US8172524B2 - Fan including specific stationary vane arrangement - Google Patents
Fan including specific stationary vane arrangement Download PDFInfo
- Publication number
- US8172524B2 US8172524B2 US11/936,238 US93623807A US8172524B2 US 8172524 B2 US8172524 B2 US 8172524B2 US 93623807 A US93623807 A US 93623807A US 8172524 B2 US8172524 B2 US 8172524B2
- Authority
- US
- United States
- Prior art keywords
- stationary
- vanes
- vane
- radial direction
- rotating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- 230000007423 decrease Effects 0.000 claims description 12
- 238000007599 discharging Methods 0.000 claims description 8
- 230000002093 peripheral effect Effects 0.000 claims description 6
- 230000009467 reduction Effects 0.000 description 6
- 230000003068 static effect Effects 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000004323 axial length Effects 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D25/00—Pumping installations or systems
- F04D25/02—Units comprising pumps and their driving means
- F04D25/06—Units comprising pumps and their driving means the pump being electrically driven
- F04D25/0606—Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
- F04D25/0613—Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump the electric motor being of the inside-out type, i.e. the rotor is arranged radially outside a central stator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/52—Casings; Connections of working fluid for axial pumps
- F04D29/54—Fluid-guiding means, e.g. diffusers
- F04D29/541—Specially adapted for elastic fluid pumps
- F04D29/542—Bladed diffusers
- F04D29/544—Blade shapes
Definitions
- the present invention relates to a fan.
- Performance of electronic devices has been improved more and more, and therefore the amount of heat generated inside a casing of the electronic devices has been increasing rapidly.
- Fans have been used in order to reduce the temperature rise in electronic components of the electronic devices.
- fans are required to provide a large air flow amount and a high static pressure.
- fans have to provide a desired flow rate distribution in addition to the characteristics required in the case (a).
- the flow rate distribution is a distribution of a flow rate of an air flow discharged from an air outlet of a fan. Quietness is also important in both cases.
- fans must have the strength designed in accordance with their operating environment, for example.
- some fans are provided with stationary vanes at their air outlets.
- ribs are provided between an outer casing and a motor supporting portion such that an axial height of the ribs decreases as they move outwardly in a radial direction of an impeller (see Japanese Patent Unexamined Publication No. 2006-17117, for example).
- a noise is caused by interference of an air flow from the impeller with the stationary vanes. That is, measures against the interference noise are required. More specifically, the flow amount of the air flow from the impeller tends to increase from inner ends to outer ends of rotating vanes of the impeller in the radial direction of the impeller. Thus, the interference noise also tends to increase outwardly in the radial direction.
- the measures against the interference noise should be taken considering the above. In addition, the strength of the stationary vanes should be also taken into consideration.
- a fan includes: an impeller rotatable about a rotation axis, having a plurality of rotating vanes, and taking air in and discharging the air in an axial direction substantially parallel to the axis by rotation thereof; a motor rotating the impeller; an outer casing having an inner peripheral surface which surrounds the impeller; a supporting body arranged substantially at a center inside the outer casing and supporting the motor; and a plurality of stationary vanes radially arranged about the axis to axially face the rotating vanes and connecting the outer casing to the supporting body.
- each stationary vane in a radial direction substantially perpendicular to the rotation axis an axial distance thereof from one of the rotating vanes closest thereto and a slant angle thereof with respect to the axial direction increase as that stationary vane moves outwardly in the radial direction.
- a fan includes: an impeller rotatable about a rotation axis, having a plurality of rotating vanes, and taking air in and discharging the air in an axial direction substantially parallel to the rotation axis by rotation thereof; a motor rotating the impeller; an outer casing accommodating the impeller; a supporting body arranged inside the outer casing and supporting the motor; and a plurality of stationary vanes radially arranged about the rotation axis to axially face the rotating vanes and connecting the outer casing to the supporting body.
- a fan includes: an impeller rotatable about a rotation axis, having a plurality of rotating vanes, and taking air in and discharging the air in an axial direction substantially parallel to the rotation axis by rotation thereof; a motor rotating the impeller; an outer casing accommodating the impeller; a supporting body arranged inside the outer casing and supporting the motor; and a plurality of stationary vanes radially arranged about the rotation axis to axially face the rotating vanes and connecting the outer casing to the supporting body.
- a fan includes: an impeller rotatable about a rotation axis, having a plurality of rotating vanes, and taking air in and discharging the air in an axial direction substantially parallel to the rotation axis by rotation thereof; a motor rotating the impeller; an outer casing accommodating the impeller; a supporting body arranged inside the outer casing and supporting the motor; and a plurality of stationary vanes radially arranged about the rotation axis to axially face the rotating vanes and connecting the outer casing to the supporting body.
- An axial distance of each stationary vane from one of the rotating vanes closest thereto and a slant angle thereof with respect to the axial direction are larger at an outer end thereof than at an approximate middle thereof in the radial direction.
- FIG. 1 is a cross-sectional view of a fan according to a preferred embodiment of the present invention.
- FIG. 2 shows cross sections of a stationary vane of the fan of FIG. 1 at a plurality of positions.
- FIG. 3 shows a first variant of the stationary vanes of the fan of the preferred embodiment of the present invention.
- FIG. 4 shows a second variant of the stationary vanes of the fan of the preferred embodiment of the present invention.
- FIG. 5 shows a third variant of the stationary vanes of the fan of the preferred embodiment of the present invention.
- FIG. 6 shows a fourth variant of the stationary vanes of the fan of the preferred embodiment of the present invention.
- FIG. 7 shows a fifth variant of the stationary vanes of the fan of the preferred embodiment of the present invention.
- FIG. 8 shows a sixth variant of the stationary vanes of the fan of the preferred embodiment of the present invention.
- FIG. 9 shows a variant of a structure for connecting the stationary vanes to an outer casing of the fan of FIG. 1 .
- FIGS. 1 through 9 preferred embodiments of the present invention will be described in detail. It should be noted that in the explanation of the present invention, when positional relationships among and orientations of the different components are described as being up/down or left/right, ultimately positional relationships and orientations that are in the drawings are indicated; positional relationships among and orientations of the components once having been assembled into an actual device are not indicated. Meanwhile, in the following description, an axial direction indicates a direction parallel to a rotation axis, and a radial direction indicates a direction perpendicular to the rotation axis.
- FIG. 1 is a cross-sectional view of a fan according to a preferred embodiment of the present invention.
- FIG. 2 shows cross sections of a stationary vane of the fan of FIG. 1 at a plurality of positions.
- cross sections A 1 , B 1 , and C 1 of a stationary vane 17 correspond to positions A, B, and C in FIG. 1 , respectively.
- the fan 11 includes an impeller 12 centered on a rotation axis L, a motor 13 , a circuit board 14 , an outer casing 15 , a supporting body 16 , a plurality of stationary vanes 17 , and a plurality of wires 18 .
- the outer casing 15 , the supporting body 16 , and the stationary vanes 17 are preferably integrally formed from the same material into one component.
- the outer casing 15 , the supporting body 16 , and the stationary vanes 17 are formed by integrally molded resin.
- the impeller 12 includes a plurality of rotating vanes 12 a .
- the outer casing 15 is provided to surround the impeller 12 at least in a radial direction perpendicular to or substantially perpendicular to the rotation axis L.
- the supporting body 16 is arranged inside the outer casing 15 and supports the motor 13 and the circuit board 14 .
- Each of the stationary vanes 17 extends radially outwardly from the supporting body 16 and has a vane-like shape, e.g., a curved shape in cross section perpendicular to an extending direction of that stationary vane 17 . More specifically, the cross section of each stationary vane 17 slants with respect to the axial direction toward a direction opposite to a slant direction of the rotating vanes 12 a of the impeller 12 and is curved such that its concave surface faces the upstream side in a rotating direction of the rotating vanes 12 a . With the stationary vanes 17 having such a cross-sectional shape, an air flow generated by rotation of the impeller 12 can be collected toward the rotation axis precisely and efficiently.
- a vane-like shape e.g., a curved shape in cross section perpendicular to an extending direction of that stationary vane 17 . More specifically, the cross section of each stationary vane 17 slants with respect to the axial direction toward a direction opposite to a slant
- the stationary vanes 17 are arranged on the downstream side of the impeller 12 in a direction of the air flow, i.e., on an air-outlet side of the impeller 12 in order to efficiently collect the air flow generated by rotation of the impeller 12 .
- the stationary vanes 17 may be arranged on the upstream side of the impeller 12 .
- the inner peripheral surface of the outer casing 15 is provided with flare portions 15 a and 15 b adjacent to the upstream side opening and the downstream side opening of the fan 11 , respectively.
- the flare portion 15 a or 15 b flares radially outwardly such that the inner diameter thereof increases toward the opening adjacent thereto.
- Radially outer ends of the stationary vanes 17 are connected to the flare portion 15 b of the inner peripheral surface of the outer casing 15 .
- the motor 13 includes a rotor magnet 21 attached to the inner peripheral surface of the impeller 12 , and an armature 22 which generates a torque between the rotor magnet 21 and the armature 22 .
- the motor 13 is accommodated in a motor cap 23 arranged at or around the radial center of the impeller 12 .
- the circuit board 14 has a control circuit for controlling rotation of the motor 13 .
- an axial distance S between each stationary vane 17 and one of the rotating vanes 12 a which is axially closest to that stationary vane 17 and a slant angle ⁇ of each stationary vane 17 with respect to the axial direction both increase as the stationary vane 17 moves outwardly in the radial direction, at least in a portion of the stationary vane 17 in the radial direction.
- both the axial distance S from a rotating vane 12 a closest thereto and the slant angle ⁇ thereof with respect to the axial direction increase as the stationary vane 17 moves outwardly in the radial direction.
- the radially outward increase in the axial distance S between each stationary vane 17 and the rotating vane 12 a closest thereto is achieved mainly by reducing an axial height H of an edge 17 a of each stationary vane 17 , which faces the closest rotating vane 12 a , from a predetermined reference plane V as the stationary vane 17 moves radially outwardly.
- the reference plane V intersects the rotation axis L of the impeller 12 substantially perpendicularly thereto, and preferably extends along an air-outlet side end of the outer casing 15 .
- edges 12 aa of the rotating vanes 12 a which face the stationary vanes 17 , are aligned in the radial direction in parallel to or approximately parallel to the reference plane V.
- the axial height H of the rotating-vane-side edge 17 a of each stationary vane 17 is reduced as it moves outwardly in the radial direction, the axial distance S between that stationary vane 17 and the rotating vane 12 a closest thereto increases as it moves outwardly in the radial direction.
- a ratio of reduction in the axial height H of the rotating-vane-side edge 17 a of each stationary vane 17 is adjusted in accordance with a ratio of a change in the axial height of the stationary-vane-side edge 12 aa of the rotating vanes 12 a from the reference plane V with respect to the radial direction (i.e., slant of the stationary-vane-side edge 12 aa ), for example.
- the interference noise i.e., the noise caused by interference of an air flow with the stationary vanes 17 tends to become louder as the axial distance S between each stationary vane 17 and the rotating vane 12 a closest thereto becomes smaller. Therefore, in this preferred embodiment, the axial distance S is increased in the substantially entire portion of each stationary vane 17 as the stationary vane 17 moves outwardly in the radial direction. With this arrangement, an air flow sent from the rotating vanes 12 a can more easily pass between the stationary vanes 17 and the rotating vanes 12 a in a radially outer region of the fan 11 , because the amount of the air flow is larger in the radially outer region of the fan 11 . In this manner, the interference noise can be reduced.
- each stationary vane 17 in the radial direction the slant angle ⁇ of thereof with respect to the axial direction increases as it moves radially outwardly.
- increase in the axial distance S between that stationary vane 17 and the rotating vane 12 a closest thereto can be achieved while a required cross-sectional area of each stationary vane 17 for providing the desired strength of the stationary vane 17 is ensured. That is, it is possible to ensure the required strength of the stationary vanes 17 and reduce the interference noise simultaneously.
- each stationary vane 17 in the radial direction the axial height H of the rotating-vane-side edge 17 a of the stationary vane 17 from the reference plane V decreases as it moves radially outwardly. Therefore, the axial length S between each stationary vane 17 and the rotating vane 12 a closest thereto can be increased as it moves radially outwardly, without requiring a special shape of the rotating vanes 12 a . Accordingly, it is unnecessary to reduce an axial height of the impeller 12 , for example. In this preferred embodiment, it is possible to reduce the interference noise while the performance of the impeller 12 is not changed.
- each stationary vane 17 since the slant angle ⁇ of each stationary vane 17 is increased as it moves radially outwardly, the adjustment of the axial distance S between each stationary vane 17 and the rotating vane 12 a closest thereto can be achieved only by changing the structure of the stationary vanes 17 . This also contributes to reduction in the interference noise without lowering the performance of the impeller 12 .
- each stationary vane 17 Since the slant angle ⁇ of each stationary vane 17 is increased as it moves radially outwardly, an occupied area of the stationary vane 17 when the stationary vane 17 is viewed along the axial direction also increases. Thus, it is possible to prevent a reverse air flow, improving the static pressure characteristics of the fan 11 .
- FIG. 3 shows the first variant of the stationary vanes.
- cross sections A 2 , B 2 , and C 2 of each stationary vane 17 are obtained by cutting the stationary vane 17 at positions A, B, and C in FIG. 1 , respectively.
- the thickness T of the cross section of the stationary vane 17 is also increased, as the stationary vane 17 moves radially outwardly.
- the thickness T of the stationary vane 17 means an average thickness of the cross section of that stationary vane 17 when that stationary vane 17 is cut by a plane parallel to the axial direction and perpendicular or substantially perpendicular to the extending direction of that stationary vane 17 .
- FIG. 4 is the second variant of the stationary vanes.
- cross sections A 3 , B 3 , and C 3 of each stationary vane 17 are obtained by cutting the stationary vane 17 at positions A, B, and C in FIG. 1 , respectively.
- each stationary vane 17 in the radial direction in the substantially entire portion of each stationary vane 17 in the radial direction, as it moves radially outwardly, the axial height H of the rotating-side-vane edge 17 a of the stationary vane 17 from the reference plane V is reduced thereby increasing the axial distance S between the stationary vane 17 and the rotating vane 12 a closest thereto.
- the slant angle ⁇ of the stationary vane 17 is also increased as the stationary vane 17 moves radially outwardly.
- the thickness T (average thickness) of the stationary vane 17 is increased as it moves radially outwardly, and the area of the cross section of the stationary vane 17 when the stationary vane 17 is cut by a plane parallel to the axial direction and perpendicular to its extending direction is constant or approximately constant or increased as it moves radially outwardly.
- the cross-sectional area of each stationary vane 17 is increased as it moves radially outwardly.
- FIG. 5 shows the third variant of the structure of the stationary vanes 17 .
- one or more measures against the interference noise e.g., reducing the axial height H of the stationary vanes 17 as it moves radially outwardly are taken only in a portion of the stationary vanes 17 in the radial direction.
- the measures against the interference noise shown in FIGS. 2 to 4 are not taken.
- the axial height H of each stationary vane 17 and the cross-sectional shape thereof are designed to be approximately constant in the portion P 1 .
- at least one of the measures against the interference noise shown in FIGS. 2 to 4 is taken.
- each stationary vane 17 the axial height H of the rotating-vane-side edge 17 a is reduced as it moves radially outwardly.
- the slant angle ⁇ of that stationary vane 17 is increased as it moves radially outwardly, as described referring to FIGS. 2 to 4 .
- the stationary vane 17 has the cross-sectional shape A 1 shown in FIG. 2 at a position D in the portion P 1 .
- the stationary vane 17 is designed to have the cross-sectional shape B 1 or C 1 at a position E in the portion P 2 . If the stationary vane 17 has the cross-sectional shape A 2 shown in FIG.
- the stationary vane 17 is designed to have the cross-sectional shape B 2 or C 2 at the position E. If the stationary vane 17 has the cross-sectional shape A 3 shown in FIG. 4 at the position D, the stationary vane 17 is designed to have the cross-sectional shape B 3 or C 3 at the position E.
- the measure against the interference noise is taken in the portion P 2 located radially outside the approximately middle of the stationary vane 17 in which the amount of the air flow increases. Therefore, an effect of the measure against the interference noise is large.
- FIG. 6 shows the fourth variant of the structure of the stationary vanes 17 in the fan 11 shown in FIGS. 1 and 2 .
- the amount of an air flow from the rotating vanes 12 a is small. Therefore, the axial height H of the rotating-vane-side edge 17 a of each stationary vane 17 can be made lower in the portion P 1 a than in other portions radially outside the portion P 1 a .
- FIG. 6 shows the fourth variant of the structure of the stationary vanes 17 in the fan 11 shown in FIGS. 1 and 2 .
- the axial height H of the rotating-vane-side edge 17 a of the stationary vane 17 is small in the portion P 1 a which extends from the radially inner end of the stationary vane 17 and is located radially inside the approximately middle thereof as if a rotating-vane-side edge 17 a is cut out.
- the axial height H of the rotating-vane-side edge 17 a is larger than that in the portion P 1 a and is approximately constant in the radial direction.
- the cross-sectional shape of the stationary vane 17 when the stationary vane 17 is cut by a plane parallel to the axial direction and perpendicular to the extending direction of that stationary vane 17 , is also approximately constant in the radial direction.
- a portion P 2 located radially outside the portion P 1 b i.e., from the approximately middle to the radially outer end of the stationary vane 17 .
- at least one of the aforementioned measures against the interference noise e.g., reducing in the axial height H of the stationary vane 17 as it moves radially outwardly, is taken.
- the cross-sectional shapes of the stationary vane 17 at the position D in the portion P 1 b and the position E in the portion P 2 are approximately the same as those in the example shown in FIG. 5 .
- FIG. 7 shows the fifth variant of the structure of the stationary vanes 17 in the fan 11 shown in FIGS. 1 and 2 .
- the axial width W of each stationary vane 17 can be made substantially constant in the radial direction, as long as the axial distance S between that stationary vane 17 and the rotating vane 12 a closest thereto is increased or the axial height H of the rotating-vane-side edge 17 a of that stationary vane 17 from the reference plane V is reduced as it moves radially outwardly.
- the cross-sectional shapes of the stationary vane 17 at the positions A, B, and C are approximately the same as any one of those shown in FIGS. 2 , 3 , and 4 .
- FIG. 8 shows the sixth variant of the structure of the stationary vanes 17 in the fan 11 shown in FIGS. 1 and 2 .
- a portion P 3 located radially outside the approximately middle of each stationary vane 17 e.g., a portion P 3 located adjacent to the radially outer end of the stationary vane 17 is considered.
- the structure contradicting the aforementioned measures against the interference noise can be used.
- the axial height H of the rotating-vane-side edge 17 a can be constant in the radial direction or increased as it moves radially outwardly only in the portion P 3 .
- FIG. 9 shows a variant of a connecting structure between the stationary vanes 17 and the outer casing 15 in the fan 11 shown in FIGS. 1 and 2 .
- a portion 15 c of the inner peripheral surface of the outer casing 15 which defines an opening of the fan 11 and to which the radially outer ends of the stationary vanes 17 are connected, may be designed to be substantially parallel to the axial direction. That is, the flare portion 15 b in the example of FIGS. 1 and 2 may be omitted.
- This structure has the following advantage, for example. When the outer casing 15 and the stationary vanes 17 are molded into one component, a mold assembly is axially separated into mold pieces.
- an unnecessary thick portion is not formed at the connection between the stationary vanes 17 and the outer casing 15 .
- the unnecessary thick portion may interfere with the air flow and cause an interference noise. Accordingly, it is desirable that no unnecessary thick portion is formed at the connection between the stationary vanes 17 and the outer casing 15 .
- an axial distance between the stationary vane and a rotating vane closest thereto increases as the stationary vane moves radially outwardly. Therefore, an air flow can more easily pass through that portion of the stationary vane and the closest rotating vane, as the stationary vane moves radially outwardly. This contributes to reduction in an interference noise between the air flow and the stationary vane.
- a slant angle thereof with respect to the axial direction increases as the stationary vane moves radially outwardly. Therefore, the axial distance between the stationary vane and the closest rotating vane can be enlarged while the required cross-sectional area of the stationary vane for obtaining the desired strength of the stationary vane is ensured. Thus, it is possible to reduce the interference noise and ensure the desired strength of the stationary vane at the same time.
- the axial distance between the stationary vane and the closest rotating vane can be adjusted only by changing the structure of the stationary vane. Due to this, it is unnecessary to change the axial dimension of an impeller, for example. Thus, the performance of the impeller does not have to be changed.
- increasing the slant angle of the stationary angle can improve static pressure characteristics of a fan.
- each stationary portion of each stationary portion includes a portion radially outside an approximate middle of thereof in the radial direction
- the interference noise between the stationary vane and the air flow can be reduced in a region of the fan radially outside the approximate middle of each stationary vane where the interference noise is large.
- this arrangement is advantageous for reducing the interference noise.
- the cross-sectional area of the stationary vane when it is cut by a plane parallel to the axial direction and perpendicular to the extending direction thereof may be constant or increased at least in the portion described above, as the stationary vane moves radially outwardly. In this case, the required strength of the stationary vane can be kept and reduction in the interference noise between the stationary vane and the air flow can be achieved.
- the thickness thereof may be made larger. In this case, it is possible to keep the required strength of the stationary vane while the interference noise is reduced.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Geometry (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
- (a) To discharge hot air inside a casing of electronic devices to the outside.
- (b) To supply an air flow directly to an electronic component which generates heats, thereby reducing the temperature rise of it.
Claims (12)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006310609A JP2008128008A (en) | 2006-11-16 | 2006-11-16 | Fan device |
JP2006-310609 | 2006-11-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20080118379A1 US20080118379A1 (en) | 2008-05-22 |
US8172524B2 true US8172524B2 (en) | 2012-05-08 |
Family
ID=39417136
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/936,238 Expired - Fee Related US8172524B2 (en) | 2006-11-16 | 2007-11-07 | Fan including specific stationary vane arrangement |
Country Status (2)
Country | Link |
---|---|
US (1) | US8172524B2 (en) |
JP (1) | JP2008128008A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180372117A1 (en) * | 2017-06-26 | 2018-12-27 | Delta Electronics, Inc. | Fan frame |
US11480196B2 (en) * | 2017-11-16 | 2022-10-25 | Nidec Corporation | Axial fan |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5233408B2 (en) * | 2008-05-26 | 2013-07-10 | 日本電産株式会社 | Rotor holder and balance adjustment method in manufacturing the same |
WO2011106658A1 (en) * | 2010-02-26 | 2011-09-01 | Robert Bosch Gmbh | Free-tipped axial fan assembly |
EP2547910B1 (en) * | 2010-03-15 | 2018-05-16 | Ebm-Papst St. Georgen GmbH & CO. KG | Outer rotor motor fan with integrated bearing cartridge and cabinet for control electronics |
US8696305B2 (en) * | 2011-06-01 | 2014-04-15 | Deere & Company | Axial fan assembly |
TWI504809B (en) * | 2012-04-20 | 2015-10-21 | Delta Electronics Inc | Axial fan |
JP2013224627A (en) * | 2012-04-23 | 2013-10-31 | Mitsubishi Electric Corp | Axial flow fan |
CN108716473B (en) * | 2018-03-02 | 2020-12-29 | 青岛海信日立空调系统有限公司 | Axial fan and air conditioner outdoor unit |
DE102019110934A1 (en) * | 2019-04-29 | 2020-10-29 | Ebm-Papst Mulfingen Gmbh & Co. Kg | Guide device for an axial fan |
JP7235996B2 (en) * | 2021-07-05 | 2023-03-09 | ダイキン工業株式会社 | Blower and air conditioning system provided with the same |
JP2023015576A (en) | 2021-07-20 | 2023-02-01 | 山洋電気株式会社 | Axial flow fan |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2524869A (en) * | 1945-01-19 | 1950-10-10 | James Russell Kennedy | Guide vane for axial flow screw fans, propellers, pumps, and the like |
US5192190A (en) * | 1990-12-06 | 1993-03-09 | Westinghouse Electric Corp. | Envelope forged stationary blade for L-2C row |
US20060002790A1 (en) | 2004-06-30 | 2006-01-05 | Delta Electronics, Inc. | Fan assembly and fan frame thereof |
US20060045774A1 (en) | 2004-03-12 | 2006-03-02 | Delta Electronics, Inc. | Fans and fan frames |
US20060045738A1 (en) * | 2004-08-27 | 2006-03-02 | Delta Electronics, Inc. | Fan |
US20070122271A1 (en) | 2005-11-30 | 2007-05-31 | Sanyo Denki Co., Ltd. | Axial-flow fan |
US20070122285A1 (en) | 2005-11-30 | 2007-05-31 | Sanyo Denki Co., Ltd. | Axial-flow fan |
US7275911B2 (en) | 2004-08-27 | 2007-10-02 | Delta Electronics Inc. | Heat-dissipating fan and its housing |
US7329091B2 (en) | 2004-08-18 | 2008-02-12 | Delta Electronics, Inc. | Heat dissipation fans and housings therefor |
US7815418B2 (en) * | 2005-08-03 | 2010-10-19 | Mitsubishi Heavy Industries, Ltd. | Shroud and rotary vane wheel of propeller fan and propeller fan |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5466458A (en) * | 1992-03-09 | 1995-11-14 | Roussel Uclaf | Emulsified spray formulations |
-
2006
- 2006-11-16 JP JP2006310609A patent/JP2008128008A/en not_active Withdrawn
-
2007
- 2007-11-07 US US11/936,238 patent/US8172524B2/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2524869A (en) * | 1945-01-19 | 1950-10-10 | James Russell Kennedy | Guide vane for axial flow screw fans, propellers, pumps, and the like |
US5192190A (en) * | 1990-12-06 | 1993-03-09 | Westinghouse Electric Corp. | Envelope forged stationary blade for L-2C row |
US20060045774A1 (en) | 2004-03-12 | 2006-03-02 | Delta Electronics, Inc. | Fans and fan frames |
US20060002790A1 (en) | 2004-06-30 | 2006-01-05 | Delta Electronics, Inc. | Fan assembly and fan frame thereof |
US7329091B2 (en) | 2004-08-18 | 2008-02-12 | Delta Electronics, Inc. | Heat dissipation fans and housings therefor |
US20060045738A1 (en) * | 2004-08-27 | 2006-03-02 | Delta Electronics, Inc. | Fan |
US7275911B2 (en) | 2004-08-27 | 2007-10-02 | Delta Electronics Inc. | Heat-dissipating fan and its housing |
US7815418B2 (en) * | 2005-08-03 | 2010-10-19 | Mitsubishi Heavy Industries, Ltd. | Shroud and rotary vane wheel of propeller fan and propeller fan |
US20070122271A1 (en) | 2005-11-30 | 2007-05-31 | Sanyo Denki Co., Ltd. | Axial-flow fan |
US20070122285A1 (en) | 2005-11-30 | 2007-05-31 | Sanyo Denki Co., Ltd. | Axial-flow fan |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180372117A1 (en) * | 2017-06-26 | 2018-12-27 | Delta Electronics, Inc. | Fan frame |
CN109114042A (en) * | 2017-06-26 | 2019-01-01 | 台达电子工业股份有限公司 | Structure of fan frame |
US11480196B2 (en) * | 2017-11-16 | 2022-10-25 | Nidec Corporation | Axial fan |
Also Published As
Publication number | Publication date |
---|---|
JP2008128008A (en) | 2008-06-05 |
US20080118379A1 (en) | 2008-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8172524B2 (en) | Fan including specific stationary vane arrangement | |
US8794915B2 (en) | Blower fan | |
EP2343458B1 (en) | Blower and heat pump utilizing said blower | |
US7946805B2 (en) | Fan unit including tapered airflow passage | |
EP1916422B1 (en) | Centrifugal fan | |
US7207774B2 (en) | Centrifugal fan and casing thereof | |
US7618236B2 (en) | Fan and fan housing with toothed-type connecting elements | |
JP5072506B2 (en) | Fan motor | |
CN1318936C (en) | Centrifugal fan | |
US8215918B2 (en) | Impeller and cooling fan incorporating the same | |
US8342799B2 (en) | Centrifugal fan | |
US20070098571A1 (en) | Centrifugal fan | |
EP1467156A1 (en) | Fan guard for blower unit | |
US20060171802A1 (en) | Centrifugal fan impeller | |
KR860001100B1 (en) | Systems for cooling | |
US8550781B2 (en) | Heat dissipation fan and rotor thereof | |
KR20050005086A (en) | Stator of Axial flow fan shroud | |
US20060292020A1 (en) | Cooling fan | |
JP2005133705A (en) | Centrifugal fan including stationary blade | |
AU2016304621A1 (en) | Fan and air-conditioning device | |
JP2010124534A (en) | Mixed flow fan for electric motors and motor equipped with this mixed flow fan | |
KR101870365B1 (en) | Cooling fan apparatus having structure for reducing circulation flow | |
US20080223558A1 (en) | Cooling device | |
US20060002790A1 (en) | Fan assembly and fan frame thereof | |
US20180149158A1 (en) | Centrifugal blower |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NIDEC CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:UCHISE, HIDEAKI;TAKESHITA, HIDENOBU;REEL/FRAME:020085/0052 Effective date: 20071107 |
|
ZAAA | Notice of allowance and fees due |
Free format text: ORIGINAL CODE: NOA |
|
ZAAB | Notice of allowance mailed |
Free format text: ORIGINAL CODE: MN/=. |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20240508 |