WO2017167262A1 - 减少苯酚丙酮生产中污染物排放的方法 - Google Patents

减少苯酚丙酮生产中污染物排放的方法 Download PDF

Info

Publication number
WO2017167262A1
WO2017167262A1 PCT/CN2017/078960 CN2017078960W WO2017167262A1 WO 2017167262 A1 WO2017167262 A1 WO 2017167262A1 CN 2017078960 W CN2017078960 W CN 2017078960W WO 2017167262 A1 WO2017167262 A1 WO 2017167262A1
Authority
WO
WIPO (PCT)
Prior art keywords
wastewater
acetone
treatment
phenol
tower
Prior art date
Application number
PCT/CN2017/078960
Other languages
English (en)
French (fr)
Inventor
周岳溪
宋玉栋
Original Assignee
中国环境科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国环境科学研究院 filed Critical 中国环境科学研究院
Priority to US16/088,942 priority Critical patent/US10974981B2/en
Priority to DE112017001666.5T priority patent/DE112017001666B4/de
Publication of WO2017167262A1 publication Critical patent/WO2017167262A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/88Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/02Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring monocyclic with no unsaturation outside the aromatic ring
    • C07C39/04Phenol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • C07C45/80Separation; Purification; Stabilisation; Use of additives by liquid-liquid treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/26Treatment of water, waste water, or sewage by extraction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • C02F1/705Reduction by metals
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/36Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the invention relates to a method for reducing and controlling the recycling process of wastewater pollutants in a phenol acetone production device, which is also a method for reducing pollutant emissions in the production of phenol acetone.
  • Phenol and acetone are important basic chemical raw materials.
  • the cumene process is currently the mainstream process for the production of phenol acetone.
  • the process uses propylene and benzene as main raw materials to form cumene, then cumene is oxidized to form cumene hydroperoxide, and cumene hydroperoxide is decomposed under acidic heating to form phenol and acetone, and then rectified. Refined to produce phenol and acetone products.
  • the phenol acetone production plant has a long process flow and many wastewater discharge nodes.
  • the existing phenol acetone production plant wastewater treatment technology focuses on the end treatment of the mixed wastewater of the plant, and there are few technologies for reducing pollutant emissions in the production process.
  • the phenol acetone plant mixed wastewater has high pollutant concentration, high toxicity, high processing difficulty, high treatment cost, and it is difficult to meet the standard for treating the effluent.
  • the present invention provides a method for reducing and controlling the recycling process of wastewater pollutants in a phenol acetone production plant, which can recover resources from waste water, reduce pollutant concentration and waste water toxicity, and/or reduce wastewater treatment in at least phenol acetone production process. Difficulty.
  • the conventional cumene process for preparing phenol acetone includes the following steps:
  • Hydrocarbon chemical section The raw materials benzene and propylene form cumene in the hydrocarbonation reactor, and the obtained cumene is rectified to obtain high-purity cumene for use in the oxidation unit.
  • Oxidation and concentration decomposing section cumene is oxidized by air in an oxidation reactor after alkali washing to form cumene hydroperoxide, then concentrated, and finally decomposed under sulfuric acid to form a crude product (mainly It is a mixture of phenol, acetone, cumene and ⁇ -methylstyrene (AMS). This process produces phenol-containing wastewater.
  • AMS ⁇ -methylstyrene
  • Neutralization section hexamethylenediamine is added to the crude product to neutralize the sulfuric acid in the crude product, and then sent to the rectification unit.
  • Rectification section through the crude acetone tower, acetone refining tower, cumene rectification tower, tar tower, AMS tower and refined phenol tower 6 rectification towers, to obtain phenol, acetone products and AMS, cumene and The tar by-product;
  • the crude acetone column top material is crude acetone, further refined into the acetone refining tower, and the side line is taken to obtain the product acetone.
  • an alkali solution such as NaOH solution is added to the column to remove the aldehyde in the material.
  • the NaOH solution dosing port is located above the crude acetone feed port.
  • top condensate reflux (except aldehyde reflux) to the stripping section to further enhance the aldehyde removal effect
  • the other top condensate is refluxed to the top tray of the acetone refining tower (top reflux).
  • the heavy components of the acetone refining tower are separated by oil and water to discharge high-concentration alkaline organic wastewater.
  • the vacuum system condensate of the six rectification towers is also discharged as wastewater.
  • the present application provides a method of reducing pollutant emissions in the production of phenol acetone, comprising at least one of the following steps:
  • the phenol-containing wastewater in step (A) comprises the step of one of the following from the production of phenol acetone: cumene oxidation, concentration, decomposition of cumene hydroperoxide and rectification.
  • the wastewater usually contains phenol 0.1% to 2% by weight, the pH can be adjusted to acidic (pH 4.5 to 5.5), the temperature can be 10 to 60 ° C, and cumene is used.
  • the extractant in the extraction tower, the phenol in the wastewater is extracted, the ratio of cumene to wastewater is 5-20:1 (vol), and the obtained phenol-rich cumene solution can be 10%-20%.
  • the wt NaOH solution is regenerated, and the flow rate of the NaOH solution is 0.1 to 0.6 times the flow rate of the wastewater.
  • the cumene after dephenolization regeneration is used as an extractant for wastewater extraction.
  • the phenol sodium salt solution produced by regeneration is acidified with sulfuric acid, and then passed through a two-stage desalting separator.
  • the phenolic organic phase enters the neutralization section to recover phenol. Perform extraction treatment.
  • the recovery rate of phenol in the wastewater can reach more than 99%.
  • the content of acetone or the like in the circulating cumene reaches 10% or more, the cumene is replaced.
  • the optimization of the acetone refining tower process in the step (B), the measure for reducing the acetone content of the tower autoclave wastewater comprises at least one of the following: (1) installing a packing in the liquid layer of the tray below the lye feed inlet (2)
  • the acetone refining tower alone controls and reduces the vacuum degree at the top of the tower to 5 to 20 kPa; (3) reduces the reflux flow of the aldehyde from the top of the column by 10% to 50%; (4) extracts the top of the column from the aldehyde reflux column.
  • the segment is increased by 1 to 2 theoretical plates.
  • the treated acetone content of the tower waste water can be reduced to 0.01% to 0.1% by weight.
  • a filler is installed in the liquid layer of the tray, and the filler is a cyclic filler or a thin layer structured packing.
  • step (B) the aldehyde reflux in the top of the column is refluxed to the top of the stripping section and then refluxed to the stripping section (below the feed port).
  • the acetone refining tray bottom tank wastewater of the present application may be treated by selective permeation membrane, and the acetone refining tower crucible wastewater (by heat exchange) is cooled, for example, cooled to 20 to 30 ° C, and is carried out.
  • Oil separation and activated carbon adsorption treatment and then circulating in the compartment surrounded by the selective permeation membrane; selective permeation membrane encloses the same compartment on the other side for the deionized water to circulate, the NaOH in the wastewater passes Selectively through the membrane into the deionized water side to achieve alkali recovery, the recovery rate of more than 60%.
  • the selectively permeable membranes described herein are resistant to acetone and benzene solvents and allow selective permeation of NaOH.
  • the selectively permeable membranes employable by the methods of the present application include, but are not limited to, perfluorocation exchange membranes.
  • step (D) the acetone-purified tata tank wastewater after the recovery of the alkali obtained in the step (C) is neutralized, and then mixed with the cumene oxidation tower condensate to carry out detoxification treatment.
  • step (D) the acetone refining tray bottoming wastewater after the step (C) is recovered is neutralized, and mixed with the cumene oxidation tower overhead condensate to control the wastewater pH 3 to 5,
  • a reducing catalyst of 5 to 30 mg / L if the reaction is 5 to 10 min
  • the microbial toxicity of the wastewater to the activated sludge is reduced
  • the oxygen utilization rate (OUR) inhibition rate of the activated sludge is reduced to less than 20%.
  • the conversion rate of the refractory organic matter in the acetone refining tower waste water is 70% or more, for example, 70% to 95%.
  • the reducing catalyst described herein is a divalent iron ion, a cobalt ion, or a manganese ion.
  • the method of the present application further includes the step (E) of performing a grease barrier treatment on the total drainage of the phenol acetone unit.
  • the waste water enters the oil-displacement tank with the inclined plate and realizes oil-water separation, and the oil layer is discharged from the upper part of the grease trap to recover organic substances such as hydrocarbons, and the oil removal rate is over 90%.
  • the wastewater is discharged from the lower part of the grease trap for subsequent treatment.
  • the method of the present application further includes the step (F).
  • the present application performs at least one of a biological treatment-coagulation sedimentation treatment-enhanced degradation treatment on the wastewater after the oil-repellent treatment.
  • step (F) a biological wastewater treatment using aerobic biological treatment, the microorganisms suspended growth treatment systems or suspension growth and adhesion growth coexistence; degradation treatment in order to strengthen the ozone or H 2 O 2 as oxidant.
  • the effluent COD after the step (F) treatment can be reduced to below 50 mg/L, and phenol and acetone are not detected.
  • the ozone column is filled with an aluminum-based or copper-based supported catalyst at a temperature of 20 to 40 ° C, a wastewater pH of 4 to 10, and an ozone dosage of 50. ⁇ 300mg/L.
  • H 2 O 2 is used as an oxidizing agent for the intensive degradation treatment
  • the divalent iron ion is used as a catalyst
  • the pH of the wastewater is 3-6
  • the dosage of the divalent iron ion is 50-200 mg/L
  • the H 2 O 2 is added.
  • the amount is 100 to 330 mg/L.
  • the pH of the wastewater was adjusted to 8 to carry out coagulation sedimentation treatment.
  • the above-mentioned coagulation and sedimentation treatment may use a metal salt such as aluminum sulfate, polyaluminum chloride or ferric chloride as a coagulant, and a polyacrylamide as a flocculant at a temperature of 20 to 40 ° C and a pH of 6 to 9. Precipitate for 30 to 60 minutes.
  • a metal salt such as aluminum sulfate, polyaluminum chloride or ferric chloride
  • a polyacrylamide as a flocculant at a temperature of 20 to 40 ° C and a pH of 6 to 9. Precipitate for 30 to 60 minutes.
  • the application optimizes the production process to realize the recovery of phenol, acetone and alkali in the waste water of the main discharge nodes of phenol, acetone and NaOH, improves the utilization rate of raw materials and product yield, and reduces the concentration of phenol, acetone and alkali in the wastewater. Reduced the difficulty of wastewater treatment.
  • Wastewater quality treatment Reduce the cost of wastewater treatment while ensuring the removal of pollutants.
  • the condensate of the cumene oxidation tower contains oxidizing substances, and the activated sludge has high toxicity, which will adversely affect the operational stability of the subsequent biological treatment system.
  • the alkali concentration of the wastewater in the acetone refining tower is high, the acid consumption in the subsequent neutralization treatment is large, the salt content in the wastewater is high, and the treatment is difficult, and the wastewater contains a relatively high concentration of refractory organic matter.
  • the alkali in the acetone refining tower waste water is first recovered, and then the wastewater is neutralized, and then mixed with the cumene oxidation tower overhead condensate wastewater to utilize the oxidizing substance therein.
  • the oxidant under the action of the reducing catalyst, the conversion of the refractory organic matter in the wastewater is realized.
  • the toxicity of the condensate of the cumene oxidation tower is lowered, and on the other hand, the biodegradability of the wastewater is improved.
  • the content of pollutants in wastewater treatment is low. After the oil-repellent treatment, at least one of biological, coagulation precipitation, and enhanced degradation is performed, and the concentration of the pollutants can be lowered to a very low level.
  • This application is intended to improve the mainstream process of the existing cumene process and is suitable for the modification of existing production equipment. Significant resource recovery and pollutant reduction can be achieved with lower costs.
  • Figure 1 shows the process route of a conventional cumene phenol acetone production plant.
  • Figure 2 is a diagram showing an improved process route for a cumene phenol acetone production unit using the method of the present application.
  • Figure 3 is a schematic view of an acetone refining tower.
  • Figure 4 is a schematic view of a compartment surrounded by a selectively permeable membrane (countercurrent operation).
  • Figure 5 is a schematic view showing the installation of filler in the liquid layer of the acetone refining tray.
  • Phenolacetone is prepared by the conventional cumene method (see Figure 1), and its total drainage COD is 4000-8000 mg/L.
  • the method of the present application modifies the conventional cumene process and apparatus by at least one of the following:
  • a separate vacuum system is established in the acetone refining tower, and the pressure at the top of the tower is reduced by 15 kPa, and a thin layer of structured packing is installed in the thickness of the liquid layer below the lye feed port (see Fig. 3 and Fig. 5).
  • the steam consumption of the acetone refining tower was reduced by 20% and the acetone content of the tower was decreased from 2200mg/L to 520mg/L.
  • the acetone refining tower waste water is circulated in the compartment surrounded by the perfluoro cation exchange membrane after heat exchange cooling and oil separation treatment; the ion exchange membrane encloses the same compartment on the other side, and is supplied
  • the ionized water circulates, and the NaOH in the wastewater enters the deionized water side through the ion exchange membrane to realize the recovery of the alkali, as shown in FIG.
  • This step can reduce the alkali concentration in the wastewater from 2 mol/L to 0.5 mol/L, and recover the alkali solution for neutralization of acidic wastewater.
  • Acetone was purified waste water tank tower (4) recovering the alkali and, mixed with overhead condensate cumene oxidation, adding Mn 2+ 10mg / L as a catalyst for 10min at pH 5, temperature 30 °C, .
  • the OUR inhibition rate of wastewater activated sludge decreased to less than 20%, and more than 70% of refractory organic matter in acetone refining tower waste water was removed.
  • the total drainage of the device is further treated with oil separation.
  • the COD of the wastewater is 1800 mg/L, and then treated with aerobic activated sludge, and the COD is removed by 88%.
  • Aluminum sulfate and PAM are used as coagulant and coagulant for coagulation and sedimentation treatment, and then ozone is used as oxidant for intensive degradation treatment.
  • the ozone column is filled with copper-based supported catalyst. The dosage of ozone is 200mg/L, and the effluent COD is treated. Reaching below 50mg/L, phenol and Acetone was not detected.
  • the method of the present application modifies the conventional cumene process and apparatus as follows:
  • the items (1) to (4) are the same as those in the first embodiment.
  • the total drainage of the device was treated with oil separation. After treatment, the COD of the wastewater was 1800 mg/L, and then treated with aerobic biological fluidized bed, and COD was removed by 87%. PAC and PAM were used as coagulant and coagulant for coagulation and sedimentation treatment, and then H 2 O 2 was used as oxidant for enhanced degradation treatment. The dosage was 250 mg/L, and ferrous ions were used as catalyst. The dosage was 50mg/L, the treated water effluent reached below 50mg/L, and phenol and acetone were not detected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Physical Water Treatments (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Removal Of Specific Substances (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

一种减少苯酚丙酮生产中污染物排放的方法,包括以下至少之一的步骤:(A)对苯酚丙酮生产装置产生的含酚废水进行收集,调节pH至酸性,以异丙苯为萃取剂,对废水中的酚类进行萃取回收;(B)通过丙酮精制塔工艺的优化,降低塔釜废水丙酮含量;(C)对丙酮精制塔塔釜废水采用选择性透过膜进行处理,回收碱;(D)步骤(C)回收碱后的丙酮精制塔塔釜废水中和后与异丙苯氧化塔塔顶凝液混合,进行脱毒处理;(E)对苯酚丙酮装置总排水进行隔油处理,回收包括烃的有机物;(F)对隔油处理后废水进行生物处理、混凝沉淀处理和强化降解处理。该方法具有回收资源、提高产品收率、减排污染物、废水处理成本低、出水水质稳定中至少之一的特点。

Description

减少苯酚丙酮生产中污染物排放的方法 技术领域
本申请涉及一种苯酚丙酮生产装置废水污染物回收资源化过程削减与控制方法,其也是一种减少苯酚丙酮生产中污染物排放的方法。
背景技术
苯酚和丙酮是重要的基础化工原料。异丙苯法是目前苯酚丙酮生产的主流工艺。该工艺以丙烯和苯为主要原料,生成异丙苯,然后异丙苯经氧化生成过氧化氢异丙苯,过氧化氢异丙苯在酸性加热条件下分解生成苯酚和丙酮,再经精馏精制生成苯酚和丙酮产品。
苯酚丙酮生产装置工艺流程长,废水排放节点多,现有的苯酚丙酮生产装置废水治理技术多着眼于装置混合废水的末端治理,而在生产过程中减少污染物排放的技术较少。致使苯酚丙酮装置混合废水污染物浓度高、毒性大、处理难度大、处理成本高,处理出水难于达标。
发明内容
本申请在于提供一种苯酚丙酮生产装置废水污染物回收资源化过程削减与控制方法,其至少可以在苯酚丙酮生产过程中从废水中回收资源、降低污染物浓度和废水毒性和/或减少废水处理难度。
传统的制备苯酚丙酮的异丙苯法包括以下步骤:
(1)烃化工段:原料苯及丙烯在烃化反应器内生成异丙苯,制得的异丙苯经精馏得到高纯度异丙苯,供氧化单元使用。
(2)氧化提浓分解工段:异丙苯经碱洗后在氧化反应器中被空气氧化,生成过氧化氢异丙苯,然后进行提浓,最后在硫酸作用下分解后生成粗产品(主要为苯酚、丙酮、异丙苯及α-甲基苯乙烯(AMS)的混合物)。该过程产生含酚废水。
(3)中和工段:向粗产品中加入己二胺,使粗产品中的硫酸得到中和,然后送往精馏单元。
(4)精馏工段:通过粗丙酮塔、丙酮精制塔、异丙苯精馏塔、焦油塔、AMS塔和精苯酚塔6个精馏塔,得到苯酚、丙酮成品以及AMS、异丙苯和焦油副产品;粗丙酮塔塔顶物料为粗丙酮,进入丙酮精制塔进一步精制,侧线采出得到产品丙酮。丙酮精制塔中, 为保证产品丙酮质量,需向塔中投加碱液如NaOH溶液以除去物料中的醛。NaOH溶液投加口位于粗丙酮进料口之上。一部分塔顶凝液回流(除醛回流)到提馏段,以进一步提高除醛效果,其他塔顶凝液回流到丙酮精制塔顶部塔板(塔顶回流)。丙酮精制塔釜重组分经油水分离后排放高浓度碱性有机废水。六个精馏塔的真空系统凝液也作为废水排放。
根据本申请的一个方面,本申请提供了一种减少苯酚丙酮生产中污染物排放的方法,其至少包括以下之一的步骤:
(A)对苯酚丙酮生产装置产生的含酚废水进行收集,调节pH至酸性,以异丙苯为萃取剂,对废水中的酚类进行萃取回收;
(B)通过丙酮精制塔工艺的优化,降低塔釜废水中丙酮的含量;
(C)对丙酮精制塔塔釜废水采用选择性透过膜进行处理,回收碱;
(D)将步骤(C)回收碱后的丙酮精制塔塔釜废水中和后与异丙苯氧化塔塔顶凝液混合,进行脱毒处理;
(E)对苯酚丙酮装置总排水进行隔油处理,回收包括烃的有机物;和
(F)对隔油处理后废水进行生物处理、混凝沉淀处理和强化降解处理中至少一种处理。
根据一些实施方式,步骤(A)中所述含酚废水包括来自苯酚丙酮生产中的以下之一的步骤:异丙苯氧化、提浓、过氧化氢异丙苯的分解及精馏。
在本申请方法的步骤(A)中,废水通常含酚0.1%~2%(wt),pH可被调节至酸性(pH4.5~5.5),温度可为10~60℃,以异丙苯为萃取剂,在萃取塔内,对废水中的酚进行萃取,异丙苯与废水之比为5~20:1(vol),获得的富含酚的异丙苯溶液可用10%~20%wt的NaOH溶液进行再生,NaOH溶液流量为废水流量的0.1~0.6倍。
脱酚再生后的异丙苯作为萃取剂循环用于废水萃取,再生产生的酚钠盐溶液用硫酸酸化后,经两级除盐分离器,含酚有机相进入中和工段回收苯酚,水相进行萃取处理。
步骤(A)中,废水中苯酚的回收率可达99%以上。当循环异丙苯中丙酮等含量达10%以上时,对异丙苯进行更换。
根据一些实施方式,步骤(B)中的所述丙酮精制塔工艺的优化,降低塔釜废水丙酮含量的措施包括以下至少之一:(1)碱液进料口下方塔板液层内安装填料;(2)丙酮精制塔单独控制并降低塔顶真空度达5~20kPa;(3)降低塔顶除醛回流流量10%~50%;(4)将塔顶除醛回流塔板以下提馏段提高1~2个理论板。经过处理后的塔釜废水的丙酮含量可降至0.01%~0.1%wt。
在步骤(B)中,所述塔板液层内安装填料,该填料为环状填料或薄层规整填料。
在步骤(B)中,所述塔顶除醛回流为塔顶物料冷凝后回流到提馏段(进料口以下)的回流。
在步骤(C)中,本申请所述丙酮精制塔塔釜废水可采用选择性透过膜处理,当丙酮精制塔塔釜废水(经换热)冷却,例如冷却至20~30℃,并进行隔油和活性炭吸附处理,然后在由选择性透过膜围成的隔室内循环流动;选择性透过膜在另一侧围成同等的隔室,供去离子水循环流动,废水中的NaOH通过选择性透过膜进入去离子水侧,实现碱的回收,回收率达60%以上。
本申请所述的选择性透过膜耐丙酮和苯系物溶剂,并可使NaOH选择性透过。
根据一些实施方式,本申请的方法可采用的选择性透过膜包括但不限于全氟阳离子交换膜。
在步骤(D)中,将步骤(C)得到的回收碱后的丙酮精制塔塔釜废水中和后与异丙苯氧化塔塔顶凝液混合,进行脱毒处理。
在一些实施方式中,在步骤(D)中,步骤(C)回收碱后的丙酮精制塔塔釜废水被中和后,与异丙苯氧化塔塔顶凝液混合,控制废水pH3~5,温度20~60℃,投加还原性催化剂5~30mg/L(如反应5~10min),废水对活性污泥微生物毒性下降,活性污泥氧气利用速率(OUR)抑制率降至20%以下,丙酮精制塔塔釜废水中难降解有机物转化率为70%以上,例如70%~95%。
在一些实施方式中,在步骤(D)中,本申请所述还原性催化剂为二价铁离子、钴离子或锰离子。
本申请的方法还包括步骤(E),对所述苯酚丙酮装置总排水进行隔油处理的步骤。
根据一些实施方式,上述步骤(E)中,废水进入带斜板的隔油罐并实现油水分离,油层从隔油池上部排出,回收烃类等有机物,除油率达90%以上。处理后废水从隔油池下部排出进行后续处理。
本申请的方法还包括步骤(F),本申请对隔油处理后废水进行生物处理-混凝沉淀处理-强化降解处理中至少一种。
根据一些实施方式,在步骤(F)中,废水生物处理采用好氧生物处理,处理系统微生物为悬浮生长或悬浮生长与附着生长共存;所述强化降解处理以臭氧或H2O2为氧化剂。步骤(F)处理后的出水COD可降至50mg/L以下,苯酚和丙酮未检出。
根据一些实施方式,本申请上述强化降解处理以臭氧为氧化剂时,臭氧柱内填充铝基 或铜基负载型催化剂,温度为20~40℃,废水pH为4~10,臭氧投加量为50~300mg/L。本申请以H2O2为氧化剂进行强化降解处理时,采用二价铁离子为催化剂,废水pH为3~6,二价铁离子投加量为50~200mg/L,H2O2投加量为100~330mg/L。搅拌混合反应后,调节废水pH到8进行混凝沉淀处理。
根据一些实施方式,上述混凝沉淀处理可采用硫酸铝、聚合氯化铝、氯化铁等金属盐为混凝剂,以聚丙烯酰胺为絮凝剂,温度为20~40℃,pH6~9,沉淀30~60min。
本申请用于减少苯酚丙酮生产装置产生的污染物的方法具有以下至少一种的优点:
(1)本申请通过生产过程优化,实现苯酚、丙酮、NaOH主要排放节点废水中苯酚、丙酮与碱的回收,提高了原料利用率和产品收率,降低了废水中苯酚、丙酮和碱浓度,减小了废水处理难度。
(2)废水分质处理。在保证污染物去除效果的同时,降低废水处理成本。异丙苯氧化塔塔顶凝液含氧化性物质,活性污泥毒性较高,会对后续生物处理系统的运行稳定性产生不利影响。丙酮精制塔釜塔釜废水碱浓度高,后续中和处理酸消耗量大、中和后废水含盐量高、处理难度大,且该废水中含有较高浓度的难降解有机物。针对上述两种废水的特点,首先对丙酮精制塔塔釜废水中的碱进行回收,然后对该废水进行中和,再与异丙苯氧化塔塔顶凝液废水混合,利用其中的氧化性物质为氧化剂,在还原性催化剂的作用下,实现对废水中难降解有机物的转化。一方面降低了异丙苯氧化塔塔顶凝液的毒性,另一方面提高了废水的可生化性。
(3)废水处理出水污染物含量低。在隔油处理之后,进行了生物、混凝沉淀、强化降解至少之一的处理,可将污染物浓度降低到很低的水平。
(4)本申请针对现有异丙苯法的主流工艺进行改进,适合现有生产装置的改造。投入较小的成本即可获得显著的资源回收和污染物减排效果。
下面结合附图和具体实施方式对本申请的减少苯酚丙酮生产中污染物排放的方法作进一步说明。
附图说明
图1为传统的异丙苯法苯酚丙酮生产装置工艺路线。
图2为采用本申请的方法时,异丙苯法苯酚丙酮生产装置改进工艺路线。
图3为丙酮精制塔示意图。
图4为选择性透过膜围成的隔室示意图(逆流操作)。
图5为丙酮精制塔塔板液层内安装填料示意图。
具体实施方式
实施例1:
采用传统的异丙苯法制备苯酚丙酮(见图1),其总排水COD达4000~8000mg/L。
本申请的方法对传统异丙苯法和装置进行如下至少之一的改造:
(1)丙酮精制塔建立单独的真空系统,并将塔顶压力降低15kPa,碱液进料口以下塔板液层厚度内安装薄层规整填料(见图3、图5),塔顶回流量和除醛回流量降低25%,在保证侧线采出产品质量的情况下,丙酮精制塔塔釜蒸汽消耗下降20%,塔釜丙酮含量从2200mg/L,下降至520mg/L。
(2)含酚废水由含酚废水罐收集后,用硫酸调节pH至5,以异丙苯为萃取剂,流量为废水流量的20倍,在萃取塔内,对废水中的酚进行萃取,获得的富含酚异丙苯溶液用15%wt的NaOH溶液进行再生,流量为废水流量的0.5倍,脱酚再生后的异丙苯作为萃取剂循环用于废水萃取,再生产生的酚钠盐溶液用硫酸酸化后,经两级除盐分离器,含酚有机相进入中和工段回收苯酚,水相进行萃取处理。废水苯酚浓度从5000mg/L下降至50mg/L。
(3)丙酮精制塔塔釜废水经换热冷却、隔油处理后,在由全氟阳离子交换膜围成的隔室内循环流动;离子交换膜在另一侧围成同等的隔室,供去离子水循环流动,废水中的NaOH通过离子交换膜进入去离子水侧,实现碱的回收,见图4示意图。该步骤可使废水中碱浓度从2mol/L下降到0.5mol/L,回收碱溶液用于酸性废水中和等。
(4)回收碱后的丙酮精制塔塔釜废水中和后,与异丙苯氧化塔塔顶凝液混合,投加Mn2+10mg/L作为催化剂在pH5、温度30℃条件下进行反应10min。废水活性污泥OUR抑制率降至20%以下,丙酮精制塔塔釜废水中难降解有机物去除70%以上。
(5)采用上述全部(1)~(4)项措施后,装置总排水再进行隔油处理,处理后废水COD为1800mg/L,然后进行好氧活性污泥处理,COD去除88%。采用硫酸铝和PAM为混凝剂和助凝剂进行混凝沉淀处理,再以臭氧为氧化剂进行强化降解处理,臭氧柱内填充铜基负载型催化剂,臭氧投加量200mg/L,处理出水COD达到50mg/L以下,苯酚和 丙酮未检出。
实施例2:
本申请的方法对传统异丙苯法和装置进行如下改造:
(1)~(4)项改造同实施例1。
(5)装置总排水进行隔油处理,处理后废水COD为1800mg/L,然后进行好氧生物流化床处理,COD去除87%。采用PAC和PAM为混凝剂和助凝剂进行混凝沉淀处理,再以H2O2为氧化剂进行强化降解处理,投加量为250mg/L,采用亚铁离子为催化剂,投加量为50mg/L,处理出水COD达到50mg/L以下,苯酚和丙酮未检出。
以上所述实施例仅是对本申请优选实施方式进行描述,并非对本申请的范围进行限定,在不脱离本申请设计精神的前提下,本领域普通技术人员对本申请的技术方案作出的各种变形和改进,均应落入本申请权利要求书的保护范围内。

Claims (10)

  1. 一种减少苯酚丙酮生产中污染物排放的方法,其特征在于,该方法包括至少一个以下步骤:
    (A)对苯酚丙酮生产装置产生的含酚废水进行收集,调节pH至酸性,以异丙苯为萃取剂,对废水中的酚类进行萃取回收;
    (B)通过丙酮精制塔工艺的优化,降低塔釜废水中丙酮的含量;
    (C)对丙酮精制塔塔釜废水采用选择性透过膜进行处理,回收碱;
    (D)步骤(C)回收碱后的丙酮精制塔塔釜废水经中和后,与异丙苯氧化塔塔顶凝液混合,进行脱毒处理;
    (E)对苯酚丙酮装置总排水进行隔油处理,回收包括烃的有机物;和
    (F)对隔油处理后废水进行生物处理、混凝沉淀处理和强化降解处理中至少一种处理。
  2. 权利要求1所述的方法,其中在步骤(A)中,将废水的pH调节至酸性,其pH4.5~5.5,以异丙苯为萃取剂,对废水中的酚进行萃取,溶剂比为5~20:1(vol)(异丙苯:废水),获得的富含酚的异丙苯溶液用10%~20%wt的NaOH溶液进行再生,NaOH溶液为废水的0.1~0.6倍(体积比),脱酚后的异丙苯作为萃取剂循环用于废水萃取。
  3. 权利要求1所述的方法,其中所述步骤(B)包括至少一个以下方式:(1)丙酮精制塔的碱液进料口下方塔板液层内安装环状填料或规整填料;(2)丙酮精制塔单独控制并降低塔顶真空度5~20kPa;(3)降低塔顶除醛回流流量10%~50%;(4)将塔顶除醛回流塔板以下提馏段提高1~2个理论板;
    经过步骤(B)处理后的废水的丙酮含量可降至0.01%~0.1%wt。
  4. 权利要求1所述的方法,其中步骤(C)中,所述选择性透过膜处理包括将丙酮精制塔塔釜废水冷却后,进行隔油和活性炭吸附处理,然后在由选择性透过膜围成的隔室内循环流动;选择性透过膜在另一侧围成同等的隔室,供去离子水循环流动,废水中的NaOH通过选择性透过膜进入去离子水侧,实现碱的回收。
  5. 权利要求4所述的方法,其中所述选择性透过膜耐丙酮和苯系物溶剂,并可使NaOH选择性透过。
  6. 权利要求1所述的方法,其中步骤(D)中的脱毒处理包括将步骤(C)处理后的废水与异丙苯氧化塔塔顶凝液混合,控制废水pH 3~5,温度20~60℃,投加还原性催化 剂5~30mg/L,使废水对活性污泥微生物的毒性下降,活性污泥氧气利用速率抑制率降至20%以下,丙酮精制塔塔釜废水中难降解有机物转化率为70%wt以上。
  7. 权利要求6所述的方法,其中所述还原性催化剂为二价铁离子、钴离子或锰离子。
  8. 权利要求1所述的方法,其中所述步骤(F)中,所述生物处理采用好氧生物处理,微生物为悬浮生长或悬浮生长与附着生长共存;所述强化降解处理以臭氧或H2O2为氧化剂。
  9. 权利要求8所述的方法,其中以臭氧为氧化剂进行强化降解处理时,臭氧柱内填充铝基或铜基负载型催化剂,温度为20~40℃,废水pH为4~10,臭氧投加量为50~300mg/L。
  10. 权利要求8所述的方法,其中以H2O2为氧化剂进行强化降解处理时,采用二价铁离子为催化剂,调节废水pH为3~6,二价铁离子投加量为5~200mg/L,H2O2投加量为100~330mg/L。
PCT/CN2017/078960 2016-04-01 2017-03-31 减少苯酚丙酮生产中污染物排放的方法 WO2017167262A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/088,942 US10974981B2 (en) 2016-04-01 2017-03-31 Method for reducing pollutant discharge in phenol and acetone production
DE112017001666.5T DE112017001666B4 (de) 2016-04-01 2017-03-31 Verfahren zur Senkung des Schadstoffaustrags bei der Phenol- und Acetonproduktion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610203587.5A CN105819588B (zh) 2016-04-01 2016-04-01 减少苯酚丙酮生产中污染物排放的方法
CN201610203587.5 2016-04-01

Publications (1)

Publication Number Publication Date
WO2017167262A1 true WO2017167262A1 (zh) 2017-10-05

Family

ID=56525856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/078960 WO2017167262A1 (zh) 2016-04-01 2017-03-31 减少苯酚丙酮生产中污染物排放的方法

Country Status (4)

Country Link
US (1) US10974981B2 (zh)
CN (1) CN105819588B (zh)
DE (1) DE112017001666B4 (zh)
WO (1) WO2017167262A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115321730A (zh) * 2022-07-20 2022-11-11 新琪安科技股份有限公司 一种三氯蔗糖萃取废水深度处理及脱盐的方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105819588B (zh) * 2016-04-01 2018-11-20 中国环境科学研究院 减少苯酚丙酮生产中污染物排放的方法
CN111559816B (zh) * 2019-02-13 2022-03-01 中国石油天然气股份有限公司 甲基丙烯酸甲酯装置废水的处理方法
CN112028403A (zh) * 2020-08-28 2020-12-04 倍杰特集团股份有限公司 一种含苯酚丙酮废水处理方法及系统
CN112209467A (zh) * 2020-09-23 2021-01-12 吉化集团油脂化工有限公司 一种苯酚丙酮装置的含酚废水处理方法
CN112479459B (zh) * 2020-11-19 2023-01-17 万华化学集团股份有限公司 一种优先透水膜的制备方法,吗啉废水处理及吗啉类物质回收的方法
CN114920418A (zh) * 2021-07-28 2022-08-19 南通江山农药化工股份有限公司 一种酰胺类农药生产废水资源化回收方法及其应用
CN113816562A (zh) * 2021-09-07 2021-12-21 上海泓济环保科技股份有限公司 一种模块化餐厨垃圾废水处理工艺及其系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3963610A (en) * 1972-07-20 1976-06-15 Phenolchemie Gmbh Method of removing phenol from waste water
CN101654316A (zh) * 2009-09-27 2010-02-24 新奥科技发展有限公司 煤气化废水的处理方法
CN102908916A (zh) * 2012-11-09 2013-02-06 杭州水处理技术研究开发中心有限公司 一种中空纤维扩散渗析碱回收膜的制备方法
CN102992961A (zh) * 2012-11-28 2013-03-27 沙丽 用于苯酚和丙酮生产的新型反应精馏工艺
CN103145286A (zh) * 2013-03-13 2013-06-12 中国石油化工集团公司 一种高浓度废水的预处理方法
CN104355501A (zh) * 2014-11-18 2015-02-18 中国环境科学研究院 一种丙酮生产过程产生废水的处理方法
CN105819588A (zh) * 2016-04-01 2016-08-03 中国环境科学研究院 减少苯酚丙酮生产中污染物排放的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1335976C (en) * 1989-05-31 1995-06-20 Mahmoud Kamran Azarniouch Recovery of naoh and other values from spent liquors and bleach plant effluents
DE19837723A1 (de) 1998-08-20 2000-02-24 Phenolchemie Gmbh & Co Kg Verfahren zur Reinigung von Abwässern aus dem Hock-Verfahren
CN101715436B (zh) * 2007-05-09 2014-06-04 巴杰尔许可有限责任公司 Bpa方法改进
RU2400469C2 (ru) * 2008-12-09 2010-09-27 Общество с ограниченной ответственностью "Новые технологии" Способ очистки ацетона-сырца

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3963610A (en) * 1972-07-20 1976-06-15 Phenolchemie Gmbh Method of removing phenol from waste water
CN101654316A (zh) * 2009-09-27 2010-02-24 新奥科技发展有限公司 煤气化废水的处理方法
CN102908916A (zh) * 2012-11-09 2013-02-06 杭州水处理技术研究开发中心有限公司 一种中空纤维扩散渗析碱回收膜的制备方法
CN102992961A (zh) * 2012-11-28 2013-03-27 沙丽 用于苯酚和丙酮生产的新型反应精馏工艺
CN103145286A (zh) * 2013-03-13 2013-06-12 中国石油化工集团公司 一种高浓度废水的预处理方法
CN104355501A (zh) * 2014-11-18 2015-02-18 中国环境科学研究院 一种丙酮生产过程产生废水的处理方法
CN105819588A (zh) * 2016-04-01 2016-08-03 中国环境科学研究院 减少苯酚丙酮生产中污染物排放的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MA, HAIHONG ET AL.: "Technical Revamping of the Acetone Distillation Tower in Cresol Plant", CHEMICAL INDUSTRY AND ENGINEERING, vol. 14, no. 3, 15 August 1997 (1997-08-15), ISSN: 1004-9533 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115321730A (zh) * 2022-07-20 2022-11-11 新琪安科技股份有限公司 一种三氯蔗糖萃取废水深度处理及脱盐的方法
CN115321730B (zh) * 2022-07-20 2023-05-26 新琪安科技股份有限公司 一种三氯蔗糖萃取废水深度处理及脱盐的方法

Also Published As

Publication number Publication date
DE112017001666B4 (de) 2020-08-13
DE112017001666T5 (de) 2019-01-03
CN105819588B (zh) 2018-11-20
US20200346959A1 (en) 2020-11-05
US10974981B2 (en) 2021-04-13
CN105819588A (zh) 2016-08-03

Similar Documents

Publication Publication Date Title
WO2017167262A1 (zh) 减少苯酚丙酮生产中污染物排放的方法
CN105254141B (zh) 一种高浓度混合盐有机废水的处理方法和处理系统
CN111039477A (zh) 一种焦化废水反渗透浓水资源化综合利用的方法
CN108793551B (zh) 一种高盐高cod有机废水的处理方法及其处理装置
CN106495404B (zh) 一种高酸度高盐度含铜有机废水的处理方法
CN104926021B (zh) 酚氨废水处理装置
CN108793379B (zh) 一种环氧氯丙烷生产废水的处理方法
CN105502764A (zh) 一种臭氧催化氧化与电吸附结合的焦化废水深度处理系统
CN108373247A (zh) 一种用于焦化废水深度处理回用工艺
CN108623067A (zh) 一种处理煤化工废水的工艺
CN108117208A (zh) 一种碱渣废液的处理方法及处理装置
CN207877513U (zh) 一种高浓度有机废水的处理结构
WO2024060693A1 (zh) 一种煤化工废水处理方法及系统
CN105016552B (zh) 一种油品精制废碱液的处理方法
CN104445799B (zh) 一种高盐、氨氮和难处理的黄金冶炼厂废水的处理方法
CN103663822A (zh) 一种硝基氯苯生产废水的处理方法
CN102838248A (zh) 过氧化二异丙苯缩合废水的处理方法
CN110156237A (zh) 一种废水水利回收方法
CN105036444B (zh) 减量化和资源化中水回用零排放处理工艺
CN210915710U (zh) 一种煤焦化高盐废水零排放及资源化处理系统
CN108117209A (zh) 一种碱渣废液的综合处理方法及装置
CN108328847B (zh) 一种轮胎用功能树脂污水的综合处理方法
CN106927596A (zh) 辛醇废碱液的处理方法
CN114590975B (zh) 一种含酚煤气废水零排放处理方法及处理系统
CN213977317U (zh) 一种粗酚精制废水治理设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773292

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17773292

Country of ref document: EP

Kind code of ref document: A1