WO2017168732A1 - Resin composition, prepreg, resin sheet and laminate - Google Patents

Resin composition, prepreg, resin sheet and laminate Download PDF

Info

Publication number
WO2017168732A1
WO2017168732A1 PCT/JP2016/060851 JP2016060851W WO2017168732A1 WO 2017168732 A1 WO2017168732 A1 WO 2017168732A1 JP 2016060851 W JP2016060851 W JP 2016060851W WO 2017168732 A1 WO2017168732 A1 WO 2017168732A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
compound
mass
group
resin
Prior art date
Application number
PCT/JP2016/060851
Other languages
French (fr)
Japanese (ja)
Inventor
信次 土川
高根沢 伸
慎太郎 橋本
徳彦 坂本
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2016/060851 priority Critical patent/WO2017168732A1/en
Priority to JP2018508322A priority patent/JPWO2017168732A1/en
Publication of WO2017168732A1 publication Critical patent/WO2017168732A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/08Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/14Layered products comprising a layer of natural or synthetic rubber comprising synthetic rubber copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/16Layered products comprising a layer of natural or synthetic rubber comprising polydienes homopolymers or poly-halodienes homopolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/26Layered products comprising a layer of synthetic resin characterised by the use of special additives using curing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/42Layered products comprising a layer of synthetic resin comprising condensation resins of aldehydes, e.g. with phenols, ureas or melamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/02Polymeric products of isocyanates or isothiocyanates of isocyanates or isothiocyanates only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/14Mixture of at least two fibres made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • B32B2264/0228Vinyl resin particles, e.g. polyvinyl acetate, polyvinyl alcohol polymers or ethylene-vinyl acetate copolymers
    • B32B2264/0235Aromatic vinyl resin, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • B32B2264/0257Polyolefin particles, e.g. polyethylene or polypropylene homopolymers or ethylene-propylene copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/101Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/104Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/105Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/204Di-electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a resin composition, a prepreg, a resin sheet, and a laminate.
  • thermosetting resin exhibits high heat resistance and dimensional stability due to a unique cross-linked structure contained in the cured product of the thermosetting resin. Therefore, thermosetting resins are widely used in fields such as electronic parts. Among these electronic components, particularly in copper-clad laminates and interlayer insulation materials, high copper foil adhesion and heat resistance as well as good low cure shrinkage and low heat are required due to recent demands for higher density and reliability of wiring. Swellability is required. In addition, due to environmental problems in recent years, mounting of electronic components using lead-free solder and flame resistance using halogen-free are required. For this reason, the thermosetting resin is required to have higher heat resistance and flame retardancy than conventional ones. Furthermore, in order to improve the safety of the product and the working environment, there is a demand for a thermosetting resin composed of components having low toxicity and generating no toxic gas, and a composition thereof.
  • the cyanate compound which is a thermosetting resin, is a resin having excellent dielectric properties and flame retardancy.
  • an epoxy-curing resin composition there is a problem that the curing shrinkage rate increases. Furthermore, there is a problem that heat resistance and toughness are insufficient. Moreover, the low thermal expansion required for the next generation was also insufficient.
  • JP-A-2003-268136, JP-A-2003-73543, and JP-A-2002-285015 disclose resin compositions comprising a cyanate compound and an inorganic filler and exhibiting low thermal expansion.
  • JP 2002-309085 A and JP 2002-348469 A disclose examples relating to resin compositions containing a cyanate resin and an aralkyl-modified epoxy resin as essential components.
  • the object of the present invention is to provide a novel resin composition, prepreg, resin sheet and laminate using a carbodiimide compound.
  • ⁇ 5> The resin composition according to ⁇ 3> or ⁇ 4>, wherein the curing agent includes at least one selected from the group consisting of a carboxylic acid, an epoxy compound, a phenol compound, and an amine.
  • a novel resin composition, prepreg, resin sheet and laminate using a carbodiimide compound are provided.
  • the present invention is not limited to the following embodiments.
  • the components including element steps and the like are not essential unless otherwise specified.
  • the term “process” includes a process that is independent of other processes and includes the process if the purpose of the process is achieved even if it cannot be clearly distinguished from the other processes. It is.
  • numerical values indicated by using “to” include numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range. Good. Further, in the numerical ranges described in this specification, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • the content rate or content of each component in the composition is such that when there are a plurality of substances corresponding to each component in the composition, the plurality of kinds present in the composition unless otherwise specified. It means the total content or content of substances.
  • the particle size of each component in the composition is a mixture of the plurality of types of particles present in the composition unless there is a specific indication when there are a plurality of types of particles corresponding to each component in the composition. Means the value of.
  • the term “layer” refers to the case where the layer is formed only in a part of the region in addition to the case where the layer is formed over the entire region. Is also included.
  • the term “lamination” indicates that layers are stacked, and two or more layers may be combined, or two or more layers may be detachable.
  • the prepreg of the first embodiment contains a carbodiimide compound having at least one carbodiimide group in one molecule.
  • the carbodiimide compound undergoes a curing reaction in the presence of a curing agent such as a carboxylic acid, an epoxy compound, a phenol compound, or an amine to form a cured product.
  • a curing agent such as a carboxylic acid, an epoxy compound, a phenol compound, or an amine to form a cured product.
  • carbodiimide groups couple
  • the carbodiimide compound provides a cured product through various reactions.
  • the prepreg of the first embodiment contains a carbodiimide compound having at least one carbodiimide group in one molecule, and can provide a cured product by a curing reaction of the carbodiimide group.
  • the carbodiimide compound contained in the prepreg of the first embodiment is preferably a carbodiimide compound having at least two carbodiimide groups in one molecule from the viewpoint of obtaining a strong cured product.
  • the carbodiimide compound used in the first embodiment will be described in detail in the section of the resin composition of the present embodiment described later.
  • the prepreg of the second embodiment has a peak at 2120 ⁇ 5 cm ⁇ 1 in the infrared absorption spectrum.
  • the peak at 2120 ⁇ 5 cm ⁇ 1 in the infrared absorption spectrum is a peak derived from a carbodiimide group.
  • the peak at 2120 ⁇ 5 cm ⁇ 1 in the infrared absorption spectrum observed in the prepreg of the second embodiment may be a peak derived from a carbodiimide group contained in the carbodiimide compound before curing, or a part of the carbodiimide compound may be It may be a peak derived from a carbodiimide group contained in a semi-cured product in a cured state (that is, B stage).
  • the term “B stage” is defined by JIS K6900: 1994.
  • the infrared absorption spectrum can be measured using infrared spectroscopy.
  • infrared spectroscopy For example, BioRad Laboratories, FT-IR FTS6000 model is used as an infrared spectrometer, and the number of integrations is measured by 256 using the KBr tablet method, liquid film method, or the like.
  • the prepreg of the third embodiment has a base material and a resin composition of the present embodiment described later impregnated in the base material.
  • the prepreg of the third embodiment can be formed by impregnating a base material with a resin composition of the present embodiment described later.
  • the prepreg of the third embodiment can also be produced by impregnating the resin composition of the present embodiment into a substrate and semi-curing (B-stage) the resin composition by heating or the like.
  • the base material used in the third embodiment known materials used in various laminated sheets for electrical insulating materials can be used.
  • the average thickness of the prepreg can be appropriately selected according to the purpose, and can be, for example, 50 ⁇ m to 500 ⁇ m. From the viewpoint of thermal conductivity and flexibility, it is preferably 60 ⁇ m to 300 ⁇ m.
  • the average thickness of the prepreg is a value given as an arithmetic average value obtained by measuring the thicknesses of five points of the target prepreg using a micrometer or the like.
  • the material of the substrate include inorganic fibers such as E glass, D glass, S glass, and Q glass, organic fibers such as polyimide, polyester, and tetrafluoroethylene, and mixtures thereof.
  • These base materials may have the shape of a woven fabric, a nonwoven fabric, a robink, a chopped strand mat, and a surfacing mat, for example.
  • the material and shape of the substrate are selected depending on the intended use and performance of the molded product, and one or more materials and shapes can be combined as required.
  • the thickness of the substrate is not particularly limited, and can be, for example, 0.03 mm to 0.5 mm.
  • the substrate is preferably surface-treated with a silane coupling agent or the like or mechanically subjected to fiber opening treatment from the viewpoint of heat resistance, moisture resistance, workability, etc. of the cured product.
  • the amount of the resin composition attached to the substrate is preferably 20% by mass to 90% by mass, more preferably 30% by mass to 90% by mass, and more preferably 40% by mass to 80% by mass as the ratio of the resin composition to the prepreg after drying. More preferred is mass%.
  • the substrate After impregnating the substrate with the resin composition so that the amount of the resin composition attached to the substrate is within the above range, the substrate is usually heated and dried at a temperature of 100 ° C.
  • the prepreg of the third embodiment can be obtained.
  • coating with a coating machine can be mentioned.
  • a vertical coating method in which the base material is pulled through the varnish of the resin composition, and the resin composition is coated on the support film, and then the support film coated with the resin composition is applied.
  • a horizontal coating method in which a substrate is pressed and impregnated can be mentioned. From the viewpoint of suppressing the uneven distribution of the inorganic filler in the substrate, the horizontal coating method is suitable.
  • the solvent residual amount in the prepreg of the third embodiment is preferably 2.0% by mass or less, more preferably 1.0% by mass or less, and further preferably 0.7% by mass or less.
  • the amount of solvent remaining in the prepreg is determined from the change in mass before and after drying when the prepreg is cut into 40 mm squares and dried in a thermostat preheated to 190 ° C. for 2 hours.
  • the prepreg of the third embodiment may be used after the surface is flattened by hot pressing.
  • a method of hot pressurization a method using a hot press, a hot roll, a laminator, or the like can be arbitrarily selected.
  • the heating temperature is preferably set as appropriate according to the type of carbodiimide compound used in the resin composition, the type of curing agent, and the like. In general, the heating temperature is preferably 60 ° C. to 180 ° C., more preferably 120 ° C. to 150 ° C.
  • the degree of vacuum is preferably 3 Pa to 0.1 kPa.
  • the pressing pressure is preferably 0.5 MPa to 4 MPa, more preferably 1 MPa to 2 MPa.
  • the resin sheet of the present embodiment is obtained by molding the resin composition of the present embodiment into a sheet shape.
  • a resin sheet of this embodiment it can manufacture by apply
  • the release substrate is not particularly limited as long as it can withstand the temperature during drying, and is generally used as a polyethylene terephthalate film with a release agent, a polyimide film, a resin film such as an aramid film, and a release agent.
  • a metal foil such as an attached aluminum foil can be used.
  • the average thickness of the resin sheet is not particularly limited and can be appropriately selected depending on the purpose.
  • the average thickness of the resin sheet is preferably 100 ⁇ m to 500 ⁇ m, and more preferably 100 ⁇ m to 300 ⁇ m.
  • the average thickness of the resin sheet is obtained as an arithmetic average value by measuring the thickness of five points using a micrometer.
  • the resin sheet is obtained as follows, for example. First, each component which comprises the resin composition of this embodiment is mixed, melt
  • the application of the varnish can be performed by a known method. Specific examples of the varnish application method include a comma coating method, a die coating method, a lip coating method, and a gravure coating method.
  • a comma coating method for passing an object to be coated between gaps, a die coating method for applying a varnish with a flow rate adjusted from a nozzle, or the like can be applied.
  • the drying temperature is preferably set appropriately depending on the solvent used for the varnish, and is generally about 80 ° C. to 180 ° C.
  • the drying time can be determined by considering the varnish gelation time and the thickness of the resin sheet, and is not particularly limited.
  • the release substrate is removed to obtain a resin sheet.
  • the solvent residual amount in the resin sheet is preferably 2.0% by mass or less, more preferably 1.0% by mass or less, from the viewpoint of concern about bubble formation during outgas generation during curing. More preferably, it is 0.7 mass% or less.
  • the residual amount of solvent in the resin sheet is determined from the change in mass before and after drying when the resin sheet is cut into a 40 mm square and dried in a thermostat preheated to 190 ° C. for 2 hours.
  • the resin sheet of the present embodiment may be used after the surface has been flattened before being laminated or pasted by hot pressing with a press, a roll laminator or the like.
  • a method of hot pressurization a method using a hot press, a hot roll, a laminator, or the like can be arbitrarily selected.
  • the heating temperature is preferably appropriately set according to the type of carbodiimide compound used in the resin composition, the type of curing agent, and the like, and generally 60 ° C. to 180 ° C.
  • the temperature is preferably 120 ° C. to 150 ° C.
  • the degree of vacuum is preferably 3 Pa to 0.1 kPa.
  • the pressing pressure is preferably 0.5 MPa to 4 MPa, more preferably 1 MPa to 2 MPa.
  • the resin sheet of this embodiment includes a first resin layer containing the resin composition of this embodiment and a second resin layer containing the resin composition of this embodiment laminated on the first resin layer. It is preferable.
  • the resin sheet of this embodiment is a laminate of a first resin layer formed from the resin composition of this embodiment and a second resin layer formed of the resin composition of this embodiment. It is preferable. Thereby, the withstand voltage can be further improved.
  • the resin composition of this embodiment for forming the first resin layer and the second resin layer may have the same composition or different compositions. It is preferable that the resin composition of this embodiment which forms a 1st resin layer and a 2nd resin layer is the same composition.
  • the probability of occurrence of pinholes or voids in the resin sheet manufacturing method is not high, but by overlapping two resin layers, the probability of overlap of thin parts becomes the square, and the number of pinholes or voids approaches zero. become. Since dielectric breakdown occurs at a place where the insulation is weakest, it can be considered that the effect of further improving the withstand voltage can be obtained by overlapping two resin layers.
  • the resin composition of the present embodiment contains a carbodiimide compound having at least one carbodiimide group in one molecule, a curing agent, and an inorganic filler, and may contain other components as necessary.
  • the use of the resin composition of the present embodiment is not particularly limited, and can be suitably used, for example, as a thermosetting resin composition for producing a laminated board or the like.
  • the laminated board material requires high copper foil adhesion and heat resistance, and low thermal expansion coefficient (low thermal expansion).
  • the adhesiveness of a metal foil such as a copper foil to a laminated board is preferably 0.7 kN / m or more as a copper foil peeling strength, and 0.9 kN / m or more It is more preferable that
  • the heat resistance with copper which is a guideline for reflow heat resistance evaluation, is preferably free from blistering for 30 minutes or more.
  • the laminate is in the direction of being made thinner, and the warp of the laminate during heat treatment is required to be small.
  • the laminate is highly elastic.
  • the flexural modulus of the laminate is preferably 30 GPa or more, and 32 GPa or more. It is more preferable that Further, in order to reduce warpage, it is effective that the laminate has a low thermal expansion property. Particularly, it is effective that the thermal expansion coefficient in the plane direction is low, and the linear thermal expansion coefficient in the plane direction is 7 ppm / ° C. Or less, more preferably 5 ppm / ° C. or less.
  • the laminate has low cure shrinkage, and in particular, it is effective that the cure shrinkage rate in the plane direction is small, and the cure shrinkage rate in the plane direction is 0.5. % Or less is preferable, and 0.3% or less is more preferable.
  • the laminated board is in a direction that requires more reliability, and the inner wall roughness of the drill hole during drilling is required to be small.
  • the evaluation of the inner wall roughness of the drill hole is evaluated by the penetration of plated copper into the inner wall of the drill hole, and the maximum plating penetration length is preferably 20 ⁇ m or less, and more preferably 15 ⁇ m or less.
  • the relative dielectric constant of the laminate is 4.3 or less and the dielectric loss tangent is 0.007 or less.
  • the present inventors have invented the resin composition of this embodiment containing a carbodiimide compound as a result of intensive studies. Hereinafter, each component contained in the resin composition of this embodiment is explained in full detail.
  • the carbodiimide compound used in the present embodiment is not particularly limited as long as it is a carbodiimide compound having at least one carbodiimide group in one molecule.
  • the carbodiimide compound used in the present embodiment is preferably a carbodiimide compound having at least two carbodiimide groups in one molecule from the viewpoint of obtaining a strong cured product.
  • the carbodiimide compound used in the present embodiment may be an aromatic carbodiimide compound or an aliphatic carbodiimide compound, and is preferably an aromatic carbodiimide compound from the viewpoint of high reactivity with a curing agent. .
  • the aromatic carbodiimide compound refers to a carbodiimide compound in which a nitrogen atom of a carbodiimide group is bonded to a carbon atom constituting an aromatic ring such as a benzene ring.
  • the aliphatic carbodiimide compound in the present embodiment refers to a carbodiimide compound in which a nitrogen atom of a carbodiimide group is bonded to a carbon atom constituting an alkylene group.
  • the carbodiimide compound used in the present embodiment is preferably obtained by using a compound (a) having two isocyanate groups in one molecule as a production raw material.
  • a compound (a) having two isocyanate groups in one molecule an isocyanate compound represented by at least one selected from the group consisting of the following general formula (II) and the following general formula (III) is preferable.
  • R 2 is a single bond, a divalent saturated hydrocarbon group having 1 to 5 carbon atoms or an oxygen atom, and R 2a and R 2b are each independently a monovalent having 1 to 5 carbon atoms.
  • each R 3 is independently a monovalent saturated hydrocarbon group having 1 to 5 carbon atoms, and y is an integer of 0 to 4.
  • the divalent saturated hydrocarbon group having 1 to 5 carbon atoms represented by R 2 may be linear, branched or cyclic. Also good.
  • Examples of the divalent saturated hydrocarbon group represented by R 2 include a methylene group, an ethylene group, a propylene group, a butylene group, an isobutylene group, a pentylene group, a cyclopropylene group, a cyclobutylene group, and a cyclopentylene group. .
  • R 2 is preferably a single bond, a methylene group, or an isobutylene group from the viewpoint of low thermal expansion of the cured product, more preferably a single bond or a methylene group, and still more preferably a methylene group from the viewpoint of the heat resistance of the cured product.
  • Examples of the monovalent saturated hydrocarbon group represented by R 2a and R 2b include methyl group, ethyl group, n-propyl group, n-butyl group, isobutyl group, n-pentyl group, cyclopropyl group, cyclobutyl group, A cyclopentyl group etc. are mentioned.
  • Examples of the halogen atom represented by R 2a and R 2b include a fluorine atom, a chlorine atom, and a bromine atom.
  • the R 2a and R 2b from the viewpoint of chemical resistance of the cured product, a fluorine atom or a methyl group is preferable.
  • s and t are each independently preferably 0 or 1.
  • R 2a is preferably a methyl group or a fluorine atom from the viewpoint of resin compatibility.
  • R 2b is preferably a methyl group or a fluorine atom from the viewpoint of resin compatibility.
  • the monovalent saturated hydrocarbon group having 1 to 5 carbon atoms represented by R 3 may be linear, branched or cyclic. Also good. Examples of the monovalent saturated hydrocarbon group represented by R 3 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, n-pentyl group, and isopentyl group. Etc. R 3 is preferably a methyl group from the viewpoint of yield during synthesis. In the general formula (III) from the viewpoint of chemical resistance of the cured product, y is preferably 0 or 1, and when y is 1, R 3 is preferably a methyl group.
  • isocyanate compounds represented by the general formula (II) and the general formula (III) include diphenylmethane-4,4′-diisocyanate, diphenylmethane-2,4′-diisocyanate, diphenylether-4,4′-diisocyanate, 3,3′-dimethylbiphenyl-4,4′-diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3,5-triisopropyl-2,6-diisocyanate benzene, p-benzene And diisocyanate compounds such as diisocyanate.
  • the compound (a) having two isocyanate groups in one molecule can be used alone or in combination of two or more.
  • Diisocyanate and the like are preferable, and diphenylmethane-4,4′-diisocyanate, diphenylmethane-2,4′-diisocyanate and the like, which are excellent in low curing shrinkage of the cured product, are more preferable.
  • a polymethylene polyphenyl polyisocyanate having a high polynuclear body which is a compound represented by the following general formula (IV)
  • an isocyanate compound in which a part of the isocyanate group is modified with various polyhydric alcohol compounds, phenol compounds, ⁇ -caprolactam or the like may be used in combination.
  • r is a positive number.
  • the weight average molecular weight of the compound represented by the general formula (IV) is preferably 500 to 10,000, and more preferably 1,000 to 5,000.
  • the weight average molecular weight is a value measured by the following method. A measurement object is dissolved in tetrahydrofuran (for liquid chromatograph), and a PTFE (polytetrafluoroethylene) filter (manufactured by Kurashiki Boseki Co., Ltd., for HPLC (high performance liquid chromatography) pretreatment, chromatodisc, model number: 13N, pore size: 0.45 ⁇ m] to remove insoluble matter.
  • PTFE polytetrafluoroethylene
  • GPC pump: L6200 Pump (manufactured by Hitachi, Ltd.), detector: differential refractive index detector L3300 RI Monitor (manufactured by Hitachi, Ltd.), column: TSKgel-G5000HXL and TSKgel-G2000HXL (both in total) (Made by Co., Ltd.) in series, column temperature: 30 ° C., eluent: tetrahydrofuran, flow rate: 1.0 ml / min, standard substance: polystyrene], and the weight average molecular weight is measured.
  • the carbodiimide compound used in the present embodiment is preferably obtained using the aromatic monoisocyanate compound (b) as a production raw material.
  • the aromatic monoisocyanate compound (b) is preferably an isocyanate compound represented by the following general formula (V).
  • each R 1 independently represents a halogen atom, a monovalent saturated hydrocarbon group having 1 to 5 carbon atoms, or a trifluoromethyl group, and x is an integer of 0 to 5.
  • the monovalent saturated hydrocarbon group having 1 to 5 carbon atoms represented by R 1 may be linear, branched or cyclic. Also good.
  • Examples of the monovalent saturated hydrocarbon group represented by R 1 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, an n-pentyl group, and an isopentyl group.
  • Etc examples of the halogen atom represented by R 1 include a fluorine atom, a chlorine atom, and a bromine atom.
  • x is preferably an integer of 0 to 3, more preferably 0 from the viewpoint of the yield during synthesis.
  • isocyanate compound represented by the general formula (V) include phenyl isocyanate, 2,6-dimethylphenyl isocyanate, 3,5-dimethylphenyl isocyanate, 2,6-diisopropylphenyl isocyanate, 4-fluorophenyl isocyanate. 2,4-difluorophenyl isocyanate, 2,4,6-trifluorophenyl isocyanate, 3- (trifluoromethyl) phenyl isocyanate, 4- (trifluoromethyl) phenyl isocyanate and other monoisocyanate compounds.
  • An aromatic monoisocyanate compound (b) can be used individually by 1 type or in combination of 2 or more types.
  • phenyl isocyanate, 2,6-dimethylphenyl isocyanate, and 3,5-dimethylphenyl isocyanate are preferable because the molecular weight and viscosity of the synthesized carbodiimide compound can be easily adjusted and are commercially inexpensive. These are commercially available from Tosoh Corporation, BASF INOAC Polyurethane Corporation, Chuo Kasei Co., Ltd., Junsei Chemical Co., Ltd., Wako Pure Chemical Industries, Ltd.
  • the carbodiimide compound used in the present embodiment is composed of a compound (a) component having two isocyanate groups in one molecule, an aromatic monoisocyanate compound (b) component, and other components as necessary as a synthetic raw material. It may be obtained by use and carbodiimidization reaction.
  • the amount of component (a) and component (b) used is the number of isocyanate groups in component (a) (amount of component (a) / isocyanate group equivalent of component (a)) and the number of isocyanate groups in component (b).
  • the ratio of ((b) component usage / (b) component isocyanate group equivalent) ((a) component isocyanate group number / (b) component isocyanate group number) is 0.4 to 20.0.
  • an organic solvent may be used for this carbodiimidization reaction.
  • the amount of the organic solvent used is preferably 0 to 1000 parts by mass per 100 parts by mass of the sum of the component (a), the component (b) and other components used as necessary. Part to 500 parts by mass is more preferable, and 0 part to 400 parts by mass is even more preferable.
  • component (a), component (b), other components used as needed, and the carbodiimide compound synthesized by carbodiimidization reaction are low-viscosity liquid substances, synthesis is performed without using an organic solvent. May be.
  • these components are solid or a highly viscous viscous material, it is preferable to use an appropriate amount of an organic solvent. However, if the amount of the organic solvent used is too large, synthesis may take a long time and production costs may increase.
  • organic solvents used in the carbodiimidization reaction include ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, ether solvents such as tetrahydrofuran, aromatic solvents such as toluene, xylene, and mesitylene, and hydrocarbon solvents. Petroleum solvents, N atom-containing solvents such as dimethylformamide and dimethylacetamide, S atom-containing solvents such as dimethyl sulfoxide, and ester solvents such as ⁇ -butyrolactone. These organic solvents can be used individually by 1 type or in combination of 2 or more types.
  • Aromatic solvents such as mesitylene and ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone are preferred.
  • reaction catalysts for carbodiimidization can be arbitrarily used as necessary, and the type of the reaction catalyst is not particularly limited.
  • reaction catalysts include organophosphorus compounds such as 1-phenyl-2-phospholene-1-oxide, 3-methyl-2-phospholene-1-oxide, 1-ethyl-2-phospholene-1-oxide, 3 -Methyl-1-phenyl-2-phospholene-2-oxide and the like.
  • 3-methyl-1-phenyl-2-phospholene-2-oxide is particularly preferable because it has high reactivity and can provide a high yield.
  • the amount of the reaction catalyst used is based on the total number of isocyanate groups of the component (a), the number of isocyanate groups of the component (b), and the number of isocyanate groups of other components used as necessary. Therefore, 0.05 mol% to 2.0 mol% is preferable.
  • the amount of the reaction catalyst used is 0.05 mol% or more, the carbodiimidization reaction does not take a long time, and a desired reaction rate tends to be realized.
  • the usage-amount of a reaction catalyst is 2.0 mol% or less, the reaction rate of carbodiimidization reaction does not become too quick, and it exists in the tendency for end point management of reaction to become easy.
  • a carbodiimide compound is produced by charging the above-mentioned synthesis raw materials and, if necessary, an organic solvent and a reaction catalyst in a synthesis kettle, stirring for 0.1 to 10 hours while heating and keeping heat as necessary, and causing a carbodiimidization reaction with decarboxylation. Is done.
  • the synthesis temperature is preferably 5 ° C to 180 ° C. When the synthesis temperature is 5 ° C. or higher, the reaction rate of the carbodiimidization reaction does not become too slow, and the reaction tends to be completed in an acceptable time. Moreover, if the synthesis temperature is 180 ° C. or lower, the possibility of causing a side reaction tends to be reduced.
  • the end point of the carbodiimidization reaction and the confirmation that the carbodiimide compound has been formed can be obtained by taking a small amount of sample after the reaction for a predetermined time and performing FT-IR (Fourier transform infrared spectroscopy) measurement.
  • FT-IR Fastier transform infrared spectroscopy
  • the carbodiimide compound used in the present embodiment preferably includes a carbodiimide compound represented by the following general formula (I) (hereinafter sometimes referred to as “specific carbodiimide compound”).
  • Ar 1 is at least one selected from the group consisting of groups represented by the following general formula based on the following general formula represented by (IIA) (IIIA), R 1 each independently A halogen atom, a monovalent saturated hydrocarbon group having 1 to 5 carbon atoms, or a trifluoromethyl group, m is 0 or a positive number, and x is independently an integer of 0 to 5;
  • R 2 is a single bond, a divalent saturated hydrocarbon group having 1 to 5 carbon atoms or an oxygen atom, and R 2a and R 2b are each independently a monovalent having 1 to 5 carbon atoms.
  • a saturated hydrocarbon group or a halogen atom, and s and t are each independently an integer of 0 to 4, and specific examples thereof are the same as R 2 , R 2a , R 2b , s and t in the general formula (II) It is.
  • * in general formula (IIA) shows the position couple
  • each R 3 is independently a monovalent saturated hydrocarbon group having 1 to 5 carbon atoms
  • y is an integer of 0 to 4, and specific examples thereof are those of general formula (III). Same as R 3 and y.
  • * in general formula (IIIA) shows the position couple
  • the production process of the specific carbodiimide compound is not particularly limited, and the compound (a) component having two isocyanate groups in one molecule and the aromatic monoisocyanate compound (b) component are used as a raw material for synthesis. However, it may be obtained by a carbodiimidization reaction, but is not limited thereto.
  • the weight average molecular weight of the specific carbodiimide compound is preferably 1,000 to 100,000, more preferably 1,000 to 50,000, and still more preferably 1,000 to 20,000.
  • the proportion of the carbodiimide compound in the solid content of the resin composition of the present embodiment is preferably 5% by mass to 70% by mass, more preferably 5% by mass to 60% by mass, and more preferably 5% by mass to More preferably, it is 55 mass%.
  • solid content means the non-volatile component of the components which comprise a resin composition.
  • the proportion of the specific carbodiimide compound in the carbodiimide compound contained in the resin composition of the present embodiment is preferably 10% by mass to 100% by mass, more preferably 20% by mass to 100% by mass, More preferably, it is 30% by mass to 100% by mass.
  • the resin composition of this embodiment contains a curing agent.
  • the curing agent used in the present embodiment is not particularly limited as long as it is a compound having a functional group capable of undergoing a curing reaction with a carbodiimide compound.
  • the curing agent used in the present embodiment preferably includes at least one selected from the group consisting of carboxylic acid, epoxy compound, phenol compound and amine. Among these, it is preferable to use an epoxy compound as a curing agent from the viewpoint of moisture resistance of the cured product.
  • carboxylic acid When carboxylic acid is used as the curing agent, specific examples of carboxylic acid include known dicarboxylic acid compounds such as maleic acid, phthalic acid, and succinic acid, trimellitic anhydride, and the like. Carboxylic acid can be used individually by 1 type or in combination of 2 or more types.
  • phenol compound When a phenol compound is used as the curing agent, specific examples of the phenol compound include known phenol compounds such as phenol novolac.
  • a phenol compound can be used individually by 1 type or in combination of 2 or more types.
  • amine When an amine is used as the curing agent, specific examples of the amine include, for example, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, m-xylenediamine, trimethylhexamethylenediamine, 2-methylpentamethylenediamine, diethylaminopropylamine, Isophoronediamine, 1,3-bisaminomethylcyclohexane, bis (4-aminocyclohexyl) methane, norbornenediamine, 1,2-diaminocyclohexane, laromine, diaminodiphenylmethane, metaphenylenediamine, diaminodiphenylsulfone, polyoxypropylenediamine, poly Mention may be made of oxypropylene triamine, polycyclohexyl polyamine mixtures and N-aminoethylpiperazine. An amine can be used individually by 1 type or in combination of 2 or more types.
  • the epoxy compound is preferably a compound having at least two epoxy groups in one molecule.
  • Compounds having at least two epoxy groups in one molecule include bisphenol A, bisphenol F, biphenyl, novolac, dicyclopentadiene, polyfunctional phenol, naphthalene, aralkyl modified, alicyclic Examples thereof include glycidyl ethers such as glycidyl ethers, glycidyl amines, and glycidyl esters, which can be used singly or in combination of two or more.
  • the cured product has high rigidity, dielectric properties, heat resistance, flame resistance, moisture resistance and low thermal expansion, and is solid at room temperature (20 ° C to 23 ° C).
  • a naphthalene ring-containing epoxy resin, a biphenyl group-containing epoxy resin, and a dicyclopentadiene-type epoxy resin are preferable from the viewpoint that tackiness is reduced and handling becomes easy.
  • a naphthalene type epoxy resin, a biphenyl type epoxy resin, a naphthol aralkyl / cresol copolymer type epoxy resin, and a biphenyl aralkyl type epoxy resin are preferable from the viewpoint of solubility in an aromatic organic solvent.
  • naphthol is an epoxy compound.
  • Aralkyl / cresol copolymer epoxy resins and biphenyl aralkyl epoxy resins are preferred.
  • the naphthol aralkyl / cresol copolymer type epoxy resin is preferably a compound containing two structural units represented by the following general formula (VI).
  • m and n are positive numbers which may be different from each other.
  • the ratio of the two structural units represented by the general formula (VI) is not particularly limited.
  • the weight average molecular weight of the compound represented by the general formula (VI) is preferably 500 to 10,000, more preferably 500 to 8,000, and still more preferably 500 to 6,000.
  • As the naphthol aralkyl / cresol copolymer epoxy resin NC-7000L manufactured by Nippon Kayaku Co., Ltd. is available.
  • p and q are positive numbers which may be different from each other.
  • the ratio of the two structural units represented by the general formula (VII) is not particularly limited.
  • the weight average molecular weight of the compound represented by the general formula (VII) is preferably 500 to 10,000, more preferably 500 to 8,000, and still more preferably 500 to 6,000.
  • As the biphenyl aralkyl type epoxy resin NC-3000H manufactured by Nippon Kayaku Co., Ltd. is available.
  • the content of the carbodiimide compound per 100 parts by mass of the total of the carbodiimide compound and the epoxy compound is in the range of 10 parts by mass to 90 parts by mass, and the content of the epoxy compound is 90 parts by mass to It is preferably in the range of 10 parts by mass, the carbodiimide compound content is preferably in the range of 30 parts by mass to 90 parts by mass, and the epoxy compound content is more preferably in the range of 70 parts by mass to 10 parts by mass. More preferably, the carbodiimide compound content is in the range of 30 to 80 parts by mass, and the epoxy compound content is in the range of 70 to 20 parts by mass.
  • the content of the carbodiimide compound per 100 parts by mass of the total of the carbodiimide compound and the epoxy compound is 10 parts by mass or more, the elastic modulus of the cured product, low thermal expansion, moisture and heat resistance, dielectric properties, adhesion, flame retardancy Etc. tend to improve. If the content of the carbodiimide compound per 100 parts by mass of the carbodiimide compound and the epoxy compound is 90 parts by mass or less, the moldability of the resin composition tends to be improved, and the plating solution resistance of the cured product, etc. The chemical resistance tends to be improved.
  • the content of carboxylic acid in the resin composition is preferably 100% by mass or less, more preferably 50% by mass or less, relative to the carbodiimide compound contained, More preferably, it is 30 mass% or less.
  • the content of the phenol compound in the resin composition is preferably 100% by mass or less, more preferably 50% by mass or less, with respect to the carbodiimide compound contained, More preferably, it is 30 mass% or less.
  • the content of the amine compound in the resin composition is preferably 100% by mass or less, more preferably 50% by mass or less, based on the carbodiimide compound contained. More preferably, it is at most mass%.
  • the resin composition of this embodiment contains an inorganic filler.
  • the inorganic filler used in this embodiment is not particularly limited, silica such as fused silica, deflagration silica and crushed silica, glass short fibers, glass fine powder, glass such as hollow glass, mica, talc, calcium carbonate, Examples thereof include quartz and metal hydrate.
  • An inorganic filler can be used individually by 1 type or in combination of 2 or more types. Among these, silica is preferable from the viewpoint of low thermal expansion property and low dielectric loss tangent of the cured product, low thermal expansion property of the cured product, copper foil adhesiveness, heat resistance, moisture resistance, flame resistance, low dielectric loss tangent, etc.
  • the inorganic filler preferably has an average particle size of 5.0 ⁇ m or less, more preferably 0.3 ⁇ m to 5.0 ⁇ m, still more preferably 0.3 ⁇ m to 2.0 ⁇ m, and more preferably 0.5 ⁇ m to Those having a thickness of 1.0 ⁇ m are particularly preferable.
  • the silica When silica is used as the inorganic filler, the silica preferably has an average particle size of 5.0 ⁇ m or less, more preferably 0.3 ⁇ m to 5.0 ⁇ m, and more preferably 0.3 ⁇ m to 2.0 ⁇ m. More preferably, the thickness is 0.5 ⁇ m to 1.0 ⁇ m.
  • the one having an average particle size of 5.0 ⁇ m or less is the thermal expansion property of the cured product, copper foil adhesiveness, heat resistance, moisture resistance, flame resistance, low dielectric loss tangent
  • the thickness is 0.3 ⁇ m to 5.0 ⁇ m, more preferable is 0.3 ⁇ m to 2.0 ⁇ m, and particularly preferable is 0.5 ⁇ m to 1.0 ⁇ m.
  • the average particle diameter is a particle diameter (volume average) in which the integrated distribution is 50% in the integrated distribution expressed by the accumulation of the frequencies, where the particle diameter is a class and the volume is a frequency using the following method.
  • Particle size As a method for measuring the particle size of the inorganic filler, for example, using a device such as laser diffraction, dynamic light scattering, and small angle X-ray scattering, a method of simultaneously measuring a large number of particles, an electron microscope, an atomic force microscope, etc. And a method of measuring the particle size of each particle.
  • a pretreatment for separating particles of 100 ⁇ m or more may be performed before measuring the particle size.
  • a measurement sample is the hardened
  • the ash obtained as a residue after processing at high temperature of 800 degreeC or more with a muffle furnace etc. can be measured by said method.
  • silica when silica is used as the inorganic filler, other fillers may be used in combination with silica (preferably spherical silica).
  • metal hydrates such as aluminum hydroxide and magnesium hydroxide are preferable from the viewpoint of low thermal expansion, elastic modulus, heat resistance, flame retardancy, etc. of the cured product, and among the metal hydrates, From the viewpoint of achieving both high heat resistance and flame retardancy of the cured product, metal hydrates having a thermal decomposition temperature of 300 ° C.
  • boehmite type aluminum hydroxide AlOOH
  • gibbsite type aluminum hydroxide Al (OH 3 )
  • Aluminum (AlOOH) is particularly preferred. In this embodiment, even when silica is not used as the inorganic filler, other fillers may be used as the inorganic filler.
  • the content ratio (silica / other filler) based on mass between silica and other fillers may be 2.0 or more. Preferably, it is 2.5 or more, more preferably 3.0 or more.
  • the inorganic filler used in the present embodiment may be surface-treated with a silane coupling agent.
  • a silane coupling agent can be used.
  • a silane coupling agent having an epoxy group, amino group, mercapto group, ureido group or hydroxyl group at the terminal it is preferable to use a silane coupling agent having an epoxy group, amino group, mercapto group, ureido group or hydroxyl group at the terminal.
  • Specific examples of the silane coupling agent include, for example, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 3-glycidoxypropylmethyl.
  • silane coupling agents can be used alone or in combination of two or more.
  • 3-glycidoxypropyltrimethoxysilane is preferable from the viewpoints of the copper foil adhesiveness and heat resistance of the cured product.
  • the treatment method of the inorganic filler with the silane coupling agent is not particularly limited, and may be a wet treatment or a dry treatment, and is preferably a wet treatment.
  • Silica can also be obtained commercially from Admatechs Corporation.
  • a spherical silica (fused spherical silica) having an average particle size of 0.5 ⁇ m or less that has been surface-treated (wet-treated) with 3-glycidoxypropyltrimethoxysilane the trade name SC-2050MTE manufactured by Admatechs Co., Ltd. Etc.
  • content of the inorganic filler in the resin composition of this embodiment is 10 mass with respect to 100 mass parts of the total mass of the carbodiimide compound, the hardening
  • Part to 300 parts by weight preferably 100 parts to 250 parts by weight, and more preferably 150 parts to 250 parts by weight.
  • content of an inorganic filler is 10 mass parts or more, it exists in the tendency for the elasticity modulus of cured
  • content of an inorganic filler is 300 mass parts or less, it exists in the tendency for chemical resistance, such as the moldability of a resin composition and the plating solution resistance of hardened
  • the content of silica is a carbodiimide compound, a curing agent (preferably an epoxy compound), and a maleimide described later used as necessary. It is preferably 10 to 300 parts by mass, more preferably 100 to 250 parts by mass, and more preferably 150 to 250 parts by mass with respect to 100 parts by mass of the total mass with the compound. Further preferred. When the silica content is 10 parts by mass or more, the elastic modulus, low thermal expansion, moisture and heat resistance, and low dielectric loss tangent of the cured product tend to be improved. Moreover, if content of a silica is 300 mass parts or less, it exists in the tendency for chemical resistance, such as the moldability of a resin composition and the plating solution resistance of hardened
  • the content of other fillers should be 0 to 200 parts by mass with respect to 100 parts by mass of the total mass of a carbodiimide compound, a curing agent (preferably an epoxy compound), and a maleimide compound described later if necessary. It is preferably 0 to 150 parts by mass. By setting the content of other fillers to 200 parts by mass or less, chemical resistance such as moldability of the resin composition and plating solution resistance of the cured product tends to be improved.
  • silica when silica is used as the inorganic filler, the content of silica (preferably spherical silica) and other fillers is a carbodiimide compound, a curing agent (preferably an epoxy compound), and a maleimide described later used as necessary.
  • Silica is preferably 10 to 300 parts by mass, other fillers are preferably 0 to 200 parts by mass, and silica is 100 to 250 parts by mass with respect to 100 parts by mass of the total mass of the compound. More preferably, the other filler is 0 to 150 parts by mass, the silica is 150 to 250 parts by mass, and the other filler is more preferably 0 to 150 parts by mass.
  • the resin composition of the present embodiment may contain a maleimide compound from the viewpoint of the low thermal expansion property, low curing shrinkage property, heat resistance, moisture resistance, low dielectric loss tangent, etc. of the cured product.
  • the maleimide compound used in the present embodiment is not particularly limited, and a maleimide compound having at least two maleimide groups in one molecule is preferable.
  • maleimide compounds having at least two maleimide groups in one molecule include bis (4-maleimidophenyl) methane, polyphenylmethanemaleimide, bis (4-maleimidophenyl) ether, bis (4-maleimidophenyl) sulfone, 3,3′-dimethyl-5,5′-diethyl-4,4′-diphenylmethane bismaleimide, 4-methyl-1,3-phenylene bismaleimide, m-phenylene bismaleimide and 2,2-bis (4- ( 4-maleimidophenoxy) phenyl) propane.
  • the amount of the carbodiimide compound used per 100 parts by mass of the total of the carbodiimide compound, the curing agent (preferably an epoxy compound) and the maleimide compound is in the range of 10 to 90 parts by mass, and the curing agent
  • the amount of (preferably epoxy compound) used is in the range of 90 to 10 parts by weight
  • the amount of maleimide compound used is preferably in the range of 0 to 70 parts by weight, and 0 to 60 parts by weight.
  • the range is more preferably in the range of parts by mass, and still more preferably in the range of 0 to 50 parts by mass. If the amount of the maleimide compound used is 70 parts by mass or less, the moldability of the resin composition tends to be improved, and further, the chemical resistance such as the plating solution resistance of the cured product tends to be improved.
  • the resin composition of this embodiment may contain a solvent.
  • the solvent used in the present embodiment is not particularly limited. Solvents that can be used in this embodiment include ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, ether solvents such as tetrahydrofuran, aromatic solvents such as toluene, xylene, and mesitylene, and hydrocarbon solvents.
  • the resin composition of the present embodiment contains a solvent
  • the content of the solvent in the resin composition is preferably 10% by mass to 90% by mass, and more preferably 20% by mass to 80% by mass.
  • the content is 30% by mass to 70% by mass.
  • the resin composition of this embodiment may contain a curing accelerator.
  • a curing accelerator When an appropriate curing accelerator is used in combination, the molding temperature is 200 ° C. or lower, and there is a tendency that low temperature curability can be imparted to the resin composition of the present embodiment. In addition, flame retardancy and copper foil adhesion tend to be further improved.
  • curing accelerators include, for example, imidazole compounds and derivatives thereof, tertiary amine compounds, and quaternary ammonium salts.
  • imidazole compounds and derivatives thereof are preferable from the viewpoints of heat resistance, flame retardancy, copper foil adhesion, and the like of cured products, and are the following reaction products of hexamethylene diisocyanate resin and 2-ethyl-4-methylimidazole.
  • the compound shown in (VIII) is more preferable because it is excellent in curing moldability at a relatively low temperature at 200 ° C. or lower, and the aging stability of the varnish and prepreg of the resin composition, and is also commercially inexpensive. .
  • the compound represented by the formula (VIII) is commercially available from Daiichi Kogyo Seiyaku Co., Ltd.
  • the content of the curing accelerator is preferably 0 to 20 parts by mass with respect to 100 parts by mass of the total mass of the carbodiimide compound, the curing agent (preferably an epoxy compound) and the maleimide compound used as necessary.
  • the content is more preferably 0 to 10 parts by mass, and still more preferably 0 to 5 parts by mass.
  • the resin composition of this embodiment may contain a flame retardant.
  • a flame retardant examples include triphenyl phosphate, tricresyl phosphate, trisdichloropropyl phosphate, phosphoric ester compounds, phosphazenes, phosphorous flame retardants such as red phosphorus, antimony trioxide, zinc molybdate, and the like.
  • inorganic flame retardant aids.
  • a flame retardant can be used individually by 1 type or in combination of 2 or more types.
  • an inorganic flame retardant in which zinc molybdate is supported on an inorganic filler such as talc is a preferable flame retardant because it improves not only the flame retardancy but also the drill workability of the cured product.
  • the content of the flame retardant is preferably 0 to 20 parts by mass with respect to 100 parts by mass of the total mass of the carbodiimide compound, the curing agent (preferably an epoxy compound) and the maleimide compound used as necessary.
  • the content is more preferably 0 to 10 parts by mass, and still more preferably 0 to 5 parts by mass. If content of a flame retardant is 20 mass parts or less, the gel time of the varnish of the resin composition of this embodiment will not become too short, and it exists in the tendency for the moldability of a resin composition to improve.
  • the resin composition of this embodiment may contain other components as necessary.
  • other components include thermoplastic resins, elastomers, and organic fillers.
  • thermoplastic resins include, for example, tetrafluoroethylene resin, polyethylene resin, polypropylene resin, polystyrene resin, polyphenylene ether resin, phenoxy resin, polycarbonate resin, polyester resin, polyamide resin, polyimide resin, xylene resin, petroleum resin and silicone. Resin.
  • Examples of elastomers include, for example, polybutadiene, polyacrylonitrile, epoxy-modified polybutadiene, maleic anhydride-modified polybutadiene, phenol-modified polybutadiene, and carboxy-modified polyacrylonitrile.
  • Examples of the organic filler include organic particles such as silicone powder, polytetrafluoroethylene, polyethylene, polypropylene, polystyrene, and polyphenylene ether.
  • the resin composition of this embodiment may contain an ultraviolet absorber, an antioxidant, a photopolymerization initiator, a fluorescent brightener, an adhesion improver, and the like as other components.
  • these materials include UV absorbers such as benzotriazoles, antioxidants such as hindered phenols and styrenated phenols, photopolymerization initiators such as benzophenones, benzyl ketals, and thioxanthones, and stilbene derivatives.
  • UV absorbers such as benzotriazoles
  • antioxidants such as hindered phenols and styrenated phenols
  • photopolymerization initiators such as benzophenones, benzyl ketals, and thioxanthones
  • stilbene derivatives examples thereof include fluorescent brighteners, urea compounds such as urea silane, and adhesion improvers such as silane coupling agents.
  • the resin composition of the present embodiment may be prepared by any technique as long as the above various components can be dispersed and mixed.
  • the resin composition of the present embodiment can be obtained by weighing the components, mixing and kneading using a roughing machine, a mixing roll, a planetary mixer, etc., and defoaming as necessary. Yes, but not limited to this.
  • the laminate of this embodiment is a laminate of the prepreg of this embodiment.
  • the laminated plate of the present embodiment can be produced by, for example, stacking 1 to 20 prepregs of the present embodiment and forming a metal foil on one or both sides thereof.
  • the metal foil is not particularly limited as long as it is used for electrical insulating material applications. Specific examples of the metal foil include gold foil, copper foil, aluminum foil and the like, and copper foil is generally used.
  • the average thickness of the metal foil is not particularly limited as long as it is 1 ⁇ m to 400 ⁇ m, for example, and a suitable thickness can be selected according to the electric power used.
  • As the metal foil nickel, nickel-phosphorus, nickel-tin alloy, nickel-iron alloy, lead, lead-tin alloy, etc.
  • the method of laminates for electrical insulation materials and multilayer plates can be applied, and multistage press, multistage vacuum press, continuous molding, autoclave molding, etc. are used, the temperature is 100 ° C. to 250 ° C., pressure 2 kg / cm 2 to 100 kg / cm 2 , and the heating time can be in the range of 0.1 hours to 5 hours.
  • a multilayer board can also be manufactured combining the prepreg of this embodiment, and the wiring board for inner layers.
  • the equivalent ratio of the reaction: the number of isocyanate groups in diphenylmethane-2,4′-diisocyanate / 2,6-dimethylphenyl isocyanate has 8.0 isocyanate groups.
  • introduction of nitrogen gas and stirring were started, the temperature was raised to 80 ° C., and a carbodiimidization reaction was performed at 80 ° C. for 5 hours. Then, a small amount of the reaction product was taken out from the reaction solution, and FT-IR measurement was performed. As a result, the peak at 2260 ⁇ 5 cm ⁇ 1 attributed to the isocyanate group disappeared, and the appearance of the peak at 2120 ⁇ 5 cm ⁇ 1 attributed to the generated carbodiimide group was confirmed. Next, the reaction solution was cooled to room temperature (20 ° C. to 23 ° C.) to obtain a solution of the carbodiimide compound (A-2).
  • Examples 1 to 6 are (A) the carbodiimide compound obtained in Production Examples 1 to 3 as a carbodiimide compound, (B) a compound having at least two epoxy groups in one molecule as a curing agent, and (C) an inorganic filler. Spherical silica (fused spherical silica), and if necessary, (D) maleimide compound having at least two maleimide groups in one molecule as maleimide compound, other filler, curing accelerator, flame retardant and methyl ethyl ketone as solvent
  • the varnish having a solid content of 60% by mass was obtained by mixing at the blending ratio (parts by mass) shown in Table 1.
  • Tg glass transition temperature
  • a 5-cm square evaluation board from which copper foil on both sides was removed by immersing a copper-clad laminate in a copper etching solution was prepared using a pressure cooker test apparatus manufactured by Hirayama Manufacturing Co., Ltd. After performing pressure-cooker treatment for 4 hours under the conditions of 121 ° C. and 2 atm (0.2 MPa), the test substrate is immersed in a solder bath at a temperature of 300 ° C. for 20 seconds, and then the solder heat resistance is observed by observing the appearance. Sex was evaluated. When there was no visible blister, it was judged as “good”, and when there was a blister visible, it was judged as “blister”.
  • test piece cut out to a length of 127 mm and a width of 12.7 mm was prepared from an evaluation substrate obtained by removing a copper foil on both sides by immersing a copper clad laminate in a copper etching solution, and UL94. It evaluated according to the test method (method V).
  • Drill workability ⁇ 0.105 mm (Union Tool MV J676) is used for the drill, the number of rotations is 160,000 min ⁇ 1 , the feed rate is 0.8 m / min, the number of stacked sheets is one, and drilling is performed at 6000 An evaluation board was made by hitting, and the inner wall roughness of the drill hole was evaluated. The inner wall roughness was evaluated by performing electroless copper plating (plating thickness: 15 ⁇ m) and measuring the maximum value of the plating penetration length into the hole wall.
  • the copper clad laminates according to the examples are copper foil adhesion, glass transition temperature, solder heat resistance, linear thermal expansion coefficient, flame resistance, heat resistance with copper, relative permittivity, dielectric loss tangent. Excellent in all evaluation items of drilling workability, cure shrinkage rate and flexural modulus.
  • the comparative examples are copper foil adhesion, glass transition temperature, solder heat resistance, linear thermal expansion coefficient, flame resistance, heat resistance with copper, relative dielectric constant, dielectric loss tangent, drill workability, cure shrinkage rate and flexural elasticity. The rate of any evaluation item is inferior.
  • a prepreg obtained by impregnating the resin composition of the present embodiment into a base material, and a laminate produced by laminating the prepreg are copper foil adhesiveness, glass transition temperature, solder heat resistance, thermal expansion coefficient, It is excellent in flame resistance, heat resistance with copper, relative dielectric constant, dielectric loss tangent, drill workability, curing shrinkage rate and bending elastic modulus, and is useful as a printed wiring board for electronic equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

This resin composition contains a carbodiimide compound that has at least one carbodiimide group in each molecule, a curing agent and an inorganic filler. It is preferable that an aromatic carbodiimide compound is contained as the carbodiimide compound. It is preferable that at least one compound selected from the group consisting of carboxylic acids, epoxy compounds, phenol compounds and amines is contained as the curing agent. It is preferable that silica is contained as the inorganic filler.

Description

樹脂組成物、プリプレグ、樹脂シート及び積層板Resin composition, prepreg, resin sheet and laminate
 本発明は、樹脂組成物、プリプレグ、樹脂シート及び積層板に関する。 The present invention relates to a resin composition, a prepreg, a resin sheet, and a laminate.
 熱硬化性樹脂は、熱硬化性樹脂の硬化物に含まれる特有な架橋構造により高い耐熱性及び寸法安定性を発現する。そのため、熱硬化性樹脂は、電子部品等の分野において広く使われている。この電子部品の中でも、特に銅張積層板及び層間絶縁材料においては、近年の配線の高密度化及び信頼性への要求から、高い銅箔接着性及び耐熱性並びに良好な低硬化収縮性及び低熱膨張性が必要とされる。また、近年の環境問題から、鉛フリーはんだによる電子部品の搭載及びハロゲンフリーによる難燃化が要求される。そのため、熱硬化性樹脂には従来のものよりも高い耐熱性及び難燃性が必要とされる。さらに、製品の安全性及び作業環境の向上化のため、毒性の低い成分で構成され、毒性ガス等が発生しない熱硬化性樹脂及びその組成物が望まれている。 The thermosetting resin exhibits high heat resistance and dimensional stability due to a unique cross-linked structure contained in the cured product of the thermosetting resin. Therefore, thermosetting resins are widely used in fields such as electronic parts. Among these electronic components, particularly in copper-clad laminates and interlayer insulation materials, high copper foil adhesion and heat resistance as well as good low cure shrinkage and low heat are required due to recent demands for higher density and reliability of wiring. Swellability is required. In addition, due to environmental problems in recent years, mounting of electronic components using lead-free solder and flame resistance using halogen-free are required. For this reason, the thermosetting resin is required to have higher heat resistance and flame retardancy than conventional ones. Furthermore, in order to improve the safety of the product and the working environment, there is a demand for a thermosetting resin composed of components having low toxicity and generating no toxic gas, and a composition thereof.
 熱硬化性樹脂であるシアネート化合物は、誘電特性及び難燃性に優れる樹脂であるが、エポキシ硬化系の樹脂組成物に使用した場合、硬化収縮率が大きくなってしまう問題があった。さらには、耐熱性及び強靭性が不足する問題があった。また、次世代に要求される低熱膨張性も不十分であった。 The cyanate compound, which is a thermosetting resin, is a resin having excellent dielectric properties and flame retardancy. However, when used in an epoxy-curing resin composition, there is a problem that the curing shrinkage rate increases. Furthermore, there is a problem that heat resistance and toughness are insufficient. Moreover, the low thermal expansion required for the next generation was also insufficient.
 特開2003-268136号公報、特開2003-73543号公報及び特開2002-285015号公報には、シアネート化合物と無機充填剤からなり低熱膨張性を発現させる樹脂組成物が開示されている。また、特開2002-309085号公報及び特開2002-348469号公報には、シアネート樹脂とアラルキル変性エポキシ樹脂を必須成分として含有する樹脂組成物に関する事例が開示されている。 JP-A-2003-268136, JP-A-2003-73543, and JP-A-2002-285015 disclose resin compositions comprising a cyanate compound and an inorganic filler and exhibiting low thermal expansion. In addition, JP 2002-309085 A and JP 2002-348469 A disclose examples relating to resin compositions containing a cyanate resin and an aralkyl-modified epoxy resin as essential components.
 本発明は、カルボジイミド化合物を用いる新規な樹脂組成物、プリプレグ、樹脂シート及び積層板を提供することを目的とする。 The object of the present invention is to provide a novel resin composition, prepreg, resin sheet and laminate using a carbodiimide compound.
 前記課題を達成するための具体的手段は以下の通りである。
  <1> 1分子中に少なくとも1つのカルボジイミド基を有するカルボジイミド化合物を含有するプリプレグ。
Specific means for achieving the above object are as follows.
<1> A prepreg containing a carbodiimide compound having at least one carbodiimide group in one molecule.
  <2> 赤外線吸収スペクトルにおける2120±5cm-1にピークを有するプリプレグ。 <2> A prepreg having a peak at 2120 ± 5 cm −1 in an infrared absorption spectrum.
  <3> 1分子中に少なくとも1つのカルボジイミド基を有するカルボジイミド化合物と、硬化剤と、無機フィラーと、を含有する樹脂組成物。 <3> A resin composition containing a carbodiimide compound having at least one carbodiimide group in one molecule, a curing agent, and an inorganic filler.
  <4> 前記カルボジイミド化合物が、芳香族カルボジイミド化合物を含む<3>に記載の樹脂組成物。 <4> The resin composition according to <3>, wherein the carbodiimide compound includes an aromatic carbodiimide compound.
  <5> 前記硬化剤が、カルボン酸、エポキシ化合物、フェノール化合物及びアミンからなる群より選択される少なくとも1種を含む<3>又は<4>に記載の樹脂組成物。 <5> The resin composition according to <3> or <4>, wherein the curing agent includes at least one selected from the group consisting of a carboxylic acid, an epoxy compound, a phenol compound, and an amine.
  <6> 前記無機フィラーが、シリカを含む<3>~<5>のいずれか1項に記載の樹脂組成物。 <6> The resin composition according to any one of <3> to <5>, wherein the inorganic filler includes silica.
  <7> 前記無機フィラーが、ベーマイト型水酸化アルミニウムを含む<3>~<6>のいずれか1項に記載の樹脂組成物。 <7> The resin composition according to any one of <3> to <6>, wherein the inorganic filler includes boehmite type aluminum hydroxide.
  <8> 前記無機フィラーの平均粒径が、5.0μm以下である<3>~<7>のいずれか1項に記載の樹脂組成物。 <8> The resin composition according to any one of <3> to <7>, wherein the inorganic filler has an average particle size of 5.0 μm or less.
  <9> マレイミド化合物を含有する<3>~<8>のいずれか1項に記載の樹脂組成物。 <9> The resin composition according to any one of <3> to <8>, which contains a maleimide compound.
  <10> 基材と、前記基材に含浸された<3>~<9>のいずれか1項に記載の樹脂組成物と、を有するプリプレグ。 <10> A prepreg having a base material and the resin composition according to any one of <3> to <9> impregnated in the base material.
  <11> <3>~<9>のいずれか1項に記載の樹脂組成物をシート状に成形してなる樹脂シート。 <11> A resin sheet obtained by molding the resin composition according to any one of <3> to <9> into a sheet shape.
  <12> <1>、<2>又は<10>に記載のプリプレグを積層した積層板。 <12> Laminated plate in which the prepregs described in <1>, <2> or <10> are laminated.
 本発明によれば、カルボジイミド化合物を用いる新規な樹脂組成物、プリプレグ、樹脂シート及び積層板が提供される。 According to the present invention, a novel resin composition, prepreg, resin sheet and laminate using a carbodiimide compound are provided.
 以下、本発明の樹脂組成物、プリプレグ、樹脂シート及び積層板の実施形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本明細書において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本明細書において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本明細書において組成物中の各成分の含有率又は含有量は、組成物中に各成分に該当する物質が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本明細書において組成物中の各成分の粒径は、組成物中に各成分に該当する粒子が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本明細書において「層」との語には、当該層が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
 本明細書において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
Hereinafter, embodiments of the resin composition, prepreg, resin sheet, and laminate of the present invention will be described in detail. However, the present invention is not limited to the following embodiments. In the following embodiments, the components (including element steps and the like) are not essential unless otherwise specified. The same applies to numerical values and ranges thereof, and the present invention is not limited thereto.
In this specification, the term “process” includes a process that is independent of other processes and includes the process if the purpose of the process is achieved even if it cannot be clearly distinguished from the other processes. It is.
In the present specification, numerical values indicated by using “to” include numerical values described before and after “to” as the minimum value and the maximum value, respectively.
In the numerical ranges described stepwise in this specification, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range. Good. Further, in the numerical ranges described in this specification, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
In the present specification, the content rate or content of each component in the composition is such that when there are a plurality of substances corresponding to each component in the composition, the plurality of kinds present in the composition unless otherwise specified. It means the total content or content of substances.
In this specification, the particle size of each component in the composition is a mixture of the plurality of types of particles present in the composition unless there is a specific indication when there are a plurality of types of particles corresponding to each component in the composition. Means the value of.
In this specification, the term “layer” refers to the case where the layer is formed only in a part of the region in addition to the case where the layer is formed over the entire region. Is also included.
In this specification, the term “lamination” indicates that layers are stacked, and two or more layers may be combined, or two or more layers may be detachable.
<プリプレグ>
-第一実施形態-
 第一実施形態のプリプレグは、1分子中に少なくとも1つのカルボジイミド基を有するカルボジイミド化合物を含有する。
 カルボジイミド化合物は、カルボン酸、エポキシ化合物、フェノール化合物、アミン等の硬化剤の存在下で硬化反応し、硬化物を形成する。また、カルボジイミド基同士が反応して二量物又は三量物を形成することで、カルボジイミド化合物同士が結合する。このように、カルボジイミド化合物は種々の反応を経て硬化物を提供する。第一実施形態のプリプレグは、1分子中に少なくとも1つのカルボジイミド基を有するカルボジイミド化合物を含有し、カルボジイミド基の硬化反応により硬化物を提供することが可能となる。
 第一実施形態のプリプレグに含有されるカルボジイミド化合物は、強固な硬化物を得る観点から、1分子中に少なくとも2つのカルボジイミド基を有するカルボジイミド化合物であることが好ましい。
 第一実施形態に用いられるカルボジイミド化合物については、後述の本実施形態の樹脂組成物の項で詳述する。
<Prepreg>
-First embodiment-
The prepreg of the first embodiment contains a carbodiimide compound having at least one carbodiimide group in one molecule.
The carbodiimide compound undergoes a curing reaction in the presence of a curing agent such as a carboxylic acid, an epoxy compound, a phenol compound, or an amine to form a cured product. Moreover, carbodiimide groups couple | bond together by carbodiimide group reacting and forming a dimer or a trimer. Thus, the carbodiimide compound provides a cured product through various reactions. The prepreg of the first embodiment contains a carbodiimide compound having at least one carbodiimide group in one molecule, and can provide a cured product by a curing reaction of the carbodiimide group.
The carbodiimide compound contained in the prepreg of the first embodiment is preferably a carbodiimide compound having at least two carbodiimide groups in one molecule from the viewpoint of obtaining a strong cured product.
The carbodiimide compound used in the first embodiment will be described in detail in the section of the resin composition of the present embodiment described later.
-第二実施形態-
 第二実施形態のプリプレグは、赤外線吸収スペクトルにおける2120±5cm-1にピークを有する。赤外線吸収スペクトルにおける2120±5cm-1のピークは、カルボジイミド基に由来するピークである。第二実施形態のプリプレグで観察される赤外線吸収スペクトルにおける2120±5cm-1のピークは、硬化前のカルボジイミド化合物に含まれるカルボジイミド基に由来するピークであってもよいし、カルボジイミド化合物の一部が硬化した状態(つまり、Bステージ)の半硬化物に含まれるカルボジイミド基に由来するピークであってもよい。赤外線吸収スペクトルのピークの位置でプリプレグを特定することで、プリプレグ中にカルボジイミド化合物又はその半硬化物が含まれているか否かを容易に特定可能となる。
 なお、本明細書においてBステージとの用語は、JIS K6900:1994の定義による。
-Second embodiment-
The prepreg of the second embodiment has a peak at 2120 ± 5 cm −1 in the infrared absorption spectrum. The peak at 2120 ± 5 cm −1 in the infrared absorption spectrum is a peak derived from a carbodiimide group. The peak at 2120 ± 5 cm −1 in the infrared absorption spectrum observed in the prepreg of the second embodiment may be a peak derived from a carbodiimide group contained in the carbodiimide compound before curing, or a part of the carbodiimide compound may be It may be a peak derived from a carbodiimide group contained in a semi-cured product in a cured state (that is, B stage). By specifying the prepreg at the position of the peak of the infrared absorption spectrum, it can be easily specified whether the carbodiimide compound or a semi-cured product thereof is contained in the prepreg.
In this specification, the term “B stage” is defined by JIS K6900: 1994.
 本実施形態において、赤外線吸収スペクトルは、赤外分光法を用いて測定することが可能である。例えば、赤外分光装置として、バイオラッド・ラボラトリィズ、FT-IR FTS6000型を用い、KBr錠剤法、液膜法等により積算回数を256回として測定する。 In this embodiment, the infrared absorption spectrum can be measured using infrared spectroscopy. For example, BioRad Laboratories, FT-IR FTS6000 model is used as an infrared spectrometer, and the number of integrations is measured by 256 using the KBr tablet method, liquid film method, or the like.
-第三実施形態-
 第三実施形態のプリプレグは、基材と、前記基材に含浸された後述の本実施形態の樹脂組成物と、を有する。
 第三実施形態のプリプレグは、後述する本実施形態の樹脂組成物を、基材に含浸して形成することができる。
 第三実施形態のプリプレグは、本実施形態の樹脂組成物を基材に含浸し、加熱等により樹脂組成物を半硬化(Bステージ化)して製造することもできる。第三実施形態で用いられる基材として、各種の電気絶縁材料用積層板に用いられている周知のものが使用できる。
-Third embodiment-
The prepreg of the third embodiment has a base material and a resin composition of the present embodiment described later impregnated in the base material.
The prepreg of the third embodiment can be formed by impregnating a base material with a resin composition of the present embodiment described later.
The prepreg of the third embodiment can also be produced by impregnating the resin composition of the present embodiment into a substrate and semi-curing (B-stage) the resin composition by heating or the like. As the base material used in the third embodiment, known materials used in various laminated sheets for electrical insulating materials can be used.
 プリプレグの平均厚みは、目的に応じて適宜選択することができ、例えば50μm~500μmとすることができ、熱伝導率及び可とう性の観点から、60μm~300μmであることが好ましい。
 ここで、プリプレグの平均厚みは、対象となるプリプレグの5点の厚みを、マイクロメーター等を用いて測定し、その算術平均値として与えられる値である。
The average thickness of the prepreg can be appropriately selected according to the purpose, and can be, for example, 50 μm to 500 μm. From the viewpoint of thermal conductivity and flexibility, it is preferably 60 μm to 300 μm.
Here, the average thickness of the prepreg is a value given as an arithmetic average value obtained by measuring the thicknesses of five points of the target prepreg using a micrometer or the like.
 基材の材質の具体例としては、Eガラス、Dガラス、Sガラス、Qガラス等の無機物繊維、ポリイミド、ポリエステル、テトラフルオロエチレン等の有機繊維、それらの混合物などが挙げられる。これらの基材は、例えば、織布、不織布、ロービンク、チョップドストランドマット及びサーフェシングマットの形状を有していてもよい。基材の材質及び形状は、目的とする成形物の用途及び性能により選択され、必要により、1種単独又は2種以上の材質及び形状を組み合わせることができる。 Specific examples of the material of the substrate include inorganic fibers such as E glass, D glass, S glass, and Q glass, organic fibers such as polyimide, polyester, and tetrafluoroethylene, and mixtures thereof. These base materials may have the shape of a woven fabric, a nonwoven fabric, a robink, a chopped strand mat, and a surfacing mat, for example. The material and shape of the substrate are selected depending on the intended use and performance of the molded product, and one or more materials and shapes can be combined as required.
 基材の厚みは、特に制限されず、例えば、0.03mm~0.5mmとすることができる。基材は、シランカップリング剤等で表面処理したもの又は機械的に開繊処理を施したものが、硬化物の耐熱性、耐湿性、加工性等の面から好適である。
 基材に対する樹脂組成物の付着量は、乾燥後のプリプレグに占める樹脂組成物の割合として、20質量%~90質量%が好ましく、30質量%~90質量%がより好ましく、40質量%~80質量%が更に好ましい。
 基材に対する樹脂組成物の付着量が上記範囲となるように、基材に樹脂組成物を含浸した後、通常、100℃~200℃の温度で1分~30分加熱乾燥し、半硬化(Bステージ化)させて、第三実施形態のプリプレグを得ることができる。
 樹脂組成物を基材に含浸する方法に特に制限はなく、例えば、塗工機により塗布する方法を挙げることができる。詳細には、例えば、基材を樹脂組成物のワニスにくぐらせて引き上げる縦型塗工法、及び支持フィルム上に樹脂組成物を塗工してから、樹脂組成物の塗工された支持フィルムに基材を押し付けて含浸させる横型塗工法を挙げることができる。基材内での無機フィラーの偏在を抑える観点からは、横型塗工法が好適である。
The thickness of the substrate is not particularly limited, and can be, for example, 0.03 mm to 0.5 mm. The substrate is preferably surface-treated with a silane coupling agent or the like or mechanically subjected to fiber opening treatment from the viewpoint of heat resistance, moisture resistance, workability, etc. of the cured product.
The amount of the resin composition attached to the substrate is preferably 20% by mass to 90% by mass, more preferably 30% by mass to 90% by mass, and more preferably 40% by mass to 80% by mass as the ratio of the resin composition to the prepreg after drying. More preferred is mass%.
After impregnating the substrate with the resin composition so that the amount of the resin composition attached to the substrate is within the above range, the substrate is usually heated and dried at a temperature of 100 ° C. to 200 ° C. for 1 minute to 30 minutes, and semi-cured ( The prepreg of the third embodiment can be obtained.
There is no restriction | limiting in particular in the method of impregnating a resin composition to a base material, For example, the method of apply | coating with a coating machine can be mentioned. Specifically, for example, a vertical coating method in which the base material is pulled through the varnish of the resin composition, and the resin composition is coated on the support film, and then the support film coated with the resin composition is applied. A horizontal coating method in which a substrate is pressed and impregnated can be mentioned. From the viewpoint of suppressing the uneven distribution of the inorganic filler in the substrate, the horizontal coating method is suitable.
 第三実施形態のプリプレグにおける溶剤残存量は、2.0質量%以下であることが好ましく、1.0質量%以下であることがより好ましく、0.7質量%以下であることが更に好ましい。 The solvent residual amount in the prepreg of the third embodiment is preferably 2.0% by mass or less, more preferably 1.0% by mass or less, and further preferably 0.7% by mass or less.
 プリプレグの溶剤残存量は、プリプレグを40mm角に切り出し、190℃に予熱した恒温槽中で2時間乾燥させたときの、乾燥前後の質量変化から求める。 The amount of solvent remaining in the prepreg is determined from the change in mass before and after drying when the prepreg is cut into 40 mm squares and dried in a thermostat preheated to 190 ° C. for 2 hours.
 第三実施形態のプリプレグは、熱間加圧により、表面を平坦化してから使用してもよい。熱間加圧の方法は、熱プレス、熱ロール、ラミネータ等を用いる方法を任意に選択することができる。
 熱プレスを用いる方法で熱間加圧する場合、加熱温度は、樹脂組成物に用いるカルボジイミド化合物の種類、硬化剤の種類等に応じて適宜設定することが好ましい。加熱温度は、一般には、60℃~180℃とすることが好ましく、120℃~150℃とすることがより好ましい。また、真空度は、3Pa~0.1kPaとすることが好ましい。プレス圧は、0.5MPa~4MPaとすることが好ましく、1MPa~2MPaとすることがより好ましい。
The prepreg of the third embodiment may be used after the surface is flattened by hot pressing. As a method of hot pressurization, a method using a hot press, a hot roll, a laminator, or the like can be arbitrarily selected.
When hot pressing is performed by a method using a hot press, the heating temperature is preferably set as appropriate according to the type of carbodiimide compound used in the resin composition, the type of curing agent, and the like. In general, the heating temperature is preferably 60 ° C. to 180 ° C., more preferably 120 ° C. to 150 ° C. The degree of vacuum is preferably 3 Pa to 0.1 kPa. The pressing pressure is preferably 0.5 MPa to 4 MPa, more preferably 1 MPa to 2 MPa.
<樹脂シート>
 本実施形態の樹脂シートは、本実施形態の樹脂組成物をシート状に成形したものである。本実施形態の樹脂シートとしては、例えば、本実施形態の樹脂組成物を離型基材上に塗布し、乾燥することで製造することができる。この際、乾燥後に必要に応じて本実施形態の樹脂シートの2枚を向かい合わせ又は樹脂シートに離型基材をあてて熱間加圧することで樹脂シートの両面を平滑化すると、塗工時のピンホール等が解消できるため好ましい。
<Resin sheet>
The resin sheet of the present embodiment is obtained by molding the resin composition of the present embodiment into a sheet shape. As a resin sheet of this embodiment, it can manufacture by apply | coating the resin composition of this embodiment on a mold release base material, and drying, for example. At this time, after drying, if two surfaces of the resin sheet are smoothed by facing two sheets of the resin sheet of this embodiment facing each other or applying a release substrate to the resin sheet and hot pressing as necessary, It is preferable because pinholes and the like can be eliminated.
 離型基材としては、乾燥時の温度に耐えうるものであれば特に制限はなく、一般的に用いられる離型剤付きのポリエチレンテレフタレートフィルム、ポリイミドフィルム、アラミドフィルム等の樹脂フィルム、離型剤付きのアルミニウム箔等の金属箔などを用いることができる。 The release substrate is not particularly limited as long as it can withstand the temperature during drying, and is generally used as a polyethylene terephthalate film with a release agent, a polyimide film, a resin film such as an aramid film, and a release agent. A metal foil such as an attached aluminum foil can be used.
 樹脂シートの平均厚みは特に制限されず、目的に応じて適宜選択することができる。例えば樹脂シートの平均厚みは、100μm~500μmであることが好ましく、100μm~300μmであることがより好ましい。なお、樹脂シートの平均厚みは、マイクロメーターを用いて5点の厚みを測定し、その算術平均値として求められる。 The average thickness of the resin sheet is not particularly limited and can be appropriately selected depending on the purpose. For example, the average thickness of the resin sheet is preferably 100 μm to 500 μm, and more preferably 100 μm to 300 μm. In addition, the average thickness of the resin sheet is obtained as an arithmetic average value by measuring the thickness of five points using a micrometer.
 上記樹脂シートは、例えば、下記のようにして得られる。まず、本実施形態の樹脂組成物を構成する各成分を、混合、溶解、分散等して、本実施形態の樹脂組成物のワニスを調製する。そして、調製したワニスを離型基材上に付与する。ワニスの付与は、公知の方法により実施することができる。ワニスの付与方法として、具体的には、コンマコート法、ダイコート法、リップコート法、グラビアコート法等の方法が挙げられる。所定の厚みに樹脂シートを形成するための付与方法としては、ギャップ間に被塗工物を通過させるコンマコート法、ノズルから流量を調整したワニスを塗布するダイコート法等を適用することができる。 The resin sheet is obtained as follows, for example. First, each component which comprises the resin composition of this embodiment is mixed, melt | dissolved, disperse | distributed etc., and the varnish of the resin composition of this embodiment is prepared. And the prepared varnish is provided on a mold release base material. The application of the varnish can be performed by a known method. Specific examples of the varnish application method include a comma coating method, a die coating method, a lip coating method, and a gravure coating method. As an application method for forming a resin sheet with a predetermined thickness, a comma coating method for passing an object to be coated between gaps, a die coating method for applying a varnish with a flow rate adjusted from a nozzle, or the like can be applied.
 乾燥温度は、ワニスに用いる溶剤によって適宜設定することが好ましく、一般には80℃~180℃程度である。乾燥時間はワニスのゲル化時間と樹脂シートの厚みとの兼ね合いで決めることができ、特に制限はない。乾燥後、離型基材を除去して、樹脂シートを得る。
 樹脂シートにおける溶剤残存量は、硬化の際のアウトガス発生時の気泡形成への懸念の観点から、2.0質量%以下であることが好ましく、1.0質量%以下であることがより好ましく、0.7質量%以下であることが更に好ましい。
The drying temperature is preferably set appropriately depending on the solvent used for the varnish, and is generally about 80 ° C. to 180 ° C. The drying time can be determined by considering the varnish gelation time and the thickness of the resin sheet, and is not particularly limited. After drying, the release substrate is removed to obtain a resin sheet.
The solvent residual amount in the resin sheet is preferably 2.0% by mass or less, more preferably 1.0% by mass or less, from the viewpoint of concern about bubble formation during outgas generation during curing. More preferably, it is 0.7 mass% or less.
 樹脂シートの溶剤残存量は、樹脂シートを40mm角に切り出し、190℃に予熱した恒温槽中で2時間乾燥させたときの、乾燥前後の質量変化から求める。 The residual amount of solvent in the resin sheet is determined from the change in mass before and after drying when the resin sheet is cut into a 40 mm square and dried in a thermostat preheated to 190 ° C. for 2 hours.
 本実施形態の樹脂シートは、プレス、ロールラミネータ等による熱間加圧により、積層又は貼付する前に予め表面を平坦化してから使用してもよい。熱間加圧の方法は、熱プレス、熱ロール、ラミネータ等を用いる方法を任意に選択することができる。
 熱プレスを用いる方法で熱間加圧する場合、加熱温度は、樹脂組成物に用いられるカルボジイミド化合物の種類、硬化剤の種類等に応じて適宜設定することが好ましく、一般には、60℃~180℃とすることが好ましく、120℃~150℃とすることがより好ましい。また、真空度は、3Pa~0.1kPaとすることが好ましい。プレス圧は、0.5MPa~4MPaとすることが好ましく、1MPa~2MPaとすることがより好ましい。
The resin sheet of the present embodiment may be used after the surface has been flattened before being laminated or pasted by hot pressing with a press, a roll laminator or the like. As a method of hot pressurization, a method using a hot press, a hot roll, a laminator, or the like can be arbitrarily selected.
When hot pressing is performed by a method using a hot press, the heating temperature is preferably appropriately set according to the type of carbodiimide compound used in the resin composition, the type of curing agent, and the like, and generally 60 ° C. to 180 ° C. The temperature is preferably 120 ° C. to 150 ° C. The degree of vacuum is preferably 3 Pa to 0.1 kPa. The pressing pressure is preferably 0.5 MPa to 4 MPa, more preferably 1 MPa to 2 MPa.
 本実施形態の樹脂シートは、本実施形態の樹脂組成物を含む第1の樹脂層と、第1の樹脂層上に積層される本実施形態の樹脂組成物を含む第2の樹脂層を含むことが好ましい。例えば、本実施形態の樹脂シートは、本実施形態の樹脂組成物から形成される第1の樹脂層と、本実施形態の樹脂組成物から形成される第2の樹脂層との積層体であることが好ましい。これにより絶縁耐圧をより向上させることができる。第1の樹脂層及び第2の樹脂層を形成する本実施形態の樹脂組成物は、同一の組成であっても互いに異なる組成を有していてもよい。第1の樹脂層及び第2の樹脂層を形成する本実施形態の樹脂組成物は、同一の組成であることが好ましい。 The resin sheet of this embodiment includes a first resin layer containing the resin composition of this embodiment and a second resin layer containing the resin composition of this embodiment laminated on the first resin layer. It is preferable. For example, the resin sheet of this embodiment is a laminate of a first resin layer formed from the resin composition of this embodiment and a second resin layer formed of the resin composition of this embodiment. It is preferable. Thereby, the withstand voltage can be further improved. The resin composition of this embodiment for forming the first resin layer and the second resin layer may have the same composition or different compositions. It is preferable that the resin composition of this embodiment which forms a 1st resin layer and a 2nd resin layer is the same composition.
 これは例えば以下のように考えることができる。すなわち、2つの樹脂層を重ねることで、一方の樹脂層中に存在しうる厚みの薄くなる箇所(ピンホール又はボイド)がもう一方の樹脂層により補填されることになる。これにより、最小絶縁厚みを大きくすることができ、絶縁耐圧がより向上すると考えることができる。樹脂シートの製造方法におけるピンホール又はボイドの発生確率は高くはないが、2つの樹脂層を重ねることで薄い部分の重なり合う確率はその2乗になり、ピンホール又はボイドの個数はゼロに近づくことになる。絶縁破壊は最も絶縁的に弱い箇所で起こることから、2つの樹脂層を重ねることにより絶縁耐圧がより向上する効果が得られると考えることができる。 This can be considered as follows, for example. That is, by overlapping two resin layers, a thinned portion (pinhole or void) that may exist in one resin layer is compensated by the other resin layer. Thereby, it can be considered that the minimum insulation thickness can be increased and the withstand voltage is further improved. The probability of occurrence of pinholes or voids in the resin sheet manufacturing method is not high, but by overlapping two resin layers, the probability of overlap of thin parts becomes the square, and the number of pinholes or voids approaches zero. become. Since dielectric breakdown occurs at a place where the insulation is weakest, it can be considered that the effect of further improving the withstand voltage can be obtained by overlapping two resin layers.
<樹脂組成物>
 本実施形態の樹脂組成物は、1分子中に少なくとも1つのカルボジイミド基を有するカルボジイミド化合物と、硬化剤と、無機フィラーとを含有し、必要に応じてその他の成分を含有してもよい。
 本実施形態の樹脂組成物の用途は特に限定されるものではなく、例えば、熱硬化性樹脂組成物として、積層板等の製造に好適に使用可能である。
<Resin composition>
The resin composition of the present embodiment contains a carbodiimide compound having at least one carbodiimide group in one molecule, a curing agent, and an inorganic filler, and may contain other components as necessary.
The use of the resin composition of the present embodiment is not particularly limited, and can be suitably used, for example, as a thermosetting resin composition for producing a laminated board or the like.
 近年の配線の高密度化及び信頼性への要求から、積層板の材料には高い銅箔接着性及び耐熱性、並びに低い熱膨張係数(低熱膨張性)が必要とされる。例えば、微細配線の形成のため、積層板への銅箔等の金属箔の接着性としては、銅箔引き剥がし強さとして0.7kN/m以上であることが好ましく、0.9kN/m以上であることがより好ましい。また、配線の高密度化のためビルドアップ材等を用いて積層板をより多層化することも必要であり、高いリフロー耐熱性が必要である。リフロー耐熱性評価の指針となる銅付き耐熱性は、30分以上ふくれ等が生じないことが好ましい。さらに、配線の高密度化に伴い積層板はより薄型化される方向にあり、熱処理時における積層板の反りが小さいことが必要となる。積層板の低そり化のためには、積層板が高弾性であることが有効であり、積層板の曲げ弾性率を指標とする場合、曲げ弾性率が30GPa以上であることが好ましく、32GPa以上であることがより好ましい。また、低反り化のためには、積層板が低熱膨張性であることが有効であり、特に面方向の熱膨張係数が低いことが有効であり、面方向の線熱膨張係数が7ppm/℃以下であることが好ましく、5ppm/℃以下であることがより好ましい。また、低そり化のためには、積層板が低硬化収縮性であることも有効であり、特に面方向の硬化収縮率が小さいことが有効であり、面方向の硬化収縮率が0.5%以下であることが好ましく、0.3%以下であることがより好ましい。また、配線の高密度化に伴い積層板はより信頼性が要求される方向にあり、ドリル加工時のドリル穴の内壁粗さも小さいことが必要となる。ドリル穴の内壁粗さの評価は、めっき銅のドリル穴内壁への染み込み性により評価され、めっき染み込み長さの最大が20μm以下であることが好ましく、15μm以下であることがより好ましい。さらに、高速応答性の要求も増え続けており、積層板の比誘電率は4.3以下であること、また誘電正接は0.007以下であることが好ましい。
 このような状況の中、本発明者等は鋭意検討の結果、カルボジイミド化合物を含む本実施形態の樹脂組成物を発明した。
 以下、本実施形態の樹脂組成物に含まれる各成分について詳述する。
Due to recent demands for higher density and reliability of wiring, the laminated board material requires high copper foil adhesion and heat resistance, and low thermal expansion coefficient (low thermal expansion). For example, for the formation of fine wiring, the adhesiveness of a metal foil such as a copper foil to a laminated board is preferably 0.7 kN / m or more as a copper foil peeling strength, and 0.9 kN / m or more It is more preferable that In addition, it is necessary to make the laminate more multilayered by using a build-up material or the like in order to increase the wiring density, and high reflow heat resistance is required. The heat resistance with copper, which is a guideline for reflow heat resistance evaluation, is preferably free from blistering for 30 minutes or more. Furthermore, as the wiring density is increased, the laminate is in the direction of being made thinner, and the warp of the laminate during heat treatment is required to be small. In order to reduce the warp of the laminate, it is effective that the laminate is highly elastic. When the flexural modulus of the laminate is used as an index, the flexural modulus is preferably 30 GPa or more, and 32 GPa or more. It is more preferable that Further, in order to reduce warpage, it is effective that the laminate has a low thermal expansion property. Particularly, it is effective that the thermal expansion coefficient in the plane direction is low, and the linear thermal expansion coefficient in the plane direction is 7 ppm / ° C. Or less, more preferably 5 ppm / ° C. or less. In order to reduce warpage, it is also effective that the laminate has low cure shrinkage, and in particular, it is effective that the cure shrinkage rate in the plane direction is small, and the cure shrinkage rate in the plane direction is 0.5. % Or less is preferable, and 0.3% or less is more preferable. In addition, as the wiring density increases, the laminated board is in a direction that requires more reliability, and the inner wall roughness of the drill hole during drilling is required to be small. The evaluation of the inner wall roughness of the drill hole is evaluated by the penetration of plated copper into the inner wall of the drill hole, and the maximum plating penetration length is preferably 20 μm or less, and more preferably 15 μm or less. Furthermore, the demand for high-speed response continues to increase, and it is preferable that the relative dielectric constant of the laminate is 4.3 or less and the dielectric loss tangent is 0.007 or less.
Under such circumstances, the present inventors have invented the resin composition of this embodiment containing a carbodiimide compound as a result of intensive studies.
Hereinafter, each component contained in the resin composition of this embodiment is explained in full detail.
(カルボジイミド化合物)
 本実施形態で用いられるカルボジイミド化合物は、1分子中に少なくとも1つのカルボジイミド基を有するカルボジイミド化合物であれば特に限定されるものではない。本実施形態で用いられるカルボジイミド化合物は、強固な硬化物を得る観点から、1分子中に少なくとも2つのカルボジイミド基を有するカルボジイミド化合物であることが好ましい。
 本実施形態で用いられるカルボジイミド化合物は、芳香族カルボジイミド化合物であっても脂肪族カルボジイミド化合物であってもよく、硬化剤との反応性の高さの観点から、芳香族カルボジイミド化合物であることが好ましい。
 本実施形態において、芳香族カルボジイミド化合物とは、カルボジイミド基の窒素原子が、ベンゼン環等の芳香環を構成する炭素原子と結合しているカルボジイミド化合物をいう。一方、本実施形態において脂肪族カルボジイミド化合物とは、カルボジイミド基の窒素原子が、アルキレン基を構成する炭素原子と結合しているカルボジイミド化合物をいう。
(Carbodiimide compound)
The carbodiimide compound used in the present embodiment is not particularly limited as long as it is a carbodiimide compound having at least one carbodiimide group in one molecule. The carbodiimide compound used in the present embodiment is preferably a carbodiimide compound having at least two carbodiimide groups in one molecule from the viewpoint of obtaining a strong cured product.
The carbodiimide compound used in the present embodiment may be an aromatic carbodiimide compound or an aliphatic carbodiimide compound, and is preferably an aromatic carbodiimide compound from the viewpoint of high reactivity with a curing agent. .
In the present embodiment, the aromatic carbodiimide compound refers to a carbodiimide compound in which a nitrogen atom of a carbodiimide group is bonded to a carbon atom constituting an aromatic ring such as a benzene ring. On the other hand, the aliphatic carbodiimide compound in the present embodiment refers to a carbodiimide compound in which a nitrogen atom of a carbodiimide group is bonded to a carbon atom constituting an alkylene group.
 本実施形態で用いられるカルボジイミド化合物は、1分子中に2個のイソシアネート基を有する化合物(a)を製造原料として用いることで得られたものであることが好ましい。1分子中に2個のイソシアネート基を有する化合物(a)としては、下記一般式(II)及び下記一般式(III)からなる群より選択される少なくとも1種で表されるイソシアネート化合物が好ましい。 The carbodiimide compound used in the present embodiment is preferably obtained by using a compound (a) having two isocyanate groups in one molecule as a production raw material. As the compound (a) having two isocyanate groups in one molecule, an isocyanate compound represented by at least one selected from the group consisting of the following general formula (II) and the following general formula (III) is preferable.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 一般式(II)において、Rは単結合、炭素数1~5の2価の飽和炭化水素基又は酸素原子であり、R2a及びR2bは各々独立に炭素数1~5の1価の飽和炭化水素基又はハロゲン原子であり、s及びtは各々独立に0~4の整数である。 In the general formula (II), R 2 is a single bond, a divalent saturated hydrocarbon group having 1 to 5 carbon atoms or an oxygen atom, and R 2a and R 2b are each independently a monovalent having 1 to 5 carbon atoms. A saturated hydrocarbon group or a halogen atom, and s and t are each independently an integer of 0 to 4;
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 一般式(III)において、Rは各々独立に炭素数1~5の1価の飽和炭化水素基であり、yは0~4の整数である。 In the general formula (III), each R 3 is independently a monovalent saturated hydrocarbon group having 1 to 5 carbon atoms, and y is an integer of 0 to 4.
 一般式(II)において、Rで表される炭素数1~5の2価の飽和炭化水素基は、直鎖状であってもよく、分岐鎖状であってもよく、環状であってもよい。
 Rで表される2価の飽和炭化水素基としては、メチレン基、エチレン基、プロピレン基、ブチレン基、イソブチレン基、ペンチレン基、シクロプロピレン基、シクロブチレン基、シクロペンチレン基等が挙げられる。
 Rとしては、硬化物の低熱膨張性の観点から、単結合、メチレン基、又はイソブチレン基が好ましく、硬化物の耐熱性の観点から、単結合又はメチレン基がより好ましく、メチレン基が更に好ましい。
 R2a及びR2bで表される1価の飽和炭化水素基としては、メチル基、エチル基、n-プロピル基、n-ブチル基、イソブチル基、n-ペンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基等が挙げられる。
 R2a及びR2bで表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子等が挙げられる。
 R2a及びR2bとしては、硬化物の耐薬品性の観点から、フッ素原子又はメチル基が好ましい。s及びtは各々独立に、0又は1が好ましい。sが1の場合、樹脂の相溶性の観点からR2aはメチル基又はフッ素原子が好ましい。tが1の場合、樹脂の相溶性の観点からR2bはメチル基又はフッ素原子が好ましい。
In the general formula (II), the divalent saturated hydrocarbon group having 1 to 5 carbon atoms represented by R 2 may be linear, branched or cyclic. Also good.
Examples of the divalent saturated hydrocarbon group represented by R 2 include a methylene group, an ethylene group, a propylene group, a butylene group, an isobutylene group, a pentylene group, a cyclopropylene group, a cyclobutylene group, and a cyclopentylene group. .
R 2 is preferably a single bond, a methylene group, or an isobutylene group from the viewpoint of low thermal expansion of the cured product, more preferably a single bond or a methylene group, and still more preferably a methylene group from the viewpoint of the heat resistance of the cured product. .
Examples of the monovalent saturated hydrocarbon group represented by R 2a and R 2b include methyl group, ethyl group, n-propyl group, n-butyl group, isobutyl group, n-pentyl group, cyclopropyl group, cyclobutyl group, A cyclopentyl group etc. are mentioned.
Examples of the halogen atom represented by R 2a and R 2b include a fluorine atom, a chlorine atom, and a bromine atom.
The R 2a and R 2b, from the viewpoint of chemical resistance of the cured product, a fluorine atom or a methyl group is preferable. s and t are each independently preferably 0 or 1. When s is 1, R 2a is preferably a methyl group or a fluorine atom from the viewpoint of resin compatibility. When t is 1, R 2b is preferably a methyl group or a fluorine atom from the viewpoint of resin compatibility.
 一般式(III)において、Rで表される炭素数1~5の1価の飽和炭化水素基は、直鎖状であってもよく、分岐鎖状であってもよく、環状であってもよい。
 Rで表される1価の飽和炭化水素基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、イソペンチル基等が挙げられる。
 Rとしては、合成時の収率の観点からメチル基が好ましい。
 硬化物の耐薬品性の観点から一般式(III)において、yは、0又は1が好ましく、yが1の場合、Rはメチル基が好ましい。
In the general formula (III), the monovalent saturated hydrocarbon group having 1 to 5 carbon atoms represented by R 3 may be linear, branched or cyclic. Also good.
Examples of the monovalent saturated hydrocarbon group represented by R 3 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, n-pentyl group, and isopentyl group. Etc.
R 3 is preferably a methyl group from the viewpoint of yield during synthesis.
In the general formula (III) from the viewpoint of chemical resistance of the cured product, y is preferably 0 or 1, and when y is 1, R 3 is preferably a methyl group.
 一般式(II)及び一般式(III)で表されるイソシアネート化合物の具体例としては、ジフェニルメタン-4,4’-ジイソシアネート、ジフェニルメタン-2,4’-ジイソシアネート、ジフェニルエーテル-4,4’-ジイソシアネート、3,3’-ジメチルビフェニル-4,4’-ジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、1,3,5-トリイソプロピル-2,6-ジイソシアネートベンゼン、p-ベンゼンジイソシアネート等のジイソシアネート化合物が挙げられる。
 1分子中に2個のイソシアネート基を有する化合物(a)は、1種単独で又は2種以上を組み合わせて使用することができる。
Specific examples of the isocyanate compounds represented by the general formula (II) and the general formula (III) include diphenylmethane-4,4′-diisocyanate, diphenylmethane-2,4′-diisocyanate, diphenylether-4,4′-diisocyanate, 3,3′-dimethylbiphenyl-4,4′-diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3,5-triisopropyl-2,6-diisocyanate benzene, p-benzene And diisocyanate compounds such as diisocyanate.
The compound (a) having two isocyanate groups in one molecule can be used alone or in combination of two or more.
 これらの中でも、未反応のイソシアネート基が残り難く硬化物の耐熱性に優れるジフェニルメタン-4,4’-ジイソシアネート、ジフェニルメタン-2,4’-ジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート等が好ましく、硬化物の低硬化収縮性に優れるジフェニルメタン-4,4’-ジイソシアネート、ジフェニルメタン-2,4’-ジイソシアネート等がより好ましい。 Among these, unreacted isocyanate groups hardly remain and the cured product is excellent in heat resistance. Diisocyanate and the like are preferable, and diphenylmethane-4,4′-diisocyanate, diphenylmethane-2,4′-diisocyanate and the like, which are excellent in low curing shrinkage of the cured product, are more preferable.
 本実施形態で用いられるカルボジイミド化合物の製造原料としては、必要により下記一般式(IV)で示される化合物である高多核体のポリメチレンポリフェニルポリイソシアネートを用いてもよい。さらには、必要により各種の多価アルコール化合物、フェノール化合物、ε-カプロラクタム等によりイソシアネート基の一部が変性されたイソシアネート化合物を併用してもよい。 As a raw material for producing the carbodiimide compound used in the present embodiment, a polymethylene polyphenyl polyisocyanate having a high polynuclear body, which is a compound represented by the following general formula (IV), may be used as necessary. Furthermore, if necessary, an isocyanate compound in which a part of the isocyanate group is modified with various polyhydric alcohol compounds, phenol compounds, ε-caprolactam or the like may be used in combination.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 一般式(IV)において、rは正の数である。一般式(IV)で示される化合物の重量平均分子量は、500~10,000が好ましく、1,000~5,000がより好ましい。
 本実施形態において、重量平均分子量は下記方法により測定された値をいう。
 測定対象をテトラヒドロフラン(液体クロマトグラフ用)に溶解し、PTFE(ポリテトラフルオロエチレン)製フィルタ〔倉敷紡績株式会社製、HPLC(高速液体クロマトグラフィー)前処理用、クロマトディスク、型番:13N、孔径:0.45μm〕を通して不溶分を除去する。GPC〔ポンプ:L6200 Pump(株式会社日立製作所製)、検出器:示差屈折率検出器L3300 RI Monitor(株式会社日立製作所製)、カラム:TSKgel-G5000HXLとTSKgel-G2000HXL(計2本)(共に東ソー株式会社製)を直列に接続、カラム温度:30℃、溶離液:テトラヒドロフラン、流速:1.0ml/分、標準物質:ポリスチレン〕を用い、重量平均分子量を測定する。
In general formula (IV), r is a positive number. The weight average molecular weight of the compound represented by the general formula (IV) is preferably 500 to 10,000, and more preferably 1,000 to 5,000.
In the present embodiment, the weight average molecular weight is a value measured by the following method.
A measurement object is dissolved in tetrahydrofuran (for liquid chromatograph), and a PTFE (polytetrafluoroethylene) filter (manufactured by Kurashiki Boseki Co., Ltd., for HPLC (high performance liquid chromatography) pretreatment, chromatodisc, model number: 13N, pore size: 0.45 μm] to remove insoluble matter. GPC (pump: L6200 Pump (manufactured by Hitachi, Ltd.), detector: differential refractive index detector L3300 RI Monitor (manufactured by Hitachi, Ltd.), column: TSKgel-G5000HXL and TSKgel-G2000HXL (both in total) (Made by Co., Ltd.) in series, column temperature: 30 ° C., eluent: tetrahydrofuran, flow rate: 1.0 ml / min, standard substance: polystyrene], and the weight average molecular weight is measured.
 また、本実施形態で用いられるカルボジイミド化合物は、芳香族モノイソシアネート化合物(b)を製造原料として用いて得たものであることが好ましい。芳香族モノイソシアネート化合物(b)としては、下記一般式(V)で表されるイソシアネート化合物であることが好ましい。 Further, the carbodiimide compound used in the present embodiment is preferably obtained using the aromatic monoisocyanate compound (b) as a production raw material. The aromatic monoisocyanate compound (b) is preferably an isocyanate compound represented by the following general formula (V).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 一般式(V)において、Rは各々独立にハロゲン原子、炭素数1~5の1価の飽和炭化水素基、又はトリフルオロメチル基であり、xは0~5の整数である。 In the general formula (V), each R 1 independently represents a halogen atom, a monovalent saturated hydrocarbon group having 1 to 5 carbon atoms, or a trifluoromethyl group, and x is an integer of 0 to 5.
 一般式(V)において、Rで表される炭素数1~5の1価の飽和炭化水素基は、直鎖状であってもよく、分岐鎖状であってもよく、環状であってもよい。
 Rで表される1価の飽和炭化水素基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、イソペンチル基等が挙げられる。
 Rで表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子等が挙げられる。
 一般式(V)において、合成時の収率の観点から、xは0~3の整数であることが好ましく、0であることがより好ましい。
In the general formula (V), the monovalent saturated hydrocarbon group having 1 to 5 carbon atoms represented by R 1 may be linear, branched or cyclic. Also good.
Examples of the monovalent saturated hydrocarbon group represented by R 1 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, an n-pentyl group, and an isopentyl group. Etc.
Examples of the halogen atom represented by R 1 include a fluorine atom, a chlorine atom, and a bromine atom.
In the general formula (V), x is preferably an integer of 0 to 3, more preferably 0 from the viewpoint of the yield during synthesis.
 一般式(V)で表されるイソシアネート化合物の具体例としては、イソシアン酸フェニル、2,6-ジメチルフェニルイソシアネート、3,5-ジメチルフェニルイソシアネート、2,6-ジイソプロピルフェニルイソシアネート、4-フルオロフェニルイソシアネート、2,4-ジフルオロフェニルイソシアネート、2,4,6-トリフルオロフェニルイソシアネート、3-(トリフルオロメチル)フェニルイソシアネート、4-(トリフルオロメチル)フェニルイソシアネート等のモノイソシアネート化合物などが挙げられる。
 芳香族モノイソシアネート化合物(b)は、1種単独で又は2種以上を組み合わせて使用することができる。
 これらの中でも、イソシアン酸フェニル、2,6-ジメチルフェニルイソシアネート及び3,5-ジメチルフェニルイソシアネートは、合成されるカルボジイミド化合物の分子量及び粘度の調整が容易となり、また商業的に安価であるため好ましい。これらは、東ソー株式会社、BASF INOAC ポリウレタン株式会社、中央化成品株式会社、純正化学株式会社、和光純薬工業株式会社等から商業的に入手できる。
Specific examples of the isocyanate compound represented by the general formula (V) include phenyl isocyanate, 2,6-dimethylphenyl isocyanate, 3,5-dimethylphenyl isocyanate, 2,6-diisopropylphenyl isocyanate, 4-fluorophenyl isocyanate. 2,4-difluorophenyl isocyanate, 2,4,6-trifluorophenyl isocyanate, 3- (trifluoromethyl) phenyl isocyanate, 4- (trifluoromethyl) phenyl isocyanate and other monoisocyanate compounds.
An aromatic monoisocyanate compound (b) can be used individually by 1 type or in combination of 2 or more types.
Among these, phenyl isocyanate, 2,6-dimethylphenyl isocyanate, and 3,5-dimethylphenyl isocyanate are preferable because the molecular weight and viscosity of the synthesized carbodiimide compound can be easily adjusted and are commercially inexpensive. These are commercially available from Tosoh Corporation, BASF INOAC Polyurethane Corporation, Chuo Kasei Co., Ltd., Junsei Chemical Co., Ltd., Wako Pure Chemical Industries, Ltd.
 本実施形態で用いられるカルボジイミド化合物は、1分子中に2個のイソシアネート基を有する化合物(a)成分と、芳香族モノイソシアネート化合物(b)成分と必要に応じてその他の成分とを合成原料に使用し、カルボジイミド化反応させることにより得られたものであってもよい。
 上記の(a)成分と(b)成分の使用量は、(a)成分のイソシアネート基数((a)成分の使用量/(a)成分のイソシアネート基当量)と、(b)成分のイソシアネート基数((b)成分の使用量/(b)成分のイソシアネート基当量)との比率((a)成分のイソシアネート基数/(b)成分のイソシアネート基数)が、0.4~20.0であることが好ましく、1.0~20.0であることがより好ましく、2.0~20.0が更に好ましい。
 (a)成分のイソシアネート基数と(b)成分のイソシアネート基数との比率((a)成分のイソシアネート基数/(b)成分のイソシアネート基数)が0.4以上であれば、硬化物の耐熱性及び耐薬品性が向上する傾向にある。また、比率((a)成分のイソシアネート基数/(b)成分のイソシアネート基数)が20.0以下であれば、カルボジイミド化合物の合成中にゲル化が生じにくい傾向にある。
The carbodiimide compound used in the present embodiment is composed of a compound (a) component having two isocyanate groups in one molecule, an aromatic monoisocyanate compound (b) component, and other components as necessary as a synthetic raw material. It may be obtained by use and carbodiimidization reaction.
The amount of component (a) and component (b) used is the number of isocyanate groups in component (a) (amount of component (a) / isocyanate group equivalent of component (a)) and the number of isocyanate groups in component (b). The ratio of ((b) component usage / (b) component isocyanate group equivalent) ((a) component isocyanate group number / (b) component isocyanate group number) is 0.4 to 20.0. Is more preferable, 1.0 to 20.0 is more preferable, and 2.0 to 20.0 is still more preferable.
If the ratio of the number of isocyanate groups in component (a) to the number of isocyanate groups in component (b) (number of isocyanate groups in component (a) / number of isocyanate groups in component (b)) is 0.4 or more, the heat resistance of the cured product and Chemical resistance tends to improve. If the ratio (number of isocyanate groups in component (a) / number of isocyanate groups in component (b)) is 20.0 or less, gelation tends not to occur during the synthesis of the carbodiimide compound.
 また、このカルボジイミド化反応には有機溶剤を使用してもよい。有機溶剤の使用量は、(a)成分と(b)成分と必要に応じて使用されるその他の成分との総和100質量部当たり、0質量部~1000質量部とすることが好ましく、0質量部~500質量部とすることがより好ましく、0質量部~400質量部とすることが更に好ましい。(a)成分、(b)成分、必要に応じて使用されるその他の成分及びカルボジイミド化反応により合成されるカルボジイミド化合物が低粘度の液状物質であれば、有機溶剤を使用せず無溶剤で合成してもよい。一方で、これらの成分が固形又は高粘度の粘調体であれば、適量の有機溶剤を使用することが好ましい。ただし、有機溶剤の使用量が多すぎると合成に長時間を要する場合及び製造コストが高くなってしまう場合がある。 Further, an organic solvent may be used for this carbodiimidization reaction. The amount of the organic solvent used is preferably 0 to 1000 parts by mass per 100 parts by mass of the sum of the component (a), the component (b) and other components used as necessary. Part to 500 parts by mass is more preferable, and 0 part to 400 parts by mass is even more preferable. If component (a), component (b), other components used as needed, and the carbodiimide compound synthesized by carbodiimidization reaction are low-viscosity liquid substances, synthesis is performed without using an organic solvent. May be. On the other hand, if these components are solid or a highly viscous viscous material, it is preferable to use an appropriate amount of an organic solvent. However, if the amount of the organic solvent used is too large, synthesis may take a long time and production costs may increase.
 カルボジイミド化反応で使用される有機溶剤としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤、テトラヒドロフラン等のエーテル系溶剤、トルエン、キシレン、メシチレン等の芳香族系溶剤、炭化水素系溶剤、石油系溶剤、ジメチルホルムアミド、ジメチルアセトアミド等のN原子含有溶剤、ジメチルスルホキシド等のS原子含有溶剤、γ-ブチロラクトン等のエステル系溶剤などが挙げられる。
 これらの有機溶剤は、1種単独で又は2種以上を組み合わせて使用することができる。これらの中で、溶解性及び揮発性が高くプリプレグの製造時に残溶剤として残りにくい観点から、また、硬化物の耐湿耐熱性、銅箔接着性及び低誘電率性の観点から、トルエン、キシレン、メシチレン等の芳香族系溶剤及びアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤が好ましい。
Examples of organic solvents used in the carbodiimidization reaction include ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, ether solvents such as tetrahydrofuran, aromatic solvents such as toluene, xylene, and mesitylene, and hydrocarbon solvents. Petroleum solvents, N atom-containing solvents such as dimethylformamide and dimethylacetamide, S atom-containing solvents such as dimethyl sulfoxide, and ester solvents such as γ-butyrolactone.
These organic solvents can be used individually by 1 type or in combination of 2 or more types. Among these, from the viewpoint of being highly soluble and volatile and hardly remaining as a residual solvent during the production of the prepreg, and from the viewpoint of moisture resistance and heat resistance of the cured product, copper foil adhesion and low dielectric constant, toluene, xylene, Aromatic solvents such as mesitylene and ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone are preferred.
 また、カルボジイミド化反応には、必要により任意にカルボジイミド化のための反応触媒を使用することができ、反応触媒の種類は特に限定されない。反応触媒の例としては、有機リン系化合物である1-フェニル-2-ホスホレン-1-オキシド、3-メチル-2-ホスホレン-1-オキシド、1-エチル-2-ホスホレン-1-オキシド、3-メチル-1-フェニル-2-ホスホレン-2-オキシド等が挙げられる。これらの中で、特に高反応性を有し高収率を得ることができる3-メチル-1-フェニル-2-ホスホレン-2-オキシドが好ましい。
 ここで、反応触媒の使用量は、(a)成分のイソシアネート基数と、(b)成分のイソシアネート基数と、必要に応じて使用されるその他の成分のイソシアネート基数との合計の総イソシアネート基数に対して、0.05mol%~2.0mol%が好ましい。反応触媒の使用量が0.05mol%以上であれば、カルボジイミド化反応に長時間を要することがなく、所望の反応率を実現できる傾向にある。また、反応触媒の使用量が2.0mol%以下であれば、カルボジイミド化反応の反応速度が速くなりすぎることが無く、反応の終点管理が容易になる傾向にある。
In the carbodiimidization reaction, a reaction catalyst for carbodiimidization can be arbitrarily used as necessary, and the type of the reaction catalyst is not particularly limited. Examples of reaction catalysts include organophosphorus compounds such as 1-phenyl-2-phospholene-1-oxide, 3-methyl-2-phospholene-1-oxide, 1-ethyl-2-phospholene-1-oxide, 3 -Methyl-1-phenyl-2-phospholene-2-oxide and the like. Of these, 3-methyl-1-phenyl-2-phospholene-2-oxide is particularly preferable because it has high reactivity and can provide a high yield.
Here, the amount of the reaction catalyst used is based on the total number of isocyanate groups of the component (a), the number of isocyanate groups of the component (b), and the number of isocyanate groups of other components used as necessary. Therefore, 0.05 mol% to 2.0 mol% is preferable. When the amount of the reaction catalyst used is 0.05 mol% or more, the carbodiimidization reaction does not take a long time, and a desired reaction rate tends to be realized. Moreover, if the usage-amount of a reaction catalyst is 2.0 mol% or less, the reaction rate of carbodiimidization reaction does not become too quick, and it exists in the tendency for end point management of reaction to become easy.
 上記の合成原料並びに必要により有機溶剤及び反応触媒を合成釜に仕込み、必要により加熱及び保温しながら0.1時間~10時間攪拌し、脱炭酸を伴うカルボジイミド化反応させることにより、カルボジイミド化合物が製造される。合成温度は5℃~180℃が好ましい。合成温度が5℃以上であれば、カルボジイミド化反応の反応速度が遅くなりすぎることが無く、許容できる時間で反応を終了できる傾向にある。また、合成温度が180℃以下であれば、副反応を引き起こす可能性が低下する傾向にある。 A carbodiimide compound is produced by charging the above-mentioned synthesis raw materials and, if necessary, an organic solvent and a reaction catalyst in a synthesis kettle, stirring for 0.1 to 10 hours while heating and keeping heat as necessary, and causing a carbodiimidization reaction with decarboxylation. Is done. The synthesis temperature is preferably 5 ° C to 180 ° C. When the synthesis temperature is 5 ° C. or higher, the reaction rate of the carbodiimidization reaction does not become too slow, and the reaction tends to be completed in an acceptable time. Moreover, if the synthesis temperature is 180 ° C. or lower, the possibility of causing a side reaction tends to be reduced.
 また、カルボジイミド化反応の終点確認、及びカルボジイミド化合物が生成したことの確認は、所定時間反応後に少量の試料を取り出し、FT-IR(フーリエ変換型赤外分光)測定でも可能である。
 FT-IR測定によりカルボジイミド化反応の終点確認等を行う場合、合成原料である(a)成分、(b)成分等のイソシアネート化合物に含まれるイソシアネート基に起因する2260±5cm-1のピークの消失を確認し、さらに、生成されるカルボジイミド基に起因する2120±5cm-1のピークの出現を確認する。このようにして、カルボジイミド化合物が得られる。
Further, the end point of the carbodiimidization reaction and the confirmation that the carbodiimide compound has been formed can be obtained by taking a small amount of sample after the reaction for a predetermined time and performing FT-IR (Fourier transform infrared spectroscopy) measurement.
When performing end point check of carbodiimidization reaction by FT-IR measurement, a synthetic raw material component (a), (b) the peak of the component such as 2260 ± 5 cm due to the isocyanate groups contained in the isocyanate compound -1 disappeared Further, the appearance of a peak at 2120 ± 5 cm −1 due to the generated carbodiimide group is confirmed. In this way, a carbodiimide compound is obtained.
 本実施形態で用いられるカルボジイミド化合物は、下記一般式(I)で示されるカルボジイミド化合物(以下、「特定カルボジイミド化合物」と称することがある。)を含むことが好ましい。 The carbodiimide compound used in the present embodiment preferably includes a carbodiimide compound represented by the following general formula (I) (hereinafter sometimes referred to as “specific carbodiimide compound”).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 一般式(I)において、Arは下記一般式(IIA)で示される基及び下記一般式(IIIA)で示される基からなる群より選択される少なくとも1種であり、Rは各々独立にハロゲン原子、炭素数1~5の1価の飽和炭化水素基、又はトリフルオロメチル基であり、mは0又は正の数であり、xは各々独立に0~5の整数である。 In general formula (I), Ar 1 is at least one selected from the group consisting of groups represented by the following general formula based on the following general formula represented by (IIA) (IIIA), R 1 each independently A halogen atom, a monovalent saturated hydrocarbon group having 1 to 5 carbon atoms, or a trifluoromethyl group, m is 0 or a positive number, and x is independently an integer of 0 to 5;
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 一般式(IIA)において、Rは単結合、炭素数1~5の2価の飽和炭化水素基又は酸素原子であり、R2a及びR2bは各々独立に炭素数1~5の1価の飽和炭化水素基又はハロゲン原子であり、s及びtは各々独立に0~4の整数であり、その具体例等は一般式(II)のR、R2a、R2b、s及びtと同様である。また、一般式(IIA)における*は、一般式(I)において、隣り合う窒素原子と結合する位置を示す。 In the general formula (IIA), R 2 is a single bond, a divalent saturated hydrocarbon group having 1 to 5 carbon atoms or an oxygen atom, and R 2a and R 2b are each independently a monovalent having 1 to 5 carbon atoms. A saturated hydrocarbon group or a halogen atom, and s and t are each independently an integer of 0 to 4, and specific examples thereof are the same as R 2 , R 2a , R 2b , s and t in the general formula (II) It is. Moreover, * in general formula (IIA) shows the position couple | bonded with an adjacent nitrogen atom in general formula (I).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 一般式(IIIA)において、Rは各々独立に炭素数1~5の1価の飽和炭化水素基であり、yは0~4の整数であり、その具体例等は一般式(III)のR及びyと同様である。また、一般式(IIIA)における*は、一般式(I)において、隣り合う窒素原子と結合する位置を示す。 In general formula (IIIA), each R 3 is independently a monovalent saturated hydrocarbon group having 1 to 5 carbon atoms, y is an integer of 0 to 4, and specific examples thereof are those of general formula (III). Same as R 3 and y. Moreover, * in general formula (IIIA) shows the position couple | bonded with an adjacent nitrogen atom in general formula (I).
 特定カルボジイミド化合物の製造工程は特に限定されるものではなく、上述の1分子中に2個のイソシアネート基を有する化合物(a)成分と、芳香族モノイソシアネート化合物(b)成分とを合成原料に使用し、カルボジイミド化反応させることにより得られたものであってもよいが、これに限定されるものではない。 The production process of the specific carbodiimide compound is not particularly limited, and the compound (a) component having two isocyanate groups in one molecule and the aromatic monoisocyanate compound (b) component are used as a raw material for synthesis. However, it may be obtained by a carbodiimidization reaction, but is not limited thereto.
 特定カルボジイミド化合物の重量平均分子量は、1,000~100,000であることが好ましく、1,000~50,000であることがより好ましく、1,000~20,000であることが更に好ましい。 The weight average molecular weight of the specific carbodiimide compound is preferably 1,000 to 100,000, more preferably 1,000 to 50,000, and still more preferably 1,000 to 20,000.
 本実施形態の樹脂組成物の固形分に占める、カルボジイミド化合物の割合は、5質量%~70質量%であることが好ましく、5質量%~60質量%であることがより好ましく、5質量%~55質量%であることが更に好ましい。
 なお、本実施形態において固形分とは、樹脂組成物を構成する成分のうちの非揮発性成分を意味する。
 本実施形態の樹脂組成物に含有されるカルボジイミド化合物に占める、特定カルボジイミド化合物の割合は、10質量%~100質量%であることが好ましく、20質量%~100質量%であることがより好ましく、30質量%~100質量%であることが更に好ましい。
The proportion of the carbodiimide compound in the solid content of the resin composition of the present embodiment is preferably 5% by mass to 70% by mass, more preferably 5% by mass to 60% by mass, and more preferably 5% by mass to More preferably, it is 55 mass%.
In addition, in this embodiment, solid content means the non-volatile component of the components which comprise a resin composition.
The proportion of the specific carbodiimide compound in the carbodiimide compound contained in the resin composition of the present embodiment is preferably 10% by mass to 100% by mass, more preferably 20% by mass to 100% by mass, More preferably, it is 30% by mass to 100% by mass.
(硬化剤)
 本実施形態の樹脂組成物は、硬化剤を含有する。本実施形態で用いられる硬化剤は、カルボジイミド化合物と硬化反応することのできる官能基を有する化合物であれば特に限定されるものではない。
 本実施形態で用いられる硬化剤としては、カルボン酸、エポキシ化合物、フェノール化合物及びアミンからなる群より選択される少なくとも1種を含むことが好ましい。これらの中でも、硬化物の耐湿性の観点から硬化剤としてエポキシ化合物を用いることが好ましい。
(Curing agent)
The resin composition of this embodiment contains a curing agent. The curing agent used in the present embodiment is not particularly limited as long as it is a compound having a functional group capable of undergoing a curing reaction with a carbodiimide compound.
The curing agent used in the present embodiment preferably includes at least one selected from the group consisting of carboxylic acid, epoxy compound, phenol compound and amine. Among these, it is preferable to use an epoxy compound as a curing agent from the viewpoint of moisture resistance of the cured product.
 硬化剤としてカルボン酸が用いられる場合、カルボン酸の具体例としては、マレイン酸、フタル酸、コハク酸等の公知のジカルボン酸化合物、トリメリット酸無水物などが挙げられる。カルボン酸は、1種単独で又は2種以上を組み合わせて使用することができる。 When carboxylic acid is used as the curing agent, specific examples of carboxylic acid include known dicarboxylic acid compounds such as maleic acid, phthalic acid, and succinic acid, trimellitic anhydride, and the like. Carboxylic acid can be used individually by 1 type or in combination of 2 or more types.
 硬化剤としてフェノール化合物が用いられる場合、フェノール化合物の具体例としては、フェノールノボラック等の公知のフェノール化合物が挙げられる。フェノール化合物は、1種単独で又は2種以上を組み合わせて使用することができる。 When a phenol compound is used as the curing agent, specific examples of the phenol compound include known phenol compounds such as phenol novolac. A phenol compound can be used individually by 1 type or in combination of 2 or more types.
 硬化剤としてアミンが用いられる場合、アミンの具体例としては、例えば、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、m-キシレンジアミン、トリメチルヘキサメチレンジアミン、2-メチルペンタメチレンジアミン、ジエチルアミノプロピルアミン、イソホロンジアミン、1,3-ビスアミノメチルシクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、ノルボルネンジアミン、1,2-ジアミノシクロヘキサン、ラロミン、ジアミノジフェニルメタン、メタフェニレンジアミン、ジアミノジフェニルスルフォン、ポリオキシプロピレンジアミン、ポリオキシプロピレントリアミン、ポリシクロヘキシルポリアミン混合物及びN-アミノエチルピペラジンが挙げられる。アミンは、1種単独で又は2種以上を組み合わせて使用することができる。 When an amine is used as the curing agent, specific examples of the amine include, for example, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, m-xylenediamine, trimethylhexamethylenediamine, 2-methylpentamethylenediamine, diethylaminopropylamine, Isophoronediamine, 1,3-bisaminomethylcyclohexane, bis (4-aminocyclohexyl) methane, norbornenediamine, 1,2-diaminocyclohexane, laromine, diaminodiphenylmethane, metaphenylenediamine, diaminodiphenylsulfone, polyoxypropylenediamine, poly Mention may be made of oxypropylene triamine, polycyclohexyl polyamine mixtures and N-aminoethylpiperazine. An amine can be used individually by 1 type or in combination of 2 or more types.
 硬化剤としてエポキシ化合物が用いられる場合、エポキシ化合物としては、1分子中に少なくとも2個のエポキシ基を有する化合物が好ましい。
 1分子中に少なくとも2個のエポキシ基を有する化合物としては、ビスフェノールA系、ビスフェノールF系、ビフェニル系、ノボラック系、ジシクロペンタジエン系、多官能フェノール系、ナフタレン系、アラルキル変性系、脂環式系、アルコール系等のグリシジルエーテル系;グリシジルアミン系;グリシジルエステル系などが挙げられ、1種単独で又は2種以上を組み合わせて使用することができる。
When an epoxy compound is used as the curing agent, the epoxy compound is preferably a compound having at least two epoxy groups in one molecule.
Compounds having at least two epoxy groups in one molecule include bisphenol A, bisphenol F, biphenyl, novolac, dicyclopentadiene, polyfunctional phenol, naphthalene, aralkyl modified, alicyclic Examples thereof include glycidyl ethers such as glycidyl ethers, glycidyl amines, and glycidyl esters, which can be used singly or in combination of two or more.
 エポキシ化合物としては、硬化物の高剛性、誘電特性、耐熱性、難燃性、耐湿性及び低熱膨張性、並びに室温(20℃~23℃)で固形であるためプリプレグを製造した際にプリプレグのタック性が小さくなるため取り扱い易くなるとの観点から、ナフタレン環含有エポキシ樹脂、ビフェニル基含有エポキシ樹脂及びジシクロペンタジエン型エポキシ樹脂が好ましい。
 また、エポキシ化合物としては、芳香族系有機溶剤への溶解性の観点からナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフトールアラルキル・クレゾール共重合型エポキシ樹脂及びビフェニルアラルキル型エポキシ樹脂が好ましい。
 また、近年、多層化、配線の高密度化等のためビルドアップ材等を用いて積層板をより多層化する場合が増えており、この際の成形性の観点から、エポキシ化合物としては、ナフトールアラルキル・クレゾール共重合型エポキシ樹脂及びビフェニルアラルキル型エポキシ樹脂が好ましい。
As an epoxy compound, the cured product has high rigidity, dielectric properties, heat resistance, flame resistance, moisture resistance and low thermal expansion, and is solid at room temperature (20 ° C to 23 ° C). A naphthalene ring-containing epoxy resin, a biphenyl group-containing epoxy resin, and a dicyclopentadiene-type epoxy resin are preferable from the viewpoint that tackiness is reduced and handling becomes easy.
Moreover, as an epoxy compound, a naphthalene type epoxy resin, a biphenyl type epoxy resin, a naphthol aralkyl / cresol copolymer type epoxy resin, and a biphenyl aralkyl type epoxy resin are preferable from the viewpoint of solubility in an aromatic organic solvent.
In recent years, there has been an increase in the number of multilayered boards using a build-up material or the like for the purpose of increasing the number of layers and increasing the density of wiring. From the viewpoint of moldability, naphthol is an epoxy compound. Aralkyl / cresol copolymer epoxy resins and biphenyl aralkyl epoxy resins are preferred.
 エポキシ化合物としてナフトールアラルキル・クレゾール共重合型エポキシ樹脂を用いる場合、ナフトールアラルキル・クレゾール共重合型エポキシ樹脂は、下記一般式(VI)で示される2つの構造単位を含む化合物が好ましい。 When a naphthol aralkyl / cresol copolymer type epoxy resin is used as the epoxy compound, the naphthol aralkyl / cresol copolymer type epoxy resin is preferably a compound containing two structural units represented by the following general formula (VI).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 一般式(VI)において、m及びnは、互いに異なっていてもよい正数である。
 一般式(VI)で示される2つの構造単位の比率は特に限定されるものではない。
 一般式(VI)で示される化合物の重量平均分子量は、500~10,000であることが好ましく、500~8,000であることがより好ましく、500~6,000であることが更に好ましい。
 ナフトールアラルキル・クレゾール共重合型エポキシ樹脂としては、日本化薬株式会社製のNC-7000L等が入手可能である。
In general formula (VI), m and n are positive numbers which may be different from each other.
The ratio of the two structural units represented by the general formula (VI) is not particularly limited.
The weight average molecular weight of the compound represented by the general formula (VI) is preferably 500 to 10,000, more preferably 500 to 8,000, and still more preferably 500 to 6,000.
As the naphthol aralkyl / cresol copolymer epoxy resin, NC-7000L manufactured by Nippon Kayaku Co., Ltd. is available.
 エポキシ樹脂としてビフェニルアラルキル型エポキシ樹脂を用いる場合、下記一般式(VII)で示される2つの構造単位を含む化合物が好ましい。 When a biphenyl aralkyl type epoxy resin is used as the epoxy resin, a compound containing two structural units represented by the following general formula (VII) is preferable.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 一般式(VII)において、p及びqは、互いに異なっていてもよい正数である。
 一般式(VII)で示される2つの構造単位の比率は特に限定されるものではない。
 一般式(VII)で示される化合物の重量平均分子量は、500~10,000であることが好ましく、500~8,000であることがより好ましく、500~6,000であることが更に好ましい。
 ビフェニルアラルキル型エポキシ樹脂としては、日本化薬株式会社製のNC-3000H等が入手可能である。
In general formula (VII), p and q are positive numbers which may be different from each other.
The ratio of the two structural units represented by the general formula (VII) is not particularly limited.
The weight average molecular weight of the compound represented by the general formula (VII) is preferably 500 to 10,000, more preferably 500 to 8,000, and still more preferably 500 to 6,000.
As the biphenyl aralkyl type epoxy resin, NC-3000H manufactured by Nippon Kayaku Co., Ltd. is available.
 硬化剤としてエポキシ化合物が用いられる場合、カルボジイミド化合物とエポキシ化合物との総和100質量部あたりのカルボジイミド化合物の含有量を10質量部~90質量部の範囲とし、エポキシ化合物の含有量を90質量部~10質量部の範囲とすることが好ましく、カルボジイミド化合物の含有量を30質量部~90質量部の範囲とし、エポキシ化合物の含有量を70質量部~10質量部の範囲とすることがより好ましく、カルボジイミド化合物の含有量を30質量部~80質量部の範囲とし、エポキシ化合物の含有量を70質量部~20質量部の範囲とすることが更に好ましい。カルボジイミド化合物とエポキシ化合物との総和100質量部あたりのカルボジイミド化合物の含有量が10質量部以上であれば、硬化物の弾性率、低熱膨張性、耐湿耐熱性、誘電特性、接着性、難燃性等が向上する傾向にある。カルボジイミド化合物とエポキシ化合物との総和100質量部あたりのカルボジイミド化合物の含有量が90質量部以下であれば、樹脂組成物の成形性が向上する傾向にあり、さらに、硬化物の耐めっき液性等の耐薬品性が向上する傾向にある。 When an epoxy compound is used as the curing agent, the content of the carbodiimide compound per 100 parts by mass of the total of the carbodiimide compound and the epoxy compound is in the range of 10 parts by mass to 90 parts by mass, and the content of the epoxy compound is 90 parts by mass to It is preferably in the range of 10 parts by mass, the carbodiimide compound content is preferably in the range of 30 parts by mass to 90 parts by mass, and the epoxy compound content is more preferably in the range of 70 parts by mass to 10 parts by mass. More preferably, the carbodiimide compound content is in the range of 30 to 80 parts by mass, and the epoxy compound content is in the range of 70 to 20 parts by mass. If the content of the carbodiimide compound per 100 parts by mass of the total of the carbodiimide compound and the epoxy compound is 10 parts by mass or more, the elastic modulus of the cured product, low thermal expansion, moisture and heat resistance, dielectric properties, adhesion, flame retardancy Etc. tend to improve. If the content of the carbodiimide compound per 100 parts by mass of the carbodiimide compound and the epoxy compound is 90 parts by mass or less, the moldability of the resin composition tends to be improved, and the plating solution resistance of the cured product, etc. The chemical resistance tends to be improved.
 硬化剤としてカルボン酸が用いられる場合、樹脂組成物中のカルボン酸の含有率は、含有されるカルボジイミド化合物に対し100質量%以下であることが好ましく、50質量%以下であることがより好ましく、30質量%以下であることが更に好ましい。 When carboxylic acid is used as the curing agent, the content of carboxylic acid in the resin composition is preferably 100% by mass or less, more preferably 50% by mass or less, relative to the carbodiimide compound contained, More preferably, it is 30 mass% or less.
 硬化剤としてフェノール化合物が用いられる場合、樹脂組成物中のフェノール化合物の含有率は、含有されるカルボジイミド化合物に対し100質量%以下であることが好ましく、50質量%以下であることがより好ましく、30質量%以下であることが更に好ましい。 When a phenol compound is used as the curing agent, the content of the phenol compound in the resin composition is preferably 100% by mass or less, more preferably 50% by mass or less, with respect to the carbodiimide compound contained, More preferably, it is 30 mass% or less.
 硬化剤としてアミンが用いられる場合、樹脂組成物中のアミン化合物の含有率は、含有されるカルボジイミド化合物に対し100質量%以下であることが好ましく、50質量%以下であることがより好ましく、30質量%以下であることが更に好ましい。 When an amine is used as the curing agent, the content of the amine compound in the resin composition is preferably 100% by mass or less, more preferably 50% by mass or less, based on the carbodiimide compound contained. More preferably, it is at most mass%.
(無機フィラー)
 本実施形態の樹脂組成物は、無機フィラーを含有する。本実施形態で用いられる無機フィラーは特に限定されるものではなく、溶融シリカ、爆燃シリカ、破砕シリカ等のシリカ、ガラス短繊維、ガラス微粉末、中空ガラス等のガラス、マイカ、タルク、炭酸カルシウム、石英、金属水和物などが挙げられる。無機フィラーは、1種単独で又は2種以上を組み合わせて使用することができる。
 これらの中でも、硬化物の低熱膨張性、低誘電正接性等の観点からシリカが好ましく、硬化物の低熱膨張性、銅箔接着性、耐熱性、耐湿性、難燃性、低誘電正接性等の観点から溶融シリカ、爆燃シリカ等の球状シリカがより好ましい。
 無機フィラーは、平均粒径が5.0μm以下であるものが好ましく、0.3μm~5.0μmであるものがより好ましく、0.3μm~2.0μmであるものが更に好ましく、0.5μm~1.0μmであるものが特に好ましい。
(Inorganic filler)
The resin composition of this embodiment contains an inorganic filler. The inorganic filler used in this embodiment is not particularly limited, silica such as fused silica, deflagration silica and crushed silica, glass short fibers, glass fine powder, glass such as hollow glass, mica, talc, calcium carbonate, Examples thereof include quartz and metal hydrate. An inorganic filler can be used individually by 1 type or in combination of 2 or more types.
Among these, silica is preferable from the viewpoint of low thermal expansion property and low dielectric loss tangent of the cured product, low thermal expansion property of the cured product, copper foil adhesiveness, heat resistance, moisture resistance, flame resistance, low dielectric loss tangent, etc. In view of the above, spherical silica such as fused silica and deflagration silica is more preferable.
The inorganic filler preferably has an average particle size of 5.0 μm or less, more preferably 0.3 μm to 5.0 μm, still more preferably 0.3 μm to 2.0 μm, and more preferably 0.5 μm to Those having a thickness of 1.0 μm are particularly preferable.
 無機フィラーとしてシリカを用いる場合、シリカは、平均粒径が5.0μm以下であるものが好ましく、0.3μm~5.0μmであるものがより好ましく、0.3μm~2.0μmであるものが更に好ましく、0.5μm~1.0μmであるものが特に好ましい。
 また、無機フィラーとして球状シリカを用いる場合、平均粒径が5.0μm以下であるものが、硬化物の熱膨張性、銅箔接着性、耐熱性、耐湿性、難燃性、低誘電正接性等の観点から好ましく、0.3μm~5.0μmであるものがより好ましく、0.3μm~2.0μmであるものが更に好ましく、0.5μm~1.0μmであるものが特に好ましい。
When silica is used as the inorganic filler, the silica preferably has an average particle size of 5.0 μm or less, more preferably 0.3 μm to 5.0 μm, and more preferably 0.3 μm to 2.0 μm. More preferably, the thickness is 0.5 μm to 1.0 μm.
When spherical silica is used as the inorganic filler, the one having an average particle size of 5.0 μm or less is the thermal expansion property of the cured product, copper foil adhesiveness, heat resistance, moisture resistance, flame resistance, low dielectric loss tangent From the viewpoint of the above, it is preferable that the thickness is 0.3 μm to 5.0 μm, more preferable is 0.3 μm to 2.0 μm, and particularly preferable is 0.5 μm to 1.0 μm.
 本実施形態において、平均粒径とは、下記の方法を用いて粒径を階級、体積を度数とし、度数の累積で表記された積算分布において、積算分布が50%となる粒径(体積平均粒径)を意味する。無機フィラーの粒径を測定する方法としては、例えば、レーザー回折、動的光散乱、小角X線散乱等の装置を用い、同時に多数の粒子を測定する方法、電子顕微鏡、原子間力顕微鏡等を用いて画像化し、粒子1つ1つの粒径を測定する方法などが挙げられる。液相遠心沈降、フィールドフロー分別、粒子径排除クロマトグラフィ、流体力学クロマトグラフィ等の方法を用い、粒径を測定する前に100μm以上の粒子を分離する前処理を行ってもよい。また測定試料が樹脂組成物の硬化物である場合は、例えば、マッフル炉等で800℃以上の高温で処理した後に残渣として得られる灰分を上記の方法で測定することができる。 In the present embodiment, the average particle diameter is a particle diameter (volume average) in which the integrated distribution is 50% in the integrated distribution expressed by the accumulation of the frequencies, where the particle diameter is a class and the volume is a frequency using the following method. Particle size). As a method for measuring the particle size of the inorganic filler, for example, using a device such as laser diffraction, dynamic light scattering, and small angle X-ray scattering, a method of simultaneously measuring a large number of particles, an electron microscope, an atomic force microscope, etc. And a method of measuring the particle size of each particle. Using a method such as liquid phase centrifugation, field flow fractionation, particle size exclusion chromatography, fluid dynamics chromatography, or the like, a pretreatment for separating particles of 100 μm or more may be performed before measuring the particle size. Moreover, when a measurement sample is the hardened | cured material of a resin composition, the ash obtained as a residue after processing at high temperature of 800 degreeC or more with a muffle furnace etc. can be measured by said method.
 本実施形態では、無機フィラーとしてシリカを用いる場合、シリカ(好ましくは、球状シリカ)と共にその他のフィラーを併用してもよい。その他のフィラーとしては、硬化物の低熱膨張性、弾性率、耐熱性、難燃性等の観点から、水酸化アルミニウム、水酸化マグネシウム等の金属水和物が好ましく、金属水和物の中でも、硬化物の高い耐熱性と難燃性が両立する観点から熱分解温度が300℃以上である金属水和物がより好ましく、ベーマイト型水酸化アルミニウム(AlOOH)、ギブサイト型水酸化アルミニウム(Al(OH))を熱処理によりその熱分解温度を300℃以上に調整した化合物、水酸化マグネシウム等が更に好ましく、安価であり、350℃以上の熱分解温度と、高い耐薬品性を有するベーマイト型水酸化アルミニウム(AlOOH)が特に好ましい。
 なお、本実施形態では、無機フィラーとしてシリカを用いない場合でも、その他のフィラーを無機フィラーとして用いてもよい。
In the present embodiment, when silica is used as the inorganic filler, other fillers may be used in combination with silica (preferably spherical silica). As other fillers, metal hydrates such as aluminum hydroxide and magnesium hydroxide are preferable from the viewpoint of low thermal expansion, elastic modulus, heat resistance, flame retardancy, etc. of the cured product, and among the metal hydrates, From the viewpoint of achieving both high heat resistance and flame retardancy of the cured product, metal hydrates having a thermal decomposition temperature of 300 ° C. or higher are more preferable, boehmite type aluminum hydroxide (AlOOH), gibbsite type aluminum hydroxide (Al (OH 3 ) A boehmite type hydroxide which has a thermal decomposition temperature adjusted to 300 ° C. or higher by heat treatment, magnesium hydroxide, etc., is more preferable, is inexpensive, has a thermal decomposition temperature of 350 ° C. or higher, and has high chemical resistance. Aluminum (AlOOH) is particularly preferred.
In this embodiment, even when silica is not used as the inorganic filler, other fillers may be used as the inorganic filler.
 無機フィラーとして、シリカ(好ましくは、球状シリカ)と共にその他のフィラーを併用する場合、シリカとその他のフィラーとの質量基準の含有比率(シリカ/その他のフィラー)は、2.0以上であることが好ましく、2.5以上であることがより好ましく、3.0以上であることが更に好ましい。 When other fillers are used together with silica (preferably spherical silica) as the inorganic filler, the content ratio (silica / other filler) based on mass between silica and other fillers may be 2.0 or more. Preferably, it is 2.5 or more, more preferably 3.0 or more.
 本実施形態で用いられる無機フィラーは、シランカップリング剤により表面処理されていてもよい。
 シランカップリング剤として、市販のものを使用できる。カルボジイミド化合物との相溶性等を考慮すると、末端にエポキシ基、アミノ基、メルカプト基、ウレイド基又は水酸基を有するシランカップリング剤を用いることが好適である。
 シランカップリング剤の具体例としては、例えば、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン及び3-ウレイドプロピルトリエトキシシランが挙げられる。またこれらシランカップリング剤は1種単独で又は2種以上を組み合わせて使用することができる。
 これらの中でも、硬化物の銅箔接着性、耐熱性等の観点から3-グリシドキシプロピルトリメトキシシランが好ましい。
 無機フィラーのシランカップリング剤による処理方法は特に限定されるものではなく、湿式処理であっても乾式処理であってもよく、湿式処理であることが好ましい。
 シリカは株式会社アドマテックス等から商業的にも入手できる。例えば、3-グリシドキシプロピルトリメトキシシランにより表面処理(湿式処理)された平均粒径が0.5μm以下の球状シリカ(溶融球状シリカ)としては、株式会社アドマテックス製の商品名SC-2050MTE等がある。
The inorganic filler used in the present embodiment may be surface-treated with a silane coupling agent.
A commercially available silane coupling agent can be used. In consideration of compatibility with the carbodiimide compound, it is preferable to use a silane coupling agent having an epoxy group, amino group, mercapto group, ureido group or hydroxyl group at the terminal.
Specific examples of the silane coupling agent include, for example, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 3-glycidoxypropylmethyl. Dimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3- (2-aminoethyl) aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3- Examples include mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane and 3-ureidopropyltriethoxysilane. These silane coupling agents can be used alone or in combination of two or more.
Among these, 3-glycidoxypropyltrimethoxysilane is preferable from the viewpoints of the copper foil adhesiveness and heat resistance of the cured product.
The treatment method of the inorganic filler with the silane coupling agent is not particularly limited, and may be a wet treatment or a dry treatment, and is preferably a wet treatment.
Silica can also be obtained commercially from Admatechs Corporation. For example, as a spherical silica (fused spherical silica) having an average particle size of 0.5 μm or less that has been surface-treated (wet-treated) with 3-glycidoxypropyltrimethoxysilane, the trade name SC-2050MTE manufactured by Admatechs Co., Ltd. Etc.
 本実施形態の樹脂組成物における無機フィラーの含有量としては、カルボジイミド化合物と硬化剤(好ましくはエポキシ化合物)と必要により使用される後述のマレイミド化合物との総質量の100質量部に対し、10質量部~300質量部とすることが好ましく、100質量部~250質量部とすることがより好ましく、150質量部~250質量部とすることが更に好ましい。無機フィラーの含有量が10質量部以上であれば、硬化物の弾性率、低熱膨張性、耐湿耐熱性、低誘電正接性が向上する傾向にある。また、無機フィラーの含有量が300質量部以下であれば、樹脂組成物の成形性及び硬化物の耐めっき液性等の耐薬品性が向上する傾向にある。 As content of the inorganic filler in the resin composition of this embodiment, it is 10 mass with respect to 100 mass parts of the total mass of the carbodiimide compound, the hardening | curing agent (preferably epoxy compound), and the below-mentioned maleimide compound used as needed. Part to 300 parts by weight, preferably 100 parts to 250 parts by weight, and more preferably 150 parts to 250 parts by weight. If content of an inorganic filler is 10 mass parts or more, it exists in the tendency for the elasticity modulus of cured | curing material, low thermal expansibility, moisture heat resistance, and low dielectric loss tangent to improve. Moreover, if content of an inorganic filler is 300 mass parts or less, it exists in the tendency for chemical resistance, such as the moldability of a resin composition and the plating solution resistance of hardened | cured material, to improve.
 本実施形態の樹脂組成物が無機フィラーとしてシリカを用いる場合、シリカ(好ましくは、球状シリカ)の含有量としては、カルボジイミド化合物と硬化剤(好ましくはエポキシ化合物)と必要により使用される後述のマレイミド化合物との総質量の100質量部に対し、10質量部~300質量部とすることが好ましく、100質量部~250質量部とすることがより好ましく、150質量部~250質量部とすることが更に好ましい。
 シリカの含有量が10質量部以上であれば、硬化物の弾性率、低熱膨張性、耐湿耐熱性及び低誘電正接性が向上する傾向にある。また、シリカの含有量が300質量部以下であれば、樹脂組成物の成形性及び硬化物の耐めっき液性等の耐薬品性が向上する傾向にある。
When silica is used as the inorganic filler in the resin composition of the present embodiment, the content of silica (preferably spherical silica) is a carbodiimide compound, a curing agent (preferably an epoxy compound), and a maleimide described later used as necessary. It is preferably 10 to 300 parts by mass, more preferably 100 to 250 parts by mass, and more preferably 150 to 250 parts by mass with respect to 100 parts by mass of the total mass with the compound. Further preferred.
When the silica content is 10 parts by mass or more, the elastic modulus, low thermal expansion, moisture and heat resistance, and low dielectric loss tangent of the cured product tend to be improved. Moreover, if content of a silica is 300 mass parts or less, it exists in the tendency for chemical resistance, such as the moldability of a resin composition and the plating solution resistance of hardened | cured material, to improve.
 その他のフィラーの含有量としては、カルボジイミド化合物と硬化剤(好ましくはエポキシ化合物)と必要により使用される後述のマレイミド化合物の総質量の100質量部に対し、0質量部~200質量部とすることが好ましく、0質量部~150質量部とすることがより好ましい。その他のフィラーの含有量を200質量部以下とすることで、樹脂組成物の成形性及び硬化物の耐めっき液性等の耐薬品性が向上する傾向にある。 The content of other fillers should be 0 to 200 parts by mass with respect to 100 parts by mass of the total mass of a carbodiimide compound, a curing agent (preferably an epoxy compound), and a maleimide compound described later if necessary. It is preferably 0 to 150 parts by mass. By setting the content of other fillers to 200 parts by mass or less, chemical resistance such as moldability of the resin composition and plating solution resistance of the cured product tends to be improved.
 本実施形態において無機フィラーとしてシリカを用いる場合、シリカ(好ましくは、球状シリカ)及びその他のフィラーの含有量としては、カルボジイミド化合物と硬化剤(好ましくはエポキシ化合物)と必要により使用される後述のマレイミド化合物の総質量の100質量部に対し、シリカが10質量部~300質量部であり、その他のフィラーが0質量部~200質量部であることが好ましく、シリカが100質量部~250質量部であり、その他のフィラーが0質量部~150質量部であることがより好ましく、シリカが150質量部~250質量部であり、その他のフィラーが0質量部~150質量部であることが更に好ましい。 In the present embodiment, when silica is used as the inorganic filler, the content of silica (preferably spherical silica) and other fillers is a carbodiimide compound, a curing agent (preferably an epoxy compound), and a maleimide described later used as necessary. Silica is preferably 10 to 300 parts by mass, other fillers are preferably 0 to 200 parts by mass, and silica is 100 to 250 parts by mass with respect to 100 parts by mass of the total mass of the compound. More preferably, the other filler is 0 to 150 parts by mass, the silica is 150 to 250 parts by mass, and the other filler is more preferably 0 to 150 parts by mass.
(マレイミド化合物)
 本実施形態の樹脂組成物は、硬化物の低熱膨張性、低硬化収縮性、耐熱性、耐湿性、低誘電正接性等の観点から、マレイミド化合物を含有してもよい。本実施形態で用いられるマレイミド化合物は特に限定されるものではなく、1分子中に少なくとも2つのマレイミド基を有するマレイミド化合物が好ましい。
(Maleimide compound)
The resin composition of the present embodiment may contain a maleimide compound from the viewpoint of the low thermal expansion property, low curing shrinkage property, heat resistance, moisture resistance, low dielectric loss tangent, etc. of the cured product. The maleimide compound used in the present embodiment is not particularly limited, and a maleimide compound having at least two maleimide groups in one molecule is preferable.
 1分子中に少なくとも2つのマレイミド基を有するマレイミド化合物としては、例えば、ビス(4-マレイミドフェニル)メタン、ポリフェニルメタンマレイミド、ビス(4-マレイミドフェニル)エーテル、ビス(4-マレイミドフェニル)スルホン、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、m-フェニレンビスマレイミド及び2,2-ビス(4-(4-マレイミドフェノキシ)フェニル)プロパンが挙げられる。これらの中で、溶剤への溶解性の観点から、ビス(4-マレイミドフェニル)メタン、ポリフェニルメタンマレイミド、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド及び2,2-ビス(4-(4-マレイミドフェノキシ)フェニル)プロパンが好ましく、さらに、反応率が高く、より硬化物の硬化収縮性を低く抑える観点から、2,2-ビス(4-(4-マレイミドフェノキシ)フェニル)プロパン及びポリフェニルメタンマレイミド、ビス(4-マレイミドフェニル)メタンがより好ましい。 Examples of maleimide compounds having at least two maleimide groups in one molecule include bis (4-maleimidophenyl) methane, polyphenylmethanemaleimide, bis (4-maleimidophenyl) ether, bis (4-maleimidophenyl) sulfone, 3,3′-dimethyl-5,5′-diethyl-4,4′-diphenylmethane bismaleimide, 4-methyl-1,3-phenylene bismaleimide, m-phenylene bismaleimide and 2,2-bis (4- ( 4-maleimidophenoxy) phenyl) propane. Among these, bis (4-maleimidophenyl) methane, polyphenylmethanemaleimide, 3,3′-dimethyl-5,5′-diethyl-4,4′-diphenylmethane bismaleimide from the viewpoint of solubility in solvents And 2,2-bis (4- (4-maleimidophenoxy) phenyl) propane are preferred, and 2,2-bis (4- ( 4-maleimidophenoxy) phenyl) propane and polyphenylmethanemaleimide, bis (4-maleimidophenyl) methane are more preferred.
 本実施形態の樹脂組成物においては、カルボジイミド化合物と硬化剤(好ましくはエポキシ化合物)とマレイミド化合物の総和100質量部あたりのカルボジイミド化合物の使用量を10質量部~90質量部の範囲とし、硬化剤(好ましくはエポキシ化合物)の使用量を90質量部~10質量部の範囲とした場合、マレイミド化合物の使用量は、0質量部~70質量部の範囲とすることが好ましく、0質量部~60質量部の範囲とすることがより好ましく、0質量部~50質量部の範囲とすることが更に好ましい。マレイミド化合物の使用量が70質量部以下であれば、樹脂組成物の成形性が向上する傾向にあり、さらに、硬化物の耐めっき液性等の耐薬品性が向上する傾向にある。 In the resin composition of the present embodiment, the amount of the carbodiimide compound used per 100 parts by mass of the total of the carbodiimide compound, the curing agent (preferably an epoxy compound) and the maleimide compound is in the range of 10 to 90 parts by mass, and the curing agent When the amount of (preferably epoxy compound) used is in the range of 90 to 10 parts by weight, the amount of maleimide compound used is preferably in the range of 0 to 70 parts by weight, and 0 to 60 parts by weight. The range is more preferably in the range of parts by mass, and still more preferably in the range of 0 to 50 parts by mass. If the amount of the maleimide compound used is 70 parts by mass or less, the moldability of the resin composition tends to be improved, and further, the chemical resistance such as the plating solution resistance of the cured product tends to be improved.
(溶剤)
 本実施形態の樹脂組成物をワニスとして取り扱う場合、本実施形態の樹脂組成物は溶剤を含有してもよい。
 本実施形態で用いられる溶剤は特に限定されるものではない。本実施形態で用いることのできる溶剤としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤、テトラヒドロフラン等のエーテル系溶剤、トルエン、キシレン、メシチレン等の芳香族系溶剤、炭化水素系溶剤、石油系溶剤、ジメチルホルムアミド、ジメチルアセトアミド等のN原子含有溶剤、ジメチルスルホキシド等のS原子含有溶剤、γ-ブチロラクトン等のエステル系溶剤などが挙げられる。
 これらの溶剤は、1種単独で又は2種以上を組み合わせて使用することができる。
 本実施形態の樹脂組成物が溶剤を含有する場合、樹脂組成物に占める溶剤の含有率は、10質量%~90質量%であることが好ましく、20質量%~80質量%であることがより好ましく、30質量%~70質量%であることが更に好ましい。
(solvent)
When handling the resin composition of this embodiment as a varnish, the resin composition of this embodiment may contain a solvent.
The solvent used in the present embodiment is not particularly limited. Solvents that can be used in this embodiment include ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, ether solvents such as tetrahydrofuran, aromatic solvents such as toluene, xylene, and mesitylene, and hydrocarbon solvents. Petroleum solvents, N atom-containing solvents such as dimethylformamide and dimethylacetamide, S atom-containing solvents such as dimethyl sulfoxide, and ester solvents such as γ-butyrolactone.
These solvents can be used alone or in combination of two or more.
When the resin composition of the present embodiment contains a solvent, the content of the solvent in the resin composition is preferably 10% by mass to 90% by mass, and more preferably 20% by mass to 80% by mass. Preferably, the content is 30% by mass to 70% by mass.
(硬化促進剤)
 本実施形態の樹脂組成物は、硬化促進剤を含有してもよい。適切な硬化促進剤を併用すると、成形温度が200℃以下となり、本実施形態の樹脂組成物に低温硬化性を付与することができる傾向にあり、さらに、硬化物の低硬化収縮性、弾性率、難燃性、銅箔接着性等が更に向上する傾向にある。
(Curing accelerator)
The resin composition of this embodiment may contain a curing accelerator. When an appropriate curing accelerator is used in combination, the molding temperature is 200 ° C. or lower, and there is a tendency that low temperature curability can be imparted to the resin composition of the present embodiment. In addition, flame retardancy and copper foil adhesion tend to be further improved.
 硬化促進剤の例としては、例えば、イミダゾール化合物及びその誘導体、第三級アミン化合物並びに第四級アンモニウム塩が挙げられる。その中でもイミダゾール化合物及びその誘導体が、硬化物の耐熱性、難燃性、銅箔接着性等の観点から好ましく、ヘキサメチレンジイソシアネート樹脂と2-エチル-4-メチルイミダゾールの付加反応物である下記式(VIII)に示す化合物が、200℃以下での比較的低温での硬化成形性と樹脂組成物のワニス及びプリプレグの経日安定性に優れ、また、商業的にも安価であることからより好ましい。 Examples of curing accelerators include, for example, imidazole compounds and derivatives thereof, tertiary amine compounds, and quaternary ammonium salts. Among them, imidazole compounds and derivatives thereof are preferable from the viewpoints of heat resistance, flame retardancy, copper foil adhesion, and the like of cured products, and are the following reaction products of hexamethylene diisocyanate resin and 2-ethyl-4-methylimidazole. The compound shown in (VIII) is more preferable because it is excellent in curing moldability at a relatively low temperature at 200 ° C. or lower, and the aging stability of the varnish and prepreg of the resin composition, and is also commercially inexpensive. .
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式(VIII)に示す化合物は、第一工業製薬株式会社等から商業的に入手できる。 The compound represented by the formula (VIII) is commercially available from Daiichi Kogyo Seiyaku Co., Ltd.
 硬化促進剤の含有量は、カルボジイミド化合物と硬化剤(好ましくはエポキシ化合物)と必要により使用されるマレイミド化合物との総質量の100質量部に対し、0質量部~20質量部とすることが好ましく、0質量部~10質量部とすることがより好ましく、0質量部~5質量部とすることが更に好ましい。硬化促進剤の含有量を20質量部以下とすることで、本実施形態の樹脂組成物のワニスのゲルタイムが短くなり過ぎることが抑制され、また、樹脂組成物の成形性が向上する傾向にある。 The content of the curing accelerator is preferably 0 to 20 parts by mass with respect to 100 parts by mass of the total mass of the carbodiimide compound, the curing agent (preferably an epoxy compound) and the maleimide compound used as necessary. The content is more preferably 0 to 10 parts by mass, and still more preferably 0 to 5 parts by mass. By making content of a hardening accelerator into 20 mass parts or less, it is suppressed that the gel time of the varnish of the resin composition of this embodiment becomes short too much, and there exists a tendency for the moldability of a resin composition to improve. .
(難燃剤)
 本実施形態の樹脂組成物は、難燃剤を含有してもよい。本実施形態で用いられる難燃剤としては、トリフェニルホスフェート、トリクレジルホスフェート、トリスジクロロプロピルホスフェート、リン酸エステル系化合物、ホスファゼン、赤リン等のリン系難燃剤、三酸化アンチモン、モリブデン酸亜鉛等の無機難燃助剤などが挙げられる。なお、臭素、塩素等を含有する含ハロゲン系難燃剤は、環境問題を生じさせる可能性のあることから、なるべく使用しないことが好ましい。難燃剤は、1種単独で又は2種以上を組み合わせて使用することができる。
 難燃剤として、モリブデン酸亜鉛をタルク等の無機充填剤に担持した無機難燃剤は、難燃性のみならず硬化物のドリル加工性をも向上させるので、好ましい難燃剤である。
(Flame retardants)
The resin composition of this embodiment may contain a flame retardant. Examples of the flame retardant used in the present embodiment include triphenyl phosphate, tricresyl phosphate, trisdichloropropyl phosphate, phosphoric ester compounds, phosphazenes, phosphorous flame retardants such as red phosphorus, antimony trioxide, zinc molybdate, and the like. And inorganic flame retardant aids. In addition, it is preferable not to use the halogen-containing flame retardant containing bromine, chlorine, etc. as much as possible because it may cause environmental problems. A flame retardant can be used individually by 1 type or in combination of 2 or more types.
As a flame retardant, an inorganic flame retardant in which zinc molybdate is supported on an inorganic filler such as talc is a preferable flame retardant because it improves not only the flame retardancy but also the drill workability of the cured product.
 難燃剤の含有量としては、カルボジイミド化合物と硬化剤(好ましくはエポキシ化合物)と必要により使用されるマレイミド化合物との総質量の100質量部に対し、0質量部~20質量部とすることが好ましく、0質量部~10質量部とすることがより好ましく、0質量部~5質量部とすることが更に好ましい。難燃剤の含有量が20質量部以下であれば、本実施形態の樹脂組成物のワニスのゲルタイムが短くなり過ぎることがなく、また、樹脂組成物の成形性が向上する傾向にある。 The content of the flame retardant is preferably 0 to 20 parts by mass with respect to 100 parts by mass of the total mass of the carbodiimide compound, the curing agent (preferably an epoxy compound) and the maleimide compound used as necessary. The content is more preferably 0 to 10 parts by mass, and still more preferably 0 to 5 parts by mass. If content of a flame retardant is 20 mass parts or less, the gel time of the varnish of the resin composition of this embodiment will not become too short, and it exists in the tendency for the moldability of a resin composition to improve.
(その他の成分)
 本実施形態の樹脂組成物は、必要に応じてその他の成分を含んでいてもよい。その他の成分としては、例えば、熱可塑性樹脂、エラストマー及び有機充填剤が挙げられる。
 熱可塑性樹脂の例としては、例えば、テトラフルオロエチレン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリフェニレンエーテル樹脂、フェノキシ樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、キシレン樹脂、石油樹脂及びシリコーン樹脂が挙げられる。
 エラストマーの例としては、例えば、ポリブタジエン、ポリアクリロニトリル、エポキシ変性ポリブタジエン、無水マレイン酸変性ポリブタジエン、フェノール変性ポリブタジエン及びカルボキシ変性ポリアクリロニトリルが挙げられる。
 有機充填剤の例としては、シリコーンパウダー、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリスチレン、ポリフェニレンエーテル等の有機物粒子などが挙げられる。
(Other ingredients)
The resin composition of this embodiment may contain other components as necessary. Examples of other components include thermoplastic resins, elastomers, and organic fillers.
Examples of thermoplastic resins include, for example, tetrafluoroethylene resin, polyethylene resin, polypropylene resin, polystyrene resin, polyphenylene ether resin, phenoxy resin, polycarbonate resin, polyester resin, polyamide resin, polyimide resin, xylene resin, petroleum resin and silicone. Resin.
Examples of elastomers include, for example, polybutadiene, polyacrylonitrile, epoxy-modified polybutadiene, maleic anhydride-modified polybutadiene, phenol-modified polybutadiene, and carboxy-modified polyacrylonitrile.
Examples of the organic filler include organic particles such as silicone powder, polytetrafluoroethylene, polyethylene, polypropylene, polystyrene, and polyphenylene ether.
 本実施形態の樹脂組成物は、その他の成分として紫外線吸収剤、酸化防止剤、光重合開始剤、蛍光増白剤、密着性向上剤等を含有してもよい。
 これら材料の例としては、ベンゾトリアゾール系等の紫外線吸収剤、ヒンダードフェノール系、スチレン化フェノール等の酸化防止剤、ベンゾフェノン系、ベンジルケタール系、チオキサントン系等の光重合開始剤、スチルベン誘導体等の蛍光増白剤、尿素シラン等の尿素化合物、シランカップリング剤等の密着性向上剤などが挙げられる。
The resin composition of this embodiment may contain an ultraviolet absorber, an antioxidant, a photopolymerization initiator, a fluorescent brightener, an adhesion improver, and the like as other components.
Examples of these materials include UV absorbers such as benzotriazoles, antioxidants such as hindered phenols and styrenated phenols, photopolymerization initiators such as benzophenones, benzyl ketals, and thioxanthones, and stilbene derivatives. Examples thereof include fluorescent brighteners, urea compounds such as urea silane, and adhesion improvers such as silane coupling agents.
<樹脂組成物の製造方法>
 本実施形態の樹脂組成物は、上記各種成分を分散し混合できるのであれば、いかなる手法で調製してもよい。一般的な手法として、成分を秤量し、らいかい機、ミキシングロール、プラネタリミキサ等を用いて混合及び混練し、必要に応じて脱泡することによって、本実施形態の樹脂組成物を得ることができるが、これに限定されるものではない。
<Method for producing resin composition>
The resin composition of the present embodiment may be prepared by any technique as long as the above various components can be dispersed and mixed. As a general technique, the resin composition of the present embodiment can be obtained by weighing the components, mixing and kneading using a roughing machine, a mixing roll, a planetary mixer, etc., and defoaming as necessary. Yes, but not limited to this.
<積層板>
 本実施形態の積層板は、本実施形態のプリプレグを積層したものである。
 本実施形態の積層板は、本実施形態のプリプレグを、例えば、1枚~20枚重ね、その片面又は両面に金属箔を配置した状態で成形することにより製造することができる。
 金属箔は、電気絶縁材料用途で用いるものであれば特に制限されない。金属箔の具体例としては、金箔、銅箔、アルミニウム箔等を挙げることができ、一般的には銅箔が用いられる。金属箔の平均厚みは、例えば、1μm~400μmであれば特に制限されず、使用する電力等に応じて好適な厚みを選択することができる。金属箔としては、ニッケル、ニッケル-リン、ニッケル-スズ合金、ニッケル-鉄合金、鉛、鉛-スズ合金等を中間層とし、この両表面に平均厚みが0.5μm~15μmの銅層と平均厚みが10μm~150μmの銅層をそれぞれ設けた3層構造の複合箔、又はアルミニウム箔と銅箔とを複合した2層構造の複合箔を用いることもできる。
<Laminated plate>
The laminate of this embodiment is a laminate of the prepreg of this embodiment.
The laminated plate of the present embodiment can be produced by, for example, stacking 1 to 20 prepregs of the present embodiment and forming a metal foil on one or both sides thereof.
The metal foil is not particularly limited as long as it is used for electrical insulating material applications. Specific examples of the metal foil include gold foil, copper foil, aluminum foil and the like, and copper foil is generally used. The average thickness of the metal foil is not particularly limited as long as it is 1 μm to 400 μm, for example, and a suitable thickness can be selected according to the electric power used. As the metal foil, nickel, nickel-phosphorus, nickel-tin alloy, nickel-iron alloy, lead, lead-tin alloy, etc. are used as intermediate layers, and copper layers with an average thickness of 0.5 μm to 15 μm are averaged on both surfaces. It is also possible to use a composite foil having a three-layer structure in which a copper layer having a thickness of 10 μm to 150 μm is provided, or a composite foil having a two-layer structure in which an aluminum foil and a copper foil are combined.
 積層体の成形条件は、例えば、電気絶縁材料用積層板及び多層板の手法が適用でき、多段プレス、多段真空プレス、連続成形、オートクレーブ成形等を使用し、温度が100℃~250℃、圧力が2kg/cm~100kg/cm、加熱時間が0.1時間~5時間の範囲とすることができる。また、本実施形態のプリプレグと内層用配線板とを組み合わせて多層板を製造することもできる。 As for the molding conditions of the laminate, for example, the method of laminates for electrical insulation materials and multilayer plates can be applied, and multistage press, multistage vacuum press, continuous molding, autoclave molding, etc. are used, the temperature is 100 ° C. to 250 ° C., pressure 2 kg / cm 2 to 100 kg / cm 2 , and the heating time can be in the range of 0.1 hours to 5 hours. Moreover, a multilayer board can also be manufactured combining the prepreg of this embodiment, and the wiring board for inner layers.
 以下、実施例により本発明を更に詳しく説明するが、これらの実施例は本発明をいかなる意味においても制限するものではない。 Hereinafter, the present invention will be described in more detail by way of examples, but these examples do not limit the present invention in any way.
-製造例1:カルボジイミド化合物(A-1)の製造-
 温度計、攪拌装置、還流冷却管及び窒素ガス導入管の付いた、加熱及び冷却可能な容積1リットルの反応容器に、ジフェニルメタン-4,4’-ジイソシアネート(和光純薬工業株式会社製、イソシアネート当量;125g/eq):125.00gと、シクロヘキサノン:327.89gと、イソシアン酸フェニル(和光純薬工業株式会社製、イソシアネート当量;119g/eq):14.88gと、3-メチル-1-フェニル-2-ホスホレン-2-オキシド(和光純薬工業株式会社製、分子量;192):0.648gとを投入した。なお、反応の当量比:ジフェニルメタン-4,4’-ジイソシアネートのイソシアネート基数/イソシアン酸フェニルのイソシアネート基数は8.0である。次いで、窒素ガスの導入と攪拌を開始し80℃に昇温し、80℃で5時間カルボジイミド化反応を行った後、反応溶液から少量の反応物を取り出し、FT-IR測定を行った。その結果、イソシアネート基に起因する2260±5cm-1のピークが消失しており、さらに、生成されるカルボジイミド基に起因する2120±5cm-1のピークの出現が確認された。次いで、反応溶液を室温(20℃~23℃)に冷却してカルボジイミド化合物(A-1)の溶液を得た。
-Production Example 1: Production of carbodiimide compound (A-1)-
Diphenylmethane-4,4'-diisocyanate (made by Wako Pure Chemical Industries, Ltd., isocyanate equivalent) was added to a reaction vessel with a volume of 1 liter that can be heated and cooled, equipped with a thermometer, a stirrer, a reflux condenser, and a nitrogen gas introduction pipe. 125 g / eq): 125.00 g, cyclohexanone: 327.89 g, phenyl isocyanate (manufactured by Wako Pure Chemical Industries, Ltd., isocyanate equivalent; 119 g / eq): 14.88 g, 3-methyl-1-phenyl -2-phospholene-2-oxide (manufactured by Wako Pure Chemical Industries, Ltd., molecular weight; 192): 0.648 g was charged. The equivalent ratio of the reaction: the number of isocyanate groups of diphenylmethane-4,4′-diisocyanate / the number of isocyanate groups of phenyl isocyanate is 8.0. Next, introduction of nitrogen gas and stirring were started, the temperature was raised to 80 ° C., and a carbodiimidization reaction was performed at 80 ° C. for 5 hours. Then, a small amount of the reaction product was taken out from the reaction solution, and FT-IR measurement was performed. As a result, the peak at 2260 ± 5 cm −1 attributed to the isocyanate group disappeared, and the appearance of the peak at 2120 ± 5 cm −1 attributed to the generated carbodiimide group was confirmed. Next, the reaction solution was cooled to room temperature (20 ° C. to 23 ° C.) to obtain a solution of the carbodiimide compound (A-1).
-製造例2:カルボジイミド化合物(A-2)の製造-
 温度計、攪拌装置、還流冷却管及び窒素ガス導入管の付いた、加熱及び冷却可能な容積1リットルの反応容器に、ジフェニルメタン-2,4’-ジイソシアネート(東ソー株式会社製、商品名;ミリオネートNM100、イソシアネート当量;125g/eq):125.00gと、トルエン:336.05gと、2,6-ジメチルフェニルイソシアネート(和光純薬工業株式会社製、イソシアネート当量;147g/eq):18.38gと、3-メチル-1-フェニル-2-ホスホレン-2-オキシド(和光純薬工業株式会社製、分子量;192):0.648gとを投入した。なお、反応の当量比:ジフェニルメタン-2,4’-ジイソシアネートのイソシアネート基数/2,6-ジメチルフェニルイソシアネートのイソシアネート基数は8.0である。次いで、窒素ガスの導入と攪拌を開始し80℃に昇温し、80℃で5時間カルボジイミド化反応を行った後、反応溶液から少量の反応物を取り出し、FT-IR測定を行った。その結果、イソシアネート基に起因する2260±5cm-1のピークが消失しており、さらに、生成されるカルボジイミド基に起因する2120±5cm-1のピークの出現が確認された。次いで、反応溶液を室温(20℃~23℃)に冷却してカルボジイミド化合物(A-2)の溶液を得た。
-Production Example 2: Production of carbodiimide compound (A-2)-
Diphenylmethane-2,4′-diisocyanate (trade name; Millionate NM100, manufactured by Tosoh Corporation) was added to a reaction vessel with a volume of 1 liter which can be heated and cooled, equipped with a thermometer, a stirrer, a reflux condenser and a nitrogen gas introduction pipe. Isocyanate equivalent; 125 g / eq): 125.00 g, toluene: 336.05 g, 2,6-dimethylphenyl isocyanate (manufactured by Wako Pure Chemical Industries, Ltd., isocyanate equivalent; 147 g / eq): 18.38 g, 3-methyl-1-phenyl-2-phospholene-2-oxide (manufactured by Wako Pure Chemical Industries, Ltd., molecular weight; 192): 0.648 g was charged. The equivalent ratio of the reaction: the number of isocyanate groups in diphenylmethane-2,4′-diisocyanate / 2,6-dimethylphenyl isocyanate has 8.0 isocyanate groups. Next, introduction of nitrogen gas and stirring were started, the temperature was raised to 80 ° C., and a carbodiimidization reaction was performed at 80 ° C. for 5 hours. Then, a small amount of the reaction product was taken out from the reaction solution, and FT-IR measurement was performed. As a result, the peak at 2260 ± 5 cm −1 attributed to the isocyanate group disappeared, and the appearance of the peak at 2120 ± 5 cm −1 attributed to the generated carbodiimide group was confirmed. Next, the reaction solution was cooled to room temperature (20 ° C. to 23 ° C.) to obtain a solution of the carbodiimide compound (A-2).
-製造例3:カルボジイミド化合物(A-3)の製造-
 温度計、攪拌装置、還流冷却管及び窒素ガス導入管の付いた、加熱及び冷却可能な容積1リットルの反応容器に、2,4-トリレンジイソシアネート(東京化成工業株式会社製、イソシアネート当量;87g/eq):87.00gと、シクロヘキサノン:290.43gと、イソシアン酸フェニル(和光純薬工業株式会社製、イソシアネート当量;119g/eq):36.75gと、3-メチル-1-フェニル-2-ホスホレン-2-オキシド(和光純薬工業株式会社製、分子量;192):0.720gとを投入した。なお、反応の当量比:2,4-トリレンジイソシアネートのイソシアネート基数/イソシアン酸フェニルのイソシアネート基数は4.0である。次いで、窒素ガスの導入と攪拌を開始し80℃に昇温し、80℃で5時間カルボジイミド化反応を行った後、反応溶液から少量の反応物を取り出し、FT-IR測定を行った。その結果、イソシアネート基に起因する2260±5cm-1のピークが消失しており、さらに、生成されるカルボジイミド基に起因する2120±5cm-1のピークの出現が確認された。次いで、反応溶液を室温(20℃~23℃)に冷却してカルボジイミド化合物(A-3)の溶液を得た。
-Production Example 3: Production of carbodiimide compound (A-3)-
2,4-tolylene diisocyanate (manufactured by Tokyo Chemical Industry Co., Ltd., isocyanate equivalent; 87 g) was added to a reaction vessel with a capacity of 1 liter which can be heated and cooled, equipped with a thermometer, a stirrer, a reflux condenser and a nitrogen gas introduction pipe. / Eq): 87.00 g, cyclohexanone: 290.43 g, phenyl isocyanate (manufactured by Wako Pure Chemical Industries, Ltd., isocyanate equivalent; 119 g / eq): 36.75 g, 3-methyl-1-phenyl-2 -Phosphorene-2-oxide (manufactured by Wako Pure Chemical Industries, Ltd., molecular weight: 192): 0.720 g was charged. The equivalent ratio of the reaction: the number of isocyanate groups of 2,4-tolylene diisocyanate / the number of isocyanate groups of phenyl isocyanate is 4.0. Next, introduction of nitrogen gas and stirring were started, the temperature was raised to 80 ° C., and a carbodiimidization reaction was performed at 80 ° C. for 5 hours. Then, a small amount of the reaction product was taken out from the reaction solution, and FT-IR measurement was performed. As a result, the peak at 2260 ± 5 cm −1 attributed to the isocyanate group disappeared, and the appearance of the peak at 2120 ± 5 cm −1 attributed to the generated carbodiimide group was confirmed. Next, the reaction solution was cooled to room temperature (20 ° C. to 23 ° C.) to obtain a solution of the carbodiimide compound (A-3).
(実施例1~6、比較例1~3)
 実施例1~6は、(A)カルボジイミド化合物として製造例1~3により得られたカルボジイミド化合物、(B)硬化剤として1分子中に少なくとも2つのエポキシ基を有する化合物、(C)無機フィラーとして球状シリカ(溶融球状シリカ)、また、必要により(D)マレイミド化合物として1分子中に少なくとも2つのマレイミド基を有するマレイミド化合物、その他のフィラー、硬化促進剤、難燃剤及び溶剤としてメチルエチルケトンを使用して、表1に示した配合割合(質量部)で混合して固形分が60質量%のワニスを得た。また、比較例1~3は、表2に示した樹脂材料を、表2に示す配合割合(質量部)で混合し、溶剤としてメチルエチルケトンを使用して固形分が60質量%のワニスを得た。次に、これらのワニスを厚み0.2mmのSガラスクロスに含浸し、160℃で10分加熱乾燥して樹脂含有率が55質量%のプリプレグを得た。次に、このプリプレグを4枚重ね、12μmの電解銅箔を両面に配置し、圧力が25kg/cmで、温度が185℃の条件で90分間プレスを行って、銅張積層板を得た。このようにして得られた銅張積層板を用いて、以下の各評価項目を測定し、評価し、表3と表4に、その評価結果を示した。
(Examples 1 to 6, Comparative Examples 1 to 3)
Examples 1 to 6 are (A) the carbodiimide compound obtained in Production Examples 1 to 3 as a carbodiimide compound, (B) a compound having at least two epoxy groups in one molecule as a curing agent, and (C) an inorganic filler. Spherical silica (fused spherical silica), and if necessary, (D) maleimide compound having at least two maleimide groups in one molecule as maleimide compound, other filler, curing accelerator, flame retardant and methyl ethyl ketone as solvent The varnish having a solid content of 60% by mass was obtained by mixing at the blending ratio (parts by mass) shown in Table 1. In Comparative Examples 1 to 3, the resin materials shown in Table 2 were mixed at the blending ratio (parts by mass) shown in Table 2, and methyl ethyl ketone was used as a solvent to obtain a varnish having a solid content of 60% by mass. . Next, these varnishes were impregnated into 0.2 mm thick S glass cloth and dried by heating at 160 ° C. for 10 minutes to obtain a prepreg having a resin content of 55 mass%. Then, overlaid 4 sheets of the prepreg, the electrolytic copper foil of 12μm was placed on both sides, at a pressure 25 kg / cm 2, performing 90 minutes pressed under the conditions of a temperature of 185 ° C., to obtain a copper-clad laminate . Using the copper-clad laminate thus obtained, the following evaluation items were measured and evaluated. Tables 3 and 4 show the evaluation results.
(1)銅箔接着性(銅箔ピール強度)の評価
 銅張積層板を銅エッチング液に浸漬することにより1cm幅、長さ10cmの銅箔を形成して評価基板を作製し、引張り試験機(株式会社島津製作所製、EZTest(装置名))を用いて銅箔の接着性(ピール強度)を測定した。
(1) Evaluation of copper foil adhesion (copper foil peel strength) A copper clad laminate is immersed in a copper etching solution to form a copper foil having a width of 1 cm and a length of 10 cm. The adhesiveness (peel strength) of the copper foil was measured using (Shimadzu Corporation EZTest (device name)).
(2)ガラス転移温度(Tg)の測定
 銅張積層板を銅エッチング液に浸漬することにより両面の銅箔を取り除いた5mm角の評価基板を作製し、TMA(Thermal Mechanical Analysis)試験装置(デュポン社製、TMA2940)を用い、評価基板の面方向の熱膨張特性を観察し、JIS K0129:2005に規定される方法により評価した。
(2) Measurement of glass transition temperature (Tg) A 5 mm square evaluation substrate was prepared by immersing a copper clad laminate in a copper etching solution to remove a copper foil on both sides, and a TMA (Thermal Mechanical Analysis) test apparatus (DuPont) The thermal expansion characteristics in the surface direction of the evaluation substrate were observed using TMA2940, manufactured by KK, and evaluated by the method defined in JIS K0129: 2005.
(3)線熱膨張率の測定
 銅張積層板を銅エッチング液に浸漬することにより両面の銅箔を取り除いた5mm角の評価基板を作製し、TMA試験装置(デュポン社製、TMA2940)を用い、評価基板の面方向の30℃~100℃の線熱膨張率を測定した。
(3) Measurement of linear thermal expansion coefficient A 5-mm square evaluation board | substrate which removed the copper foil of both surfaces by immersing a copper clad laminated board in copper etching liquid was produced, and TMA test equipment (the Du Pont company make, TMA2940) was used. The linear thermal expansion coefficient at 30 ° C. to 100 ° C. in the plane direction of the evaluation substrate was measured.
(4)はんだ耐熱性の評価
 銅張積層板を銅エッチング液に浸漬することにより両面の銅箔を取り除いた5cm角の評価基板を作製し、株式会社平山製作所製プレッシャー・クッカー試験装置を用いて、121℃、2atm(0.2MPa)の条件で4時間までプレッシャー・クッカー処理を行った後、温度300℃のはんだ浴に、評価基板を20秒間浸漬した後、外観を観察することによりはんだ耐熱性を評価した。外観に視認できる膨れがない場合には「良好」と判断し、視認できる膨れがある場合には「ふくれ」と判断した。
(4) Evaluation of solder heat resistance A 5-cm square evaluation board from which copper foil on both sides was removed by immersing a copper-clad laminate in a copper etching solution was prepared using a pressure cooker test apparatus manufactured by Hirayama Manufacturing Co., Ltd. After performing pressure-cooker treatment for 4 hours under the conditions of 121 ° C. and 2 atm (0.2 MPa), the test substrate is immersed in a solder bath at a temperature of 300 ° C. for 20 seconds, and then the solder heat resistance is observed by observing the appearance. Sex was evaluated. When there was no visible blister, it was judged as “good”, and when there was a blister visible, it was judged as “blister”.
(5)銅付き耐熱性の評価
 銅張積層板から5mm角の評価基板を作製し、IPC TM650で定められた試験法に準じて、TMA試験装置(デュポン社製、TMA2940)を用い、300℃で評価基板の膨れが発生するまでの時間を測定することにより評価した。
(5) Evaluation of heat resistance with copper A 5 mm square evaluation substrate was prepared from a copper clad laminate, and was subjected to a test method defined by IPC TM650 using a TMA test apparatus (manufactured by DuPont, TMA2940) at 300 ° C. Evaluation was made by measuring the time until the evaluation substrate bulges.
(6)難燃性の評価
 銅張積層板を銅エッチング液に浸漬することにより両面の銅箔を取り除いた評価基板から、長さ127mm、幅12.7mmに切り出した試験片を作製し、UL94の試験法(V法)に準じて評価した。
(6) Flame Retardancy Evaluation A test piece cut out to a length of 127 mm and a width of 12.7 mm was prepared from an evaluation substrate obtained by removing a copper foil on both sides by immersing a copper clad laminate in a copper etching solution, and UL94. It evaluated according to the test method (method V).
(7)比誘電率及び誘電正接の測定
 得られた銅張積層板を銅エッチング液に浸漬することにより銅箔を取り除いた2cm角の評価基板を作製し、Hewllet・Packerd社製比誘電率測定装置(製品名:HP4291B)を用いて、周波数1GHzでの比誘電率及び誘電正接を測定した。
(7) Measurement of relative dielectric constant and dielectric loss tangent The obtained copper-clad laminate was immersed in a copper etching solution to prepare a 2 cm square evaluation substrate, and a relative dielectric constant measurement made by Hewlett-Packard Company was made. Using a device (product name: HP4291B), the relative dielectric constant and dielectric loss tangent at a frequency of 1 GHz were measured.
(8)ドリル加工性
 ドリルにΦ0.105mm(ユニオンツールMV J676)を用い、回転数:160,000min-1、送り速度:0.8m/分、重ね枚数:1枚でドリル加工を行い、6000ヒットさせて評価基板を作製し、ドリル穴の内壁粗さを評価した。内壁粗さの評価は、無電解銅めっきを行い(めっき厚:15μm)、穴壁へのめっき染み込み長さの最大値を測定することにより評価した。
(8) Drill workability Φ0.105 mm (Union Tool MV J676) is used for the drill, the number of rotations is 160,000 min −1 , the feed rate is 0.8 m / min, the number of stacked sheets is one, and drilling is performed at 6000 An evaluation board was made by hitting, and the inner wall roughness of the drill hole was evaluated. The inner wall roughness was evaluated by performing electroless copper plating (plating thickness: 15 μm) and measuring the maximum value of the plating penetration length into the hole wall.
(9)硬化収縮率の測定
 銅張積層板を銅エッチング液に浸漬することにより両面の銅箔を取り除いた5mm角の評価基板を作製し、TMA試験装置(デュポン社製、TMA2940)を用い、評価基板の面方向の昇温と冷却(20℃から260℃への加熱(温度上昇速度10℃/min)及び260℃から20℃への冷却(温度降下速度10℃/min))を行った後の寸法変化率を測定した。
(9) Measurement of curing shrinkage rate A 5-mm square evaluation board from which copper foil on both sides was removed by immersing a copper clad laminate in a copper etching solution was used, and a TMA test apparatus (manufactured by DuPont, TMA2940) was used. The evaluation substrate was heated and cooled in the surface direction (heating from 20 ° C. to 260 ° C. (temperature increase rate 10 ° C./min) and cooling from 260 ° C. to 20 ° C. (temperature decrease rate 10 ° C./min)). The subsequent dimensional change rate was measured.
(10)曲げ弾性率の測定
 銅張積層板を銅エッチング液に浸漬することにより両面の銅箔を取り除いた後、長さ40mm、幅25mm、厚み0.4mmに切り出した試験片を作製し、曲げ試験装置(オリエンテック社製、5トンテンシロンRTC-1350A)を用い、室温(20℃~23℃)での曲げ弾性率を測定した。
(10) Measurement of flexural modulus After removing the copper foil on both sides by immersing the copper-clad laminate in a copper etching solution, a test piece cut into a length of 40 mm, a width of 25 mm, and a thickness of 0.4 mm was prepared, The bending elastic modulus at room temperature (20 ° C. to 23 ° C.) was measured using a bending test apparatus (Orientec Co., Ltd., 5-ton Tensilon RTC-1350A).
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表中の数字は、固形分の質量部により示されている。また、表中の「-」は、該当する成分を含有しないことを示す。
 注書きは、それぞれ以下を示す。
(硬化剤)
*1:ナフトールアラルキル・クレゾール共重合型エポキシ樹脂
(日本化薬株式会社製、商品名;NC-7000L)
*2:ビフェニルアラルキル型エポキシ樹脂(日本化薬株式会社製、商品名;NC-3000H)
(無機フィラー)
*3:球状シリカ(溶融球状シリカ、株式会社アドマテックス製、商品名;SO-25R、平均粒径が0.5μm)
*4:平均粒径が0.5μm以下の球状シリカに対し1.0質量%の3-グリシドキシプロピルトリメトキシシランにより表面処理された球状シリカ(3-グリシドキシプロピルトリメトキシシランにより表面処理された溶融球状シリカ、株式会社アドマテックス製、商品名;SC-2050MTE、希釈溶剤;メチルエチルケトン)
*5:ベーマイト型水酸化アルミニウム(河合石灰工業株式会社製、商品名;BMT-3L)
(マレイミド化合物)
*6:2,2-ビス(4-(4-マレイミドフェノキシ)フェニル)プロパン
(大和化成株式会社製、商品名;BMI-4000)
*7:ポリフェニルメタンマレイミド(大和化成株式会社製、商品名;BMI-2300)
(その他)
*8:モリブデン酸亜鉛をタルクに担持した無機難燃剤
(シャーウィン・ウィリアムス社製、商品名;ケムガード1100)
*9:ヘキサメチレンジイソシアネート樹脂と2-エチル-4-メチルイミダゾールの付加反応物(第一工業製薬株式会社製、商品名;G-8009L)
*10:ビスフェノールA型シアネート樹脂(ロンザジャパン社製、商品名;プリマセットBADCy)
The numbers in the table are indicated by mass parts of solid content. Further, “-” in the table indicates that the corresponding component is not contained.
Each order form shows the following.
(Curing agent)
* 1: Naphthol aralkyl-cresol copolymer epoxy resin (Nippon Kayaku Co., Ltd., trade name: NC-7000L)
* 2: Biphenyl aralkyl type epoxy resin (Nippon Kayaku Co., Ltd., trade name: NC-3000H)
(Inorganic filler)
* 3: Spherical silica (fused spherical silica, manufactured by Admatechs Co., Ltd., trade name: SO-25R, average particle size is 0.5 μm)
* 4: Spherical silica surface-treated with 1.0% by mass of 3-glycidoxypropyltrimethoxysilane to spherical silica with an average particle size of 0.5 μm or less (surface with 3-glycidoxypropyltrimethoxysilane) Treated fused spherical silica, manufactured by Admatechs Co., Ltd., trade name: SC-2050MTE, diluent solvent: methyl ethyl ketone)
* 5: Boehmite type aluminum hydroxide (manufactured by Kawai Lime Industry Co., Ltd., trade name: BMT-3L)
(Maleimide compound)
* 6: 2,2-bis (4- (4-maleimidophenoxy) phenyl) propane (manufactured by Daiwa Kasei Co., Ltd., trade name: BMI-4000)
* 7: Polyphenylmethane maleimide (manufactured by Daiwa Kasei Co., Ltd., trade name: BMI-2300)
(Other)
* 8: Inorganic flame retardant with zinc molybdate supported on talc (Sherwin Williams, trade name: Chemguard 1100)
* 9: Addition reaction product of hexamethylene diisocyanate resin and 2-ethyl-4-methylimidazole (Daiichi Kogyo Seiyaku Co., Ltd., trade name: G-8809L)
* 10: Bisphenol A type cyanate resin (Lonza Japan, trade name: Primaset BADCy)
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表から明らかなように、実施例に係る銅張積層板は、銅箔接着性、ガラス転移温度、はんだ耐熱性、線熱膨張率、難燃性、銅付き耐熱性、比誘電率、誘電正接、ドリル加工性、硬化収縮率及び曲げ弾性率の全ての評価項目において優れている。一方、比較例は、銅箔接着性、ガラス転移温度、はんだ耐熱性、線熱膨張率、難燃性、銅付き耐熱性、比誘電率、誘電正接、ドリル加工性、硬化収縮率及び曲げ弾性率の、いずれかの評価項目の特性が劣っている。
 本実施形態の樹脂組成物を基材に含浸して得たプリプレグ、及び該プリプレグを積層成形することにより製造した積層板は、銅箔接着性、ガラス転移温度、はんだ耐熱性、熱膨張率、難燃性、銅付き耐熱性、比誘電率、誘電正接、ドリル加工性、硬化収縮率及び曲げ弾性率に優れ、電子機器用プリント配線板として有用である。
As is clear from the table, the copper clad laminates according to the examples are copper foil adhesion, glass transition temperature, solder heat resistance, linear thermal expansion coefficient, flame resistance, heat resistance with copper, relative permittivity, dielectric loss tangent. Excellent in all evaluation items of drilling workability, cure shrinkage rate and flexural modulus. On the other hand, the comparative examples are copper foil adhesion, glass transition temperature, solder heat resistance, linear thermal expansion coefficient, flame resistance, heat resistance with copper, relative dielectric constant, dielectric loss tangent, drill workability, cure shrinkage rate and flexural elasticity. The rate of any evaluation item is inferior.
A prepreg obtained by impregnating the resin composition of the present embodiment into a base material, and a laminate produced by laminating the prepreg are copper foil adhesiveness, glass transition temperature, solder heat resistance, thermal expansion coefficient, It is excellent in flame resistance, heat resistance with copper, relative dielectric constant, dielectric loss tangent, drill workability, curing shrinkage rate and bending elastic modulus, and is useful as a printed wiring board for electronic equipment.
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference, Incorporated herein by reference.

Claims (12)

  1.  1分子中に少なくとも1つのカルボジイミド基を有するカルボジイミド化合物を含有するプリプレグ。 A prepreg containing a carbodiimide compound having at least one carbodiimide group in one molecule.
  2.  赤外線吸収スペクトルにおける2120±5cm-1にピークを有するプリプレグ。 A prepreg having a peak at 2120 ± 5 cm −1 in the infrared absorption spectrum.
  3.  1分子中に少なくとも1つのカルボジイミド基を有するカルボジイミド化合物と、硬化剤と、無機フィラーと、を含有する樹脂組成物。 A resin composition containing a carbodiimide compound having at least one carbodiimide group in one molecule, a curing agent, and an inorganic filler.
  4.  前記カルボジイミド化合物が、芳香族カルボジイミド化合物を含む請求項3に記載の樹脂組成物。 The resin composition according to claim 3, wherein the carbodiimide compound includes an aromatic carbodiimide compound.
  5.  前記硬化剤が、カルボン酸、エポキシ化合物、フェノール化合物及びアミンからなる群より選択される少なくとも1種を含む請求項3又は請求項4に記載の樹脂組成物。 The resin composition according to claim 3 or 4, wherein the curing agent contains at least one selected from the group consisting of a carboxylic acid, an epoxy compound, a phenol compound, and an amine.
  6.  前記無機フィラーが、シリカを含む請求項3~請求項5のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 3 to 5, wherein the inorganic filler contains silica.
  7.  前記無機フィラーが、ベーマイト型水酸化アルミニウムを含む請求項3~請求項6のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 3 to 6, wherein the inorganic filler contains boehmite type aluminum hydroxide.
  8.  前記無機フィラーの平均粒径が、5.0μm以下である請求項3~請求項7のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 3 to 7, wherein the inorganic filler has an average particle size of 5.0 μm or less.
  9.  マレイミド化合物を含有する請求項3~請求項8のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 3 to 8, comprising a maleimide compound.
  10.  基材と、前記基材に含浸された請求項3~請求項9のいずれか1項に記載の樹脂組成物と、を有するプリプレグ。 A prepreg comprising: a base material; and the resin composition according to any one of claims 3 to 9, which is impregnated in the base material.
  11.  請求項3~請求項9のいずれか1項に記載の樹脂組成物をシート状に成形してなる樹脂シート。 A resin sheet obtained by molding the resin composition according to any one of claims 3 to 9 into a sheet shape.
  12.  請求項1、請求項2又は請求項10に記載のプリプレグを積層した積層板。 A laminated board obtained by laminating the prepreg according to claim 1, claim 2 or claim 10.
PCT/JP2016/060851 2016-03-31 2016-03-31 Resin composition, prepreg, resin sheet and laminate WO2017168732A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/060851 WO2017168732A1 (en) 2016-03-31 2016-03-31 Resin composition, prepreg, resin sheet and laminate
JP2018508322A JPWO2017168732A1 (en) 2016-03-31 2016-03-31 Resin composition, prepreg, resin sheet and laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/060851 WO2017168732A1 (en) 2016-03-31 2016-03-31 Resin composition, prepreg, resin sheet and laminate

Publications (1)

Publication Number Publication Date
WO2017168732A1 true WO2017168732A1 (en) 2017-10-05

Family

ID=59963788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060851 WO2017168732A1 (en) 2016-03-31 2016-03-31 Resin composition, prepreg, resin sheet and laminate

Country Status (2)

Country Link
JP (1) JPWO2017168732A1 (en)
WO (1) WO2017168732A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019073891A1 (en) * 2017-10-10 2019-04-18 三井金属鉱業株式会社 Resin composition for printed wiring board, copper foil with resin, copper-clad laminate board, and printed wiring board
WO2019138919A1 (en) * 2018-01-15 2019-07-18 日立化成株式会社 Liquid sealing resin composition, electronic component device, and method for manufacturing electronic component device
WO2019172342A1 (en) * 2018-03-06 2019-09-12 日立化成株式会社 Prepreg, layered plate, multilayer printed wiring board, semiconductor package, and resin composition, and method of manufacturing prepreg, layered plate, and multilayer printed wiring board
WO2020031545A1 (en) * 2018-08-09 2020-02-13 三菱瓦斯化学株式会社 Resin composition for printed wiring board, prepreg, laminated board, metal foil-clad laminated board, printed wiring board, and multilayer printed wiring board
JP2020084182A (en) * 2018-11-15 2020-06-04 ユニチカ株式会社 Composition for flexible copper-clad laminate sheet

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02218750A (en) * 1989-02-20 1990-08-31 Mitsui Toatsu Chem Inc Composition for laminating material
JPH07257980A (en) * 1994-11-21 1995-10-09 Nisshinbo Ind Inc Production of c/c composite
JPH09227851A (en) * 1996-02-19 1997-09-02 Japan Synthetic Rubber Co Ltd Adhesive
JPH11116772A (en) * 1997-10-16 1999-04-27 Jsr Corp Thermosetting resin composition and cured product
JPH11121935A (en) * 1997-08-11 1999-04-30 Jsr Corp Multilayer printed wiring board and laminate therefor
JP2000094443A (en) * 1998-09-25 2000-04-04 Nisshinbo Ind Inc Prepreg, multilayer printed board and manufacture thereof
JP2001123043A (en) * 1999-10-26 2001-05-08 Matsushita Electric Works Ltd Epoxy resin composition, prepreg, resin attached metal foil and laminate
JP2002088221A (en) * 2000-09-18 2002-03-27 Nisshinbo Ind Inc Thermosetting resin composition, and metal foil with resin, prepreg, and film adhesive prepared by using the same
JP2006299175A (en) * 2005-04-25 2006-11-02 Matsushita Electric Works Ltd Substrate-containing adhesive sheet for flexible printed wiring board and method for producing the same, and multilayer flexible printed wiring board, flex rigid printed circuit board
JP2006335834A (en) * 2005-05-31 2006-12-14 Tdk Corp Thermosetting resin composition, resin sheet, laminate, cured body and laminated sheet
JP2008081727A (en) * 2006-08-28 2008-04-10 Matsushita Electric Works Ltd Substrate-containing adhesive sheet for flexible printed wiring board and method for manufacturing the same, multilayer flexible printed wiring board, and flex rigid printed wiring board
JP2011155085A (en) * 2010-01-26 2011-08-11 Panasonic Electric Works Co Ltd Epoxy resin composition for printed wiring boards, resin film, prepreg, resin sheet with metal foil, flexible printed wiring board
JP2015229763A (en) * 2014-06-06 2015-12-21 パナソニックIpマネジメント株式会社 Resin composition, prepreg, metal-clad laminate sheet, printed wiring board
JP2016027097A (en) * 2014-06-30 2016-02-18 味の素株式会社 Resin composition
WO2016039486A1 (en) * 2014-09-11 2016-03-17 帝人株式会社 Thermosetting resin composition

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02218750A (en) * 1989-02-20 1990-08-31 Mitsui Toatsu Chem Inc Composition for laminating material
JPH07257980A (en) * 1994-11-21 1995-10-09 Nisshinbo Ind Inc Production of c/c composite
JPH09227851A (en) * 1996-02-19 1997-09-02 Japan Synthetic Rubber Co Ltd Adhesive
JPH11121935A (en) * 1997-08-11 1999-04-30 Jsr Corp Multilayer printed wiring board and laminate therefor
JPH11116772A (en) * 1997-10-16 1999-04-27 Jsr Corp Thermosetting resin composition and cured product
JP2000094443A (en) * 1998-09-25 2000-04-04 Nisshinbo Ind Inc Prepreg, multilayer printed board and manufacture thereof
JP2001123043A (en) * 1999-10-26 2001-05-08 Matsushita Electric Works Ltd Epoxy resin composition, prepreg, resin attached metal foil and laminate
JP2002088221A (en) * 2000-09-18 2002-03-27 Nisshinbo Ind Inc Thermosetting resin composition, and metal foil with resin, prepreg, and film adhesive prepared by using the same
JP2006299175A (en) * 2005-04-25 2006-11-02 Matsushita Electric Works Ltd Substrate-containing adhesive sheet for flexible printed wiring board and method for producing the same, and multilayer flexible printed wiring board, flex rigid printed circuit board
JP2006335834A (en) * 2005-05-31 2006-12-14 Tdk Corp Thermosetting resin composition, resin sheet, laminate, cured body and laminated sheet
JP2008081727A (en) * 2006-08-28 2008-04-10 Matsushita Electric Works Ltd Substrate-containing adhesive sheet for flexible printed wiring board and method for manufacturing the same, multilayer flexible printed wiring board, and flex rigid printed wiring board
JP2011155085A (en) * 2010-01-26 2011-08-11 Panasonic Electric Works Co Ltd Epoxy resin composition for printed wiring boards, resin film, prepreg, resin sheet with metal foil, flexible printed wiring board
JP2015229763A (en) * 2014-06-06 2015-12-21 パナソニックIpマネジメント株式会社 Resin composition, prepreg, metal-clad laminate sheet, printed wiring board
JP2016027097A (en) * 2014-06-30 2016-02-18 味の素株式会社 Resin composition
WO2016039486A1 (en) * 2014-09-11 2016-03-17 帝人株式会社 Thermosetting resin composition

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019073891A1 (en) * 2017-10-10 2019-04-18 三井金属鉱業株式会社 Resin composition for printed wiring board, copper foil with resin, copper-clad laminate board, and printed wiring board
CN111201277A (en) * 2017-10-10 2020-05-26 三井金属矿业株式会社 Resin composition for printed wiring board, copper foil with resin, copper-clad laminate, and printed wiring board
JP7212626B2 (en) 2017-10-10 2023-01-25 三井金属鉱業株式会社 Resin composition for printed wiring board, resin-coated copper foil, copper-clad laminate, and printed wiring board
JPWO2019073891A1 (en) * 2017-10-10 2020-09-10 三井金属鉱業株式会社 Resin composition for printed wiring board, copper foil with resin, copper-clad laminate, and printed wiring board
WO2019138919A1 (en) * 2018-01-15 2019-07-18 日立化成株式会社 Liquid sealing resin composition, electronic component device, and method for manufacturing electronic component device
JPWO2019172342A1 (en) * 2018-03-06 2021-03-18 昭和電工マテリアルズ株式会社 Manufacturing method of prepreg, laminated board, multilayer printed wiring board, semiconductor package and resin composition, and prepreg, laminated board and multilayer printed wiring board
WO2019172342A1 (en) * 2018-03-06 2019-09-12 日立化成株式会社 Prepreg, layered plate, multilayer printed wiring board, semiconductor package, and resin composition, and method of manufacturing prepreg, layered plate, and multilayer printed wiring board
WO2020031545A1 (en) * 2018-08-09 2020-02-13 三菱瓦斯化学株式会社 Resin composition for printed wiring board, prepreg, laminated board, metal foil-clad laminated board, printed wiring board, and multilayer printed wiring board
CN112513180A (en) * 2018-08-09 2021-03-16 三菱瓦斯化学株式会社 Resin composition for printed wiring board, prepreg, laminate, metal foil-clad laminate, printed wiring board, and multilayer printed wiring board
JPWO2020031545A1 (en) * 2018-08-09 2021-09-24 三菱瓦斯化学株式会社 Resin composition for printed wiring board, prepreg, laminated board, metal foil-clad laminated board, printed wiring board and multilayer printed wiring board
US11702504B2 (en) 2018-08-09 2023-07-18 Mitsubishi Gas Chemical Company, Inc. Resin composition for printed wiring board, prepreg, laminate, metal foil-clad laminate, printed wiring board, and multilayer printed wiring board
JP7316551B2 (en) 2018-08-09 2023-07-28 三菱瓦斯化学株式会社 Resin composition for printed wiring board, prepreg, laminate, metal foil-clad laminate, printed wiring board and multilayer printed wiring board
JP2020084182A (en) * 2018-11-15 2020-06-04 ユニチカ株式会社 Composition for flexible copper-clad laminate sheet

Also Published As

Publication number Publication date
JPWO2017168732A1 (en) 2019-02-07

Similar Documents

Publication Publication Date Title
JP6160675B2 (en) Resin composition, prepreg, laminate and printed wiring board using the same
JP5857514B2 (en) Thermosetting resin composition, and prepreg and laminate using the same
JP2017179311A (en) Resin composition, prepreg, resin sheet and laminate
JP6157121B2 (en) Resin composition, prepreg, and laminate
TWI429673B (en) A method for producing a hardening agent having an acidic substituent and an unsaturated maleimide group, and a thermosetting resin composition, a prepreg and a laminate
WO2017168732A1 (en) Resin composition, prepreg, resin sheet and laminate
KR20120012782A (en) Thermosetting resin composition, and prepreg, insulating film with support, laminate plate, and printed wiring board, each obtained using same
JP2014150133A (en) Metal foil with resin, printed wiring board, and method for manufacturing printed wiring board
JP2017179310A (en) Carbodiimide compound, resin composition, prepreg, resin sheet and laminate
JP2014012751A (en) Thermosetting resin composition, and prepreg, laminated sheet and printed wiring board including the same
JP4672930B2 (en) Modified polyimide resin composition and prepreg and laminate using the same
JP2017179307A (en) Carbodiimide compound, resin composition, prepreg, resin sheet and laminate
JP6519307B2 (en) Thermosetting insulating resin composition, and insulating film with support using the same, prepreg, laminate and multilayer printed wiring board
JP2017179308A (en) Carbodiimide compound, resin composition, prepreg, resin sheet, and laminate
JP6106931B2 (en) Compatibilizing resin, and thermosetting resin composition, prepreg, and laminate using the same
JP6163804B2 (en) Compatibilized resin production method, thermosetting resin composition, prepreg and laminate
JP5652028B2 (en) Thermosetting resin composition, prepreg and laminate using the same
JP5447268B2 (en) Thermosetting resin composition, prepreg and laminate
JP5909916B2 (en) Resin production method, thermosetting resin composition, prepreg and laminate
JP6194603B2 (en) Thermosetting resin composition, prepreg and laminate
JP2017179309A (en) Carbodiimide compound, resin composition, prepreg, resin sheet and laminate
JP2020132679A (en) Resin composition
JP6353633B2 (en) Compatibilizing resin, thermosetting resin composition, prepreg and laminate
JP2015063608A (en) Thermosetting resin composition, prepreg using the same, and laminate using the same
JP2014012760A (en) Prepreg using organic fiber base material and manufacturing method of the same, and laminated plate, metal foil-clad laminated plate, and wiring board using the prepreg

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018508322

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16896949

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16896949

Country of ref document: EP

Kind code of ref document: A1