WO2017166440A1 - 一种液晶显示面板、显示装置 - Google Patents

一种液晶显示面板、显示装置 Download PDF

Info

Publication number
WO2017166440A1
WO2017166440A1 PCT/CN2016/086221 CN2016086221W WO2017166440A1 WO 2017166440 A1 WO2017166440 A1 WO 2017166440A1 CN 2016086221 W CN2016086221 W CN 2016086221W WO 2017166440 A1 WO2017166440 A1 WO 2017166440A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
boundary
crystal display
display panel
slits
Prior art date
Application number
PCT/CN2016/086221
Other languages
English (en)
French (fr)
Inventor
彭邦银
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/118,103 priority Critical patent/US10274785B2/en
Publication of WO2017166440A1 publication Critical patent/WO2017166440A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes

Definitions

  • the present invention relates to the field of liquid crystal display technology, and in particular, to a liquid crystal display panel, and a display device using the liquid crystal display panel.
  • UV2A Ultraviolet Vertical Alignment technology is a technique for aligning liquid crystals in a vertical alignment liquid crystal display by using ultraviolet rays.
  • the basic principle is that an alignment film of a polymer material which reacts with ultraviolet rays is coated on a glass substrate, and is aligned under ultraviolet light.
  • the polymer backbone on the surface of the film is tilted in the direction of ultraviolet light irradiation so that liquid crystal molecules can be tilted along this main chain direction.
  • this technology is mainly applied to a vertical alignment mode liquid crystal display having a large viewing angle, which improves the aperture ratio, contrast, response speed and the like of a large viewing angle liquid crystal display.
  • UV2A technology adopts a special orthogonal vertical optical phase matching mode
  • a " ⁇ " 4D dark line is formed on the sub-pixel, and the appearance of the 4D dark line reduces the light transmittance of the liquid crystal display.
  • the current methods mainly include: extrapolating the edge of the 4D dark line to the black matrix, using a black matrix to block the edge of the 4D dark line, or designing the specific position of the edge of the upper electrode as a radioactive narrow
  • the slit moves the force of the electric field of the ITO electrode to the liquid crystal molecules, thereby shifting the horizontal and vertical dark lines caused by the fringe field effect out of the open area of the ITO, but these methods only weaken the horizontal and vertical dark lines on the edge of the 4D dark line. And there is no effect on the cross dark lines in the middle of the dark lines.
  • the embodiment of the invention provides a liquid crystal display panel to reduce the dark lines appearing in the existing liquid crystal display panel, thereby increasing the light transmittance of the liquid crystal display panel.
  • An embodiment of the present invention provides a liquid crystal display panel
  • the liquid crystal display panel includes a plurality of sub-pixel units, each of the sub-pixel units includes an upper electrode, a liquid crystal layer, and a lower electrode, wherein the sub-pixel unit includes four light transmissive regions, and the phase
  • the adjacent light-transmitting regions have different alignment directions, and the boundary of the adjacent light-transmitting regions includes a horizontal boundary or a vertical boundary, and the liquid crystal display panel further includes:
  • Periodically arranged slits are disposed at corresponding positions of the upper electrode and/or the lower electrode corresponding to the boundary of the adjacent light-transmitting regions, and the opening direction of the slit is parallel to the alignment direction of the liquid crystal molecules in the light-transmitting region where the slit is located. And the slit has a 45[deg.] angle with the corresponding position of the upper electrode and/or the lower electrode corresponding to the horizontal or vertical boundary.
  • the slits are respectively disposed at two sides of corresponding positions of the upper electrode and/or the lower electrode corresponding to the horizontal boundary of the adjacent light transmitting regions.
  • the slits on both sides of the corresponding positions of the upper electrode and/or the lower electrode corresponding to the horizontal boundary of the adjacent light transmitting regions are connected in communication.
  • the slits are respectively disposed at two sides of corresponding positions of the upper electrode and/or the lower electrode corresponding to the vertical boundary of the adjacent light transmitting regions.
  • the slits on both sides of the corresponding positions of the upper electrode and/or the lower electrode corresponding to the vertical boundary of the adjacent light-transmitting regions are connected in communication.
  • the slits are respectively disposed at two sides of corresponding positions of the upper electrode and/or the lower electrode corresponding to the horizontal boundary and the vertical boundary of the adjacent light transmitting regions.
  • the intersection of the horizontal boundary and the vertical boundary is a boundary center
  • the slit is disposed at a horizontal boundary and/or a vertical boundary corresponding to a predetermined range from the boundary center. The corresponding position of the electrode and / or the lower electrode.
  • adjacent slits of the same distance from the corresponding positions of the upper electrode and/or the lower electrode corresponding to the boundary center are connected in communication.
  • the embodiment of the present invention further provides a liquid crystal display panel
  • the liquid crystal display panel includes a plurality of sub-pixel units, each of the sub-pixel units includes an upper electrode, a liquid crystal layer and a lower electrode, wherein the sub-pixel unit includes four light transmissive regions, and The adjacent light-transmitting regions have different alignment directions, and the boundary of the adjacent light-transmitting regions includes a horizontal boundary or a vertical boundary, and the liquid crystal display panel further includes:
  • a slit is disposed at a corresponding position of the upper electrode and/or the lower electrode corresponding to the boundary of the adjacent light transmitting regions, and the opening direction of the slit is parallel to the alignment direction of the liquid crystal molecules in the light transmitting region where the slit is located.
  • the slits are respectively disposed at two sides of corresponding positions of the upper electrode and/or the lower electrode corresponding to the horizontal boundary of the adjacent light transmitting regions.
  • the slits on both sides of the corresponding positions of the upper electrode and/or the lower electrode corresponding to the horizontal boundary of the adjacent light transmitting regions are connected in communication.
  • the slits are respectively disposed at two sides of corresponding positions of the upper electrode and/or the lower electrode corresponding to the vertical boundary of the adjacent light transmitting regions.
  • the slits on both sides of the corresponding positions of the upper electrode and/or the lower electrode corresponding to the vertical boundary of the adjacent light-transmitting regions are connected in communication.
  • the slits are respectively disposed at two sides of corresponding positions of the upper electrode and/or the lower electrode corresponding to the horizontal boundary and the vertical boundary of the adjacent light transmitting regions.
  • the slits on both sides of the corresponding positions of the upper electrode and/or the lower electrode corresponding to the horizontal boundary of the adjacent light-transmissive region and the vertical boundary are connected.
  • the intersection of the horizontal boundary and the vertical boundary is a boundary center
  • the slit is disposed at a horizontal boundary and/or a vertical boundary corresponding to a predetermined range from the boundary center. The corresponding position of the electrode and / or the lower electrode.
  • adjacent slits of the same distance from the corresponding positions of the upper electrode and/or the lower electrode corresponding to the boundary center are connected in communication.
  • the slits at the intersection of adjacent light-transmissive regions are periodically arranged.
  • the slits have an angle of 45° with respect to the corresponding positions of the upper electrode and/or the lower electrode corresponding to the horizontal boundary or the vertical boundary.
  • the present invention also provides a display device comprising the liquid crystal display panel according to any one of the above.
  • the liquid crystal display panel of the present invention is provided with slits according to corresponding positions of the upper electrode and/or the lower electrode corresponding to the boundary of adjacent light-transmitting regions, and the opening direction of the slit is parallel to The alignment direction of the liquid crystal molecules in the light-transmitting region where the slit is located.
  • the liquid crystal display panel is in a bright state, that is, when a voltage is applied between the upper electrode and the lower electrode, the electric field at the slit induces deflection of the liquid crystal molecules at the dark lines.
  • the deflection direction of the liquid crystal molecules is the same as the deflection direction of the liquid crystal molecules in the light transmission region, so that a certain light can be emitted at the boundary of the adjacent light transmission regions in the sub-pixel unit, thereby weakening the adjacent light transmission in the prior art.
  • the cross mark formed by the boundary of the area increases the light transmittance of the liquid crystal display panel.
  • the display device provided by the present invention comprises the liquid crystal display panel of the present invention, which has higher light transmittance than the existing display device.
  • FIG. 1 is a schematic diagram of a pattern of a four-word dark line in a conventional liquid crystal display panel
  • Figure 2b is an enlarged view of the deflection state of the liquid crystal molecules in the black frame range of Figure 2a;
  • FIG. 3 is a schematic structural view of an upper electrode in a first preferred embodiment of the liquid crystal display panel of the present invention
  • FIG. 4 is a schematic structural view of an upper electrode in a second preferred embodiment of the liquid crystal display panel of the present invention.
  • FIG. 5 is a schematic structural view of an upper electrode in a third preferred embodiment of the liquid crystal display panel of the present invention.
  • FIG. 6 is a schematic structural view of an upper electrode in a fourth preferred embodiment of the liquid crystal display panel of the present invention.
  • Fig. 7 is a structural schematic view showing an upper electrode in a fifth preferred embodiment of the liquid crystal display panel of the present invention.
  • the existing liquid crystal display panel includes a plurality of sub-pixel units, each of the sub-pixel units includes an upper electrode, an upper alignment film, a liquid crystal layer, a lower alignment film, and a lower electrode, and the sub-pixel unit includes four light transmissive regions, and adjacent light transmission
  • the zones have different alignment directions, and the principle of adjacent transmission zones having different alignment directions is as follows:
  • each sub-pixel unit includes a pair of vertically downward and vertical upward alignment directions of the upper alignment film, and a pair of horizontally left and horizontal right alignment directions of the lower alignment film, thus when the liquid crystal display When the panel is in a bright state, the sub-pixel unit will be divided into four light-transmissive areas, which are a left upper light transmission area, a right upper light transmission area, a lower left light transmission area, and a lower right light transmission area.
  • the alignment direction of the upper alignment film is vertically downward
  • the alignment direction of the lower alignment film is horizontally leftward, and therefore, the alignment of the liquid crystal molecules in the upper left transmission region
  • the direction will be inclined to the lower left, and the direction of the inclination is at an angle of 45 with the alignment direction of the upper alignment film in the light-transmitting region.
  • the alignment directions of the liquid crystal molecules in other light-transmitting regions are similarly known and will not be described in detail herein.
  • the liquid crystal molecules are not deflected in the lower left direction of the liquid crystal molecules in the upper left transmission region, they are not deflected in the upper left direction of the liquid crystal molecules in the upper right transmission region, and the arrangement direction thereof It is somewhere in between, which results in the light transmittance at the junction being lower than the light transmittance of the two light-transmitting regions, that is, dark lines appear at the boundary between the two light-transmitting regions.
  • FIG. 1 is a schematic diagram of a four-character dark line in a conventional liquid crystal display panel.
  • the four-word dark line of the type “ ⁇ ” is composed of two parts, one part is a cross dark line in the middle part, and the other part is an edge.
  • the horizontal and vertical dark lines, the embodiment in the present specification is a scheme for the cross dark design, that is, the dark lines corresponding to the boundary of the adjacent light transmitting areas, it is understood that the cross dark lines include the adjacent light transmitting areas.
  • the horizontal dark lines corresponding to the horizontal boundary and the vertical dark lines corresponding to the vertical boundary of the adjacent light-transmissive areas are examples of the horizontal dark lines corresponding to the horizontal boundary and the vertical dark lines corresponding to the vertical boundary of the adjacent light-transmissive areas.
  • the present invention gives a deflection state diagram of liquid crystal molecules corresponding to sub-pixel units, as shown in FIG. 2a.
  • the liquid crystal will be clearly divided into four regions, which are respectively located in the upper left transmissive region, the upper right transmissive region, the lower left transmissive region, and the lower right transmissive region, and in each of the translucent regions.
  • the deflection states of the liquid crystal molecules are substantially the same, the deflection states of the liquid crystal molecules in the adjacent light transmission regions are different, and the deflection state of the liquid crystal molecules at the boundary between the adjacent two light transmission regions and the liquid crystal in the two light transmission regions
  • the molecular deflection states are all different, wherein the black frame in the figure encloses the liquid crystal molecules at the junction of the upper left transmission area and the upper right transmission area.
  • Fig. 2b is an enlarged view of the deflection state of the liquid crystal molecules in the black frame range, as can be seen from the figure, at the junction
  • the liquid crystal molecules at the liquid crystal molecules are not deflected in the lower left direction of the liquid crystal molecules in the upper left transmission region, and are not deflected in the upper left direction of the liquid crystal molecules in the upper right transmission region, and the arrangement direction is between the two, which leads to the junction.
  • the light transmittance at the place is lower than the light transmittance of the two light-transmitting regions, that is, dark lines appear at the boundary of the two light-transmitting regions.
  • the present invention provides a liquid crystal display panel including a plurality of sub-pixel units, each of which includes an upper electrode, a liquid crystal layer, and a lower electrode, wherein the sub-pixel unit includes four light transmissive regions, and the phase
  • the adjacent light-transmitting regions have different alignment directions
  • the boundary of the adjacent light-transmitting regions includes a horizontal boundary or a vertical boundary
  • the liquid crystal display panel further includes: an upper electrode corresponding to the boundary of the adjacent light-transmitting regions and/or
  • a slit is disposed at a corresponding position of the lower electrode, and the opening direction of the slit is parallel to the alignment direction of the liquid crystal molecules in the light transmitting region where the slit is located.
  • FIG. 3 is a schematic structural view of an upper electrode in a first preferred embodiment of the liquid crystal display panel of the present invention.
  • the arrows in the figure indicate the alignment directions of liquid crystal molecules corresponding to the light-transmitting regions.
  • a slit 31 is provided, and the opening direction of the slit 31 is parallel to the alignment direction of the liquid crystal molecules in the light transmitting region where the slit 31 is located.
  • the slits 31 are distributed on both sides of the corresponding positions of the upper electrodes corresponding to the horizontal boundary of the adjacent light transmitting areas, and the slits 31 on the same vertical line Connected together.
  • the horizontal boundary of the adjacent light-transmissive zone refers to the boundary between the upper left light-transmissive zone and the lower left light-transmissive zone, and between the upper right transmissive zone and the lower right transmissive zone. Junction.
  • the slit 31 Since the transmittance of the liquid crystal is the largest when the liquid crystal molecules are deflected at 45°, it is preferable that the slit 31 has an angle of 45° with respect to the corresponding position of the upper electrode corresponding to the horizontal boundary.
  • the electric field at the slit 31 induces a corresponding deflection of the liquid crystal molecules at the position, thereby increasing the transmittance at the junction, thereby achieving Attenuate the horizontal dark lines that appear in the prior art.
  • the slits at the intersection of adjacent light-transmissive regions are periodically arranged.
  • the slit between the upper left transparent region and the lower left transparent region has a certain periodic arrangement.
  • the slit between the upper right transparent area and the lower right transparent area has a certain periodic arrangement.
  • the slits may not be periodically arranged, and are not specifically limited herein.
  • the parameters such as the number of slits, the width of the slit, and the like may be set according to the size, width, and the like of the dark stripes, and are not specifically limited herein.
  • the slits in the preferred embodiment are disposed on both sides of the corresponding positions of the upper electrodes corresponding to the horizontal junctions of the adjacent light-transmissive regions. In other embodiments, the slits may also be disposed on only one side. No specific restrictions.
  • the slit in the preferred embodiment is disposed on the upper electrode, it being understood that the slit may also be disposed at a corresponding position of the lower electrode, or at the same time, a slit is provided at a corresponding position of the upper electrode and the lower electrode, as long as it can be achieved The purpose of attenuating the horizontal dark lines appearing in the prior art can be achieved.
  • FIG. 4 is a schematic structural view of an upper electrode in a second preferred embodiment of the liquid crystal display panel of the present invention, wherein the arrows indicate the alignment directions of the liquid crystal molecules corresponding to the light-transmitting regions.
  • a slit 41 is provided, and the opening direction of the slit 41 is parallel to the alignment direction of the liquid crystal molecules in the light transmitting region where the slit 41 is located.
  • the slits 41 are distributed on both sides of the corresponding positions of the upper electrodes corresponding to the vertical boundaries of the adjacent light transmitting areas, and the slits 41 on the same horizontal line Connected together. Since the transmittance of the liquid crystal is maximum when the liquid crystal molecules are deflected at 45°, it is preferable that the slit 41 has an angle of 45° with respect to the corresponding position of the upper electrode corresponding to the vertical boundary.
  • the electric field at the slit 41 induces a corresponding deflection of the liquid crystal molecules at the position, thereby increasing the transmittance at the junction, thereby achieving Attenuates the vertical dark lines that appear in the prior art.
  • the slits at the intersection of adjacent light-transmissive regions are periodically arranged.
  • the slits between the upper left transparent region and the upper right transparent region have a certain periodic arrangement.
  • the slits between the lower left transparent area and the lower right transparent area have a certain periodic arrangement.
  • the slits may not be periodically arranged, and are not specifically limited herein.
  • the parameters such as the number of slits, the width of the slit, and the like may be set according to the size, width, and the like of the dark stripes, and are not specifically limited herein.
  • the slits in the preferred embodiment are disposed on both sides of the corresponding positions of the upper electrodes corresponding to the vertical junctions of the adjacent light-transmissive regions. In other embodiments, the slits may be provided only on one side. This is not specifically limited.
  • the slit in the preferred embodiment is disposed on the upper electrode, it being understood that the slit may also be disposed at a corresponding position of the lower electrode, or at the same time, a slit is provided at a corresponding position of the upper electrode and the lower electrode, as long as it can be achieved The purpose of attenuating the vertical dark lines appearing in the prior art can be achieved.
  • FIG. 5 is a schematic structural view of an upper electrode in a third preferred embodiment of the liquid crystal display panel of the present invention, wherein the arrows indicate the alignment directions of the liquid crystal molecules corresponding to the light-transmitting regions.
  • a slit 51 is provided, and the opening direction of the slit 51 is parallel to the alignment direction of the liquid crystal molecules in the light transmitting region where the slit 51 is located.
  • the slits 51 are distributed on both sides of the corresponding positions of the upper electrodes corresponding to the horizontal boundary and the vertical boundary, and are in the same horizontal line or the same vertical line.
  • the upper slits 51 are connected in communication. Since the liquid crystal molecules have the highest light transmittance when deflected at 45°, it is preferable that the slits 51 have an angle of 45° with respect to the respective positions of the upper electrodes corresponding to the vertical boundary and the horizontal boundary, respectively.
  • the electric field at the slit 51 induces a corresponding deflection of the liquid crystal molecules at the position, thereby increasing the light transmittance at the junction, thereby achieving Attenuates the horizontal dark lines and vertical dark lines that appear in the prior art.
  • the slits at the intersection of the adjacent light-transmissive regions are periodically arranged.
  • the slits may not be periodically arranged, and are not specifically limited herein.
  • the number of the number, the width of the opening, and the like may be set according to the size, width, and the like of the dark lines, and are not specifically limited herein.
  • the slits in the preferred embodiment are disposed on both sides of the corresponding positions of the upper electrodes corresponding to the horizontal boundary and the vertical boundary of the adjacent light transmitting regions. In other embodiments, the slits may be arranged only on one side. Seams are not specifically limited here.
  • the slit in the preferred embodiment is disposed on the upper electrode, it being understood that the slit may also be disposed at a corresponding position of the lower electrode, or at the same time, a slit is provided at a corresponding position of the upper electrode and the lower electrode, as long as it can be achieved It is sufficient to attenuate the horizontal dark lines and vertical dark lines that appear in the prior art.
  • FIG. 6 is a schematic structural view of an upper electrode in a fourth preferred embodiment of the liquid crystal display panel of the present invention, wherein the arrows indicate the alignment directions of the liquid crystal molecules corresponding to the light-transmitting regions.
  • a slit 61 is provided, and the opening direction of the slit 61 is parallel to the alignment direction of the liquid crystal molecules in the light transmitting region where the slit 61 is located.
  • the slit 61 is disposed at a corresponding position of the upper electrode corresponding to the horizontal boundary and the vertical boundary within a predetermined range from the center of the boundary, and is at the same horizontal line or the same vertical
  • the slits 61 on the straight line are connected in common. Since the liquid crystal molecules have the highest light transmittance when deflected at 45°, it is preferable that the slits 61 have an angle of 45° with respect to the respective positions of the upper electrodes corresponding to the vertical boundary and the horizontal boundary in the predetermined range, respectively.
  • the electric field at the slit 61 induces a corresponding deflection of the liquid crystal molecules therein, increasing the penetration at the junction within a predetermined range of the boundary center. Light rate, thereby weakening the dark lines at the intersection of horizontal dark lines and vertical dark lines.
  • the slit is disposed at a corresponding position of the upper electrode corresponding to the horizontal boundary and the vertical boundary within a predetermined range of the boundary center, and the dark streaks at the intersection of the horizontal dark line and the vertical dark line are mainly weakened.
  • the specific value of the predetermined range may be determined according to the size of the dark lines at the intersection, and is not specifically limited herein.
  • the slit is provided at a corresponding position of the upper electrode corresponding to the horizontal boundary and the vertical boundary within a predetermined range of the boundary center, and in other embodiments, only at the horizontal boundary or the vertical boundary A slit is provided at a corresponding position of the corresponding upper electrode, which is not specifically limited herein.
  • the slits at the intersection of the adjacent light-transmissive regions are periodically arranged.
  • the slits may not be periodically arranged, and are not specifically limited herein.
  • the parameters such as the number, the opening width, and the like may be set according to the size, width, and the like of the dark spots at the intersection, and are not specifically limited herein.
  • the slit in the preferred embodiment is disposed on the upper electrode, it being understood that the slit may also be disposed at a corresponding position of the lower electrode, or at the same time, a slit is provided at a corresponding position of the upper electrode and the lower electrode, as long as it can be achieved
  • the purpose of weakening the dark lines at the intersection is fine.
  • FIG. 7 is a schematic structural view of an upper electrode in a fifth preferred embodiment of the liquid crystal display panel of the present invention.
  • the arrows in the figure indicate the alignment directions of the liquid crystal molecules corresponding to the light-transmitting regions.
  • a slit 71 is provided, and the opening direction of the slit 71 is parallel to the alignment direction of the liquid crystal molecules in the light transmitting region where the slit 71 is located.
  • the intersection of the horizontal boundary and the vertical boundary is a boundary center, and preferably, the slit 71 is disposed at a corresponding position of the upper electrode corresponding to the horizontal boundary and the vertical boundary within a predetermined range from the center of the boundary, and corresponds to the center of the boundary
  • Adjacent slits 71 of the same position of the upper electrode 70 at the same distance are connected to each other to form a mouth shape as shown in FIG. Since the liquid crystal molecules have the highest light transmittance when deflected at 45°, it is preferable that the slits 71 have an angle of 45° with respect to the respective positions of the upper electrodes corresponding to the vertical boundary and the horizontal boundary in the predetermined range, respectively.
  • the electric field at the slit 71 induces a corresponding deflection of the liquid crystal molecules therein, increasing the penetration at the junction within a predetermined range of the boundary center. Light rate, thereby weakening the dark lines at the intersection of horizontal dark lines and vertical dark lines.
  • the slit is disposed at a corresponding position of the upper electrode corresponding to the horizontal boundary and the vertical boundary within a predetermined range of the boundary center, and the dark streaks at the intersection of the horizontal dark line and the vertical dark line are mainly weakened.
  • the specific value of the predetermined range may be determined according to the size of the dark lines at the intersection, and is not specifically limited herein.
  • the slits are periodically arranged in the direction perpendicular to the opening of the slit.
  • the slits may not be periodically arranged, and are not specifically limited herein.
  • the number of the number, the width of the opening, and the like may be set according to the size, width, and the like of the dark lines at the intersection, and are not specifically limited herein.
  • the slit in the preferred embodiment is disposed on the upper electrode, it being understood that the slit may also be disposed at a corresponding position of the lower electrode, or at the same time, a slit is provided at a corresponding position of the upper electrode and the lower electrode, as long as it can be achieved
  • the purpose of weakening the dark lines at the intersection is fine.
  • the present invention also provides a display device, wherein the display device comprises any of the above preferred liquid crystal display panels, and the display device of the present invention provides a display provided by the present invention by using a liquid crystal display panel having a high light transmittance.
  • the device has a higher light transmittance, and the principle of having a higher light transmittance is described in detail in the foregoing description of the liquid crystal display panel, and details are not described herein.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

一种液晶显示面板及显示装置,液晶显示面板包括多个子像素单元,每个子像素单元包括四个透光区,液晶显示面板还包括在相邻透光区的交界所对应的上电极(30)和/或下电极(40)的相应位置上设置狭缝(31,41,51,61,71),狭缝(31,41,51,61,71)的开口方向平行于狭缝(31,41,51,61,71)所在透光区域中液晶分子的配向方向。通过在上电极(30)或下电极(40)上设置狭缝(31,41,51,61,71),达到减弱相应暗纹的效果。

Description

一种液晶显示面板、显示装置 技术领域
本发明涉及液晶显示技术领域,特别是涉及一种液晶显示面板,以及应用该液晶显示面板的显示装置。
背景技术
UV2A(Ultraviolet Vertical Alignment)技术是一种采用紫外线对垂直配向液晶显示器中的液晶进行配向的技术,其基本原理是在玻璃基板上涂有对紫外线具有反应的高分子材料的配向膜,在紫外线的照射下,配向膜表面的高分子主链会沿着紫外线照射的方向倾斜,从而使得液晶分子可以沿着这个主链方向倾斜。目前这种技术主要应用在具有大视角的垂直配向模式液晶显示器上,提高了大视角液晶显示器的开口率、对比度、响应速度等特性。
但由于UV2A技术采用特殊的正交垂直光配相方式,使得液晶显示器在亮态时,在子像素上形成“卐”的万字暗纹,万字暗纹的出现降低了液晶显示器的透光率。为了解决这个问题,目前采用的方法主要有:将万字暗纹的边缘外推到黑色矩阵处,使用黑色矩阵将万字暗纹的边缘遮挡住,或者将上电极的边缘的特定位置设计成放射性狭缝,将ITO电极边缘电场对液晶分子的作用力外移,从而将由边缘场效应引起的横竖暗纹外移出ITO的开口区,但这些方法仅仅是减弱了万字暗纹的边缘上的横竖暗纹,而对万字暗纹中间的十字暗纹没有影响。
因此,有必要提供一种液晶显示面板及应用该液晶显示面板的显示装置,通过在上电极和/或下电极的相应位置上设置狭缝,当液晶显示面板处于亮态时,通过狭缝的电场作用使得液晶分子发生相应的偏转,进而使得子像素中原本为十字暗纹的位置可以有一定的光出射,从而减弱十字暗纹,增加液晶显示面板的透光率。
技术问题
本发明实施例提供一种液晶显示面板,以减弱现有的液晶显示面板中出现的暗纹,进而增加液晶显示面板的透光率。
技术解决方案
本发明实施例提供一种液晶显示面板,所述液晶显示面板包括多个子像素单元,每个子像素单元包括上电极、液晶层和下电极,其中,子像素单元包括四个透光区,且相邻的透光区具有不同的配向方向,相邻透光区的交界包括水平交界或竖直交界,所述液晶显示面板还包括:
在相邻透光区的交界所对应的上电极和/或下电极的相应位置上设置周期性排列的狭缝,狭缝的开口方向平行于狭缝所在透光区中液晶分子的配向方向,且所述狭缝与水平交界或竖直交界所对应的上电极和/或下电极的相应位置呈45°角。
本发明实施例提供的液晶显示面板中,所述狭缝分别设置在相邻透光区的水平交界所对应的上电极和/或下电极的相应位置的两侧。
本发明实施例提供的液晶显示面板中,处于相邻透光区的水平交界所对应的上电极和/或下电极的相应位置的两侧的狭缝相通连接。
本发明实施例提供的液晶显示面板中,所述狭缝分别设置在相邻透光区的竖直交界所对应的上电极和/或下电极的相应位置的两侧。
本发明实施例提供的液晶显示面板中,处于相邻透光区的竖直交界所对应的上电极和/或下电极的相应位置的两侧的狭缝相通连接。
本发明实施例提供的液晶显示面板中,所述狭缝分别设置在相邻透光区的水平交界和竖直交界所对应的上电极和/或下电极的相应位置的两侧。
本发明实施例提供的液晶显示面板中,水平交界与竖直交界相交处为交界中心,所述狭缝设置在距所述交界中心预定范围内的水平交界和/或竖直交界所对应的上电极和/或下电极的相应位置上。
本发明实施例提供的液晶显示面板中,距所述交界中心所对应的上电极和/或下电极的相应位置相同距离的相邻狭缝相通连接。
本发明实施例还提供一种液晶显示面板,所述液晶显示面板包括多个子像素单元,每个子像素单元包括上电极、液晶层和下电极,其中,子像素单元包括四个透光区,且相邻的透光区具有不同的配向方向,相邻透光区的交界包括水平交界或竖直交界,所述液晶显示面板还包括:
在相邻透光区的交界所对应的上电极和/或下电极的相应位置上设置狭缝,狭缝的开口方向平行于狭缝所在透光区中液晶分子的配向方向。
本发明实施例提供的液晶显示面板中,所述狭缝分别设置在相邻透光区的水平交界所对应的上电极和/或下电极的相应位置的两侧。
本发明实施例提供的液晶显示面板中,处于相邻透光区的水平交界所对应的上电极和/或下电极的相应位置的两侧的狭缝相通连接。
本发明实施例提供的液晶显示面板中,所述狭缝分别设置在相邻透光区的竖直交界所对应的上电极和/或下电极的相应位置的两侧。
本发明实施例提供的液晶显示面板中,处于相邻透光区的竖直交界所对应的上电极和/或下电极的相应位置的两侧的狭缝相通连接。
本发明实施例提供的液晶显示面板中,所述狭缝分别设置在相邻透光区的水平交界和竖直交界所对应的上电极和/或下电极的相应位置的两侧。
本发明实施例提供的液晶显示面板中,处于相邻透光区的水平交界和竖直交界所对应的上电极和/或下电极的相应位置的两侧的狭缝相通连接。
本发明实施例提供的液晶显示面板中,水平交界与竖直交界相交处为交界中心,所述狭缝设置在距所述交界中心预定范围内的水平交界和/或竖直交界所对应的上电极和/或下电极的相应位置上。
本发明实施例提供的液晶显示面板中,距所述交界中心所对应的上电极和/或下电极的相应位置相同距离的相邻狭缝相通连接。
本发明实施例提供的液晶显示面板中,处于相邻透光区交界处的狭缝呈周期性排列。
本发明实施例提供的液晶显示面板中,所述狭缝与水平交界或竖直交界所对应的上电极和/或下电极的相应位置呈45°角。
本发明还提供一种显示装置,所述显示装置包括上述任意一项所述的液晶显示面板。
有益效果
与现有技术相比,本发明的液晶显示面板,通过根据在相邻透光区的交界所对应的上电极和/或下电极的相应位置上设置狭缝,且狭缝的开口方向平行于狭缝所在透光区域中液晶分子的配向方向,当液晶显示面板处于亮态时,即在上电极和下电极之间施加电压时,狭缝处的电场将会诱导暗纹处液晶分子发生偏转,使得液晶分子偏转方向与透光区中液晶分子的偏转方向相同,进而使得子像素单元中相邻透光区的交界处可以有一定的光出射,从而减弱现有技术中由相邻透光区的交界所构成的十字暗纹,增加液晶显示面板的透光率。本发明提供的显示装置,其包括本发明的液晶显示面板,相比于现有的显示装置,其具有更高的透光率。
附图说明
图1为现有的液晶显示面板中万字暗纹的图形示意图;
图2a为现有的子像素单元所对应的液晶分子的偏转状态;
图2b为图2a中黑框范围内液晶分子的偏转状态的放大图;
图3为本发明的液晶显示面板的第一优选实施例中上电极的结构示意图;
图4为本发明的液晶显示面板的第二优选实施例中上电极的结构示意图;
图5为本发明的液晶显示面板的第三优选实施例中上电极的结构示意图;
图6为本发明的液晶显示面板的第四优选实施例中上电极的结构示意图;
图7为本发明的液晶显示面板的第五优选实施例中上电极的结构示意图。
本发明的最佳实施方式
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面对实施例中所需要使用的附图作简单的介绍。下面描述中的附图仅为本发明的部分实施例,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获取其他的附图。
现有的液晶显示面板包括多个子像素单元,每个子像素单元包括上电极、上配向膜、液晶层、下配向膜和下电极,子像素单元包括四个透光区,且相邻的透光区具有不同的配向方向,相邻透光区具有不同配向方向的原理如下:
上配向膜与下配向膜采用UV2A技术进行垂直配向,上配向膜的配向方向为交替排列的竖直向下方向和竖直向上方向,下配向膜的配向方向为交替排列的水平向左方向和水平向右方向,每个子像素单元包括上配向膜的一对竖直向下和竖直向上的配向方向,以及下配向膜的一对水平向左和水平向右的配向方向,因此当液晶显示面板处于亮态时,子像素单元将分成四个透光区,分别为左上方透光区、右上方透光区、左下方透光区和右下方透光区。例如,在左上方透光区中,由于上配向膜的配向方向呈竖直向下方向,下配向膜的配向方向呈水平向左方向,因此,处于左上方透光区中的液晶分子的配向方向将向左下方倾斜,且倾斜的方向与该透光区中上配向膜的配向方向呈45°角。其他透光区中液晶分子的配向方向同理可知,在此不做具体描述。
但在相邻的透光区的交界处,由于液晶分子即没有按照左上方透光区中液晶分子的左下方向偏转,也没有按照右上方透光区中液晶分子的左上方向偏转,其排列方向是介于两者之间,这就导致交界处的透光率低于这两个透光区的透光率,即在两个透光区的交界处出现了暗纹。
请参见图1,图1为现有的液晶显示面板中万字暗纹的图形示意图,型为“卐”的万字暗纹由两部分组成,一部分是处于中间部分的十字暗纹,另一部分是边缘的横竖暗纹,本说明书中的实施例是针对十字暗纹设计的方案,即针对相邻透光区的交界处所对应的暗纹,可以理解的是,十字暗纹包括与相邻透光区的水平交界所对应的水平暗纹和与相邻透光区的竖直交界所对应的竖直暗纹。
为了进一步了解暗纹的形成,本发明给出了子像素单元所对应的液晶分子的偏转状态图,如图2a所示。根据液晶分子的偏转状态,液晶将明显地分成四个区域,分别处在左上方透光区、右上方透光区、左下方透光区和右下方透光区,且在每个透光区中液晶分子的偏转状态基本相同,相邻透光区中的液晶分子的偏转状态不同,而在相邻两个透光区的交界处的液晶分子的偏转状态与两个透光区内的液晶分子偏转状态均不同,其中图中黑框圈出了左上方透光区和右上方透光区交界处的液晶分子。
为了清晰地看到该处的液晶分子的偏转状态,我们将其放大,如图2b所示,图2b为黑框范围内液晶分子的偏转状态的放大图,从图中可以看出,在交界处的液晶分子没有按照左上方透光区中液晶分子的左下方向偏转,也没有按照右上方透光区中液晶分子的左上方向偏转,其排列方向是介于两者之间,这就导致交界处的透光率低于这两个透光区的透光率,即在两个透光区的交界处出现了暗纹。
为了减弱暗纹,本发明将提供一种液晶显示面板,其包括多个子像素单元,每个子像素单元包括上电极、液晶层和下电极,其中,子像素单元包括四个透光区,且相邻的透光区具有不同的配向方向,相邻透光区的交界包括水平交界或竖直交界,所述液晶显示面板还包括:在相邻透光区的交界所对应的上电极和/或下电极的相应位置上设置狭缝,狭缝的开口方向平行于狭缝所在透光区中液晶分子的配向方向。
请参见图3,图3为本发明的液晶显示面板的第一优选实施例中上电极的结构示意图,图中箭头表示透光区域对应的液晶分子的配向方向。
在液晶显示面板的上电极30上,设置有狭缝31,狭缝31的开口方向平行于狭缝31所在透光区中液晶分子的配向方向。
为了减弱十字暗纹中的水平暗纹,优选地,狭缝31分布在相邻透光区的水平交界所对应的上电极的相应位置的两侧,且处于同一竖直线上的狭缝31相通连接。在这里可以很容易理解的是,相邻透光区的水平交界是指左上方透光区与左下方透光区之间的交界,以及右上方透光区与右下方透光区之间的交界。由于液晶分子在45°偏转时,液晶的透光率最大,因此,优选地,狭缝31与水平交界所对应的上电极的相应位置呈45°角。当液晶显示面板处于亮态时,即在上电极30和下电极上施加电压时,狭缝31处的电场将诱导该处的液晶分子发生相应的偏转,增加交界处的透光率,从而达到减弱现有技术中出现的水平暗纹的目的。
在本优选实施例中,处于相邻透光区交界处的狭缝呈周期性排列,如图3中,左上方透光区与左下方透光区之间的狭缝具有一定的周期性排列,右上方透光区与右下方透光区之间的狭缝具有一定的周期性排列,当然在其他的实施例中,也可以不呈周期性排列,在此不做具体限定,同时,狭缝的数量、开口宽度等参数可以根据暗纹的大小、宽度等来设置,在此不做具体限定。
本优选实施例中的狭缝设置在相邻透光区的水平交界处所对应的上电极的相应位置的两侧,在其他的实施例中,也可以仅在一侧进行设置狭缝,在此不做具体限定。
本优选实施例中的狭缝设置在上电极上,可以理解的是,狭缝也可以设置在下电极的相应位置上,或者同时在上电极和下电极的相应位置上设置狭缝,只要可以达到减弱现有技术中出现的水平暗纹的目的即可。
请参见图4,图4为本发明的液晶显示面板的第二优选实施例中上电极的结构示意图,图中箭头表示透光区域对应的液晶分子的配向方向。
在本优选实施例中,在液晶显示面板的上电极40上,设置有狭缝41,狭缝41的开口方向平行于狭缝41所在透光区液晶分子的配向方向。
为了减弱十字暗纹中的竖直暗纹,优选地,狭缝41分布在相邻透光区的竖直交界所对应的上电极的相应位置的两侧,且处于同一水平线上的狭缝41相通连接。由于液晶分子在45°偏转时,液晶的透光率最大,因此,优选地,狭缝41与竖直交界所对应的上电极的相应位置呈45°角。当液晶显示面板处于亮态时,即在上电极40和下电极上施加电压时,狭缝41处的电场将诱导该处的液晶分子发生相应的偏转,增加交界处的透光率,从而达到减弱现有技术中出现的竖直暗纹的目的。
在本优选实施例中,处于相邻透光区交界处的狭缝呈周期性排列,如图4中,左上方透光区与右上方透光区之间的狭缝具有一定的周期性排列,左下方透光区与右下方透光区之间的狭缝具有一定的周期性排列,当然在其他的实施例中,也可以不呈周期性排列,在此不做具体限定,同时,狭缝的数量、开口宽度等参数可以根据暗纹的大小、宽度等来设置,在此不做具体限定。
本优选实施例中的狭缝设置在相邻透光区的竖直交界处所对应的上电极的相应位置的两侧,在其他的实施例中,也可以仅在一侧进行设置狭缝,在此不做具体限定。
本优选实施例中的狭缝设置在上电极上,可以理解的是,狭缝也可以设置在下电极的相应位置上,或者同时在上电极和下电极的相应位置上设置狭缝,只要可以达到减弱现有技术中出现的竖直暗纹的目的即可。
请参见图5,图5为本发明的液晶显示面板的第三优选实施例中上电极的结构示意图,图中箭头表示透光区域对应的液晶分子的配向方向。
在本优选实施例中,在液晶显示面板的上电极50上,设置有狭缝51,狭缝51的开口方向平行于狭缝51所在透光区液晶分子的配向方向。
为了减弱十字暗纹中水平暗纹和竖直暗纹,优选地,狭缝51分布在水平交界和竖直交界所对应的上电极的相应位置的两侧,且处于同一水平线或同一竖直线上的狭缝51相通连接。由于液晶分子在45°偏转时,液晶的透光率最大,因此,优选地,狭缝51分别与竖直交界和水平交界所对应的上电极的相应位置呈45°角。当液晶显示面板处于亮态时,即在上电极50和下电极上施加电压时,狭缝51处的电场将诱导该处的液晶分子发生相应的偏转,增加交界处的透光率,从而达到减弱现有技术中出现的水平暗纹和竖直暗纹的目的。
在本优选实施例中,处于相邻透光区交界处的狭缝呈周期性排列,当然在其他的实施例中,也可以不呈周期性排列,在此不做具体限定,同时,狭缝的数量、开口宽度等参数可以根据暗纹的大小、宽度等来设置,在此不做具体限定。
本优选实施例中的狭缝设置在相邻透光区的水平交界和竖直交界处所对应的上电极的相应位置的两侧,在其他的实施例中,也可以仅在一侧进行设置狭缝,在此不做具体限定。
本优选实施例中的狭缝设置在上电极上,可以理解的是,狭缝也可以设置在下电极的相应位置上,或者同时在上电极和下电极的相应位置上设置狭缝,只要可以达到减弱现有技术中出现的水平暗纹和竖直暗纹的目的即可。
请参见图6,图6为本发明的液晶显示面板的第四优选实施例中上电极的结构示意图,图中箭头表示透光区域对应的液晶分子的配向方向。
在本优选实施例中,在液晶显示面板的上电极60上,设置有狭缝61,狭缝61的开口方向平行于狭缝61所在透光区液晶分子的配向方向。
水平交界与竖直交界相交处为交界中心,优选地,狭缝61设置在距交界中心预定范围内的水平交界和竖直交界所对应的上电极的相应位置上,且处于同一水平线或同一竖直线上的狭缝61相通连接。由于液晶分子在45°偏转时,液晶的透光率最大,因此,优选地,狭缝61分别与预定范围内的竖直交界和水平交界所对应的上电极的相应位置呈45°角。当液晶显示面板处于亮态时,即在上电极60和下电极上施加电压时,狭缝61处的电场将诱导该处的液晶分子发生相应的偏转,增加交界中心预定范围内交界处的透光率,从而减弱水平暗纹与竖直暗纹交叉处的暗纹。
在本优选实施例中,在交界中心预定范围内的水平交界和竖直交界所对应的上电极的相应位置上设置狭缝,主要减弱水平暗纹与竖直暗纹交叉处的暗纹,在此预定范围的具体值可以根据交叉处的暗纹的大小来定,在此不做具体限定。
本优选实施例中,在交界中心预定范围内的水平交界和竖直交界所对应的上电极的相应位置上设置狭缝,在其他的实施例中,也可以仅在水平交界或竖直交界所对应的上电极的相应位置上设置狭缝,在此不做具体限定。
在本优选实施例中,处于相邻透光区交界的狭缝呈周期性排列,当然在其他的实施例中,也可以不呈周期性排列,在此不做具体限定,同时,狭缝的数量、开口宽度等参数可以根据交叉处的暗纹大小、宽度等来设置,在此不做具体限定。
本优选实施例中的狭缝设置在上电极上,可以理解的是,狭缝也可以设置在下电极的相应位置上,或者同时在上电极和下电极的相应位置上设置狭缝,只要可以达到减弱交叉处的暗纹的目的即可。
请参见图7,图7为本发明的液晶显示面板的第五优选实施例中上电极的结构示意图,图中箭头表示透光区域对应的液晶分子的配向方向。
在本优选实施例中,在液晶显示面板的上电极70上,设置有狭缝71,狭缝71的开口方向平行于狭缝71所在透光区液晶分子的配向方向。
水平交界与竖直交界相交处为交界中心,优选地,狭缝71设置在距交界中心预定范围内的水平交界和竖直交界所对应的上电极的相应位置上,且距交界中心所对应的上电极70的相应位置相同距离的相邻狭缝71相通连接,从而形成如图7所示的口子形状。由于液晶分子在45°偏转时,液晶的透光率最大,因此,优选地,狭缝71分别与预定范围内的竖直交界和水平交界所对应的上电极的相应位置呈45°角。当液晶显示面板处于亮态时,即在上电极70和下电极上施加电压时,狭缝71处的电场将诱导该处的液晶分子发生相应的偏转,增加交界中心预定范围内交界处的透光率,从而减弱水平暗纹与竖直暗纹交叉处的暗纹。
在本优选实施例中,在交界中心预定范围内的水平交界和竖直交界所对应的上电极的相应位置上设置狭缝,主要减弱水平暗纹与竖直暗纹交叉处的暗纹,在此预定范围的具体值可以根据交叉处的暗纹的大小来定,在此不做具体限定。
在本优选实施例中,狭缝在垂直于狭缝的开口方向上呈周期性排列,当然在其他的实施例中,也可以不呈周期性排列,在此不做具体限定,同时,狭缝的数量、开口宽度等参数可以根据交叉处的暗纹的大小、宽度等来设置,在此不做具体限定。
本优选实施例中的狭缝设置在上电极上,可以理解的是,狭缝也可以设置在下电极的相应位置上,或者同时在上电极和下电极的相应位置上设置狭缝,只要可以达到减弱交叉处的暗纹的目的即可。
本发明还提供一种显示装置,其中,显示装置包括上述任何一种优选的液晶显示面板,本发明的显示装置由于采用了具有较高的透光率的液晶显示面板,因此本发明提供的显示装置相比于现有的显示装置,其具有更高的透光率,其具有较高的透光率的原理请参见前面对液晶显示面板的详述,在此不做赘述。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选的实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (20)

  1. 一种液晶显示面板,所述液晶显示面板包括多个子像素单元,每个子像素单元包括上电极、液晶层和下电极,其中子像素单元包括四个透光区,且相邻的透光区具有不同的配向方向,相邻透光区的交界包括水平交界或竖直交界,其中
    在相邻透光区的交界所对应的上电极和/或下电极的相应位置上设置周期性排列的狭缝,狭缝的开口方向平行于狭缝所在透光区中液晶分子的配向方向,且所述狭缝与水平交界或竖直交界所对应的上电极和/或下电极的相应位置呈45°角。
  2. 根据权利要求1所述的液晶显示面板,其中所述狭缝分别设置在相邻透光区的水平交界所对应的上电极和/或下电极的相应位置的两侧。
  3. 根据权利要求2所述的液晶显示面板,其中处于相邻透光区的水平交界所对应的上电极和/或下电极的相应位置的两侧的狭缝相通连接。
  4. 根据权利要求1所述的液晶显示面板,其中所述狭缝分别设置在相邻透光区的竖直交界所对应的上电极和/或下电极的相应位置的两侧。
  5. 根据权利要求4所述的液晶显示面板,其中处于相邻透光区的竖直交界所对应的上电极和/或下电极的相应位置的两侧的狭缝相通连接。
  6. 根据权利要求1所述的液晶显示面板,其中所述狭缝分别设置在相邻透光区的水平交界和竖直交界所对应的上电极和/或下电极的相应位置的两侧。
  7. 根据权利要求1所述的液晶显示面板,其中水平交界与竖直交界相交处为交界中心,所述狭缝设置在距所述交界中心预定范围内的水平交界和/或竖直交界所对应的上电极和/或下电极的相应位置上。
  8. 根据权利要求7所述的液晶显示面板,其中距所述交界中心所对应的上电极和/或下电极的相应位置相同距离的相邻狭缝相通连接。
  9. 一种液晶显示面板,所述液晶显示面板包括多个子像素单元,每个子像素单元包括上电极、液晶层和下电极,其中子像素单元包括四个透光区,且相邻的透光区具有不同的配向方向,相邻透光区的交界包括水平交界或竖直交界,其中
    在相邻透光区的交界所对应的上电极和/或下电极的相应位置上设置狭缝,狭缝的开口方向平行于狭缝所在透光区中液晶分子的配向方向。
  10. 根据权利要求9所述的液晶显示面板,其中所述狭缝分别设置在相邻透光区的水平交界所对应的上电极和/或下电极的相应位置的两侧。
  11. 根据权利要求10所述的液晶显示面板,其中处于相邻透光区的水平交界所对应的上电极和/或下电极的相应位置的两侧的狭缝相通连接。
  12. 根据权利要求9所述的液晶显示面板,其中所述狭缝分别设置在相邻透光区的竖直交界所对应的上电极和/或下电极的相应位置的两侧。
  13. 根据权利要求12所述的液晶显示面板,其中处于相邻透光区的竖直交界所对应的上电极和/或下电极的相应位置的两侧的狭缝相通连接。
  14. 根据权利要求9所述的液晶显示面板,其中所述狭缝分别设置在相邻透光区的水平交界和竖直交界所对应的上电极和/或下电极的相应位置的两侧。
  15. 根据权利要求14所述的液晶显示面板,其中处于相邻透光区的水平交界和竖直交界所对应的上电极和/或下电极的相应位置的两侧的狭缝相通连接。
  16. 根据权利要求9所述的液晶显示面板,其中水平交界与竖直交界相交处为交界中心,所述狭缝设置在距所述交界中心预定范围内的水平交界和/或竖直交界所对应的上电极和/或下电极的相应位置上。
  17. 根据权利要求16所述的液晶显示面板,其中距所述交界中心所对应的上电极和/或下电极的相应位置相同距离的相邻狭缝相通连接。
  18. 根据权利要求9所述的液晶显示面板,其中处于相邻透光区交界处的狭缝呈周期性排列。
  19. 根据权利要求9所述的液晶显示面板,其中所述狭缝与水平交界或竖直交界所对应的上电极和/或下电极的相应位置呈45°角。
  20. 一种显示装置,其中包括权利要求9所述的液晶显示面板。
PCT/CN2016/086221 2016-03-30 2016-06-17 一种液晶显示面板、显示装置 WO2017166440A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/118,103 US10274785B2 (en) 2016-03-30 2016-06-17 Liquid crystal display panel comprising pixel electrode slits at boundaries between photic areas of a sub-pixel unit having different alignment directions and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610190261.3A CN105700246A (zh) 2016-03-30 2016-03-30 一种液晶显示面板、显示装置
CN201610190261.3 2016-03-30

Publications (1)

Publication Number Publication Date
WO2017166440A1 true WO2017166440A1 (zh) 2017-10-05

Family

ID=56218024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/086221 WO2017166440A1 (zh) 2016-03-30 2016-06-17 一种液晶显示面板、显示装置

Country Status (2)

Country Link
CN (1) CN105700246A (zh)
WO (1) WO2017166440A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110446971B (zh) * 2017-01-27 2022-09-27 堺显示器制品株式会社 液晶显示装置
CN208621878U (zh) * 2018-09-03 2019-03-19 重庆惠科金渝光电科技有限公司 显示面板及显示装置
CN111176021A (zh) * 2019-12-11 2020-05-19 成都中电熊猫显示科技有限公司 垂直配向的液晶显示面板及显示装置
CN112083605B (zh) * 2020-08-26 2022-11-29 成都中电熊猫显示科技有限公司 液晶面板、显示装置及液晶面板的配向方法
CN115933259A (zh) * 2023-01-09 2023-04-07 京东方科技集团股份有限公司 显示面板和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070052847A (ko) * 2005-11-18 2007-05-23 삼성전자주식회사 표시패널
CN102402078A (zh) * 2010-09-13 2012-04-04 群康科技(深圳)有限公司 液晶显示结构
CN103323993A (zh) * 2012-03-19 2013-09-25 群康科技(深圳)有限公司 液晶显示装置及导电基板的制作方法
CN105093666A (zh) * 2015-09-23 2015-11-25 深圳市华星光电技术有限公司 像素结构
CN105116644A (zh) * 2015-10-09 2015-12-02 深圳市华星光电技术有限公司 一种显示装置及其阵列基板
CN105204244A (zh) * 2015-10-19 2015-12-30 深圳市华星光电技术有限公司 像素电极结构

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3957430B2 (ja) * 1998-09-18 2007-08-15 シャープ株式会社 液晶表示装置
CN102566157B (zh) * 2010-12-16 2014-10-08 京东方科技集团股份有限公司 阵列基板和液晶显示器
WO2012115032A1 (ja) * 2011-02-25 2012-08-30 シャープ株式会社 液晶表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070052847A (ko) * 2005-11-18 2007-05-23 삼성전자주식회사 표시패널
CN102402078A (zh) * 2010-09-13 2012-04-04 群康科技(深圳)有限公司 液晶显示结构
CN103323993A (zh) * 2012-03-19 2013-09-25 群康科技(深圳)有限公司 液晶显示装置及导电基板的制作方法
CN105093666A (zh) * 2015-09-23 2015-11-25 深圳市华星光电技术有限公司 像素结构
CN105116644A (zh) * 2015-10-09 2015-12-02 深圳市华星光电技术有限公司 一种显示装置及其阵列基板
CN105204244A (zh) * 2015-10-19 2015-12-30 深圳市华星光电技术有限公司 像素电极结构

Also Published As

Publication number Publication date
CN105700246A (zh) 2016-06-22

Similar Documents

Publication Publication Date Title
WO2017166440A1 (zh) 一种液晶显示面板、显示装置
WO2018133134A1 (zh) Coa基板及液晶显示面板
WO2017031757A1 (zh) 一种液晶显示面板及装置
WO2019090919A1 (zh) 一种像素单元、阵列基板及显示面板
CN104793421B (zh) 阵列基板、显示面板和显示装置
WO2014075290A1 (zh) 裸眼3d显示装置及其液晶透镜
CN110346987A (zh) 液晶显示面板和显示装置
WO2018103156A1 (zh) 一种液晶显示面板及液晶显示装置
WO2018176569A1 (zh) Coa阵列基板及液晶显示面板
WO2018218711A1 (zh) Tft基板和液晶显示面板
WO2017067011A1 (zh) 蓝相液晶显示器、蓝相液晶显示模组及其制作方法
CN109491130A (zh) 一种显示面板的制程方法、显示面板及显示装置
WO2022257511A1 (zh) 阵列基板、显示面板和显示装置
WO2020228239A1 (zh) 液晶显示面板及其制备方法、液晶显示装置
KR20160113379A (ko) 곡면 표시 장치
WO2016015273A1 (zh) 液晶显示面板及其制造方法、阵列基板
WO2016150054A1 (zh) 双视场显示面板和双视场显示装置
WO2013174019A1 (zh) 液晶显示面板及其应用的显示装置
WO2020062491A1 (zh) 彩色滤光片和显示面板
WO2019015001A1 (zh) 一种触控显示面板和一种显示装置
WO2013174011A1 (zh) 液晶显示面板及其应用的显示装置
WO2016095266A1 (zh) 一种透反式液晶显示器及其制造方法
WO2017124595A1 (zh) 显示面板制作方法及液晶显示器
WO2017177537A1 (zh) 一种液晶显示面板及液晶显示器
KR20200042047A (ko) 액정 표시 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15118103

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16896213

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16896213

Country of ref document: EP

Kind code of ref document: A1