WO2017168767A1 - ラジアルコンプレッサのケーシング、及びラジアルコンプレッサ - Google Patents

ラジアルコンプレッサのケーシング、及びラジアルコンプレッサ Download PDF

Info

Publication number
WO2017168767A1
WO2017168767A1 PCT/JP2016/061642 JP2016061642W WO2017168767A1 WO 2017168767 A1 WO2017168767 A1 WO 2017168767A1 JP 2016061642 W JP2016061642 W JP 2016061642W WO 2017168767 A1 WO2017168767 A1 WO 2017168767A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
rotation axis
impeller
intake
main body
Prior art date
Application number
PCT/JP2016/061642
Other languages
English (en)
French (fr)
Inventor
保徳 渡邊
良次 岡部
健一郎 岩切
直志 神坂
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN201680084108.0A priority Critical patent/CN109154306B/zh
Priority to JP2018508349A priority patent/JP6748706B2/ja
Priority to EP16896984.8A priority patent/EP3421813B1/en
Priority to PCT/JP2016/061642 priority patent/WO2017168767A1/ja
Priority to US16/088,522 priority patent/US10746052B2/en
Publication of WO2017168767A1 publication Critical patent/WO2017168767A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/026Scrolls for radial machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4213Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps suction ports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2225/00Synthetic polymers, e.g. plastics; Rubber
    • F05C2225/08Thermoplastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/51Inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced

Definitions

  • the present invention relates to a radial compressor casing and a radial compressor.
  • a radial compressor is known as a type of compressor.
  • the gas flowing out of the impeller is introduced into a scroll portion having a spirally formed flow path, and is guided and discharged in the circumferential direction.
  • the scroll portion has a gradually increasing outer dimension from the winding start side toward the discharge side.
  • the casing of the radial compressor used in, for example, an automobile turbocharger may be made of resin for weight reduction or the like.
  • the present invention provides a radial compressor casing and a radial compressor that can suppress a decrease in performance due to thermal deformation of the scroll portion.
  • the casing of the radial compressor according to the first aspect of the present invention has a cylindrical shape that extends along the direction of the rotation axis of the impeller and opens in the direction of the rotation axis, and an intake portion that introduces gas into the impeller; Disposed on the outer peripheral side of the impeller and the air intake section and extending in the circumferential direction, and having a discharge opening that opens in the circumferential direction, and a scroll passage through which the gas from the impeller flows toward the discharge opening.
  • a scroll portion including a resin material whose outer dimensions gradually increase, and a plurality of ribs connecting the outer peripheral surface of the intake portion and the outer surface of the scroll portion, and the plurality of ribs are spaced apart in the circumferential direction. The installation interval is gradually reduced toward the discharge port in the circumferential direction, and the radial length dimension on the outer surface of the scroll portion is gradually reduced.
  • the scroll portion on the winding start side thermal deformation occurs uniformly depending on the direction of the rotation axis and the radial direction.
  • the discharge side in which the amount of thermal deformation in the direction of the rotation axis is larger than the winding start side and the winding start side in which the amount of thermal deformation in the direction of the rotation axis is smaller than the discharge side are directed in the direction of the rotation axis.
  • the amount of thermal deformation can be made equal.
  • the tip clearance between the impeller and the casing can be made uniform in the circumferential direction. Furthermore, by reducing the rib installation interval on the discharge side and suppressing the amount of thermal deformation in the direction of the rotation axis of the scroll portion on the discharge side, the rotation axis of the intake portion due to the heat deformation of the scroll portion on the discharge side is reduced. Tilt can be suppressed.
  • the radial compressor casing according to the first aspect is arranged on the inner peripheral side of the air intake portion, and the inside of the cylindrical portion through which the gas circulates. And an inner rib that connects the inner peripheral surface of the intake portion and the inner cylinder portion.
  • Such an inner cylinder part is provided inside the intake part, and the intake part and the inner cylinder part are fixed by internal ribs, so that a double pipe structure can be obtained and the rigidity of the intake part can be improved. Therefore, thermal deformation of the intake portion can be suppressed, change in tip clearance with the impeller can be suppressed, and deterioration in performance of the radial compressor can be suppressed.
  • the rotation axis of the inner cylinder portion is provided between the intake portion and the inner cylinder portion of the radial compressor casing of the second aspect.
  • Spaces communicating with the inner side of the inner cylinder portion may be defined on both sides in the direction of.
  • the space can function as a gas recirculation path.
  • this gas recirculation it is possible to suppress the occurrence of surging and expand the operating range of the radial compressor.
  • a space capable of easily recirculating gas can be provided between the inner rib part and the intake part. it can.
  • the intake part of the radial compressor casing according to any one of the first to third aspects is made of resin, and the scroll part is the rotating part.
  • a resin-made first main body that forms the inner surface of the scroll flow path on one side in the direction of the axis, and faces the first main body in the direction of the rotation axis, and the scroll flow on the other side in the direction of the rotation axis A second main body portion that forms an inner surface of the path; and a radial direction of the scroll flow path that is disposed at a position sandwiched in the direction of the rotation axis by the intake portion and the impeller on the radially inner side of the second main body portion
  • An inner inner surface is formed, and the diffuser part that guides the gas from the impeller into the scroll flow path, and the position sandwiched in the direction of the rotation axis by the diffuser part and the intake part Is location, the metal sleeve forming a tubular in contact with the
  • the air intake portion and the first main body portion are made of resin, they can be integrally molded with resin. Therefore, the labor of manufacture can be saved, and the cost can be reduced and the manufacturing time can be shortened. Furthermore, even when the air intake portion is made of resin, for example, when the air intake portion and the first main body portion are formed by resin injection molding, if a sleeve is inserted in advance in the mold, cooling during the injection molding is performed. In the process, the deformation of the intake portion and the first main body portion due to the contraction of the resin can be suppressed. Therefore, the tip clearance with the impeller can be made as designed without performing post-processing on the surface of the diffuser facing the impeller. Further, even if the impeller is damaged, it is possible to prevent the impeller fragments damaged by the metal sleeve from being scattered outside the compressor.
  • the sleeve of the radial compressor casing according to the fourth aspect includes a cylindrical portion extending in the direction of the rotation axis, and the other of the cylindrical portions.
  • a scroll portion that contacts the first body portion, and the scroll portion may further include a filler filled in the region where the collar portion is disposed.
  • the collar portion is provided on the sleeve, and the region sandwiched between the first main body portion and the diffuser portion around the collar portion is filled with the filler. It is possible to suppress backflow. Moreover, the 1st main-body part and the diffuser part are being fixed via the collar part. Since the collar portion is made of metal, the amount of thermal deformation is small, and the relative position of the diffuser portion with respect to the impeller changes due to the thermal deformation of the resin-made first main body portion and the intake portion. This can be suppressed. Therefore, the tip clearance with the impeller can be prevented from changing, and the performance of the radial compressor can be maintained.
  • the sleeve surface of the radial compressor casing according to the fourth or fifth aspect may be a rough surface.
  • the sleeve can be fixed at a predetermined position with respect to the intake portion.
  • the material of the second main body portion of the radial compressor casing of the fourth to sixth aspects is higher than the material of the first main body portion.
  • a material with high conductivity may be used.
  • the casing of the radial compressor according to the eighth aspect of the present invention is the casing according to any one of the first to seventh aspects that covers an impeller, a rotating shaft that the impeller is fitted to and rotates with the impeller, and covers the impeller. And a casing.
  • the radial compressor since the radial compressor includes the casing, thermal deformation of the scroll portion can be suppressed by the rib. Further, it is possible to suppress thermal deformation in the direction of the rotation axis while promoting thermal deformation in the radial direction of the scroll portion on the discharge side of the scroll portion as compared with the winding start side. On the other hand, thermal deformation occurs more uniformly in the direction of the rotation axis and in the radial direction on the winding start side. Therefore, it is possible to equalize the amount of thermal deformation in the direction of the rotation axis on the discharge side and the winding start side of the scroll portion, and to make the chip clearance uniform in the circumferential direction.
  • 1 is an overall top view of a radial compressor according to an embodiment of the present invention.
  • 1 is an overall perspective view of a radial compressor according to an embodiment of the present invention. It is a longitudinal cross-sectional view of the casing of the radial compressor which concerns on embodiment of this invention. It is a longitudinal cross-sectional view which shows typically the mode of the thermal deformation of the casing of the radial compressor which concerns on embodiment of this invention. It is a graph which shows the simulation result which shows the displacement amount by the thermal deformation in each position in an opposing surface. It is a schematic diagram which shows each position in the opposing surface where a diffuser part and an impeller oppose. It is a whole top view of a radial compressor concerning a modification of an embodiment of the present invention.
  • a radial compressor 1 (hereinafter simply referred to as a compressor 1) is a turbocharger compressor mounted on a vehicle, for example. As shown in FIGS. 1 and 2, the compressor 1 includes an impeller 2, a rotating shaft 3 that rotates integrally with the impeller 2 as a result of fitting the impeller 2, and a casing 10 that covers the impeller 2. And.
  • the casing 10 includes a suction portion 11 for introducing a gas G (for example, air) into the impeller 2 and a resin material through which the gas G flowing out of the impeller 2 flows and discharges the gas G. , And a plurality of ribs 13 that connect the intake portion 11 and the scroll portion 12.
  • the casing 10 further includes an inner cylinder portion 14 disposed inside the intake portion 11 and a plurality of internal ribs 15 that connect the intake portion 11 and the inner cylinder portion 14.
  • the intake portion 11 is arranged in one of the directions of the rotation axis O with respect to the impeller 2, extends in the direction of the rotation axis O, and has a cylindrical shape that opens in the direction of the rotation axis O.
  • the intake portion 11 sucks the gas G from one side in the direction of the rotation axis O toward the impeller 2 and introduces the gas G toward the flow path (not shown) of the impeller 2.
  • the material of the intake section 11 is a resin such as thermoplastic (for example, PPS (polyphenylene sulfide), PPA (polyphthalamide), PA9T / PA46 / PA6T (polyamide), PBT (polybutylene terephthalate), etc.).
  • the scroll portion 12 is disposed on the outer peripheral side of the impeller 2 and the intake portion 11.
  • the scroll portion 12 includes a scroll flow path 20 that extends annularly in the circumferential direction of the impeller 2 and the rotating shaft 3.
  • the scroll unit 12 further includes a cylindrical discharge port 21 that is provided at one end in the circumferential direction and forms an opening 20 a of the scroll flow path 20.
  • an end on one side in the circumferential direction of the scroll portion 12 on the discharge port 21 side is set as a discharge side of the scroll portion 12, and an end on the other side in the circumferential direction is set as a winding start side of the scroll portion 12.
  • the discharge side end and the winding start side end are adjacent to each other.
  • the flow path cross-sectional area in a cross section orthogonal to the circumferential direction gradually increases from the winding start side to the discharge side.
  • the outer dimensions of the scroll portion 12 gradually increase from the winding start side to the discharge side.
  • the shape of the cross section of the flow path in the cross section orthogonal to the circumferential direction of the scroll flow path 20 is circular.
  • the outer shape of the surface of the scroll portion 12 facing the direction of the rotation axis O is formed in a curved shape along the shape of the scroll flow path 20.
  • the scroll portion 12 includes a first main body portion 22 that forms the inner surface of the scroll passage 20 on one side of the rotation axis O, and a second main body portion 23 that forms the inner surface of the scroll passage 20 on the other side of the rotation axis O. Further, a diffuser portion 24 that forms an inner surface on the radially inner side of the scroll flow path 20, and a sleeve 25 disposed between the diffuser portion 24 and the intake portion 11 are further provided.
  • the first main body 22 has an annular shape centered on the rotation axis O.
  • the first main body portion 22 that is one portion in the direction of the rotation axis O in the scroll portion 12 is provided so as to surround the outer peripheral surface 11b of the intake portion 11 from the outer periphery.
  • the first main body portion 22 is made of resin, like the intake portion 11.
  • the first main body portion 22 may be an injection-molded product of resin integral with the intake portion 11, or may be manufactured separately from the intake portion 11 and joined to the intake portion 11.
  • the first main body portion 22 is connected to the discharge port 21 at one end portion in the circumferential direction.
  • the 1st main-body part 22 and the discharge outlet 21 are manufactured integrally.
  • the first main body portion 22 includes an annular portion 22a having an annular shape around the rotation axis O and a radially outer end (outer peripheral end) of the annular portion 22a in the circumferential direction. And a convex portion 22b protruding along the rotation axis O in one direction.
  • the first main body 22 is provided at the radially outer end (outer peripheral end) of the annular portion 22a, and faces the other side in the direction of the rotation axis O, and the direction from the surface 22c to the rotation axis O.
  • a recess 22d that is recessed in the circumferential direction.
  • the second main body portion 23 has an annular portion 23a having an annular shape centered on the rotational axis O, and a radially outward end (outer peripheral end) of the annular portion 23a across the circumferential direction, and the rotational axis to the other in the direction of the rotational axis O. And a convex portion 23b protruding along O. Further, the second main body portion 23 is provided at an end portion (outer peripheral end) on the radially outer side, and faces a surface 23c facing one side in the direction of the rotation axis O, and from the surface 23c to the other side in the direction of the rotation axis O. It further has a recess 23d that is recessed in the circumferential direction.
  • the second main body portion 23 is made of resin in the same manner as the intake portion 11 and the first main body portion 22.
  • the second main body portion 23 is provided opposite to the first main body portion 22 in the direction of the rotation axis O.
  • the second main body 23 is manufactured separately from the first main body 22 and is joined to the first main body 22. More specifically, the surface 23c of the second main body portion 23 and the surface 22c of the first main body portion 22 are in contact with each other, and the concave portion 23d of the second main body portion 23 and the concave portion 22d of the first main body portion 22 are in the radial direction.
  • the concave portion 23d and the concave portion 22d are arranged at the same position and face the direction of the rotation axis O.
  • the space surrounded by the recess 23d and the recess 22d is filled with resin or the like, and the first main body 22 and the second main body 23 are joined.
  • the diffuser portion 24 has an annular shape around the rotation axis O.
  • the diffuser portion 24 is arranged at a position sandwiched in the rotation axis O direction by the intake portion 11 and the impeller 2 on the radially inner side of the second main body portion 23.
  • the facing surface 24 a facing the impeller 2 of the diffuser portion 24 is formed in a shape corresponding to the blade tip profile of the impeller 2.
  • the distance between the facing surface 24a and the impeller 2 is the tip clearance.
  • the other end of the second main body 23 in the direction of the rotation axis O is disposed on the other side of the rotation axis O than the facing surface 24 a of the diffuser portion 24.
  • the scroll flow path 20 has the opening part 20b opened cyclically
  • the diffuser part 24 is manufactured separately from the first main body part 22 and the second main body part 23, and is joined to the first main body part 22 from the other side in the direction of the rotation axis O.
  • the sleeve 25 is disposed at a position sandwiched between the diffuser portion 24 and the intake portion 11 in the direction of the rotation axis O.
  • the sleeve 25 is made of metal.
  • the sleeve 25 includes a cylindrical portion 26 extending in the direction of the rotation axis O, and a flange portion 27 provided integrally with the cylindrical portion 26 at the other end of the cylindrical portion 26 in the direction of the rotation axis O. ing.
  • the cylindrical portion 26 has a cylindrical shape with the rotation axis O as the center.
  • the surface of the sleeve 25 is roughened by performing a roughening process such as blasting, laser, or knurling. Further, the inner peripheral surface 25a of the sleeve 25 is flush with the inner peripheral surface 11a of the intake portion 11 so that no step is formed between the inner peripheral surface 11a of the intake portion 11 and the inner peripheral surface 11a.
  • the collar portion 27 has an annular shape with the rotation axis O as the center.
  • the collar portion 27 is provided so as to protrude radially outward from the outer peripheral surface of the cylindrical portion 26.
  • an annular gap A ⁇ b> 2 centering on the rotation axis O is provided in a region located radially inward of the first main body portion 22 and sandwiched between the first main body portion 22 and the diffuser portion 24.
  • a collar portion 27 is disposed in the gap A2.
  • a surface of the flange portion 27 facing in the direction of the rotation axis O is a contact surface 27 a that contacts the first main body portion 22.
  • the contact surface 27a may also be a rough surface.
  • the surface of the flange portion 27 facing the other direction of the rotation axis O is disposed at a position away from the diffuser portion 24 in the direction of the rotation axis O.
  • the scroll unit 12 of the present embodiment further includes a filler 30 filled in the gap A2.
  • the first main body portion 22 and the diffuser portion 24 are joined to each other by the filler 30.
  • the plurality of ribs 13 connect the outer peripheral surface 11 b of the intake portion 11 and the outer surface 22 e facing the one of the directions of the rotation axis O in the first main body portion 22.
  • These ribs 13 are made of resin in the same manner as the air intake portion 11 and the first main body portion 22, and are formed integrally with the air intake portion 11 and the first main body portion 22, for example.
  • These ribs 13 are provided over the circumferential direction of the scroll part 12 at intervals in the circumferential direction.
  • the circumferential interval between the ribs 13 gradually decreases from the winding start side toward the discharge side.
  • these ribs 13 extend in the radial direction on the outer surface 22e of the first main body portion 22, and are connected to the outer surface 22e over the entire area in the radial extending direction of the ribs 13. Further, the radial length of the rib 13 on the outer surface 22e of the first main body portion 22 gradually decreases from the winding start side to the discharge side in the circumferential direction.
  • the ribs 13 extend in the direction of the rotation axis O on the outer peripheral surface 11 b of the intake portion 11, and are connected to the outer peripheral surface 11 b of the intake portion 11 in the entire extending direction of the rib 13 in the direction of the rotation axis O. Has been.
  • the length dimension on the outer peripheral surface 11b of the suction part 11 of all the ribs 13 is the same.
  • the inner cylinder portion 14 has a cylindrical shape with the rotation axis O as the center, and the gas G circulates inside the inner cylinder portion 14.
  • One end of the inner cylinder portion 14 in the direction of the rotation axis O is located on the other end in the direction of the rotation axis O than the one end of the intake portion 11 in the direction of the rotation axis O. That is, the inner cylinder portion 14 is disposed on the inner peripheral side of the intake portion 11 and is accommodated in the intake portion 11.
  • the inner cylinder portion 14 is made of resin, like the intake portion 11.
  • the inner cylinder portion 14 is formed integrally with the intake portion 11, the first main body portion 22, and the rib 13. That is, the intake portion 11 has a double pipe structure by the inner cylinder portion 14.
  • the outer peripheral surface 14a of the inner cylinder portion 14 is disposed at a position separated from the inner peripheral surface 11a of the intake portion 11 in the radial direction. Furthermore, the other end portion of the inner cylinder portion 14 in the direction of the rotation axis O is provided at a distance from one end portion of the diffuser portion 24 in the direction of the rotation axis O. As a result, an annular slit SL about the rotation axis O is formed between the inner cylinder portion 14 and the diffuser portion 24.
  • the internal rib 15 is provided to extend in the direction of the rotation axis O between the outer peripheral surface 14 a of the inner cylinder portion 14 and the inner peripheral surface 11 a of the intake portion 11.
  • a plurality of internal ribs 15 are provided at equal intervals in the circumferential direction.
  • the space A1 connected to the inner side of the inner cylinder part 14 is defined on both sides in the direction of the rotation axis O.
  • These spaces A1 communicate with the inner side of the inner cylinder part 14 via the slit SL on the other side of the rotation axis O. Further, these spaces A1 are opened in the direction of the rotation axis O on one side of the rotation axis O and communicate with the inner side of the inner cylinder portion 14.
  • the scroll portion 12 since the scroll portion 12 includes the sleeve 25, the other side portion of the internal rib 15 in the direction of the rotational axis O is connected to the inner peripheral surface 25 a of the sleeve 25, and the rotational axis O of the internal rib 15 One side of the direction is connected to the inner peripheral surface 11 a of the intake portion 11.
  • the rigidity can be improved at the portion where the intake portion 11 and the scroll portion 12 are connected, and the scroll portion 12.
  • the thermal deformation of can be suppressed.
  • the thermal deformation amount on the discharge side becomes larger than that on the winding start side when thermally deformed at the same coefficient of thermal expansion.
  • the thermal deformation amount on the discharge side becomes larger than that on the winding start side when thermally deformed at the same coefficient of thermal expansion.
  • the scroll portion 12 since the radial dimension of the rib 13 on the outer surface 22e of the first main body portion 22 of the scroll portion 12 is larger on the winding start side, the scroll portion 12 has a larger dimension on the winding start side than on the discharge side. Increases rigidity. Therefore, as shown by the double chain line on the right side of FIG. 4, the scroll portion 12 on the winding start side undergoes thermal deformation relatively uniformly in the direction of the rotation axis O and in the radial direction.
  • the discharge axis where the amount of thermal deformation in the direction of the rotation axis O is larger than the winding start side and the winding start side where the amount of thermal deformation in the direction of the rotation axis O is smaller than the discharge side are
  • the amount of thermal deformation in the direction can be made equal. That is, the change in the tip clearance between the impeller 2 and the casing 10 can be reduced on the discharge side. Therefore, the tip clearance between the impeller 2 and the casing 10 can be made uniform in the circumferential direction. Therefore, the performance degradation of the compressor 1 can be suppressed.
  • the horizontal axis of the graph of FIG. 5 indicates the distance from the reference position A (see FIG. 6) on the facing surface 24a
  • the vertical axis indicates the amount of displacement in the normal direction, which is the direction away from the impeller 2.
  • This displacement amount is an average value for one round in the circumferential direction at each of the positions B, C, D, and E on the facing surface 24a at each distance from the reference position A shown in FIG.
  • the reference position A is a position on the intake portion 11 side in the direction of the rotation axis O on the innermost side in the radial direction on the facing surface 24a.
  • the position E is the most radially outer position on the facing surface 24a.
  • the position B is substantially the same position as the reference position A in the radial direction, and is a position closer to the impeller 2 in the direction of the rotation axis O than the reference position A. Furthermore, between position B and position E, position C is located radially inside and position D is located radially outside.
  • the displacement in the direction away from the impeller 2 of the facing surface 24a is greater when the rib 13 is provided as in the present embodiment than when the rib 13 is not provided. It can be confirmed that the amount can be suppressed to a smaller value over the entire facing surface 24a.
  • the amount of thermal deformation in the direction of the rotation axis O of the scroll portion 12 is suppressed on the discharge side, and the amount of deformation and displacement in the direction of the rotation axis O of the scroll portion 12 is made uniform in the circumferential direction.
  • the inclination with respect to the rotation axis O of the intake part 11 due to thermal deformation of the scroll part 12 on the side can be suppressed. Therefore, the performance degradation of the compressor 1 can be suppressed.
  • the rigidity of the intake part 11 can be improved by providing the inner cylinder part 14 to make the intake part 11 have a double pipe structure and further fixing the intake part 11 and the inner cylinder part 14 by the internal rib 15. . Therefore, the thermal deformation of the intake portion 11 can be further suppressed. As a result, the change in the tip clearance with the impeller 2 can be suppressed, and the performance degradation of the compressor 1 can be suppressed.
  • the space A1 is formed between the intake portion 11 and the inner cylinder portion 14, a part of the gas G flowing out of the impeller 2 is returned to the intake portion 11 through the space A1, and the inner cylinder portion 14 is returned. It can be made to flow again into the impeller 2 through the inside. That is, the space A1 can function as a gas G recirculation path. The recirculation of the gas G can suppress the occurrence of surging and expand the operating range of the compressor 1.
  • the inner cylinder part 14 is provided and the inner cylinder part 14 and the intake part 11 are connected by the internal ribs 15, so that it is easily located between the inner cylinder part 14 and the intake part and adjacent to each other.
  • a space A1 in which the gas G can be recirculated can be formed between the inner ribs 15 that perform the same.
  • the intake portion 11 and the first main body portion 22 are made of resin, for example, they can be integrally formed using a technique such as injection molding. Therefore, the labor of manufacture can be saved, and the cost can be reduced and the manufacturing time can be shortened.
  • a metal sleeve 25 is provided so as to contact the inner peripheral surface 11a of the resin intake portion 11. Therefore, for example, if insert molding is performed in which a sleeve 25 is inserted in advance into a mold for injection molding of the air intake portion 11 and the first main body portion 22, the air intake portion due to resin contraction in the cooling process at the time of injection molding. 11 and the deformation
  • the first main body portion 22 and the diffuser portion 24 are fixed via the flange portion 27 of the sleeve 25, and since the flange portion 27 is made of metal, it is difficult to be thermally deformed. For this reason, it can suppress that the relative position with respect to the impeller 2 of the diffuser part 24 changes with the heat deformation of the resin-made 1st main-body part 22 and the intake part 11 which are thermally deformed more largely. Therefore, it is possible to suppress the tip clearance with the impeller 2 from changing. Therefore, the performance of the radial compressor 1 can be maintained.
  • the high pressure in the scroll flow path 20 through the gap A2 is filled by the filler 30 filled in the gap A2 that is the area sandwiched between the first main body portion 22 and the diffuser portion 24 around the flange portion 27 of the sleeve 25. It is possible to suppress the gas G from flowing back into the intake section 11. Therefore, the performance of the radial compressor 1 can be maintained.
  • the sleeve 25 has a rough surface, so that the sleeve 25 can be firmly fixed to a predetermined position with respect to the intake portion 11, so that the performance due to the displacement of the sleeve 25 during operation of the compressor 1 is achieved. Reduction can be suppressed.
  • FIG. 7 shows a casing 10A of the compressor 1 according to a modification of the present embodiment.
  • the casing 10 ⁇ / b> A does not have the inner cylinder portion 14 and the inner rib 15.
  • the casing 10 ⁇ / b> A does not have the inner cylinder portion 14 and the inner rib 15.
  • the casing 10 ⁇ / b> A does not have the inner cylinder portion 14 and the inner rib 15.
  • the casing 10A similarly to the casing 10 described above, by providing a plurality of ribs 13 that connect the intake portion 11 and the scroll portion 12, performance degradation due to thermal deformation of the scroll portion 12 of the casing 10A is suppressed. It becomes possible to do.
  • the material of the second main body portion 23 may be a material having higher thermal conductivity than the first main body portion 22. That is, you may form the 2nd main-body part 23 with the composite material containing metals, such as aluminum, carbon fiber, and a metal filler. Thereby, since the heat of the scroll part 12 can be radiated from the second main body part 23 to the other of the rotation axis O, the temperature rise of the first main body part 22 can be suppressed and the performance of the compressor 1 is improved.
  • the intake part 11 does not necessarily need to be made of resin, and at least the first main body part 22 only needs to be made of resin.
  • the scroll portion 12 may not be divided into the first main body portion 22, the second main body portion 23, and the diffuser portion 24. Further, the sleeve 25 may not be provided.
  • the sleeve 25 may not be provided with the collar portion 27.
  • the surface of the sleeve 25 does not necessarily have to be a rough surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Supercharger (AREA)

Abstract

インペラ(2)の回転軸線(O)の方向に沿って延びて回転軸線(O)の方向に開口する筒状をなし、インペラ(2)にガス(G)を導入する吸気部(11)と、インペラ(2)及び吸気部(11)の外周側に配置されて周方向に沿って延び、周方向に開口する吐出口(21)、及び吐出口(21)に向かってインペラ(2)からのガス(G)が流通するスクロール流路(20)を有し、外形寸法が漸次拡大する樹脂材を含むスクロール部(12)と、吸気部(11)の外周面(11b)とスクロール部(12)の外面(22e)とを接続する複数のリブ(13)と、を備えるラジアルコンプレッサ(1)のケーシング(10)である。複数のリブ(13)は周方向に間隔をあけて設けられ、周方向に吐出口(21)に向かうに従って、設置間隔が漸次小さくなり、かつ、スクロール部(12)の外面(22e)上での径方向の長さ寸法が漸次小さくなる。

Description

ラジアルコンプレッサのケーシング、及びラジアルコンプレッサ
 本発明は、ラジアルコンプレッサのケーシング、及びラジアルコンプレッサに関する。
 コンプレッサの一種としてラジアルコンプレッサが知られている。このラジアルコンプレッサでは、インペラから流出したガスを、螺旋状に形成された流路を有するスクロール部に導入し、周方向に案内して吐出するようになっている。スクロール部は、巻き始め側から吐出側に向けて徐々に外形寸法が大きくなっている。
 ここで、引用文献1、及び引用文献2に記載されたラジアルコンプレッサのように、例えば自動車のターボチャージャに用いられるラジアルコンプレッサのケーシングは、軽量化等のため樹脂製となっている場合がある。
特表2011−503439号公報 特表2012−524860号公報
 しかしながら、樹脂はアルミ等の金属と比較して熱伝導率が低いため、コンプレッサのケーシングが樹脂製である場合にはケーシングから十分な放熱を行うことが難しい。よって、ケーシングが高温となってケーシングのスクロール部が熱膨張によって大きく変形してしまう可能性がある。スクロール部の外形寸法は巻き始め側よりも吐出側で大きくなっているため、スクロール部では吐出側の熱変形量(変形寸法)が大きくなる。この結果、スクロール部が周方向に不均一に熱変形し、インペラとのチップクリアランスが周方向で不均一となる。即ち、ケーシングがインペラの回転軸線に対して傾くように変形してしまう。これにより、コンプレッサの性能が低下してしまうという問題がある。
 さらにコンプレッサを連続使用すると、樹脂製のケーシングにクリープ変形が生じ、使用開始時の性能を再現することができなくなってしまう可能性がある。
 そこで本発明は、スクロール部の熱変形による性能低下を抑制することのできるラジアルコンプレッサのケーシング、及びラジアルコンプレッサを提供する。
 本発明の第一の態様に係るラジアルコンプレッサのケーシングは、インペラの回転軸線の方向に沿って延びて該回転軸線の方向に開口する筒状をなし、前記インペラにガスを導入する吸気部と、前記インペラ及び前記吸気部の外周側に配置されて周方向に沿って延び、該周方向に開口する吐出口、及び該吐出口に向かって前記インペラからの前記ガスが流通するスクロール流路を有し、外形寸法が漸次拡大する樹脂材を含むスクロール部と、前記吸気部の外周面とスクロール部の外面とを接続する複数のリブと、を備え、前記複数のリブは前記周方向に間隔をあけて設けられ、前記周方向に前記吐出口に向かうに従って、設置間隔が漸次小さくなり、かつ、前記スクロール部の外面上での径方向の長さ寸法が漸次小さくなる。
 このようなケーシングでは、スクロール部の周方向に間隔をあけて複数のリブが設けられていることで、吸気部とスクロール部との間の部分で剛性を向上でき、スクロール部の熱変形を抑制することができる。
 また、スクロール部は、周方向に吐出側に向かって外形寸法が漸次拡大する。このため、仮にリブを設けない場合、吐出側の方が、スクロール部の巻き始め側よりも熱変形量が大きくなる。ここで、吐出側に向かってリブの設置間隔を小さくすることで、吐出側で巻き始め側と比較してスクロール部の径方向への熱変形を促しつつ回転軸線の方向への熱変形を抑制できる。一方で、巻き始め側ではスクロール部の外面上のリブの径方向の寸法が大きくなるので、巻き始め側では吐出側と比較してスクロール部の剛性が高くなる。よって、巻き始め側のスクロール部では回転軸線の方向、及び径方向により均一に熱変形が生じる。この結果、回転軸線の方向への熱変形量が巻き始め側より大きくなる吐出側と、回転軸線の方向への熱変形量が吐出側より小さくなる巻き始め側とで、回転軸線の方向への熱変形量とを同等にすることができる。よって、インペラとケーシングとの間のチップクリアランスを周方向に均一化することができる。
 さらに、吐出側でリブの設置間隔を小さくして吐出側でスクロール部の回転軸線の方向への熱変形量を抑制することで、吐出側でのスクロール部の熱変形による吸気部の回転軸線に対する傾きを抑制することができる。
 また、本発明の第二の態様に係るラジアルコンプレッサのケーシングでは、上記第一の態様のラジアルコンプレッサのケーシングが、前記吸気部の内周側に配置されて、内側を前記ガスが流通する筒状をなす内筒部と、前記吸気部の内周面と前記内筒部とを接続する内部リブと、をさらに備えていてもよい。
 このような内筒部を吸気部の内側に設けて、吸気部と内筒部とを内部リブによって固定したことで、二重管構造とでき、吸気部の剛性を向上することができる。従って吸気部の熱変形を抑制することができ、インペラとのチップクリアランスの変化を抑制でき、ラジアルコンプレッサの性能低下を抑制することができる。
 また、本発明の第三の態様に係るラジアルコンプレッサのケーシングでは、上記第二の態様のラジアルコンプレッサのケーシングの前記吸気部と前記内筒部との間には、該内筒部における前記回転軸線の方向の両側で前記内筒部の内側に連通する空間が画成されていてもよい。
 このような空間が吸気部と内筒部との間に設けられることで、インペラからスクロール部へ向かって流出したガスの一部を、この空間を介して吸気部へ戻し、内筒部の内側を通じてインペラへ再度流入させることができる。すなわち、空間をガスの再循環路として機能させることができる。このガスの再循環によって、サージングの発生を抑制し、ラジアルコンプレッサの運転範囲を拡大させることが可能となる。また、内筒部と吸気部とを内部リブによって接続していることで、内部リブ同士の間に容易に内筒部と吸気部との間にガスの再循環が可能な空間を設けることができる。
 また、本発明の第四の態様に係るラジアルコンプレッサのケーシングでは、上記第一から第三のいずれかの態様のラジアルコンプレッサのケーシングの前記吸気部は樹脂製であり、前記スクロール部は、前記回転軸線の方向の一方で前記スクロール流路の内面を形成する樹脂製の第一本体部と、前記第一本体部に前記回転軸線の方向で対向し、該回転軸線の方向の他方で前記スクロール流路の内面を形成する第二本体部と、前記第二本体部の径方向内側で前記吸気部と前記インペラとで前記回転軸線の方向に挟まれる位置に配置され、前記スクロール流路の径方向内側の内面を形成し、前記ガスを前記インペラから前記スクロール流路内に導くディフューザ部と、前記ディフューザ部と前記吸気部とで前記回転軸線の方向に挟まれる位置に配置され、前記吸気部の内面に接触する筒状をなす金属製のスリーブと、を備えていてもよい。
 このように吸気部と第一本体部とが樹脂製であることで、これらを一体で樹脂成形することができる。よって製造の手間を省くことができ、コスト低減、製造時間の短縮が可能となる。さらに、吸気部が樹脂製であっても、例えば吸気部と第一本体部とを樹脂の射出成形で形成する際に、金型にスリーブを予めインサートしておけば、射出成形の際の冷却工程で樹脂の収縮による吸気部及び第一本体部の変形を抑制することができる。よって、ディフューザにおけるインペラとの対向面に後加工を施すことなくインペラとのチップクリアランスを設計値の通りにすることができる。
 また仮にインペラが破損した際にも、金属製のスリーブによって破損したインペラの破片がコンプレッサ外に飛散することを抑制することができる。
 また、本発明の第五の態様に係るラジアルコンプレッサのケーシングでは、上記第四の態様のラジアルコンプレッサのケーシングの前記スリーブは、前記回転軸線の方向に延びる筒状部と、前記筒状部における他方側の端部で径方向外側に環状に突出し、前記回転軸線の方向に前記第一本体部と前記ディフューザ部とで挟まれる領域内に配置されて、前記回転軸線の方向の一方を向く面が前記第一本体部に接触する鍔部と、を備え、前記スクロール部は、前記鍔部が配置された前記領域内に充填された充填材をさらに備えていてもよい。
 このように鍔部をスリーブに設け、鍔部の周囲の第一本体部とディフューザ部とで挟まれた領域に充填材を充填することで、この領域を通じてスクロール流路内の高圧ガスが吸気部内に逆流してしまうことを抑制することができる。また鍔部を介して第一本体部とディフューザ部とを固定している。鍔部は金属によって形成されているため熱変形量が少なく、より熱変形量の大きな樹脂製の第一本体部や吸気部の熱変形につられてディフューザ部のインペラに対する相対位置が変化してしまうことを抑制できる。従って、インペラとのチップクリアランスが変化してしまうことを抑制でき、ラジアルコンプレッサの性能を維持することができる。
 また、本発明の第六の態様に係るラジアルコンプレッサのケーシングでは、上記第四又は第五の態様のラジアルコンプレッサのケーシングの前記スリーブ表面は、粗面となっていてもよい。
 このように、スリーブにおける表面が粗面となっていることでスリーブを吸気部に対して所定の位置に固定することができる。
 また、本発明の第七の態様に係るラジアルコンプレッサのケーシングでは、上記第四から第六の態様のラジアルコンプレッサのケーシングの前記第二本体部の材質は、前記第一本体部の材質よりも熱伝導率の高い材質であってもよい。
 このように第二本体部の熱伝導率を、樹脂製の第一本体部よりも大きくすることで、スクロール部からの放熱を促進することができ、スクロール部の熱変形を抑制し、インペラとのチップクリアランスの変化を抑制できる。よって、ラジアルコンプレッサの性能を維持することができる。
 また、本発明の第八の態様に係るラジアルコンプレッサのケーシングは、インペラと、前記インペラが嵌合して該インペラとともに回転する回転軸と、前記インペラを覆う上記第一から第七のいずれか態様のケーシングと、を備えている。
 このように、ラジアルコンプレッサが上記のケーシングを備えていることで、スクロール部の熱変形をリブによって抑制することができる。
 また、スクロール部の吐出側で巻き始め側と比較してスクロール部の径方向への熱変形を促しつつ回転軸線の方向への熱変形を抑制できる。一方で巻き始め側では回転軸線の方向及び径方向に、より均一に熱変形が生じる。よって、スクロール部の吐出側と巻き始め側とで回転軸線の方向への熱変形量の均一化を図って、チップクリアランスを周方向に均一化することができる。
 さらに、吐出側でスクロール部の回転軸線の方向への熱変形量を抑制することで、吐出側でのスクロール部の熱変形による吸気部の回転軸線に対する傾きを抑制することができる。
 上記のラジアルコンプレッサのケーシング、及びラジアルコンプレッサでは、吸気部とスクロール部とを接続する複数のリブを設けて、スクロール部の熱変形による性能低下を抑制することが可能となる。
本発明の実施形態に係るラジアルコンプレッサの全体上面図である。 本発明の実施形態に係るラジアルコンプレッサの全体斜視図である。 本発明の実施形態に係るラジアルコンプレッサのケーシングの縦断面図である。 本発明の実施形態に係るラジアルコンプレッサのケーシングの熱変形の様子を模式的に示す縦断面図である。 対向面における各位置での熱変形による変位量を示すシミュレーション結果を示すグラフである。 ディフューザ部とインペラとが対向する対向面における各位置を示す模式図である。 本発明の実施形態の変形例に係るラジアルコンプレッサの全体上面図である。
 以下、本発明の実施形態におけるラジアルコンプレッサ1について説明する。
 ラジアルコンプレッサ1(以下、単にコンプレッサ1とする)は、例えば車両に搭載されるターボチャージャ用のコンプレッサである。
 図1及び図2に示すように、コンプレッサ1は、インペラ2と、インペラ2が嵌合することでインペラ2と一体で回転軸線Oを中心として回転する回転軸3と、インペラ2を覆うケーシング10とを備えている。
 次に、ケーシング10について説明する。
 図1から図3に示すように、ケーシング10は、インペラ2にガスG(例えば空気)を導入する吸気部11と、インペラ2から流出したガスGが流通してこのガスGを吐出する樹脂材を含むスクロール部12と、吸気部11とスクロール部12とを接続する複数のリブ13とを備えている。ケーシング10は、さらに、吸気部11の内側に配置された内筒部14と、吸気部11と内筒部14とを接続する複数の内部リブ15とを備えている。
 吸気部11は、インペラ2に対して回転軸線Oの方向の一方に配置されて回転軸線Oの方向に延び、回転軸線Oの方向に開口する円筒状をなしている。吸気部11は、インペラ2に向かって回転軸線Oの方向の一方からガスGを吸込み、インペラ2の流路(不図示)に向けてガスGを導入する。また、吸気部11の材料は、熱可塑性プラスチック等の樹脂(例えば、PPS(ポリフェニレンサルファイド)、PPA(ポリフタルアミド)、PA9T・PA46・PA6T(ポリアミド)、PBT(ポリブチレンテレフタレート)等)である。
 スクロール部12は、インペラ2及び吸気部11の外周側に配置されている。このスクロール部12は、インペラ2及び回転軸3の周方向に環状に延びるスクロール流路20を内部に有している。スクロール部12は、周方向の一方の端部に設けられて、スクロール流路20の開口部20aを形成する円筒状の吐出口21をさらに有している。
 ここで吐出口21側となるスクロール部12の周方向の一方側の端部をスクロール部12の吐出側とし、周方向の他方側の端部をスクロール部12の巻き始め側とする。吐出側の端部と巻き始め側の端部とは隣接している。
 スクロール流路20は、巻き始め側から吐出側に向かって、周方向に直交する断面での流路断面積が漸次拡大する。これによりスクロール部12は、巻き始め側から吐出側に向かって外形寸法が漸次拡大する。また、スクロール流路20の周方向に直交する断面での流路断面の形状は円形状をなしている。これによりスクロール部12における回転軸線Oの方向を向く面の外形形状はスクロール流路20の形状に沿って曲面状に形成されている。
 また、スクロール部12は、回転軸線Oの一方でスクロール流路20の内面を形成する第一本体部22と、回転軸線Oの他方でスクロール流路20の内面を形成する第二本体部23と、スクロール流路20の径方向内側の内面を形成するディフューザ部24と、ディフューザ部24と吸気部11との間に配置されたスリーブ25とをさらに備えている。
 第一本体部22は、回転軸線Oを中心とした環状をなしている。スクロール部12における回転軸線Oの方向の一方側の部分である第一本体部22は、吸気部11の外周面11bを外周から取り囲むように設けられている。また、第一本体部22は吸気部11と同様に樹脂製である。例えば、第一本体部22は、吸気部11と一体の樹脂の射出成形品となっていてもよいし、吸気部11と別体で製造されて吸気部11と接合されていてもよい。第一本体部22には、周方向の一方側の端部で吐出口21に接続されている。本実施形態では、第一本体部22と吐出口21とは一体で製造されている。
 具体的には、第一本体部22は、回転軸線Oを中心とした環状をなす環状部22aと、環状部22aの径方向外側の端部(外周端)で周方向にわたって、回転軸線Oの方向の一方へ回転軸線Oに沿って突出する凸部22bとを有している。また、第一本体部22は、環状部22aの径方向外側の端部(外周端)に設けられて、回転軸線Oの方向の他方を向く面22cと、この面22cから回転軸線Oの方向の一方へ周方向にわたって凹む凹部22dとをさらに有している。
 第二本体部23は回転軸線Oを中心とした環状をなす環状部23aと、環状部23aの径方向外側の端部(外周端)で周方向にわたって、回転軸線Oの方向の他方へ回転軸線Oに沿って突出する凸部23bとを有している。また、第二本体部23は、径方向外側の端部(外周端)に設けられて、回転軸線Oの方向の一方を向く面23cと、この面23cから回転軸線Oの方向の他方へ、周方向にわたって凹む凹部23dとをさらに有している。
 また第二本体部23は、吸気部11及び第一本体部22と同様に樹脂製である。そして第二本体部23は、第一本体部22に回転軸線Oの方向に対向して設けられている。本実施形態では第二本体部23は、第一本体部22とは別体で製造され、第一本体部22に接合されている。より詳しくは、第二本体部23の面23cと第一本体部22の面22cとが接触し、かつ、第二本体部23の凹部23dと第一本体部22の凹部22dとが径方向の同じ位置に配置されて凹部23dと凹部22dとが回転軸線Oの方向に対向している。凹部23dと凹部22dとで囲まれる空間には樹脂等が充填されて、第一本体部22と第二本体部23とが接合されている。
 ディフューザ部24は、回転軸線Oを中心とした環状をなしている。ディフューザ部24は、第二本体部23の径方向内側で、吸気部11とインペラ2とによって回転軸線O方向に挟まれる位置に配置されている。
 ディフューザ部24のインペラ2に対向する対向面24aは、インペラ2の翼端プロファイルに対応した形状に形成されている。この対向面24aとインペラ2との間の距離がチップクリアランスである。
 そして、ディフューザ部24の対向面24aよりも、第二本体部23における回転軸線Oの方向の他方の端部の方が、回転軸線Oのより他方に配置されている。これにより、スクロール流路20が径方向内側に環状に開口する開口部20bを有している。インペラ2から流出したガスGはこの開口部20bからスクロール流路20に流入する。
 ディフューザ部24は、本実施形態では第一本体部22及び第二本体部23とは別体で製造され、第一本体部22に回転軸線Oの方向の他方側から接合されている。
 スリーブ25は、ディフューザ部24と吸気部11とで回転軸線Oの方向に挟まれる位置に配置されている。スリーブ25は金属製である。またスリーブ25は回転軸線Oの方向に延びる筒状部26と、筒状部26における回転軸線Oの方向の他方側の端部に筒状部26と一体に設けられた鍔部27とを備えている。
 筒状部26は、回転軸線Oを中心とした円筒状をなしている。スリーブ25の表面は、ブラスト、レーザー、ローレット等の粗面化処理を行うことで粗面となっている。また、スリーブ25の内周面25aは、吸気部11の内周面11aとの間で段差が形成されないように、吸気部11の内周面11aと面一になっている。
 鍔部27は、回転軸線Oを中心とした環状をなしている。鍔部27は筒状部26の外周面から径方向外側に突出して設けられている。
 ここで第一本体部22における径方向内側に位置し、第一本体部22とディフューザ部24とで挟まれる領域には回転軸線Oを中心とした環状の隙間A2が設けられている。この隙間A2内に鍔部27が配置されている。そして鍔部27の回転軸線Oの方向の一方を向く面は第一本体部22に接触する接触面27aとなっている。この接触面27aについても粗面となっていてもよい。また、鍔部27の回転軸線Oの方向の他方を向く面はディフューザ部24と回転軸線Oの方向に離れた位置に配置されている。
 本実施形態のスクロール部12は、上記の隙間A2に充填された充填材30をさらに備えている。この充填材30により、第一本体部22とディフューザ部24とが互いに接合されている。
 次に、リブ13について説明する。
 複数のリブ13は、吸気部11の外周面11bと、第一本体部22における回転軸線Oの方向の一方を向く外面22eとを接続している。これらのリブ13は吸気部11及び第一本体部22と同様に樹脂製であって、例えば吸気部11及び第一本体部22と一体で成形される。
 これらのリブ13は、周方向に間隔をあけて、スクロール部12の周方向にわたって設けられている。リブ13の周方向の設置間隔は、巻き始め側から吐出側に向かって漸次小さくなっていく。またこれらのリブ13は、第一本体部22の外面22e上で径方向に延びており、リブ13の径方向の延在方向の全域で、外面22eに接続されている。
 また、第一本体部22の外面22e上でのリブ13の径方向の長さは、周方向に巻き始め側から吐出側に向かって漸次小さくなっている。
 またこれらリブ13は、吸気部11の外周面11b上で回転軸線Oの方向に延びており、リブ13の回転軸線Oの方向の延在方向の全域で、吸気部11の外周面11bに接続されている。全てのリブ13の吸気部11の外周面11b上での長さ寸法は同じである。
 内筒部14は、回転軸線Oを中心とした円筒状をなしており、内筒部14の内側をガスGが流通する。内筒部14の回転軸線Oの方向の一方側の端部は、吸気部11の回転軸線Oの方向の一方側の端部よりも、回転軸線Oの方向の他方に位置している。即ち、内筒部14は吸気部11の内周側に配置されて吸気部11に収容されている。内筒部14は吸気部11と同様に樹脂製である。内筒部14は例えば、吸気部11、第一本体部22、及びリブ13と一体で成形される。即ち、内筒部14によって吸気部11は二重管構造となっている。
 本実施形態では、内筒部14の外周面14aは吸気部11の内周面11aと径方向に離れた位置に配置されている。さらに、内筒部14の回転軸線Oの方向の他方側の端部は、ディフューザ部24における回転軸線Oの方向の一方側の端部と間隔をあけて設けられている。これにより、内筒部14とディフューザ部24との間には回転軸線Oを中心とした環状のスリットSLが形成されている。
 内部リブ15は、内筒部14の外周面14aと吸気部11の内周面11aとの間に、回転軸線Oの方向に延在して設けられている。また内部リブ15は、周方向に等間隔をあけて複数が設けられている。
 これにより、各内部リブ15同士の間には、回転軸線Oの方向の両側で、内筒部14の内側に連通する空間A1が画成されている。これら空間A1は、回転軸線Oの他方側でスリットSLを介して内筒部14の内側に連通している。またこれら空間A1は、回転軸線Oの一方側でも回転軸線Oの方向に開口し、内筒部14の内側に連通している。
 本実施形態では、スクロール部12がスリーブ25を備えるので、内部リブ15における回転軸線Oの方向の他方側の部分は、スリーブ25の内周面25aに接続され、内部リブ15における回転軸線Oの方向の一方側の部分は、吸気部11の内周面11aに接続されている。
 以上説明した本実施形態のコンプレッサ1では、上記のケーシング10に複数のリブ13が設けられていることで、吸気部11とスクロール部12とが接続される部分で剛性を向上でき、スクロール部12の熱変形を抑制することができる。これにより、インペラ2と、ディフューザ部24の対向面24aとの間のチップクリアランスの変動を抑えることができ、コンプレッサ1の性能低下を抑えることができる。
 さらに、スクロール部12では吐出側の方が巻き始め側よりも外形寸法が大きいため、同じ熱膨張率で熱変形すると、吐出側の方が巻き始め側よりも熱変形量が大きくなる。本実施形態では吐出側に向かってリブ13の設置間隔を小さくすることで、図4の紙面に向かって左側での二点鎖線で示すように、吐出側でスクロール部12の径方向への熱変形を促しつつ回転軸線Oの方向への熱変形を抑制できる。一方で、巻き始め側ではスクロール部12の第一本体部22の外面22e上でのリブ13の径方向の寸法が大きくなっているので、巻き始め側では吐出側と比較してスクロール部12の剛性が高くなる。よって、図4の紙面に向かって右側での二転鎖線に示すように巻き始め側のスクロール部12では回転軸線Oの方向、及び径方向に、比較的均一に熱変形が生じる。
 この結果、回転軸線Oの方向への熱変形量が巻き始め側より大きくなる吐出側と、回転軸線Oの方向への熱変形量が吐出側より小さくなる巻き始め側とで、回転軸線Oの方向への熱変形量とを同等にすることができる。即ち、インペラ2とケーシング10との間のチップクリアランスの変化を吐出側で低減できる。よってインペラ2とケーシング10との間のチップクリアランスを周方向に均一化することができる。よってコンプレッサ1の性能低下を抑えることができる。
 ここで図5のグラフの横軸は対向面24a上の基準位置A(図6参照)からの距離を示し、縦軸はインペラ2から離れる方向である法線方向への変位量を示す。この変位量は、図6に示す基準位置Aからの各距離の対向面24a上の位置B、C、D、及びEの各々の位置での周方向一周分の平均値である。基準位置Aは、対向面24a上での最も径方向の内側で、かつ回転軸線Oの方向の吸気部11側の位置である。また位置Eは、対向面24a上での最も径方向外側の位置である。位置Bは、基準位置Aと径方向に略同一の位置であって、基準位置Aよりも回転軸線Oの方向のインペラ2側の位置である。さらに、位置Bと位置Eとの間で、径方向内側に位置Cが、径方向外側に位置Dが位置している。
 図5によれば、仮にリブ13を設けない場合に比べ、本実施形態のようにリブ13を設けた場合の方が、対向面24aのインペラ2から離れる方向(図6のX方向)の変位量を、対向面24aの全体にわたって、より小さい値に抑えることができていることが確認できる。
 さらに、吐出側でスクロール部12の回転軸線Oの方向への熱変形量を抑制し、周方向でスクロール部12の回転軸線Oの方向への変形量及び変位量を均一化することで、吐出側でのスクロール部12の熱変形による吸気部11の回転軸線Oに対する傾きを抑制することができる。よってコンプレッサ1の性能低下を抑えることができる。
 また、内筒部14を設けて吸気部11を二重管構造とし、さらに吸気部11と内筒部14とを内部リブ15によって固定したことで、吸気部11の剛性を向上することができる。従って、吸気部11の熱変形をさらに抑制することができる。この結果、インペラ2とのチップクリアランスの変化を抑制でき、コンプレッサ1の性能低下を抑制することができる。
 また、吸気部11と内筒部14との間に空間A1が形成されることで、インペラ2から流出したガスGの一部をこの空間A1を介して吸気部11に戻し、内筒部14の内側を通じてインペラ2へ再度流入させることができる。すなわち、空間A1をガスGの再循環路として機能させることができる。このガスGの再循環によって、サージングの発生を抑制し、コンプレッサ1の運転範囲を拡大させることが可能となる。
 また、仮に内筒部14を設けずに吸気部11内にガスGが再循環する空間A1を形成しようとした場合には、狭い吸気部11内に工具を挿入しての加工が必要となるので、加工に手間を要する。しかし、本実施形態では内筒部14を設けて内筒部14と吸気部11とを内部リブ15によって接続したことで、容易に、内筒部14と吸気部との間であって、隣接する内部リブ15同士の間にガスGの再循環が可能な空間A1を形成することができる。
 また、吸気部11と第一本体部22とが樹脂製であることで、例えばこれらを一体で、射出成形等の手法を用いて成形することができる。よって製造の手間を省くことができ、コスト低減、製造時間の短縮が可能となる。
 さらに、金属製のスリーブ25を樹脂製の吸気部11の内周面11aに接触するように設けている。よって、例えば吸気部11と第一本体部22とを射出成形する際の金型に予めスリーブ25をインサートしておくインサート成形を行えば、射出成形時の冷却工程で、樹脂の収縮による吸気部11及び第一本体部22の変形を抑制することができる。よって、樹脂が収縮変形することでディフューザ部24の位置ずれが生じてしまうことがなくなるので、対向面24aに後加工等を行うことを不要としつつインペラ2とのチップクリアランスを設計値の通りに設定することができる。
 また仮にインペラ2が破損した際にも、金属製のスリーブ25によって破損したインペラ2の破片が第一本体部22を貫通して、コンプレッサ1の外に飛散してしまうことを抑制することができる。
 またスリーブ25の鍔部27を介して第一本体部22とディフューザ部24を固定しており、鍔部27は金属によって形成されているため熱変形しにくい。このため、より大きく熱変形する樹脂製の第一本体部22や吸気部11の熱変形につられて、ディフューザ部24のインペラ2に対する相対位置が変化してしまうことを抑制できる。従って、インペラ2とのチップクリアランスが変化してしまうことを抑制できる。よってラジアルコンプレッサ1の性能を維持することができる。
 さらに、スリーブ25の鍔部27の周囲の第一本体部22とディフューザ部24とで挟まれた領域である隙間A2に充填された充填材30によって、この隙間A2を通じてスクロール流路20内の高圧ガスGが吸気部11内に逆流してしまうことを抑制することができる。よってラジアルコンプレッサ1の性能を維持することができる。
 さらに、スリーブ25の表面が粗面となっていることでスリーブ25を吸気部11に対して所定の位置にしっかりと固定することができるため、コンプレッサ1の運転中のスリーブ25の位置ズレによる性能低下を抑制できる。
 また、第一本体部22及び第二本体部23が、凸部22b、23bを有することで、成形時の冷却工程で、第一本体部22及び第二本体部23が収縮しようとする際に、これら凸部22b、23bが樹脂成形金型100に引っ掛かる。このため、第一本体部22及び第二本体部23の径方向への収縮が抑制され、設計通りの寸法でケーシング10を製造することが可能となる。従って、コンプレッサ1の性能低下を抑制することができる。
 以上、本発明の実施形態について図面を参照して詳述したが、各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は実施形態によって限定されることはなく、請求の範囲によってのみ限定される。
 図7には本実施形態の変形例のコンプレッサ1のケーシング10Aを示す。
 本変形例では、ケーシング10Aは、上記の内筒部14と内部リブ15とを有していない。このようなケーシング10Aでも、上述のケーシング10と同様に、吸気部11とスクロール部12とを接続する複数のリブ13を設けたことで、ケーシング10Aのスクロール部12の熱変形による性能低下を抑制することが可能となる。
 また例えば、第二本体部23の材質は、第一本体部22よりも熱伝導率の高い材質であってもよい。即ち、第二本体部23をアルミ等の金属、炭素繊維、金属フィラーを含んだ複合材で形成してもよい。これにより、スクロール部12の熱を第二本体部23から回転軸線Oの他方に放熱できるため、第一本体部22の温度上昇を抑制でき、コンプレッサ1の性能向上につながる。
 また吸気部11の内側に内筒部14のみを設け、内部リブ15を設けなくてもよい。即ち、必ずしもガスGの再循環路となる空間A1を形成しなくてもよい。
 吸気部11は必ずしも樹脂製でなくともよく、少なくとも第一本体部22が樹脂製であればよい。
 また、スクロール部12は、第一本体部22、第二本体部23、及びディフューザ部24に分割されて形成されていなくともよい。またスリーブ25が設けられていなくともよい。
 スリーブ25には鍔部27は設けられていなくともよい。またスリーブ25の表面は必ずしも粗面となっていなくともよい。
 上記のラジアルコンプレッサのケーシング、及びラジアルコンプレッサによれば、スクロール部の熱変形による性能低下を抑制することが可能となる。
 1  ラジアルコンプレッサ
 2  インペラ
 3  回転軸
 10、10A  ケーシング
 11  吸気部
 11a  内周面
 11b  外周面
 12  スクロール部
 13  リブ
 14  内筒部
 14a  外周面
 15  内部リブ
 20  スクロール流路
 20a  開口部
 20b  開口部
 21  吐出口
 22  第一本体部
 22a  環状部
 22b  凸部
 22c  面
 22d  凹部
 22e  外面
 23  第二本体部
 23a  環状部
 23b  凸部
 23c 面
 23d  凹部
 24  ディフューザ部
 24a  対向面
 25  スリーブ
 25a  内周面
 26  筒状部
 27  鍔部
 27a  接触面
 30  充填材
 A1  空間
 A2  隙間
 SL  スリット
 O  回転軸線
 G  ガス

Claims (8)

  1.  インペラの回転軸線の方向に沿って延びて該回転軸線の方向に開口する筒状をなし、前記インペラにガスを導入する吸気部と、
     前記インペラ及び前記吸気部の外周側に配置されて周方向に沿って延び、該周方向に開口する吐出口、及び該吐出口に向かって前記インペラからの前記ガスが流通するスクロール流路を有し、外形寸法が漸次拡大する樹脂材を含むスクロール部と、
     前記吸気部の外周面とスクロール部の外面とを接続する複数のリブと、
     を備え、
     前記複数のリブは前記周方向に間隔をあけて設けられ、前記周方向に前記吐出口に向かうに従って、設置間隔が漸次小さくなり、かつ、前記スクロール部の外面上での径方向の長さ寸法が漸次小さくなるラジアルコンプレッサのケーシング。
  2.  前記吸気部の内周側に配置されて、内側を前記ガスが流通する筒状をなす内筒部と、
     前記吸気部の内周面と前記内筒部とを接続する内部リブと、
     をさらに備える請求項1に記載のラジアルコンプレッサのケーシング。
  3.  前記吸気部と前記内筒部との間には、該内筒部における前記回転軸線の方向の両側で前記内筒部の内側に連通する空間が画成されている請求項2に記載のラジアルコンプレッサのケーシング。
  4.  前記吸気部は樹脂製であり、
     前記スクロール部は、
     前記回転軸線の方向の一方で前記スクロール流路の内面を形成する樹脂製の第一本体部と、
     前記第一本体部に前記回転軸線の方向で対向し、該回転軸線の方向の他方で前記スクロール流路の内面を形成する第二本体部と、
     前記第二本体部の径方向内側で前記吸気部と前記インペラとで前記回転軸線の方向に挟まれる位置に配置され、前記スクロール流路の径方向内側の内面を形成し、前記ガスを前記インペラから前記スクロール流路内に導くディフューザ部と、
     前記ディフューザ部と前記吸気部とで前記回転軸線の方向に挟まれる位置に配置され、前記吸気部の内面に接触する筒状をなす金属製のスリーブと、
     を備える請求項1から3のいずれか一項に記載のラジアルコンプレッサのケーシング。
  5.  前記スリーブは、
     前記回転軸線の方向に延びる筒状部と、
     前記筒状部における他方側の端部で径方向外側に環状に突出し、前記回転軸線の方向に前記第一本体部と前記ディフューザ部とで挟まれる領域内に配置されて、前記回転軸線の方向の一方を向く面が前記第一本体部に接触する鍔部と、
     を備え、
     前記スクロール部は、前記鍔部が配置された前記領域内に充填された充填材をさらに備える請求項4に記載のラジアルコンプレッサのケーシング。
  6.  前記スリーブの表面は、粗面となっている請求項4又は5に記載のラジアルコンプレッサのケーシング。
  7.  前記第二本体部の材質は、前記第一本体部の材質よりも熱伝導率の高い材質である請求項4から6のいずれか一項に記載のラジアルコンプレッサのケーシング。
  8.  インペラと、
     前記インペラが嵌合して該インペラとともに回転する回転軸と、
     前記インペラを覆う請求項1から7のいずれか一項に記載のケーシングと、
     を備えるラジアルコンプレッサ。
PCT/JP2016/061642 2016-03-31 2016-03-31 ラジアルコンプレッサのケーシング、及びラジアルコンプレッサ WO2017168767A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680084108.0A CN109154306B (zh) 2016-03-31 2016-03-31 径向压缩机的壳体及径向压缩机
JP2018508349A JP6748706B2 (ja) 2016-03-31 2016-03-31 ラジアルコンプレッサのケーシング、及びラジアルコンプレッサ
EP16896984.8A EP3421813B1 (en) 2016-03-31 2016-03-31 Casing for radial compressor, and radial compressor
PCT/JP2016/061642 WO2017168767A1 (ja) 2016-03-31 2016-03-31 ラジアルコンプレッサのケーシング、及びラジアルコンプレッサ
US16/088,522 US10746052B2 (en) 2016-03-31 2016-03-31 Casing for radial compressor, and radial compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/061642 WO2017168767A1 (ja) 2016-03-31 2016-03-31 ラジアルコンプレッサのケーシング、及びラジアルコンプレッサ

Publications (1)

Publication Number Publication Date
WO2017168767A1 true WO2017168767A1 (ja) 2017-10-05

Family

ID=59963861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061642 WO2017168767A1 (ja) 2016-03-31 2016-03-31 ラジアルコンプレッサのケーシング、及びラジアルコンプレッサ

Country Status (5)

Country Link
US (1) US10746052B2 (ja)
EP (1) EP3421813B1 (ja)
JP (1) JP6748706B2 (ja)
CN (1) CN109154306B (ja)
WO (1) WO2017168767A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020170344A1 (ja) * 2019-02-20 2020-08-27 三菱重工エンジン&ターボチャージャ株式会社 ラジアルコンプレッサのケーシング、及びラジアルコンプレッサ
JPWO2021038737A1 (ja) * 2019-08-28 2021-03-04
WO2022270485A1 (ja) * 2021-06-24 2022-12-29 三菱重工エンジン&ターボチャージャ株式会社 回転機械のケーシング、回転機械および回転機械のケーシングの製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007046610A (ja) * 2005-08-05 2007-02-22 Crf Scpa 自動車等のための流体圧縮用多段モータ−コンプレッサ
JP2011503439A (ja) * 2007-11-20 2011-01-27 マン ウント フンメル ゲゼルシャフト ミット ベシュレンクテル ハフツング ラジアルコンプレッサのハウジング
US20130094953A1 (en) * 2011-10-12 2013-04-18 Honeywell International Inc. Variable thickness and variable radius structural rib support for scrolls and torus

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5256033A (en) 1990-11-25 1993-10-26 Ebara Corporation Sheet metal interstage casing for a pump
US6193463B1 (en) * 1999-06-30 2001-02-27 Alliedsignal, Inc. Die cast compressor housing for centrifugal compressors with a true volute shape
US7001148B2 (en) * 2002-12-19 2006-02-21 Honeywell International Inc. Replaceable insert for centrifugal blower flow control
DE102004027594B4 (de) 2004-06-05 2006-06-29 Man B & W Diesel Ag Strömungsmaschine mit radial durchströmtem Verdichterrad
JP2006084794A (ja) 2004-09-16 2006-03-30 Olympus Corp 焦点位置制御機構付き観察装置
DE102007009781B4 (de) 2007-02-27 2009-09-17 Woco Industrietechnik Gmbh Kunststoffverdichtergehäuse sowie Verfahren zu dessen Herstellung
DE102007027282B3 (de) * 2007-06-11 2008-11-13 Woco Industrietechnik Gmbh Kunststoffverdichtergehäuse und Verfahren zur Herstellung eines Kunststoffverdichtergehäuses
US8272832B2 (en) * 2008-04-17 2012-09-25 Honeywell International Inc. Centrifugal compressor with surge control, and associated method
DE102008056512B4 (de) * 2008-11-08 2016-07-21 Man Diesel & Turbo Se Verdichtergehäuse einer Strömungsmaschine mit schneckenförmigem Strömungskanal
WO2010122026A1 (en) 2009-04-22 2010-10-28 Dsm Ip Assets B.V. Plastic housing of a radial flow compressor
CN104019058B (zh) * 2014-06-27 2016-03-09 哈尔滨工程大学 可变几何尺寸的离心式压气机机匣引气再循环结构
US20170276142A1 (en) * 2016-03-24 2017-09-28 Gregory Graham Clearance reducing system, appratus and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007046610A (ja) * 2005-08-05 2007-02-22 Crf Scpa 自動車等のための流体圧縮用多段モータ−コンプレッサ
JP2011503439A (ja) * 2007-11-20 2011-01-27 マン ウント フンメル ゲゼルシャフト ミット ベシュレンクテル ハフツング ラジアルコンプレッサのハウジング
US20130094953A1 (en) * 2011-10-12 2013-04-18 Honeywell International Inc. Variable thickness and variable radius structural rib support for scrolls and torus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020170344A1 (ja) * 2019-02-20 2020-08-27 三菱重工エンジン&ターボチャージャ株式会社 ラジアルコンプレッサのケーシング、及びラジアルコンプレッサ
JPWO2020170344A1 (ja) * 2019-02-20 2021-11-25 三菱重工エンジン&ターボチャージャ株式会社 ラジアルコンプレッサのケーシング、及びラジアルコンプレッサ
JP7154372B2 (ja) 2019-02-20 2022-10-17 三菱重工エンジン&ターボチャージャ株式会社 ラジアルコンプレッサのケーシング、及びラジアルコンプレッサ
JPWO2021038737A1 (ja) * 2019-08-28 2021-03-04
WO2021038737A1 (ja) * 2019-08-28 2021-03-04 三菱重工エンジン&ターボチャージャ株式会社 コンプレッサハウジング、過給機およびコンプレッサハウジングの製造方法
WO2022270485A1 (ja) * 2021-06-24 2022-12-29 三菱重工エンジン&ターボチャージャ株式会社 回転機械のケーシング、回転機械および回転機械のケーシングの製造方法

Also Published As

Publication number Publication date
CN109154306B (zh) 2021-01-26
EP3421813B1 (en) 2020-09-09
JPWO2017168767A1 (ja) 2019-01-31
US20200123931A1 (en) 2020-04-23
JP6748706B2 (ja) 2020-09-02
EP3421813A4 (en) 2019-03-06
US10746052B2 (en) 2020-08-18
EP3421813A1 (en) 2019-01-02
CN109154306A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
US8317468B2 (en) Flow-routing component of a pump
US20180140145A1 (en) Blower and vacuum cleaner
US20160265543A1 (en) Centrifugal blowing fan
WO2017168767A1 (ja) ラジアルコンプレッサのケーシング、及びラジアルコンプレッサ
US8172524B2 (en) Fan including specific stationary vane arrangement
EP3015716A1 (en) Compressor structure for turbochargers
JP6001707B2 (ja) 過給機用のコンプレッサハウジング
US9624945B2 (en) Circulation pump
US20160305435A1 (en) Centrifugal multiblade blower
EP2800905B1 (en) Azimuthal alignment of three parts of a compressor volute
US10641280B2 (en) Turbo fan and air conditioner including same
WO2017168768A1 (ja) ラジアルコンプレッサのケーシングの製造方法、及びラジアルコンプレッサの製造方法
WO2016136681A1 (ja) 過給機用のコンプレッサハウジング及びその製造方法
US20170350411A1 (en) Air blower
JP2015068172A (ja) 過給機用のコンプレッサハウジング及びその製造方法
JP6883247B2 (ja) ターボチャージャ
US6443691B1 (en) Feed pump
JP7154372B2 (ja) ラジアルコンプレッサのケーシング、及びラジアルコンプレッサ
JP6531173B2 (ja) スクロール式流体機械
JP7429320B2 (ja) 送風装置
KR200235520Y1 (ko) 고속모터의 케이싱 구조
JP6398740B2 (ja) 送風機
JP6848890B2 (ja) ターボチャージャ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018508349

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2016896984

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016896984

Country of ref document: EP

Effective date: 20180927

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16896984

Country of ref document: EP

Kind code of ref document: A1