WO2020021903A1 - Substrate processing method and substrate processing device - Google Patents

Substrate processing method and substrate processing device Download PDF

Info

Publication number
WO2020021903A1
WO2020021903A1 PCT/JP2019/023720 JP2019023720W WO2020021903A1 WO 2020021903 A1 WO2020021903 A1 WO 2020021903A1 JP 2019023720 W JP2019023720 W JP 2019023720W WO 2020021903 A1 WO2020021903 A1 WO 2020021903A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
liquid
pattern
substance
drying
Prior art date
Application number
PCT/JP2019/023720
Other languages
French (fr)
Japanese (ja)
Inventor
博史 阿部
学 奥谷
正幸 尾辻
幸史 吉田
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2020021903A1 publication Critical patent/WO2020021903A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a substrate processing method and a substrate processing apparatus for processing a substrate.
  • the substrates to be processed include, for example, semiconductor wafers, flat panel display (FPD) substrates such as liquid crystal displays and organic EL (electroluminescence) displays, substrates for optical disks, substrates for magnetic disks, substrates for magneto-optical disks, Substrates for masks, ceramic substrates, solar cells, and the like are included.
  • processing is performed as necessary on a substrate such as a semiconductor wafer or a glass substrate for a liquid crystal display device.
  • processing includes supplying a processing liquid such as a chemical liquid or a rinsing liquid to the substrate. After the processing liquid is supplied, the processing liquid is removed from the substrate, and the substrate is dried.
  • a force due to the surface tension of the processing solution attached to the substrate is applied to the pattern, and the pattern may collapse.
  • a method of supplying a liquid having a low surface tension, such as IPA (isopropyl alcohol), to the substrate, or supplying a hydrophobizing agent for bringing the contact angle of the liquid to the pattern close to 90 degrees to the substrate is adopted.
  • IPA isopropyl alcohol
  • a hydrophobizing agent for bringing the contact angle of the liquid to the pattern close to 90 degrees to the substrate.
  • Patent Literature 1 discloses a substrate processing method and a substrate processing apparatus for performing sublimation drying.
  • sublimation drying described in Patent Document 1 a melt of a sublimable substance is supplied to the surface of a substrate, and DIW on the substrate is replaced with a melt of the sublimable substance. Thereafter, the melt of the sublimable substance on the substrate is cooled, and a solidified substance of the sublimable substance is formed. Thereafter, the solidified body of the sublimable substance on the substrate is sublimated. Thereby, the melt of the sublimable substance is removed from the substrate, and the substrate is dried.
  • the sublimable substance melt is solidified not only between two adjacent convex patterns but also above the pattern. Freezing point depression occurs when the liquid is placed in a very narrow space. In a substrate such as a semiconductor wafer, since the space between two adjacent patterns is narrow, the freezing point of the sublimable substance located between the patterns is lowered. Thus, the freezing point of the sublimable material located between the patterns is lower than the freezing point of the sublimable material located above the pattern.
  • the surface layer of the melt of the sublimable substance that is, the liquid layer located in the range from the upper surface (liquid level) of the sublimable substance to the upper surface of the pattern.
  • the melt of the sublimable substance located between the patterns may remain as a liquid without solidifying.
  • an interface between a solid (solidified substance of the sublimable substance) and a liquid (melt of the sublimable substance) is formed in the vicinity of the pattern, and a collapse force that collapses the pattern may occur. If the pattern becomes more brittle due to the miniaturization of the pattern, the pattern collapses even with such a weak collapse force.
  • the tips of two adjacent patterns may come into contact with each other.
  • the adhesive state in which the tips of the patterns are in contact with each other is maintained, and the pattern may not return to the vertical state. Therefore, even if sublimation drying is performed, there is a case where the collapse of the pattern cannot be sufficiently prevented depending on the strength of the pattern.
  • an object of the present invention is to provide a substrate processing method and a substrate processing apparatus capable of reducing collapse of a pattern generated when a substrate is dried by sublimation drying and reducing the collapse rate of the pattern. It is.
  • a drying pretreatment liquid containing an adsorbing substance that is adsorbed on the surface of the pattern formed on the substrate is supplied to the surface of the substrate held horizontally, and the adsorption is performed on the surface of the pattern.
  • a liquid removal step including a spin-off step of forming an adsorption film containing the adsorbed substance adsorbed on the surface of the pattern along the surface of the pattern; and removing the adsorption film from the surface of the substrate by changing the adsorption film to a gas.
  • a substrate processing method including an adsorption film removing step.
  • the pre-drying liquid containing the adsorbed substance is supplied to the surface of the substrate held horizontally.
  • the adsorbing substance contained in the pretreatment liquid adsorbs on the surface of the pattern formed on the substrate.
  • the substrate is rotated about a vertical rotation axis while holding the substrate horizontally.
  • the pre-drying treatment liquid is discharged from the surface of the substrate by centrifugal force, and the amount of the pre-drying treatment liquid on the surface of the substrate decreases.
  • the pre-drying treatment liquid on the substrate is reduced to a certain extent, the upper surface (liquid level) of the pre-drying treatment liquid moves between two adjacent convex patterns. That is, the interface between the gas and the liquid (the pre-drying treatment liquid) moves between the patterns, and the collapse force due to the surface tension of the pre-drying treatment liquid is applied to the pattern via the adsorption film.
  • the adsorption film Even if two adjacent patterns collapse in the direction approaching each other, at least a part of the surface of the pattern is coated with the adsorbing film, so that the two patterns are not directly in contact with each other but adsorbed. Contact through a membrane.
  • the adsorption film is changed into a gas. Thereby, the adsorption film is removed from the surface of the substrate. If two adjacent patterns collapse in a direction approaching each other when removing the pre-drying treatment liquid, the adsorption film is removed from between the two patterns. If the pattern is not plastically deformed or damaged, the collapsed pattern returns to the vertical state by the restoring force of the pattern when the adsorption film is removed. In other words, even if the pattern collapses before the adsorption film is removed, the pattern returns to the vertical state after the adsorption film is removed. Thereby, not only when the pattern strength is high but also when the pattern strength is low, the final pattern collapse rate can be improved.
  • the pattern may be a structure formed of a single material or a structure including a plurality of layers stacked in the thickness direction of the substrate.
  • the surface of the pattern includes a side surface that is perpendicular or substantially perpendicular to a plane of the substrate orthogonal to the thickness direction of the substrate, and a top surface that is parallel or substantially parallel to the plane of the substrate.
  • the adsorption film is, for example, a thin film having a surface parallel or substantially parallel to the surface of the pattern. When the adsorption film is formed on the entire surface of the pattern, the surface of the adsorption film includes an upper surface parallel or substantially parallel to the upper surface of the pattern, and a side surface parallel or substantially parallel to the side surface of the pattern.
  • only a part of the surface of the pattern may be covered with the adsorption film.
  • only the upper end of the surface of the pattern including the upper end of the side surface of the pattern and the upper surface of the pattern, or only the upper surface of the pattern may be covered with the adsorption film.
  • the adsorbing film removing step is a pattern restoring step of restoring the shape of the collapsed pattern with a restoring force of the pattern by removing the adsorbing film from between the two collapsed patterns that are in contact with each other via the adsorption film.
  • a part of the adsorption film is interposed between the two collapsed patterns. If the shape of the collapsed pattern returns to the original shape after the removal of the adsorption film, a part of the two collapsed patterns may directly contact before removing the adsorption film. Even in such a case, if the adsorption film is removed, the adhesive force for maintaining the two patterns in a collapsed state is weakened. Therefore, if the pattern is not plastically deformed or damaged, the collapsed pattern is in a vertical state due to the restoring force of the pattern. Return to
  • the adsorbed substance is a substance that is chemically adsorbed on the surface of the pattern.
  • the adsorbed substance is a substance that physically adsorbs on the surface of the pattern.
  • the pre-drying treatment liquid supply step before forming the adsorption film, while stopping the rotation of the substrate, or at a rotation speed smaller than the rotation speed of the substrate when forming the adsorption film, the substrate And rotating the surface of the pattern to contact the pre-drying liquid with the surface of the pattern.
  • the drying pretreatment liquid is applied to the surface of the pattern while stopping the rotation of the substrate or while maintaining the rotation speed of the substrate at a small value (adsorption acceleration speed). Make contact. Since the rotation speed of the substrate is zero or small, the flow of the pretreatment liquid at the interface between the pretreatment liquid and the surface of the pattern becomes gentle, and the adsorption of the adsorbed substance on the surface of the pattern is promoted. Thereby, more adsorbed substances can be adsorbed on the surface of the pattern.
  • the thickness of the adsorption film is smaller than the height of the pattern.
  • a thin adsorption film is formed on the surface of the pattern. That is, the thickness of the adsorption film is smaller than the height of the pattern. Since the adsorption film is thin, the adsorption film can be removed in a short time, and the amount of energy required for removing the adsorption film can be reduced. When the adsorption film is removed by heating, the heating time of the substrate can be shortened, so that a change in the surface of the substrate such as oxidation can be suppressed. Further, even when unnecessary substances such as residues are generated on the substrate when the adsorption film is changed to gas, the volume of the unnecessary substance is small because the volume of the adsorption film is small. Therefore, unnecessary substances can be removed in a short time. In some cases, it is not necessary to remove unnecessary matter.
  • the drying pretreatment liquid is a solution containing the adsorbed substance and a solvent that dissolves in the adsorbed substance.
  • the pretreatment liquid for drying which is a solution in which the adsorbed substance and the solvent are uniformly dissolved, is supplied to the substrate.
  • the freezing point of the adsorbing substance is equal to or higher than room temperature, it is necessary to heat the adsorbing substance to maintain the adsorbing substance in a liquid state.
  • the adsorbed substance is dissolved in the solvent, even if the freezing point of the adsorbed substance is higher than room temperature, if the freezing point of the dried pretreatment liquid can be made lower than room temperature due to the freezing point drop caused by mixing of the adsorbed substance and the solvent, the dried pretreated liquid can be cooled to room temperature Can be kept liquid. Therefore, energy consumption required for processing the substrate can be reduced.
  • the freezing point of the pretreatment liquid for drying may be lower than room temperature.
  • the drying pretreatment liquid at room temperature may be supplied to the surface of the substrate.
  • the solvent may be a single substance or a mixed substance in which two or more substances are dissolved.
  • the solvent may include a high vapor pressure substance having a higher vapor pressure than the adsorption substance.
  • the liquid removing step further includes a gas supply step of discharging gas toward the surface of the substrate when a part of the pre-drying treatment liquid on the surface of the substrate is removed by rotation of the substrate. .
  • the gas is discharged toward the surface of the substrate.
  • the pre-drying treatment liquid on the substrate is discharged from the substrate at a gas pressure.
  • a part of the pretreatment liquid on the substrate evaporates due to the supply of gas. This makes it possible to quickly remove the unnecessary pretreatment liquid from the surface of the substrate.
  • the liquid removing step is a liquid heating step of heating the pre-drying liquid on the surface of the substrate while removing a part of the pre-drying liquid on the surface of the substrate by rotating the substrate. Further included.
  • the drying pretreatment liquid on the surface of the substrate is heated when a part of the pretreatment liquid on the surface of the substrate is removed by rotation of the substrate.
  • the temperature of the pre-drying treatment liquid increases, and the evaporation of the pre-drying treatment liquid is promoted. Therefore, the unnecessary pretreatment liquid for drying can be quickly removed from the surface of the substrate.
  • the liquid heating step is a heating gas supply step of discharging a heating gas having a higher temperature than the drying pretreatment liquid on the front surface of the substrate toward at least one of the front surface and the back surface of the substrate, A heating liquid supply step of discharging a heating liquid having a higher temperature than the drying pretreatment liquid toward the back surface of the substrate, and a heating member having a temperature higher than the drying pretreatment liquid on the front surface of the substrate being separated from the substrate; A proximity heating step of arranging the substrate on the front side or the back side thereof, a contact heating step of bringing a heating member having a higher temperature than the drying pretreatment liquid on the surface of the substrate into contact with the back side of the substrate, Irradiating the drying pretreatment liquid on the surface with light.
  • the light irradiation step is a whole irradiation step of simultaneously irradiating the entire surface of the substrate with light, or the irradiation region while irradiating light only to an irradiation region representing a partial region in the surface of the substrate.
  • the method may include a partial irradiation step of moving within the surface of the substrate, or may include both the entire irradiation step and the partial irradiation step.
  • the method may include at least one of a reaction step of changing the adsorption film from a solid or a liquid to a gas and a plasma irradiation step of irradiating the adsorption film with plasma.
  • the sublimation step includes a substrate rotation step of rotating the substrate about a vertical rotation axis while holding the substrate horizontally, a gas supply step of blowing a gas such as an inert gas or air onto the adsorption film, and heating the adsorption film.
  • the decomposition step may include at least one of the heating step, the light irradiation step, and the ultrasonic vibration applying step.
  • the reaction step may include an oxidation step of oxidizing the adsorption film by bringing an active gas such as ozone gas into contact with the adsorption film.
  • Another embodiment of the present invention is to supply a drying pretreatment liquid containing an adsorbing substance to be adsorbed on the surface of the pattern formed on the substrate to the surface of the substrate that is held horizontally,
  • a substrate processing apparatus including an adsorption film removing unit for removing the substrate. According to this configuration, the same effect as the above-described effect can be obtained.
  • FIG. 1 is a schematic view of a substrate processing apparatus according to a first embodiment of the present invention as viewed from above. It is the schematic diagram which looked at the substrate processing apparatus from the side. It is the mimetic diagram which looked at the inside of the wet processing unit provided in the substrate processing device horizontally.
  • FIG. 3 is a schematic view of the inside of a dry processing unit provided in the substrate processing apparatus, viewed horizontally. It is a block diagram showing hardware of a control equipment.
  • FIG. 4 is a process chart for describing an example of substrate processing performed by the substrate processing apparatus.
  • FIG. 6 is a schematic diagram illustrating a state of the substrate when the processing illustrated in FIG. 5 is performed.
  • FIG. 6 is a schematic diagram illustrating a state of the substrate when the processing illustrated in FIG.
  • FIG. 6 is a schematic diagram illustrating a state of the substrate when the processing illustrated in FIG. 5 is performed.
  • FIG. 6 is a schematic diagram illustrating a state of the substrate when the processing illustrated in FIG. 5 is performed.
  • It is the mimetic diagram which looked horizontally at the spin chuck, a blocking member, and a hot plate concerning a 2nd embodiment of the present invention.
  • It is the schematic diagram which looked at the spin chuck and hot plate which concerns on 2nd Embodiment of this invention from the upper part.
  • FIG. 4 is a schematic view of a spin chuck, a blocking member, and a hot plate viewed horizontally when an adsorption film removing step is being performed.
  • 9 is a table for describing processing examples 1 to 5; It is a schematic diagram which shows the state of the board
  • FIG. 11B is a schematic diagram illustrating a state of the adsorption film when the pattern illustrated in FIG. 11A collapses.
  • FIG. 11B is a schematic diagram illustrating a state of the adsorption film when the pattern illustrated in FIG. 11A collapses.
  • FIG. 3 is a schematic diagram showing a state where the electromagnetic wave generator irradiates only a partial area on the upper surface of the substrate with the electromagnetic wave. It is a schematic diagram which shows the state in which the electromagnetic wave generator irradiates an electromagnetic wave to the whole area
  • FIG. 3 is a schematic diagram illustrating a state in which an active gas supply device supplies an active gas to a substrate.
  • the atmospheric pressure in the substrate processing apparatus 1 is maintained at the atmospheric pressure in the clean room in which the substrate processing apparatus 1 is installed (for example, 1 atm or a value near the atmospheric pressure), unless otherwise specified. .
  • FIG. 1A is a schematic view of the substrate processing apparatus 1 according to the first embodiment of the present invention as viewed from above.
  • FIG. 1B is a schematic view of the substrate processing apparatus 1 as viewed from the side.
  • the substrate processing apparatus 1 is a single-wafer processing apparatus that processes a disk-shaped substrate W such as a semiconductor wafer one by one.
  • the substrate processing apparatus 1 includes a load port LP that holds a carrier C containing a substrate W, a plurality of processing units 2 that process the substrate W transported from the carrier C on the load port LP, and a carrier on the load port LP.
  • a transfer robot that transfers the substrate W between C and the processing unit 2 and a control device 3 that controls the substrate processing apparatus 1 are provided.
  • the transfer robot includes an indexer robot IR for loading and unloading the substrate W to and from the carrier C on the load port LP, and a center robot CR for loading and unloading the substrate W to and from the plurality of processing units 2.
  • the indexer robot IR transports the substrate W between the load port LP and the center robot CR
  • the center robot CR transports the substrate W between the indexer robot IR and the processing unit 2.
  • the center robot CR includes a hand H1 that supports the substrate W
  • the indexer robot IR includes a hand H2 that supports the substrate W.
  • each tower TW includes a plurality (for example, three) of processing units 2 stacked vertically.
  • the plurality of processing units 2 include a wet processing unit 2w for processing the substrate W with a processing liquid such as a chemical solution or a rinsing liquid, and a dry processing unit 2d for processing the substrate W without supplying a processing liquid.
  • the wet processing unit 2w and the dry processing unit 2d may be included in the same tower TW, or may be included in separate towers TW.
  • 1A and 1B show an example in which the uppermost processing unit 2 of each tower TW is a dry processing unit 2d, and the other processing units 2 are wet processing units 2w.
  • FIG. 2 is a schematic view of the inside of the wet processing unit 2w provided in the substrate processing apparatus 1 as viewed horizontally.
  • the wet processing unit 2w includes a box-shaped chamber 4 having an internal space, and a spin chuck that rotates around a vertical rotation axis A1 passing through the center of the substrate W while horizontally holding one substrate W in the chamber 4. 10 and a cylindrical processing cup 21 surrounding the spin chuck 10 around the rotation axis A1.
  • the chamber 4 includes a box-shaped partition wall 5 provided with a loading / unloading port 5b through which the substrate W passes, and a shutter 7 for opening and closing the loading / unloading port 5b.
  • the FFU 6 (fan filter unit) is arranged on a blower port 5 a provided above the partition wall 5.
  • the FFU 6 always supplies clean air (air filtered by a filter) to the inside of the chamber 4 from the blower port 5a.
  • the gas in the chamber 4 is exhausted from the chamber 4 through an exhaust duct 8 connected to the bottom of the processing cup 21. Thereby, a down flow of clean air is always formed in the chamber 4.
  • the flow rate of the exhaust gas discharged to the exhaust duct 8 is changed according to the opening of the exhaust valve 9 arranged in the exhaust duct 8.
  • the spin chuck 10 includes a disk-shaped spin base 12 held in a horizontal position, a plurality of chuck pins 11 for holding the substrate W in a horizontal position above the spin base 12, and a central portion of the spin base 12. It includes a spin shaft 13 extending downward, and a spin motor 14 that rotates the spin base 12 and the plurality of chuck pins 11 by rotating the spin shaft 13.
  • the spin chuck 10 is not limited to a sandwich type chuck in which the plurality of chuck pins 11 are brought into contact with the outer peripheral surface of the substrate W, and causes the back surface (lower surface) of the substrate W, which is a non-device formation surface, to be attracted to the upper surface 12 u of the spin base 12.
  • a vacuum-type chuck that holds the substrate W horizontally may be used.
  • the processing cup 21 includes a plurality of guards 24 for receiving the processing liquid discharged outward from the substrate W, a plurality of cups 23 for receiving the processing liquid guided downward by the plurality of guards 24, a plurality of guards 24 and a plurality of guards. And a cylindrical outer wall member 22 surrounding the cup 23.
  • FIG. 2 shows an example in which four guards 24 and three cups 23 are provided, and the outermost cup 23 is integrated with the third guard 24 from the top.
  • the guard 24 includes a cylindrical portion 25 surrounding the spin chuck 10 and an annular ceiling portion 26 extending obliquely upward from the upper end of the cylindrical portion 25 toward the rotation axis A1.
  • the plurality of ceiling portions 26 are vertically overlapped, and the plurality of cylindrical portions 25 are arranged concentrically.
  • the annular upper end of the ceiling 26 corresponds to the upper end 24u of the guard 24 surrounding the substrate W and the spin base 12 in plan view.
  • the plurality of cups 23 are arranged below the plurality of cylindrical portions 25, respectively.
  • the cup 23 has an annular liquid receiving groove for receiving the processing liquid guided downward by the guard 24.
  • the wet processing unit 2w includes a guard elevating unit 27 for individually elevating and lowering a plurality of guards 24.
  • the guard elevating unit 27 positions the guard 24 at an arbitrary position from the upper position to the lower position.
  • FIG. 2 shows a state in which two guards 24 are arranged at the upper position and the remaining two guards 24 are arranged at the lower position.
  • the upper position is a position where the upper end 24u of the guard 24 is located above the holding position where the substrate W held by the spin chuck 10 is located.
  • the lower position is a position where the upper end 24u of the guard 24 is disposed below the holding position.
  • the wet processing unit 2w includes a plurality of nozzles for discharging a processing liquid toward the substrate W held by the spin chuck 10.
  • the plurality of nozzles include a chemical liquid nozzle 31 for discharging a chemical liquid toward the upper surface of the substrate W, a rinsing liquid nozzle 35 for discharging a rinsing liquid toward the upper surface of the substrate W, and a pre-drying processing liquid toward the upper surface of the substrate W. And a replacement liquid nozzle 43 that discharges a replacement liquid toward the upper surface of the substrate W.
  • the chemical liquid nozzle 31 may be a scan nozzle that can move horizontally in the chamber 4 or a fixed nozzle fixed to the partition 5 of the chamber 4. The same applies to the rinsing liquid nozzle 35, the pre-drying processing liquid nozzle 39, and the replacement liquid nozzle 43.
  • the chemical liquid nozzle 31, the rinsing liquid nozzle 35, the pre-drying processing liquid nozzle 39, and the replacement liquid nozzle 43 are scan nozzles, and four nozzle moving units respectively corresponding to these four nozzles are provided. An example is shown.
  • the chemical liquid nozzle 31 is connected to a chemical liquid pipe 32 for guiding the chemical liquid to the chemical liquid nozzle 31.
  • a chemical liquid pipe 32 for guiding the chemical liquid to the chemical liquid nozzle 31.
  • the chemical discharged from the chemical nozzle 31 includes sulfuric acid, nitric acid, hydrochloric acid, hydrofluoric acid, phosphoric acid, acetic acid, aqueous ammonia, aqueous hydrogen peroxide, an organic acid (for example, citric acid, oxalic acid, etc.), and an organic alkali (for example, TMAH: It may be a liquid containing at least one of tetramethylammonium hydroxide, a surfactant, and a corrosion inhibitor, or may be another liquid.
  • the chemical liquid valve 33 includes a valve body provided with an internal flow path through which a chemical liquid flows and an annular valve seat surrounding the internal flow path, a valve body movable with respect to the valve seat, and a valve body.
  • the actuator may be a pneumatic actuator or an electric actuator, or may be another actuator.
  • the control device 3 opens and closes the chemical liquid valve 33 by controlling the actuator.
  • the chemical liquid nozzle 31 is connected to a nozzle moving unit 34 that moves the chemical liquid nozzle 31 in at least one of the vertical direction and the horizontal direction.
  • the nozzle moving unit 34 moves the chemical solution between the processing position where the chemical solution discharged from the chemical solution nozzle 31 lands on the upper surface of the substrate W and the standby position where the chemical solution nozzle 31 is positioned around the processing cup 21 in plan view.
  • the nozzle 31 is moved horizontally.
  • the rinsing liquid nozzle 35 is connected to a rinsing liquid pipe 36 for guiding the rinsing liquid to the rinsing liquid nozzle 35.
  • the rinsing liquid discharged from the rinsing liquid nozzle 35 is, for example, pure water (deionized water: DIW (Deionized Water)).
  • the rinsing liquid may be any of carbonated water, electrolytic ionic water, hydrogen water, ozone water, and hydrochloric acid water having a dilute concentration (for example, about 10 to 100 ppm).
  • the rinse liquid nozzle 35 is connected to a nozzle moving unit 38 that moves the rinse liquid nozzle 35 in at least one of the vertical direction and the horizontal direction.
  • the nozzle moving unit 38 includes a processing position where the rinsing liquid discharged from the rinsing liquid nozzle 35 lands on the upper surface of the substrate W, and a standby position where the rinsing liquid nozzle 35 is positioned around the processing cup 21 in plan view. The rinse liquid nozzle 35 is moved horizontally between them.
  • the pre-drying treatment liquid nozzle 39 is connected to a pre-drying treatment liquid pipe 40 that guides the pre-drying treatment liquid to the pre-drying treatment liquid nozzle 39.
  • the pre-drying treatment liquid valve 41 interposed in the pre-drying treatment liquid pipe 40 is opened, the pre-drying treatment liquid is continuously discharged downward from the discharge port of the pre-drying treatment liquid nozzle 39.
  • the replacement liquid nozzle 43 is connected to a replacement liquid pipe 44 that guides the replacement liquid to the replacement liquid nozzle 43.
  • the replacement liquid valve 45 interposed in the replacement liquid pipe 44 is opened, the replacement liquid is continuously discharged downward from the discharge port of the replacement liquid nozzle 43.
  • the pre-drying treatment liquid contains an adsorbed substance adsorbed on the surface of the pattern P1 (see FIG. 6A) and a dissolved substance that is soluble in the adsorbed substance.
  • the drying pretreatment liquid is a solution in which the adsorbed substance and the dissolved substance are uniformly dissolved.
  • the adsorbed substance corresponds to a solute, and the dissolved substance corresponds to a solvent.
  • the drying pretreatment liquid may be a melt of the adsorbed substance.
  • the freezing point of the drying pretreatment liquid (freezing point at 1 atm. The same applies hereinafter) is lower than the freezing point of the adsorbed substance. Similarly, the freezing point of the dissolved material is lower than the freezing point of the adsorbed material. The freezing point of the drying pretreatment liquid is lower than room temperature (23 ° C. or a value close thereto).
  • the substrate processing apparatus 1 is disposed in a clean room maintained at room temperature. Therefore, the pre-drying treatment liquid can be maintained in a liquid state without heating the pre-drying treatment liquid.
  • the freezing point of the drying pretreatment liquid may be higher than room temperature, and the freezing point of the dissolved substance may be higher than the freezing point of the adsorbed substance.
  • the dissolved substance may be a single substance or a mixed substance in which two or more substances are dissolved.
  • the vapor pressure of the dissolved substance is higher than the vapor pressure of the adsorbed substance. Therefore, dissolved substances evaporate more easily than adsorbed substances.
  • the vapor pressure of the dissolved substance may be higher or lower than the vapor pressure of water. Further, the vapor pressure of the dissolved substance may be lower than the vapor pressure of the adsorbed substance.
  • the adsorbed substance may be a substance that is chemically adsorbed on the surface of the pattern P1. That is, the adsorbed substance may be a substance that is adsorbed on the surface of the pattern P1 by a chemical reaction between the adsorbed substance and the surface of the pattern P1.
  • the adsorbing substance may be a substance that physically adsorbs on the surface of the pattern P1. That is, the adsorbed substance may be a substance that is adsorbed on the surface of the pattern P1 by an electric attractive force or an intermolecular force generated between the adsorbed substance and the surface of the pattern P1.
  • the adsorbed substance may be a sublimable substance that changes from a solid to a gas without passing through a liquid at normal temperature or normal pressure, or may be a substance other than the sublimable substance.
  • the adsorbent may be an iodine compound, a chlorine compound, or a bromide compound.
  • Iodine compounds include diiodomethane, iodomethane, and 1-iodopropane.
  • Chlorine compounds include dichloromethane.
  • the bromide compound includes ammonium bromide.
  • the adsorbing substance may be a thermally decomposable polymer such as an acrylic resin or an inorganic compound.
  • the adsorbent may be an amphipathic molecule containing both hydrophilic and hydrophobic groups.
  • the dissolved substance may be a sublimable substance or a substance other than the sublimable substance.
  • the types of sublimable substances contained in the pretreatment liquid for drying may be two or more. That is, both the adsorbed substance and the dissolved substance may be sublimable substances, and a sublimable substance different in type from the adsorbed substance and the dissolved substance may be contained in the drying pretreatment liquid.
  • Sublimable substances include, for example, alcohols such as 2-methyl-2-propanol (alias: tert-butyl alcohol, t-butyl alcohol, tert-butyl alcohol) and cyclohexanol, fluorinated hydrocarbon compounds, 1,3, It may be any of 5-trioxane (alias: metaformaldehyde), camphor (alias: camphor, camphor), naphthalene, iodine, and cyclohexane, or a substance other than these.
  • alcohols such as 2-methyl-2-propanol (alias: tert-butyl alcohol, t-butyl alcohol, tert-butyl alcohol) and cyclohexanol
  • fluorinated hydrocarbon compounds 1,3, It may be any of 5-trioxane (alias: metaformaldehyde), camphor (alias: camphor, camphor), naphthalene, iodine, and cyclohex
  • the solvent examples include pure water, IPA, HFE (hydrofluoroether), acetone, PGMEA (propylene glycol monomethyl ether acetate), PGEE (propylene glycol monoethyl ether, 1-ethoxy-2-propanol), ethylene glycol, At least one selected from the group consisting of hydrofluorocarbons may be used.
  • the sublimable substance may be a solvent.
  • IPA and HFE are substances having a lower surface tension than water and a higher vapor pressure than water.
  • the dissolved substance corresponding to the solvent is a mixed solution of IPA and pure water
  • the adsorbed substance corresponding to the solute is an iodine compound or a chlorine compound.
  • the mass percent concentrations of IPA (IPA having a purity of 99.9 wt% or more), pure water, and an adsorbent contained in the pretreatment liquid are less than 50 wt%, less than 50 wt%, and less than 1 wt%, respectively.
  • the concentration of each component is not limited to this.
  • the replacement liquid is supplied to the upper surface of the substrate W covered with the rinse liquid film, and the pre-drying treatment liquid is supplied to the upper surface of the substrate W covered with the liquid film of the replacement liquid.
  • the replacement liquid is a liquid that is compatible with both the rinsing liquid and the pre-drying liquid.
  • the replacement liquid is, for example, IPA.
  • IPA is a liquid that is compatible with both water and fluorohydrocarbon compounds.
  • the replacement liquid may be a mixture of IPA and HFE.
  • a first solvent pipe for guiding IPA as a first organic solvent and a second solvent pipe for guiding HFE as a second organic solvent are replaced with a replacement liquid pipe. 44.
  • IPA or HFE is supplied to the replacement liquid pipe 44, and the first solvent valve and
  • both of the second solvent valves are opened, a mixed solution of IPA and HFE is supplied to the replacement solution pipe 44.
  • HFE may be discharged to a nozzle different from the replacement liquid nozzle 43.
  • the replacement liquid When the replacement liquid is supplied to the upper surface of the substrate W covered with the rinsing liquid film, most of the rinsing liquid on the substrate W is washed away by the replacement liquid and discharged from the substrate W. The remaining trace amount of the rinse solution dissolves in the replacement solution and diffuses into the replacement solution. The diffused rinsing liquid is discharged from the substrate W together with the replacement liquid. Therefore, the rinsing liquid on the substrate W can be efficiently replaced with the replacement liquid. For the same reason, the replacement liquid on the substrate W can be efficiently replaced with the pre-drying treatment liquid. Thereby, the rinsing liquid contained in the pre-drying treatment liquid on the substrate W can be reduced.
  • the pre-drying treatment liquid nozzle 39 is connected to a nozzle moving unit 42 that moves the pre-drying treatment liquid nozzle 39 in at least one of the vertical direction and the horizontal direction.
  • the nozzle moving unit 42 has a processing position where the pre-drying processing liquid discharged from the pre-drying processing liquid nozzle 39 lands on the upper surface of the substrate W, and a position where the pre-drying processing liquid nozzle 39 is positioned around the processing cup 21 in plan view.
  • the drying pretreatment liquid nozzle 39 is moved horizontally between the standby position to be processed.
  • the replacement liquid nozzle 43 is connected to a nozzle moving unit 46 that moves the replacement liquid nozzle 43 in at least one of the vertical direction and the horizontal direction.
  • the nozzle moving unit 46 includes a processing position where the replacement liquid discharged from the replacement liquid nozzle 43 lands on the upper surface of the substrate W, and a standby position where the replacement liquid nozzle 43 is positioned around the processing cup 21 in a plan view. The replacement liquid nozzle 43 is moved horizontally between them.
  • the wet processing unit 2 w includes a blocking member 51 disposed above the spin chuck 10.
  • FIG. 2 shows an example in which the blocking member 51 is a disk-shaped blocking plate.
  • the blocking member 51 includes a disk portion 52 horizontally arranged above the spin chuck 10.
  • the blocking member 51 is horizontally supported by a cylindrical support shaft 53 extending upward from the center of the disk portion 52.
  • the center line of the disk portion 52 is arranged on the rotation axis A1 of the substrate W.
  • the lower surface of the disk portion 52 corresponds to the lower surface 51L of the blocking member 51.
  • the lower surface 51L of the blocking member 51 is a facing surface facing the upper surface of the substrate W.
  • the lower surface 51L of the blocking member 51 is parallel to the upper surface of the substrate W and has an outer diameter equal to or larger than the diameter of the substrate W.
  • the blocking member 51 is connected to a blocking member elevating unit 54 that vertically moves the blocking member 51 up and down.
  • the blocking member elevating unit 54 positions the blocking member 51 at an arbitrary position from the upper position (the position shown in FIG. 2) to the lower position.
  • the lower position is a proximity position where the lower surface 51L of the blocking member 51 approaches the upper surface of the substrate W to a height at which a scan nozzle such as the chemical nozzle 31 cannot enter between the substrate W and the blocking member 51.
  • the upper position is a separated position where the blocking member 51 is retracted to a height at which the scan nozzle can enter between the blocking member 51 and the substrate W.
  • the plurality of nozzles include a central nozzle 55 that discharges a processing fluid, such as a processing liquid or a processing gas, downward through an upper central opening 61 that opens at the center of the lower surface 51L of the blocking member 51.
  • the center nozzle 55 extends vertically along the rotation axis A1.
  • the center nozzle 55 is disposed in a through hole vertically penetrating the center of the blocking member 51.
  • the inner peripheral surface of the blocking member 51 surrounds the outer peripheral surface of the central nozzle 55 at intervals in the radial direction (the direction orthogonal to the rotation axis A1).
  • the center nozzle 55 moves up and down together with the blocking member 51.
  • the discharge port of the center nozzle 55 that discharges the processing liquid is disposed above the upper central opening 61 of the blocking member 51.
  • the center nozzle 55 is connected to an upper gas pipe 56 for guiding the inert gas to the center nozzle 55.
  • the substrate processing apparatus 1 may include an upper temperature controller 59 for heating or cooling the inert gas discharged from the central nozzle 55.
  • the inert gas is discharged from the center nozzle 55 at a flow rate corresponding to the opening degree of the flow control valve 58 for changing the flow rate of the inert gas. Is continuously discharged downward.
  • the inert gas discharged from the center nozzle 55 is a nitrogen gas.
  • the inert gas may be a gas other than nitrogen gas such as helium gas or argon gas.
  • the inner peripheral surface of the blocking member 51 and the outer peripheral surface of the center nozzle 55 form a cylindrical upper gas flow path 62 extending vertically.
  • the upper gas passage 62 is connected to an upper gas pipe 63 that guides the inert gas to the upper central opening 61 of the blocking member 51.
  • the substrate processing apparatus 1 may include an upper temperature controller 66 for heating or cooling the inert gas discharged from the upper central opening 61 of the blocking member 51.
  • the upper gas valve 64 interposed in the upper gas pipe 63 is opened, the inert gas flows in the upper center of the shut-off member 51 at a flow rate corresponding to the opening of the flow control valve 65 for changing the flow rate of the inert gas.
  • the liquid is continuously discharged downward from the opening 61.
  • the inert gas discharged from the upper central opening 61 of the blocking member 51 is a nitrogen gas.
  • the inert gas may be a gas other than nitrogen gas such as helium gas or argon gas.
  • the plurality of nozzles include a lower surface nozzle 71 that discharges the processing liquid toward the center of the lower surface of the substrate W.
  • the lower surface nozzle 71 includes a nozzle disk portion disposed between the upper surface 12u of the spin base 12 and the lower surface of the substrate W, and a nozzle tubular portion extending downward from the nozzle disk portion.
  • the discharge port of the lower nozzle 71 is open at the center of the upper surface of the nozzle disk.
  • the lower nozzle 71 is connected to a heating fluid pipe 72 that guides hot water (pure water higher than room temperature), which is an example of a heating fluid, to the lower nozzle 71. Pure water supplied to the lower nozzle 71 is heated by a lower heater 75 interposed in a heating fluid pipe 72.
  • the heating fluid valve 73 interposed in the heating fluid pipe 72 is opened, the hot water continuously flows upward from the discharge port of the lower surface nozzle 71 at a flow rate corresponding to the opening of the flow rate adjustment valve 74 that changes the flow rate of the hot water. Is discharged. Thereby, the warm water is supplied to the lower surface of the substrate W.
  • the lower nozzle 71 is further connected to a cooling fluid pipe 76 that guides cold water (pure water having a temperature lower than room temperature), which is an example of a cooling fluid, to the lower nozzle 71.
  • the pure water supplied to the lower nozzle 71 is cooled by a cooler 79 interposed in the cooling fluid pipe 76.
  • the cooling fluid valve 77 interposed in the cooling fluid pipe 76 is opened, the cold water continuously flows upward from the discharge port of the lower surface nozzle 71 at a flow rate corresponding to the opening of the flow rate adjustment valve 78 that changes the flow rate of the cold water. Is discharged. Thereby, the cold water is supplied to the lower surface of the substrate W.
  • the outer peripheral surface of the lower nozzle 71 and the inner peripheral surface of the spin base 12 form a cylindrical lower gas flow path 82 extending vertically.
  • the lower gas flow path 82 includes a lower central opening 81 that opens at the center of the upper surface 12u of the spin base 12.
  • the lower gas flow path 82 is connected to a lower gas pipe 83 that guides an inert gas to a lower central opening 81 of the spin base 12.
  • the substrate processing apparatus 1 may include a lower temperature controller 86 that heats or cools the inert gas discharged from the lower center opening 81 of the spin base 12.
  • the inert gas flows at the lower center of the spin base 12 at a flow rate corresponding to the opening of the flow rate adjustment valve 85 for changing the flow rate of the inert gas.
  • the liquid is continuously discharged upward from the opening 81.
  • the inert gas discharged from the lower center opening 81 of the spin base 12 is a nitrogen gas.
  • the inert gas may be a gas other than nitrogen gas such as helium gas or argon gas.
  • the nitrogen gas flows between the lower surface of the substrate W and the upper surface 12u of the spin base 12 in all directions. Flows radially. Thereby, the space between the substrate W and the spin base 12 is filled with the nitrogen gas.
  • FIG. 3 is a schematic view of the inside of the dry processing unit 2d provided in the substrate processing apparatus 1 as viewed horizontally.
  • the dry processing unit 2d includes a box-shaped chamber 4 having an internal space, and a heating unit 91 for heating the substrate W in the chamber 4.
  • the heating unit 91 includes a hot plate 92 for horizontally supporting and heating the substrate W, a plurality of lift pins 97 for horizontally supporting the substrate W above the hot plate 92, and a lift elevating unit 98 for vertically moving the plurality of lift pins 97.
  • the hot plate 92 is an example of a heating member that heats the substrate W.
  • the hot plate 92 includes a heating element 93 that generates Joule heat when energized, and an outer case 94 that horizontally supports the substrate W and houses the heating element 93.
  • the heating element 93 and the outer case 94 are arranged below the substrate W.
  • the heating element 93 is connected to a wiring (not shown) that supplies power to the heating element 93.
  • the temperature of the heating element 93 is changed by the control device 3. When the control device 3 causes the heating element 93 to generate heat, the entire substrate W is uniformly heated.
  • the outer case 94 of the hot plate 92 includes a disc-shaped base portion 95 disposed below the substrate W, and a plurality of hemispherical protrusions 96 protruding upward from the upper surface of the base portion 95.
  • the upper surface of the base portion 95 is parallel to the lower surface of the substrate W, and has an outer diameter equal to or larger than the outer diameter of the substrate W.
  • the plurality of protrusions 96 contact the lower surface of the substrate W at a position separated upward from the upper surface of the base portion 95.
  • the plurality of protrusions 96 are arranged at a plurality of positions on the upper surface of the base 95 so that the substrate W is supported horizontally.
  • the substrate W is supported horizontally with the lower surface of the substrate W separated upward from the upper surface of the base portion 95.
  • the plurality of lift pins 97 are inserted into the plurality of through holes penetrating the hot plate 92, respectively.
  • the lift pins 97 include hemispherical upper ends that come into contact with the lower surface of the substrate W.
  • the upper ends of the plurality of lift pins 97 are arranged at the same height.
  • the lift elevating unit 98 includes an upper position where the upper ends of the plurality of lift pins 97 are located above the hot plate 92 (a position indicated by a two-dot chain line in FIG. 3), and an upper end of the plurality of lift pins 97 which corresponds to the hot plate 92.
  • the plurality of lift pins 97 are moved in the vertical direction between the retracted lower position (the position indicated by the solid line in FIG. 3).
  • FIG. 4 is a block diagram showing hardware of the control device 3.
  • the control device 3 is a computer including a computer main body 3a and a peripheral device 3d connected to the computer main body 3a.
  • the computer main body 3a includes a CPU 3b (central processing unit) for executing various instructions, and a main storage device 3c for storing information.
  • the peripheral device 3d includes an auxiliary storage device 3e that stores information such as a program P, a reading device 3f that reads information from the removable medium M, and a communication device 3g that communicates with another device such as a host computer.
  • the control device 3 is connected to the input device and the display device.
  • the input device is operated when an operator such as a user or a maintenance person inputs information to the substrate processing apparatus 1.
  • the information is displayed on the screen of the display device.
  • the input device may be any of a keyboard, a pointing device, and a touch panel, or may be other devices.
  • a touch panel display serving also as an input device and a display device may be provided in the substrate processing apparatus 1.
  • the CPU 3b executes the program P stored in the auxiliary storage device 3e.
  • the program P in the auxiliary storage device 3e may be installed in the control device 3 in advance, or may be sent from the removable medium M to the auxiliary storage device 3e through the reading device 3f, It may be transmitted from an external device such as a host computer to the auxiliary storage device 3e through the communication device 3g.
  • the auxiliary storage device 3e and the removable medium M are non-volatile memories that retain data even when power is not supplied.
  • the auxiliary storage device 3e is, for example, a magnetic storage device such as a hard disk drive.
  • the removable medium M is, for example, an optical disk such as a compact disk or a semiconductor memory such as a memory card.
  • the removable medium M is an example of a computer-readable recording medium on which the program P is recorded.
  • the removable medium M is a non-transitory tangible recording medium (non-transitory / tangible / recording / medium).
  • the auxiliary storage device 3e stores a plurality of recipes.
  • the recipe is information that defines processing contents, processing conditions, and processing procedures for the substrate W.
  • the plurality of recipes differ from each other in at least one of the processing content, processing conditions, and processing procedure of the substrate W.
  • the control device 3 controls the substrate processing apparatus 1 so that the substrate W is processed according to the recipe specified by the host computer.
  • the following steps are executed by the control device 3 controlling the substrate processing apparatus 1. In other words, the control device 3 is programmed to execute the following steps.
  • the substrate W to be processed is, for example, a semiconductor wafer such as a silicon wafer.
  • the surface of the substrate W corresponds to a device formation surface on which devices such as transistors and capacitors are formed.
  • the substrate W may be a substrate W on which a pattern P1 (see FIG. 6A) is formed on the surface of the substrate W, which is a pattern formation surface, or a substrate W on which the pattern P1 is not formed on the surface of the substrate W. You may. In the latter case, the pattern P1 may be formed in a chemical solution supply step described later.
  • FIG. 5 is a process chart for explaining an example of the processing of the substrate W performed by the substrate processing apparatus 1.
  • 6A to 6D are schematic diagrams showing the state of the substrate W when the processing shown in FIG. 5 is being performed. In the following, reference is made to FIG. 2, FIG. 3, and FIG. 6A to 6D will be referred to as appropriate.
  • a loading step (step S1 in FIG. 5) for loading the substrate W into the wet processing unit 2w is performed.
  • the center robot CR moves the hand H1 into the wet processing unit 2w while supporting the substrate W with the hand H1. Then, the center robot CR places the substrate W on the hand H1 on the plurality of chuck pins 11 with the surface of the substrate W facing upward. Thereafter, the plurality of chuck pins 11 are pressed against the outer peripheral surface of the substrate W, and the substrate W is gripped. After placing the substrate W on the spin chuck 10, the center robot CR retracts the hand H1 from inside the wet processing unit 2w.
  • the upper gas valve 64 and the lower gas valve 84 are opened, and the upper central opening 61 of the blocking member 51 and the lower central opening 81 of the spin base 12 start discharging nitrogen gas.
  • the space between the substrate W and the blocking member 51 is filled with the nitrogen gas.
  • the space between the substrate W and the spin base 12 is filled with nitrogen gas.
  • the guard elevating unit 27 raises at least one guard 24 from the lower position to the upper position.
  • the spin motor 14 is driven, and the rotation of the substrate W is started (Step S2 in FIG. 5). Thereby, the substrate W rotates at the liquid supply speed.
  • a chemical solution supply step (step S3 in FIG. 5) of supplying the chemical solution to the upper surface of the substrate W and forming a liquid film of the chemical solution covering the entire upper surface of the substrate W is performed.
  • the nozzle moving unit 34 moves the chemical solution nozzle 31 from the standby position to the processing position in a state where the blocking member 51 is located at the upper position and at least one guard 24 is located at the upper position. . Thereafter, the chemical liquid valve 33 is opened, and the chemical liquid nozzle 31 starts discharging the chemical liquid. When a predetermined time elapses after the chemical liquid valve 33 is opened, the chemical liquid valve 33 is closed, and the discharge of the chemical liquid is stopped. Thereafter, the nozzle moving unit 34 moves the chemical liquid nozzle 31 to the standby position.
  • the chemical liquid discharged from the chemical liquid nozzle 31 lands on the upper surface of the substrate W rotating at the liquid supply speed, and then flows outward along the upper surface of the substrate W by centrifugal force. Therefore, the chemical solution is supplied to the entire upper surface of the substrate W, and a liquid film of the chemical solution covering the entire upper surface of the substrate W is formed.
  • the nozzle moving unit 34 may move the liquid landing position so that the liquid landing position on the upper surface of the substrate W passes through the central portion and the outer peripheral portion, The liquid landing position may be stationary at the center.
  • a rinsing liquid supply step (step S4 in FIG. 5) of supplying pure water, which is an example of a rinsing liquid, to the upper surface of the substrate W to wash out the chemical liquid on the substrate W.
  • the nozzle moving unit 38 moves the rinse liquid nozzle 35 from the standby position to the processing position with the blocking member 51 positioned at the upper position and at least one guard 24 positioned at the upper position. Let it. Thereafter, the rinsing liquid valve 37 is opened, and the rinsing liquid nozzle 35 starts discharging the rinsing liquid. Before the discharge of pure water is started, the guard elevating unit 27 may move at least one guard 24 vertically in order to switch the guard 24 that receives the liquid discharged from the substrate W. When a predetermined time has elapsed since the opening of the rinse liquid valve 37, the rinse liquid valve 37 is closed, and the discharge of the rinse liquid is stopped. Thereafter, the nozzle moving unit 38 moves the rinse liquid nozzle 35 to the standby position.
  • the pure water discharged from the rinsing liquid nozzle 35 lands on the upper surface of the substrate W rotating at the liquid supply speed, and then flows outward along the upper surface of the substrate W by centrifugal force.
  • the chemical on the substrate W is replaced with pure water discharged from the rinse liquid nozzle 35.
  • a liquid film of pure water covering the entire upper surface of the substrate W is formed.
  • the nozzle moving unit 38 may move the liquid landing position so that the pure water landing position on the upper surface of the substrate W passes through the central portion and the outer peripheral portion.
  • the liquid landing position may be stationary at the center.
  • a replacement liquid supply step (step S5 in FIG. 5) of supplying a replacement liquid that is soluble in both the rinsing liquid and the pre-drying treatment liquid to the upper surface of the substrate W and replacing the pure water on the substrate W with the replacement liquid is performed.
  • the nozzle moving unit 46 moves the replacement liquid nozzle 43 from the standby position to the processing position in a state where the blocking member 51 is located at the upper position and at least one guard 24 is located at the upper position. Let it. Thereafter, the replacement liquid valve 45 is opened, and the replacement liquid nozzle 43 starts discharging the replacement liquid. Before the discharge of the replacement liquid is started, the guard elevating unit 27 may move at least one guard 24 vertically in order to switch the guard 24 that receives the liquid discharged from the substrate W. When a predetermined time has elapsed since the replacement liquid valve 45 was opened, the replacement liquid valve 45 is closed, and the discharge of the replacement liquid is stopped. Thereafter, the nozzle moving unit 46 moves the replacement liquid nozzle 43 to the standby position.
  • the replacement liquid discharged from the replacement liquid nozzle 43 lands on the upper surface of the substrate W rotating at the liquid supply speed, and then flows outward along the upper surface of the substrate W by centrifugal force.
  • the pure water on the substrate W is replaced with the replacement liquid discharged from the replacement liquid nozzle 43.
  • a liquid film of the replacement liquid covering the entire upper surface of the substrate W is formed.
  • the nozzle moving unit 46 may move the liquid landing position so that the liquid landing position on the upper surface of the substrate W passes through the central portion and the outer peripheral portion.
  • the liquid landing position may be stationary at the center.
  • a pre-drying treatment liquid supply step (Step S6 in FIG. 5) of supplying the pre-drying treatment liquid to the upper surface of the substrate W and forming a liquid film of the pre-drying treatment liquid on the substrate W is performed.
  • the nozzle moving unit 42 moves the pre-drying processing liquid nozzle 39 from the standby position to the processing position. Move to Thereafter, the pre-drying treatment liquid valve 41 is opened, and the pre-drying treatment liquid nozzle 39 starts discharging the pre-drying treatment liquid.
  • the guard elevating unit 27 may move at least one guard 24 vertically to switch the guard 24 that receives the liquid discharged from the substrate W.
  • the pre-drying treatment liquid discharged from the pre-drying treatment liquid nozzle 39 lands on the upper surface of the substrate W rotating at the liquid supply speed, and then flows outward along the upper surface of the substrate W by centrifugal force.
  • the replacement liquid on the substrate W is replaced with the pre-drying processing liquid discharged from the pre-drying processing liquid nozzle 39.
  • a liquid film of the pre-drying treatment liquid covering the entire upper surface of the substrate W is formed.
  • FIG. 6A shows an example of a cross section of the substrate W supplied with the pre-drying treatment liquid.
  • the pre-drying treatment liquid comes into contact with the upper surface of the substrate W including the surface of the pattern P1 (the surface of the substrate W)
  • the adsorbed substance contained in the pre-drying treatment liquid is adsorbed on the upper surface of the substrate W.
  • a similar phenomenon occurs everywhere on the upper surface of the substrate W, and the adsorbed substance contained in the pre-drying treatment liquid is adsorbed on each part of the upper surface of the substrate W.
  • 6A shows an example in which one molecule of the adsorbing substance is adsorbed on each part of the upper surface of the substrate W, and a monomolecular film of the adsorbing substance is formed along the upper surface of the substrate W.
  • the boundary is drawn between the pre-drying treatment liquid adsorbed on the upper surface of the substrate W and the pre-drying liquid not adsorbed on the upper surface of the substrate W. No such boundary exists.
  • Step S7 in FIG. 5 After the formation of the liquid film of the pre-drying treatment liquid, the adsorption promotion that promotes the adsorption of the adsorbed substance to the upper surface of the substrate W while maintaining the entire upper surface of the substrate W covered with the liquid film of the pre-drying treatment liquid The process (Step S7 in FIG. 5) is performed.
  • the spin motor 14 lowers the rotation speed of the substrate W while the pre-drying processing liquid nozzle 39 is discharging the pre-drying processing liquid.
  • the spin motor 14 may stop the rotation of the substrate W, or may rotate the substrate W at an adsorption promoting speed lower than the liquid supply speed (for example, a speed exceeding 0 and 20 rpm or less).
  • the pre-drying treatment liquid valve 41 is closed, and the discharge of the pre-drying treatment liquid is stopped.
  • the nozzle moving unit 42 moves the pre-drying treatment liquid nozzle 39 to the standby position, and the blocking member elevating unit 54 lowers the blocking member 51 from the upper position to the lower position.
  • the flow of the pre-drying treatment liquid at the interface between the pre-drying treatment liquid and the pattern P1 becomes gentle, and the adsorption of the adsorbed substance on the surface of the pattern P1 is promoted.
  • the substrate W is rotated at a liquid removal speed to remove a part of the pre-drying treatment liquid on the upper surface of the substrate W.
  • a removal step (step S8 in FIG. 5) is performed.
  • the spin motor 14 controls the rotation speed of the substrate W to be lower than the adsorption promotion speed. Is also increased to a large liquid removal rate and maintained at the liquid removal rate.
  • the liquid removal rate may be equal to or different from the liquid supply rate.
  • the adsorbed substance adsorbed on the surface of the pattern P1 remains on the substrate W due to the force acting between the adsorbed substance and the substrate W.
  • the surface layer of the pre-drying solution remaining on the upper surface of the substrate W including the surface of the pattern P1 is concentrated by drying and changes to a solid thin film.
  • an adsorption film 101 containing the adsorbed substance adsorbed on the surface of the pattern P1 is formed along the surface of the pattern P1. Only the surface layer of the pre-drying treatment liquid remaining on the upper surface of the substrate W may be changed to solid, or the whole may be changed to solid. Alternatively, the pre-drying treatment liquid remaining on the upper surface of the substrate W may change into a gel state.
  • the adsorption film 101 corresponds to a sacrificial film that is finally removed from the substrate W.
  • the adsorption film 101 may be a solidified film obtained by solidifying the pretreatment liquid for drying.
  • the adsorption film 101 includes a side film 101s covering the side surface Ps of the pattern P1, an upper surface film 101u covering the upper surface Pu of the pattern P1, and a bottom covering the bottom surface of the substrate W (the plane Ws of the substrate W). And a surface film 101b.
  • the upper end of the side surface film 101s and the upper surface film 101u constitute a leading end film that covers the leading end of the pattern P1.
  • the thickness T1 of the attraction film 101 is smaller than the height Hp of the pattern P1.
  • the thickness T1 of the attraction film 101 may be smaller than the width Wp of the pattern P1, or may be smaller than the distance G1 between two adjacent patterns P1.
  • the adsorption film 101 may be a monomolecular film of an adsorption substance. In this case, the thickness T1 of the adsorption film 101 is several nanometers or several angstroms.
  • FIG. 6B shows a state immediately after two adjacent patterns P1 collapse in the direction approaching each other.
  • the pre-drying treatment liquid on the substrate W is reduced to a certain extent, the upper surface (liquid level) of the pre-drying treatment liquid moves between two adjacent convex patterns P1. That is, the interface between the gas and the liquid (the pre-drying treatment liquid) moves between the patterns P1, and the collapse force caused by the surface tension of the pre-drying treatment liquid is applied to the pattern P1 via the adsorption film 101.
  • the two adjacent patterns P1 collapse in a direction approaching each other at least a part of the surface of the pattern P1 is coated with the adsorption film 101, so that the two patterns P1 are in direct contact with each other. Instead, they are in contact with each other via the adsorption film 101.
  • the collapsed pattern P1 attempts to return to a vertical state perpendicular to the bottom surface of the substrate W (the plane Ws of the substrate W) by the restoring force (elasticity) of the pattern P1.
  • the restoring force elasticity
  • the two side films 101s respectively covering the tip portions of the two collapsed patterns P1 come into contact with each other, an adhesive force is generated between the two side films 101s.
  • the adhesive force is stronger than the restoring force of the pattern P1
  • the collapsed pattern P1 does not return to the vertical state, but is maintained in a collapsed state inclined with respect to the bottom surface of the substrate W.
  • FIG. 6C shows a state where a certain amount of time has elapsed after two adjacent patterns P1 collapsed in a direction approaching each other.
  • the pre-drying treatment liquid is removed from the substrate W, a part of the pre-drying treatment liquid on the substrate W is vaporized and flows in all directions.
  • the drying pretreatment liquid vaporized near the roots of the two collapsed patterns P1 adheres to the adsorption film 101 interposed between the tips of the two patterns P1. Therefore, as shown by the broken-line circles in FIG. 6C, the suction film 101 is thicker near the tip portions of the two collapsed patterns P1 than at other positions.
  • the pre-drying treatment on the upper surface of the substrate W is performed.
  • the liquid may be heated.
  • the heating fluid valve 73 may be opened to discharge hot water to the lower nozzle 71, or the nitrogen gas heated by the lower temperature controller 86 may be discharged to the lower center opening 81 of the spin base 12. If the pre-drying treatment liquid on the upper surface of the substrate W is heated, the time required for forming the adsorption film 101 can be reduced.
  • a transfer step (step S10 in FIG. 5) of transferring the dried or substantially dried substrate W from the wet processing unit 2w to the dry processing unit 2d is performed.
  • the spin motor 14 is stopped, and the rotation of the substrate W is stopped (Step S9 in FIG. 5). Further, the blocking member elevating unit 54 raises the blocking member 51 to the upper position, and the guard elevating unit 27 lowers all the guards 24 to the lower position. Further, the upper gas valve 64 and the lower gas valve 84 are closed, and the upper central opening 61 of the blocking member 51 and the lower central opening 81 of the spin base 12 stop discharging nitrogen gas. Thereafter, the center robot CR causes the hand H1 to enter the wet processing unit 2w. The center robot CR supports the substrate W on the spin chuck 10 with the hand H1 after the plurality of chuck pins 11 release the grip of the substrate W. Thereafter, the center robot CR retracts the hand H1 from inside the wet processing unit 2w while supporting the substrate W with the hand H1. Thereby, the substrate W is unloaded from the wet processing unit 2w.
  • the center robot CR supports the substrate W with the hand H1 while holding the substrate H with the dry processing unit while the plurality of lift pins 97 are located at the upper position. Enter into 2d. Then, the center robot CR places the substrate W on the hand H1 on the plurality of lift pins 97 with the surface of the substrate W facing upward. Thereafter, the lift elevating unit 98 lowers the plurality of lift pins 97 to the lower position. Thus, the substrate W on the plurality of lift pins 97 is placed on the hot plate 92. After placing the substrate W on the plurality of lift pins 97, the center robot CR retracts the hand H1 from inside the dry processing unit 2d.
  • an adsorption film removal step (step S11 in FIG. 5) of changing the adsorption film 101 on the substrate W into a gas and removing the gas from the upper surface of the substrate W is performed.
  • the hot plate 92 heats the adsorption film 101 on the substrate W via the substrate W at a removal temperature (for example, a temperature higher than 100 ° C.).
  • a removal temperature for example, a temperature higher than 100 ° C.
  • the adsorption substance contained in the adsorption film 101 is a sublimable substance
  • the adsorption film 101 on the substrate W changes into a gas without passing through a liquid.
  • the adsorbing substance contained in the adsorbing film 101 is a substance other than the sublimable substance
  • the adsorbing film 101 on the substrate W changes into a gas by thermal decomposition.
  • the gas (gas containing the adsorbed substance) generated from the adsorption film 101 is discharged from the inside of the dry processing unit 2d through the exhaust duct 8.
  • the adsorption film 101 is removed from the upper surface of the substrate W.
  • Step S12 in FIG. 5 an unloading step of unloading the substrate W from the dry processing unit 2d (Step S12 in FIG. 5) is performed.
  • the lift elevating unit 98 raises the plurality of lift pins 97 from the lower position to the upper position.
  • the substrate W on the hot plate 92 is lifted by the plurality of lift pins 97, and separates upward from the hot plate 92.
  • the center robot CR causes the hand H1 to enter the dry processing unit 2d.
  • the lift elevating unit 98 lowers the plurality of lift pins 97 to the lower position.
  • the substrate W on the plurality of lift pins 97 is placed on the hand H1.
  • the center robot CR retracts the hand H1 from the inside of the dry processing unit 2d.
  • the processed substrate W is unloaded from the dry processing unit 2d.
  • the pre-drying liquid containing the adsorbed substance is supplied to the surface of the substrate W which is held horizontally.
  • the adsorption substance contained in the pre-drying treatment liquid is adsorbed on the surface of the pattern P1 formed on the substrate W.
  • the substrate W is rotated about a vertical rotation axis A1 while holding the substrate W horizontally.
  • the pre-drying liquid is discharged from the surface of the substrate W by centrifugal force, and the amount of the pre-drying liquid on the surface of the substrate W decreases.
  • the adsorption film 101 including the adsorption substance adsorbed on the surface of the pattern P1 is formed along the surface of the pattern P1. That is, the space between the two adjacent patterns P1 is not filled with the adsorbing film 101 without a gap, but the surface of the pattern P1 is opposed to each other in the width direction of the pattern P1 via the space. It is coated with the adsorption film 101.
  • the pre-drying treatment liquid on the substrate W decreases to a certain extent, the upper surface (liquid level) of the pre-drying treatment liquid moves between two adjacent convex patterns P1. That is, the interface between the gas and the liquid (the pre-drying treatment liquid) moves between the patterns P1, and the collapse force caused by the surface tension of the pre-drying treatment liquid is applied to the pattern P1 via the adsorption film 101.
  • the two adjacent patterns P1 collapse in a direction approaching each other, at least a part of the surface of the pattern P1 is coated with the adsorption film 101, so that the two patterns P1 are in direct contact with each other. Instead, they are in contact with each other via the adsorption film 101.
  • the adsorption film 101 is changed to a gas. Thereby, the adsorption film 101 is removed from the surface of the substrate W. If two adjacent patterns P1 collapse in a direction approaching each other when removing the pre-drying treatment liquid, the adsorption film 101 is removed from between the two patterns P1. If the pattern P1 is not plastically deformed or damaged, the collapsed pattern P1 returns to the vertical state by the restoring force of the pattern P1 when the adsorption film 101 is removed. In other words, even if the pattern P1 collapses before the adsorption film 101 is removed, the pattern P1 returns to the vertical state after the adsorption film 101 is removed.
  • the final collapse rate of the pattern P1 can be improved.
  • the same processing as the above-described example of the processing of the substrate W was performed using the sample on which the pattern P1 was formed, it was confirmed that the collapse rate of the pattern P1 was actually improved.
  • the drying pretreatment liquid is applied to the pattern P1 while stopping the rotation of the substrate W or maintaining the rotation speed of the substrate W at a small value (adsorption acceleration speed). Contact surface. Since the rotation speed of the substrate W is zero or low, the flow of the pre-drying treatment liquid at the interface between the pre-drying treatment liquid and the surface of the pattern P1 becomes gentle, and the adsorption of the adsorbed substance on the surface of the pattern P1 is promoted. Thereby, more adsorption substances can be adsorbed on the surface of the pattern P1.
  • the thin adsorption film 101 is formed on the surface of the pattern P1. That is, the thickness T1 of the adsorption film 101 (see FIG. 6B) is smaller than the height Hp of the pattern P1 (see FIG. 6A). Since the adsorbing film 101 is thin, the adsorbing film 101 can be removed in a short time, and the amount of energy required for removing the adsorbing film 101 can be reduced. When the adsorbing film 101 is removed by heating, the heating time of the substrate W can be shortened, so that a change in the surface of the substrate W such as oxidation can be suppressed.
  • the pre-drying liquid which is a solution in which the adsorbed substance and the solvent are uniformly dissolved, is supplied to the substrate W.
  • the pre-drying liquid which is a solution in which the adsorbed substance and the solvent are uniformly dissolved.
  • the adsorbed substance is dissolved in the solvent, even if the freezing point of the adsorbed substance is higher than room temperature, if the freezing point of the dried pretreatment liquid can be made lower than room temperature due to the freezing point drop caused by mixing of the adsorbed substance and the solvent, the dried pretreated liquid can be cooled to room temperature Can be kept liquid. Therefore, energy consumption required for processing the substrate W can be reduced.
  • the pre-drying treatment liquid on the surface of the substrate W when a part of the pre-drying treatment liquid on the surface of the substrate W is removed by rotation of the substrate W, nitrogen gas, which is an example of gas, is discharged toward the surface of the substrate W.
  • the pre-drying treatment liquid on the substrate W is discharged from the substrate W at a gas pressure.
  • a part of the pre-drying treatment liquid on the substrate W evaporates due to the supply of gas. Thereby, the unnecessary pre-drying treatment liquid can be quickly removed from the surface of the substrate W.
  • the main difference between the second embodiment and the first embodiment is that the built-in heater 111 is built in the blocking member 51 and a hot plate 92 is provided instead of the lower surface nozzle 71.
  • FIG. 7A is a schematic view of the spin chuck 10, the blocking member 51, and the hot plate 92 according to the second embodiment of the present invention viewed horizontally.
  • FIG. 7B is a schematic view of the spin chuck 10 and the hot plate 92 as viewed from above.
  • 7A, 7B, 8A, and 8B the same components as those shown in FIGS. 1 to 6D described above are denoted by the same reference numerals as those in FIG. 1 and the like, and description thereof is omitted. .
  • the built-in heater 111 is disposed inside the disk portion 52 of the blocking member 51.
  • the built-in heater 111 moves up and down together with the blocking member 51.
  • the substrate W is arranged below the built-in heater 111.
  • the built-in heater 111 is, for example, a heating element that generates Joule heat when energized.
  • the temperature of the built-in heater 111 is changed by the control device 3. When the control device 3 causes the built-in heater 111 to generate heat, the entire substrate W is uniformly heated.
  • the hot plate 92 is arranged above the spin base 12. As shown in FIG. 7B, the center line of the hot plate 92 is arranged on the rotation axis A1 of the substrate W. Even if the spin chuck 10 rotates, the hot plate 92 does not rotate. The outer diameter of the hot plate 92 is smaller than the diameter of the substrate W. The plurality of chuck pins 11 are arranged around the hot plate 92. The substrate W is disposed above the hot plate 92.
  • the hot plate 92 is horizontally supported by a support shaft 113 extending downward from the center of the hot plate 92.
  • the hot plate 92 can move up and down with respect to the spin base 12.
  • the hot plate 92 is connected to a plate elevating unit 114 via a support shaft 113.
  • the plate elevating unit 114 vertically elevates the hot plate 92 between an upper position (a position indicated by a solid line in FIG. 7A) and a lower position (a position indicated by a two-dot chain line in FIG. 7A).
  • the upper position is a contact position where the hot plate 92 contacts the lower surface of the substrate W.
  • the lower position is a close position where the hot plate 92 is located between the lower surface of the substrate W and the upper surface 12u of the spin base 12 while being away from the substrate W.
  • the plate lifting unit 114 positions the hot plate 92 at an arbitrary position from the upper position to the lower position.
  • the hot plate 92 is raised to the upper position in a state where the substrate W is supported by the plurality of chuck pins 11 and the gripping of the substrate W is released, the plurality of protrusions 96 of the hot plate 92 , And the substrate W is supported by the hot plate 92. Thereafter, the substrate W is lifted by the hot plate 92 and moves upward away from the plurality of chuck pins 11.
  • the hot plate 92 is lowered to the lower position, the substrate W on the hot plate 92 is placed on the plurality of chuck pins 11, and the hot plate 92 is separated from the substrate W downward.
  • the substrate W is transferred between the plurality of chuck pins 11 and the hot plate 92.
  • FIG. 8A is a schematic view of the spin chuck 10, the blocking member 51, and the hot plate 92 viewed horizontally when the liquid removing step is being performed.
  • the blocking member 51 and the hot plate 92 are arranged at respective lower positions.
  • the control device 3 removes the built-in heater 111 and the hot plate 92 while the substrate W is partially removed by the rotation of the substrate W on the upper surface of the substrate W. May be heated to heat the pre-drying treatment liquid on the upper surface of the substrate W. If the pre-drying treatment liquid on the upper surface of the substrate W is heated, the time required for forming the adsorption film 101 can be reduced.
  • FIG. 8B is a schematic view of the spin chuck 10, the blocking member 51, and the hot plate 92 viewed horizontally when the adsorption film removing step is being performed.
  • the blocking member 51 is arranged at the lower position, and the hot plate 92 is arranged at the upper position.
  • the hot plate 92 may be arranged not at the upper position where the hot plate 92 is in contact with the substrate W but at a lower position where the hot plate 92 is separated from the substrate W.
  • the controller 3 may heat at least one of the built-in heater 111 and the hot plate 92 to heat the adsorption film 101 on the substrate W at the removal temperature in the adsorption film removal step (Step S11 in FIG. 5). In this case, the adsorption film 101 on the substrate W can be removed in the wet processing unit 2w. Further, if both the built-in heater 111 and the hot plate 92 generate heat, the time required for removing the adsorption film 101 can be reduced.
  • a heating gas higher than room temperature is discharged toward the upper surface of the substrate W, so that the adsorption film 101 on the substrate W is discharged.
  • 101 may be heated at the removal temperature.
  • the nitrogen gas heated by the upper temperature controller 59 may be discharged to the central nozzle 55, or the nitrogen gas heated by the upper temperature controller 66 (see FIG. May be ejected to the upper central opening 61 of the ink jet head.
  • the pre-drying treatment liquid on the substrate W is heated by using at least one of the built-in heater 111, the hot plate 92, and the heating gas.
  • the formation of the film 101 and the removal of the adsorption film 101 can proceed simultaneously.
  • the adsorption film 101 is changed to a gas while removing a part of the pre-drying treatment liquid on the surface of the substrate W, not after removing a part of the pre-drying treatment liquid on the surface of the substrate W. Can be.
  • the collapse duration for maintaining the pattern P1 in the collapsed state is shorter than in the case where the adsorption film 101 is removed in the dry processing unit 2d. If the collapse duration is long, the shape of the collapsed pattern P1 is stored, and the elastic recovery force for restoring the shape may be weakened. If the adsorption film 101 on the substrate W is removed by the wet processing unit 2w, the collapse duration can be shortened, so that the pattern P1 maintained in the collapsed state even after the adsorption film 101 is removed can be reduced.
  • the liquid removing step (step S8 in FIG. 5) may be performed without performing the adsorption promoting step (step S7 in FIG. 5).
  • a drying pretreatment liquid supply step may be performed without performing the replacement liquid supply step.
  • IPA may be supplied to the substrate W after spin-off.
  • IPA may be supplied to the substrate W not only before supplying the pre-drying treatment liquid but also after spin-off.
  • unnecessary substances such as residues may be generated on the substrate W. Even in such a case, if IPA is supplied to the substrate W after the spin-off, unnecessary substances on the substrate W can be washed away with the IPA.
  • HFE may be supplied to the substrate W after supplying IPA, and then the pre-drying treatment liquid may be supplied to the substrate W.
  • the replacement liquid supply step includes a first replacement liquid supply step of supplying IPA, which is an example of a first replacement liquid, to the substrate W, and a second replacement liquid of supplying HFE, an example of the second replacement liquid, to the substrate W.
  • IPA may be supplied to the substrate W after spin-off in the processing example 5 of FIG.
  • the concentration of the adsorbed substance contained in the pretreatment liquid was less than 1 wt%, and the main components of the pretreatment liquid were IPA and pure water.
  • the pure water on the substrate W is replaced with IPA, and then the IPA on the substrate W is replaced with HFE. Thereafter, the HFE on the substrate W is replaced with the pre-drying treatment liquid.
  • the density of HFE is greater than the density of water and greater than the density of IPA.
  • the density of the HFE is higher than the density of the pretreatment liquid, that is, when there is a specific gravity difference between the HFE and the pretreatment liquid, only the surface layer of the HFE is replaced with the pretreatment liquid as shown in FIG. As a result, a bottom layer of HFE may remain on the substrate W. In this case, the adsorbed substance is adsorbed only at the tip of the pattern P1. When spin-off is performed in this state, the adsorption film 101 is formed only at the tip of the pattern P1.
  • the adsorption film 101 since the volume of the adsorption film 101 is smaller than that in the case where the adsorption film 101 covering the entire surface of the pattern P1 is formed, the adsorption film 101 can be removed in a short time, and the energy consumption required for removing the adsorption film 101 is reduced. Can be reduced.
  • the substrate W may be heated in parallel with at least one of the steps shown at the top of FIG.
  • the heating fluid valve 73 shown in FIG. Alternatively, at least one of the built-in heater 111 and the hot plate 92 of the blocking member 51 shown in FIG. 7A may generate heat. If the substrate W is heated when the liquid on the substrate W is replaced with another liquid, the liquid replacement efficiency can be improved.
  • the adsorption film 101 may be formed so as to be in contact with only the upper surface Pu of the pattern P1.
  • FIG. 11A shows an example in which the adsorption film 101 is recessed downward in a space between two adjacent patterns P1 and is not in contact with the pattern P1.
  • Such an adsorption film 101 supplies, for example, a drying pretreatment liquid having a higher viscosity than the drying pretreatment liquid used in the first embodiment to the substrate W, and the substrate W in the adsorption promoting step (step S7 in FIG. 5). It is formed by increasing the rotation speed (adsorption acceleration speed) of.
  • the IPA on the substrate W is heated via the substrate W.
  • the IPA is heated at a temperature equal to or higher than the boiling point of the IPA
  • the IPA located between the two adjacent patterns P1 evaporates, and at least a part of the space between the two adjacent patterns P1 is filled with the vapor of the IPA.
  • the adsorbed substance contained in the pre-drying treatment liquid does not adsorb on the surface of the pattern P1 except for the upper surface Pu of the pattern P1. This is because the surface of the pattern P1 except the upper surface Pu of the pattern P1 is in contact with the IPA vapor.
  • the suction film 101 that is in contact with only the upper surface Pu of the pattern P1 is formed.
  • the adsorption strength of the adsorption film 101 with respect to the pattern P1 is low. weak. Therefore, when the adsorption substance contained in the adsorption film 101 is a thermally decomposable polymer, the removal temperature required for thermal decomposition can be reduced, and the adsorption film 101 can be removed in a short time. Thereby, the amount of energy consumption required for removing the adsorption film 101 can be reduced.
  • the adsorption film 101 as shown in FIG. 11A When the adsorption film 101 as shown in FIG. 11A is formed, only the upper end portion of the surface of the pattern P1 reliably contacts the adsorption film 101, so that the stress generated in the pattern P1 can be reduced. That is, even if two adjacent patterns P1 collapse in a direction approaching each other, as shown in FIG. 11B, a part of the adsorption film 101 is sandwiched between the two patterns P1 and serves as a cushion. Therefore, it is possible to prevent the surface of the pattern P1 from being damaged.
  • the electromagnetic wave generator 115 shown in FIG. 12A or 12B may be provided in the dry processing unit 2d instead of or in addition to the hot plate 92.
  • the active gas supply device 116 shown in FIG. 12C may be provided in the dry processing unit 2d (see FIG. 3) instead of or in addition to the hot plate 92.
  • the electromagnetic wave generator 115 and the active gas supply device 116 may be provided in the wet processing unit 2w instead of the dry processing unit 2d.
  • the electromagnetic wave generator 115 shown in FIGS. 12A and 12B irradiates the adsorption film 101 on the substrate W with an electromagnetic wave to change the adsorption film 101 into a gas.
  • the active gas supply device 116 illustrated in FIG. 12C changes the adsorption film 101 into a gas by bringing an active gas such as an ozone gas or a hydrogen fluoride-containing gas into contact with the adsorption film 101.
  • an active gas such as an ozone gas or a hydrogen fluoride-containing gas
  • the unnecessary substances are thermally decomposed, oxidized, or ashed using an electromagnetic wave or an active gas. It may be removed by chemical conversion.
  • the electromagnetic wave generated by the electromagnetic wave generator 115 may be any of visible light, infrared light, and ultraviolet light, or may be other than these. That is, the electromagnetic wave generator 115 may be a lamp heater that emits visible light and infrared light, or may be a UV lamp that emits ultraviolet light. Further, the electromagnetic wave generator 115 may be a partial irradiation device 115A that irradiates an electromagnetic wave only to an irradiation region representing a partial region on the upper surface of the substrate W as shown in FIG. 12A, or as shown in FIG. 12B. The entire irradiation device 115B may simultaneously irradiate the entire surface of the upper surface of the substrate W with electromagnetic waves. In the former case, the partial irradiation device 115A may be moved so that the irradiation area moves within the upper surface of the substrate W.
  • the blocking member 51 may include a cylindrical portion extending downward from the outer peripheral portion of the disk portion 52 in addition to the disk portion 52. In this case, when the blocking member 51 is disposed at the lower position, the substrate W held by the spin chuck 10 is surrounded by the cylindrical portion.
  • the blocking member 51 may rotate around the rotation axis A1 together with the spin chuck 10.
  • the blocking member 51 may be placed on the spin base 12 so as not to contact the substrate W.
  • the blocking member 51 since the blocking member 51 is connected to the spin base 12, the blocking member 51 rotates in the same direction as the spin base 12 at the same speed.
  • the blocking member 51 may be omitted. However, when a liquid such as pure water is supplied to the lower surface of the substrate W, it is preferable that the blocking member 51 be provided. Droplets that travel along the outer peripheral surface of the substrate W from the lower surface of the substrate W toward the upper surface of the substrate W and droplets that bounce inward from the processing cup 21 can be blocked by the blocking member 51. This is because the amount of liquid mixed in the pre-drying treatment liquid can be reduced.
  • the wet processing unit 2w and the dry processing unit 2d may be provided in different substrate processing apparatuses instead of the same substrate processing apparatus. That is, the substrate processing apparatus 1 provided with the wet processing unit 2w and the substrate processing apparatus provided with the dry processing unit 2d are provided in the same substrate processing system. The substrate W may be transferred from the processing apparatus 1 to another substrate processing apparatus.
  • the substrate processing apparatus 1 is not limited to an apparatus for processing a disk-shaped substrate W, but may be an apparatus for processing a polygonal substrate W.
  • the pre-drying treatment liquid nozzle 39 is an example of a pre-drying treatment liquid supply unit.
  • the spin motor 14 is an example of a spin-off unit and a liquid removing unit.
  • the hot plate 92 and the built-in heater 111 are examples of an adsorption film removing unit.
  • the control device 3 is an example of an adsorption promotion unit.
  • the central nozzle 55 and the upper central opening 61 of the blocking member 51 are an example of a gas supply unit and a liquid removal unit.
  • the lower nozzle 71 and the lower central opening 81 of the spin base 12 are examples of a liquid heating unit and a liquid removing unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

Provided is a method for supplying a pre-dying treatment liquid, which includes an adsorbing material to be adsorbed onto the surface of a pattern formed on a substrate, on the surface of the horizontally-held substrate and adsorbing the adsorbing material to the surface of the pattern. An adsorption film that includes the adsorbing material adsorbed to the surface of the pattern is formed along the surface of the pattern by removing the pre-dying treatment liquid of a portion on the surface of the horizontally-held substrate by the rotation of the substrate around the vertical axis of rotation. The adsorption film is removed from the surface of the substrate by changing the adsorption film to gas.

Description

基板処理方法および基板処理装置Substrate processing method and substrate processing apparatus
 この出願は、2018年7月25日提出の日本国特許出願2018-139166号に基づく優先権を主張しており、この出願の全内容はここに引用により組み込まれるものとする。 This application claims priority based on Japanese Patent Application No. 2018-139166 filed on Jul. 25, 2018, the entire content of which is incorporated herein by reference.
 本発明は、基板を処理する基板処理方法および基板処理装置に関する。処理対象の基板には、たとえば、半導体ウエハ、液晶表示装置や有機EL(electroluminescence)表示装置などのFPD(Flat Panel Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、太陽電池用基板などが含まれる。 The present invention relates to a substrate processing method and a substrate processing apparatus for processing a substrate. The substrates to be processed include, for example, semiconductor wafers, flat panel display (FPD) substrates such as liquid crystal displays and organic EL (electroluminescence) displays, substrates for optical disks, substrates for magnetic disks, substrates for magneto-optical disks, Substrates for masks, ceramic substrates, solar cells, and the like are included.
 半導体装置や液晶表示装置などの製造工程では、半導体ウエハや液晶表示装置用ガラス基板などの基板に対して必要に応じた処理が行われる。このような処理には、薬液やリンス液などの処理液を基板に供給することが含まれる。処理液が供給された後は、処理液を基板から除去し、基板を乾燥させる。 製造 In a manufacturing process of a semiconductor device, a liquid crystal display device, and the like, processing is performed as necessary on a substrate such as a semiconductor wafer or a glass substrate for a liquid crystal display device. Such processing includes supplying a processing liquid such as a chemical liquid or a rinsing liquid to the substrate. After the processing liquid is supplied, the processing liquid is removed from the substrate, and the substrate is dried.
 基板の表面にパターンが形成されている場合、基板を乾燥させるときに、基板に付着している処理液の表面張力に起因する力がパターンに加わり、パターンが倒壊することがある。その対策として、IPA(イソプロピルアルコール)などの表面張力が低い液体を基板に供給したり、パターンに対する液体の接触角を90度に近づける疎水化剤を基板に供給したりする方法が採られる。しかしながら、IPAや疎水化剤を用いたとしても、パターンを倒壊させる倒壊力が零にはならないので、パターンの強度によっては、これらの対策を行ったとしても、十分にパターンの倒壊を防止できない場合がある。 場合 When a pattern is formed on the surface of the substrate, when the substrate is dried, a force due to the surface tension of the processing solution attached to the substrate is applied to the pattern, and the pattern may collapse. As a countermeasure, a method of supplying a liquid having a low surface tension, such as IPA (isopropyl alcohol), to the substrate, or supplying a hydrophobizing agent for bringing the contact angle of the liquid to the pattern close to 90 degrees to the substrate is adopted. However, even when IPA or a hydrophobizing agent is used, the collapse force for collapsing the pattern does not become zero. Therefore, depending on the strength of the pattern, even if these measures are taken, the collapse of the pattern cannot be sufficiently prevented. There is.
 近年、パターンの倒壊を防止する技術として昇華乾燥が注目されている。たとえば特許文献1には、昇華乾燥を行う基板処理方法および基板処理装置が開示されている。特許文献1に記載の昇華乾燥では、昇華性物質の融液が基板の表面に供給され、基板上のDIWが昇華性物質の融液に置換される。その後、基板上の昇華性物質の融液が冷却され、昇華性物質の凝固体が形成される。その後、基板上の昇華性物質の凝固体を昇華させる。これにより、昇華性物質の融液が基板から除去され、基板が乾燥する。 In recent years, sublimation drying has attracted attention as a technique for preventing the collapse of patterns. For example, Patent Literature 1 discloses a substrate processing method and a substrate processing apparatus for performing sublimation drying. In sublimation drying described in Patent Document 1, a melt of a sublimable substance is supplied to the surface of a substrate, and DIW on the substrate is replaced with a melt of the sublimable substance. Thereafter, the melt of the sublimable substance on the substrate is cooled, and a solidified substance of the sublimable substance is formed. Thereafter, the solidified body of the sublimable substance on the substrate is sublimated. Thereby, the melt of the sublimable substance is removed from the substrate, and the substrate is dried.
特開2015-142069号公報JP 2015-146969 A
 特許文献1では、隣り合う2つの凸状パターンの間だけでなく、パターンの上方にも昇華性物質の融液がある状態で、昇華性物質の融液を凝固させる。液体が極めて狭い空間に配置されると、凝固点降下が発生する。半導体ウエハなどの基板では、隣り合う2つのパターンの間隔が狭いので、パターンの間に位置する昇華性物質の凝固点が降下してしまう。したがって、パターンの間に位置する昇華性物質の凝固点は、パターンの上方に位置する昇華性物質の凝固点よりも低い。 In Patent Document 1, the sublimable substance melt is solidified not only between two adjacent convex patterns but also above the pattern. Freezing point depression occurs when the liquid is placed in a very narrow space. In a substrate such as a semiconductor wafer, since the space between two adjacent patterns is narrow, the freezing point of the sublimable substance located between the patterns is lowered. Thus, the freezing point of the sublimable material located between the patterns is lower than the freezing point of the sublimable material located above the pattern.
 パターンの間に位置する昇華性物質の凝固点だけが低いと、昇華性物質の融液の表層、つまり、昇華性物質の上面(液面)からパターンの上面までの範囲に位置する液体層が先に凝固し、パターンの間に位置する昇華性物質の融液が凝固せずに液体のまま残る場合がある。この場合、固体(昇華性物質の凝固体)と液体(昇華性物質の融液)の界面がパターンの近傍に形成され、パターンを倒壊させる倒壊力が発生することがある。パターンの微細化によってパターンがさらに脆弱になると、このような弱い倒壊力でも、パターンが倒壊してしまう。 If only the freezing point of the sublimable substance located between the patterns is low, the surface layer of the melt of the sublimable substance, that is, the liquid layer located in the range from the upper surface (liquid level) of the sublimable substance to the upper surface of the pattern, is first. And the melt of the sublimable substance located between the patterns may remain as a liquid without solidifying. In this case, an interface between a solid (solidified substance of the sublimable substance) and a liquid (melt of the sublimable substance) is formed in the vicinity of the pattern, and a collapse force that collapses the pattern may occur. If the pattern becomes more brittle due to the miniaturization of the pattern, the pattern collapses even with such a weak collapse force.
 また、パターンの間に位置する昇華性物質の融液が凝固していない状態でパターンが倒壊すると、隣り合う2つのパターンの先端部同士が互いに接触する場合がある。この場合、昇華性物質の凝固体を昇華させても、パターンの先端部同士が互いに接触した接着状態が維持され、パターンが垂直状態に戻らないことがある。したがって、昇華乾燥を行ったとしても、パターンの強度によっては、十分にパターンの倒壊を防止できない場合がある。 If the pattern collapses in a state where the melt of the sublimable substance located between the patterns is not solidified, the tips of two adjacent patterns may come into contact with each other. In this case, even when the solidified body of the sublimable substance is sublimated, the adhesive state in which the tips of the patterns are in contact with each other is maintained, and the pattern may not return to the vertical state. Therefore, even if sublimation drying is performed, there is a case where the collapse of the pattern cannot be sufficiently prevented depending on the strength of the pattern.
 そこで、本発明の目的の一つは、昇華乾燥で基板を乾燥させたときに発生するパターンの倒壊を減らし、パターンの倒壊率を低下させることができる基板処理方法および基板処理装置を提供することである。 Therefore, an object of the present invention is to provide a substrate processing method and a substrate processing apparatus capable of reducing collapse of a pattern generated when a substrate is dried by sublimation drying and reducing the collapse rate of the pattern. It is.
 本発明の一実施形態、基板に形成されたパターンの表面に吸着する吸着物質を含む乾燥前処理液を、水平に保持されている前記基板の表面に供給して、前記パターンの表面に前記吸着物質を吸着させる乾燥前処理液供給工程と、水平に保持されている前記基板の表面上の一部の前記乾燥前処理液を鉛直な回転軸線まわりの前記基板の回転によって除去することにより、前記パターンの表面に吸着した前記吸着物質を含む吸着膜を前記パターンの表面に沿って形成するスピンオフ工程、を含む液体除去工程と、前記吸着膜を気体に変化させることにより前記基板の表面から除去する吸着膜除去工程とを含む、基板処理方法を提供する。 In one embodiment of the present invention, a drying pretreatment liquid containing an adsorbing substance that is adsorbed on the surface of the pattern formed on the substrate is supplied to the surface of the substrate held horizontally, and the adsorption is performed on the surface of the pattern. A drying pretreatment liquid supply step of adsorbing a substance, and removing a part of the drying pretreatment liquid on the surface of the substrate held horizontally by rotating the substrate around a vertical rotation axis, A liquid removal step including a spin-off step of forming an adsorption film containing the adsorbed substance adsorbed on the surface of the pattern along the surface of the pattern; and removing the adsorption film from the surface of the substrate by changing the adsorption film to a gas. Provided is a substrate processing method including an adsorption film removing step.
 この構成によれば、吸着物質を含む乾燥前処理液を、水平に保持されている基板の表面に供給する。乾燥前処理液に含まれる吸着物質は、基板に形成されたパターンの表面に吸着する。そして、吸着物質がパターンの表面に吸着した状態で、基板を水平に保持しながら鉛直な回転軸線まわりに回転させる。これにより、乾燥前処理液が遠心力で基板の表面から排出され、基板の表面上の乾燥前処理液が減少する。 According to this configuration, the pre-drying liquid containing the adsorbed substance is supplied to the surface of the substrate held horizontally. The adsorbing substance contained in the pretreatment liquid adsorbs on the surface of the pattern formed on the substrate. Then, with the adsorbed substance adsorbed on the surface of the pattern, the substrate is rotated about a vertical rotation axis while holding the substrate horizontally. As a result, the pre-drying treatment liquid is discharged from the surface of the substrate by centrifugal force, and the amount of the pre-drying treatment liquid on the surface of the substrate decreases.
 基板をある程度の回転速度で回転させると、殆どの乾燥前処理液が基板の表面から除去されるものの、パターンの表面に吸着した吸着物質は基板に残る。これにより、パターンの表面に吸着した吸着物質を含む吸着膜がパターンの表面に沿って形成される。つまり、隣り合う2つのパターンの間の空間が吸着膜で隙間なく埋められるのではなく、吸着膜の表面が空間を介してパターンの幅方向に互いに向かい合うようにパターンの表面が吸着膜でコーティングされる。 (4) When the substrate is rotated at a certain rotation speed, most of the pretreatment liquid for drying is removed from the surface of the substrate, but the adsorbed substance adsorbed on the surface of the pattern remains on the substrate. Thereby, an adsorption film containing the adsorbed substance adsorbed on the surface of the pattern is formed along the surface of the pattern. In other words, the space between two adjacent patterns is not completely filled with the adsorbing film, but the surface of the pattern is coated with the adsorbing film so that the surfaces of the adsorbing film face each other in the width direction of the pattern via the space. You.
 その一方で、基板上の乾燥前処理液がある程度まで減ると、乾燥前処理液の上面(液面)が隣り合う2つの凸状パターンの間に移動する。つまり、気体と液体(乾燥前処理液)との界面がパターンの間に移動し、乾燥前処理液の表面張力に起因する倒壊力が吸着膜を介してパターンに加わる。このとき、隣り合う2つのパターンが互いに近づく方向に倒壊したとしても、パターンの表面の少なくとも一部が吸着膜でコーティングされているので、この2つのパターンは、直接的に接するのではなく、吸着膜を介して接する。 On the other hand, when the pre-drying treatment liquid on the substrate is reduced to a certain extent, the upper surface (liquid level) of the pre-drying treatment liquid moves between two adjacent convex patterns. That is, the interface between the gas and the liquid (the pre-drying treatment liquid) moves between the patterns, and the collapse force due to the surface tension of the pre-drying treatment liquid is applied to the pattern via the adsorption film. At this time, even if two adjacent patterns collapse in the direction approaching each other, at least a part of the surface of the pattern is coated with the adsorbing film, so that the two patterns are not directly in contact with each other but adsorbed. Contact through a membrane.
 吸着膜をパターンの表面に形成した後は、吸着膜を気体に変化させる。これにより、吸着膜が基板の表面から除去される。乾燥前処理液を除去するときに、隣り合う2つのパターンが互いに近づく方向に倒壊した場合は、この2つのパターンの間から吸着膜が除去される。パターンが塑性変形や破損していなければ、吸着膜を除去すると、倒壊したパターンは、パターンの復元力で垂直状態に戻る。言い換えると、吸着膜を除去するまでの間にパターンが倒壊しても、吸着膜を除去した後には、パターンが垂直状態に戻る。これにより、パターンの強度が高い場合だけでなく、パターンの強度が低い場合も、最終的なパターンの倒壊率を改善することができる。 後 After forming the adsorption film on the surface of the pattern, the adsorption film is changed into a gas. Thereby, the adsorption film is removed from the surface of the substrate. If two adjacent patterns collapse in a direction approaching each other when removing the pre-drying treatment liquid, the adsorption film is removed from between the two patterns. If the pattern is not plastically deformed or damaged, the collapsed pattern returns to the vertical state by the restoring force of the pattern when the adsorption film is removed. In other words, even if the pattern collapses before the adsorption film is removed, the pattern returns to the vertical state after the adsorption film is removed. Thereby, not only when the pattern strength is high but also when the pattern strength is low, the final pattern collapse rate can be improved.
 パターンは、単一の材料で形成された構造物であってもよいし、基板の厚み方向に積層された複数の層を含む構造物であってもよい。パターンの表面は、基板の厚み方向に直交する基板の平面に対して垂直または概ね垂直な側面と、基板の平面と平行または概ね平行な上面とを含む。吸着膜は、たとえば、パターンの表面と平行または概ね平行な表面を有する薄膜である。吸着膜がパターンの表面全域に形成される場合、吸着膜の表面は、パターンの上面と平行または概ね平行な上面と、パターンの側面と平行または概ね平行な側面とを含む。パターンの表面全域ではなく、パターンの表面の一部だけが、吸着膜に覆われてもよい。たとえば、パターンの側面の上端部とパターンの上面とを含むパターンの表面の上端部だけ、もしくは、パターンの上面だけが吸着膜に覆われてもよい。 The pattern may be a structure formed of a single material or a structure including a plurality of layers stacked in the thickness direction of the substrate. The surface of the pattern includes a side surface that is perpendicular or substantially perpendicular to a plane of the substrate orthogonal to the thickness direction of the substrate, and a top surface that is parallel or substantially parallel to the plane of the substrate. The adsorption film is, for example, a thin film having a surface parallel or substantially parallel to the surface of the pattern. When the adsorption film is formed on the entire surface of the pattern, the surface of the adsorption film includes an upper surface parallel or substantially parallel to the upper surface of the pattern, and a side surface parallel or substantially parallel to the side surface of the pattern. Instead of the entire surface of the pattern, only a part of the surface of the pattern may be covered with the adsorption film. For example, only the upper end of the surface of the pattern including the upper end of the side surface of the pattern and the upper surface of the pattern, or only the upper surface of the pattern may be covered with the adsorption film.
 前記実施形態において、以下の特徴の少なくとも一つが、前記基板処理方法に加えられてもよい。 In the above embodiment, at least one of the following features may be added to the substrate processing method.
 前記吸着膜除去工程は、前記吸着膜を介して接する倒壊した2つの前記パターンの間から前記吸着膜を除去することにより、倒壊した前記パターンの形状を前記パターンの復元力で復元するパターン復元工程を含む。 The adsorbing film removing step is a pattern restoring step of restoring the shape of the collapsed pattern with a restoring force of the pattern by removing the adsorbing film from between the two collapsed patterns that are in contact with each other via the adsorption film. including.
 この構成によれば、前述のように、隣り合う2つのパターンが互いに近づく方向に倒壊したとしても、この2つのパターンは、直接的に接するのではなく、吸着膜を介して接する。したがって、パターンが塑性変形や破損していなければ、吸着膜を除去すると、倒壊したパターンが弾性回復力で回復する。これにより、パターンの強度が低い場合であっても、最終的なパターンの倒壊率を改善することができる。 According to this configuration, as described above, even if two adjacent patterns collapse in a direction approaching each other, the two patterns do not directly contact each other but come into contact via the adsorption film. Therefore, if the pattern is not plastically deformed or damaged, the collapsed pattern is recovered by the elastic recovery force when the adsorption film is removed. As a result, even when the pattern strength is low, the final pattern collapse rate can be improved.
 吸着膜を除去する前は、吸着膜の一部が倒壊した2つのパターンの間に介在する。吸着膜を除去した後に倒壊したパターンの形状が元に戻るのであれば、倒壊した2つのパターンの一部が、吸着膜を除去する前に直接的に接していてもよい。このような場合でも、吸着膜を除去すると、2つのパターンを倒壊状態に維持する接着力が弱まるので、パターンが塑性変形や破損していなければ、倒壊したパターンは、パターンの復元力で垂直状態に戻る。 前 Before removing the adsorption film, a part of the adsorption film is interposed between the two collapsed patterns. If the shape of the collapsed pattern returns to the original shape after the removal of the adsorption film, a part of the two collapsed patterns may directly contact before removing the adsorption film. Even in such a case, if the adsorption film is removed, the adhesive force for maintaining the two patterns in a collapsed state is weakened. Therefore, if the pattern is not plastically deformed or damaged, the collapsed pattern is in a vertical state due to the restoring force of the pattern. Return to
 前記吸着物質は、前記パターンの表面に化学的に吸着する物質である。 The adsorbed substance is a substance that is chemically adsorbed on the surface of the pattern.
 前記吸着物質は、前記パターンの表面に物理的に吸着する物質である。 The adsorbed substance is a substance that physically adsorbs on the surface of the pattern.
 前記乾燥前処理液供給工程は、前記吸着膜を形成する前に、前記基板の回転を停止させながら、もしくは、前記吸着膜を形成するときの前記基板の回転速度よりも小さい回転速度で前記基板を回転させながら、前記乾燥前処理液を前記パターンの表面に接触させる吸着促進工程を含む。 The pre-drying treatment liquid supply step, before forming the adsorption film, while stopping the rotation of the substrate, or at a rotation speed smaller than the rotation speed of the substrate when forming the adsorption film, the substrate And rotating the surface of the pattern to contact the pre-drying liquid with the surface of the pattern.
 この構成によれば、吸着膜を形成する前に、基板の回転を停止させながら、もしくは、基板の回転速度を小さい値(吸着促進速度)に維持しながら、乾燥前処理液をパターンの表面に接触させる。基板の回転速度が零または小さいので、乾燥前処理液とパターンの表面との界面における乾燥前処理液の流動が緩やかになり、パターンの表面に対する吸着物質の吸着が促進される。これにより、より多くの吸着物質をパターンの表面に吸着させることができる。 According to this configuration, before forming the adsorption film, the drying pretreatment liquid is applied to the surface of the pattern while stopping the rotation of the substrate or while maintaining the rotation speed of the substrate at a small value (adsorption acceleration speed). Make contact. Since the rotation speed of the substrate is zero or small, the flow of the pretreatment liquid at the interface between the pretreatment liquid and the surface of the pattern becomes gentle, and the adsorption of the adsorbed substance on the surface of the pattern is promoted. Thereby, more adsorbed substances can be adsorbed on the surface of the pattern.
 前記吸着膜の厚みは、前記パターンの高さよりも小さい。 厚 み The thickness of the adsorption film is smaller than the height of the pattern.
 この構成によれば、薄い吸着膜がパターンの表面に形成される。つまり、吸着膜の厚みは、パターンの高さよりも小さい。吸着膜が薄いので、吸着膜を短時間で除去でき、吸着膜の除去に要するエネルギーの消費量を減らすことができる。吸着膜を加熱により除去する場合は、基板の加熱時間を短縮できるので、酸化等の基板の表面の変化を抑えることができる。さらに、吸着膜を気体に変化させたときに、残渣などの不要物が基板上に発生したとしても、吸着膜の体積が小さいので、不要物の発生量が少ない。したがって、不要物を短時間で除去できる。場合によって、不要物を除去しなくてもよい。 According to this configuration, a thin adsorption film is formed on the surface of the pattern. That is, the thickness of the adsorption film is smaller than the height of the pattern. Since the adsorption film is thin, the adsorption film can be removed in a short time, and the amount of energy required for removing the adsorption film can be reduced. When the adsorption film is removed by heating, the heating time of the substrate can be shortened, so that a change in the surface of the substrate such as oxidation can be suppressed. Further, even when unnecessary substances such as residues are generated on the substrate when the adsorption film is changed to gas, the volume of the unnecessary substance is small because the volume of the adsorption film is small. Therefore, unnecessary substances can be removed in a short time. In some cases, it is not necessary to remove unnecessary matter.
 前記乾燥前処理液は、前記吸着物質と、前記吸着物質と溶け合う溶媒と、を含む溶液である。 The drying pretreatment liquid is a solution containing the adsorbed substance and a solvent that dissolves in the adsorbed substance.
 この構成によれば、吸着物質と溶媒とが均一に溶け合った溶液である乾燥前処理液が基板に供給される。吸着物質の融液を基板に供給する場合、吸着物質の凝固点が室温以上であると、吸着物質を液体に維持するために吸着物質を加熱する必要がある。吸着物質を溶媒に溶かせば、吸着物質の凝固点が室温以上であったとしても、吸着物質と溶媒の混合により生じる凝固点降下により乾燥前処理液の凝固点を室温より低くできれば、乾燥前処理液を室温で液体に維持することができる。したがって、基板の処理に要するエネルギーの消費量を減らすことができる。 According to this configuration, the pretreatment liquid for drying, which is a solution in which the adsorbed substance and the solvent are uniformly dissolved, is supplied to the substrate. When supplying the melt of the adsorbing substance to the substrate, if the freezing point of the adsorbing substance is equal to or higher than room temperature, it is necessary to heat the adsorbing substance to maintain the adsorbing substance in a liquid state. If the adsorbed substance is dissolved in the solvent, even if the freezing point of the adsorbed substance is higher than room temperature, if the freezing point of the dried pretreatment liquid can be made lower than room temperature due to the freezing point drop caused by mixing of the adsorbed substance and the solvent, the dried pretreated liquid can be cooled to room temperature Can be kept liquid. Therefore, energy consumption required for processing the substrate can be reduced.
 前記吸着物質の凝固点が室温以上である場合、前記乾燥前処理液の凝固点は、室温よりも低くてもよい。この場合、室温の前記乾燥前処理液を前記基板の表面に供給してもよい。前記溶媒は、単一物質であってもよいし、2つ以上の物質が溶け合った混合物質であってもよい。いずれの場合も、前記溶媒は、前記吸着物質よりも蒸気圧が高い高蒸気圧物質を含んでいてもよい。 (4) When the freezing point of the adsorbed substance is higher than room temperature, the freezing point of the pretreatment liquid for drying may be lower than room temperature. In this case, the drying pretreatment liquid at room temperature may be supplied to the surface of the substrate. The solvent may be a single substance or a mixed substance in which two or more substances are dissolved. In any case, the solvent may include a high vapor pressure substance having a higher vapor pressure than the adsorption substance.
 前記液体除去工程は、前記基板の表面上の一部の前記乾燥前処理液を前記基板の回転によって除去しているときに、前記基板の表面に向けて気体を吐出する気体供給工程をさらに含む。 The liquid removing step further includes a gas supply step of discharging gas toward the surface of the substrate when a part of the pre-drying treatment liquid on the surface of the substrate is removed by rotation of the substrate. .
 この構成によれば、基板の表面上の乾燥前処理液の一部を基板の回転によって除去しているときに、基板の表面に向けて気体を吐出する。基板上の乾燥前処理液は、気体の圧力で基板から排出される。それと同時に、基板上の乾燥前処理液の一部は、気体の供給によって蒸発する。これにより、不要な乾燥前処理液を速やかに基板の表面から除去できる。 According to this configuration, when a part of the pre-drying treatment liquid on the surface of the substrate is removed by rotation of the substrate, the gas is discharged toward the surface of the substrate. The pre-drying treatment liquid on the substrate is discharged from the substrate at a gas pressure. At the same time, a part of the pretreatment liquid on the substrate evaporates due to the supply of gas. This makes it possible to quickly remove the unnecessary pretreatment liquid from the surface of the substrate.
 前記液体除去工程は、前記基板の表面上の一部の前記乾燥前処理液を前記基板の回転によって除去しているときに、前記基板の表面上の前記乾燥前処理液を加熱する液体加熱工程をさらに含む。 The liquid removing step is a liquid heating step of heating the pre-drying liquid on the surface of the substrate while removing a part of the pre-drying liquid on the surface of the substrate by rotating the substrate. Further included.
 この構成によれば、基板の表面上の乾燥前処理液の一部を基板の回転によって除去しているときに、基板の表面上の乾燥前処理液を加熱する。これにより、乾燥前処理液の温度が上昇し、乾燥前処理液の蒸発が促進される。したがって、不要な乾燥前処理液を速やかに基板の表面から除去できる。 According to this configuration, the drying pretreatment liquid on the surface of the substrate is heated when a part of the pretreatment liquid on the surface of the substrate is removed by rotation of the substrate. Thereby, the temperature of the pre-drying treatment liquid increases, and the evaporation of the pre-drying treatment liquid is promoted. Therefore, the unnecessary pretreatment liquid for drying can be quickly removed from the surface of the substrate.
 前記液体加熱工程は、前記基板の表面上の前記乾燥前処理液よりも高温の加熱ガスを前記基板の表面および裏面の少なくとも一方に向けて吐出する加熱ガス供給工程と、前記基板の表面上の前記乾燥前処理液よりも高温の加熱液を前記基板の裏面に向けて吐出する加熱液供給工程と、前記基板の表面上の前記乾燥前処理液よりも高温の加熱部材を、前記基板から離しながら前記基板の表面側または裏面側に配置する近接加熱工程と、前記基板の表面上の前記乾燥前処理液よりも高温の加熱部材を前記基板の裏面に接触させる接触加熱工程と、前記基板の表面上の前記乾燥前処理液に光を照射する光照射工程と、のうちの少なくとも一つを含んでいてもよい。前記光照射工程は、前記基板の表面の全域に同時に光を照射する全体照射工程、または、前記基板の表面内の一部の領域を表す照射領域だけに光を照射しながら前記照射領域を前記基板の表面内で移動させる部分照射工程を含んでいてもよいし、前記全体照射工程および部分照射工程の両方を含んでいてもよい。 The liquid heating step is a heating gas supply step of discharging a heating gas having a higher temperature than the drying pretreatment liquid on the front surface of the substrate toward at least one of the front surface and the back surface of the substrate, A heating liquid supply step of discharging a heating liquid having a higher temperature than the drying pretreatment liquid toward the back surface of the substrate, and a heating member having a temperature higher than the drying pretreatment liquid on the front surface of the substrate being separated from the substrate; A proximity heating step of arranging the substrate on the front side or the back side thereof, a contact heating step of bringing a heating member having a higher temperature than the drying pretreatment liquid on the surface of the substrate into contact with the back side of the substrate, Irradiating the drying pretreatment liquid on the surface with light. The light irradiation step is a whole irradiation step of simultaneously irradiating the entire surface of the substrate with light, or the irradiation region while irradiating light only to an irradiation region representing a partial region in the surface of the substrate. The method may include a partial irradiation step of moving within the surface of the substrate, or may include both the entire irradiation step and the partial irradiation step.
 前記吸着膜除去工程は、前記吸着膜を昇華させる昇華工程と、前記吸着膜の分解(たとえば熱分解や光分解)により前記吸着膜を固体または液体から気体に変化させる分解工程と、前記吸着膜の反応(たとえば酸化反応)により前記吸着膜を固体または液体から気体に変化させる反応工程と、前記吸着膜にプラズマを照射するプラズマ照射工程と、のうちの少なくとも一つを含んでいてもよい。 The adsorbing film removing step, a sublimation step of sublimating the adsorbing film, a decomposition step of changing the adsorbing film from a solid or a liquid to a gas by decomposition (for example, thermal decomposition or photolysis) of the adsorbing film; (For example, an oxidation reaction), the method may include at least one of a reaction step of changing the adsorption film from a solid or a liquid to a gas and a plasma irradiation step of irradiating the adsorption film with plasma.
 前記昇華工程は、前記基板を水平に保持しながら鉛直な回転軸線まわりに回転させる基板回転工程と、不活性ガスや空気などの気体を前記吸着膜に吹き付ける気体供給工程と、前記吸着膜を加熱する加熱工程と、前記吸着膜に接する雰囲気の圧力を低下させる減圧工程と、前記吸着膜に光を照射する光照射工程と、前記吸着膜に超音波振動を与える超音波振動付与工程と、のうちの少なくとも一つを含んでいてもよい。前記分解工程は、前記加熱工程、光照射工程、および超音波振動付与工程の少なくとも一つを含んでいてもよい。前記反応工程は、オゾンガスなどの活性ガスを前記吸着膜に接触させることにより、前記吸着膜を酸化させる酸化工程を含んでいてもよい。 The sublimation step includes a substrate rotation step of rotating the substrate about a vertical rotation axis while holding the substrate horizontally, a gas supply step of blowing a gas such as an inert gas or air onto the adsorption film, and heating the adsorption film. Heating step, pressure reducing step of reducing the pressure of the atmosphere in contact with the adsorption film, light irradiation step of irradiating the adsorption film with light, and ultrasonic vibration applying step of applying ultrasonic vibration to the adsorption film, At least one of them may be included. The decomposition step may include at least one of the heating step, the light irradiation step, and the ultrasonic vibration applying step. The reaction step may include an oxidation step of oxidizing the adsorption film by bringing an active gas such as ozone gas into contact with the adsorption film.
 本発明の他の実施形態は、基板に形成されたパターンの表面に吸着する吸着物質を含む乾燥前処理液を、水平に保持されている前記基板の表面に供給して、前記パターンの表面に前記吸着物質を吸着させる乾燥前処理液供給ユニットと、水平に保持されている前記基板の表面上の一部の前記乾燥前処理液を鉛直な回転軸線まわりの前記基板の回転によって除去することにより、前記パターンの表面に吸着した前記吸着物質を含む吸着膜を前記パターンの表面に沿って形成するスピンオフユニット、を含む液体除去ユニットと、前記吸着膜を気体に変化させることにより前記基板の表面から除去する吸着膜除去ユニットとを含む、基板処理装置を提供する。この構成によれば、前述の効果と同様な効果を奏することができる。 Another embodiment of the present invention is to supply a drying pretreatment liquid containing an adsorbing substance to be adsorbed on the surface of the pattern formed on the substrate to the surface of the substrate that is held horizontally, A drying pretreatment liquid supply unit for adsorbing the adsorbed substance, and removing a part of the drying pretreatment liquid on the surface of the substrate held horizontally by rotating the substrate around a vertical rotation axis. A liquid removal unit including a spin-off unit that forms an adsorption film containing the adsorbed substance adsorbed on the surface of the pattern along the surface of the pattern, and changing the adsorption film to gas from the surface of the substrate. A substrate processing apparatus including an adsorption film removing unit for removing the substrate. According to this configuration, the same effect as the above-described effect can be obtained.
 本発明における前述の、またはさらに他の目的、特徴および効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。 The above or other objects, features, and effects of the present invention will be apparent from the following description of embodiments with reference to the accompanying drawings.
本発明の第1実施形態に係る基板処理装置を上から見た模式図である。FIG. 1 is a schematic view of a substrate processing apparatus according to a first embodiment of the present invention as viewed from above. 基板処理装置を側方から見た模式図である。It is the schematic diagram which looked at the substrate processing apparatus from the side. 基板処理装置に備えられたウェット処理ユニットの内部を水平に見た模式図である。It is the mimetic diagram which looked at the inside of the wet processing unit provided in the substrate processing device horizontally. 基板処理装置に備えられたドライ処理ユニットの内部を水平に見た模式図である。FIG. 3 is a schematic view of the inside of a dry processing unit provided in the substrate processing apparatus, viewed horizontally. 制御装装置のハードウェアを示すブロック図である。It is a block diagram showing hardware of a control equipment. 基板処理装置によって行われる基板の処理の一例について説明するための工程図である。FIG. 4 is a process chart for describing an example of substrate processing performed by the substrate processing apparatus. 図5に示す処理が行われているときの基板の状態を示す模式図である。FIG. 6 is a schematic diagram illustrating a state of the substrate when the processing illustrated in FIG. 5 is performed. 図5に示す処理が行われているときの基板の状態を示す模式図である。FIG. 6 is a schematic diagram illustrating a state of the substrate when the processing illustrated in FIG. 5 is performed. 図5に示す処理が行われているときの基板の状態を示す模式図である。FIG. 6 is a schematic diagram illustrating a state of the substrate when the processing illustrated in FIG. 5 is performed. 図5に示す処理が行われているときの基板の状態を示す模式図である。FIG. 6 is a schematic diagram illustrating a state of the substrate when the processing illustrated in FIG. 5 is performed. 本発明の第2実施形態に係るスピンチャック、遮断部材、およびホットプレートを水平に見た模式図である。It is the mimetic diagram which looked horizontally at the spin chuck, a blocking member, and a hot plate concerning a 2nd embodiment of the present invention. 本発明の第2実施形態に係るスピンチャックおよびホットプレートを上から見た模式図である。It is the schematic diagram which looked at the spin chuck and hot plate which concerns on 2nd Embodiment of this invention from the upper part. 液体除去工程が行われているときのスピンチャック、遮断部材、およびホットプレートを水平に見た模式図である。It is the mimetic diagram which looked horizontally at a spin chuck, a blocking member, and a hot plate when a liquid removal process is performed. 吸着膜除去工程が行われているときのスピンチャック、遮断部材、およびホットプレートを水平に見た模式図である。FIG. 4 is a schematic view of a spin chuck, a blocking member, and a hot plate viewed horizontally when an adsorption film removing step is being performed. 処理例1~処理例5について説明するための表である。9 is a table for describing processing examples 1 to 5; 基板上のHFEを乾燥前処理液で置換しているときの基板の状態を示す模式図である。It is a schematic diagram which shows the state of the board | substrate when HFE on a board | substrate is replaced by the pre-drying process liquid. パターンの表面の上端部だけに接する吸着膜の断面を示す模式図である。It is a schematic diagram which shows the cross section of the adsorption film | membrane which contacts only the upper end part of the surface of a pattern. 図11Aに示すパターンが倒壊したときの吸着膜の状態を示す模式図である。FIG. 11B is a schematic diagram illustrating a state of the adsorption film when the pattern illustrated in FIG. 11A collapses. 電磁波発生装置が基板の上面内の一部の領域だけに電磁波を照射している状態を示す模式図である。FIG. 3 is a schematic diagram showing a state where the electromagnetic wave generator irradiates only a partial area on the upper surface of the substrate with the electromagnetic wave. 電磁波発生装置が基板の上面の全域に同時に電磁波を照射している状態を示す模式図である。It is a schematic diagram which shows the state in which the electromagnetic wave generator irradiates an electromagnetic wave to the whole area | region of the upper surface of a board | substrate simultaneously. 活性ガス供給装置が活性ガスを基板に供給している状態を示す模式図である。FIG. 3 is a schematic diagram illustrating a state in which an active gas supply device supplies an active gas to a substrate.
 以下の説明において、基板処理装置1内の気圧は、特に断りがない限り、基板処理装置1が設置されるクリーンルーム内の気圧(たとえば1気圧またはその近傍の値)に維持されているものとする。 In the following description, it is assumed that the atmospheric pressure in the substrate processing apparatus 1 is maintained at the atmospheric pressure in the clean room in which the substrate processing apparatus 1 is installed (for example, 1 atm or a value near the atmospheric pressure), unless otherwise specified. .
 図1Aは、本発明の第1実施形態に係る基板処理装置1を上から見た模式図である。図1Bは、基板処理装置1を側方から見た模式図である。 FIG. 1A is a schematic view of the substrate processing apparatus 1 according to the first embodiment of the present invention as viewed from above. FIG. 1B is a schematic view of the substrate processing apparatus 1 as viewed from the side.
 図1Aに示すように、基板処理装置1は、半導体ウエハなどの円板状の基板Wを1枚ずつ処理する枚葉式の装置である。基板処理装置1は、基板Wを収容するキャリアCを保持するロードポートLPと、ロードポートLP上のキャリアCから搬送された基板Wを処理する複数の処理ユニット2と、ロードポートLP上のキャリアCと処理ユニット2との間で基板Wを搬送する搬送ロボットと、基板処理装置1を制御する制御装置3とを備えている。 As shown in FIG. 1A, the substrate processing apparatus 1 is a single-wafer processing apparatus that processes a disk-shaped substrate W such as a semiconductor wafer one by one. The substrate processing apparatus 1 includes a load port LP that holds a carrier C containing a substrate W, a plurality of processing units 2 that process the substrate W transported from the carrier C on the load port LP, and a carrier on the load port LP. A transfer robot that transfers the substrate W between C and the processing unit 2 and a control device 3 that controls the substrate processing apparatus 1 are provided.
 搬送ロボットは、ロードポートLP上のキャリアCに対して基板Wの搬入および搬出を行うインデクサロボットIRと、複数の処理ユニット2に対して基板Wの搬入および搬出を行うセンターロボットCRとを含む。インデクサロボットIRは、ロードポートLPとセンターロボットCRとの間で基板Wを搬送し、センターロボットCRは、インデクサロボットIRと処理ユニット2との間で基板Wを搬送する。センターロボットCRは、基板Wを支持するハンドH1を含み、インデクサロボットIRは、基板Wを支持するハンドH2を含む。 The transfer robot includes an indexer robot IR for loading and unloading the substrate W to and from the carrier C on the load port LP, and a center robot CR for loading and unloading the substrate W to and from the plurality of processing units 2. The indexer robot IR transports the substrate W between the load port LP and the center robot CR, and the center robot CR transports the substrate W between the indexer robot IR and the processing unit 2. The center robot CR includes a hand H1 that supports the substrate W, and the indexer robot IR includes a hand H2 that supports the substrate W.
 複数の処理ユニット2は、平面視でセンターロボットCRのまわりに配置された複数のタワーTWを形成している。図1Aは、4つのタワーTWが形成されている例を示している。センターロボットCRは、いずれのタワーTWにもアクセス可能である。図1Bに示すように、各タワーTWは、上下に積層された複数(たとえば3つ)の処理ユニット2を含む。 (4) The plurality of processing units 2 form a plurality of towers TW arranged around the center robot CR in plan view. FIG. 1A shows an example in which four towers TW are formed. The center robot CR can access any of the towers TW. As shown in FIG. 1B, each tower TW includes a plurality (for example, three) of processing units 2 stacked vertically.
 複数の処理ユニット2は、薬液やリンス液などの処理液で基板Wを処理するウェット処理ユニット2wと、処理液を供給せずに基板Wを処理するドライ処理ユニット2dとを含む。ウェット処理ユニット2wおよびドライ処理ユニット2dは、同じタワーTWに含まれていてもよいし、別々のタワーTWに含まれていてもよい。図1Aおよび図1Bは、各タワーTWの最も上の処理ユニット2がドライ処理ユニット2dであり、それ以外の処理ユニット2がウェット処理ユニット2wである例を示している。 The plurality of processing units 2 include a wet processing unit 2w for processing the substrate W with a processing liquid such as a chemical solution or a rinsing liquid, and a dry processing unit 2d for processing the substrate W without supplying a processing liquid. The wet processing unit 2w and the dry processing unit 2d may be included in the same tower TW, or may be included in separate towers TW. 1A and 1B show an example in which the uppermost processing unit 2 of each tower TW is a dry processing unit 2d, and the other processing units 2 are wet processing units 2w.
 図2は、基板処理装置1に備えられたウェット処理ユニット2wの内部を水平に見た模式図である。 FIG. 2 is a schematic view of the inside of the wet processing unit 2w provided in the substrate processing apparatus 1 as viewed horizontally.
 ウェット処理ユニット2wは、内部空間を有する箱型のチャンバー4と、チャンバー4内で1枚の基板Wを水平に保持しながら基板Wの中央部を通る鉛直な回転軸線A1まわりに回転させるスピンチャック10と、回転軸線A1まわりにスピンチャック10を取り囲む筒状の処理カップ21とを含む。 The wet processing unit 2w includes a box-shaped chamber 4 having an internal space, and a spin chuck that rotates around a vertical rotation axis A1 passing through the center of the substrate W while horizontally holding one substrate W in the chamber 4. 10 and a cylindrical processing cup 21 surrounding the spin chuck 10 around the rotation axis A1.
 チャンバー4は、基板Wが通過する搬入搬出口5bが設けられた箱型の隔壁5と、搬入搬出口5bを開閉するシャッター7とを含む。FFU6(ファン・フィルター・ユニット)は、隔壁5の上部に設けられた送風口5aの上に配置されている。FFU6は、クリーンエアー(フィルターによってろ過された空気)を送風口5aからチャンバー4内に常時供給する。チャンバー4内の気体は、処理カップ21の底部に接続された排気ダクト8を通じてチャンバー4から排出される。これにより、クリーンエアーのダウンフローがチャンバー4内に常時形成される。排気ダクト8に排出される排気の流量は、排気ダクト8内に配置された排気バルブ9の開度に応じて変更される。 The chamber 4 includes a box-shaped partition wall 5 provided with a loading / unloading port 5b through which the substrate W passes, and a shutter 7 for opening and closing the loading / unloading port 5b. The FFU 6 (fan filter unit) is arranged on a blower port 5 a provided above the partition wall 5. The FFU 6 always supplies clean air (air filtered by a filter) to the inside of the chamber 4 from the blower port 5a. The gas in the chamber 4 is exhausted from the chamber 4 through an exhaust duct 8 connected to the bottom of the processing cup 21. Thereby, a down flow of clean air is always formed in the chamber 4. The flow rate of the exhaust gas discharged to the exhaust duct 8 is changed according to the opening of the exhaust valve 9 arranged in the exhaust duct 8.
 スピンチャック10は、水平な姿勢で保持された円板状のスピンベース12と、スピンベース12の上方で基板Wを水平な姿勢で保持する複数のチャックピン11と、スピンベース12の中央部から下方に延びるスピン軸13と、スピン軸13を回転させることによりスピンベース12および複数のチャックピン11を回転させるスピンモータ14とを含む。スピンチャック10は、複数のチャックピン11を基板Wの外周面に接触させる挟持式のチャックに限らず、非デバイス形成面である基板Wの裏面(下面)をスピンベース12の上面12uに吸着させることにより基板Wを水平に保持するバキューム式のチャックであってもよい。 The spin chuck 10 includes a disk-shaped spin base 12 held in a horizontal position, a plurality of chuck pins 11 for holding the substrate W in a horizontal position above the spin base 12, and a central portion of the spin base 12. It includes a spin shaft 13 extending downward, and a spin motor 14 that rotates the spin base 12 and the plurality of chuck pins 11 by rotating the spin shaft 13. The spin chuck 10 is not limited to a sandwich type chuck in which the plurality of chuck pins 11 are brought into contact with the outer peripheral surface of the substrate W, and causes the back surface (lower surface) of the substrate W, which is a non-device formation surface, to be attracted to the upper surface 12 u of the spin base 12. Thus, a vacuum-type chuck that holds the substrate W horizontally may be used.
 処理カップ21は、基板Wから外方に排出された処理液を受け止める複数のガード24と、複数のガード24によって下方に案内された処理液を受け止める複数のカップ23と、複数のガード24および複数のカップ23を取り囲む円筒状の外壁部材22とを含む。図2は、4つのガード24と3つのカップ23とが設けられており、最も外側のカップ23が上から3番目のガード24と一体である例を示している。 The processing cup 21 includes a plurality of guards 24 for receiving the processing liquid discharged outward from the substrate W, a plurality of cups 23 for receiving the processing liquid guided downward by the plurality of guards 24, a plurality of guards 24 and a plurality of guards. And a cylindrical outer wall member 22 surrounding the cup 23. FIG. 2 shows an example in which four guards 24 and three cups 23 are provided, and the outermost cup 23 is integrated with the third guard 24 from the top.
 ガード24は、スピンチャック10を取り囲む円筒部25と、円筒部25の上端部から回転軸線A1に向かって斜め上に延びる円環状の天井部26とを含む。複数の天井部26は、上下に重なっており、複数の円筒部25は、同心円状に配置されている。天井部26の円環状の上端は、平面視で基板Wおよびスピンベース12を取り囲むガード24の上端24uに相当する。複数のカップ23は、それぞれ、複数の円筒部25の下方に配置されている。カップ23は、ガード24によって下方に案内された処理液を受け止める環状の受液溝を形成している。 The guard 24 includes a cylindrical portion 25 surrounding the spin chuck 10 and an annular ceiling portion 26 extending obliquely upward from the upper end of the cylindrical portion 25 toward the rotation axis A1. The plurality of ceiling portions 26 are vertically overlapped, and the plurality of cylindrical portions 25 are arranged concentrically. The annular upper end of the ceiling 26 corresponds to the upper end 24u of the guard 24 surrounding the substrate W and the spin base 12 in plan view. The plurality of cups 23 are arranged below the plurality of cylindrical portions 25, respectively. The cup 23 has an annular liquid receiving groove for receiving the processing liquid guided downward by the guard 24.
 ウェット処理ユニット2wは、複数のガード24を個別に昇降させるガード昇降ユニット27を含む。ガード昇降ユニット27は、上位置から下位置までの任意の位置にガード24を位置させる。図2は、2つのガード24が上位置に配置されており、残り2つのガード24が下位置に配置されている状態を示している。上位置は、ガード24の上端24uがスピンチャック10に保持されている基板Wが配置される保持位置よりも上方に配置される位置である。下位置は、ガード24の上端24uが保持位置よりも下方に配置される位置である。 The wet processing unit 2w includes a guard elevating unit 27 for individually elevating and lowering a plurality of guards 24. The guard elevating unit 27 positions the guard 24 at an arbitrary position from the upper position to the lower position. FIG. 2 shows a state in which two guards 24 are arranged at the upper position and the remaining two guards 24 are arranged at the lower position. The upper position is a position where the upper end 24u of the guard 24 is located above the holding position where the substrate W held by the spin chuck 10 is located. The lower position is a position where the upper end 24u of the guard 24 is disposed below the holding position.
 回転している基板Wに処理液を供給するときは、少なくとも一つのガード24が上位置に配置される。この状態で、処理液が基板Wに供給されると、処理液が遠心力で基板Wから振り切られる。振り切られた処理液は、基板Wに水平に対向するガード24の内面に衝突し、このガード24に対応するカップ23に案内される。これにより、基板Wから排出された処理液が処理カップ21に集められる。 (4) When supplying the processing liquid to the rotating substrate W, at least one guard 24 is arranged at the upper position. In this state, when the processing liquid is supplied to the substrate W, the processing liquid is shaken off the substrate W by centrifugal force. The processing liquid shaken off collides with the inner surface of the guard 24 horizontally facing the substrate W, and is guided to the cup 23 corresponding to the guard 24. Thus, the processing liquid discharged from the substrate W is collected in the processing cup 21.
 ウェット処理ユニット2wは、スピンチャック10に保持されている基板Wに向けて処理液を吐出する複数のノズルを含む。複数のノズルは、基板Wの上面に向けて薬液を吐出する薬液ノズル31と、基板Wの上面に向けてリンス液を吐出するリンス液ノズル35と、基板Wの上面に向けて乾燥前処理液を吐出する乾燥前処理液ノズル39と、基板Wの上面に向けて置換液を吐出する置換液ノズル43とを含む。 The wet processing unit 2w includes a plurality of nozzles for discharging a processing liquid toward the substrate W held by the spin chuck 10. The plurality of nozzles include a chemical liquid nozzle 31 for discharging a chemical liquid toward the upper surface of the substrate W, a rinsing liquid nozzle 35 for discharging a rinsing liquid toward the upper surface of the substrate W, and a pre-drying processing liquid toward the upper surface of the substrate W. And a replacement liquid nozzle 43 that discharges a replacement liquid toward the upper surface of the substrate W.
 薬液ノズル31は、チャンバー4内で水平に移動可能なスキャンノズルであってもよいし、チャンバー4の隔壁5に対して固定された固定ノズルであってもよい。リンス液ノズル35、乾燥前処理液ノズル39、および置換液ノズル43についても同様である。図2は、薬液ノズル31、リンス液ノズル35、乾燥前処理液ノズル39、および置換液ノズル43が、スキャンノズルであり、これら4つのノズルにそれぞれ対応する4つのノズル移動ユニットが設けられている例を示している。 The chemical liquid nozzle 31 may be a scan nozzle that can move horizontally in the chamber 4 or a fixed nozzle fixed to the partition 5 of the chamber 4. The same applies to the rinsing liquid nozzle 35, the pre-drying processing liquid nozzle 39, and the replacement liquid nozzle 43. In FIG. 2, the chemical liquid nozzle 31, the rinsing liquid nozzle 35, the pre-drying processing liquid nozzle 39, and the replacement liquid nozzle 43 are scan nozzles, and four nozzle moving units respectively corresponding to these four nozzles are provided. An example is shown.
 薬液ノズル31は、薬液ノズル31に薬液を案内する薬液配管32に接続されている。薬液配管32に介装された薬液バルブ33が開かれると、薬液が、薬液ノズル31の吐出口から下方に連続的に吐出される。薬液ノズル31から吐出される薬液は、硫酸、硝酸、塩酸、フッ酸、リン酸、酢酸、アンモニア水、過酸化水素水、有機酸(たとえばクエン酸、蓚酸など)、有機アルカリ(たとえば、TMAH:テトラメチルアンモニウムハイドロオキサイドなど)、界面活性剤、および腐食防止剤の少なくとも1つを含む液であってもよいし、これ以外の液体であってもよい。 The chemical liquid nozzle 31 is connected to a chemical liquid pipe 32 for guiding the chemical liquid to the chemical liquid nozzle 31. When the chemical liquid valve 33 interposed in the chemical liquid pipe 32 is opened, the chemical liquid is continuously discharged downward from the discharge port of the chemical liquid nozzle 31. The chemical discharged from the chemical nozzle 31 includes sulfuric acid, nitric acid, hydrochloric acid, hydrofluoric acid, phosphoric acid, acetic acid, aqueous ammonia, aqueous hydrogen peroxide, an organic acid (for example, citric acid, oxalic acid, etc.), and an organic alkali (for example, TMAH: It may be a liquid containing at least one of tetramethylammonium hydroxide, a surfactant, and a corrosion inhibitor, or may be another liquid.
 図示はしないが、薬液バルブ33は、薬液が流れる内部流路と内部流路を取り囲む環状の弁座とが設けられたバルブボディと、弁座に対して移動可能な弁体と、弁体が弁座に接触する閉位置と弁体が弁座から離れた開位置との間で弁体を移動させるアクチュエータとを含む。他のバルブについても同様である。アクチュエータは、空圧アクチュエータまたは電動アクチュエータであってもよいし、これら以外のアクチュエータであってもよい。制御装置3は、アクチュエータを制御することにより、薬液バルブ33を開閉させる。 Although not shown, the chemical liquid valve 33 includes a valve body provided with an internal flow path through which a chemical liquid flows and an annular valve seat surrounding the internal flow path, a valve body movable with respect to the valve seat, and a valve body. An actuator for moving the valve body between a closed position in contact with the valve seat and an open position where the valve body is away from the valve seat. The same applies to other valves. The actuator may be a pneumatic actuator or an electric actuator, or may be another actuator. The control device 3 opens and closes the chemical liquid valve 33 by controlling the actuator.
 薬液ノズル31は、鉛直方向および水平方向の少なくとも一方に薬液ノズル31を移動させるノズル移動ユニット34に接続されている。ノズル移動ユニット34は、薬液ノズル31から吐出された薬液が基板Wの上面に着液する処理位置と、薬液ノズル31が平面視で処理カップ21のまわりに位置する待機位置と、の間で薬液ノズル31を水平に移動させる。 The chemical liquid nozzle 31 is connected to a nozzle moving unit 34 that moves the chemical liquid nozzle 31 in at least one of the vertical direction and the horizontal direction. The nozzle moving unit 34 moves the chemical solution between the processing position where the chemical solution discharged from the chemical solution nozzle 31 lands on the upper surface of the substrate W and the standby position where the chemical solution nozzle 31 is positioned around the processing cup 21 in plan view. The nozzle 31 is moved horizontally.
 リンス液ノズル35は、リンス液ノズル35にリンス液を案内するリンス液配管36に接続されている。リンス液配管36に介装されたリンス液バルブ37が開かれると、リンス液が、リンス液ノズル35の吐出口から下方に連続的に吐出される。リンス液ノズル35から吐出されるリンス液は、たとえば、純水(脱イオン水:DIW(Deionized Water))である。リンス液は、炭酸水、電解イオン水、水素水、オゾン水、および希釈濃度(たとえば、10~100ppm程度)の塩酸水のいずれかであってもよい。 The rinsing liquid nozzle 35 is connected to a rinsing liquid pipe 36 for guiding the rinsing liquid to the rinsing liquid nozzle 35. When the rinse liquid valve 37 interposed in the rinse liquid pipe 36 is opened, the rinse liquid is continuously discharged downward from the discharge port of the rinse liquid nozzle 35. The rinsing liquid discharged from the rinsing liquid nozzle 35 is, for example, pure water (deionized water: DIW (Deionized Water)). The rinsing liquid may be any of carbonated water, electrolytic ionic water, hydrogen water, ozone water, and hydrochloric acid water having a dilute concentration (for example, about 10 to 100 ppm).
 リンス液ノズル35は、鉛直方向および水平方向の少なくとも一方にリンス液ノズル35を移動させるノズル移動ユニット38に接続されている。ノズル移動ユニット38は、リンス液ノズル35から吐出されたリンス液が基板Wの上面に着液する処理位置と、リンス液ノズル35が平面視で処理カップ21のまわりに位置する待機位置と、の間でリンス液ノズル35を水平に移動させる。 The rinse liquid nozzle 35 is connected to a nozzle moving unit 38 that moves the rinse liquid nozzle 35 in at least one of the vertical direction and the horizontal direction. The nozzle moving unit 38 includes a processing position where the rinsing liquid discharged from the rinsing liquid nozzle 35 lands on the upper surface of the substrate W, and a standby position where the rinsing liquid nozzle 35 is positioned around the processing cup 21 in plan view. The rinse liquid nozzle 35 is moved horizontally between them.
 乾燥前処理液ノズル39は、乾燥前処理液ノズル39に乾燥前処理液を案内する乾燥前処理液配管40に接続されている。乾燥前処理液配管40に介装された乾燥前処理液バルブ41が開かれると、乾燥前処理液が、乾燥前処理液ノズル39の吐出口から下方に連続的に吐出される。同様に、置換液ノズル43は、置換液ノズル43に置換液を案内する置換液配管44に接続されている。置換液配管44に介装された置換液バルブ45が開かれると、置換液が、置換液ノズル43の吐出口から下方に連続的に吐出される。 (4) The pre-drying treatment liquid nozzle 39 is connected to a pre-drying treatment liquid pipe 40 that guides the pre-drying treatment liquid to the pre-drying treatment liquid nozzle 39. When the pre-drying treatment liquid valve 41 interposed in the pre-drying treatment liquid pipe 40 is opened, the pre-drying treatment liquid is continuously discharged downward from the discharge port of the pre-drying treatment liquid nozzle 39. Similarly, the replacement liquid nozzle 43 is connected to a replacement liquid pipe 44 that guides the replacement liquid to the replacement liquid nozzle 43. When the replacement liquid valve 45 interposed in the replacement liquid pipe 44 is opened, the replacement liquid is continuously discharged downward from the discharge port of the replacement liquid nozzle 43.
 乾燥前処理液は、パターンP1(図6A参照)の表面に吸着する吸着物質と、吸着物質と溶け合う溶解物質とを含む。乾燥前処理液は、吸着物質および溶解物質が均一に溶け合った溶液である。吸着物質は溶質に相当し、溶解物質は溶媒に相当する。乾燥前処理液は、吸着物質の融液であってもよい。 (4) The pre-drying treatment liquid contains an adsorbed substance adsorbed on the surface of the pattern P1 (see FIG. 6A) and a dissolved substance that is soluble in the adsorbed substance. The drying pretreatment liquid is a solution in which the adsorbed substance and the dissolved substance are uniformly dissolved. The adsorbed substance corresponds to a solute, and the dissolved substance corresponds to a solvent. The drying pretreatment liquid may be a melt of the adsorbed substance.
 乾燥前処理液の凝固点(1気圧での凝固点。以下同様。)は、吸着物質の凝固点よりも低い。同様に、溶解物質の凝固点は、吸着物質の凝固点よりも低い。乾燥前処理液の凝固点は、室温(23℃またはその近傍の値)よりも低い。基板処理装置1は、室温に維持されたクリーンルーム内に配置されている。したがって、乾燥前処理液を加熱しなくても、乾燥前処理液を液体に維持できる。ただし、乾燥前処理液の凝固点は、室温以上であってもよく、溶解物質の凝固点は、吸着物質の凝固点より高くてもよい。 (4) The freezing point of the drying pretreatment liquid (freezing point at 1 atm. The same applies hereinafter) is lower than the freezing point of the adsorbed substance. Similarly, the freezing point of the dissolved material is lower than the freezing point of the adsorbed material. The freezing point of the drying pretreatment liquid is lower than room temperature (23 ° C. or a value close thereto). The substrate processing apparatus 1 is disposed in a clean room maintained at room temperature. Therefore, the pre-drying treatment liquid can be maintained in a liquid state without heating the pre-drying treatment liquid. However, the freezing point of the drying pretreatment liquid may be higher than room temperature, and the freezing point of the dissolved substance may be higher than the freezing point of the adsorbed substance.
 溶解物質は、単一物質であってもよいし、2つ以上の物質が溶け合った混合物質であってもよい。溶解物質の蒸気圧は、吸着物質の蒸気圧よりも高い。したがって、溶解物質は、吸着物質よりも蒸発し易い。溶解物質の蒸気圧は、水の蒸気圧より高くてもよいし、水の蒸気圧以下であってもよい。また、溶解物質の蒸気圧は、吸着物質の蒸気圧以下であってもよい。 The dissolved substance may be a single substance or a mixed substance in which two or more substances are dissolved. The vapor pressure of the dissolved substance is higher than the vapor pressure of the adsorbed substance. Therefore, dissolved substances evaporate more easily than adsorbed substances. The vapor pressure of the dissolved substance may be higher or lower than the vapor pressure of water. Further, the vapor pressure of the dissolved substance may be lower than the vapor pressure of the adsorbed substance.
 吸着物質は、パターンP1の表面に化学的に吸着する物質であってもよい。つまり、吸着物質は、吸着物質とパターンP1の表面との化学反応によって、パターンP1の表面に吸着する物質であってもよい。もしくは、吸着物質は、パターンP1の表面に物理的に吸着する物質であってもよい。つまり、吸着物質は、吸着物質とパターンP1の表面との間に発生する電気的引力または分子間力によって、パターンP1の表面に吸着する物質であってもよい。 The adsorbed substance may be a substance that is chemically adsorbed on the surface of the pattern P1. That is, the adsorbed substance may be a substance that is adsorbed on the surface of the pattern P1 by a chemical reaction between the adsorbed substance and the surface of the pattern P1. Alternatively, the adsorbing substance may be a substance that physically adsorbs on the surface of the pattern P1. That is, the adsorbed substance may be a substance that is adsorbed on the surface of the pattern P1 by an electric attractive force or an intermolecular force generated between the adsorbed substance and the surface of the pattern P1.
 吸着物質は、常温または常圧で液体を経ずに固体から気体に変化する昇華性物質であってもよいし、昇華性物質以外の物質であってもよい。たとえば、吸着物質は、ヨウ素化合物、塩素化合物、または臭化化合物であってもよい。ヨウ素化合物には、ジヨードメタン、ヨードメタン、および1-ヨードプロパンが含まれる。塩素化合物には、ジクロロメタンが含まれる。臭化化合物には、臭化アンモニウムが含まれる。吸着物質は、アクリル樹脂等の熱分解性ポリマーまたは無機化合物であってもよい。吸着物質は、親水基および疎水基の両方を含む両親媒性分子であってもよい。 The adsorbed substance may be a sublimable substance that changes from a solid to a gas without passing through a liquid at normal temperature or normal pressure, or may be a substance other than the sublimable substance. For example, the adsorbent may be an iodine compound, a chlorine compound, or a bromide compound. Iodine compounds include diiodomethane, iodomethane, and 1-iodopropane. Chlorine compounds include dichloromethane. The bromide compound includes ammonium bromide. The adsorbing substance may be a thermally decomposable polymer such as an acrylic resin or an inorganic compound. The adsorbent may be an amphipathic molecule containing both hydrophilic and hydrophobic groups.
 吸着物質と同様に、溶解物質は、昇華性物質であってもよいし、昇華性物質以外の物質であってもよい。乾燥前処理液に含まれる昇華性物質の種類は2つ以上であってもよい。つまり、吸着物質および溶解物質の両方が昇華性物質であり、吸着物質および溶解物質とは種類の異なる昇華性物質が乾燥前処理液に含まれていてもよい。 溶解 Similarly to the adsorption substance, the dissolved substance may be a sublimable substance or a substance other than the sublimable substance. The types of sublimable substances contained in the pretreatment liquid for drying may be two or more. That is, both the adsorbed substance and the dissolved substance may be sublimable substances, and a sublimable substance different in type from the adsorbed substance and the dissolved substance may be contained in the drying pretreatment liquid.
 昇華性物質は、たとえば、2-メチル-2-プロパノール(別名:tert-ブチルアルコール、t-ブチルアルコール、ターシャリーブチルアルコール)やシクロヘキサノールなどのアルコール類、フッ化炭化水素化合物、1,3,5-トリオキサン(別名:メタホルムアルデヒド)、しょうのう(別名:カンフル、カンファー)、ナフタレン、ヨウ素、およびシクロヘキサンのいずれかであってもよいし、これら以外の物質であってもよい。 Sublimable substances include, for example, alcohols such as 2-methyl-2-propanol (alias: tert-butyl alcohol, t-butyl alcohol, tert-butyl alcohol) and cyclohexanol, fluorinated hydrocarbon compounds, 1,3, It may be any of 5-trioxane (alias: metaformaldehyde), camphor (alias: camphor, camphor), naphthalene, iodine, and cyclohexane, or a substance other than these.
 溶媒は、たとえば、純水、IPA、HFE(ハイドロフルオロエーテル)、アセトン、PGMEA(プロピレングリコールモノメチルエーテルアセテート)、PGEE(プロピレングリコールモノエチルエーテル、1-エトキシ-2-プロパノール)、およびエチレングリコール、ハイドロフルオロカーボン(hydrofluorocarbon)からなる群より選ばれた少なくとも1種であってもよい。もしくは、昇華性物質が溶媒であってもよい。IPAおよびHFEは、水よりも表面張力が低く、水よりも蒸気圧が高い物質である。 Examples of the solvent include pure water, IPA, HFE (hydrofluoroether), acetone, PGMEA (propylene glycol monomethyl ether acetate), PGEE (propylene glycol monoethyl ether, 1-ethoxy-2-propanol), ethylene glycol, At least one selected from the group consisting of hydrofluorocarbons may be used. Alternatively, the sublimable substance may be a solvent. IPA and HFE are substances having a lower surface tension than water and a higher vapor pressure than water.
 以下では、溶媒に相当する溶解物質がIPAおよび純水の混合液であり、溶質に相当する吸着物質がヨウ素化合物または塩素化合物である例について説明する。乾燥前処理液に含まれるIPA(純度が99.9wt%以上のIPA)、純水、および吸着物質の質量パーセント濃度は、それぞれ、50wt%未満、50wt%未満、および1wt%未満である。ただし、各成分の濃度はこれに限られない。 Hereinafter, an example will be described in which the dissolved substance corresponding to the solvent is a mixed solution of IPA and pure water, and the adsorbed substance corresponding to the solute is an iodine compound or a chlorine compound. The mass percent concentrations of IPA (IPA having a purity of 99.9 wt% or more), pure water, and an adsorbent contained in the pretreatment liquid are less than 50 wt%, less than 50 wt%, and less than 1 wt%, respectively. However, the concentration of each component is not limited to this.
 後述するように、置換液は、リンス液の液膜で覆われた基板Wの上面に供給され、乾燥前処理液は、置換液の液膜で覆われた基板Wの上面に供給される。置換液は、リンス液および乾燥前処理液の両方と溶け合う液体である。置換液は、たとえば、IPAである。IPAは、水およびフッ化炭化水素化合物の両方と溶け合う液体である。置換液は、IPAおよびHFEの混合液であってもよい。 (4) As described later, the replacement liquid is supplied to the upper surface of the substrate W covered with the rinse liquid film, and the pre-drying treatment liquid is supplied to the upper surface of the substrate W covered with the liquid film of the replacement liquid. The replacement liquid is a liquid that is compatible with both the rinsing liquid and the pre-drying liquid. The replacement liquid is, for example, IPA. IPA is a liquid that is compatible with both water and fluorohydrocarbon compounds. The replacement liquid may be a mixture of IPA and HFE.
 IPAおよびHFEの混合液を基板Wに供給する場合、第1有機溶剤としてのIPAを案内する第1溶剤配管と、第2有機溶剤としてのHFEを案内する第2溶剤配管とを、置換液配管44に接続すればよい。第1溶剤配管に介装された第1溶剤バルブおよび第2溶剤配管に介装された第2溶剤バルブの一方を開くと、IPAまたはHFEが置換液配管44に供給され、第1溶剤バルブおよび第2溶剤バルブの両方を開くと、IPAおよびHFEの混合液が置換液配管44に供給される。置換液ノズル43とは別のノズルにHFEを吐出させてもよい。 When supplying a mixed solution of IPA and HFE to the substrate W, a first solvent pipe for guiding IPA as a first organic solvent and a second solvent pipe for guiding HFE as a second organic solvent are replaced with a replacement liquid pipe. 44. When one of the first solvent valve interposed in the first solvent pipe and the second solvent valve interposed in the second solvent pipe is opened, IPA or HFE is supplied to the replacement liquid pipe 44, and the first solvent valve and When both of the second solvent valves are opened, a mixed solution of IPA and HFE is supplied to the replacement solution pipe 44. HFE may be discharged to a nozzle different from the replacement liquid nozzle 43.
 リンス液の液膜で覆われた基板Wの上面に置換液が供給されると、基板W上の殆どのリンス液は、置換液によって押し流され、基板Wから排出される。残りの微量のリンス液は、置換液に溶け込み、置換液中に拡散する。拡散したリンス液は、置換液とともに基板Wから排出される。したがって、基板W上のリンス液を効率的に置換液に置換できる。同様の理由により、基板W上の置換液を効率的に乾燥前処理液に置換できる。これにより、基板W上の乾燥前処理液に含まれるリンス液を減らすことができる。 When the replacement liquid is supplied to the upper surface of the substrate W covered with the rinsing liquid film, most of the rinsing liquid on the substrate W is washed away by the replacement liquid and discharged from the substrate W. The remaining trace amount of the rinse solution dissolves in the replacement solution and diffuses into the replacement solution. The diffused rinsing liquid is discharged from the substrate W together with the replacement liquid. Therefore, the rinsing liquid on the substrate W can be efficiently replaced with the replacement liquid. For the same reason, the replacement liquid on the substrate W can be efficiently replaced with the pre-drying treatment liquid. Thereby, the rinsing liquid contained in the pre-drying treatment liquid on the substrate W can be reduced.
 乾燥前処理液ノズル39は、鉛直方向および水平方向の少なくとも一方に乾燥前処理液ノズル39を移動させるノズル移動ユニット42に接続されている。ノズル移動ユニット42は、乾燥前処理液ノズル39から吐出された乾燥前処理液が基板Wの上面に着液する処理位置と、乾燥前処理液ノズル39が平面視で処理カップ21のまわりに位置する待機位置と、の間で乾燥前処理液ノズル39を水平に移動させる。 (4) The pre-drying treatment liquid nozzle 39 is connected to a nozzle moving unit 42 that moves the pre-drying treatment liquid nozzle 39 in at least one of the vertical direction and the horizontal direction. The nozzle moving unit 42 has a processing position where the pre-drying processing liquid discharged from the pre-drying processing liquid nozzle 39 lands on the upper surface of the substrate W, and a position where the pre-drying processing liquid nozzle 39 is positioned around the processing cup 21 in plan view. The drying pretreatment liquid nozzle 39 is moved horizontally between the standby position to be processed.
 同様に、置換液ノズル43は、鉛直方向および水平方向の少なくとも一方に置換液ノズル43を移動させるノズル移動ユニット46に接続されている。ノズル移動ユニット46は、置換液ノズル43から吐出された置換液が基板Wの上面に着液する処理位置と、置換液ノズル43が平面視で処理カップ21のまわりに位置する待機位置と、の間で置換液ノズル43を水平に移動させる。 Similarly, the replacement liquid nozzle 43 is connected to a nozzle moving unit 46 that moves the replacement liquid nozzle 43 in at least one of the vertical direction and the horizontal direction. The nozzle moving unit 46 includes a processing position where the replacement liquid discharged from the replacement liquid nozzle 43 lands on the upper surface of the substrate W, and a standby position where the replacement liquid nozzle 43 is positioned around the processing cup 21 in a plan view. The replacement liquid nozzle 43 is moved horizontally between them.
 ウェット処理ユニット2wは、スピンチャック10の上方に配置された遮断部材51を含む。図2は、遮断部材51が円板状の遮断板である例を示している。遮断部材51は、スピンチャック10の上方に水平に配置された円板部52を含む。遮断部材51は、円板部52の中央部から上方に延びる筒状の支軸53によって水平に支持されている。円板部52の中心線は、基板Wの回転軸線A1上に配置されている。円板部52の下面は、遮断部材51の下面51Lに相当する。遮断部材51の下面51Lは、基板Wの上面に対向する対向面である。遮断部材51の下面51Lは、基板Wの上面と平行であり、基板Wの直径以上の外径を有している。 The wet processing unit 2 w includes a blocking member 51 disposed above the spin chuck 10. FIG. 2 shows an example in which the blocking member 51 is a disk-shaped blocking plate. The blocking member 51 includes a disk portion 52 horizontally arranged above the spin chuck 10. The blocking member 51 is horizontally supported by a cylindrical support shaft 53 extending upward from the center of the disk portion 52. The center line of the disk portion 52 is arranged on the rotation axis A1 of the substrate W. The lower surface of the disk portion 52 corresponds to the lower surface 51L of the blocking member 51. The lower surface 51L of the blocking member 51 is a facing surface facing the upper surface of the substrate W. The lower surface 51L of the blocking member 51 is parallel to the upper surface of the substrate W and has an outer diameter equal to or larger than the diameter of the substrate W.
 遮断部材51は、遮断部材51を鉛直に昇降させる遮断部材昇降ユニット54に接続されている。遮断部材昇降ユニット54は、上位置(図2に示す位置)から下位置までの任意の位置に遮断部材51を位置させる。下位置は、薬液ノズル31などのスキャンノズルが基板Wと遮断部材51との間に進入できない高さまで遮断部材51の下面51Lが基板Wの上面に近接する近接位置である。上位置は、スキャンノズルが遮断部材51と基板Wとの間に進入可能な高さまで遮断部材51が退避した離間位置である。 The blocking member 51 is connected to a blocking member elevating unit 54 that vertically moves the blocking member 51 up and down. The blocking member elevating unit 54 positions the blocking member 51 at an arbitrary position from the upper position (the position shown in FIG. 2) to the lower position. The lower position is a proximity position where the lower surface 51L of the blocking member 51 approaches the upper surface of the substrate W to a height at which a scan nozzle such as the chemical nozzle 31 cannot enter between the substrate W and the blocking member 51. The upper position is a separated position where the blocking member 51 is retracted to a height at which the scan nozzle can enter between the blocking member 51 and the substrate W.
 複数のノズルは、遮断部材51の下面51Lの中央部で開口する上中央開口61を介して処理液や処理ガスなどの処理流体を下方に吐出する中心ノズル55を含む。中心ノズル55は、回転軸線A1に沿って上下に延びている。中心ノズル55は、遮断部材51の中央部を上下に貫通する貫通穴内に配置されている。遮断部材51の内周面は、径方向(回転軸線A1に直交する方向)に間隔を空けて中心ノズル55の外周面を取り囲んでいる。中心ノズル55は、遮断部材51とともに昇降する。処理液を吐出する中心ノズル55の吐出口は、遮断部材51の上中央開口61の上方に配置されている。 The plurality of nozzles include a central nozzle 55 that discharges a processing fluid, such as a processing liquid or a processing gas, downward through an upper central opening 61 that opens at the center of the lower surface 51L of the blocking member 51. The center nozzle 55 extends vertically along the rotation axis A1. The center nozzle 55 is disposed in a through hole vertically penetrating the center of the blocking member 51. The inner peripheral surface of the blocking member 51 surrounds the outer peripheral surface of the central nozzle 55 at intervals in the radial direction (the direction orthogonal to the rotation axis A1). The center nozzle 55 moves up and down together with the blocking member 51. The discharge port of the center nozzle 55 that discharges the processing liquid is disposed above the upper central opening 61 of the blocking member 51.
 中心ノズル55は、中心ノズル55に不活性ガスを案内する上気体配管56に接続されている。基板処理装置1は、中心ノズル55から吐出される不活性ガスを加熱または冷却する上温度調節器59を備えていてもよい。上気体配管56に介装された上気体バルブ57が開かれると、不活性ガスの流量を変更する流量調整バルブ58の開度に対応する流量で、不活性ガスが、中心ノズル55の吐出口から下方に連続的に吐出される。中心ノズル55から吐出される不活性ガスは、窒素ガスである。不活性ガスは、ヘリウムガスやアルゴンガスなどの窒素ガス以外のガスであってもよい。 The center nozzle 55 is connected to an upper gas pipe 56 for guiding the inert gas to the center nozzle 55. The substrate processing apparatus 1 may include an upper temperature controller 59 for heating or cooling the inert gas discharged from the central nozzle 55. When the upper gas valve 57 interposed in the upper gas pipe 56 is opened, the inert gas is discharged from the center nozzle 55 at a flow rate corresponding to the opening degree of the flow control valve 58 for changing the flow rate of the inert gas. Is continuously discharged downward. The inert gas discharged from the center nozzle 55 is a nitrogen gas. The inert gas may be a gas other than nitrogen gas such as helium gas or argon gas.
 遮断部材51の内周面と中心ノズル55の外周面は、上下に延びる筒状の上気体流路62を形成している。上気体流路62は、不活性ガスを遮断部材51の上中央開口61に導く上気体配管63に接続されている。基板処理装置1は、遮断部材51の上中央開口61から吐出される不活性ガスを加熱または冷却する上温度調節器66を備えていてもよい。上気体配管63に介装された上気体バルブ64が開かれると、不活性ガスの流量を変更する流量調整バルブ65の開度に対応する流量で、不活性ガスが、遮断部材51の上中央開口61から下方に連続的に吐出される。遮断部材51の上中央開口61から吐出される不活性ガスは、窒素ガスである。不活性ガスは、ヘリウムガスやアルゴンガスなどの窒素ガス以外のガスであってもよい。 内 The inner peripheral surface of the blocking member 51 and the outer peripheral surface of the center nozzle 55 form a cylindrical upper gas flow path 62 extending vertically. The upper gas passage 62 is connected to an upper gas pipe 63 that guides the inert gas to the upper central opening 61 of the blocking member 51. The substrate processing apparatus 1 may include an upper temperature controller 66 for heating or cooling the inert gas discharged from the upper central opening 61 of the blocking member 51. When the upper gas valve 64 interposed in the upper gas pipe 63 is opened, the inert gas flows in the upper center of the shut-off member 51 at a flow rate corresponding to the opening of the flow control valve 65 for changing the flow rate of the inert gas. The liquid is continuously discharged downward from the opening 61. The inert gas discharged from the upper central opening 61 of the blocking member 51 is a nitrogen gas. The inert gas may be a gas other than nitrogen gas such as helium gas or argon gas.
 複数のノズルは、基板Wの下面中央部に向けて処理液を吐出する下面ノズル71を含む。下面ノズル71は、スピンベース12の上面12uと基板Wの下面との間に配置されたノズル円板部と、ノズル円板部から下方に延びるノズル筒状部とを含む。下面ノズル71の吐出口は、ノズル円板部の上面中央部で開口している。基板Wがスピンチャック10に保持されているときは、下面ノズル71の吐出口が、基板Wの下面中央部に上下に対向する。 The plurality of nozzles include a lower surface nozzle 71 that discharges the processing liquid toward the center of the lower surface of the substrate W. The lower surface nozzle 71 includes a nozzle disk portion disposed between the upper surface 12u of the spin base 12 and the lower surface of the substrate W, and a nozzle tubular portion extending downward from the nozzle disk portion. The discharge port of the lower nozzle 71 is open at the center of the upper surface of the nozzle disk. When the substrate W is held by the spin chuck 10, the ejection port of the lower surface nozzle 71 vertically faces the central portion of the lower surface of the substrate W.
 下面ノズル71は、加熱流体の一例である温水(室温よりも高温の純水)を下面ノズル71に案内する加熱流体配管72に接続されている。下面ノズル71に供給される純水は、加熱流体配管72に介装された下ヒータ75によって加熱される。加熱流体配管72に介装された加熱流体バルブ73が開かれると、温水の流量を変更する流量調整バルブ74の開度に対応する流量で、温水が、下面ノズル71の吐出口から上方に連続的に吐出される。これにより、温水が基板Wの下面に供給される。 The lower nozzle 71 is connected to a heating fluid pipe 72 that guides hot water (pure water higher than room temperature), which is an example of a heating fluid, to the lower nozzle 71. Pure water supplied to the lower nozzle 71 is heated by a lower heater 75 interposed in a heating fluid pipe 72. When the heating fluid valve 73 interposed in the heating fluid pipe 72 is opened, the hot water continuously flows upward from the discharge port of the lower surface nozzle 71 at a flow rate corresponding to the opening of the flow rate adjustment valve 74 that changes the flow rate of the hot water. Is discharged. Thereby, the warm water is supplied to the lower surface of the substrate W.
 下面ノズル71は、さらに、冷却流体の一例である冷水(室温よりも低温の純水)を下面ノズル71に案内する冷却流体配管76に接続されている。下面ノズル71に供給される純水は、冷却流体配管76に介装されたクーラー79によって冷却される。冷却流体配管76に介装された冷却流体バルブ77が開かれると、冷水の流量を変更する流量調整バルブ78の開度に対応する流量で、冷水が、下面ノズル71の吐出口から上方に連続的に吐出される。これにより、冷水が基板Wの下面に供給される。 The lower nozzle 71 is further connected to a cooling fluid pipe 76 that guides cold water (pure water having a temperature lower than room temperature), which is an example of a cooling fluid, to the lower nozzle 71. The pure water supplied to the lower nozzle 71 is cooled by a cooler 79 interposed in the cooling fluid pipe 76. When the cooling fluid valve 77 interposed in the cooling fluid pipe 76 is opened, the cold water continuously flows upward from the discharge port of the lower surface nozzle 71 at a flow rate corresponding to the opening of the flow rate adjustment valve 78 that changes the flow rate of the cold water. Is discharged. Thereby, the cold water is supplied to the lower surface of the substrate W.
 下面ノズル71の外周面とスピンベース12の内周面は、上下に延びる筒状の下気体流路82を形成している。下気体流路82は、スピンベース12の上面12uの中央部で開口する下中央開口81を含む。下気体流路82は、不活性ガスをスピンベース12の下中央開口81に導く下気体配管83に接続されている。基板処理装置1は、スピンベース12の下中央開口81から吐出される不活性ガスを加熱または冷却する下温度調節器86を備えていてもよい。下気体配管83に介装された下気体バルブ84が開かれると、不活性ガスの流量を変更する流量調整バルブ85の開度に対応する流量で、不活性ガスが、スピンベース12の下中央開口81から上方に連続的に吐出される。 The outer peripheral surface of the lower nozzle 71 and the inner peripheral surface of the spin base 12 form a cylindrical lower gas flow path 82 extending vertically. The lower gas flow path 82 includes a lower central opening 81 that opens at the center of the upper surface 12u of the spin base 12. The lower gas flow path 82 is connected to a lower gas pipe 83 that guides an inert gas to a lower central opening 81 of the spin base 12. The substrate processing apparatus 1 may include a lower temperature controller 86 that heats or cools the inert gas discharged from the lower center opening 81 of the spin base 12. When the lower gas valve 84 interposed in the lower gas pipe 83 is opened, the inert gas flows at the lower center of the spin base 12 at a flow rate corresponding to the opening of the flow rate adjustment valve 85 for changing the flow rate of the inert gas. The liquid is continuously discharged upward from the opening 81.
 スピンベース12の下中央開口81から吐出される不活性ガスは、窒素ガスである。不活性ガスは、ヘリウムガスやアルゴンガスなどの窒素ガス以外のガスであってもよい。基板Wがスピンチャック10に保持されているときに、スピンベース12の下中央開口81が窒素ガスを吐出すると、窒素ガスは、基板Wの下面とスピンベース12の上面12uとの間をあらゆる方向に放射状に流れる。これにより、基板Wとスピンベース12との間の空間が窒素ガスで満たされる。 The inert gas discharged from the lower center opening 81 of the spin base 12 is a nitrogen gas. The inert gas may be a gas other than nitrogen gas such as helium gas or argon gas. When the substrate W is held by the spin chuck 10 and the lower central opening 81 of the spin base 12 discharges nitrogen gas, the nitrogen gas flows between the lower surface of the substrate W and the upper surface 12u of the spin base 12 in all directions. Flows radially. Thereby, the space between the substrate W and the spin base 12 is filled with the nitrogen gas.
 図3は、基板処理装置1に備えられたドライ処理ユニット2dの内部を水平に見た模式図である。 FIG. 3 is a schematic view of the inside of the dry processing unit 2d provided in the substrate processing apparatus 1 as viewed horizontally.
 ドライ処理ユニット2dは、内部空間を有する箱型のチャンバー4と、チャンバー4内で基板Wを加熱する加熱ユニット91とを含む。加熱ユニット91は、基板Wを水平に支持しながら加熱するホットプレート92と、ホットプレート92の上方で基板Wを水平に支持する複数のリフトピン97と、複数のリフトピン97を昇降させるリフト昇降ユニット98とを含む。 The dry processing unit 2d includes a box-shaped chamber 4 having an internal space, and a heating unit 91 for heating the substrate W in the chamber 4. The heating unit 91 includes a hot plate 92 for horizontally supporting and heating the substrate W, a plurality of lift pins 97 for horizontally supporting the substrate W above the hot plate 92, and a lift elevating unit 98 for vertically moving the plurality of lift pins 97. And
 ホットプレート92は、基板Wを加熱する加熱部材の一例である。ホットプレート92は、通電によりジュール熱を発生する発熱体93と、基板Wを水平に支持すると共に、発熱体93を収容するアウターケース94とを含む。発熱体93およびアウターケース94は、基板Wの下方に配置される。発熱体93は、発熱体93に電力を供給する配線(図示せず)に接続されている。発熱体93の温度は、制御装置3によって変更される。制御装置3が発熱体93を発熱させると、基板Wの全体が均一に加熱される。 The hot plate 92 is an example of a heating member that heats the substrate W. The hot plate 92 includes a heating element 93 that generates Joule heat when energized, and an outer case 94 that horizontally supports the substrate W and houses the heating element 93. The heating element 93 and the outer case 94 are arranged below the substrate W. The heating element 93 is connected to a wiring (not shown) that supplies power to the heating element 93. The temperature of the heating element 93 is changed by the control device 3. When the control device 3 causes the heating element 93 to generate heat, the entire substrate W is uniformly heated.
 ホットプレート92のアウターケース94は、基板Wの下方に配置される円板状のベース部95と、ベース部95の上面から上方に突出する複数の半球状の突出部96とを含む。ベース部95の上面は、基板Wの下面と平行であり、基板Wの外径以上の外径を有している。複数の突出部96は、ベース部95の上面から上方に離れた位置で基板Wの下面に接触する。複数の突出部96は、基板Wが水平に支持されるように、ベース部95の上面内の複数の位置に配置されている。基板Wは、基板Wの下面がベース部95の上面から上方に離れた状態で水平に支持される。 The outer case 94 of the hot plate 92 includes a disc-shaped base portion 95 disposed below the substrate W, and a plurality of hemispherical protrusions 96 protruding upward from the upper surface of the base portion 95. The upper surface of the base portion 95 is parallel to the lower surface of the substrate W, and has an outer diameter equal to or larger than the outer diameter of the substrate W. The plurality of protrusions 96 contact the lower surface of the substrate W at a position separated upward from the upper surface of the base portion 95. The plurality of protrusions 96 are arranged at a plurality of positions on the upper surface of the base 95 so that the substrate W is supported horizontally. The substrate W is supported horizontally with the lower surface of the substrate W separated upward from the upper surface of the base portion 95.
 複数のリフトピン97は、ホットプレート92を貫通する複数の貫通穴にそれぞれ挿入されている。リフトピン97は、基板Wの下面に接触する半球状の上端部を含む。複数のリフトピン97の上端部は、同じ高さに配置されている。リフト昇降ユニット98は、複数のリフトピン97の上端部がホットプレート92よりも上方に位置する上位置(図3において二点鎖線で示す位置)と、複数のリフトピン97の上端部がホットプレート92の内部に退避した下位置(図3において実線で示す位置)との間で、複数のリフトピン97を鉛直方向に移動させる。 The plurality of lift pins 97 are inserted into the plurality of through holes penetrating the hot plate 92, respectively. The lift pins 97 include hemispherical upper ends that come into contact with the lower surface of the substrate W. The upper ends of the plurality of lift pins 97 are arranged at the same height. The lift elevating unit 98 includes an upper position where the upper ends of the plurality of lift pins 97 are located above the hot plate 92 (a position indicated by a two-dot chain line in FIG. 3), and an upper end of the plurality of lift pins 97 which corresponds to the hot plate 92. The plurality of lift pins 97 are moved in the vertical direction between the retracted lower position (the position indicated by the solid line in FIG. 3).
 図4は、制御装置3のハードウェアを示すブロック図である。 FIG. 4 is a block diagram showing hardware of the control device 3.
 制御装置3は、コンピュータ本体3aと、コンピュータ本体3aに接続された周辺装置3dとを含む、コンピュータである。コンピュータ本体3aは、各種の命令を実行するCPU3b(central processing unit:中央処理装置)と、情報を記憶する主記憶装置3cとを含む。周辺装置3dは、プログラムP等の情報を記憶する補助記憶装置3eと、リムーバブルメディアMから情報を読み取る読取装置3fと、ホストコンピュータ等の他の装置と通信する通信装置3gとを含む。 The control device 3 is a computer including a computer main body 3a and a peripheral device 3d connected to the computer main body 3a. The computer main body 3a includes a CPU 3b (central processing unit) for executing various instructions, and a main storage device 3c for storing information. The peripheral device 3d includes an auxiliary storage device 3e that stores information such as a program P, a reading device 3f that reads information from the removable medium M, and a communication device 3g that communicates with another device such as a host computer.
 制御装置3は、入力装置および表示装置に接続されている。入力装置は、ユーザーやメンテナンス担当者などの操作者が基板処理装置1に情報を入力するときに操作される。情報は、表示装置の画面に表示される。入力装置は、キーボード、ポインティングデバイス、およびタッチパネルのいずれかであってもよいし、これら以外の装置であってもよい。入力装置および表示装置を兼ねるタッチパネルディスプレイが基板処理装置1に設けられていてもよい。 The control device 3 is connected to the input device and the display device. The input device is operated when an operator such as a user or a maintenance person inputs information to the substrate processing apparatus 1. The information is displayed on the screen of the display device. The input device may be any of a keyboard, a pointing device, and a touch panel, or may be other devices. A touch panel display serving also as an input device and a display device may be provided in the substrate processing apparatus 1.
 CPU3bは、補助記憶装置3eに記憶されたプログラムPを実行する。補助記憶装置3e内のプログラムPは、制御装置3に予めインストールされたものであってもよいし、読取装置3fを通じてリムーバブルメディアMから補助記憶装置3eに送られたものであってもよいし、ホストコンピュータなどの外部装置から通信装置3gを通じて補助記憶装置3eに送られたものであってもよい。 (4) The CPU 3b executes the program P stored in the auxiliary storage device 3e. The program P in the auxiliary storage device 3e may be installed in the control device 3 in advance, or may be sent from the removable medium M to the auxiliary storage device 3e through the reading device 3f, It may be transmitted from an external device such as a host computer to the auxiliary storage device 3e through the communication device 3g.
 補助記憶装置3eおよびリムーバブルメディアMは、電力が供給されていなくても記憶を保持する不揮発性メモリーである。補助記憶装置3eは、たとえば、ハードディスクドライブ等の磁気記憶装置である。リムーバブルメディアMは、たとえば、コンパクトディスクなどの光ディスクまたはメモリーカードなどの半導体メモリーである。リムーバブルメディアMは、プログラムPが記録されたコンピュータ読取可能な記録媒体の一例である。リムーバブルメディアMは、一時的ではない有形の記録媒体(non-transitory tangible recording medium)である。 The auxiliary storage device 3e and the removable medium M are non-volatile memories that retain data even when power is not supplied. The auxiliary storage device 3e is, for example, a magnetic storage device such as a hard disk drive. The removable medium M is, for example, an optical disk such as a compact disk or a semiconductor memory such as a memory card. The removable medium M is an example of a computer-readable recording medium on which the program P is recorded. The removable medium M is a non-transitory tangible recording medium (non-transitory / tangible / recording / medium).
 補助記憶装置3eは、複数のレシピを記憶している。レシピは、基板Wの処理内容、処理条件、および処理手順を規定する情報である。複数のレシピは、基板Wの処理内容、処理条件、および処理手順の少なくとも一つにおいて互いに異なる。制御装置3は、ホストコンピュータによって指定されたレシピにしたがって基板Wが処理されるように基板処理装置1を制御する。以下の各工程は、制御装置3が基板処理装置1を制御することにより実行される。言い換えると、制御装置3は、以下の各工程を実行するようにプログラムされている。 The auxiliary storage device 3e stores a plurality of recipes. The recipe is information that defines processing contents, processing conditions, and processing procedures for the substrate W. The plurality of recipes differ from each other in at least one of the processing content, processing conditions, and processing procedure of the substrate W. The control device 3 controls the substrate processing apparatus 1 so that the substrate W is processed according to the recipe specified by the host computer. The following steps are executed by the control device 3 controlling the substrate processing apparatus 1. In other words, the control device 3 is programmed to execute the following steps.
 次に、基板Wの処理の一例について説明する。 Next, an example of processing of the substrate W will be described.
 処理される基板Wは、たとえば、シリコンウエハなどの半導体ウエハである。基板Wの表面は、トランジスタやキャパシタ等のデバイスが形成されるデバイス形成面に相当する。基板Wは、パターン形成面である基板Wの表面にパターンP1(図6A参照)が形成された基板Wであってもよいし、基板Wの表面にパターンP1が形成されていない基板Wであってもよい。後者の場合、後述する薬液供給工程でパターンP1が形成されてもよい。 The substrate W to be processed is, for example, a semiconductor wafer such as a silicon wafer. The surface of the substrate W corresponds to a device formation surface on which devices such as transistors and capacitors are formed. The substrate W may be a substrate W on which a pattern P1 (see FIG. 6A) is formed on the surface of the substrate W, which is a pattern formation surface, or a substrate W on which the pattern P1 is not formed on the surface of the substrate W. You may. In the latter case, the pattern P1 may be formed in a chemical solution supply step described later.
 図5は、基板処理装置1によって行われる基板Wの処理の一例について説明するための工程図である。図6A~図6Dは、図5に示す処理が行われているときの基板Wの状態を示す模式図である。以下では、図2、図3、および図5を参照する。図6A~図6Dについては適宜参照する。 FIG. 5 is a process chart for explaining an example of the processing of the substrate W performed by the substrate processing apparatus 1. 6A to 6D are schematic diagrams showing the state of the substrate W when the processing shown in FIG. 5 is being performed. In the following, reference is made to FIG. 2, FIG. 3, and FIG. 6A to 6D will be referred to as appropriate.
 基板処理装置1によって基板Wが処理されるときは、ウェット処理ユニット2w内に基板Wを搬入する搬入工程(図5のステップS1)が行われる。 (4) When the substrate W is processed by the substrate processing apparatus 1, a loading step (step S1 in FIG. 5) for loading the substrate W into the wet processing unit 2w is performed.
 具体的には、遮断部材51が上位置に位置しており、全てのガード24が下位置に位置しており、全てのスキャンノズルが待機位置に位置している状態で、センターロボットCR(図1A参照)が、基板WをハンドH1で支持しながら、ハンドH1をウェット処理ユニット2w内に進入させる。そして、センターロボットCRは、基板Wの表面が上に向けられた状態でハンドH1上の基板Wを複数のチャックピン11の上に置く。その後、複数のチャックピン11が基板Wの外周面に押し付けられ、基板Wが把持される。センターロボットCRは、基板Wをスピンチャック10の上に置いた後、ハンドH1をウェット処理ユニット2wの内部から退避させる。 Specifically, in a state where the blocking member 51 is located at the upper position, all the guards 24 are located at the lower position, and all the scan nozzles are located at the standby position, the center robot CR (FIG. 1A) moves the hand H1 into the wet processing unit 2w while supporting the substrate W with the hand H1. Then, the center robot CR places the substrate W on the hand H1 on the plurality of chuck pins 11 with the surface of the substrate W facing upward. Thereafter, the plurality of chuck pins 11 are pressed against the outer peripheral surface of the substrate W, and the substrate W is gripped. After placing the substrate W on the spin chuck 10, the center robot CR retracts the hand H1 from inside the wet processing unit 2w.
 次に、上気体バルブ64および下気体バルブ84が開かれ、遮断部材51の上中央開口61およびスピンベース12の下中央開口81が窒素ガスの吐出を開始する。これにより、基板Wと遮断部材51との間の空間が窒素ガスで満たされる。同様に、基板Wとスピンベース12との間の空間とが窒素ガスで満たされる。その一方で、ガード昇降ユニット27が少なくとも一つのガード24を下位置から上位置に上昇させる。その後、スピンモータ14が駆動され、基板Wの回転が開始される(図5のステップS2)。これにより、基板Wが液体供給速度で回転する。 Next, the upper gas valve 64 and the lower gas valve 84 are opened, and the upper central opening 61 of the blocking member 51 and the lower central opening 81 of the spin base 12 start discharging nitrogen gas. Thereby, the space between the substrate W and the blocking member 51 is filled with the nitrogen gas. Similarly, the space between the substrate W and the spin base 12 is filled with nitrogen gas. Meanwhile, the guard elevating unit 27 raises at least one guard 24 from the lower position to the upper position. Thereafter, the spin motor 14 is driven, and the rotation of the substrate W is started (Step S2 in FIG. 5). Thereby, the substrate W rotates at the liquid supply speed.
 次に、薬液を基板Wの上面に供給し、基板Wの上面全域を覆う薬液の液膜を形成する薬液供給工程(図5のステップS3)が行われる。 Next, a chemical solution supply step (step S3 in FIG. 5) of supplying the chemical solution to the upper surface of the substrate W and forming a liquid film of the chemical solution covering the entire upper surface of the substrate W is performed.
 具体的には、遮断部材51が上位置に位置しており、少なくとも一つのガード24が上位置に位置している状態で、ノズル移動ユニット34が薬液ノズル31を待機位置から処理位置に移動させる。その後、薬液バルブ33が開かれ、薬液ノズル31が薬液の吐出を開始する。薬液バルブ33が開かれてから所定時間が経過すると、薬液バルブ33が閉じられ、薬液の吐出が停止される。その後、ノズル移動ユニット34が薬液ノズル31を待機位置に移動させる。 Specifically, the nozzle moving unit 34 moves the chemical solution nozzle 31 from the standby position to the processing position in a state where the blocking member 51 is located at the upper position and at least one guard 24 is located at the upper position. . Thereafter, the chemical liquid valve 33 is opened, and the chemical liquid nozzle 31 starts discharging the chemical liquid. When a predetermined time elapses after the chemical liquid valve 33 is opened, the chemical liquid valve 33 is closed, and the discharge of the chemical liquid is stopped. Thereafter, the nozzle moving unit 34 moves the chemical liquid nozzle 31 to the standby position.
 薬液ノズル31から吐出された薬液は、液体供給速度で回転している基板Wの上面に着液した後、遠心力によって基板Wの上面に沿って外方に流れる。そのため、薬液が基板Wの上面全域に供給され、基板Wの上面全域を覆う薬液の液膜が形成される。薬液ノズル31が薬液を吐出しているとき、ノズル移動ユニット34は、基板Wの上面に対する薬液の着液位置が中央部と外周部とを通るように着液位置を移動させてもよいし、着液位置を中央部で静止させてもよい。 (4) The chemical liquid discharged from the chemical liquid nozzle 31 lands on the upper surface of the substrate W rotating at the liquid supply speed, and then flows outward along the upper surface of the substrate W by centrifugal force. Therefore, the chemical solution is supplied to the entire upper surface of the substrate W, and a liquid film of the chemical solution covering the entire upper surface of the substrate W is formed. When the chemical liquid nozzle 31 is discharging the chemical liquid, the nozzle moving unit 34 may move the liquid landing position so that the liquid landing position on the upper surface of the substrate W passes through the central portion and the outer peripheral portion, The liquid landing position may be stationary at the center.
 次に、リンス液の一例である純水を基板Wの上面に供給して、基板W上の薬液を洗い流すリンス液供給工程(図5のステップS4)が行われる。 Next, a rinsing liquid supply step (step S4 in FIG. 5) of supplying pure water, which is an example of a rinsing liquid, to the upper surface of the substrate W to wash out the chemical liquid on the substrate W.
 具体的には、遮断部材51が上位置に位置しており、少なくとも一つのガード24が上位置に位置している状態で、ノズル移動ユニット38がリンス液ノズル35を待機位置から処理位置に移動させる。その後、リンス液バルブ37が開かれ、リンス液ノズル35がリンス液の吐出を開始する。純水の吐出が開始される前に、ガード昇降ユニット27は、基板Wから排出された液体を受け止めるガード24を切り替えるために、少なくとも一つのガード24を鉛直に移動させてもよい。リンス液バルブ37が開かれてから所定時間が経過すると、リンス液バルブ37が閉じられ、リンス液の吐出が停止される。その後、ノズル移動ユニット38がリンス液ノズル35を待機位置に移動させる。 Specifically, the nozzle moving unit 38 moves the rinse liquid nozzle 35 from the standby position to the processing position with the blocking member 51 positioned at the upper position and at least one guard 24 positioned at the upper position. Let it. Thereafter, the rinsing liquid valve 37 is opened, and the rinsing liquid nozzle 35 starts discharging the rinsing liquid. Before the discharge of pure water is started, the guard elevating unit 27 may move at least one guard 24 vertically in order to switch the guard 24 that receives the liquid discharged from the substrate W. When a predetermined time has elapsed since the opening of the rinse liquid valve 37, the rinse liquid valve 37 is closed, and the discharge of the rinse liquid is stopped. Thereafter, the nozzle moving unit 38 moves the rinse liquid nozzle 35 to the standby position.
 リンス液ノズル35から吐出された純水は、液体供給速度で回転している基板Wの上面に着液した後、遠心力によって基板Wの上面に沿って外方に流れる。基板W上の薬液は、リンス液ノズル35から吐出された純水に置換される。これにより、基板Wの上面全域を覆う純水の液膜が形成される。リンス液ノズル35が純水を吐出しているとき、ノズル移動ユニット38は、基板Wの上面に対する純水の着液位置が中央部と外周部とを通るように着液位置を移動させてもよいし、着液位置を中央部で静止させてもよい。 (4) The pure water discharged from the rinsing liquid nozzle 35 lands on the upper surface of the substrate W rotating at the liquid supply speed, and then flows outward along the upper surface of the substrate W by centrifugal force. The chemical on the substrate W is replaced with pure water discharged from the rinse liquid nozzle 35. As a result, a liquid film of pure water covering the entire upper surface of the substrate W is formed. When the rinsing liquid nozzle 35 is discharging pure water, the nozzle moving unit 38 may move the liquid landing position so that the pure water landing position on the upper surface of the substrate W passes through the central portion and the outer peripheral portion. Alternatively, the liquid landing position may be stationary at the center.
 次に、リンス液および乾燥前処理液の両方と溶け合う置換液を基板Wの上面に供給し、基板W上の純水を置換液に置換する置換液供給工程(図5のステップS5)が行われる。 Next, a replacement liquid supply step (step S5 in FIG. 5) of supplying a replacement liquid that is soluble in both the rinsing liquid and the pre-drying treatment liquid to the upper surface of the substrate W and replacing the pure water on the substrate W with the replacement liquid is performed. Will be
 具体的には、遮断部材51が上位置に位置しており、少なくとも一つのガード24が上位置に位置している状態で、ノズル移動ユニット46が置換液ノズル43を待機位置から処理位置に移動させる。その後、置換液バルブ45が開かれ、置換液ノズル43が置換液の吐出を開始する。置換液の吐出が開始される前に、ガード昇降ユニット27は、基板Wから排出された液体を受け止めるガード24を切り替えるために、少なくとも一つのガード24を鉛直に移動させてもよい。置換液バルブ45が開かれてから所定時間が経過すると、置換液バルブ45が閉じられ、置換液の吐出が停止される。その後、ノズル移動ユニット46が置換液ノズル43を待機位置に移動させる。 Specifically, the nozzle moving unit 46 moves the replacement liquid nozzle 43 from the standby position to the processing position in a state where the blocking member 51 is located at the upper position and at least one guard 24 is located at the upper position. Let it. Thereafter, the replacement liquid valve 45 is opened, and the replacement liquid nozzle 43 starts discharging the replacement liquid. Before the discharge of the replacement liquid is started, the guard elevating unit 27 may move at least one guard 24 vertically in order to switch the guard 24 that receives the liquid discharged from the substrate W. When a predetermined time has elapsed since the replacement liquid valve 45 was opened, the replacement liquid valve 45 is closed, and the discharge of the replacement liquid is stopped. Thereafter, the nozzle moving unit 46 moves the replacement liquid nozzle 43 to the standby position.
 置換液ノズル43から吐出された置換液は、液体供給速度で回転している基板Wの上面に着液した後、遠心力によって基板Wの上面に沿って外方に流れる。基板W上の純水は、置換液ノズル43から吐出された置換液に置換される。これにより、基板Wの上面全域を覆う置換液の液膜が形成される。置換液ノズル43が置換液を吐出しているとき、ノズル移動ユニット46は、基板Wの上面に対する置換液の着液位置が中央部と外周部とを通るように着液位置を移動させてもよいし、着液位置を中央部で静止させてもよい。 The replacement liquid discharged from the replacement liquid nozzle 43 lands on the upper surface of the substrate W rotating at the liquid supply speed, and then flows outward along the upper surface of the substrate W by centrifugal force. The pure water on the substrate W is replaced with the replacement liquid discharged from the replacement liquid nozzle 43. As a result, a liquid film of the replacement liquid covering the entire upper surface of the substrate W is formed. When the replacement liquid nozzle 43 is discharging the replacement liquid, the nozzle moving unit 46 may move the liquid landing position so that the liquid landing position on the upper surface of the substrate W passes through the central portion and the outer peripheral portion. Alternatively, the liquid landing position may be stationary at the center.
 次に、乾燥前処理液を基板Wの上面に供給して、乾燥前処理液の液膜を基板W上に形成する乾燥前処理液供給工程(図5のステップS6)が行われる。 Next, a pre-drying treatment liquid supply step (Step S6 in FIG. 5) of supplying the pre-drying treatment liquid to the upper surface of the substrate W and forming a liquid film of the pre-drying treatment liquid on the substrate W is performed.
 具体的には、遮断部材51が上位置に位置しており、少なくとも一つのガード24が上位置に位置している状態で、ノズル移動ユニット42が乾燥前処理液ノズル39を待機位置から処理位置に移動させる。その後、乾燥前処理液バルブ41が開かれ、乾燥前処理液ノズル39が乾燥前処理液の吐出を開始する。乾燥前処理液の吐出が開始される前に、ガード昇降ユニット27は、基板Wから排出された液体を受け止めるガード24を切り替えるために、少なくとも一つのガード24を鉛直に移動させてもよい。 Specifically, in a state where the blocking member 51 is located at the upper position and at least one guard 24 is located at the upper position, the nozzle moving unit 42 moves the pre-drying processing liquid nozzle 39 from the standby position to the processing position. Move to Thereafter, the pre-drying treatment liquid valve 41 is opened, and the pre-drying treatment liquid nozzle 39 starts discharging the pre-drying treatment liquid. Before the discharge of the pre-drying treatment liquid is started, the guard elevating unit 27 may move at least one guard 24 vertically to switch the guard 24 that receives the liquid discharged from the substrate W.
 乾燥前処理液ノズル39から吐出された乾燥前処理液は、液体供給速度で回転している基板Wの上面に着液した後、遠心力によって基板Wの上面に沿って外方に流れる。基板W上の置換液は、乾燥前処理液ノズル39から吐出された乾燥前処理液に置換される。これにより、基板Wの上面全域を覆う乾燥前処理液の液膜が形成される。乾燥前処理液ノズル39が乾燥前処理液を吐出しているとき、ノズル移動ユニット42は、基板Wの上面に対する乾燥前処理液の着液位置が中央部と外周部とを通るように着液位置を移動させてもよいし、着液位置を中央部で静止させてもよい。 (4) The pre-drying treatment liquid discharged from the pre-drying treatment liquid nozzle 39 lands on the upper surface of the substrate W rotating at the liquid supply speed, and then flows outward along the upper surface of the substrate W by centrifugal force. The replacement liquid on the substrate W is replaced with the pre-drying processing liquid discharged from the pre-drying processing liquid nozzle 39. Thus, a liquid film of the pre-drying treatment liquid covering the entire upper surface of the substrate W is formed. When the pre-drying treatment liquid nozzle 39 is discharging the pre-drying treatment liquid, the nozzle moving unit 42 immerses the pre-drying treatment liquid so that the liquid landing position on the upper surface of the substrate W passes through the central portion and the outer peripheral portion. The position may be moved, or the liquid landing position may be stopped at the center.
 図6Aは、乾燥前処理液が供給された基板Wの断面の一例を示している。乾燥前処理液がパターンP1の表面を含む基板Wの上面(基板Wの表面)に接すると、乾燥前処理液に含まれる吸着物質が基板Wの上面に吸着する。同様の現象が基板Wの上面のあらゆる場所で起こり、乾燥前処理液に含まれる吸着物質が基板Wの上面の各部に吸着する。図6Aは、吸着物質の1つの分子が基板Wの上面の各部に吸着し、吸着物質の単分子膜が基板Wの上面に沿って形成された例を示している。この例では、基板Wの上面に吸着している乾燥前処理液と基板Wの上面に吸着していない乾燥前処理液との間に境界があるように描かれているが、実際にはこのような境界は存在しない。 FIG. 6A shows an example of a cross section of the substrate W supplied with the pre-drying treatment liquid. When the pre-drying treatment liquid comes into contact with the upper surface of the substrate W including the surface of the pattern P1 (the surface of the substrate W), the adsorbed substance contained in the pre-drying treatment liquid is adsorbed on the upper surface of the substrate W. A similar phenomenon occurs everywhere on the upper surface of the substrate W, and the adsorbed substance contained in the pre-drying treatment liquid is adsorbed on each part of the upper surface of the substrate W. FIG. 6A shows an example in which one molecule of the adsorbing substance is adsorbed on each part of the upper surface of the substrate W, and a monomolecular film of the adsorbing substance is formed along the upper surface of the substrate W. In this example, the boundary is drawn between the pre-drying treatment liquid adsorbed on the upper surface of the substrate W and the pre-drying liquid not adsorbed on the upper surface of the substrate W. No such boundary exists.
 乾燥前処理液の液膜を形成した後は、基板Wの上面全域が乾燥前処理液の液膜で覆われた状態を維持しながら、基板Wの上面に対する吸着物質の吸着を促進させる吸着促進工程(図5のステップS7)が行われる。 After the formation of the liquid film of the pre-drying treatment liquid, the adsorption promotion that promotes the adsorption of the adsorbed substance to the upper surface of the substrate W while maintaining the entire upper surface of the substrate W covered with the liquid film of the pre-drying treatment liquid The process (Step S7 in FIG. 5) is performed.
 具体的には、乾燥前処理液ノズル39が乾燥前処理液を吐出している状態で、スピンモータ14が基板Wの回転速度を低下させる。このとき、スピンモータ14は、基板Wの回転を停止させてもよいし、基板Wを液体供給速度よりも小さい吸着促進速度(たとえば、0を超える20rpm以下の速度)で回転させてもよい。基板Wの回転速度が低下した後、乾燥前処理液バルブ41が閉じられ、乾燥前処理液の吐出が停止される。さらに、ノズル移動ユニット42が乾燥前処理液ノズル39を待機位置に移動させ、遮断部材昇降ユニット54が遮断部材51を上位置から下位置に下降させる。 Specifically, the spin motor 14 lowers the rotation speed of the substrate W while the pre-drying processing liquid nozzle 39 is discharging the pre-drying processing liquid. At this time, the spin motor 14 may stop the rotation of the substrate W, or may rotate the substrate W at an adsorption promoting speed lower than the liquid supply speed (for example, a speed exceeding 0 and 20 rpm or less). After the rotation speed of the substrate W decreases, the pre-drying treatment liquid valve 41 is closed, and the discharge of the pre-drying treatment liquid is stopped. Further, the nozzle moving unit 42 moves the pre-drying treatment liquid nozzle 39 to the standby position, and the blocking member elevating unit 54 lowers the blocking member 51 from the upper position to the lower position.
 基板Wの回転速度が低下すると、基板W上の乾燥前処理液に加わる遠心力が弱まり、基板Wから排出される乾燥前処理液の流量が減少する。さらに、基板W上の乾燥前処理液に加わる遠心力が小さいので、乾燥前処理液は、乾燥前処理液と基板Wとの間に働く力で基板Wの上面に留まる。そのため、乾燥前処理液の吐出が停止された後も、基板Wの上面全域が乾燥前処理液の液膜で覆われた状態が維持される。基板Wの回転速度が零または小さいので、乾燥前処理液とパターンP1との界面における乾燥前処理液の流動が緩やかになり、パターンP1の表面に対する吸着物質の吸着が促進される。 (4) When the rotation speed of the substrate W decreases, the centrifugal force applied to the pre-drying processing liquid on the substrate W decreases, and the flow rate of the pre-drying processing liquid discharged from the substrate W decreases. Further, since the centrifugal force applied to the pre-drying treatment liquid on the substrate W is small, the pre-drying treatment liquid stays on the upper surface of the substrate W by the force acting between the pre-drying treatment liquid and the substrate W. Therefore, even after the discharge of the pre-drying treatment liquid is stopped, the state where the entire upper surface of the substrate W is covered with the liquid film of the pre-drying treatment liquid is maintained. Since the rotation speed of the substrate W is zero or low, the flow of the pre-drying treatment liquid at the interface between the pre-drying treatment liquid and the pattern P1 becomes gentle, and the adsorption of the adsorbed substance on the surface of the pattern P1 is promoted.
 次に、吸着物質を含む吸着膜101(図6B参照)を形成するために、基板Wを液体除去速度で回転させることにより、基板Wの上面上の一部の乾燥前処理液を除去する液体除去工程(図5のステップS8)が行われる。 Next, in order to form the adsorption film 101 (see FIG. 6B) containing the adsorbed substance, the substrate W is rotated at a liquid removal speed to remove a part of the pre-drying treatment liquid on the upper surface of the substrate W. A removal step (step S8 in FIG. 5) is performed.
 具体的には、遮断部材51が下位置に位置しており、遮断部材51の上中央開口61が窒素ガスを吐出している状態で、スピンモータ14が基板Wの回転速度を吸着促進速度よりも大きい液体除去速度まで上昇させて、液体除去速度に維持する。液体除去速度は、液体供給速度と等しくてもよいし、異なっていてもよい。基板Wの回転速度が上昇すると、基板Wから排出される乾燥前処理液の流量が増加し、基板Wの上面上の乾燥前処理液が減少する。 Specifically, in a state where the blocking member 51 is located at the lower position, and the upper central opening 61 of the blocking member 51 is discharging nitrogen gas, the spin motor 14 controls the rotation speed of the substrate W to be lower than the adsorption promotion speed. Is also increased to a large liquid removal rate and maintained at the liquid removal rate. The liquid removal rate may be equal to or different from the liquid supply rate. When the rotation speed of the substrate W increases, the flow rate of the pre-drying processing liquid discharged from the substrate W increases, and the pre-drying processing liquid on the upper surface of the substrate W decreases.
 基板Wが液体除去速度で回転すると、殆どの乾燥前処理液は、基板Wの上面から除去される。しかしながら、パターンP1の表面に吸着した吸着物質は、吸着物質と基板Wとの間に働く力で基板Wに残る。パターンP1の表面を含む基板Wの上面に残った乾燥前処理液の表層は、乾燥により濃縮され、固体状の薄膜に変化する。これにより、図6Bに示すように、パターンP1の表面に吸着した吸着物質を含む吸着膜101がパターンP1の表面に沿って形成される。基板Wの上面に残った乾燥前処理液は、その表層だけが固体に変化してもよいし、その全体が固体に変化してもよい。もしくは、基板Wの上面に残った乾燥前処理液がゲル状に変化してもよい。 When the substrate W rotates at the liquid removal speed, most of the pre-drying processing liquid is removed from the upper surface of the substrate W. However, the adsorbed substance adsorbed on the surface of the pattern P1 remains on the substrate W due to the force acting between the adsorbed substance and the substrate W. The surface layer of the pre-drying solution remaining on the upper surface of the substrate W including the surface of the pattern P1 is concentrated by drying and changes to a solid thin film. Thus, as shown in FIG. 6B, an adsorption film 101 containing the adsorbed substance adsorbed on the surface of the pattern P1 is formed along the surface of the pattern P1. Only the surface layer of the pre-drying treatment liquid remaining on the upper surface of the substrate W may be changed to solid, or the whole may be changed to solid. Alternatively, the pre-drying treatment liquid remaining on the upper surface of the substrate W may change into a gel state.
 吸着膜101は、最終的に基板Wから除去される犠牲膜に相当する。吸着膜101は、乾燥前処理液が固化した固化膜であってもよい。図6Bに示す例では、吸着膜101は、パターンP1の側面Psを覆う側面膜101sと、パターンP1の上面Puを覆う上面膜101uと、基板Wの底面(基板Wの平面Ws)を覆う底面膜101bとを含む。側面膜101sの上端部と上面膜101uとは、パターンP1の先端部を覆う先端膜を構成している。吸着膜101の厚みT1は、パターンP1の高さHpよりも小さい。吸着膜101の厚みT1は、パターンP1の幅Wpより小さくてもよいし、隣り合う2つのパターンP1の間隔G1より小さくてもよい。吸着膜101は、吸着物質の単分子膜であってもよい。この場合、吸着膜101の厚みT1は、数ナノメートルもしくは数オングストロームである。 (4) The adsorption film 101 corresponds to a sacrificial film that is finally removed from the substrate W. The adsorption film 101 may be a solidified film obtained by solidifying the pretreatment liquid for drying. In the example shown in FIG. 6B, the adsorption film 101 includes a side film 101s covering the side surface Ps of the pattern P1, an upper surface film 101u covering the upper surface Pu of the pattern P1, and a bottom covering the bottom surface of the substrate W (the plane Ws of the substrate W). And a surface film 101b. The upper end of the side surface film 101s and the upper surface film 101u constitute a leading end film that covers the leading end of the pattern P1. The thickness T1 of the attraction film 101 is smaller than the height Hp of the pattern P1. The thickness T1 of the attraction film 101 may be smaller than the width Wp of the pattern P1, or may be smaller than the distance G1 between two adjacent patterns P1. The adsorption film 101 may be a monomolecular film of an adsorption substance. In this case, the thickness T1 of the adsorption film 101 is several nanometers or several angstroms.
 図6Bは、隣り合う2つのパターンP1が互いに近づく方向に倒壊した直後の状態を示している。基板W上の乾燥前処理液がある程度まで減ると、乾燥前処理液の上面(液面)が隣り合う2つの凸状パターンP1の間に移動する。つまり、気体と液体(乾燥前処理液)との界面がパターンP1の間に移動し、乾燥前処理液の表面張力に起因する倒壊力が吸着膜101を介してパターンP1に加わる。このとき、隣り合う2つのパターンP1が互いに近づく方向に倒壊したとしても、パターンP1の表面の少なくとも一部が吸着膜101でコーティングされているので、この2つのパターンP1は、直接的に接するのではなく、吸着膜101を介して接する。 FIG. 6B shows a state immediately after two adjacent patterns P1 collapse in the direction approaching each other. When the pre-drying treatment liquid on the substrate W is reduced to a certain extent, the upper surface (liquid level) of the pre-drying treatment liquid moves between two adjacent convex patterns P1. That is, the interface between the gas and the liquid (the pre-drying treatment liquid) moves between the patterns P1, and the collapse force caused by the surface tension of the pre-drying treatment liquid is applied to the pattern P1 via the adsorption film 101. At this time, even if two adjacent patterns P1 collapse in a direction approaching each other, at least a part of the surface of the pattern P1 is coated with the adsorption film 101, so that the two patterns P1 are in direct contact with each other. Instead, they are in contact with each other via the adsorption film 101.
 倒壊したパターンP1は、パターンP1の復元力(弾力)で基板Wの底面(基板Wの平面Ws)に対して垂直な垂直状態に戻ろうとする。その一方で、倒壊した2つのパターンP1の先端部をそれぞれ覆う2つの側面膜101sが互いに接触すると、2つの側面膜101sの間に接着力が発生する。この接着力がパターンP1の復元力より強い場合、倒壊したパターンP1は、垂直状態に戻らずに、基板Wの底面に対して傾いた倒壊状態に維持される。 (4) The collapsed pattern P1 attempts to return to a vertical state perpendicular to the bottom surface of the substrate W (the plane Ws of the substrate W) by the restoring force (elasticity) of the pattern P1. On the other hand, when the two side films 101s respectively covering the tip portions of the two collapsed patterns P1 come into contact with each other, an adhesive force is generated between the two side films 101s. When the adhesive force is stronger than the restoring force of the pattern P1, the collapsed pattern P1 does not return to the vertical state, but is maintained in a collapsed state inclined with respect to the bottom surface of the substrate W.
 図6Cは、隣り合う2つのパターンP1が互いに近づく方向に倒壊した後にある程度の時間が経過したときの状態を示している。乾燥前処理液を基板Wから除去するとき、基板W上の一部の乾燥前処理液は、気化してあらゆる方向に流れる。倒壊した2つのパターンP1の根本付近で気化した乾燥前処理液は、この2つのパターンP1の先端部の間に介在する吸着膜101に付着する。そのため、図6Cにおいて破線の丸で示すように、倒壊した2つのパターンP1の先端部付近では、他の位置に比べて吸着膜101が厚くなる。 FIG. 6C shows a state where a certain amount of time has elapsed after two adjacent patterns P1 collapsed in a direction approaching each other. When the pre-drying treatment liquid is removed from the substrate W, a part of the pre-drying treatment liquid on the substrate W is vaporized and flows in all directions. The drying pretreatment liquid vaporized near the roots of the two collapsed patterns P1 adheres to the adsorption film 101 interposed between the tips of the two patterns P1. Therefore, as shown by the broken-line circles in FIG. 6C, the suction film 101 is thicker near the tip portions of the two collapsed patterns P1 than at other positions.
 なお、吸着物質を含む吸着膜101を形成するために、基板Wの上面上の一部の乾燥前処理液を基板Wの回転によって除去しているときに、基板Wの上面上の乾燥前処理液を加熱してもよい。たとえば、加熱流体バルブ73を開いて、下面ノズル71に温水を吐出させてもよいし、下温度調節器86によって加熱された窒素ガスをスピンベース12の下中央開口81に吐出させてもよい。基板Wの上面上の乾燥前処理液を加熱すれば、吸着膜101の形成に要する時間を短縮できる。 In order to form the adsorbing film 101 containing the adsorbing substance, when a part of the pre-drying treatment liquid on the upper surface of the substrate W is removed by rotation of the substrate W, the pre-drying treatment on the upper surface of the substrate W is performed. The liquid may be heated. For example, the heating fluid valve 73 may be opened to discharge hot water to the lower nozzle 71, or the nitrogen gas heated by the lower temperature controller 86 may be discharged to the lower center opening 81 of the spin base 12. If the pre-drying treatment liquid on the upper surface of the substrate W is heated, the time required for forming the adsorption film 101 can be reduced.
 吸着膜101が形成された後は、乾燥または実質的に乾燥した基板Wをウェット処理ユニット2wからドライ処理ユニット2dに搬送する搬送工程(図5のステップS10)が行われる。 After the adsorption film 101 is formed, a transfer step (step S10 in FIG. 5) of transferring the dried or substantially dried substrate W from the wet processing unit 2w to the dry processing unit 2d is performed.
 具体的には、スピンモータ14が止まり、基板Wの回転が停止される(図5のステップS9)。さらに、遮断部材昇降ユニット54が遮断部材51を上位置まで上昇させ、ガード昇降ユニット27が全てのガード24を下位置まで下降させる。さらに、上気体バルブ64および下気体バルブ84が閉じられ、遮断部材51の上中央開口61とスピンベース12の下中央開口81とが窒素ガスの吐出を停止する。その後、センターロボットCRが、ハンドH1をウェット処理ユニット2w内に進入させる。センターロボットCRは、複数のチャックピン11が基板Wの把持を解除した後、スピンチャック10上の基板WをハンドH1で支持する。その後、センターロボットCRは、基板WをハンドH1で支持しながら、ハンドH1をウェット処理ユニット2wの内部から退避させる。これにより、基板Wがウェット処理ユニット2wから搬出される。 {Specifically, the spin motor 14 is stopped, and the rotation of the substrate W is stopped (Step S9 in FIG. 5). Further, the blocking member elevating unit 54 raises the blocking member 51 to the upper position, and the guard elevating unit 27 lowers all the guards 24 to the lower position. Further, the upper gas valve 64 and the lower gas valve 84 are closed, and the upper central opening 61 of the blocking member 51 and the lower central opening 81 of the spin base 12 stop discharging nitrogen gas. Thereafter, the center robot CR causes the hand H1 to enter the wet processing unit 2w. The center robot CR supports the substrate W on the spin chuck 10 with the hand H1 after the plurality of chuck pins 11 release the grip of the substrate W. Thereafter, the center robot CR retracts the hand H1 from inside the wet processing unit 2w while supporting the substrate W with the hand H1. Thereby, the substrate W is unloaded from the wet processing unit 2w.
 基板Wがウェット処理ユニット2wから搬出された後は、複数のリフトピン97が上位置に位置している状態で、センターロボットCRが、基板WをハンドH1で支持しながら、ハンドH1をドライ処理ユニット2d内に進入させる。そして、センターロボットCRは、基板Wの表面が上に向けられた状態でハンドH1上の基板Wを複数のリフトピン97の上に置く。その後、リフト昇降ユニット98が複数のリフトピン97を下位置まで下降させる。これにより、複数のリフトピン97上の基板Wがホットプレート92の上に置かれる。センターロボットCRは、基板Wを複数のリフトピン97の上に置いた後、ハンドH1をドライ処理ユニット2dの内部から退避させる。 After the substrate W is carried out of the wet processing unit 2w, the center robot CR supports the substrate W with the hand H1 while holding the substrate H with the dry processing unit while the plurality of lift pins 97 are located at the upper position. Enter into 2d. Then, the center robot CR places the substrate W on the hand H1 on the plurality of lift pins 97 with the surface of the substrate W facing upward. Thereafter, the lift elevating unit 98 lowers the plurality of lift pins 97 to the lower position. Thus, the substrate W on the plurality of lift pins 97 is placed on the hot plate 92. After placing the substrate W on the plurality of lift pins 97, the center robot CR retracts the hand H1 from inside the dry processing unit 2d.
 次に、基板W上の吸着膜101を気体に変化させて、基板Wの上面から除去する吸着膜除去工程(図5のステップS11)が行われる。 Next, an adsorption film removal step (step S11 in FIG. 5) of changing the adsorption film 101 on the substrate W into a gas and removing the gas from the upper surface of the substrate W is performed.
 具体的には、ホットプレート92が基板Wを介して基板W上の吸着膜101を除去温度(たとえば、100℃よりも高い温度)で加熱する。吸着膜101に含まれる吸着物質が昇華性物質である場合、吸着膜101が除去温度で加熱されると、基板W上の吸着膜101は、液体を経ずに気体に変化する。吸着膜101に含まれる吸着物質が昇華性物質以外の物質である場合、吸着膜101が除去温度で加熱されると、基板W上の吸着膜101は、熱分解により気体に変化する。吸着膜101から発生した気体(吸着物質を含む気体)は、排気ダクト8を通じてドライ処理ユニット2dの内部から排出される。これにより、吸着膜101が基板Wの上面から除去される。 Specifically, the hot plate 92 heats the adsorption film 101 on the substrate W via the substrate W at a removal temperature (for example, a temperature higher than 100 ° C.). When the adsorption substance contained in the adsorption film 101 is a sublimable substance, when the adsorption film 101 is heated at the removal temperature, the adsorption film 101 on the substrate W changes into a gas without passing through a liquid. When the adsorbing substance contained in the adsorbing film 101 is a substance other than the sublimable substance, when the adsorbing film 101 is heated at the removal temperature, the adsorbing film 101 on the substrate W changes into a gas by thermal decomposition. The gas (gas containing the adsorbed substance) generated from the adsorption film 101 is discharged from the inside of the dry processing unit 2d through the exhaust duct 8. Thus, the adsorption film 101 is removed from the upper surface of the substrate W.
 乾燥前処理液を除去したときにパターンP1が倒壊したとしても、吸着膜101を除去すると、図6Dに示すように、倒壊した2つのパターンP1の先端部の間から吸着膜101がなくなる。これにより、2つのパターンP1を倒壊状態に維持する接着力が弱まる。パターンP1が塑性変形や破損していなければ、倒壊したパターンP1は、パターンP1の復元力(図6D中の黒色の矢印参照)で垂直状態に戻る。したがって、余剰の乾燥前処理液を除去したときにパターンP1が倒壊しても、吸着膜101を除去した後には、パターンP1が垂直状態に戻る。これにより、パターンP1の強度が低い場合であっても、最終的なパターンP1の倒壊率を改善することができる。 (6) Even if the pattern P1 collapses when the pre-drying treatment liquid is removed, if the adsorption film 101 is removed, as shown in FIG. 6D, the adsorption film 101 disappears from between the tips of the two collapsed patterns P1. This weakens the adhesive force for maintaining the two patterns P1 in the collapsed state. If the pattern P1 is not plastically deformed or damaged, the collapsed pattern P1 returns to the vertical state due to the restoring force of the pattern P1 (see the black arrow in FIG. 6D). Therefore, even if the pattern P1 collapses when the surplus pre-drying treatment liquid is removed, the pattern P1 returns to the vertical state after the adsorption film 101 is removed. Thereby, even when the strength of the pattern P1 is low, the final collapse rate of the pattern P1 can be improved.
 吸着膜101を除去した後は、基板Wをドライ処理ユニット2dから搬出する搬出工程(図5のステップS12)が行われる。 (4) After removing the adsorption film 101, an unloading step of unloading the substrate W from the dry processing unit 2d (Step S12 in FIG. 5) is performed.
 具体的には、リフト昇降ユニット98が複数のリフトピン97を下位置から上位置まで上昇させる。これにより、ホットプレート92上の基板Wが複数のリフトピン97によって持ち上げられ、ホットプレート92から上方に離れる。その後、センターロボットCRが、ハンドH1をドライ処理ユニット2d内に進入させる。この状態で、リフト昇降ユニット98が複数のリフトピン97を下位置まで下降させる。これにより、複数のリフトピン97上の基板WがハンドH1の上に置かれる。センターロボットCRは、基板WがハンドH1の上に置かれた後、ハンドH1をドライ処理ユニット2dの内部から退避させる。これにより、処理済みの基板Wがドライ処理ユニット2dから搬出される。 Specifically, the lift elevating unit 98 raises the plurality of lift pins 97 from the lower position to the upper position. As a result, the substrate W on the hot plate 92 is lifted by the plurality of lift pins 97, and separates upward from the hot plate 92. Thereafter, the center robot CR causes the hand H1 to enter the dry processing unit 2d. In this state, the lift elevating unit 98 lowers the plurality of lift pins 97 to the lower position. Thereby, the substrate W on the plurality of lift pins 97 is placed on the hand H1. After the substrate W is placed on the hand H1, the center robot CR retracts the hand H1 from the inside of the dry processing unit 2d. Thereby, the processed substrate W is unloaded from the dry processing unit 2d.
 以上のように本実施形態では、吸着物質を含む乾燥前処理液を、水平に保持されている基板Wの表面に供給する。乾燥前処理液に含まれる吸着物質は、基板Wに形成されたパターンP1の表面に吸着する。そして、吸着物質がパターンP1の表面に吸着した状態で、基板Wを水平に保持しながら鉛直な回転軸線A1まわりに回転させる。これにより、乾燥前処理液が遠心力で基板Wの表面から排出され、基板Wの表面上の乾燥前処理液が減少する。 As described above, in the present embodiment, the pre-drying liquid containing the adsorbed substance is supplied to the surface of the substrate W which is held horizontally. The adsorption substance contained in the pre-drying treatment liquid is adsorbed on the surface of the pattern P1 formed on the substrate W. Then, with the adsorbed substance adsorbed on the surface of the pattern P1, the substrate W is rotated about a vertical rotation axis A1 while holding the substrate W horizontally. As a result, the pre-drying liquid is discharged from the surface of the substrate W by centrifugal force, and the amount of the pre-drying liquid on the surface of the substrate W decreases.
 基板Wをある程度の回転速度で回転させると、殆どの乾燥前処理液が基板Wの表面から除去されるものの、パターンP1の表面に吸着した吸着物質は基板Wに残る。これにより、パターンP1の表面に吸着した吸着物質を含む吸着膜101がパターンP1の表面に沿って形成される。つまり、隣り合う2つのパターンP1の間の空間が吸着膜101で隙間なく埋められるのではなく、吸着膜101の表面が空間を介してパターンP1の幅方向に互いに向かい合うようにパターンP1の表面が吸着膜101でコーティングされる。 (4) When the substrate W is rotated at a certain rotational speed, most of the pretreatment liquid for drying is removed from the surface of the substrate W, but the adsorbed substance adsorbed on the surface of the pattern P1 remains on the substrate W. As a result, the adsorption film 101 including the adsorption substance adsorbed on the surface of the pattern P1 is formed along the surface of the pattern P1. That is, the space between the two adjacent patterns P1 is not filled with the adsorbing film 101 without a gap, but the surface of the pattern P1 is opposed to each other in the width direction of the pattern P1 via the space. It is coated with the adsorption film 101.
 その一方で、基板W上の乾燥前処理液がある程度まで減ると、乾燥前処理液の上面(液面)が隣り合う2つの凸状パターンP1の間に移動する。つまり、気体と液体(乾燥前処理液)との界面がパターンP1の間に移動し、乾燥前処理液の表面張力に起因する倒壊力が吸着膜101を介してパターンP1に加わる。このとき、隣り合う2つのパターンP1が互いに近づく方向に倒壊したとしても、パターンP1の表面の少なくとも一部が吸着膜101でコーティングされているので、この2つのパターンP1は、直接的に接するのではなく、吸着膜101を介して接する。 On the other hand, when the pre-drying treatment liquid on the substrate W decreases to a certain extent, the upper surface (liquid level) of the pre-drying treatment liquid moves between two adjacent convex patterns P1. That is, the interface between the gas and the liquid (the pre-drying treatment liquid) moves between the patterns P1, and the collapse force caused by the surface tension of the pre-drying treatment liquid is applied to the pattern P1 via the adsorption film 101. At this time, even if two adjacent patterns P1 collapse in a direction approaching each other, at least a part of the surface of the pattern P1 is coated with the adsorption film 101, so that the two patterns P1 are in direct contact with each other. Instead, they are in contact with each other via the adsorption film 101.
 吸着膜101をパターンP1の表面に形成した後は、吸着膜101を気体に変化させる。これにより、吸着膜101が基板Wの表面から除去される。乾燥前処理液を除去するときに、隣り合う2つのパターンP1が互いに近づく方向に倒壊した場合は、この2つのパターンP1の間から吸着膜101が除去される。パターンP1が塑性変形や破損していなければ、吸着膜101を除去すると、倒壊したパターンP1は、パターンP1の復元力で垂直状態に戻る。言い換えると、吸着膜101を除去するまでの間にパターンP1が倒壊しても、吸着膜101を除去した後には、パターンP1が垂直状態に戻る。これにより、パターンP1の強度が高い場合だけでなく、パターンP1の強度が低い場合も、最終的なパターンP1の倒壊率を改善することができる。パターンP1が形成されたサンプルを用いて前述の基板Wの処理の一例と同様の処理を行ったところ、パターンP1の倒壊率が実際に改善されたことが確認された。 After the adsorption film 101 is formed on the surface of the pattern P1, the adsorption film 101 is changed to a gas. Thereby, the adsorption film 101 is removed from the surface of the substrate W. If two adjacent patterns P1 collapse in a direction approaching each other when removing the pre-drying treatment liquid, the adsorption film 101 is removed from between the two patterns P1. If the pattern P1 is not plastically deformed or damaged, the collapsed pattern P1 returns to the vertical state by the restoring force of the pattern P1 when the adsorption film 101 is removed. In other words, even if the pattern P1 collapses before the adsorption film 101 is removed, the pattern P1 returns to the vertical state after the adsorption film 101 is removed. Thus, not only when the intensity of the pattern P1 is high, but also when the intensity of the pattern P1 is low, the final collapse rate of the pattern P1 can be improved. When the same processing as the above-described example of the processing of the substrate W was performed using the sample on which the pattern P1 was formed, it was confirmed that the collapse rate of the pattern P1 was actually improved.
 本実施形態では、吸着膜101を形成する前に、基板Wの回転を停止させながら、もしくは、基板Wの回転速度を小さい値(吸着促進速度)に維持しながら、乾燥前処理液をパターンP1の表面に接触させる。基板Wの回転速度が零または小さいので、乾燥前処理液とパターンP1の表面との界面における乾燥前処理液の流動が緩やかになり、パターンP1の表面に対する吸着物質の吸着が促進される。これにより、より多くの吸着物質をパターンP1の表面に吸着させることができる。 In the present embodiment, before forming the adsorption film 101, the drying pretreatment liquid is applied to the pattern P1 while stopping the rotation of the substrate W or maintaining the rotation speed of the substrate W at a small value (adsorption acceleration speed). Contact surface. Since the rotation speed of the substrate W is zero or low, the flow of the pre-drying treatment liquid at the interface between the pre-drying treatment liquid and the surface of the pattern P1 becomes gentle, and the adsorption of the adsorbed substance on the surface of the pattern P1 is promoted. Thereby, more adsorption substances can be adsorbed on the surface of the pattern P1.
 本実施形態では、薄い吸着膜101がパターンP1の表面に形成される。つまり、吸着膜101の厚みT1(図6B参照)は、パターンP1の高さHp(図6A参照)よりも小さい。吸着膜101が薄いので、吸着膜101を短時間で除去でき、吸着膜101の除去に要するエネルギーの消費量を減らすことができる。吸着膜101を加熱により除去する場合は、基板Wの加熱時間を短縮できるので、酸化等の基板Wの表面の変化を抑えることができる。さらに、吸着膜101を気体に変化させたときに、残渣などの不要物が基板W上に発生したとしても、吸着膜101の体積が小さいので、不要物の発生量が少ない。したがって、不要物を短時間で除去できる。場合によって、不要物を除去しなくてもよい。 In the present embodiment, the thin adsorption film 101 is formed on the surface of the pattern P1. That is, the thickness T1 of the adsorption film 101 (see FIG. 6B) is smaller than the height Hp of the pattern P1 (see FIG. 6A). Since the adsorbing film 101 is thin, the adsorbing film 101 can be removed in a short time, and the amount of energy required for removing the adsorbing film 101 can be reduced. When the adsorbing film 101 is removed by heating, the heating time of the substrate W can be shortened, so that a change in the surface of the substrate W such as oxidation can be suppressed. Furthermore, even when unnecessary substances such as residues are generated on the substrate W when the adsorption film 101 is changed to gas, the volume of the adsorption film 101 is small, so that the generation amount of unnecessary substances is small. Therefore, unnecessary substances can be removed in a short time. In some cases, it is not necessary to remove unnecessary matter.
 本実施形態では、吸着物質と溶媒とが均一に溶け合った溶液である乾燥前処理液が基板Wに供給される。吸着物質の融液を基板Wに供給する場合、吸着物質の凝固点が室温以上であると、吸着物質を液体に維持するために吸着物質を加熱する必要がある。吸着物質を溶媒に溶かせば、吸着物質の凝固点が室温以上であったとしても、吸着物質と溶媒の混合により生じる凝固点降下により乾燥前処理液の凝固点を室温より低くできれば、乾燥前処理液を室温で液体に維持することができる。したがって、基板Wの処理に要するエネルギーの消費量を減らすことができる。 In the present embodiment, the pre-drying liquid, which is a solution in which the adsorbed substance and the solvent are uniformly dissolved, is supplied to the substrate W. When supplying the melt of the adsorbing substance to the substrate W, if the freezing point of the adsorbing substance is equal to or higher than room temperature, it is necessary to heat the adsorbing substance in order to maintain the adsorbing substance as a liquid. If the adsorbed substance is dissolved in the solvent, even if the freezing point of the adsorbed substance is higher than room temperature, if the freezing point of the dried pretreatment liquid can be made lower than room temperature due to the freezing point drop caused by mixing of the adsorbed substance and the solvent, the dried pretreated liquid can be cooled to room temperature Can be kept liquid. Therefore, energy consumption required for processing the substrate W can be reduced.
 本実施形態では、基板Wの表面上の乾燥前処理液の一部を基板Wの回転によって除去しているときに、気体の一例である窒素ガスを基板Wの表面に向けて吐出する。基板W上の乾燥前処理液は、気体の圧力で基板Wから排出される。それと同時に、基板W上の乾燥前処理液の一部は、気体の供給によって蒸発する。これにより、不要な乾燥前処理液を速やかに基板Wの表面から除去できる。 In the present embodiment, when a part of the pre-drying treatment liquid on the surface of the substrate W is removed by rotation of the substrate W, nitrogen gas, which is an example of gas, is discharged toward the surface of the substrate W. The pre-drying treatment liquid on the substrate W is discharged from the substrate W at a gas pressure. At the same time, a part of the pre-drying treatment liquid on the substrate W evaporates due to the supply of gas. Thereby, the unnecessary pre-drying treatment liquid can be quickly removed from the surface of the substrate W.
 次に、第2実施形態について説明する。 Next, a second embodiment will be described.
 第1実施形態に対する第2実施形態の主要な相違点は、内蔵ヒータ111が遮断部材51に内蔵されており、下面ノズル71の代わりにホットプレート92が設けられていることである。 The main difference between the second embodiment and the first embodiment is that the built-in heater 111 is built in the blocking member 51 and a hot plate 92 is provided instead of the lower surface nozzle 71.
 図7Aは、本発明の第2実施形態に係るスピンチャック10、遮断部材51、およびホットプレート92を水平に見た模式図である。図7Bは、スピンチャック10およびホットプレート92を上から見た模式図である。図7A、図7B、図8A、および図8Bにおいて、前述の図1~図6Dに示された構成と同等の構成については、図1等と同一の参照符号を付してその説明を省略する。 FIG. 7A is a schematic view of the spin chuck 10, the blocking member 51, and the hot plate 92 according to the second embodiment of the present invention viewed horizontally. FIG. 7B is a schematic view of the spin chuck 10 and the hot plate 92 as viewed from above. 7A, 7B, 8A, and 8B, the same components as those shown in FIGS. 1 to 6D described above are denoted by the same reference numerals as those in FIG. 1 and the like, and description thereof is omitted. .
 図7Aに示すように、内蔵ヒータ111は、遮断部材51の円板部52の内部に配置されている。内蔵ヒータ111は、遮断部材51とともに昇降する。基板Wは、内蔵ヒータ111の下方に配置される。内蔵ヒータ111は、たとえば、通電によりジュール熱を発生する発熱体である。内蔵ヒータ111の温度は、制御装置3によって変更される。制御装置3が内蔵ヒータ111を発熱させると、基板Wの全体が均一に加熱される。 内 蔵 As shown in FIG. 7A, the built-in heater 111 is disposed inside the disk portion 52 of the blocking member 51. The built-in heater 111 moves up and down together with the blocking member 51. The substrate W is arranged below the built-in heater 111. The built-in heater 111 is, for example, a heating element that generates Joule heat when energized. The temperature of the built-in heater 111 is changed by the control device 3. When the control device 3 causes the built-in heater 111 to generate heat, the entire substrate W is uniformly heated.
 ホットプレート92は、スピンベース12の上方に配置されている。図7Bに示すように、ホットプレート92の中心線は、基板Wの回転軸線A1上に配置されている。スピンチャック10が回転しても、ホットプレート92は回転しない。ホットプレート92の外径は、基板Wの直径よりも小さい。複数のチャックピン11は、ホットプレート92のまわりに配置されている。基板Wは、ホットプレート92の上方に配置される。 The hot plate 92 is arranged above the spin base 12. As shown in FIG. 7B, the center line of the hot plate 92 is arranged on the rotation axis A1 of the substrate W. Even if the spin chuck 10 rotates, the hot plate 92 does not rotate. The outer diameter of the hot plate 92 is smaller than the diameter of the substrate W. The plurality of chuck pins 11 are arranged around the hot plate 92. The substrate W is disposed above the hot plate 92.
 図7Aに示すように、ホットプレート92は、ホットプレート92の中央部から下方に延びる支軸113によって水平に支持されている。ホットプレート92は、スピンベース12に対して上下に移動可能である。ホットプレート92は、支軸113を介してプレート昇降ユニット114に接続されている。プレート昇降ユニット114は、上位置(図7Aにおいて実線で示す位置)と下位置(図7Aにおいて二点鎖線で示す位置)との間でホットプレート92を鉛直に昇降させる。上位置は、ホットプレート92が基板Wの下面に接触する接触位置である。下位置は、ホットプレート92が基板Wから離れた状態で基板Wの下面とスピンベース12の上面12uとの間に配置される近接位置である。 As shown in FIG. 7A, the hot plate 92 is horizontally supported by a support shaft 113 extending downward from the center of the hot plate 92. The hot plate 92 can move up and down with respect to the spin base 12. The hot plate 92 is connected to a plate elevating unit 114 via a support shaft 113. The plate elevating unit 114 vertically elevates the hot plate 92 between an upper position (a position indicated by a solid line in FIG. 7A) and a lower position (a position indicated by a two-dot chain line in FIG. 7A). The upper position is a contact position where the hot plate 92 contacts the lower surface of the substrate W. The lower position is a close position where the hot plate 92 is located between the lower surface of the substrate W and the upper surface 12u of the spin base 12 while being away from the substrate W.
 プレート昇降ユニット114は、上位置から下位置までの任意の位置にホットプレート92を位置させる。基板Wが複数のチャックピン11に支持されており、基板Wの把持が解除されている状態で、ホットプレート92が上位置まで上昇すると、ホットプレート92の複数の突出部96が基板Wに下面に接触し、基板Wがホットプレート92に支持される。その後、基板Wは、ホットプレート92によって持ち上げられ、複数のチャックピン11から上方に離れる。この状態で、ホットプレート92が下位置まで下降すると、ホットプレート92上の基板Wが複数のチャックピン11の上に置かれ、ホットプレート92が基板Wから下方に離れる。これにより、基板Wは、複数のチャックピン11とホットプレート92との間で受け渡される。 The plate lifting unit 114 positions the hot plate 92 at an arbitrary position from the upper position to the lower position. When the hot plate 92 is raised to the upper position in a state where the substrate W is supported by the plurality of chuck pins 11 and the gripping of the substrate W is released, the plurality of protrusions 96 of the hot plate 92 , And the substrate W is supported by the hot plate 92. Thereafter, the substrate W is lifted by the hot plate 92 and moves upward away from the plurality of chuck pins 11. In this state, when the hot plate 92 is lowered to the lower position, the substrate W on the hot plate 92 is placed on the plurality of chuck pins 11, and the hot plate 92 is separated from the substrate W downward. Thus, the substrate W is transferred between the plurality of chuck pins 11 and the hot plate 92.
 図8Aは、液体除去工程が行われているときのスピンチャック10、遮断部材51、およびホットプレート92を水平に見た模式図である。 FIG. 8A is a schematic view of the spin chuck 10, the blocking member 51, and the hot plate 92 viewed horizontally when the liquid removing step is being performed.
 図8Aでは、遮断部材51およびホットプレート92がそれぞれの下位置に配置されている。制御装置3は、液体除去工程(図5のステップS8)において、基板Wの上面上の一部の乾燥前処理液を基板Wの回転によって除去しているときに、内蔵ヒータ111およびホットプレート92の少なくとも一方を発熱させて、基板Wの上面上の乾燥前処理液を加熱してもよい。基板Wの上面上の乾燥前処理液を加熱すれば、吸着膜101の形成に要する時間を短縮できる。 AIn FIG. 8A, the blocking member 51 and the hot plate 92 are arranged at respective lower positions. In the liquid removing step (Step S8 in FIG. 5), the control device 3 removes the built-in heater 111 and the hot plate 92 while the substrate W is partially removed by the rotation of the substrate W on the upper surface of the substrate W. May be heated to heat the pre-drying treatment liquid on the upper surface of the substrate W. If the pre-drying treatment liquid on the upper surface of the substrate W is heated, the time required for forming the adsorption film 101 can be reduced.
 図8Bは、吸着膜除去工程が行われているときのスピンチャック10、遮断部材51、およびホットプレート92を水平に見た模式図である。 FIG. 8B is a schematic view of the spin chuck 10, the blocking member 51, and the hot plate 92 viewed horizontally when the adsorption film removing step is being performed.
 図8Bでは、遮断部材51が下位置に配置されており、ホットプレート92が上位置に配置されている。ホットプレート92は、ホットプレート92が基板Wに接する上位置ではなく、ホットプレート92が基板Wから離れた下位置に配置されていてもよい。制御装置3は、吸着膜除去工程(図5のステップS11)において、内蔵ヒータ111およびホットプレート92の少なくとも一方を発熱させて、基板W上の吸着膜101を除去温度で加熱してもよい。この場合、基板W上の吸着膜101をウェット処理ユニット2w内で除去できる。さらに、内蔵ヒータ111およびホットプレート92の両方を発熱させれば、吸着膜101の除去に要する時間を短縮できる。 BIn FIG. 8B, the blocking member 51 is arranged at the lower position, and the hot plate 92 is arranged at the upper position. The hot plate 92 may be arranged not at the upper position where the hot plate 92 is in contact with the substrate W but at a lower position where the hot plate 92 is separated from the substrate W. The controller 3 may heat at least one of the built-in heater 111 and the hot plate 92 to heat the adsorption film 101 on the substrate W at the removal temperature in the adsorption film removal step (Step S11 in FIG. 5). In this case, the adsorption film 101 on the substrate W can be removed in the wet processing unit 2w. Further, if both the built-in heater 111 and the hot plate 92 generate heat, the time required for removing the adsorption film 101 can be reduced.
 なお、内蔵ヒータ111およびホットプレート92に基板W上の吸着膜101を加熱させるのではなく、室温よりも高温の加熱ガスを基板Wの上面に向けて吐出することにより、基板W上の吸着膜101を除去温度で加熱してもよい。たとえば、上温度調節器59(図2参照)によって加熱された窒素ガスを中心ノズル55に吐出させてもよいし、上温度調節器66(図2参照)によって加熱された窒素ガスを遮断部材51の上中央開口61に吐出させてもよい。 Note that, instead of causing the built-in heater 111 and the hot plate 92 to heat the adsorption film 101 on the substrate W, a heating gas higher than room temperature is discharged toward the upper surface of the substrate W, so that the adsorption film 101 on the substrate W is discharged. 101 may be heated at the removal temperature. For example, the nitrogen gas heated by the upper temperature controller 59 (see FIG. 2) may be discharged to the central nozzle 55, or the nitrogen gas heated by the upper temperature controller 66 (see FIG. May be ejected to the upper central opening 61 of the ink jet head.
 基板Wの表面上の一部の乾燥前処理液を除去するときに、内蔵ヒータ111、ホットプレート92、および加熱ガスの少なくとも一つを用いて基板W上の乾燥前処理液を加熱すると、吸着膜101の形成と吸着膜101の除去とが同時に進行し得る。この場合、基板Wの表面上の一部の乾燥前処理液を除去した後ではなく、基板Wの表面上の一部の乾燥前処理液を除去しながら、吸着膜101を気体に変化させることができる。 When a part of the pre-drying treatment liquid on the surface of the substrate W is removed, the pre-drying treatment liquid on the substrate W is heated by using at least one of the built-in heater 111, the hot plate 92, and the heating gas. The formation of the film 101 and the removal of the adsorption film 101 can proceed simultaneously. In this case, the adsorption film 101 is changed to a gas while removing a part of the pre-drying treatment liquid on the surface of the substrate W, not after removing a part of the pre-drying treatment liquid on the surface of the substrate W. Can be.
 基板W上の吸着膜101をウェット処理ユニット2wの中で除去する場合、ドライ処理ユニット2dで除去する場合に比べて、パターンP1が倒壊状態に維持される倒壊持続時間が短縮する。倒壊持続時間が長いと、倒壊したパターンP1の形状が記憶され、形状を元に戻す弾性回復力が弱まる場合がある。ウェット処理ユニット2wで基板W上の吸着膜101を除去すれば、倒壊持続時間を短縮できるので、吸着膜101を除去した後も倒壊状態に維持されるパターンP1を減らすことができる。 (4) When the adsorption film 101 on the substrate W is removed in the wet processing unit 2w, the collapse duration for maintaining the pattern P1 in the collapsed state is shorter than in the case where the adsorption film 101 is removed in the dry processing unit 2d. If the collapse duration is long, the shape of the collapsed pattern P1 is stored, and the elastic recovery force for restoring the shape may be weakened. If the adsorption film 101 on the substrate W is removed by the wet processing unit 2w, the collapse duration can be shortened, so that the pattern P1 maintained in the collapsed state even after the adsorption film 101 is removed can be reduced.
 他の実施形態
 本発明は、前述の実施形態の内容に限定されるものではなく、種々の変更が可能である。
Other Embodiments The present invention is not limited to the contents of the above-described embodiments, and various modifications are possible.
 たとえば、吸着促進工程(図5のステップS7)を行わずに、液体除去工程(図5のステップS8)を行ってもよい。 For example, the liquid removing step (step S8 in FIG. 5) may be performed without performing the adsorption promoting step (step S7 in FIG. 5).
 純水などの基板W上のリンス液を乾燥前処理液で置換できる場合は、図9の処理例1のように、リンス液の一例である純水を置換液の一例であるIPAで置換する置換液供給工程を行わずに、乾燥前処理液供給工程を行ってもよい。 When the rinsing liquid such as pure water on the substrate W can be replaced with the pre-drying treatment liquid, pure water as an example of the rinsing liquid is replaced with IPA as an example of the replacement liquid as in processing example 1 in FIG. A drying pretreatment liquid supply step may be performed without performing the replacement liquid supply step.
 図9の最上段には5つの工程が示されている。リンス液の一例である純水はDIWと表記されている。スピンオフは、基板Wの回転により一部の乾燥前処理液を除去することを意味している。図9中の丸印は、最上段に示された工程が実行されることを意味しており、図9中の空欄は、最上段に示された工程が実行されないことを意味している。図9の処理例2は、図5に示す基板Wの処理の一例に相当する。 5Five processes are shown at the top of FIG. Pure water, which is an example of the rinsing liquid, is described as DIW. The spin-off means that a part of the pretreatment liquid for drying is removed by the rotation of the substrate W. The circles in FIG. 9 indicate that the steps shown in the uppermost row are executed, and the blanks in FIG. 9 indicate that the steps shown in the uppermost row are not executed. Processing example 2 in FIG. 9 corresponds to an example of processing of the substrate W illustrated in FIG.
 図9の処理例3に示すように、乾燥前処理液を供給する前にIPAを基板Wに供給するのではなく、スピンオフの後にIPAを基板Wに供給してもよい。図9の処理例4に示すように、乾燥前処理液を供給する前だけでなく、スピンオフの後も、IPAを基板Wに供給してもよい。スピンオフにより吸着膜101を形成したときに、残渣などの不要物が基板W上に発生する場合がある。このような場合でも、スピンオフの後にIPAを基板Wに供給すれば、基板W上の不要物をIPAで洗い流すことができる。 As shown in Processing Example 3 in FIG. 9, instead of supplying IPA to the substrate W before supplying the pre-drying treatment liquid, IPA may be supplied to the substrate W after spin-off. As shown in Processing Example 4 in FIG. 9, IPA may be supplied to the substrate W not only before supplying the pre-drying treatment liquid but also after spin-off. When the adsorption film 101 is formed by spin-off, unnecessary substances such as residues may be generated on the substrate W. Even in such a case, if IPA is supplied to the substrate W after the spin-off, unnecessary substances on the substrate W can be washed away with the IPA.
 また、図9の処理例5に示すように、IPAを供給した後にHFEを基板Wに供給し、その後、乾燥前処理液を基板Wに供給してもよい。つまり、置換液供給工程は、第1置換液の一例であるIPAを基板Wに供給する第1置換液供給工程と、第2置換液の一例であるHFEを基板Wに供給する第2置換液供給工程とを含んでいてもよい。図示はしないが、図9の処理例5において、スピンオフの後にIPAを基板Wに供給してもよい。 Also, as shown in Processing Example 5 in FIG. 9, HFE may be supplied to the substrate W after supplying IPA, and then the pre-drying treatment liquid may be supplied to the substrate W. That is, the replacement liquid supply step includes a first replacement liquid supply step of supplying IPA, which is an example of a first replacement liquid, to the substrate W, and a second replacement liquid of supplying HFE, an example of the second replacement liquid, to the substrate W. And a supplying step. Although not shown, IPA may be supplied to the substrate W after spin-off in the processing example 5 of FIG.
 第1実施形態では、乾燥前処理液に含まれる吸着物質の濃度が1wt%未満であり、乾燥前処理液の主成分がIPAおよび純水である例について説明した。図9の処理例5では、基板W上の純水がIPAで置換され、その後、基板W上のIPAがHFEで置換される。その後、基板W上のHFEが乾燥前処理液で置換される。HFEの密度は、水の密度よりも大きく、IPAの密度よりも大きい。 In the first embodiment, an example was described in which the concentration of the adsorbed substance contained in the pretreatment liquid was less than 1 wt%, and the main components of the pretreatment liquid were IPA and pure water. In the processing example 5 of FIG. 9, the pure water on the substrate W is replaced with IPA, and then the IPA on the substrate W is replaced with HFE. Thereafter, the HFE on the substrate W is replaced with the pre-drying treatment liquid. The density of HFE is greater than the density of water and greater than the density of IPA.
 HFEの密度が乾燥前処理液の密度よりも大きい場合、すなわち、HFEおよび乾燥前処理液の間に比重差がある場合、図10に示すように、HFEの表層だけが乾燥前処理液に置換され、HFEの底層が基板Wに残ることがある。この場合、パターンP1の先端部だけに吸着物質が吸着する。この状態で、スピンオフを実行すると、パターンP1の先端部だけに吸着膜101が形成される。この場合、パターンP1の表面全域を覆う吸着膜101を形成した場合に比べて吸着膜101の体積が小さいので、吸着膜101を短時間で除去でき、吸着膜101の除去に要するエネルギーの消費量を減らすことができる。 When the density of the HFE is higher than the density of the pretreatment liquid, that is, when there is a specific gravity difference between the HFE and the pretreatment liquid, only the surface layer of the HFE is replaced with the pretreatment liquid as shown in FIG. As a result, a bottom layer of HFE may remain on the substrate W. In this case, the adsorbed substance is adsorbed only at the tip of the pattern P1. When spin-off is performed in this state, the adsorption film 101 is formed only at the tip of the pattern P1. In this case, since the volume of the adsorption film 101 is smaller than that in the case where the adsorption film 101 covering the entire surface of the pattern P1 is formed, the adsorption film 101 can be removed in a short time, and the energy consumption required for removing the adsorption film 101 is reduced. Can be reduced.
 図9の処理例1~処理例5において、図9の最上段に示される少なくとも一つの工程と並行して基板Wを加熱してもよい。たとえば、図2に示す加熱流体バルブ73を開いて、下面ノズル71に温水を吐出させてもよい。もしくは、図7Aに示す遮断部材51の内蔵ヒータ111およびホットプレート92の少なくとも一方を発熱させてもよい。基板W上の液体を別の液体で置換するときに基板Wを加熱すれば、液体の置換効率を向上させることができる。 In the processing examples 1 to 5 of FIG. 9, the substrate W may be heated in parallel with at least one of the steps shown at the top of FIG. For example, the heating fluid valve 73 shown in FIG. Alternatively, at least one of the built-in heater 111 and the hot plate 92 of the blocking member 51 shown in FIG. 7A may generate heat. If the substrate W is heated when the liquid on the substrate W is replaced with another liquid, the liquid replacement efficiency can be improved.
 図11Aに示されるような、パターンP1の上面Puだけに接する吸着膜101を形成してもよい。図11Aは、隣り合う2つのパターンP1の間の空間で、吸着膜101が下方に凹んでおり、パターンP1に接していない例を示している。このような吸着膜101は、たとえば、第1実施形態で用いられる乾燥前処理液よりも粘性が高い乾燥前処理液を基板Wに供給し、吸着促進工程(図5のステップS7)における基板Wの回転速度(吸着促進速度)を上昇させることで形成される。 吸着 As shown in FIG. 11A, the adsorption film 101 may be formed so as to be in contact with only the upper surface Pu of the pattern P1. FIG. 11A shows an example in which the adsorption film 101 is recessed downward in a space between two adjacent patterns P1 and is not in contact with the pattern P1. Such an adsorption film 101 supplies, for example, a drying pretreatment liquid having a higher viscosity than the drying pretreatment liquid used in the first embodiment to the substrate W, and the substrate W in the adsorption promoting step (step S7 in FIG. 5). It is formed by increasing the rotation speed (adsorption acceleration speed) of.
 基板Wの上面にIPAがある状態で基板Wの下面側から基板Wを加熱すると、基板W上のIPAは基板Wを介して加熱される。IPAの沸点以上の温度でIPAを加熱すると、隣り合う2つのパターンP1の間に位置するIPAが蒸発し、隣り合う2つのパターンP1の間の空間の少なくとも一部がIPAの蒸気で満たされる。この状態で乾燥前処理液を基板Wに供給しても、乾燥前処理液に含まれる吸着物質は、パターンP1の上面Puを除くパターンP1の表面に吸着しない。これは、パターンP1の上面Puを除くパターンP1の表面がIPAの蒸気に接しているからである。これにより、パターンP1の上面Puだけに接する吸着膜101が形成される。 (4) When the substrate W is heated from the lower surface side of the substrate W with the IPA on the upper surface of the substrate W, the IPA on the substrate W is heated via the substrate W. When the IPA is heated at a temperature equal to or higher than the boiling point of the IPA, the IPA located between the two adjacent patterns P1 evaporates, and at least a part of the space between the two adjacent patterns P1 is filled with the vapor of the IPA. Even if the pre-drying treatment liquid is supplied to the substrate W in this state, the adsorbed substance contained in the pre-drying treatment liquid does not adsorb on the surface of the pattern P1 except for the upper surface Pu of the pattern P1. This is because the surface of the pattern P1 except the upper surface Pu of the pattern P1 is in contact with the IPA vapor. Thus, the suction film 101 that is in contact with only the upper surface Pu of the pattern P1 is formed.
 なお、IPAの液体とIPAの蒸気との界面がパターンP1の上面Puに達していれば、たとえパターンP1の上面Puに吸着膜101が形成されても、パターンP1に対する吸着膜101の吸着強度は弱い。よって、吸着膜101に含まれる吸着物質が熱分解性ポリマーの場合、熱分解に要する除去温度を下げることができ、吸着膜101を短時間で除去できる。これにより、吸着膜101の除去に要するエネルギーの消費量を減らすことができる。 If the interface between the liquid of IPA and the vapor of IPA has reached the upper surface Pu of the pattern P1, even if the adsorption film 101 is formed on the upper surface Pu of the pattern P1, the adsorption strength of the adsorption film 101 with respect to the pattern P1 is low. weak. Therefore, when the adsorption substance contained in the adsorption film 101 is a thermally decomposable polymer, the removal temperature required for thermal decomposition can be reduced, and the adsorption film 101 can be removed in a short time. Thereby, the amount of energy consumption required for removing the adsorption film 101 can be reduced.
 図11Aに示されるような吸着膜101を形成した場合、パターンP1の表面のうち上端部だけが確実に吸着膜101に接触するので、パターンP1に生じる応力を小さくできる。つまり、隣り合う2つのパターンP1が互いに近づく方向に倒壊したとしても、図11Bに示すように、吸着膜101の一部が、この2つのパターンP1の間に挟まり、クッションの役割を果たす。したがって、パターンP1の表面が傷つくことを防止できる。 When the adsorption film 101 as shown in FIG. 11A is formed, only the upper end portion of the surface of the pattern P1 reliably contacts the adsorption film 101, so that the stress generated in the pattern P1 can be reduced. That is, even if two adjacent patterns P1 collapse in a direction approaching each other, as shown in FIG. 11B, a part of the adsorption film 101 is sandwiched between the two patterns P1 and serves as a cushion. Therefore, it is possible to prevent the surface of the pattern P1 from being damaged.
 図12Aまたは図12Bに示す電磁波発生装置115が、ホットプレート92に代えてもしくは加えて、ドライ処理ユニット2dに設けられてもよい。もしくは、図12Cに示す活性ガス供給装置116が、ホットプレート92に代えてもしくは加えて、ドライ処理ユニット2d(図3参照)に設けられてもよい。電磁波発生装置115および活性ガス供給装置116は、ドライ処理ユニット2dではなく、ウェット処理ユニット2wに設けられてもよい。 The electromagnetic wave generator 115 shown in FIG. 12A or 12B may be provided in the dry processing unit 2d instead of or in addition to the hot plate 92. Alternatively, the active gas supply device 116 shown in FIG. 12C may be provided in the dry processing unit 2d (see FIG. 3) instead of or in addition to the hot plate 92. The electromagnetic wave generator 115 and the active gas supply device 116 may be provided in the wet processing unit 2w instead of the dry processing unit 2d.
 図12Aおよび図12Bに示す電磁波発生装置115は、基板W上の吸着膜101に電磁波を照射することにより、吸着膜101を気体に変化させる。図12Cに示す活性ガス供給装置116は、オゾンガスやフッ化水素含有ガスなどの活性ガスを吸着膜101に接触させることにより、吸着膜101を気体に変化させる。ホットプレート92を用いて吸着膜101を気体に変化させたときに残渣などの不要物が基板Wに残る場合は、電磁波または活性ガスを用いて、この不要物を熱分解、酸化、または、灰化により除去してもよい。 The electromagnetic wave generator 115 shown in FIGS. 12A and 12B irradiates the adsorption film 101 on the substrate W with an electromagnetic wave to change the adsorption film 101 into a gas. The active gas supply device 116 illustrated in FIG. 12C changes the adsorption film 101 into a gas by bringing an active gas such as an ozone gas or a hydrogen fluoride-containing gas into contact with the adsorption film 101. When unnecessary substances such as residues remain on the substrate W when the adsorption film 101 is changed to gas using the hot plate 92, the unnecessary substances are thermally decomposed, oxidized, or ashed using an electromagnetic wave or an active gas. It may be removed by chemical conversion.
 電磁波発生装置115が発する電磁波は、可視光線、赤外線、および紫外線のいずれかであってもよいし、これら以外であってもよい。つまり、電磁波発生装置115は、可視光線および赤外線を発するランプヒータであってもよいし、紫外線を発するUVランプであってもよい。また、電磁波発生装置115は、図12Aに示すように基板Wの上面内の一部の領域を表す照射領域だけに電磁波を照射する部分照射装置115Aであってもよいし、図12Bに示すように基板Wの上面の全域に同時に電磁波を照射する全体照射装置115Bであってもよい。前者の場合、照射領域が基板Wの上面内で移動するように部分照射装置115Aを移動させればよい。 The electromagnetic wave generated by the electromagnetic wave generator 115 may be any of visible light, infrared light, and ultraviolet light, or may be other than these. That is, the electromagnetic wave generator 115 may be a lamp heater that emits visible light and infrared light, or may be a UV lamp that emits ultraviolet light. Further, the electromagnetic wave generator 115 may be a partial irradiation device 115A that irradiates an electromagnetic wave only to an irradiation region representing a partial region on the upper surface of the substrate W as shown in FIG. 12A, or as shown in FIG. 12B. The entire irradiation device 115B may simultaneously irradiate the entire surface of the upper surface of the substrate W with electromagnetic waves. In the former case, the partial irradiation device 115A may be moved so that the irradiation area moves within the upper surface of the substrate W.
 遮断部材51は、円板部52に加えて、円板部52の外周部から下方に延びる筒状部を含んでいてもよい。この場合、遮断部材51が下位置に配置されると、スピンチャック10に保持されている基板Wは、円筒部に取り囲まれる。 The blocking member 51 may include a cylindrical portion extending downward from the outer peripheral portion of the disk portion 52 in addition to the disk portion 52. In this case, when the blocking member 51 is disposed at the lower position, the substrate W held by the spin chuck 10 is surrounded by the cylindrical portion.
 遮断部材51は、スピンチャック10とともに回転軸線A1まわりに回転してもよい。たとえば、遮断部材51が基板Wに接触しないようにスピンベース12上に置かれてもよい。この場合、遮断部材51がスピンベース12に連結されるので、遮断部材51は、スピンベース12と同じ方向に同じ速度で回転する。 The blocking member 51 may rotate around the rotation axis A1 together with the spin chuck 10. For example, the blocking member 51 may be placed on the spin base 12 so as not to contact the substrate W. In this case, since the blocking member 51 is connected to the spin base 12, the blocking member 51 rotates in the same direction as the spin base 12 at the same speed.
 遮断部材51が省略されてもよい。ただし、基板Wの下面に純水などの液体を供給する場合は、遮断部材51が設けられることが好ましい。基板Wの外周面を伝って基板Wの下面から基板Wの上面の方に回り込んだ液滴や、処理カップ21から内方に跳ね返った液滴を遮断部材51で遮断でき、基板W上の乾燥前処理液に混入する液体を減らすことができるからである。 The blocking member 51 may be omitted. However, when a liquid such as pure water is supplied to the lower surface of the substrate W, it is preferable that the blocking member 51 be provided. Droplets that travel along the outer peripheral surface of the substrate W from the lower surface of the substrate W toward the upper surface of the substrate W and droplets that bounce inward from the processing cup 21 can be blocked by the blocking member 51. This is because the amount of liquid mixed in the pre-drying treatment liquid can be reduced.
 ウェット処理ユニット2wおよびドライ処理ユニット2dは、同じ基板処理装置ではなく、別々の基板処理装置に設けられていてもよい。つまり、ウェット処理ユニット2wが備えられた基板処理装置1と、ドライ処理ユニット2dが備えられた基板処理装置とが、同じ基板処理システムに設けられており、吸着膜101を除去する前に、基板処理装置1から別の基板処理装置に基板Wを搬送してもよい。 (4) The wet processing unit 2w and the dry processing unit 2d may be provided in different substrate processing apparatuses instead of the same substrate processing apparatus. That is, the substrate processing apparatus 1 provided with the wet processing unit 2w and the substrate processing apparatus provided with the dry processing unit 2d are provided in the same substrate processing system. The substrate W may be transferred from the processing apparatus 1 to another substrate processing apparatus.
 基板処理装置1は、円板状の基板Wを処理する装置に限らず、多角形の基板Wを処理する装置であってもよい。 The substrate processing apparatus 1 is not limited to an apparatus for processing a disk-shaped substrate W, but may be an apparatus for processing a polygonal substrate W.
 前述の全ての構成のうちの2つ以上が組み合わされてもよい。前述の全てのステップのうちの2つ以上が組み合わされてもよい。 2Two or more of all the above-described configurations may be combined. Two or more of all of the above steps may be combined.
 乾燥前処理液ノズル39は、乾燥前処理液供給ユニットの一例である。スピンモータ14は、スピンオフユニットおよび液体除去ユニットの一例である。ホットプレート92および内蔵ヒータ111は、吸着膜除去ユニットの一例である。制御装置3は、吸着促進ユニットの一例である。中心ノズル55および遮断部材51の上中央開口61は、気体供給ユニットおよび液体除去ユニットの一例である。下面ノズル71およびスピンベース12の下中央開口81は、液体加熱ユニットおよび液体除去ユニットの一例である。 The pre-drying treatment liquid nozzle 39 is an example of a pre-drying treatment liquid supply unit. The spin motor 14 is an example of a spin-off unit and a liquid removing unit. The hot plate 92 and the built-in heater 111 are examples of an adsorption film removing unit. The control device 3 is an example of an adsorption promotion unit. The central nozzle 55 and the upper central opening 61 of the blocking member 51 are an example of a gas supply unit and a liquid removal unit. The lower nozzle 71 and the lower central opening 81 of the spin base 12 are examples of a liquid heating unit and a liquid removing unit.
 本発明の実施形態について詳細に説明してきたが、これらは本発明の技術的内容を明らかにするために用いられた具体例に過ぎず、本発明はこれらの具体例に限定して解釈されるべきではなく、本発明の精神および範囲は添付の請求の範囲によってのみ限定される。 Although the embodiments of the present invention have been described in detail, these are only specific examples used for clarifying the technical contents of the present invention, and the present invention is interpreted by limiting to these specific examples. Instead, the spirit and scope of the invention is limited only by the appended claims.
1    :基板処理装置
2    :処理ユニット
3    :制御装置
10   :スピンチャック
14   :スピンモータ
39   :乾燥前処理液ノズル
55   :中心ノズル
59   :上温度調節器
61   :遮断部材の上中央開口
66   :上温度調節器
71   :下面ノズル
75   :下ヒータ
79   :クーラー
81   :スピンベースの下中央開口
86   :下温度調節器
92   :ホットプレート
101  :吸着膜
111  :内蔵ヒータ
A1   :回転軸線
Hp   :パターンの高さ
P1   :パターン
Ps   :パターンの側面
Pu   :パターンの上面
T1   :吸着膜の厚み
W    :基板
Wp   :パターンの幅
 
1: substrate processing apparatus 2: processing unit 3: control apparatus 10: spin chuck 14: spin motor 39: pre-drying treatment liquid nozzle 55: center nozzle 59: upper temperature controller 61: upper central opening 66 of the blocking member: upper temperature Controller 71: Lower nozzle 75: Lower heater 79: Cooler 81: Lower center opening of spin base 86: Lower temperature controller 92: Hot plate 101: Adsorption film 111: Built-in heater A1: Rotation axis Hp: Pattern height P1 : Pattern Ps: Pattern side surface Pu: Pattern upper surface T1: Adsorption film thickness W: Substrate Wp: Pattern width

Claims (10)

  1.  基板に形成されたパターンの表面に吸着する吸着物質を含む乾燥前処理液を、水平に保持されている前記基板の表面に供給して、前記パターンの表面に前記吸着物質を吸着させる乾燥前処理液供給工程と、
     水平に保持されている前記基板の表面上の一部の前記乾燥前処理液を鉛直な回転軸線まわりの前記基板の回転によって除去することにより、前記パターンの表面に吸着した前記吸着物質を含む吸着膜を前記パターンの表面に沿って形成するスピンオフ工程、を含む液体除去工程と、
     前記吸着膜を気体に変化させることにより前記基板の表面から除去する吸着膜除去工程とを含む、基板処理方法。
    A pre-drying process comprising supplying a pre-drying treatment liquid containing an adsorbing substance adsorbing on the surface of a pattern formed on a substrate to the surface of the substrate held horizontally, and adsorbing the adsorbing substance on the surface of the pattern. A liquid supply step;
    An adsorption including the adsorbed substance adsorbed on the surface of the pattern by removing a part of the drying pretreatment liquid on the surface of the substrate held horizontally by rotating the substrate around a vertical rotation axis. A liquid removing step including a spin-off step of forming a film along the surface of the pattern,
    A step of removing the adsorption film from the surface of the substrate by changing the adsorption film into a gas.
  2.  前記吸着膜除去工程は、前記吸着膜を介して接する倒壊した2つの前記パターンの間から前記吸着膜を除去することにより、倒壊した前記パターンの形状を前記パターンの復元力で復元するパターン復元工程を含む、請求項1に記載の基板処理方法。 The adsorbing film removing step is a pattern restoring step of restoring the shape of the collapsed pattern with a restoring force of the pattern by removing the adsorbing film from between the two collapsed patterns that are in contact with each other via the adsorption film. The substrate processing method according to claim 1, comprising:
  3.  前記吸着物質は、前記パターンの表面に化学的に吸着する物質である、請求項1または2に記載の基板処理方法。 3. The substrate processing method according to claim 1, wherein the adsorbed substance is a substance that is chemically adsorbed on the surface of the pattern.
  4.  前記吸着物質は、前記パターンの表面に物理的に吸着する物質である、請求項1または2に記載の基板処理方法。 3. The substrate processing method according to claim 1, wherein the adsorbing substance is a substance that physically adsorbs on the surface of the pattern.
  5.  前記乾燥前処理液供給工程は、前記吸着膜を形成する前に、前記基板の回転を停止させながら、もしくは、前記吸着膜を形成するときの前記基板の回転速度よりも小さい回転速度で前記基板を回転させながら、前記乾燥前処理液を前記パターンの表面に接触させる吸着促進工程を含む、請求項1~4のいずれか一項に記載の基板処理方法。 The pre-drying treatment liquid supply step, before forming the adsorption film, while stopping the rotation of the substrate, or at a rotation speed smaller than the rotation speed of the substrate when forming the adsorption film, the substrate 5. The substrate processing method according to claim 1, further comprising an adsorption promoting step of bringing the pre-drying treatment liquid into contact with the surface of the pattern while rotating.
  6.  前記吸着膜の厚みは、前記パターンの高さよりも小さい、請求項1~5のいずれか一項に記載の基板処理方法。 (6) The substrate processing method according to any one of (1) to (5), wherein the thickness of the attraction film is smaller than the height of the pattern.
  7.  前記乾燥前処理液は、前記吸着物質と、前記吸着物質と溶け合う溶媒と、を含む溶液である、請求項1~6のいずれか一項に記載の基板処理方法。 7. The substrate processing method according to claim 1, wherein the pretreatment liquid for drying is a solution containing the adsorbed substance and a solvent that dissolves in the adsorbed substance.
  8.  前記液体除去工程は、前記基板の表面上の一部の前記乾燥前処理液を前記基板の回転によって除去しているときに、前記基板の表面に向けて気体を吐出する気体供給工程をさらに含む、請求項1~7のいずれか一項に記載の基板処理方法。 The liquid removing step further includes a gas supply step of discharging gas toward the surface of the substrate when a part of the pre-drying treatment liquid on the surface of the substrate is removed by rotation of the substrate. The substrate processing method according to any one of claims 1 to 7.
  9.  前記液体除去工程は、前記基板の表面上の一部の前記乾燥前処理液を前記基板の回転によって除去しているときに、前記基板の表面上の前記乾燥前処理液を加熱する液体加熱工程をさらに含む、請求項1~8のいずれか一項に記載の基板処理方法。 The liquid removing step is a liquid heating step of heating the pre-drying liquid on the surface of the substrate while removing a part of the pre-drying liquid on the surface of the substrate by rotating the substrate. The substrate processing method according to any one of claims 1 to 8, further comprising:
  10.  基板に形成されたパターンの表面に吸着する吸着物質を含む乾燥前処理液を、水平に保持されている前記基板の表面に供給して、前記パターンの表面に前記吸着物質を吸着させる乾燥前処理液供給ユニットと、
     水平に保持されている前記基板の表面上の一部の前記乾燥前処理液を鉛直な回転軸線まわりの前記基板の回転によって除去することにより、前記パターンの表面に吸着した前記吸着物質を含む吸着膜を前記パターンの表面に沿って形成するスピンオフユニット、を含む液体除去ユニットと、
     前記吸着膜を気体に変化させることにより前記基板の表面から除去する吸着膜除去ユニットとを含む、基板処理装置。
    A pre-drying process comprising supplying a pre-drying treatment liquid containing an adsorbing substance adsorbing on the surface of a pattern formed on a substrate to the surface of the substrate held horizontally, and adsorbing the adsorbing substance on the surface of the pattern. A liquid supply unit,
    An adsorption including the adsorbed substance adsorbed on the surface of the pattern by removing a part of the drying pretreatment liquid on the surface of the substrate held horizontally by rotating the substrate around a vertical rotation axis. A liquid removal unit comprising: a spin-off unit for forming a film along the surface of the pattern;
    A substrate processing apparatus, comprising: an adsorption film removal unit that removes the adsorption film from the surface of the substrate by changing the adsorption film into a gas.
PCT/JP2019/023720 2018-07-25 2019-06-14 Substrate processing method and substrate processing device WO2020021903A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018139166A JP7231350B2 (en) 2018-07-25 2018-07-25 Substrate processing method and substrate processing apparatus
JP2018-139166 2018-07-25

Publications (1)

Publication Number Publication Date
WO2020021903A1 true WO2020021903A1 (en) 2020-01-30

Family

ID=69181980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023720 WO2020021903A1 (en) 2018-07-25 2019-06-14 Substrate processing method and substrate processing device

Country Status (3)

Country Link
JP (1) JP7231350B2 (en)
TW (1) TWI708339B (en)
WO (1) WO2020021903A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112146359B (en) * 2020-09-25 2022-03-11 长江存储科技有限责任公司 Drying device, drying method, cleaning and drying system and cleaning and drying method
JP2023139637A (en) * 2022-03-22 2023-10-04 株式会社Screenホールディングス Substrate drying method and substrate processing method
JP2023139638A (en) * 2022-03-22 2023-10-04 株式会社Screenホールディングス Substrate processing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013016699A (en) * 2011-07-05 2013-01-24 Toshiba Corp Substrate processing method and substrate processing apparatus
WO2017169018A1 (en) * 2016-03-29 2017-10-05 株式会社Screenホールディングス Substrate processing method and substrate processing device
JP2018046063A (en) * 2016-09-12 2018-03-22 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5843277B2 (en) * 2011-07-19 2016-01-13 株式会社東芝 Method and apparatus for supercritical drying of semiconductor substrate
JP6573520B2 (en) * 2015-09-29 2019-09-11 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013016699A (en) * 2011-07-05 2013-01-24 Toshiba Corp Substrate processing method and substrate processing apparatus
WO2017169018A1 (en) * 2016-03-29 2017-10-05 株式会社Screenホールディングス Substrate processing method and substrate processing device
JP2018046063A (en) * 2016-09-12 2018-03-22 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus

Also Published As

Publication number Publication date
JP2020017613A (en) 2020-01-30
TWI708339B (en) 2020-10-21
TW202015198A (en) 2020-04-16
JP7231350B2 (en) 2023-03-01

Similar Documents

Publication Publication Date Title
JP7286359B2 (en) Substrate processing method, substrate processing apparatus, and pre-drying treatment liquid
JP6728009B2 (en) Substrate processing method and substrate processing apparatus
TWI746998B (en) Substrate processing method and substrate processing apparatus
WO2020241022A1 (en) Method for producing liquid containing sublimable substance, substrate drying method, and substrate processing apparatus
WO2020021903A1 (en) Substrate processing method and substrate processing device
KR102476555B1 (en) Substrate processing method and substrate processing apparatus
CN110634769A (en) Substrate processing method, substrate processing apparatus, and drying pretreatment liquid
WO2020213481A1 (en) Substrate processing method and substrate processing device
JP7301662B2 (en) Substrate processing method and substrate processing apparatus
JP7126429B2 (en) Substrate processing method and substrate processing apparatus
TWI722507B (en) Substrate processing method and substrate processing apparatus
JP7232583B2 (en) Substrate processing method and substrate processing apparatus
JP2024078250A (en) SUBSTRATE PROCESSING METHOD AND SUBSTRATE PROCESSING APPARATUS
WO2020039835A1 (en) Substrate processing method and substrate processing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19839909

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19839909

Country of ref document: EP

Kind code of ref document: A1