer of the filler solution is removed, and the filler is cured (solidified). That is, the solidified filler is filled between adjacent pattern elements. The substrate 9 is transferred to a dry etching apparatus, and the filler is removed by dry etching.
 このとき、隣接するパターン要素間に介在する介在物(充填材)は固体であるため、パターン要素に対して介在物の表面張力が作用しない状態で充填材が除去される。リンス処理後における上記の一連の処理は、上面91に付着する純水(リンス液)の乾燥処理と捉えることができ、当該乾燥処理により、乾燥途上の純水の表面張力によるパターン要素の変形が防止される。充填材の除去は、液体を用いない他の手法により行われてもよい。例えば、充填材の種類によっては、減圧下にて充填材を加熱することにより、充填材の昇華による除去が行われる。 At this time, since the inclusion (filler) interposed between adjacent pattern elements is solid, the filler is removed in a state where the surface tension of the inclusion does not act on the pattern element. The series of processes after the rinsing process can be regarded as a drying process of pure water (rinsing liquid) adhering to the upper surface 91, and the drying process causes deformation of the pattern elements due to the surface tension of the pure water during the drying process. Is prevented. The removal of the filler may be performed by other methods that do not use a liquid. For example, depending on the type of the filler, the filler is removed by sublimation by heating the filler under reduced pressure.
 ここで、純水によるリンス処理後に、純水の液膜を形成する(いわゆる、純水パドルを行う)比較例の処理について説明する。比較例の処理では、純水により基板9の上面91に対してリンス処理を行った後、基板9の回転数および純水の供給流量を小さくして、図5に示すように、比較的厚い純水の液膜911が上面91上に形成される。このとき、上面91から溢れる純水が、内側カップ部24内に落下する。また、純水の液膜911の形成は、リンス処理から連続して行われるため、上面91上に多量の純水が存在する状態で基板9の回転数が低減される。したがって、内側ガード部241の内側面の上部249に純水が付着することもある。続いて、有機溶剤が上面91上に供給され、有機溶剤の液膜が形成される。このとき、有機溶剤は、純水の液膜911と基板9の上面91との間に入り込むようにして上面91の全体に広がる。比較例の処理では、混合液の供給は行われない。有機溶剤の供給後、図6に示すように、内側カップ部24の内側面が基板9の周囲に配置された内側カップ対向状態が形成される。そして、充填材溶液が上面91上に供給される。 Here, a process of a comparative example in which a pure water liquid film is formed (so-called pure water paddle) after rinsing with pure water will be described. In the process of the comparative example, after the rinse process is performed on the upper surface 91 of the substrate 9 with pure water, the number of rotations of the substrate 9 and the supply flow rate of pure water are reduced, and as shown in FIG. A pure water liquid film 911 is formed on the upper surface 91. At this time, pure water overflowing from the upper surface 91 falls into the inner cup portion 24. In addition, since the formation of the pure water liquid film 911 is performed continuously from the rinsing process, the rotational speed of the substrate 9 is reduced in a state where a large amount of pure water is present on the upper surface 91. Accordingly, pure water may adhere to the upper portion 249 on the inner side surface of the inner guard portion 241. Subsequently, an organic solvent is supplied onto the upper surface 91 to form a liquid film of the organic solvent. At this time, the organic solvent spreads over the entire upper surface 91 so as to enter between the pure water liquid film 911 and the upper surface 91 of the substrate 9. In the process of the comparative example, the mixed liquid is not supplied. After supplying the organic solvent, as shown in FIG. 6, an inner cup facing state is formed in which the inner surface of the inner cup portion 24 is arranged around the substrate 9. A filler solution is then supplied onto the upper surface 91.
 比較例の処理では、純水の液膜911の形成時に内側カップ部24内に落下した純水が、内側カップ部24の内側面等に付着しており、充填材溶液が当該純水と混ざる。したがって、充填材溶液の種類によっては、充填材溶液がゲル化し、内側カップ部24に設けられる内側排液ライン243(図1参照)が詰まってしまう虞がある。また、内側ガード部241の内側面の上部249に付着した純水が、充填材溶液が充填された上面91上に落下する可能性もある。 In the process of the comparative example, the pure water that has dropped into the inner cup portion 24 when the pure water liquid film 911 is formed adheres to the inner surface of the inner cup portion 24 and the filler solution is mixed with the pure water. . Therefore, depending on the type of the filler solution, the filler solution may gel and the inner drain line 243 (see FIG. 1) provided in the inner cup portion 24 may be clogged. Moreover, the pure water adhering to the upper part 249 of the inner surface of the inner guard part 241 may fall on the upper surface 91 filled with the filler solution.
 また、図2において、基板9に混合液を供給するステップS15の処理を省略した他の比較例の処理を想定すると、当該他の比較例の処理では、有機溶剤の供給により、上面91上のパターン要素が倒壊することがある。パターン要素の倒壊の原因は、必ずしも明確ではないが、一因として、純水が極僅かしか存在しない局所的な領域(すなわち、パターン要素に対して、表面張力の影響を及ぼし得る僅かな純水のみが存在する領域であり、以下、「局所的な乾燥」と表現する。)が発生することが挙げられる。例えば、上面91の中央部に供給された有機溶剤は、上面91上の純水(基板9の高速回転により薄い層となっている。)を外側に押し出すように広がる、すなわち、有機溶剤と純水との界面が中央部近傍から外縁部に向かって移動するように、有機溶剤が上面91上にて広がる。このとき、有機溶剤と純水との低い溶解性(両者の混ざりやすさであり、親和性と捉えることもできる。)、または、有機溶剤と純水との表面張力の差に起因して、両者の界面において上面91の局所的な乾燥が発生すると考えられる。局所的な乾燥が発生すると、パターン要素に作用する表面張力の影響により、パターン要素が倒壊する。 Further, in FIG. 2, assuming a process of another comparative example in which the process of step S15 for supplying the mixed liquid to the substrate 9 is omitted, the process of the other comparative example is performed on the upper surface 91 by supplying an organic solvent. Pattern elements can collapse. The cause of the collapse of the pattern element is not necessarily clear, but one reason is that the local area where there is very little pure water (that is, a small amount of pure water that can affect the surface tension of the pattern element). This is a region where there is only a local area, and is hereinafter referred to as “local drying”). For example, the organic solvent supplied to the central portion of the upper surface 91 spreads so as to push out pure water on the upper surface 91 (a thin layer is formed by high-speed rotation of the substrate 9), that is, the organic solvent and the pure solvent. The organic solvent spreads on the upper surface 91 so that the interface with water moves from the vicinity of the center toward the outer edge. At this time, due to the low solubility of the organic solvent and pure water (the ease of mixing of both, which can also be regarded as affinity), or the difference in surface tension between the organic solvent and pure water, It is considered that local drying of the upper surface 91 occurs at the interface between the two. When local drying occurs, the pattern element collapses due to the influence of surface tension acting on the pattern element.
 これに対し、図1の基板処理装置1では、外側カップ対向状態が形成された後、上面91から飛散する液が外側カップ部25の内側面により受けられるように基板9を比較的高い回転数にて回転しつつ、基板9の上面91上に純水、混合液および有機溶剤が順次供給される。その後、内側カップ対向状態において、充填材溶液が上面91に供給され、上面91上に充填材溶液が充填される。以上の処理により、内側カップ部24内への純水の流入を抑制して、充填材溶液と純水とが混ざることを防止(または抑制)することができる。また、純水との溶解性が有機溶剤よりも高い、または、純水との表面張力の差が有機溶剤よりも小さい混合液が、純水が付与された上面91に供給される。これにより、混合液と純水との界面において上面91の局所的な乾燥が発生しにくくなる。その結果、純水の液膜911の形成処理を省略しつつ、充填材溶液の供給前におけるパターン要素の倒壊を抑制することができる。さらに、上面91上に有機溶剤の液膜を形成した状態で、上面91に充填材溶液を供給することにより、充填材溶液をパターン要素間の間隙に適切に充填することができる。 On the other hand, in the substrate processing apparatus 1 of FIG. 1, after the outer cup facing state is formed, the substrate 9 is rotated at a relatively high rotational speed so that the liquid scattered from the upper surface 91 is received by the inner surface of the outer cup portion 25. , Pure water, a mixed solution and an organic solvent are sequentially supplied onto the upper surface 91 of the substrate 9. Then, in the inner cup facing state, the filler solution is supplied to the upper surface 91 and the upper surface 91 is filled with the filler solution. By the above processing, the inflow of pure water into the inner cup portion 24 can be suppressed, and mixing (mixing) of the filler solution and pure water can be prevented. Further, a mixed solution having a higher solubility with pure water than that of the organic solvent or a difference in surface tension with the pure water is smaller than that of the organic solvent is supplied to the upper surface 91 to which the pure water is applied. This makes it difficult for local drying of the upper surface 91 to occur at the interface between the mixed liquid and pure water. As a result, it is possible to suppress the collapse of the pattern element before supplying the filler solution while omitting the formation process of the pure water liquid film 911. Further, by supplying the filler solution to the upper surface 91 in a state where the liquid film of the organic solvent is formed on the upper surface 91, the filler solution can be appropriately filled in the gaps between the pattern elements.
 なお、内側ガード部241内には、純粋な有機溶剤が存在するが、有機溶剤と充填材溶液とが混ざることは問題とはならない。また、ステップS16における基板9上への有機溶剤の供給量は少ないため、内側ガード部241の内側面の上部249(図5参照)に有機溶剤が付着しにくい。したがって、当該上部249に付着した液の上面91への落下も防止される。 In addition, although a pure organic solvent exists in the inner side guard part 241, mixing of an organic solvent and a filler solution is not a problem. In addition, since the supply amount of the organic solvent onto the substrate 9 in step S16 is small, the organic solvent hardly adheres to the upper portion 249 (see FIG. 5) on the inner side surface of the inner guard portion 241. Therefore, the liquid adhering to the upper part 249 is prevented from dropping onto the upper surface 91.
 基板処理装置1では、混合液を上面91上に供給する際に、混合液における有機溶剤の濃度が徐々に高められる。これにより、上面91上に存在する液(純水、または、濃度の低い混合液)と混合液との間の一定の溶解性を確保して上面91の局所的な乾燥をより確実に抑制しつつ、有機溶剤の液膜を上面91上に形成することが可能となる。また、ステップS14~S16において、純水、混合液および有機溶剤が同一の第1ノズル31から順次吐出されることにより、これらの処理液の吐出に係る処理を簡素化することができる。 In the substrate processing apparatus 1, when the mixed solution is supplied onto the upper surface 91, the concentration of the organic solvent in the mixed solution is gradually increased. This ensures a certain solubility between the liquid (pure water or a low-concentration liquid mixture) present on the upper surface 91 and the liquid mixture, and more reliably suppresses local drying of the upper surface 91. However, a liquid film of an organic solvent can be formed on the upper surface 91. Further, in steps S14 to S16, pure water, a mixed liquid, and an organic solvent are sequentially discharged from the same first nozzle 31, so that the processing relating to the discharge of these processing liquids can be simplified.
 図7は、基板処理装置の他の例を示す図である。図7の基板処理装置1aでは、第1および第2ノズル31,32に加えて、第3ノズル32aおよび固定ノズル35が設けられる。また、薬液供給部41、純水供給部42、有機溶剤供給部43および充填材溶液供給部44と、第1ノズル31、第2ノズル32、第3ノズル32aおよび固定ノズル35との接続関係が、図1の基板処理装置1と相違する。他の構成は、図1の基板処理装置1と同様であり、同じ構成に同じ符号を付している。 FIG. 7 is a diagram showing another example of the substrate processing apparatus. In the substrate processing apparatus 1a of FIG. 7, in addition to the first and second nozzles 31, 32, a third nozzle 32a and a fixed nozzle 35 are provided. The chemical liquid supply unit 41, the pure water supply unit 42, the organic solvent supply unit 43, and the filler solution supply unit 44 are connected to the first nozzle 31, the second nozzle 32, the third nozzle 32a, and the fixed nozzle 35. 1 is different from the substrate processing apparatus 1 of FIG. Other configurations are the same as those of the substrate processing apparatus 1 of FIG. 1, and the same reference numerals are given to the same configurations.
 固定ノズル35は、基板9の上面91よりも上方(図7では、外側カップ部25の上端よりも上方)の所定位置においてチャンバ5に対して固定される。また、中心軸J1に沿って見た場合に、基板9と重ならない位置に固定ノズル35が配置される。純水供給部42は、流量制御弁451および開閉弁452を介して接続部45に接続され、有機溶剤供給部43は、流量制御弁453および開閉弁454を介して接続部45に接続される。接続部45は、開閉弁459を介して固定ノズル35に接続される。純水供給部42は、開閉弁471,472を介して第1ノズル31にも接続される。有機溶剤供給部43は、開閉弁473を介して第2ノズル32にも接続される。薬液供給部41は、開閉弁475,472を介して第1ノズル31に接続される。充填材溶液供給部44は、開閉弁476を介して第3ノズル32aに接続される。第2ノズル32および第3ノズル32aは、第2・第3ノズル移動機構34aにより移動する。 The fixed nozzle 35 is fixed to the chamber 5 at a predetermined position above the upper surface 91 of the substrate 9 (above the upper end of the outer cup portion 25 in FIG. 7). Further, the fixed nozzle 35 is disposed at a position that does not overlap the substrate 9 when viewed along the central axis J1. The pure water supply unit 42 is connected to the connection unit 45 via the flow rate control valve 451 and the open / close valve 452, and the organic solvent supply unit 43 is connected to the connection unit 45 via the flow rate control valve 453 and the open / close valve 454. . The connection part 45 is connected to the fixed nozzle 35 via the on-off valve 459. The pure water supply unit 42 is also connected to the first nozzle 31 via the on-off valves 471 and 472. The organic solvent supply unit 43 is also connected to the second nozzle 32 via the on-off valve 473. The chemical solution supply unit 41 is connected to the first nozzle 31 via on-off valves 475 and 472. The filler solution supply unit 44 is connected to the third nozzle 32 a via the on-off valve 476. The second nozzle 32 and the third nozzle 32a are moved by the second / third nozzle moving mechanism 34a.
 図8は、基板処理装置1aにおける基板9の処理の流れの一部を示す図であり、図2中のステップS13とステップS16との間に行われる処理を示している。図7の基板処理装置1aでは、外側カップ対向状態において開閉弁475,472を開くことにより、基板9の上面91に対向する対向位置に配置された第1ノズル31から薬液が連続的に吐出される。第1ノズル31からの薬液は、回転する基板9の上面91に供給され、上面91から飛散する薬液が、外側カップ部25の内側面により受けられる(図2:ステップS13)。開閉弁475を閉じて薬液の供給が完了すると、開閉弁471を開くことにより、純水が第1ノズル31を介して上面91に連続的に供給され、上面91に対して純水によるリンス処理が施される(図8:ステップS14)。また、開閉弁452,459を開くことにより、図9に示すように、固定ノズル35を介して純水が上面91に供給される。 FIG. 8 is a diagram showing a part of the processing flow of the substrate 9 in the substrate processing apparatus 1a, and shows the processing performed between step S13 and step S16 in FIG. In the substrate processing apparatus 1 a of FIG. 7, by opening the on-off valves 475 and 472 in the outer cup facing state, the chemical solution is continuously discharged from the first nozzle 31 disposed at the facing position facing the upper surface 91 of the substrate 9. The The chemical solution from the first nozzle 31 is supplied to the upper surface 91 of the rotating substrate 9, and the chemical solution scattered from the upper surface 91 is received by the inner surface of the outer cup portion 25 (FIG. 2: step S13). When the on-off valve 475 is closed and the supply of the chemical solution is completed, by opening the on-off valve 471, pure water is continuously supplied to the upper surface 91 through the first nozzle 31, and the upper surface 91 is rinsed with pure water. (FIG. 8: Step S14). Further, by opening the on-off valves 452 and 459, pure water is supplied to the upper surface 91 through the fixed nozzle 35 as shown in FIG. 9.
 固定ノズル35からの純水の供給が開始されると、第1ノズル31からの純水の供給が停止される。続いて、第1ノズル31が、図7の第1ノズル移動機構33により、水平方向において基板9から離れた待機位置へと移動する(ステップS21)。また、他の待機位置に配置された第2ノズル32が、第2・第3ノズル移動機構34aにより、上面91の中央部に対向する対向位置に移動する(ステップS22)。なお、第1ノズル31からの薬液の供給完了後に、固定ノズル35のみから純水が上面91に供給されてもよい。 When the supply of pure water from the fixed nozzle 35 is started, the supply of pure water from the first nozzle 31 is stopped. Subsequently, the first nozzle 31 is moved to a standby position away from the substrate 9 in the horizontal direction by the first nozzle moving mechanism 33 in FIG. 7 (step S21). Further, the second nozzle 32 arranged at another standby position is moved to a facing position facing the central portion of the upper surface 91 by the second and third nozzle moving mechanisms 34a (step S22). Note that pure water may be supplied to the upper surface 91 only from the fixed nozzle 35 after the supply of the chemical solution from the first nozzle 31 is completed.
 上記ステップS21,S22における第1および第2ノズル31,32の移動に並行して、固定ノズル35からの処理液の供給が継続される。具体的には、固定ノズル35からの純水の供給が所定時間継続されると、純水供給部42に接続された開閉弁452を開いたままで、有機溶剤供給部43に接続された開閉弁454が開かれる。これにより、接続部45の内部空間に有機溶剤も供給され、有機溶剤と純水とを混合した混合液が生成される。混合液は、固定ノズル35を介して上面91に連続的に供給され、基板9から飛散する混合液が、外側カップ部25の内側面により受けられる(ステップS15)。このとき、流量制御弁451,453の開度を制御することにより、混合液における有機溶剤の濃度が、0%近傍から100%近傍まで徐々に高められる。 In parallel with the movement of the first and second nozzles 31 and 32 in steps S21 and S22, the supply of the processing liquid from the fixed nozzle 35 is continued. Specifically, when the supply of pure water from the fixed nozzle 35 is continued for a predetermined time, the open / close valve connected to the organic solvent supply unit 43 is kept open while the open / close valve 452 connected to the pure water supply unit 42 is kept open. 454 is opened. Thereby, an organic solvent is also supplied to the internal space of the connection part 45, and the liquid mixture which mixed the organic solvent and the pure water is produced | generated. The mixed liquid is continuously supplied to the upper surface 91 via the fixed nozzle 35, and the mixed liquid scattered from the substrate 9 is received by the inner surface of the outer cup portion 25 (step S15). At this time, by controlling the opening degree of the flow control valves 451 and 453, the concentration of the organic solvent in the mixed liquid is gradually increased from near 0% to near 100%.
 混合液における有機溶剤の濃度が、0%近傍となると、開閉弁473を開くことにより、図10に示すように、第2ノズル32を介して有機溶剤(純粋な有機溶剤)が上面91に連続的に供給される(図2:ステップS16)。第2ノズル32からの有機溶剤の供給が開始されると、固定ノズル35からの混合液の供給が停止される。回転する基板9から飛散する有機溶剤は、外側カップ部25の内側面にて受けられる。 When the concentration of the organic solvent in the mixed solution is close to 0%, by opening the on-off valve 473, the organic solvent (pure organic solvent) continues to the upper surface 91 via the second nozzle 32 as shown in FIG. (FIG. 2: Step S16). When the supply of the organic solvent from the second nozzle 32 is started, the supply of the mixed liquid from the fixed nozzle 35 is stopped. The organic solvent scattered from the rotating substrate 9 is received on the inner surface of the outer cup portion 25.
 有機溶剤の供給開始から所定時間経過すると、基板9の回転数が低減される、または、基板9の回転が停止される。また、有機溶剤の供給も停止される。これにより、上面91の全体を覆う比較的厚い有機溶剤の液膜が形成される。上面91上の有機溶剤の液膜を保持した状態で、図7のガード昇降機構26が内側ガード部241を上昇させることにより、内側カップ対向状態が形成される(ステップS17)。続いて、開閉弁476を開くことにより、充填材溶液供給部44から第3ノズル32aを介して上面91の中央部に充填材溶液が所定量だけ供給される(ステップS18)。その後、基板9の回転が停止され、外部の搬送機構により、基板9がチャンバ5外に搬出される(ステップS19)。 When a predetermined time has elapsed from the start of the supply of the organic solvent, the rotation speed of the substrate 9 is reduced or the rotation of the substrate 9 is stopped. Further, the supply of the organic solvent is also stopped. As a result, a relatively thick organic solvent liquid film covering the entire upper surface 91 is formed. In a state where the organic solvent liquid film on the upper surface 91 is held, the guard lifting mechanism 26 in FIG. 7 raises the inner guard portion 241 to form an inner cup facing state (step S17). Subsequently, by opening the on-off valve 476, a predetermined amount of the filler solution is supplied from the filler solution supply unit 44 to the central portion of the upper surface 91 through the third nozzle 32a (step S18). Thereafter, the rotation of the substrate 9 is stopped, and the substrate 9 is carried out of the chamber 5 by an external transfer mechanism (step S19).
 以上に説明したように、図7の基板処理装置1aでは、純水または純水を含む液を吐出するノズル(第1ノズル31および固定ノズル35)と、有機溶剤を吐出する第2ノズル32とが個別に設けられ、第2ノズル32から純水を含む液は吐出されない。また、このような構成において、固定ノズル35からの純水および混合液の吐出動作に並行して、上面91への薬液の供給に利用された第1ノズル31が対向位置から待機位置へと移動し、さらに、他の待機位置に配置された第2ノズル32が対向位置へと移動する。そして、固定ノズル35からの混合液の吐出に連続して、第2ノズル32から純粋な有機溶剤が吐出される。以上の処理により、第1ノズル31と第2ノズル32との入れ替えの際に、基板9の上面91が乾燥することを防止することができる。また、混合液の供給により、上面91の局所的な乾燥が発生しにくくなり、充填材溶液の供給前におけるパターン要素の倒壊を抑制することができる。さらに、純水の液膜911の形成を省略して内側カップ部24内への純水の流入を抑制することができ、充填材溶液と純水とが混ざることを防止することができる。 As described above, in the substrate processing apparatus 1a of FIG. 7, the nozzles (the first nozzle 31 and the fixed nozzle 35) that discharge pure water or a liquid containing pure water, and the second nozzle 32 that discharges an organic solvent. Are separately provided, and the liquid containing pure water is not discharged from the second nozzle 32. In such a configuration, the first nozzle 31 used for supplying the chemical liquid to the upper surface 91 moves from the facing position to the standby position in parallel with the discharge operation of the pure water and the mixed liquid from the fixed nozzle 35. Furthermore, the second nozzle 32 arranged at another standby position moves to the facing position. Then, following the discharge of the mixed liquid from the fixed nozzle 35, a pure organic solvent is discharged from the second nozzle 32. With the above processing, it is possible to prevent the upper surface 91 of the substrate 9 from being dried when the first nozzle 31 and the second nozzle 32 are replaced. Further, the supply of the mixed liquid makes it difficult for the local drying of the upper surface 91 to occur, and the collapse of the pattern element before the supply of the filler solution can be suppressed. Furthermore, the formation of the pure water liquid film 911 can be omitted to suppress the inflow of pure water into the inner cup portion 24, and mixing of the filler solution and pure water can be prevented.
 図7の基板処理装置1aでは、固定ノズル35から混合液のみが吐出されてもよい。この場合、第1ノズル31から基板9に純水が供給され(ステップS14)、続いて、固定ノズル35から基板9に混合液が供給される(ステップS15)。純水の供給に利用された第1ノズル31の待機位置への移動(ステップS21)、および、有機溶剤の供給に利用される第2ノズル32の対向位置への移動(ステップS22)は、ステップS15における固定ノズル35からの混合液の吐出動作に並行して行われる。以上のように、固定ノズル35から少なくとも混合液が吐出されることにより、第1ノズル31と第2ノズル32との入れ替えの際に、基板9の上面91が乾燥することを防止することができる。 In the substrate processing apparatus 1a of FIG. 7, only the mixed liquid may be discharged from the fixed nozzle 35. In this case, pure water is supplied from the first nozzle 31 to the substrate 9 (step S14), and then the liquid mixture is supplied from the fixed nozzle 35 to the substrate 9 (step S15). The movement of the first nozzle 31 used for supplying pure water to the standby position (step S21) and the movement of the second nozzle 32 used for supplying organic solvent to the facing position (step S22) are steps. This is performed in parallel with the operation of discharging the mixed liquid from the fixed nozzle 35 in S15. As described above, by discharging at least the mixed liquid from the fixed nozzle 35, it is possible to prevent the upper surface 91 of the substrate 9 from being dried when the first nozzle 31 and the second nozzle 32 are replaced. .
 図7の基板処理装置1aにおいて、リンス処理に連続して有機溶剤を供給することが問題とならない場合には、図8中のステップS15が省略され、固定ノズル35から純水のみが吐出されてもよい。 In the substrate processing apparatus 1a of FIG. 7, when it is not a problem to supply the organic solvent continuously to the rinsing process, step S15 in FIG. 8 is omitted, and only pure water is discharged from the fixed nozzle 35. Also good.
 具体的には、第1ノズル31から上面91への薬液の供給が完了し(図2:ステップS13)、固定ノズル35からの純水の供給が開始されると(図8:ステップS14)、第1ノズル31が、第1ノズル移動機構33により待機位置へと移動する(ステップS21)。続いて、他の待機位置に配置された第2ノズル32が、第2・第3ノズル移動機構34aにより対向位置に移動する(ステップS22)。そして、固定ノズル35からの純水の供給が停止されると、有機溶剤(純粋な有機溶剤)が第2ノズル32を介して上面91に連続的に供給される(図2:ステップS16)。基板処理装置1aでは、ステップS13,S14,S16を行う間、外側カップ対向状態が維持されており、回転する基板9から飛散する薬液、純水および有機溶剤は、外側カップ部25の内側面にて受けられる。後続の処理は、上記と同様である。 Specifically, when the supply of the chemical solution from the first nozzle 31 to the upper surface 91 is completed (FIG. 2: step S13) and the supply of pure water from the fixed nozzle 35 is started (FIG. 8: step S14), The first nozzle 31 is moved to the standby position by the first nozzle moving mechanism 33 (step S21). Subsequently, the second nozzle 32 arranged at another standby position is moved to the facing position by the second / third nozzle moving mechanism 34a (step S22). When the supply of pure water from the fixed nozzle 35 is stopped, the organic solvent (pure organic solvent) is continuously supplied to the upper surface 91 via the second nozzle 32 (FIG. 2: step S16). In the substrate processing apparatus 1a, the outer cup facing state is maintained while performing steps S13, S14, and S16, and the chemical solution, pure water, and organic solvent scattered from the rotating substrate 9 are placed on the inner surface of the outer cup portion 25. Can be received. Subsequent processing is the same as described above.
 固定ノズル35から純水のみが吐出される基板処理装置1aでは、固定ノズル35から上面91に純水を連続的に供給する処理に並行して、薬液の供給に利用された第1ノズル31が対向位置から待機位置へと移動し、さらに、他の待機位置に配置された第2ノズル32が対向位置へと移動する。そして、固定ノズル35からの純水の吐出にほぼ連続して、第2ノズル32から純粋な有機溶剤が吐出される。このように、第1ノズル31と第2ノズル32との入れ替えの際に、固定ノズル35から純水を供給することにより、基板9の上面91が乾燥することを防止することができる。その結果、充填材溶液の供給前におけるパターン要素の倒壊を抑制することができる。また、上記の例と同様に、回転する基板9の上面91から飛散する純水は、外側カップ部25の内側面により受けられる。これにより、内側カップ部24内への純水の流入を抑制して、充填材溶液と純水とが混ざることを防止することができる。 In the substrate processing apparatus 1a in which only pure water is discharged from the fixed nozzle 35, the first nozzle 31 used for supplying the chemical solution is provided in parallel with the process of continuously supplying pure water from the fixed nozzle 35 to the upper surface 91. The second nozzle 32 arranged at another standby position moves from the opposite position to the standby position, and further moves to the opposite position. Then, a pure organic solvent is discharged from the second nozzle 32 substantially continuously with the discharge of pure water from the fixed nozzle 35. In this way, when the first nozzle 31 and the second nozzle 32 are replaced, by supplying pure water from the fixed nozzle 35, it is possible to prevent the upper surface 91 of the substrate 9 from drying. As a result, the collapse of the pattern element before the supply of the filler solution can be suppressed. Similarly to the above example, pure water splashing from the upper surface 91 of the rotating substrate 9 is received by the inner surface of the outer cup portion 25. Thereby, inflow of the pure water into the inner side cup part 24 can be suppressed, and it can prevent that a filler solution and a pure water are mixed.
 また、固定ノズル35から純水のみを吐出する場合において、固定ノズル35からの純水の吐出を停止する前に、対向位置に配置された第2ノズル32からの純粋な有機溶剤の吐出が開始されてもよい。換言すると、基板9の上面91への純水の供給と、上面91への有機溶剤の供給とが部分的に並行して行われる。この場合、基板9上において実質的に混合液が生成される、すなわち、基板9に混合液が供給される。その後、固定ノズル35からの純水の吐出が停止され、基板9に純粋な有機溶剤のみが供給される。この場合も、上面91の局所的な乾燥によるパターン要素の倒壊を抑制することができる。 In addition, when only pure water is discharged from the fixed nozzle 35, the discharge of pure organic solvent from the second nozzle 32 arranged at the opposite position is started before stopping the discharge of pure water from the fixed nozzle 35. May be. In other words, the supply of pure water to the upper surface 91 of the substrate 9 and the supply of the organic solvent to the upper surface 91 are performed partially in parallel. In this case, a mixed liquid is substantially generated on the substrate 9, that is, the mixed liquid is supplied to the substrate 9. Thereafter, the discharge of pure water from the fixed nozzle 35 is stopped, and only the pure organic solvent is supplied to the substrate 9. Also in this case, collapse of the pattern element due to local drying of the upper surface 91 can be suppressed.
 上記基板処理装置1,1aでは様々な変形が可能である。 The substrate processing apparatuses 1 and 1a can be variously modified.
 基板処理装置1,1aでは、純水供給部42、有機溶剤供給部43および接続部45を主たる構成要素として、混合液を上面91に供給する混合液供給部が構成されるが、混合液供給部は、純水供給部42および有機溶剤供給部43とは独立して実現されてもよい。 In the substrate processing apparatuses 1 and 1a, a pure liquid supply unit 42, an organic solvent supply unit 43, and a connection unit 45 are used as main components, and a mixed liquid supply unit that supplies a mixed liquid to the upper surface 91 is configured. The unit may be realized independently of the pure water supply unit 42 and the organic solvent supply unit 43.
 混合液における有機溶剤の濃度は一定であってもよい。図11および図12は、混合液における有機溶剤(ここでは、IPA)の濃度と、混合液と純水との溶解性との関係を調べた実験結果を示す図である。本実験では、閉塞部材により一端を閉塞した直径19mmのチューブを準備し、上下方向に伸ばした当該チューブに純水15ccを溜めた状態で、IPA濃度が10vol%(体積パーセント濃度)、20vol%、50vol%、100vol%である混合液(IPA濃度が100vol%の場合は、純粋な有機溶剤)2ccを当該チューブの内面に沿わせて注いだ。閉塞部材には、直径3mmのサンプリングチューブが設けられており、混合液と純水との界面近傍における微量の液を、混合液の注入から0.5分、1分、2分経過後にサンプリングチューブにより抽出し、当該液のIPA濃度を測定した。図11および図12は、混合液の注入前における純水の液面の位置(混合液と純水との界面に相当する。)から閉塞部材側に向かってそれぞれ5mmおよび10mmの位置にて抽出された液のIPA濃度を示す。 The concentration of the organic solvent in the mixed solution may be constant. FIG. 11 and FIG. 12 are diagrams showing experimental results obtained by examining the relationship between the concentration of the organic solvent (here, IPA) in the mixed solution and the solubility between the mixed solution and pure water. In this experiment, a tube with a diameter of 19 mm whose one end was closed by a closing member was prepared, and in a state where 15 cc of pure water was stored in the tube extended vertically, the IPA concentration was 10 vol% (volume percent concentration), 20 vol%, 2 cc of a mixed solution of 50 vol% and 100 vol% (a pure organic solvent when the IPA concentration is 100 vol%) was poured along the inner surface of the tube. The closing member is provided with a sampling tube having a diameter of 3 mm, and a small amount of liquid in the vicinity of the interface between the mixed solution and pure water is sampled after 0.5 minutes, 1 minute and 2 minutes from the injection of the mixed solution. And the IPA concentration of the solution was measured. 11 and 12 are extracted at positions of 5 mm and 10 mm from the position of the pure water level (corresponding to the interface between the mixed liquid and pure water) before injection of the mixed liquid toward the closing member side, respectively. The IPA concentration of the obtained liquid is shown.
 図11および図12より、IPA濃度が100vol%の場合(図11および図12では、「IPA 100%」と記している。以下同様。)には、界面近傍におけるIPA濃度の上昇が小さく、有機溶剤の純水に対する溶解性が低いといえる。一方、IPA濃度が10vol%、20vol%、50vol%の場合には、界面近傍におけるIPA濃度の上昇が、100vol%の場合よりも大きく、混合液の純水に対する溶解性が高いといえる。よって、混合液における有機溶剤の濃度を一定とする場合に、局所的な乾燥をより確実に抑制するには、当該濃度は50vol%以下かつ10vol%以上であることが好ましい。また、有機溶剤を効率よく使用するという観点では、当該濃度は、好ましくは30%以下であり、より好ましくは20%以下である。 From FIG. 11 and FIG. 12, when the IPA concentration is 100 vol% (in FIG. 11 and FIG. 12, “IPA 100%”, the same applies hereinafter), the increase in IPA concentration in the vicinity of the interface is small and organic It can be said that the solubility of the solvent in pure water is low. On the other hand, when the IPA concentration is 10 vol%, 20 vol%, and 50 vol%, the increase in the IPA concentration in the vicinity of the interface is larger than that in the case of 100 vol%, and it can be said that the solubility of the mixed solution in pure water is high. Therefore, when the concentration of the organic solvent in the mixed solution is constant, the concentration is preferably 50 vol% or less and 10 vol% or more in order to more surely suppress local drying. Further, from the viewpoint of efficiently using an organic solvent, the concentration is preferably 30% or less, more preferably 20% or less.
 基板処理装置1,1aでは、スピンチャック22を昇降する昇降機構が設けられ、外側カップ対向状態において、スピンチャック22および基板9(例えば、図1参照)を下降させる、すなわち、内側カップ部24を基板9に対して相対的に上昇させることにより、内側カップ対向状態が形成されてもよい。このように、基板処理装置1,1aにおける昇降機構は、内側カップ部24を基板9に対して相対的に昇降すればよい。 In the substrate processing apparatuses 1 and 1a, an elevating mechanism for elevating and lowering the spin chuck 22 is provided, and the spin chuck 22 and the substrate 9 (see, for example, FIG. 1) are lowered in the opposed state of the outer cup. The inner cup facing state may be formed by raising the substrate 9 relative to the substrate 9. Thus, the raising / lowering mechanism in the substrate processing apparatuses 1 and 1a may raise and lower the inner cup portion 24 relative to the substrate 9.
 基板9は、様々な態様にて保持されてよい。例えば、基板9の外縁部を把持する基板保持部により、パターンが形成された主面を上方に向けた状態で基板9が保持されてもよい。 The substrate 9 may be held in various ways. For example, the substrate 9 may be held by the substrate holding portion that holds the outer edge portion of the substrate 9 with the main surface on which the pattern is formed facing upward.
 基板処理装置1,1aにて処理される基板は半導体基板には限定されず、ガラス基板や他の基板であってもよい。 The substrate processed by the substrate processing apparatus 1 or 1a is not limited to a semiconductor substrate, and may be a glass substrate or another substrate.
 上記実施の形態および各変形例における構成は、相互に矛盾しない限り適宜組み合わされてよい。 The configurations in the above embodiment and each modification may be combined as appropriate as long as they do not contradict each other.
 発明を詳細に描写して説明したが、既述の説明は例示的であって限定的なものではない。したがって、本発明の範囲を逸脱しない限り、多数の変形や態様が可能であるといえる。 Although the invention has been described in detail, the above description is illustrative and not restrictive. Therefore, it can be said that many modifications and embodiments are possible without departing from the scope of the present invention.
 1,1a  基板処理装置
 9  基板
 10  制御部
 21  スピンモータ
 22  スピンチャック
 24  内側カップ部
 25  外側カップ部
 26  ガード昇降機構
 31  第1ノズル
 32  第2ノズル
 35  固定ノズル
 42  純水供給部
 43  有機溶剤供給部
 44  充填材溶液供給部
 45  接続部
 91  (基板の)上面
 S11~S19,S21,S22  ステップ
DESCRIPTION OF SYMBOLS 1,1a Substrate processing apparatus 9 Substrate 10 Control part 21 Spin motor 22 Spin chuck 24 Inner cup part 25 Outer cup part 26 Guard raising / lowering mechanism 31 1st nozzle 32 2nd nozzle 35 Fixed nozzle 42 Pure water supply part 43 Organic solvent supply part 44 Filler Solution Supply Unit 45 Connection Unit 91 (Substrate) Upper Surface S11 to S19, S21, S22 Steps

Claims (9)

  1.  一の主面にパターンが形成された基板の周囲を囲む外側カップ部と、前記外側カップ部の内側に配置される内側カップ部とを備える基板処理装置における基板処理方法であって、
     a)前記内側カップ部の上端を前記外側カップ部の上端よりも下方に配置した第1の状態において、基板回転機構により回転する前記基板の上方を向く前記主面に純水を供給するとともに、前記主面から飛散する前記純水を前記外側カップ部の内側面により受ける工程と、
     b)前記第1の状態において、所定の有機溶剤と純水とを混合した混合液を、回転する前記基板の前記主面に供給するとともに、前記主面から飛散する前記混合液を前記外側カップ部の前記内側面により受ける工程と、
     c)前記第1の状態において、回転する前記基板の前記主面に前記有機溶剤を供給するとともに、前記主面から飛散する前記有機溶剤を前記外側カップ部の前記内側面により受ける工程と、
     d)前記主面を覆う前記有機溶剤の液膜を前記主面上にて保持しつつ、前記内側カップ部を前記基板に対して相対的に上昇させることにより前記内側カップ部の内側面が前記基板の周囲に配置された第2の状態を形成する工程と、
     e)前記第2の状態において、前記有機溶剤よりも比重が大きい充填材溶液を前記主面に供給することにより、前記主面上に前記充填材溶液を充填する工程と、
    を備える。
    A substrate processing method in a substrate processing apparatus comprising: an outer cup portion surrounding a periphery of a substrate having a pattern formed on one main surface; and an inner cup portion disposed inside the outer cup portion,
    a) In a first state in which the upper end of the inner cup portion is disposed below the upper end of the outer cup portion, pure water is supplied to the main surface facing the upper side of the substrate rotated by the substrate rotating mechanism; Receiving the pure water scattered from the main surface by the inner surface of the outer cup portion;
    b) In the first state, a liquid mixture obtained by mixing a predetermined organic solvent and pure water is supplied to the main surface of the rotating substrate, and the liquid mixture scattered from the main surface is supplied to the outer cup. Receiving by the inner surface of the part;
    c) supplying the organic solvent to the main surface of the rotating substrate in the first state, and receiving the organic solvent scattered from the main surface by the inner surface of the outer cup portion;
    d) While holding the liquid film of the organic solvent covering the main surface on the main surface, the inner side surface of the inner cup portion is moved upward by raising the inner cup portion relative to the substrate. Forming a second state disposed around the substrate;
    e) in the second state, filling the main surface with the filler solution by supplying a filler solution having a specific gravity greater than that of the organic solvent to the main surface;
    Is provided.
  2.  請求項1に記載の基板処理方法であって、
     前記基板処理装置が、前記主面に対向するノズルをさらに備え、
     前記a)工程における前記純水、前記b)工程における前記混合液、および、前記c)工程における前記有機溶剤が、前記ノズルから吐出される。
    The substrate processing method according to claim 1,
    The substrate processing apparatus further includes a nozzle facing the main surface,
    The pure water in the step a), the mixed solution in the step b), and the organic solvent in the step c) are discharged from the nozzle.
  3.  請求項2に記載の基板処理方法であって、
     前記b)工程において前記混合液における前記有機溶剤の濃度が徐々に高められる。
    The substrate processing method according to claim 2,
    In the step b), the concentration of the organic solvent in the mixed solution is gradually increased.
  4.  請求項1に記載の基板処理方法であって、
     前記主面よりも上方の所定位置に固定された固定ノズルから少なくとも前記混合液が吐出され、
     前記固定ノズルからの吐出動作に並行して、前記a)工程における前記純水の供給、または、前記a)工程よりも前における処理液の供給に利用された第1ノズルが前記主面に対向する位置から、前記主面の上方から外れた待機位置へと移動され、さらに、前記主面の上方から外れた他の待機位置に配置された第2ノズルが前記主面に対向する位置へと移動され、
     前記c)工程において、前記第2ノズルから前記有機溶剤が吐出される。
    The substrate processing method according to claim 1,
    At least the mixed liquid is discharged from a fixed nozzle fixed at a predetermined position above the main surface,
    In parallel with the discharge operation from the fixed nozzle, the first nozzle used for supplying the pure water in the step a) or for supplying the processing liquid prior to the step a) faces the main surface. To a position where the second nozzle disposed at another standby position deviated from above the main surface is opposed to the main surface. Moved,
    In the step c), the organic solvent is discharged from the second nozzle.
  5.  一の主面にパターンが形成された基板の周囲を囲む外側カップ部と、前記外側カップ部の内側に配置される内側カップ部とを備える基板処理装置における基板処理方法であって、
     a)前記内側カップ部の上端を前記外側カップ部の上端よりも下方に配置した第1の状態において、基板回転機構により回転する前記基板の上方を向く前記主面に、前記主面よりも上方の所定位置に固定された固定ノズルから純水を連続的に供給するとともに、前記主面から飛散する前記純水を前記外側カップ部の内側面により受ける工程と、
     b)前記a)工程に並行して、前記a)工程よりも前における処理液の供給に利用された第1ノズルを前記主面に対向する位置から、前記主面の上方から外れた待機位置へと移動するとともに、前記主面の上方から外れた他の待機位置に配置された第2ノズルを前記主面に対向する位置へと移動する工程と、
     c)前記第1の状態において、回転する前記基板の前記主面に前記第2ノズルから所定の有機溶剤を供給するとともに、前記主面から飛散する前記有機溶剤を前記外側カップ部の前記内側面により受ける工程と、
     d)前記主面を覆う前記有機溶剤の液膜を前記主面上にて保持しつつ、前記内側カップ部を前記基板に対して相対的に上昇させることにより前記内側カップ部の内側面が前記基板の周囲に配置された第2の状態を形成する工程と、
     e)前記第2の状態において、前記有機溶剤よりも比重が大きい充填材溶液を前記主面に供給することにより、前記主面上に前記充填材溶液を充填する工程と、
    を備える。
    A substrate processing method in a substrate processing apparatus comprising: an outer cup portion surrounding a periphery of a substrate having a pattern formed on one main surface; and an inner cup portion disposed inside the outer cup portion,
    a) In the first state in which the upper end of the inner cup portion is disposed below the upper end of the outer cup portion, the main surface facing upward of the substrate rotated by the substrate rotating mechanism is above the main surface. Continuously supplying pure water from a fixed nozzle fixed at a predetermined position, and receiving the pure water scattered from the main surface by the inner surface of the outer cup portion;
    b) In parallel with the step a), the standby position where the first nozzle used for supplying the processing liquid prior to the step a) deviates from the position above the main surface from the position facing the main surface. And moving the second nozzle disposed at another standby position off the upper surface of the main surface to a position facing the main surface;
    c) In the first state, a predetermined organic solvent is supplied from the second nozzle to the main surface of the rotating substrate, and the organic solvent scattered from the main surface is supplied to the inner surface of the outer cup portion. The process received by
    d) While holding the liquid film of the organic solvent covering the main surface on the main surface, the inner side surface of the inner cup portion is moved upward by raising the inner cup portion relative to the substrate. Forming a second state disposed around the substrate;
    e) in the second state, filling the main surface with the filler solution by supplying a filler solution having a specific gravity greater than that of the organic solvent to the main surface;
    Is provided.
  6.  基板処理装置であって、
     パターンが形成された基板の主面を上方に向けた状態で前記基板を保持する基板保持部と、
     前記基板保持部を前記基板と共に回転する基板回転機構と、
     前記基板の周囲を囲む外側カップ部と、
     前記外側カップ部の内側に配置される内側カップ部と、
     前記内側カップ部を前記基板に対して相対的に昇降する昇降機構と、
     純水を前記主面に供給する純水供給部と、
     所定の有機溶剤と純水とを混合した混合液を前記主面に供給する混合液供給部と、
     前記有機溶剤を前記主面に供給する有機溶剤供給部と、
     前記有機溶剤よりも比重が大きい充填材溶液を前記主面に供給する充填材溶液供給部と、
     前記内側カップ部の上端を前記外側カップ部の上端よりも下方に配置した第1の状態において、前記基板回転機構により回転する前記基板の前記主面に、前記純水供給部、前記混合液供給部および前記有機溶剤供給部により前記純水、前記混合液および前記有機溶剤を順に供給させつつ、前記主面から飛散する液が前記外側カップ部の内側面により受けられ、その後、前記主面を覆う前記有機溶剤の液膜を前記主面上にて保持しつつ、前記昇降機構により前記内側カップ部を前記基板に対して相対的に上昇させることにより前記内側カップ部の内側面が前記基板の周囲に配置された第2の状態を形成し、前記第2の状態において、前記充填材溶液供給部により前記主面に前記充填材溶液を供給させることにより、前記主面上に前記充填材溶液を充填する制御部と、
    を備える。
    A substrate processing apparatus,
    A substrate holding part for holding the substrate in a state where the main surface of the substrate on which the pattern is formed is directed upward;
    A substrate rotating mechanism for rotating the substrate holding unit together with the substrate;
    An outer cup portion surrounding the substrate;
    An inner cup portion disposed inside the outer cup portion;
    A lifting mechanism that lifts and lowers the inner cup portion relative to the substrate;
    A pure water supply unit for supplying pure water to the main surface;
    A liquid mixture supply unit that supplies a liquid mixture obtained by mixing a predetermined organic solvent and pure water to the main surface;
    An organic solvent supply unit for supplying the organic solvent to the main surface;
    A filler solution supply unit that supplies a filler solution having a specific gravity greater than that of the organic solvent to the main surface;
    In the first state in which the upper end of the inner cup part is disposed below the upper end of the outer cup part, the pure water supply part and the mixed liquid supply are provided on the main surface of the substrate rotated by the substrate rotation mechanism. The liquid splashed from the main surface is received by the inner surface of the outer cup portion while supplying the pure water, the mixed liquid and the organic solvent in order by the portion and the organic solvent supply portion, and then the main surface is While holding the liquid film of the organic solvent to cover on the main surface, the inner cup portion is raised relative to the substrate by the elevating mechanism, whereby the inner surface of the inner cup portion is Forming a second state disposed around, and supplying the filler solution to the main surface by the filler solution supply unit in the second state, whereby the filler solution is formed on the main surface; And a control unit to be filled,
    Is provided.
  7.  請求項6に記載の基板処理装置であって、
     前記主面に対向するノズルをさらに備え、
     前記純水供給部からの前記純水、前記混合液供給部からの前記混合液、および、前記有機溶剤供給部からの前記有機溶剤が、前記ノズルから吐出される。
    The substrate processing apparatus according to claim 6,
    Further comprising a nozzle facing the main surface,
    The pure water from the pure water supply unit, the mixed solution from the mixed solution supply unit, and the organic solvent from the organic solvent supply unit are discharged from the nozzle.
  8.  請求項7に記載の基板処理装置であって、
     前記混合液供給部が、前記混合液を前記主面に供給する際に、前記混合液における前記有機溶剤の濃度を徐々に高める。
    The substrate processing apparatus according to claim 7,
    When the mixed liquid supply unit supplies the mixed liquid to the main surface, the concentration of the organic solvent in the mixed liquid is gradually increased.
  9.  請求項6に記載の基板処理装置であって、
     前記主面よりも上方の所定位置に固定された固定ノズルから少なくとも前記混合液が吐出され、
     前記制御部の制御により、前記固定ノズルからの吐出動作に並行して、前記純水の供給、または、前記純水の供給よりも前における処理液の供給に利用された第1ノズルがノズル移動機構により前記主面に対向する位置から、前記主面の上方から外れた待機位置へと移動され、さらに、前記主面の上方から外れた他の待機位置に配置された第2ノズルが他のノズル移動機構により前記主面に対向する位置へと移動され、
     前記有機溶剤の供給において、前記第2ノズルから前記有機溶剤が吐出される。
    The substrate processing apparatus according to claim 6,
    At least the mixed liquid is discharged from a fixed nozzle fixed at a predetermined position above the main surface,
    Under the control of the control unit, the first nozzle used for supplying the pure water or the processing liquid before the pure water is moved in parallel with the discharge operation from the fixed nozzle. The mechanism is moved from a position facing the main surface to a standby position deviating from above the main surface, and the second nozzle disposed at another standby position deviating from above the main surface is another Moved to a position facing the main surface by a nozzle moving mechanism;
    In supplying the organic solvent, the organic solvent is discharged from the second nozzle.
PCT/JP2017/002402 2016-03-29 2017-01-24 Substrate processing method and substrate processing device WO2017169018A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780013897.3A CN108701604B (en) 2016-03-29 2017-01-24 Substrate processing method and substrate processing apparatus
KR1020187023962A KR102114567B1 (en) 2016-03-29 2017-01-24 Substrate processing method and substrate processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-065126 2016-03-29
JP2016065126A JP6710561B2 (en) 2016-03-29 2016-03-29 Substrate processing method and substrate processing apparatus

Publications (1)

Publication Number Publication Date
WO2017169018A1 true WO2017169018A1 (en) 2017-10-05

Family

ID=59962989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002402 WO2017169018A1 (en) 2016-03-29 2017-01-24 Substrate processing method and substrate processing device

Country Status (5)

Country Link
JP (1) JP6710561B2 (en)
KR (1) KR102114567B1 (en)
CN (1) CN108701604B (en)
TW (1) TWI641039B (en)
WO (1) WO2017169018A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020017613A (en) * 2018-07-25 2020-01-30 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus
CN112582299A (en) * 2019-09-30 2021-03-30 信越工程株式会社 Substrate processing apparatus and substrate processing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020150126A (en) * 2019-03-13 2020-09-17 東京エレクトロン株式会社 Mixer, mixing method and substrate processing system
JP7194645B2 (en) * 2019-05-31 2022-12-22 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013093361A (en) * 2011-10-24 2013-05-16 Tokyo Electron Ltd Liquid processing apparatus and liquid processing method
JP2013175672A (en) * 2012-02-27 2013-09-05 Dainippon Screen Mfg Co Ltd Cleaning treatment apparatus and cleaning treatment method
JP2015050414A (en) * 2013-09-04 2015-03-16 株式会社Screenホールディングス Substrate drier

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7119025B2 (en) * 2004-04-08 2006-10-10 Micron Technology, Inc. Methods of eliminating pattern collapse on photoresist patterns
JP4767767B2 (en) * 2006-06-19 2011-09-07 大日本スクリーン製造株式会社 Substrate processing method and substrate processing apparatus
JP2009238793A (en) * 2008-03-26 2009-10-15 Dainippon Screen Mfg Co Ltd Substrate treatment method, and substrate treatment device
KR20140029095A (en) * 2012-08-31 2014-03-10 세메스 주식회사 Substrates treating method
JP6216274B2 (en) * 2014-03-17 2017-10-18 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013093361A (en) * 2011-10-24 2013-05-16 Tokyo Electron Ltd Liquid processing apparatus and liquid processing method
JP2013175672A (en) * 2012-02-27 2013-09-05 Dainippon Screen Mfg Co Ltd Cleaning treatment apparatus and cleaning treatment method
JP2015050414A (en) * 2013-09-04 2015-03-16 株式会社Screenホールディングス Substrate drier

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020017613A (en) * 2018-07-25 2020-01-30 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus
WO2020021903A1 (en) * 2018-07-25 2020-01-30 株式会社Screenホールディングス Substrate processing method and substrate processing device
TWI708339B (en) * 2018-07-25 2020-10-21 日商斯庫林集團股份有限公司 Substrate processing method and substrate processing device
JP7231350B2 (en) 2018-07-25 2023-03-01 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus
CN112582299A (en) * 2019-09-30 2021-03-30 信越工程株式会社 Substrate processing apparatus and substrate processing method

Also Published As

Publication number Publication date
TW201802911A (en) 2018-01-16
KR20180104685A (en) 2018-09-21
CN108701604B (en) 2022-12-16
TWI641039B (en) 2018-11-11
JP2017183375A (en) 2017-10-05
JP6710561B2 (en) 2020-06-17
CN108701604A (en) 2018-10-23
KR102114567B1 (en) 2020-05-22

Similar Documents

Publication Publication Date Title
JP5975563B2 (en) Substrate processing apparatus and substrate processing method
TWI698906B (en) Substrate processing method and substrate processing apparatus
TWI646596B (en) Substrate processing method and substrate processing apparatus
CN108604548B (en) Substrate processing apparatus and substrate processing method
KR102009613B1 (en) Substrate Processing Method
WO2017169018A1 (en) Substrate processing method and substrate processing device
KR102037906B1 (en) Substrate treating apparatus and substrate treating method
US10790134B2 (en) Substrate processing method
KR20130046364A (en) Liquid processing apparatus, liquid processing method, and storage medium
TWI775574B (en) Substrate processing method and substrate processing apparatus
JP2009212301A (en) Substrate processing method and apparatus
KR102110065B1 (en) Substrate processing method and substrate processing apparatus
KR101579509B1 (en) Substrate treating apparatus and method
CN112170035B (en) Nozzle device, and device and method for processing substrate
JP5208586B2 (en) Substrate processing method
TWI809652B (en) Substrate processing method and substrate processing apparatus
JP4236109B2 (en) Substrate processing method and substrate processing apparatus
JPH11145099A (en) Substrate treatment equipment
TWI648767B (en) Substrate processing method and substrate processing apparatus
JP5080885B2 (en) Substrate processing apparatus and processing chamber cleaning method
JP6191954B2 (en) Substrate processing method and substrate processing apparatus
JP2004056005A (en) Device and method for treating substrate
KR20240077098A (en) Apparatus for processing substrate and method for processing substrate

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187023962

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187023962

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773568

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17773568

Country of ref document: EP

Kind code of ref document: A1