JP2014012760A - Prepreg using organic fiber base material and manufacturing method of the same, and laminated plate, metal foil-clad laminated plate, and wiring board using the prepreg - Google Patents

Prepreg using organic fiber base material and manufacturing method of the same, and laminated plate, metal foil-clad laminated plate, and wiring board using the prepreg Download PDF

Info

Publication number
JP2014012760A
JP2014012760A JP2012150386A JP2012150386A JP2014012760A JP 2014012760 A JP2014012760 A JP 2014012760A JP 2012150386 A JP2012150386 A JP 2012150386A JP 2012150386 A JP2012150386 A JP 2012150386A JP 2014012760 A JP2014012760 A JP 2014012760A
Authority
JP
Japan
Prior art keywords
compound
resin
molecule
prepreg
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012150386A
Other languages
Japanese (ja)
Inventor
Koji Morita
高示 森田
Hiroyuki Izumi
寛之 泉
Kumiko Ishikura
久美子 石倉
Masahisa Oze
昌久 尾瀬
Kazunaga Sakai
和永 坂井
Naoki Takahara
直己 高原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2012150386A priority Critical patent/JP2014012760A/en
Publication of JP2014012760A publication Critical patent/JP2014012760A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a prepreg expressing low thermal expansion and high adhesiveness and a manufacturing method of the same, and a laminated plate, a metal foil-clad laminated plate, and a wiring board using the prepreg.SOLUTION: A thermosetting resin is obtained by reacting, in an organic solvent, (a) a siloxane resin having hydroxyl groups at its terminals represented by following general formula (I) and (b) a compound having at least two or more cyanate groups in one molecule, and contains 10-70 pts.mass of the siloxane resin (a) and 30-90 pts.mass of the compound (b) based on the sum total 100 pts.mass of the siloxane resin (a) and the compound (b). A prepreg is obtained by immersing in an organic fiber base material the thermosetting resin having a reaction rate of the compound (b) of 40-70 mol% and a thermosetting resin composition containing silica and a compound having at least two or more epoxy groups in one molecule.

Description

本発明は、低熱膨張性、高接着性に優れた熱硬化性樹脂組成物を用いたプリプレグとその製造方法、及びそれを用いた積層板、金属箔張積層板、配線板に関する。   The present invention relates to a prepreg using a thermosetting resin composition excellent in low thermal expansion and high adhesion, a method for producing the same, and a laminate, a metal foil-clad laminate, and a wiring board using the prepreg.

熱硬化性樹脂組成物は、架橋構造を有し、高い耐熱性や寸法安定性を発現するため、電子機器等の分野において広く使われる。特に、配線や回路パターンがプリントされたプリント配線板、また、プリント配線板を多層化した銅張積層板を構成するプリプレグや、層間絶縁材料として用いられている。   Thermosetting resin compositions have a cross-linked structure and exhibit high heat resistance and dimensional stability, and thus are widely used in the fields of electronic devices and the like. In particular, it is used as a printed wiring board on which wirings and circuit patterns are printed, a prepreg constituting a copper-clad laminate in which printed wiring boards are multilayered, and an interlayer insulating material.

近年、電子機器の小型化、軽量化、動作周波数の高速化が一段と進み、プリント配線及び回路パターンの高集積化が進んでいる。高集積化の方法として、プリント配線板に形成されるプリント配線及び回路パターンの微細化、回路パターンが形成された回路基板の多層化、或いはこれらの併用が提案されている。   In recent years, electronic devices have become smaller and lighter, and the operating frequency has been increased, and printed wiring and circuit patterns have been highly integrated. As high integration methods, proposals have been made for miniaturization of printed wiring and circuit patterns formed on a printed wiring board, multilayering of circuit boards on which circuit patterns are formed, or a combination thereof.

これらのプリント配線の高集積化に伴い、プリント配線板に低熱膨張性が特に要求されている。特許文献1、2および3には、シアネート化合物と無機充填剤からなり、低熱膨張性を発現させる樹脂組成物が開示されているが、これらは低熱膨張性を発現させるため無機充填剤の配合量が多く、銅張積層板や層間絶縁材料として使用した場合、ドリル加工性や成形性が不足するなどの問題があった。   With the high integration of these printed wirings, low thermal expansion is particularly required for printed wiring boards. Patent Documents 1, 2 and 3 disclose resin compositions comprising a cyanate compound and an inorganic filler and exhibiting a low thermal expansion property. However, since these exhibit a low thermal expansion property, the blending amount of the inorganic filler is disclosed. However, when used as a copper clad laminate or an interlayer insulating material, there are problems such as insufficient drillability and formability.

特開2003−268136号公報JP 2003-268136 A 特開2003−073543号公報JP 2003-073543 A 特開2002−285015号公報JP 2002-285015 A

本発明の目的は、低熱膨張性と高接着性を発現するプリプレグとその製造方法、及び該プリプレグを使用した積層板、金属箔張箔積層板、配線板を提供するものである。   The objective of this invention is providing the prepreg which expresses low thermal expansibility and high adhesiveness, its manufacturing method, a laminated board using this prepreg, a metal foil tension foil laminated board, and a wiring board.

本発明者らは上記の課題を解決すべく検討を進めた結果、一般式(I)で示される末端に水酸基を有するシロキサン樹脂(a)と、1分子中に少なくとも2個以上のシアネート基を有する化合物(b)とを反応させ得られた熱硬化性樹脂と、1分子中に少なくとも2個以上のエポキシ基を有する化合物及びシリカを有する熱硬化性樹脂組成物を、有機繊維基材に含浸して作製したプリプレグを用いた積層板、金属箔張積層板および配線板が、低熱膨張性を発現することを見出した。
本発明は、かかる知見に基づいて完成したものである。
As a result of investigations to solve the above problems, the present inventors have found that a siloxane resin (a) having a hydroxyl group at the terminal represented by the general formula (I) and at least two cyanate groups in one molecule. An organic fiber base material is impregnated with a thermosetting resin obtained by reacting the compound (b) having a compound, a compound having at least two epoxy groups in one molecule and a thermosetting resin composition having silica. It was found that a laminate, a metal foil-clad laminate, and a wiring board using the prepreg produced in this way exhibit low thermal expansion.
The present invention has been completed based on such findings.

本発明は、以下の内容を含む。
(1)下記一般式(I)で示される末端に水酸基を有するシロキサン樹脂(a)と、1分子中に少なくとも2個以上のシアネート基を有する化合物(b)とを有機溶媒中で反応して得られた熱硬化性樹脂であり、前記シロキサン樹脂(a)と前記1分子中に少なくとも2個以上のシアネート基を有する化合物(b)との総和100質量部に対し、前記シロキサン樹脂(a)10〜70質量部及び前記1分子中に少なくとも2個以上のシアネート基を有する化合物(b)30〜90質量部が含まれており、前記1分子中に少なくとも2個以上のシアネート基を有する化合物(b)の反応率が40〜70mol%である熱硬化性樹脂と、1分子中に少なくとも2個以上のエポキシ基を有する化合物及びシリカを含有する熱硬化性樹脂組成物を、有機繊維基材に含浸し、得られるプリプレグ。
The present invention includes the following contents.
(1) A siloxane resin (a) having a hydroxyl group at the terminal represented by the following general formula (I) and a compound (b) having at least two cyanate groups in one molecule are reacted in an organic solvent. It is the obtained thermosetting resin, and the siloxane resin (a) with respect to 100 parts by mass of the total of the siloxane resin (a) and the compound (b) having at least two cyanate groups in one molecule. Compound having 10 to 70 parts by mass and 30 to 90 parts by mass of compound (b) having at least two or more cyanate groups in one molecule, and having at least two or more cyanate groups in one molecule A thermosetting resin having a reaction rate of (b) of 40 to 70 mol%, a compound having at least two epoxy groups in one molecule and silica, and Impregnating the fiber base material, obtained prepreg.

Figure 2014012760
(一般式(I)中、R1は各々独立に炭素数1〜5のアルキレン基又はアルキレンオキシ基、Ar1は各々独立に単結合、アリーレン基又は炭素数1〜5のアルキレン基であり、mは5〜100の整数である。)
(2)前記有機繊維基材が、アラミド樹脂、液晶ポリエステル(PLC)樹脂、パラフェニレンベンゾビスオキサゾール(PBO)樹脂、ポリエステル樹脂、芳香族ポリエステル樹脂、ポリイミド樹脂、超高分子量ポリエチレン及びテトラフルオロエチレン樹脂から選ばれる少なくとも1以上の繊維基材である上記(1)に記載のプリプレグ。
(3)前記有機繊維基材が、表面処理されてなる上記(1)又は(2)に記載のプリプレグ。
(4)前記有機繊維基材の表面処理が、シランカップリング剤、コロナ処理及びプラズマ処理のいずれかである上記(3)に記載のプリプレグ。
(5)上記(1)〜(4)のいずれかに記載のプリプレグを、少なくとも1枚以上用いて積層し、成形して得られた積層板。
(6)上記(1)〜(4)のいずれかに記載のプリプレグを、少なくとも1枚以上用い、さらに金属箔を積層し、成形して得られた金属箔張積層板。
(7)前記(6)に記載の金属箔張積層板を配線形成して得られた配線板。
(8)下記一般式(I)で示される末端に水酸基を有するシロキサン樹脂(a)と、1分子中に少なくとも2個以上のシアネート基を有する化合物(b)とを、前記シロキサン樹脂(a)と前記1分子中に少なくとも2個以上のシアネート基を有する化合物(b)との総和100質量部に対し、前記シロキサン樹脂(a)10〜70質量部及び前記1分子中に少なくとも2個以上のシアネート基を有する化合物(b)30〜90質量部を用い、前記1分子中に少なくとも2個以上のシアネート基を有する化合物(b)の反応率が40〜70mol%となるよう有機溶媒中で反応し熱硬化性樹脂を製造する工程、
前記熱硬化性樹脂と、1分子中に少なくとも2個以上のエポキシ基を有する化合物とシリカを配合して熱硬化性樹脂組成物を作製する工程、
前記熱硬化性樹脂組成物を、有機繊維基材に含浸する工程、により得られるプリプレグの製造方法。
Figure 2014012760
(In general formula (I), each R 1 is independently an alkylene group or alkyleneoxy group having 1 to 5 carbon atoms, Ar 1 is each independently a single bond, an arylene group or an alkylene group having 1 to 5 carbon atoms, m is an integer of 5 to 100.)
(2) The organic fiber base material is an aramid resin, liquid crystal polyester (PLC) resin, paraphenylene benzobisoxazole (PBO) resin, polyester resin, aromatic polyester resin, polyimide resin, ultrahigh molecular weight polyethylene, and tetrafluoroethylene resin. The prepreg as described in (1) above, which is at least one fiber substrate selected from
(3) The prepreg according to (1) or (2) above, wherein the organic fiber substrate is surface-treated.
(4) The prepreg according to (3) above, wherein the surface treatment of the organic fiber substrate is any one of a silane coupling agent, a corona treatment, and a plasma treatment.
(5) A laminate obtained by laminating and molding at least one prepreg according to any one of (1) to (4) above.
(6) A metal foil-clad laminate obtained by using at least one prepreg according to any one of (1) to (4) above and further laminating and forming a metal foil.
(7) A wiring board obtained by wiring the metal foil-clad laminate according to (6).
(8) A siloxane resin (a) having a hydroxyl group at the terminal represented by the following general formula (I) and a compound (b) having at least two cyanate groups in one molecule are combined with the siloxane resin (a). And 10 parts by mass to 70 parts by mass of the siloxane resin (a) and at least 2 parts by mass of the compound (b) having at least two cyanate groups in one molecule Using 30 to 90 parts by mass of the compound (b) having a cyanate group, the reaction is carried out in an organic solvent so that the reaction rate of the compound (b) having at least two cyanate groups in one molecule is 40 to 70 mol%. Manufacturing a thermosetting resin,
A step of blending the thermosetting resin, a compound having at least two epoxy groups in one molecule, and silica to produce a thermosetting resin composition;
A method for producing a prepreg obtained by impregnating an organic fiber substrate with the thermosetting resin composition.

Figure 2014012760
(一般式(I)中、R1は各々独立に炭素数1〜5のアルキレン基又はアルキレンオキシ基、Ar1は各々独立に単結合、アリーレン基又は炭素数1〜5のアルキレン基であり、mは5〜100の整数である。)
Figure 2014012760
(In general formula (I), each R 1 is independently an alkylene group or alkyleneoxy group having 1 to 5 carbon atoms, Ar 1 is each independently a single bond, an arylene group or an alkylene group having 1 to 5 carbon atoms, m is an integer of 5 to 100.)

本発明によれば、低熱膨張率で高接着性のプリプレグとその製造方法、積層板、金属箔張積層板及び配線板を提供できる。   According to the present invention, it is possible to provide a prepreg having a low thermal expansion coefficient and high adhesiveness, a method for producing the same, a laminate, a metal foil-clad laminate and a wiring board.

以下、本発明の実施形態について詳細に説明する。
[熱硬化性樹脂組成物]
本発明の熱硬化性樹脂組成物は、上記一般式(I)で示される末端に水酸基を有するシロキサン樹脂(a)と、1分子中に少なくとも2個以上のシアネート基を有する化合物(b)とを有機溶媒中で反応して得られたものである。該シロキサン樹脂(a)と該1分子中に少なくとも2個以上のシアネート基を有する化合物(b)との総和100質量部に対し、該シロキサン樹脂(a)10〜70質量部及び該1分子中に少なくとも2個以上のシアネート基を有する化合物(b)30〜90質量部が含まれており、該1分子中に少なくとも2個以上のシアネート基を有する化合物(b)の反応率が40〜70mol%の熱硬化性樹脂と、1分子中に少なくとも2個以上のエポキシ基を有する化合物とシリカを含有する樹脂組成物である。
Hereinafter, embodiments of the present invention will be described in detail.
[Thermosetting resin composition]
The thermosetting resin composition of the present invention comprises a siloxane resin (a) having a hydroxyl group at the terminal represented by the general formula (I), a compound (b) having at least two cyanate groups in one molecule, and Is obtained by reacting in an organic solvent. The total amount of the siloxane resin (a) and the compound (b) having at least two cyanate groups in one molecule is 100 parts by mass, and the siloxane resin (a) is 10 to 70 parts by mass and in one molecule. 30 to 90 parts by mass of the compound (b) having at least two cyanate groups is contained in the compound, and the reaction rate of the compound (b) having at least two cyanate groups in one molecule is 40 to 70 mol. % Thermosetting resin, a compound having at least two epoxy groups in one molecule, and silica.

前記シロキサン樹脂(a)と、1分子中に少なくとも2個以上のシアネート基を有する化合物(b)との反応に用いる有機溶媒は、特に限定しないが、トルエン、メシチレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどが挙げられ、特にトルエン、メシチレンが前記シロキサン樹脂(a)と、1分子中に少なくとも2個以上のシアネート基を有する化合物(b)溶解性が高く好ましい。   The organic solvent used for the reaction of the siloxane resin (a) with the compound (b) having at least two cyanate groups in one molecule is not particularly limited, but toluene, mesitylene, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone In particular, toluene and mesitylene are preferable because of high solubility of the siloxane resin (a) and the compound (b) having at least two cyanate groups in one molecule.

シロキサン樹脂(a)は、上記一般式(I)で示される構造の水酸基を含有するシロキサン樹脂であれば特に限定されないが、シロキサン樹脂(a)の両末端がフェノール性水酸基、又はアルコール性水酸基であると好ましい。一般式(I)中のR1の炭素数1〜5のアルキレン基としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンテン基およびその構造異性体が挙げられ、アルキレンオキシ基としては、エチレンオキシ基、プロピレンオキシ基、ブチレンオキシ基などがあげられる。一般式(I)中のAr1であるアリーレン基としては、二価の単環式又は多環式芳香族炭化水素基を意味し、具体例としては、例えば、1,2−フェニレン基、1,3−フェニレン基、1,4−フェニレン基、ビフェニル−4,4´−ジイル基、ジフェニルメタン−4,4´−ジイル基、3,3´−ジメチルビフェニル−4,4´−ジイル基などが挙げられる。また、炭素数1〜5のアルキレン基は、上記のRのアルキレン基と同様である。
両末端にフェノール性水酸基を有するシロキサン樹脂(a)の市販品としては、例えば、信越化学工業株式会社製、商品名X−22−1821(水酸基価:35KOHmg/g、水酸基当量1600g/eq)、商品名X−22−1822(水酸基価:20KOHmg/g)が挙げられる。
また、両末端にアルコール性水酸基を有するシロキサン樹脂(a)の市販品としては、例えば、信越化学工業株式会社製、商品名X−22−160AS(水酸基価:112KOHmg/g)、商品名X−22−4015(水酸基価:27KOHmg/g)等が挙げられる。また、例えば、東レ・ダウコーニング・シリコーン株式会社製、商品名KF−6001(水酸基価:62KOHmg/g)、商品名KF−6002(水酸基価:35KOHmg/g)、商品名KF−6003(水酸基価:20KOHmg/g)等が挙げられる。
The siloxane resin (a) is not particularly limited as long as it is a siloxane resin containing a hydroxyl group having the structure represented by the above general formula (I), but both ends of the siloxane resin (a) are phenolic hydroxyl groups or alcoholic hydroxyl groups. Preferably there is. Examples of the alkylene group having 1 to 5 carbon atoms of R 1 in the general formula (I) include a methylene group, an ethylene group, a propylene group, a butylene group, a pentene group, and a structural isomer thereof. Examples thereof include an ethyleneoxy group, a propyleneoxy group, and a butyleneoxy group. The arylene group which is Ar 1 in the general formula (I) means a divalent monocyclic or polycyclic aromatic hydrocarbon group, and specific examples thereof include, for example, a 1,2-phenylene group, 1 , 3-phenylene group, 1,4-phenylene group, biphenyl-4,4′-diyl group, diphenylmethane-4,4′-diyl group, 3,3′-dimethylbiphenyl-4,4′-diyl group and the like. Can be mentioned. The alkylene group having 1 to 5 carbon atoms is the same as the alkylene group for R 1 described above.
As a commercial item of the siloxane resin (a) having phenolic hydroxyl groups at both ends, for example, trade name X-22-1821 (hydroxyl value: 35 KOHmg / g, hydroxyl group equivalent 1600 g / eq) manufactured by Shin-Etsu Chemical Co., Ltd., Trade name X-22-1822 (hydroxyl value: 20 KOHmg / g).
Moreover, as a commercial item of the siloxane resin (a) which has an alcoholic hydroxyl group in both ends, Shin-Etsu Chemical Co., Ltd. make, brand name X-22-160AS (hydroxyl value: 112KOHmg / g), brand name X-, for example. 22-4015 (hydroxyl value: 27 KOHmg / g) and the like. Further, for example, trade name KF-6001 (hydroxyl value: 62 KOHmg / g), trade name KF-6002 (hydroxyl value: 35 KOHmg / g), trade name KF-6003 (hydroxyl value) manufactured by Toray Dow Corning Silicone Co., Ltd. : 20KOHmg / g) and the like.

1分子中に少なくとも2個以上のシアネート基を有する化合物(b)としては、例えば、ノボラック型シアネート樹脂、ビスフェノールA型シアネート樹脂、ビスフェノールE型シアネート樹脂、ビスフェノールF型シアネート樹脂、テトラメチルビスフェノールF型シアネート樹脂等が挙げられ、これらのうち1種又は2種以上を混合して使用することができる。これらの中で、誘電特性、耐熱性、難燃性、低熱膨張性、及び安価である点から、ビスフェノールA型シアネート樹脂、又はノボラック型シアネート樹脂が好ましい。ノボラック型シアネート樹脂の平均繰り返し数は、特に限定されないが、1〜30が好ましい。1未満では結晶化しやすくなり取り扱いが困難となる場合がある。また、30を超えると硬化物が脆くなる場合がある。
1分子中に少なくとも2個以上のシアネート基を有する化合物(b)として使用可能なビスフェノールA型シアネート樹脂の市販品としては、ロンザジャパン株式会社製、商品名Arocy B−10が挙げられる。また、ノボラック型シアネート樹脂の市販品としては、ロンザジャパン株式会社製、商品名プリマセットPT−30(重量平均分子量500〜1,000)、商品名プリマセットPT−60(重量平均分子量2,000〜3,000)等が挙げられる。
Examples of the compound (b) having at least two cyanate groups in one molecule include novolak type cyanate resin, bisphenol A type cyanate resin, bisphenol E type cyanate resin, bisphenol F type cyanate resin, and tetramethylbisphenol F type. Cyanate resin etc. are mentioned, Among these, 1 type or 2 or more types can be mixed and used. Among these, bisphenol A type cyanate resin or novolac type cyanate resin is preferable from the viewpoints of dielectric properties, heat resistance, flame retardancy, low thermal expansion, and low cost. The average number of repeats of the novolak type cyanate resin is not particularly limited, but is preferably 1 to 30. If it is less than 1, it may be easily crystallized and may be difficult to handle. Moreover, when it exceeds 30, hardened | cured material may become weak.
As a commercial product of bisphenol A type cyanate resin that can be used as the compound (b) having at least two or more cyanate groups in one molecule, Lonza Japan Co., Ltd., trade name Arocy B-10 can be mentioned. Moreover, as a commercial item of a novolak-type cyanate resin, Lonza Japan Co., Ltd. make, brand name Primaset PT-30 (weight average molecular weight 500-1,000), brand name Primaset PT-60 (weight average molecular weight 2,000) ~ 3,000).

シロキサン樹脂(a)と1分子中に少なくとも2個以上のシアネート基を有する化合物(b)との配合量は、次のとおりとすることが好ましい。シロキサン樹脂(a)と1分子中に少なくとも2個以上のシアネート基を有する化合物(b)との総和100質量部に対して、シロキサン樹脂(a)の配合量を10〜70質量部の範囲とする。また、1分子中に少なくとも2個以上のシアネート基を有する化合物(b)の配合量を30〜90質量部の範囲とする。   The blending amount of the siloxane resin (a) and the compound (b) having at least two cyanate groups in one molecule is preferably as follows. With respect to 100 parts by mass of the total of the siloxane resin (a) and the compound (b) having at least two cyanate groups in one molecule, the amount of the siloxane resin (a) is in the range of 10 to 70 parts by mass. To do. Moreover, the compounding quantity of the compound (b) which has at least 2 or more cyanate group in 1 molecule shall be the range of 30-90 mass parts.

シロキサン樹脂(a)の配合量が10質量部未満であると、得られる基材の面方向の低熱膨張性が低下し熱膨張係数が高くなる場合がある。また、シロキサン樹脂(a)の配合量が70質量部を超えると、耐熱性及び耐薬品性が低下する場合がある。また、1分子中に少なくとも2個以上のシアネート基を有する化合物(b)の配合量が30質量部未満であると、耐熱性が低下する場合があり、1分子中に少なくとも2個以上のシアネート基を有する化合物(b)の配合量が90質量部を超えると、得られる基材の面方向の低熱膨張性が低下し熱膨張係数が高くなる場合がある。   When the blending amount of the siloxane resin (a) is less than 10 parts by mass, the low thermal expansion property in the surface direction of the obtained base material may be lowered and the thermal expansion coefficient may be increased. Moreover, when the compounding quantity of siloxane resin (a) exceeds 70 mass parts, heat resistance and chemical resistance may fall. Further, when the compounding amount of the compound (b) having at least two or more cyanate groups in one molecule is less than 30 parts by mass, the heat resistance may be lowered, and at least two or more cyanates in one molecule. When the compounding quantity of the compound (b) which has group exceeds 90 mass parts, the low thermal expansion property of the surface direction of the base material obtained may fall, and a thermal expansion coefficient may become high.

本発明では、シロキサン樹脂(a)と1分子中に少なくとも2個以上のシアネート基を有する化合物(b)とを、1分子中に少なくとも2個以上のシアネート基を有する化合物(b)の反応率(消失率)が40〜70mol%となるように、有機溶媒中で予めプレ反応させることが好ましい。プレ反応としては、イミノカーボネ−ト化反応、及びトリアジン環化反応が挙げられる。
イミノカーボネ−ト化反応は、水酸基とシアネート基の付加反応によりイミノカーボネ−ト結合(−O−(C=NH)−O−)が生成される反応であり、トリアジン環化反応は、シアネート基が3量化しトリアジン環を形成する反応である。
In the present invention, the reaction rate of the siloxane resin (a) and the compound (b) having at least two cyanate groups in one molecule and the compound (b) having at least two cyanate groups in one molecule. It is preferable to pre-react in an organic solvent in advance so that (disappearance rate) is 40 to 70 mol%. Examples of the pre-reaction include an imino carbonate reaction and a triazine cyclization reaction.
The iminocarbonation reaction is a reaction in which an iminocarbonate bond (—O— (C═NH) —O—) is generated by the addition reaction of a hydroxyl group and a cyanate group. It is a reaction that quantifies to form a triazine ring.

1分子中に少なくとも2個以上のシアネート基を有する化合物(b)の反応率が40mol%未満であると、得られる熱硬化性樹脂と汎用の有機溶媒との相溶性が低下し、耐熱性が低下したり、銅箔接着性が低下したりする場合がある。また、1分子中に少なくとも2個以上のシアネート基を有する化合物(b)の反応率が40mol%未満であると、得られる熱硬化性樹脂が結晶化し、ワニス(熱硬化性樹脂組成物)が製造できなくなったり、塗工時にタックが生じたりする場合がある。また、得られる熱硬化性樹脂の硬化が不十分になり、耐熱性が低下する場合がある。
また、1分子中に少なくとも2個以上のシアネート基を有する化合物(b)の反応率が70mol%を超えると、得られる熱硬化性樹脂が汎用の有機溶剤に不溶化し、ワニスが製造できなくなったり、ワニスの成形性が低下する場合がある。
なお、1分子中に少なくとも2個以上のシアネート基を有する化合物(b)の反応率は、GPC測定の測定結果から求められる。具体的に、シロキサン樹脂(a)と1分子中に少なくとも2個以上のシアネート基を有する化合物(b)とが配合された反応前の溶液と、この溶液を反応させた後の溶液とで、所定の保持時間付近に出現するシアネート樹脂のピークの面積を比較する。反応前の溶液のピーク面積に対する反応後の溶液のピーク面積の消失率が反応率に相当する。
When the reaction rate of the compound (b) having at least two cyanate groups in one molecule is less than 40 mol%, the compatibility between the obtained thermosetting resin and a general-purpose organic solvent is lowered, and the heat resistance is improved. It may decrease or the copper foil adhesion may decrease. When the reaction rate of the compound (b) having at least two cyanate groups in one molecule is less than 40 mol%, the resulting thermosetting resin is crystallized, and the varnish (thermosetting resin composition) is obtained. It may become impossible to manufacture or tack may occur during coating. In addition, the resulting thermosetting resin may be insufficiently cured, resulting in a decrease in heat resistance.
Moreover, when the reaction rate of the compound (b) having at least two cyanate groups in one molecule exceeds 70 mol%, the resulting thermosetting resin is insolubilized in a general-purpose organic solvent, and the varnish cannot be produced. The moldability of the varnish may be reduced.
In addition, the reaction rate of the compound (b) which has at least 2 or more cyanate groups in 1 molecule is calculated | required from the measurement result of GPC measurement. Specifically, a solution before reaction in which a siloxane resin (a) and a compound (b) having at least two cyanate groups in one molecule are blended, and a solution after reacting this solution, The peak areas of cyanate resin appearing around a predetermined holding time are compared. The disappearance rate of the peak area of the solution after the reaction relative to the peak area of the solution before the reaction corresponds to the reaction rate.

本発明で用いる1分子中に少なくとも2個以上のエポキシ基を有する化合物は、1分子内に2個以上のエポキシ基をもつ化合物であればどのようなものでもよく、例えば、ナフタレン型エポキシ樹脂、ナフタレンノボラック型エポキシ樹脂、アントラセン型エポキシ樹脂、ジヒドロアントラセン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂などがあり、特にナフタレンノボラック型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂などが好ましい。これらの化合物の分子量はどのようなものでもよく、何種類かを併用することもできる。1分子中に少なくとも2個以上のエポキシ基を有する化合物の配合量は、末端に水酸基を有するシロキサン樹脂(a)と、1分子中に少なくとも2個以上のシアネート基を有する化合物(b)の合計100質量部に対し、10〜100質量部、好ましくは10〜80質量部、特に好ましくは15〜50質量部である。10質量部未満では銅箔との接着強度の向上効果に乏しく、100質量部を超えると低熱膨張性が発現しなくなる。
また、これらのエポキシ樹脂には、不純物イオンであるアルカリ金属イオン、アルカリ土類金属イオン、ハロゲンイオン、特に塩素イオンや加水分解性塩素等を300ppm以下に低減した高純度品を用いることが、エレクトロマイグレーション防止や金属導体回路の腐食防止のために好ましい。
The compound having at least two or more epoxy groups in one molecule used in the present invention may be any compound as long as it has two or more epoxy groups in one molecule. For example, naphthalene type epoxy resin, Naphthalene novolac type epoxy resin, anthracene type epoxy resin, dihydroanthracene type epoxy resin, biphenyl type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, biphenyl aralkyl type epoxy resin, phenol novolac type epoxy resin Examples thereof include resins and cresol novolac type epoxy resins, and naphthalene novolac type epoxy resins and biphenyl aralkyl type epoxy resins are particularly preferable. These compounds may have any molecular weight, and several types may be used in combination. The compounding amount of the compound having at least two epoxy groups in one molecule is the sum of the siloxane resin (a) having a hydroxyl group at the terminal and the compound (b) having at least two cyanate groups in one molecule. It is 10-100 mass parts with respect to 100 mass parts, Preferably it is 10-80 mass parts, Most preferably, it is 15-50 mass parts. If it is less than 10 parts by mass, the effect of improving the adhesive strength with the copper foil is poor, and if it exceeds 100 parts by mass, the low thermal expansion properties are not exhibited.
In addition, for these epoxy resins, it is possible to use high-purity products in which alkali metal ions, alkaline earth metal ions, halogen ions, particularly chlorine ions and hydrolyzable chlorine are reduced to 300 ppm or less as impurity ions. This is preferable for preventing migration and corrosion of metal conductor circuits.

上記エポキシ樹脂を使用する場合は、必要に応じて硬化剤を使用することもできる。上記硬化剤としては、例えば、フェノール系化合物、脂肪族アミン、脂環族アミン、芳香族ポリアミン、ポリアミド、脂肪族酸無水物、脂環族酸無水物、芳香族酸無水物、ジシアンジアミド、有機酸ジヒドラジド、三フッ化ホウ素アミン錯体、イミダゾール類、第3級アミン等が挙げられる。フェノール系化合物としては、分子中に少なくとも2個以上のフェノール性水酸基を有するフェノール系化合物がより好ましい。このような化合物としては、例えば、フェノールノボラック、クレゾールノボラック、t−ブチルフェノールノボラック、ジシクロペンタジェンクレゾールノボラック、ジシクロペンタジェンフェノールノボラック、キシリレン変性フェノールノボラック、ナフトール系化合物、トリスフェノール系化合物、テトラキスフェノールノボラック、ビスフェノールAノボラック、ポリ−p−ビニルフェノール、フェノールアラルキル樹脂等が挙げられる。これらの中でも、数平均分子量が400〜1500の範囲内のものが好ましい。   When using the said epoxy resin, a hardening | curing agent can also be used as needed. Examples of the curing agent include phenolic compounds, aliphatic amines, alicyclic amines, aromatic polyamines, polyamides, aliphatic acid anhydrides, alicyclic acid anhydrides, aromatic acid anhydrides, dicyandiamide, organic acids. Examples include dihydrazide, boron trifluoride amine complex, imidazoles, and tertiary amines. As the phenolic compound, a phenolic compound having at least two phenolic hydroxyl groups in the molecule is more preferable. Examples of such compounds include phenol novolak, cresol novolak, t-butylphenol novolak, dicyclopentagen cresol novolak, dicyclopentagen phenol novolak, xylylene-modified phenol novolak, naphthol compound, trisphenol compound, tetrakisphenol. Examples include novolak, bisphenol A novolak, poly-p-vinylphenol, and phenol aralkyl resin. Among these, those having a number average molecular weight in the range of 400 to 1500 are preferable.

本発明で用いるシリカは、どのような粒径、形状でもよいが、樹脂の流動性を確保するために、球状が好ましいく、球状の溶融シリカが特に好ましい。また、シリカの粒径はどのようなものでもよいが、高集積の配線を形成するために平均粒径が5μm以下が好ましく、3μm以下がより好ましく、1μm以下が特に好ましい。
平均粒径は、動的光散乱法やレーザー回折法を用いた市販の装置で測定することができる。
本発明では、シリカ以外の無機充填剤を配合してもよく、例えば、マイカ、タルク、ガラス短繊維又は微粉末及び中空ガラス、炭酸カルシウム、金属水和物等が挙げられる。シリカと無機充填剤の配合量は固形分換算で、熱硬化性樹脂組成物100質量部に対し、10〜300質量部とすることが好ましく、100〜250質量部とすることがより好ましく、150〜250質量部とすることが特に好ましい。10〜300質量部であれば、十分な、基材の剛性、耐湿耐熱性、難燃性、めっき溶液による浸食に対する耐性などが得られる。また、充填剤は、カップリング剤など市販の表面処理剤で表面処理を行ったり、三本ロール、ビーズミル、ナノマイザー等の分散機での分散処理を行って無機充填剤の分散性を改善してよい。
The silica used in the present invention may have any particle size and shape, but in order to ensure the fluidity of the resin, a spherical shape is preferable, and a spherical fused silica is particularly preferable. The silica particle diameter may be any, but in order to form highly integrated wiring, the average particle diameter is preferably 5 μm or less, more preferably 3 μm or less, and particularly preferably 1 μm or less.
The average particle diameter can be measured with a commercially available apparatus using a dynamic light scattering method or a laser diffraction method.
In the present invention, inorganic fillers other than silica may be blended, and examples thereof include mica, talc, short glass fiber or fine powder, hollow glass, calcium carbonate, and metal hydrate. The blending amount of silica and inorganic filler is preferably 10 to 300 parts by weight, more preferably 100 to 250 parts by weight, and more preferably 150 to 150 parts by weight with respect to 100 parts by weight of the thermosetting resin composition in terms of solid content. It is especially preferable to set it as -250 mass parts. If it is 10-300 mass parts, sufficient rigidity of a base material, moisture heat resistance, a flame retardance, the tolerance with respect to the erosion by a plating solution, etc. will be obtained. In addition, the filler can be treated with a commercially available surface treatment agent such as a coupling agent, or dispersed with a disperser such as a triple roll, bead mill, or nanomizer to improve the dispersibility of the inorganic filler. Good.

本発明で用いる熱硬化性樹脂組成物には、耐熱性や難燃性、銅箔接着性等の向上化のため、硬化促進剤を用いることが望ましい。硬化促進剤の例としては、ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸錫、オクチル酸コバルト等の有機金属塩、イミダゾール類及びその誘導体、第三級アミン類及び第四級アンモニウム塩等が挙げられる。また、任意に公知の熱可塑性樹脂、エラストマー、難燃剤、有機充填剤等の併用ができる。本発明で用いる熱硬化性樹脂組成物に配合可能な熱可塑性樹脂の例としては、テトラフルオロエチレン、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリフェニレンエーテル樹脂、フェノキシ樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、キシレン樹脂、石油樹脂及びシリコーン樹脂等が挙げられる。本発明で用いる熱硬化性樹脂組成物に配合可能なエラストマーの例としては、ポリブタジエン、アクリロニトリル、エポキシ変性ポリブタジエン、無水マレイン酸変性ポリブタジエン、フェノール変性ポリブタジエン及びカルボキシ変性アクリロニトリル等が挙げられる。本発明で用いる熱硬化性樹脂組成物に配合可能な有機充填剤の例としては、シリコーンパウダー、テトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリスチレン、並びにポリフェニレンエーテル等の有機物粉末等が挙げられる。本発明で用いる熱硬化性樹脂組成物に配合可能な難燃剤の例としては、トリフェニルホスフェート、トリクレジルホスフェート、トリスジクロロプロピルホスフェート、リン酸エステル系化合物、ホスファゼン、赤リン等のリン系難燃剤、三酸化アンチモン、モリブデン酸亜鉛等の無機難燃助剤等が挙げられる。また、本発明で用いる熱硬化性樹脂組成物は、紫外線吸収剤、酸化防止剤、光重合開始剤、蛍光増白剤及び密着性向上剤等の配合剤が適宜配合されていてもよい。本発明で用いる熱硬化性樹脂組成物に配合可能な配合剤の例としては、ベンゾトリアゾール系等の紫外線吸収剤、ヒンダードフェノール系やスチレン化フェノール等の酸化防止剤、ベンゾフェノン類、ベンジルケタール類、チオキサントン系等の光重合開始剤、スチルベン誘導体等の蛍光増白剤、尿素シラン等の尿素化合物やシランカップリング剤等の密着性向上剤等が挙げられる。   In the thermosetting resin composition used in the present invention, it is desirable to use a curing accelerator for improving heat resistance, flame retardancy, copper foil adhesion, and the like. Examples of curing accelerators include organometallic salts such as zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, imidazoles and their derivatives, tertiary amines and quaternary ammonium salts. . In addition, known thermoplastic resins, elastomers, flame retardants, organic fillers and the like can be used in combination. Examples of the thermoplastic resin that can be blended in the thermosetting resin composition used in the present invention include tetrafluoroethylene, polyethylene resin, polypropylene resin, polystyrene resin, polyphenylene ether resin, phenoxy resin, polycarbonate resin, polyester resin, and polyamide resin. , Polyimide resin, xylene resin, petroleum resin, silicone resin and the like. Examples of elastomers that can be incorporated into the thermosetting resin composition used in the present invention include polybutadiene, acrylonitrile, epoxy-modified polybutadiene, maleic anhydride-modified polybutadiene, phenol-modified polybutadiene, and carboxy-modified acrylonitrile. Examples of organic fillers that can be blended in the thermosetting resin composition used in the present invention include organic powders such as silicone powder, tetrafluoroethylene, polyethylene, polypropylene, polystyrene, and polyphenylene ether. Examples of flame retardants that can be incorporated into the thermosetting resin composition used in the present invention include triphenyl phosphate, tricresyl phosphate, trisdichloropropyl phosphate, phosphate ester compounds, phosphazenes, red phosphorus, and other phosphorus-based flame retardants. Examples include inorganic flame retardant aids such as a flame retardant, antimony trioxide, and zinc molybdate. In addition, the thermosetting resin composition used in the present invention may appropriately contain compounding agents such as an ultraviolet absorber, an antioxidant, a photopolymerization initiator, a fluorescent whitening agent, and an adhesion improver. Examples of compounding agents that can be incorporated into the thermosetting resin composition used in the present invention include ultraviolet absorbers such as benzotriazoles, antioxidants such as hindered phenols and styrenated phenols, benzophenones, and benzyl ketals. And photopolymerization initiators such as thioxanthone, fluorescent whitening agents such as stilbene derivatives, urea compounds such as urea silane, and adhesion improvers such as silane coupling agents.

以下、本発明のプリプレグについて詳述する。
本発明のプリプレグは、上述の熱硬化性樹脂組成物が有機繊維基材に含浸又は塗布されてなる。本発明のプリプレグは、本発明で用いる熱硬化性樹脂組成物を、有機繊維基材に含浸又は塗工し、加熱等により半硬化(Bステージ化)して本発明のプリプレグを製造することができる。有機繊維基材としては、アラミド樹脂、液晶ポリエステル(PLC)樹脂、パラフェニレンベンゾビスオキサゾール(PBO)樹脂、ポリエステル樹脂、芳香族ポリエステル樹脂、ポリイミド樹脂、超高分子量ポリエチレン及びテトラフルオロエチレン樹脂を含む有機繊維基材、並びにそれらの混合物等が挙げられる。
Hereinafter, the prepreg of the present invention will be described in detail.
The prepreg of the present invention is formed by impregnating or coating the above-mentioned thermosetting resin composition on an organic fiber substrate. The prepreg of the present invention can be produced by impregnating or coating the thermosetting resin composition used in the present invention on an organic fiber substrate and semi-curing (B-stage) by heating or the like to produce the prepreg of the present invention. it can. Organic fiber base materials include aramid resin, liquid crystal polyester (PLC) resin, paraphenylene benzobisoxazole (PBO) resin, polyester resin, aromatic polyester resin, polyimide resin, ultrahigh molecular weight polyethylene and tetrafluoroethylene resin. Examples thereof include fiber base materials and mixtures thereof.

これらの有機繊維基材は、例えば、織布、不織布、ロービンク、チョップドストランドマット及びサーフェシングマット等の形状を有するが、材質及び形状は、目的とする成形物の用途や性能により選択され、必要により、単独又は2種類以上の材質及び形状を組み合わせることができる。有機繊維基材の厚さは、特に制限されず、例えば、約0.03〜0.5mmを使用することができ、有機繊維基材は、表面処理されていることが好ましい。表面処理としては、シランカップリング剤、コロナ、プラズマ等で表面処理したものは耐熱性や耐湿性、加工性の面から好適である。該基材に対する樹脂組成物の付着量が、乾燥後のプリプレグの樹脂含有率で、20〜90質量%となるように、基材に含浸又は塗工した後、通常、100〜200℃の温度で1〜30分加熱乾燥し、半硬化(Bステージ化)させる。
以上の工程により、本発明のプリプレグを得ることができる。
These organic fiber base materials have shapes such as woven fabric, non-woven fabric, robink, chopped strand mat, and surfacing mat, but the material and shape are selected depending on the intended use and performance of the molded product, and are necessary. Thus, it is possible to combine a single material or two or more materials and shapes. The thickness in particular of an organic fiber base material is not restrict | limited, For example, about 0.03-0.5 mm can be used, and it is preferable that the organic fiber base material is surface-treated. As the surface treatment, those surface-treated with a silane coupling agent, corona, plasma or the like are preferable from the viewpoints of heat resistance, moisture resistance, and workability. After impregnating or coating the base material so that the amount of the resin composition attached to the base material is 20 to 90% by mass in terms of the resin content of the prepreg after drying, the temperature is usually 100 to 200 ° C. And dried for 1 to 30 minutes and semi-cured (B-stage).
Through the above steps, the prepreg of the present invention can be obtained.

本発明の積層板は、前述の本発明のプリプレグを用いて、所定の枚数を積層成形して積層板を製造することができる。本発明のプリプレグを、例えば、1〜20枚重ね、その片面又は両面に銅及びアルミニウム等の金属箔を配置した構成で積層成形することにより金属箔張積層板を製造することができる。金属箔は、電気絶縁材料用途で用いるものであれば特に制限されない。また、成形条件は、例えば、電気絶縁材料用積層板及び多層板の手法が適用でき、例えば多段プレス、多段真空プレス、連続成形、オートクレーブ成形機等を使用し、温度100〜250℃、圧力0.2〜10MPa、加熱時間0.1〜5時間の範囲で成形することができる。また、本発明のプリプレグと内層用配線板とを組合せ、積層成形して、多層板を製造することもできる。   The laminate of the present invention can be produced by laminating a predetermined number of sheets using the prepreg of the present invention described above. A metal foil-clad laminate can be produced by laminating 1 to 20 prepregs of the present invention and laminating them with a configuration in which a metal foil such as copper and aluminum is disposed on one or both sides thereof. The metal foil is not particularly limited as long as it is used for electrical insulating material applications. The molding conditions may be, for example, a laminated plate for an electrical insulating material and a multilayer plate. For example, a multistage press, a multistage vacuum press, continuous molding, an autoclave molding machine or the like is used, and the temperature is 100 to 250 ° C. and the pressure is 0. It can be molded in a range of 2 to 10 MPa and a heating time of 0.1 to 5 hours. Further, the prepreg of the present invention and the inner layer wiring board can be combined and laminated to produce a multilayer board.

次に、下記の実施例により本発明を更に具体的に説明するが、これらの実施例は本発明を制限するものではない。以下の実施例では、熱硬化性樹脂組成物を製造し、これらを用いて、プリプレグ、積層板、さらに積層板に銅箔を配置した銅張積層板を作製した。この作製された銅張積層板を以下の評価方法で評価した。   Next, the present invention will be described more specifically with reference to the following examples, but these examples do not limit the present invention. In the following examples, a thermosetting resin composition was produced, and using these, a prepreg, a laminate, and a copper-clad laminate in which a copper foil was disposed on the laminate were produced. This produced copper clad laminate was evaluated by the following evaluation methods.

[評価方法]
<線熱膨張係数の測定>
銅張積層板を銅エッチング液に浸漬することにより銅箔を取り除いた5mmX15mmの評価基板を作製し、TMA試験装置「TMA2940」(ティー・エイ・インスツルメント・ジャパン株式会社製)を用い、評価基板の面方向の30〜100℃の線熱膨張率を測定した。
[Evaluation method]
<Measurement of linear thermal expansion coefficient>
A 5 mm × 15 mm evaluation board from which the copper foil was removed by immersing the copper clad laminate in a copper etching solution was prepared, and evaluated using a TMA test apparatus “TMA2940” (manufactured by TA Instruments Japan Co., Ltd.). The linear thermal expansion coefficient of 30 to 100 ° C. in the surface direction of the substrate was measured.

<銅箔接着性(銅箔ピール強度)の評価>
銅箔の接着性は、ピール強度によって評価した。銅張積層板を銅エッチング液に浸漬することにより1cm幅の銅箔を形成して評価基板を作製し、引張り試験機を用いて銅箔のピール強度を測定した(90°ピール、50mm/min)。
<Evaluation of copper foil adhesion (copper foil peel strength)>
The adhesiveness of the copper foil was evaluated by peel strength. A copper foil having a width of 1 cm was formed by immersing the copper clad laminate in a copper etching solution to produce an evaluation substrate, and the peel strength of the copper foil was measured using a tensile tester (90 ° peel, 50 mm / min). ).

<熱硬化性樹脂組成物の製造>
温度計、攪拌装置、還流冷却管の付いた加熱及び冷却可能な容積3リットルの反応容器に、シロキサン樹脂(a)としてシロキサン樹脂(信越化学工業株式会社製;商品名X−22−1821、水酸基当量;1600g/eq.、一般式(I)で、Arがフェニル基(−C−)、R1がプロピレン基(−C−)、mは、35〜40の整数):500gとトルエン:1000gと、1分子中に少なくとも2個以上のシアネート基を有する化合物(b)としてビスフェノールA型シアネート樹脂(ロンザジャパン株式会社製;商品名Arocy B−10、2,2−ビス(4−シアナトフェニル)プロパン):500とを配合し、攪拌しながら昇温し、120℃に到達後、ナフテン酸亜鉛の8質量%ミネラルスピリット溶液を0.01g添加し、約115〜125℃で4時間還流反応を行った後、室温(25℃)に冷却し、熱硬化性樹脂組成物の溶液を得た。
<Manufacture of thermosetting resin composition>
A siloxane resin (a) made of siloxane resin (manufactured by Shin-Etsu Chemical Co., Ltd .; trade name X-22-1821, hydroxyl group) is placed in a reaction vessel with a volume of 3 liters that can be heated and cooled with a thermometer, a stirrer and a reflux condenser Equivalent: 1600 g / eq., In general formula (I), Ar 1 is a phenyl group (—C 6 H 4 —), R 1 is a propylene group (—C 3 H 6 —), m is an integer of 35-40 ): 500 g, toluene: 1000 g, bisphenol A type cyanate resin (product of Lonza Japan Co., Ltd .; trade name Arocy B-10, 2, 2-) as the compound (b) having at least two cyanate groups in one molecule Bis (4-cyanatophenyl) propane): 500, heated while stirring, and after reaching 120 ° C., an 8% by mass mineral spirit solution of zinc naphthenate was added. And .01g added, after 4 hours reflux the reaction at about 115 to 125 ° C., cooled to room temperature (25 ° C.), to obtain a solution of a thermosetting resin composition.

シロキサン樹脂(a)と1分子中に少なくとも2個以上のシアネート基を有する化合物(b)とが配合された反応前の溶液と、反応後の溶液とを少量ずつ取り出し、それぞれについてGPC測定(溶離液:テトラヒドロフラン)を行った。反応前の溶液と反応後の溶液とで、保持時間が約12.4分付近に出現するビスフェノールA型シアネート樹脂のピークの面積を比較し、反応前の溶液のピーク面積に対する反応後の溶液のピーク面積の消失率を算出した。その結果、反応後の溶液におけるピーク面積の消失率が65%であった。よって、熱硬化性樹脂組成物における1分子中に少なくとも2個以上のシアネート基を有する化合物(b)の反応率は、65mol%であった。また、約10.9分付近、及び8.0〜10.0付近に出現する熱硬化性樹脂の生成物のピークが確認された。さらに、少量取り出した反応溶液を、メタノールとベンゼンの混合溶媒(混合質量比1:1)に滴下して再沈殿させることにより、精製された固形分を取り出し、FT−IR測定を行ったところ、イミノカーボネート基に起因する1700cm-1付近のピーク、また、トリアジン環に起因する1560cm-1付近、及び1380cm-1付近の強いピークが確認でき、熱硬化性樹脂が製造されていることを確認した。 The solution before the reaction in which the siloxane resin (a) and the compound (b) having at least two cyanate groups in one molecule are blended and the solution after the reaction are taken out little by little, and GPC measurement (elution is performed) for each. Liquid: tetrahydrofuran). Compare the peak area of the bisphenol A-type cyanate resin that has a retention time of about 12.4 minutes between the solution before the reaction and the solution after the reaction, and compare the peak area of the solution after the reaction with the peak area of the solution before the reaction. The disappearance rate of the peak area was calculated. As a result, the disappearance rate of the peak area in the solution after the reaction was 65%. Therefore, the reaction rate of the compound (b) having at least two cyanate groups in one molecule in the thermosetting resin composition was 65 mol%. Moreover, the peak of the product of the thermosetting resin which appears at about 10.9 minutes vicinity and 8.0-10.0 vicinity was confirmed. Furthermore, when the reaction solution taken out in a small amount was dropped into a mixed solvent of methanol and benzene (mixing mass ratio 1: 1) and reprecipitated, the purified solid content was taken out and subjected to FT-IR measurement. A peak near 1700 cm −1 due to the imino carbonate group, a strong peak near 1560 cm −1 due to the triazine ring, and a strong peak near 1380 cm −1 were confirmed, confirming that a thermosetting resin was produced. .

1分子中に少なくとも2個以上のエポキシ基を有する化合物としてNC−3000−H(商品名、日本化薬株式会社製、ビフェニルノボラック型エポキシ樹脂)200gを、200gのメチルイソブチルケトン溶液に攪拌しながら加え、エポキシ溶液を作製した。あわせて、シリカ:SO−G1(商品名、アドマテックス株式会社製)700gを、7gのKBM−903(商品名、信越化学工業株式会社製、アミノプロピルトリメトキシシラン)を加えた300gのメチルイソブチルケトン溶液に攪拌しながら加え、シリカのメチルイソブチル溶液を作製した。熱硬化性樹脂の溶液300gにエポキシ溶液200g、シリカのメチルイソブチル溶液870g加え、2時間攪拌して熱硬化性樹脂組成物ワニスを作製した。   While stirring 200 g of NC-3000-H (trade name, manufactured by Nippon Kayaku Co., Ltd., biphenyl novolac type epoxy resin) as a compound having at least two epoxy groups in one molecule in a 200 g methyl isobutyl ketone solution. In addition, an epoxy solution was prepared. In addition, 700 g of silica: SO-G1 (trade name, manufactured by Admatechs Co., Ltd.) and 300 g of methyl isobutyl added with 7 g of KBM-903 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd., aminopropyltrimethoxysilane) It was added to the ketone solution while stirring to prepare a methyl isobutyl solution of silica. To 300 g of the thermosetting resin solution, 200 g of an epoxy solution and 870 g of a methyl isobutyl solution of silica were added and stirred for 2 hours to prepare a thermosetting resin composition varnish.

[実施例1〜3]
熱硬化性樹脂組成物ワニスを表1に示す有機繊維基材にそれぞれの表1に示した質量比率になるように樹脂を含浸させた。これを160℃で5分間加熱することにより乾燥させて、樹脂の体積分率72%のプリプレグを得た。
[Examples 1 to 3]
The thermosetting resin composition varnish was impregnated with a resin so that the organic fiber substrate shown in Table 1 had the mass ratio shown in Table 1. This was dried by heating at 160 ° C. for 5 minutes to obtain a prepreg having a resin volume fraction of 72%.

[比較例1〜3]
熱硬化性樹脂組成物の溶液からエポキシ溶液のみを除いて表1に示す有機繊維基材にそれぞれの表1に示した質量比率になるように樹脂を含浸させた。これを160℃で5分間加熱することにより乾燥させて、樹脂の体積分率72%のプリプレグを得た。
[Comparative Examples 1-3]
Only the epoxy solution was removed from the solution of the thermosetting resin composition, and the organic fiber substrate shown in Table 1 was impregnated with the resin so that the mass ratio shown in Table 1 was obtained. This was dried by heating at 160 ° C. for 5 minutes to obtain a prepreg having a resin volume fraction of 72%.

[比較例4]
熱硬化性樹脂組成物ワニスを用いて表1の比較例4に示すガラスクロスに表1に示した質量比率になるように樹脂を含浸させた。これを160℃で5分間加熱することにより乾燥させて、樹脂の体積分率72%のプリプレグを得た。
[Comparative Example 4]
Using a thermosetting resin composition varnish, a glass cloth shown in Comparative Example 4 in Table 1 was impregnated with a resin so as to have a mass ratio shown in Table 1. This was dried by heating at 160 ° C. for 5 minutes to obtain a prepreg having a resin volume fraction of 72%.

実施例1〜3と比較例1〜4で得られたプリプレグをそれぞれ4枚重ねて積層体を形成し、積層体の一方の表面と他方の表面とに厚みが18μmの電解銅箔を配置し、圧力2.45MPa、温度230℃の条件で90分間圧着することにより、銅箔張積層板を得た。   Four prepregs obtained in Examples 1 to 3 and Comparative Examples 1 to 4 are stacked to form a laminate, and an electrolytic copper foil having a thickness of 18 μm is disposed on one surface and the other surface of the laminate. A copper foil-clad laminate was obtained by pressure bonding for 90 minutes under the conditions of a pressure of 2.45 MPa and a temperature of 230 ° C.

Figure 2014012760
Figure 2014012760

表1の実施例1〜3と比較例4の比較から、プリプレグに有機繊維基材を用いることで、従来のガラスクロスを用いたプリプレグより低熱膨張率が発現できることがわかる。また、表1の実施例1〜3と比較例1〜3の比較から、1分子中に少なくとも2個以上のエポキシ基を有する化合物を配合することで銅箔ピール強度を向上できることがわかる。   From comparison between Examples 1 to 3 and Comparative Example 4 in Table 1, it can be seen that by using an organic fiber base material for the prepreg, a lower coefficient of thermal expansion can be exhibited than a prepreg using a conventional glass cloth. Moreover, it turns out that copper foil peel strength can be improved by mix | blending the compound which has at least 2 or more epoxy group in 1 molecule from the comparison of Examples 1-3 of Table 1 and Comparative Examples 1-3.

本発明の熱硬化性樹脂組成物を有機繊維基材に含浸又は塗布して得たプリプレグ、及び該プリプレグを積層成形することにより製造した銅箔張積層板は、低熱膨張率、高銅箔ピール強度の特性を発現しており、電子機器用のプリント配線板などに有用である。   A prepreg obtained by impregnating or applying an organic fiber substrate with the thermosetting resin composition of the present invention, and a copper foil-clad laminate produced by laminating the prepreg, have a low thermal expansion coefficient and a high copper foil peel. It exhibits strength characteristics and is useful for printed wiring boards for electronic equipment.

Claims (8)

下記一般式(I)で示される末端に水酸基を有するシロキサン樹脂(a)と、1分子中に少なくとも2個以上のシアネート基を有する化合物(b)とを有機溶媒中で反応して得られた熱硬化性樹脂であり、前記シロキサン樹脂(a)と前記1分子中に少なくとも2個以上のシアネート基を有する化合物(b)との総和100質量部に対し、前記シロキサン樹脂(a)10〜70質量部及び前記1分子中に少なくとも2個以上のシアネート基を有する化合物(b)30〜90質量部が含まれており、前記1分子中に少なくとも2個以上のシアネート基を有する化合物(b)の反応率が40〜70mol%である熱硬化性樹脂と、1分子中に少なくとも2個以上のエポキシ基を有する化合物及びシリカを含有する熱硬化性樹脂組成物を、有機繊維基材に含浸し、得られるプリプレグ。
Figure 2014012760
(一般式(I)中、R1は各々独立に炭素数1〜5のアルキレン基又はアルキレンオキシ基、Ar1は各々独立に単結合、アリーレン基又は炭素数1〜5のアルキレン基であり、mは5〜100の整数である。)
It was obtained by reacting a siloxane resin (a) having a hydroxyl group at the terminal represented by the following general formula (I) with a compound (b) having at least two cyanate groups in one molecule in an organic solvent. 10 to 70 of the siloxane resin (a) with respect to 100 parts by mass of the total of the siloxane resin (a) and the compound (b) having at least two cyanate groups in one molecule. Compound (b) having 30 to 90 parts by mass of compound (b) having at least 2 or more cyanate groups in one molecule and at least 2 or more cyanate groups in the molecule. A thermosetting resin composition containing 40% to 70 mol% of a thermosetting resin, a compound having at least two epoxy groups in one molecule, and silica. Impregnating the wood, resulting prepreg.
Figure 2014012760
(In general formula (I), each R 1 is independently an alkylene group or alkyleneoxy group having 1 to 5 carbon atoms, Ar 1 is each independently a single bond, an arylene group or an alkylene group having 1 to 5 carbon atoms, m is an integer of 5 to 100.)
前記有機繊維基材が、アラミド樹脂、液晶ポリエステル(PLC)樹脂、パラフェニレンベンゾビスオキサゾール(PBO)樹脂、ポリエステル樹脂、芳香族ポリエステル樹脂、ポリイミド樹脂、超高分子量ポリエチレン及びテトラフルオロエチレン樹脂から選ばれる少なくとも1以上の繊維基材である請求項1に記載のプリプレグ。   The organic fiber substrate is selected from an aramid resin, a liquid crystal polyester (PLC) resin, a paraphenylene benzobisoxazole (PBO) resin, a polyester resin, an aromatic polyester resin, a polyimide resin, an ultrahigh molecular weight polyethylene, and a tetrafluoroethylene resin. The prepreg according to claim 1, which is at least one fiber substrate. 前記有機繊維基材が、表面処理されてなる請求項1又は2に記載のプリプレグ。   The prepreg according to claim 1 or 2, wherein the organic fiber substrate is surface-treated. 前記有機繊維基材の表面処理が、シランカップリング剤、コロナ処理及びプラズマ処理のいずれかである請求項3に記載のプリプレグ。   The prepreg according to claim 3, wherein the surface treatment of the organic fiber base material is any one of a silane coupling agent, a corona treatment, and a plasma treatment. 請求項1〜4のいずれかに記載のプリプレグを、少なくとも1枚以上用いて積層し、成形して得られた積層板。   A laminate obtained by laminating and molding at least one prepreg according to claim 1. 請求項1〜4のいずれかに記載のプリプレグを、少なくとも1枚以上用い、さらに金属箔を積層し、成形して得られた金属箔張積層板。   A metal foil-clad laminate obtained by using at least one prepreg according to any one of claims 1 to 4 and further laminating and molding a metal foil. 請求項6に記載の金属箔張積層板を配線形成して得られた配線板。   A wiring board obtained by wiring the metal foil-clad laminate according to claim 6. 下記一般式(I)で示される末端に水酸基を有するシロキサン樹脂(a)と、1分子中に少なくとも2個以上のシアネート基を有する化合物(b)とを、前記シロキサン樹脂(a)と前記1分子中に少なくとも2個以上のシアネート基を有する化合物(b)との総和100質量部に対し、前記シロキサン樹脂(a)10〜70質量部及び前記1分子中に少なくとも2個以上のシアネート基を有する化合物(b)30〜90質量部を用い、前記1分子中に少なくとも2個以上のシアネート基を有する化合物(b)の反応率が40〜70mol%となるよう有機溶媒中で反応し熱硬化性樹脂を製造する工程、
前記熱硬化性樹脂と、1分子中に少なくとも2個以上のエポキシ基を有する化合物とシリカを配合して熱硬化性樹脂組成物を作製する工程、
前記熱硬化性樹脂組成物を、有機繊維基材に含浸する工程、により得られるプリプレグの製造方法。
Figure 2014012760

(一般式(I)中、R1は各々独立に炭素数1〜5のアルキレン基又はアルキレンオキシ基、Ar1は各々独立に単結合、アリーレン基又は炭素数1〜5のアルキレン基であり、mは5〜100の整数である。)
A siloxane resin (a) having a hydroxyl group at the terminal represented by the following general formula (I), a compound (b) having at least two cyanate groups in one molecule, the siloxane resin (a) and the 1 10 to 70 parts by mass of the siloxane resin (a) and at least two or more cyanate groups in one molecule with respect to a total of 100 parts by mass of the compound (b) having at least two or more cyanate groups in the molecule. Using 30 to 90 parts by mass of the compound (b) having the compound, the compound (b) having at least two cyanate groups in one molecule is reacted in an organic solvent so as to have a reaction rate of 40 to 70 mol%, and is thermoset. A process for producing a functional resin,
A step of blending the thermosetting resin, a compound having at least two epoxy groups in one molecule, and silica to produce a thermosetting resin composition;
A method for producing a prepreg obtained by impregnating an organic fiber substrate with the thermosetting resin composition.
Figure 2014012760

(In general formula (I), each R 1 is independently an alkylene group or alkyleneoxy group having 1 to 5 carbon atoms, Ar 1 is each independently a single bond, an arylene group or an alkylene group having 1 to 5 carbon atoms, m is an integer of 5 to 100.)
JP2012150386A 2012-07-04 2012-07-04 Prepreg using organic fiber base material and manufacturing method of the same, and laminated plate, metal foil-clad laminated plate, and wiring board using the prepreg Pending JP2014012760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012150386A JP2014012760A (en) 2012-07-04 2012-07-04 Prepreg using organic fiber base material and manufacturing method of the same, and laminated plate, metal foil-clad laminated plate, and wiring board using the prepreg

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012150386A JP2014012760A (en) 2012-07-04 2012-07-04 Prepreg using organic fiber base material and manufacturing method of the same, and laminated plate, metal foil-clad laminated plate, and wiring board using the prepreg

Publications (1)

Publication Number Publication Date
JP2014012760A true JP2014012760A (en) 2014-01-23

Family

ID=50108646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012150386A Pending JP2014012760A (en) 2012-07-04 2012-07-04 Prepreg using organic fiber base material and manufacturing method of the same, and laminated plate, metal foil-clad laminated plate, and wiring board using the prepreg

Country Status (1)

Country Link
JP (1) JP2014012760A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016199644A (en) * 2015-04-08 2016-12-01 日立化成株式会社 Manufacturing method of modified cyanate ester varnish, and prepreg, laminate sheet and wiring board using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016199644A (en) * 2015-04-08 2016-12-01 日立化成株式会社 Manufacturing method of modified cyanate ester varnish, and prepreg, laminate sheet and wiring board using the same

Similar Documents

Publication Publication Date Title
JP6160675B2 (en) Resin composition, prepreg, laminate and printed wiring board using the same
JP5857514B2 (en) Thermosetting resin composition, and prepreg and laminate using the same
JP6065437B2 (en) Thermosetting resin composition, prepreg, laminate and printed wiring board using the same
JP2007045984A (en) Flame retardant resin composition, and prepreg and lamination board using the same
JP6186712B2 (en) Thermosetting resin composition, prepreg, laminate and multilayer printed wiring board using the same
JP5633382B2 (en) Thermosetting resin composition and prepreg, laminate and multilayer printed wiring board using the same
JP5914988B2 (en) Prepreg, laminate and printed wiring board using thermosetting resin composition
JP2012236920A (en) Thermosetting resin composition, and prepreg, laminate and printed-wiring board using the composition
JP6040606B2 (en) Thermosetting resin composition, prepreg, laminate and printed wiring board using the same
JP2004315705A (en) Modified polyimide resin composition and prepreg and laminate using the same
JP6106931B2 (en) Compatibilizing resin, and thermosetting resin composition, prepreg, and laminate using the same
JP6152246B2 (en) Pre-preg for printed wiring board, laminated board and printed wiring board
JP2014019795A (en) Thermosetting resin composition, and prepreg, laminate and printed wiring board using the same
JP2014012760A (en) Prepreg using organic fiber base material and manufacturing method of the same, and laminated plate, metal foil-clad laminated plate, and wiring board using the prepreg
JP6221203B2 (en) Resin composition, prepreg and laminate using the same
JP2014012761A (en) Prepreg using organic fiber base material and manufacturing method of the same, and laminated plate, metal foil-clad laminated plate, and wiring board using the prepreg
JP5909916B2 (en) Resin production method, thermosetting resin composition, prepreg and laminate
JP6164318B2 (en) Pre-preg for printed wiring board, laminated board and printed wiring board
JP2014012762A (en) Prepreg using organic fiber base material and manufacturing method of the same, and laminated plate, metal foil-clad laminated plate, and wiring board using the prepreg
JP6194603B2 (en) Thermosetting resin composition, prepreg and laminate
JP2013108067A (en) Method for producing compatibilized resin, compatibilized resin, thermosetting resin composition, prepreg and laminated plate
JP6323706B2 (en) Method for producing thermosetting resin composition varnish, and method for producing prepreg, laminate and wiring board using the same
JP2014012759A (en) Prepreg using organic fiber base material and manufacturing method of the same, and laminated plate, metal foil-clad laminated plate, and wiring board using the prepreg
JP2013189579A (en) Thermosetting resin composition, and prepreg and laminated plate using the same
JP6183081B2 (en) Compatibilizing resin production method, thermosetting resin composition, prepreg, laminate, and printed wiring board