WO2017164070A1 - 画像診断装置、画像診断装置の制御方法、コンピュータプログラム、コンピュータ読み取り可能な記憶媒体 - Google Patents
画像診断装置、画像診断装置の制御方法、コンピュータプログラム、コンピュータ読み取り可能な記憶媒体 Download PDFInfo
- Publication number
- WO2017164070A1 WO2017164070A1 PCT/JP2017/010705 JP2017010705W WO2017164070A1 WO 2017164070 A1 WO2017164070 A1 WO 2017164070A1 JP 2017010705 W JP2017010705 W JP 2017010705W WO 2017164070 A1 WO2017164070 A1 WO 2017164070A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pulse
- ultrasonic
- pulse signal
- signal
- reception unit
- Prior art date
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 39
- 238000002059 diagnostic imaging Methods 0.000 title claims description 21
- 238000000034 method Methods 0.000 title claims description 11
- 238000004590 computer program Methods 0.000 title claims description 7
- 230000003287 optical effect Effects 0.000 claims abstract description 77
- 230000005540 biological transmission Effects 0.000 claims abstract description 51
- 238000006243 chemical reaction Methods 0.000 claims description 83
- 238000005070 sampling Methods 0.000 claims description 12
- 230000002452 interceptive effect Effects 0.000 abstract 1
- 208000007479 Orofaciodigital syndrome type 1 Diseases 0.000 description 35
- 201000003455 orofaciodigital syndrome I Diseases 0.000 description 35
- 238000012545 processing Methods 0.000 description 20
- 238000002608 intravascular ultrasound Methods 0.000 description 11
- 238000001514 detection method Methods 0.000 description 10
- 230000006870 function Effects 0.000 description 10
- 210000004204 blood vessel Anatomy 0.000 description 7
- 244000208734 Pisonia aculeata Species 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 238000012014 optical coherence tomography Methods 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 230000001360 synchronised effect Effects 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 206010003210 Arteriosclerosis Diseases 0.000 description 1
- 238000012276 Endovascular treatment Methods 0.000 description 1
- 208000011775 arteriosclerosis disease Diseases 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002980 postoperative effect Effects 0.000 description 1
- 238000010882 preoperative diagnosis Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0033—Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
- A61B5/0035—Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for acquisition of images from more than one imaging mode, e.g. combining MRI and optical tomography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0062—Arrangements for scanning
- A61B5/0066—Optical coherence imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0082—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
- A61B5/0084—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/12—Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/54—Control of the diagnostic device
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
- H04N25/78—Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/13—Tomography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/52—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/5215—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
- A61B8/5238—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
- A61B8/5261—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image combining images from different diagnostic modalities, e.g. ultrasound and X-ray
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/001—Analogue/digital/analogue conversion
Definitions
- the present invention relates to diagnostic imaging technology.
- diagnostic imaging devices have been widely used for diagnosis of arteriosclerosis, preoperative diagnosis at the time of endovascular treatment with a high-function catheter such as a balloon catheter or a stent, or confirmation of postoperative results.
- the diagnostic imaging apparatus includes an intravascular ultrasound diagnostic apparatus (IVUS: Intra Vascular Ultra Sound), an optical coherence tomography diagnostic apparatus (OCT: Optical Coherence Tomography), and the like, each having different characteristics.
- IVUS Intra Vascular Ultra Sound
- OCT optical coherence tomography diagnostic apparatus
- Such an image diagnostic apparatus has an imaging core that rotatably accommodates an ultrasonic transmission / reception unit capable of transmitting / receiving ultrasonic waves and an optical transmission / reception unit capable of transmitting / receiving light at a distal end position in the catheter.
- an image diagnostic apparatus having both functions, a cross-sectional image (ultrasonic tomographic image) utilizing the characteristics of IVUS that can be measured up to a high depth region and a cross-sectional image (light) utilizing the characteristics of OCT that can be measured with high resolution. Both tomographic images) can be generated in a single scan.
- the diagnostic imaging apparatus combining the IVUS function and the OCT function has two completely different signal sources, IVUS and OCT.
- the trigger of the IVUS signal is generated by an encoder signal from a scanner motor in an MDU (Motor Drive Unit).
- MDU Motor Drive Unit
- the triggering of the IVUS signal is synchronized with the imaging core in the catheter.
- the signal source of the OFDI signal is OFDI
- the trigger of OFDI is based on wavelength sweeping, and it is difficult to synchronize with the scanner motor in the MDU.
- the present invention provides a technique for acquiring synchronized ultrasonic tomographic images and optical tomographic images.
- the diagnostic imaging apparatus of the present invention has the following configuration. That is, an ultrasonic tomographic image and an optical tomographic image of a diagnosis target part of a subject using a catheter that rotatably accommodates an imaging core including an ultrasonic transmission / reception unit that transmits / receives ultrasonic waves and an optical transmission / reception unit that transmits / receives light
- a diagnostic imaging apparatus for generating A motor drive unit for connecting the catheter and rotating the imaging core;
- a conversion means for inputting a pulse signal corresponding to the rotation of the imaging core, and converting the repetition frequency of the input pulse signal according to the number of radially arranged lines constituting the ultrasonic tomographic image; Based on the pulse signal whose frequency has been converted repeatedly by the conversion means, generates a drive signal of the ultrasonic transmission / reception unit for obtaining the number of ultrasonic tomographic images of the number of lines, and the generated drive signal is used as the motor drive unit.
- Means for transmitting to the ultrasonic transmission / reception unit via An effective pulse is determined according to the number of lines from the pulse signal whose repetition frequency has been converted by the conversion means, and the effective signal is derived from a pulse signal representing a period of a light source for interference with light from the optical transceiver.
- a technique for acquiring synchronized ultrasonic tomographic images and optical tomographic images can be provided.
- FIG. 3 is a block diagram illustrating a configuration example of a main body control unit 111.
- FIG. 1 is a diagram showing an example of the appearance of the diagnostic imaging apparatus 100 according to the present embodiment.
- the diagnostic imaging apparatus 100 includes a probe 101, a pullback unit 102, and an operation control device 103, and the pullback unit 102 and the operation control device 103 are connected to a signal line or optical signal via a connector 105. They are connected by a cable 104 containing a fiber.
- the probe 101 is directly inserted into a blood vessel, and is movable in the longitudinal direction and accommodates a rotatable imaging core.
- an ultrasonic transmission / reception unit that transmits an ultrasonic wave based on a pulse signal and receives a reflected wave from inside the blood vessel, and a transmitted light (measurement light) are continuously transmitted into the blood vessel.
- an optical transmission / reception unit that continuously receives reflected light from inside the blood vessel is provided.
- the state inside the blood vessel is measured by using the imaging core.
- the pull-back unit 102 is detachably attached to the probe 101 and drives an internal motor to define the axial movement and the rotational movement in the blood vessel of the imaging core in the catheter inserted in the probe 101. is doing.
- the pullback unit 102 functions as a signal relay device between the ultrasonic transmission / reception unit and the optical transmission / reception unit in the imaging core and the operation control device 103. That is, the pullback unit 102 transmits the ultrasonic drive signal from the operation control device 103 to the ultrasonic transmission / reception unit, and transmits an electric signal indicating the reflected wave from the living tissue detected by the ultrasonic transmission / reception unit to the operation control device 103. It has a function to communicate.
- the pullback unit 102 has a function of transmitting measurement light from the operation control device 103 to the optical transmission / reception unit and transmitting reflected light from the living tissue detected by the optical transmission / reception unit to the operation control device 103.
- the operation control device 103 has a function for inputting various set values and a function for processing ultrasonic data and optical interference data obtained by the measurement and displaying various blood vessel images when performing the measurement.
- 111 is a main body control unit.
- the main body control unit 111 generates line data from the rotation center position in the radial direction based on the ultrasonic wave signal obtained by the measurement. Then, an ultrasonic tomographic image is generated through interpolation processing of each line data. Furthermore, the main body control unit 111 generates interference light data by causing interference between the reflected light from the imaging core and the reference light obtained by separating the light from the light source, and the interference light data is Line data is generated by fast Fourier transform (FFT). Then, an optical tomographic image is generated through interpolation processing.
- FFT fast Fourier transform
- Reference numeral 111-1 denotes a printer and a DVD recorder. By printing the processing result in the main body control unit 111 or writing it on a DVD, data (ultrasonic tomographic image and optical tomographic image, imaging setting and imaging of each image) are obtained. Environment, information for specifying the imaging target, etc.) are output to the outside. In addition, an interface (not shown) such as a USB is also provided, from which data is output to an external storage medium.
- Reference numeral 112 denotes an operation panel, and the user inputs various setting values and instructions via the operation panel 112.
- Reference numeral 113 denotes an LCD monitor as a display device, which displays various cross-sectional images generated by the main body control unit 111.
- Reference numeral 114 denotes a mouse as a pointing device (coordinate input device).
- FIG. 2 shows a main configuration for performing the following description, and a configuration that is not particularly mentioned in the following description is not shown in FIG. Omitted.
- the control unit 251 executes processing using a computer program and data stored in a memory (not shown), thereby performing operation control of various functional units including each unit described below. Operation control of the entire unit 111 is performed.
- the MDU 201 is for connecting a catheter and rotating the probe 101.
- the MDU operates at 1800 rpm and outputs a 1024 pulse / rev pulse signal (a pulse signal of 1024 pulses per rotation of the imaging core) as an encoder pulse signal.
- the encoder pulse conversion board 252 converts the encoder pulse signal from the MDU 201 to a repetition frequency set in advance of 512 pulse / rev (15.36 kHz), 1024 pulse / rev (30.72 kHz), or 2048 pulse / rev (61.44 kHz).
- the pulse signal IVUS-TRG is converted, and the converted pulse signal IVUS-TRG is output to a TX / RX board (IVUS ⁇ ⁇ ⁇ ⁇ (Transmission receiving board)) 253 and CPLD (Complex ProgrammableCPLogic (Device) 254.
- the TX / RX board 253 Each time the TX / RX board 253 detects a pulse from the encoder pulse conversion board 252, the TX / RX board 253 sends a drive signal for generating an ultrasonic wave to the ultrasonic transmission / reception unit via the MDU 201 to the ultrasonic transmission / reception unit. . On the other hand, the TX / RX board 253 sends an ultrasonic reflected wave signal received from the ultrasonic transmission / reception unit via the MDU 201 to the A / D conversion unit 255.
- the TX / RX board 253 is in the ultrasonic image of 512 line / frame (one frame is 512 lines).
- the signal of each line is output, and when 1024 pulse / rev (30.72 kHz) is set as the conversion frequency in the encoder pulse conversion board 252, the signal of each line in the 1024 line / frame ultrasonic image
- 2048 pulse / rev 61.44 kHz
- each of the 2048 line / frame ultrasonic images It will be output in the signal. That is, the encoder pulse conversion board 252 has acquired the number of lines arranged in a radial pattern in the ultrasonic tomographic image to be generated.
- the optical unit (OFDI) 256 is a pulse signal OFDI-TRG (a light source for wavelength swept light) having the same frequency as that of a light source for wavelength swept light supplied to the imaging core (light source for generating light whose wavelength changes at a predetermined period). ) Is output to the CPLD 254. Further, the reflected wave from the optical transmission / reception unit is guided to the optical unit 256 via the MDU 201, and is mixed with the light from the light source of the wavelength swept light by the optical unit 256, so that the reflected wave is not reflected in the optical unit 256 as interference light. Light is received by the illustrated photodiode.
- the interference light received by the photodiode in this way is photoelectrically converted, amplified by an amplifier (not shown) in the optical unit 256, and then input to a demodulator (not shown) in the optical unit 256.
- This demodulator performs demodulation processing for extracting only the signal portion of the interfered light, and its output is input to the A / D converter 257 as an interference light signal.
- the optical unit 256 outputs a pulse signal of 82 kHz to the CPLD 254, and is set to generate a 512 line / frame optical tomographic image.
- the CPLD 254 outputs the pulse signal from the encoder pulse conversion board 252 to the A / D conversion unit 255 and the pulse signal from the optical unit 256 to the A / D conversion unit 257.
- the CPLD 254 outputs the pulse signal from the encoder pulse conversion board 252 as it is to the A / D converter 255, but does not output all the pulses as the pulse signal from the optical unit 256.
- the pulse input from the optical unit 256 is output to the A / D conversion unit 257 immediately after the detection.
- the A / D conversion unit 255 performs A / D conversion on the “signal of the ultrasonic reflected wave corresponding to the pulse received from the CPLD 254” received from the ultrasonic transmission / reception unit by the TX / RX board 253 via the MDU 201, and The A / D converted signal is sent to the signal processing unit 258.
- the A / D conversion unit 257 does not perform A / D conversion unless receiving a pulse from the CPLD 254.
- the A / D conversion unit 257 receives the interference light signal received from the optical unit 256 as an interference light signal corresponding to the pulse.
- a / D conversion is performed, and the A / D converted signal is sent to the signal processing unit 258. That is, the pulse signal supplied from the CPLD 254 to the A / D conversion unit 257 is a pulse signal that represents the sampling timing of the optical interference signal.
- the signal processing unit 258 generates an ultrasonic tomographic image based on the signal from the A / D conversion unit 255 and generates an optical tomographic image based on the signal from the A / D conversion unit 257. Then, the signal processing unit 258 stores the generated tomographic images in the memory 259.
- the encoder pulse conversion board 252 converts the 1024 pulse / rev encoder pulse signal from the MDU 201 into a 512 pulse / rev pulse signal IVUS-TRG (repetition frequency 15.36 kHz),
- the pulse signal IVUS-TRG is sent to the TX / RX board 253 and the CPLD 254.
- an ultrasonic reflected wave signal corresponding to each line of the 512 line / frame image is output from the TX / RX board 253.
- the CPLD 254 receives a 82 kHz pulse signal OFDI-TRG from the optical unit 256.
- pulse signals IVUS-TRG and OFDI-TRG input to CPLD 254 is shown in FIG. In FIG. 3, it is assumed that a time axis is provided from left to right.
- CPLD 254 outputs pulse signal IVUS-TRG as it is to A / D converter 255.
- the CPLD 254 detects the pulse of the pulse signal IVUS-TRG, the pulse detected from the pulse signal OFDI-TRG is output to the A / D converter 257 immediately after the detection.
- FIG. 3 An example of pulse signals IVUS-TRG and OFDI-TRG input to CPLD 254 is shown in FIG. In FIG. 3, it is assumed that a time axis is provided from left to right.
- the pulse 351 immediately after the pulse 301 in the pulse signal OFDI-TRG is output to the A / D converter 257.
- the pulse 302 is detected in the pulse signal IVUS-TRG
- the pulse 352 immediately after the pulse 302 in the pulse signal OFDI-TRG is output to the A / D converter 257.
- the pulse 303 is detected in the pulse signal IVUS-TRG
- the pulse 353 immediately after the pulse 303 in the pulse signal OFDI-TRG is output to the A / D conversion unit 257.
- a pulse signal indicating a pulse train output from the CPLD 254 to the A / D converter 257 is indicated as NEW-OFDI-TRG.
- the pulse signal NEW-OFDI-TRG includes the pulses 351 to 353 described above.
- the encoder pulse conversion board 252 uses the 1024 pulse / rev encoder pulse signal from the MDU 201 as it is (without conversion) as a pulse signal IVUS-TRG (repetition frequency 30.72 kHz).
- the data is transmitted to the TX / RX board 253 and the CPLD 254.
- an ultrasonic reflected wave signal corresponding to each line of the 1024 line / frame image is output from the TX / RX board 253.
- the CPLD 254 receives a 82 kHz pulse signal OFDI-TRG from the optical unit 256.
- pulse signals IVUS-TRG and OFDI-TRG input to CPLD 254 is shown in FIG. In FIG. 4, it is assumed that a time axis is provided from left to right.
- CPLD 254 outputs pulse signal IVUS-TRG as it is to A / D converter 255.
- the CPLD 254 when detecting a valid pulse in the pulse signal IVUS-TRG, the CPLD 254 outputs a pulse detected from the pulse signal OFDI-TRG to the A / D converter 257 immediately after the detection. More specifically, as shown in FIG.
- the CPLD 254 includes an odd-numbered line (even-numbered line) in the pulse signal IVUS-TRG such as the first line (first from the left), the third line, the fifth line,.
- the CPLD 254 uses ⁇ 1+ (1024 (the number of lines set for an ultrasonic image of one frame) / 512 (the number of lines set for an optical tomographic image of one frame)) in the pulse signal IVUS-TRG for one image.
- Xn ⁇ (n is an integer greater than or equal to 0) The effective pulse is detected, and when the effective pulse is detected, the pulse immediately after the detection is output to the A / D converter 257 in the pulse signal OFDI-TRG.
- ⁇ 1+ 512 (number of lines set for one frame of ultrasonic image) / 512 (one frame of optical tomography) in the pulse signal IVUS-TRG for one image.
- the number of lines set in the image) ⁇ n ⁇ (n is an integer greater than or equal to 0) is the effective pulse, and all pulses are effective pulses in the pulse signal IVUS-TRG for one image.
- a pulse signal indicating a pulse train output from the CPLD 254 to the A / D converter 257 is indicated as NEW-OFDI-TRG.
- the encoder pulse conversion board 252 converts the 1024 pulse / rev encoder pulse signal from the MDU 201 into a 2048 pulse / rev pulse signal IVUS-TRG (repetition frequency 61.44 kHz),
- the pulse signal IVUS-TRG is sent to the TX / RX board 253 and the CPLD 254.
- an ultrasonic reflected wave signal corresponding to each line of the 2048 line / frame image is output from the TX / RX board 253.
- the CPLD 254 receives a 82 kHz pulse signal OFDI-TRG from the optical unit 256.
- FIG. 5 An example of the pulse signals IVUS-TRG and OFDI-TRG input to the CPLD 254 is shown in FIG. In FIG. 5, it is assumed that a time axis is provided from left to right.
- CPLD 254 outputs pulse signal IVUS-TRG as it is to A / D converter 255.
- the CPLD 254 when detecting a valid pulse in the pulse signal IVUS-TRG, the CPLD 254 outputs a pulse detected from the pulse signal OFDI-TRG to the A / D converter 257 immediately after the detection. More specifically, as shown in FIG.
- the CPLD 254 includes the first line (first from the left), the fifth line, the ninth line,...
- the pulse signal IVUS-TRG for one image such as ⁇ 1+ (2048 (number of set lines of ultrasonic image of one frame) / 512 (number of set lines of optical tomographic image of one frame)) ⁇ n ⁇ (n is an integer of 0 or more) th pulse ( ⁇ 2+ (2048 (1
- the number of lines set in the ultrasonic image of the frame) / 512 (the number of lines set in the optical tomographic image of one frame)) ⁇ n ⁇ th pulse) may be an effective pulse, and when the effective pulse is detected, the pulse signal OFDI ⁇
- the TRG outputs a pulse immediately after the detection to the A / D converter 257.
- a pulse signal indicating a pulse train output from the CPLD 254 to the A / D converter 257 is indicated as NEW-OFDI-TRG.
- step S601 the MDU 201 outputs a 1024 pulse / rev pulse signal as an encoder pulse signal to the encoder pulse conversion board 252.
- step S602 the encoder pulse conversion board 252 converts the encoder pulse signal from the MDU 201 into a pulse signal IVUS-TRG having a preset repetition frequency, and converts the converted pulse signal IVUS-TRG into the TX / RX board 253 and Output to the CPLD 254.
- step S603 every time the TX / RX board 253 detects a pulse from the encoder pulse conversion board 252, a drive signal for causing the ultrasonic transmission / reception unit to generate ultrasonic waves is sent to the ultrasonic transmission / reception unit via the MDU 201. Send to
- step S604 the TX / RX board 253 transmits the ultrasonic wave signal received from the ultrasonic transmission / reception unit via the MDU 201 to the A / D conversion unit 255.
- step S605 the optical unit 256 outputs to the CPLD 254 a pulse signal OFDI-TRG having the same frequency as the light source of the wavelength swept light supplied to the imaging core.
- step S606 the CPLD 254 outputs the pulse signal IVUS-TRG from the encoder pulse conversion board 252 to the A / D conversion unit 255.
- step S ⁇ b> 607 when the optical unit 256 detects a valid pulse among the pulses from the encoder pulse conversion board 252, the optical unit 256 outputs the pulse input from the optical unit 256 to the A / D conversion unit 257 immediately after the detection. .
- step S ⁇ b> 608 the A / D conversion unit 255 converts the “A signal of the ultrasonic reflected wave corresponding to the pulse received from the CPLD 254” received by the TX / RX board 253 from the ultrasonic transmission / reception unit via the MDU 201.
- the converted signal is sent to the signal processing unit 258.
- step S609 the A / D conversion unit 257 performs A / D conversion on the “interference light signal corresponding to the pulse received from the CPLD 254” from the optical unit 256, and sends the A / D converted signal to the signal processing unit 258. Send to
- step S ⁇ b> 610 the signal processing unit 258 generates line data for each line of the ultrasonic tomographic image based on the signal from the A / D conversion unit 255, and performs optical processing based on the signal from the A / D conversion unit 257. Line data for each line of the tomographic image is generated.
- the signal processing unit 258 stores the line data of each line generated for each of the ultrasonic tomographic image and the optical tomographic image in the memory 259.
- steps S601 to S610 are shown in series, but this is not intended to mean that the steps S601 to S610 are performed in series in this order.
- the processing of steps S601 to S604 and S606 and the processing of step S605 may be executed in parallel, or the processing of step S608 and the processing of step S609 are executed in parallel. Also good.
- the CPLD 254 when the CPLD 254 detects a valid pulse of the pulse signal IVUS-TRG, the pulse detected from the pulse signal OFDI-TRG is output to the A / D converter 257 immediately after the detection.
- This is a configuration premised on outputting a pulse signal to the A / D conversion unit 255 and the A / D conversion unit 257 in real time, and the CPLD 254 can be used as long as the restriction of real time can be removed.
- the signal OFDI-TRG is buffered in a memory (not shown), and in the pulse signal OFDI-TRG, a pulse having a timing closest to the effective pulse detection timing in the pulse signal IVUS-TRG is output to the A / D converter 257. You may do it.
- Whether to output pulses from the CPLD 254 to the A / D converters 255 and 257 can be switched according to an instruction from the user (user instruction). For example, when the user inputs “instruction to start imaging of ultrasonic tomographic image and optical tomographic image” as a user instruction using the mouse 114 while referring to the setting screen displayed on the display device 113, the CPLD 254 In response to the instruction, pulse output to the A / D converters 255 and 257 is started.
- the CPLD 254 does not immediately start pulse output to the A / D converters 255 and 257 when a user instruction is input, but instead of the pulse signal IVUS-TRG from the encoder pulse conversion board 252.
- the pulse output to the A / D converters 255 and 257 is not performed until both pulse signals of the pulse signal OFDI-TRG from the optical unit 256 are in the low state, and when both pulse signals are in the low state, / D conversion units 255 and 257 start pulse output. Thereafter, pulse output is continued in the same manner as in the above-described embodiment until receiving an “instruction to end imaging of ultrasonic tomographic image and optical tomographic image” from the user.
- the sections of the pulses 301, 302, and 303 are “high state” and the sections other than the pulses 301, 302, and 303 Can be defined as “Low state”.
- the pulse output to the A / D converters 255 and 257 is started immediately after the user instruction is input, for example, when the user instruction is input, the pulse signal IVUS-TRG being input to the CPLD 254 is High. Even in this state, the pulse signal IVUS-TRG is output as it is to the A / D converter 255 at the subsequent stage, so that it is not intended for the A / D converter 255 and the A / D converter 257 at the subsequent stage. The output of the pulse signal that does not occur. However, according to the configuration of the present embodiment, generation of such an unintended pulse signal can be suppressed.
- the display device 113 determines whether the encoder pulse conversion board 252 converts 512 pulse / rev (15.36 kHz), 1024 pulse / rev (30.72 kHz), or 2048 pulse / rev (61.44 kHz) into a pulse signal.
- the setting may be performed using the mouse 114 while referring to the setting screen displayed on the screen.
- the setting method of the repetition frequency to be converted is not limited to a specific setting method.
- a pulse train signal selected based on the effective pulse from the pulse signal representing the period of the above is generated as a pulse signal representing the sampling timing of the optical interference signal for generating the optical tomographic image.
- the “signal sampling” used in the above embodiment may be interpreted as sampling a necessary signal among the input signals, or the input signal is stored as an acquired signal, It may be interpreted that a necessary signal is sampled from the stored signal.
- the “pulse signal corresponding to the rotation of the imaging core” has been described as being generated by the MDU 201 in the case of the above embodiment, but is not limited thereto.
- the catheter itself may actively emit.
- ⁇ 1+ (number of set lines of ultrasonic image of one frame / number of set lines of optical tomographic image of one frame)
- ⁇ n ⁇ (n is 0 or more) in the pulse signal whose repetition frequency is converted.
- the integer pulse is the effective pulse.
- the ratio between the number of set lines of the ultrasonic image of one frame and the number of set lines of the optical tomographic image of one frame is not an integer. For example, when this ratio is 3/2, two pulses out of three consecutive pulses in the pulse signal whose repetition frequency is converted may be effective pulses.
- an integer part is adopted to select an effective pulse, and if the number of effective pulse selection times “the fractional part of the ratio” exceeds 1, then one more adjacent pulse is exceptionally regarded as an effective pulse. It may be selected (after this exceptional effective pulse selection is performed, the number of effective pulse selections is initialized to 0).
- various methods such as generating a new line by complementing the acquired line can be considered.
- control unit 251 controls the operation of each unit by executing each process using a computer program or data, and the function is realized by the operation of each unit. Therefore, of course, the computer program falls within the scope of the present invention.
- the computer program is stored in a computer-readable storage medium such as a CD-ROM or DVD-ROM, and set in a reading device (such as a CD-ROM drive) of the computer and copied to the system. It is obvious that such a computer-readable storage medium falls within the scope of the present invention because it can be executed by installing.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Radiology & Medical Imaging (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Endoscopes (AREA)
- Theoretical Computer Science (AREA)
Abstract
Description
前記カテーテルを接続し、前記イメージングコアを回転させるためのモータードライブユニットと、
前記イメージングコアの回転に応じたパルス信号を入力し、該入力したパルス信号の繰り返し周波数を、前記超音波断層画像を構成する放射線状に並ぶラインの数に応じて変換する変換手段と、
前記変換手段によって繰り返し周波数が変換されたパルス信号に基づいて、前記ラインの数の超音波断層画像を得るための前記超音波送受信部の駆動信号を生成し、該生成した駆動信号を前記モータードライブユニットを介して前記超音波送受信部に対して送出する手段と、
前記変換手段によって繰り返し周波数が変換されたパルス信号から前記ラインの数に応じて有効パルスを決定し、前記光送受信部からの光と干渉させるための光の光源の周期を表すパルス信号から前記有効パルスに基づいて選択したパルス列の信号を、前記光断層画像を生成するための光干渉信号のサンプリングタイミングを表すパルス信号として生成する生成手段と
を備えることを特徴とする。
以下添付図面に従って本発明に係る実施形態を詳細に説明する。なお、本明細書での画像診断装置は、IVUS機能とOCT機能を有するものとして説明する。
変換周波数として512pulse/revが設定された場合、エンコーダパルス変換ボード252は、MDU201からの1024pulse/revのエンコーダパルス信号を512pulse/revのパルス信号IVUS-TRG(繰り返し周波数15.36kHz)に変換し、該パルス信号IVUS-TRGをTX/RXボード253及びCPLD254に対して送出する。これによりTX/RXボード253からは、512line/frameの画像の各ラインに対応する、超音波の反射波の信号が出力されることになる。一方、CPLD254は、オプティカル部256から82kHzのパルス信号OFDI-TRGを受ける。
変換周波数として1024pulse/revが設定された場合、エンコーダパルス変換ボード252は、MDU201からの1024pulse/revのエンコーダパルス信号をそのまま(変換せずに)パルス信号IVUS-TRG(繰り返し周波数30.72kHz)としてTX/RXボード253及びCPLD254に対して送出する。これによりTX/RXボード253からは、1024line/frameの画像の各ラインに対応する、超音波の反射波の信号が出力されることになる。一方、CPLD254は、オプティカル部256から82kHzのパルス信号OFDI-TRGを受ける。
変換周波数として2048pulse/revが設定された場合、エンコーダパルス変換ボード252は、MDU201からの1024pulse/revのエンコーダパルス信号を2048pulse/revのパルス信号IVUS-TRG(繰り返し周波数61.44kHz)に変換し、該パルス信号IVUS-TRGをTX/RXボード253及びCPLD254に対して送出する。これによりTX/RXボード253からは、2048line/frameの画像の各ラインに対応する、超音波の反射波の信号が出力されることになる。一方、CPLD254は、オプティカル部256から82kHzのパルス信号OFDI-TRGを受ける。
第1の実施形態では、CPLD254は、パルス信号IVUS-TRGの有効パルスを検出すると、該検出の直後にパルス信号OFDI-TRGから検出したパルスをA/D変換部257に出力していた。これは、パルス信号をリアルタイムでA/D変換部255及びA/D変換部257に出力することを前提としている構成であって、リアルタイムという制約を外しても良いのであれば、CPLD254は、パルス信号OFDI-TRGを不図示のメモリにバッファリングしておき、パルス信号OFDI-TRGにおいて、パルス信号IVUS-TRGにおける有効パルスの検出タイミングに最も近いタイミングのパルスをA/D変換部257に出力するようにしても良い。
CPLD254からA/D変換部255及び257へのパルス出力の可否、すなわち、超音波断層画像及び光断層画像の撮像開始の可否は、ユーザからの指示(ユーザ指示)に応じて切り替え可能である。例えば、ユーザが表示装置113に表示されている設定画面を参照しながらマウス114を用いて「超音波断層画像及び光断層画像の撮像開始指示」をユーザ指示として入力した場合、CPLD254は、該ユーザ指示に応じてA/D変換部255及び257へのパルス出力を開始する。ここで本実施形態では、CPLD254は、ユーザ指示が入力されると即座にA/D変換部255及び257へのパルス出力を開始するのではなく、エンコーダパルス変換ボード252からのパルス信号IVUS-TRG及びオプティカル部256からのパルス信号OFDI-TRGの両パルス信号が共にLow状態になるまではA/D変換部255及び257へのパルス出力は行わず、両パルス信号が共にLow状態になると、A/D変換部255及び257へのパルス出力を開始する。以降はユーザから「超音波断層画像及び光断層画像の撮像終了指示」を受けるまで、上記の実施形態と同様にパルス出力を継続する。ここで、パルス信号のHigh状態、Low状態については、例えば、図3のパルス信号IVUS-TRGの場合、パルス301,302,303の区間は「High状態」、パルス301,302,303以外の区間は「Low状態」と規定できる。
エンコーダパルス変換ボード252において512pulse/rev(15.36kHz)、1024pulse/rev(30.72kHz)、2048pulse/rev(61.44kHz)の何れのパルス信号に変換するのかについては、例えばユーザが表示装置113に表示されている設定画面を参照しながらマウス114を用いて設定しても良い。もちろん、変換する繰り返し周波数の設定方法については特定の設定方法に限るものではない。
第1~4の実施形態では、エンコーダパルス変換ボード252によって繰り返し周波数が変換されたパルス信号から、変換周波数に応じて有効パルスを決定し、光送受信部からの光と干渉させるための光の光源の周期を表すパルス信号から有効パルスに基づいて選択したパルス列の信号を、光断層画像を生成するための光干渉信号のサンプリングタイミングを表すパルス信号として生成していた。これは、(エンコーダパルス変換ボード252における変換周波数)<(イメージングコアに供給する波長掃引光の光源の繰り返し周波数)であることを前提しており、もし、(エンコーダパルス変換ボード252における変換周波数)>(イメージングコアに供給する波長掃引光の光源の繰り返し周波数)であれば、イメージングコアに供給する波長掃引光の光源の周期を表すパルス信号から変換周波数に応じて有効パルスを決定し、エンコーダパルス変換ボード252によって繰り返し周波数が変換されたパルス信号から有効パルスに基づいて選択したパルス列の信号を、超音波送受信部からの超音波の反射波の信号のサンプリングタイミングを表すパルス信号として生成するようにしても良い。
Claims (8)
- 超音波の送受信を行う超音波送受信部及び光の送受信を行う光送受信部を含むイメージングコアを回転自在に収容したカテーテルを用いて被検体の診断対象部位の超音波断層画像及び光断層画像を生成する画像診断装置であって、
前記カテーテルを接続し、前記イメージングコアを回転させるためのモータードライブユニットと、
前記イメージングコアの回転に応じたパルス信号を入力し、該入力したパルス信号の繰り返し周波数を、前記超音波断層画像を構成する放射線状に並ぶラインの数に応じて変換する変換手段と、
前記変換手段によって繰り返し周波数が変換されたパルス信号に基づいて、前記ラインの数の超音波断層画像を得るための前記超音波送受信部の駆動信号を生成し、該生成した駆動信号を前記モータードライブユニットを介して前記超音波送受信部に対して送出する手段と、
前記変換手段によって繰り返し周波数が変換されたパルス信号から前記ラインの数に応じて有効パルスを決定し、前記光送受信部からの光と干渉させるための光の光源の周期を表すパルス信号から前記有効パルスに基づいて選択したパルス列の信号を、前記光断層画像を生成するための光干渉信号のサンプリングタイミングを表すパルス信号として生成する生成手段と
を備えることを特徴とする画像診断装置。 - 前記生成手段は、前記変換手段によって繰り返し周波数が変換されたパルス信号におけるパルスのうち、1フレームの超音波画像の設定ライン数と1フレームの光断層画像の設定ライン数との比率に応じたパルスを有効パルスとし、前記光送受信部からの光と干渉させるための光の光源の周期を表すパルス信号において該有効パルスの直後のパルスを選択し、該選択したパルス列の信号を、前記超音波送受信部からの超音波の反射波信号のサンプリングタイミングを表すパルス信号として生成することを特徴とする請求項1に記載の画像診断装置。
- 前記生成手段は、前記変換手段によって繰り返し周波数が変換されたパルス信号におけるパルスのうち、1フレームの超音波画像の設定ライン数と1フレームの光断層画像の設定ライン数との比率に応じたパルスを有効パルスとし、前記光送受信部からの光と干渉させるための光の光源の周期を表すパルス信号において該有効パルスの最近タイミングにおけるパルスを選択し、該選択したパルス列の信号を、前記超音波送受信部からの超音波の反射波信号のサンプリングタイミングを表すパルス信号として生成することを特徴とする請求項1に記載の画像診断装置。
- 超音波の送受信を行う超音波送受信部及び光の送受信を行う光送受信部を含むイメージングコアを回転自在に収容したカテーテルを用いて被検体の診断対象部位の超音波断層画像及び光断層画像を生成する画像診断装置であって、
前記カテーテルを接続し、前記イメージングコアを回転させるためのモータードライブユニットと、
前記イメージングコアの回転に応じたパルス信号を入力し、該入力したパルス信号の繰り返し周波数を、前記超音波断層画像を構成する放射線状に並ぶラインの数に応じて変換する変換手段と、
前記変換手段によって繰り返し周波数が変換されたパルス信号に基づいて、前記ラインの数の超音波断層画像を得るための前記超音波送受信部の駆動信号を生成し、該生成した駆動信号を前記モータードライブユニットを介して前記超音波送受信部に対して送出する手段と、
前記光送受信部からの光と干渉させるための光の光源の周期を表すパルス信号から前記ラインの数に応じて有効パルスを決定し、前記変換手段によって繰り返し周波数が変換されたパルス信号から前記有効パルスに基づいて選択したパルス列の信号を、前記超音波送受信部からの超音波の反射波の信号のサンプリングタイミングを表すパルス信号として生成する生成手段と
を備えることを特徴とする画像診断装置。 - 超音波の送受信を行う超音波送受信部及び光の送受信を行う光送受信部を含むイメージングコアを回転自在に収容したカテーテルを用いて被検体の診断対象部位の超音波断層画像及び光断層画像を生成する画像診断装置の制御方法であって、
前記カテーテルを接続し、前記イメージングコアを回転させるためのモータードライブユニットと、
前記イメージングコアの回転に応じたパルス信号を入力し、該入力したパルス信号の繰り返し周波数を、前記超音波断層画像を構成する放射線状に並ぶラインの数に応じて変換する変換工程と、
前記変換工程で繰り返し周波数が変換されたパルス信号に基づいて、前記ラインの数の超音波断層画像を得るための前記超音波送受信部の駆動信号を生成し、該生成した駆動信号を前記モータードライブユニットを介して前記超音波送受信部に対して送出する工程と、
前記変換工程で繰り返し周波数が変換されたパルス信号から前記ラインの数に応じて有効パルスを決定し、前記光送受信部からの光と干渉させるための光の光源の周期を表すパルス信号から前記有効パルスに基づいて選択したパルス列の信号を、前記光断層画像を生成するための光干渉信号のサンプリングタイミングを表すパルス信号として生成する生成工程と
を備えることを特徴とする画像診断装置の制御方法。 - 超音波の送受信を行う超音波送受信部及び光の送受信を行う光送受信部を含むイメージングコアを回転自在に収容したカテーテルを用いて被検体の診断対象部位の超音波断層画像及び光断層画像を生成する画像診断装置の制御方法であって、
前記カテーテルを接続し、前記イメージングコアを回転させるためのモータードライブユニットと、
前記イメージングコアの回転に応じたパルス信号を入力し、該入力したパルス信号の繰り返し周波数を、前記超音波断層画像を構成する放射線状に並ぶラインの数に応じて変換する変換工程と、
前記変換工程で繰り返し周波数が変換されたパルス信号に基づいて、前記ラインの数の超音波断層画像を得るための前記超音波送受信部の駆動信号を生成し、該生成した駆動信号を前記モータードライブユニットを介して前記超音波送受信部に対して送出する工程と、
前記光送受信部からの光と干渉させるための光の光源の周期を表すパルス信号から前記ラインの数に応じて有効パルスを決定し、前記変換工程で繰り返し周波数が変換されたパルス信号から前記有効パルスに基づいて選択したパルス列の信号を、前記超音波送受信部からの超音波の反射波の信号のサンプリングタイミングを表すパルス信号として生成する生成工程と
を備えることを特徴とする画像診断装置の制御方法。 - 超音波の送受信を行う超音波送受信部及び光の送受信を行う光送受信部を含むイメージングコアを回転自在に収容したカテーテルを用いて被検体の診断対象部位の超音波断層画像及び光断層画像を生成する画像診断装置のコンピュータを、請求項1乃至4の何れか1項に記載の画像診断装置の各手段として機能させるためのコンピュータプログラム。
- 請求項7に記載のコンピュータプログラムを格納した、コンピュータ読み取り可能な記憶媒体。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018507280A JP6750000B2 (ja) | 2016-03-25 | 2017-03-16 | 画像診断装置、画像診断装置の制御方法、コンピュータプログラム、コンピュータ読み取り可能な記憶媒体 |
EP17770112.5A EP3434193B1 (en) | 2016-03-25 | 2017-03-16 | Diagnostic imaging device, computer program, and computer readable storage medium |
US16/140,774 US11701003B2 (en) | 2016-03-25 | 2018-09-25 | Imaging apparatus, method of controlling imaging apparatus, computer program, and computer readable storage medium |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016062392 | 2016-03-25 | ||
JP2016-062392 | 2016-03-25 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/140,774 Continuation US11701003B2 (en) | 2016-03-25 | 2018-09-25 | Imaging apparatus, method of controlling imaging apparatus, computer program, and computer readable storage medium |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017164070A1 true WO2017164070A1 (ja) | 2017-09-28 |
Family
ID=59900248
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/010705 WO2017164070A1 (ja) | 2016-03-25 | 2017-03-16 | 画像診断装置、画像診断装置の制御方法、コンピュータプログラム、コンピュータ読み取り可能な記憶媒体 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11701003B2 (ja) |
EP (1) | EP3434193B1 (ja) |
JP (1) | JP6750000B2 (ja) |
WO (1) | WO2017164070A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111012369B (zh) * | 2019-12-19 | 2023-07-04 | 武汉阿格斯科技有限公司 | 成像导管同步信号控制方法、系统以及控制器和介质 |
CN113702982A (zh) * | 2021-08-26 | 2021-11-26 | 廊坊市新思维科技有限公司 | 一种超声波数据成像算法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013145690A1 (ja) * | 2012-03-26 | 2013-10-03 | テルモ株式会社 | 断層画像生成装置および制御方法 |
JP2014180575A (ja) | 2013-03-15 | 2014-09-29 | Lightlab Imaging Inc | プローブ、システム及び画像を整合する方法(プローブ) |
WO2014162367A1 (ja) * | 2013-04-05 | 2014-10-09 | テルモ株式会社 | 画像診断装置及びプログラム |
WO2014162368A1 (ja) * | 2013-04-05 | 2014-10-09 | テルモ株式会社 | 画像診断装置及びプログラム |
JP2016062392A (ja) | 2014-09-19 | 2016-04-25 | ヤフー株式会社 | 情報処理装置、情報処理方法及びプログラム |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8454512B2 (en) * | 2007-10-25 | 2013-06-04 | Washington University | Confocal photoacoustic microscopy with optical lateral resolution |
US20140142404A1 (en) * | 2008-10-23 | 2014-05-22 | The Washington University | Single-cell label-free photoacoustic flowoxigraphy in vivo |
US11123047B2 (en) * | 2008-01-28 | 2021-09-21 | The General Hospital Corporation | Hybrid systems and methods for multi-modal acquisition of intravascular imaging data and counteracting the effects of signal absorption in blood |
US9610064B2 (en) * | 2011-05-31 | 2017-04-04 | Desmond Adler | Multimodal imaging system, apparatus, and methods |
CA2895990A1 (en) * | 2012-12-21 | 2014-06-26 | Jerome MAI | Ultrasound imaging with variable line density |
EP2938263B1 (en) * | 2012-12-27 | 2019-05-15 | Volcano Corporation | Fire control system for rotational ivus |
US20150086098A1 (en) * | 2013-09-26 | 2015-03-26 | Volcano Corporation | Systems and methods for producing intravascular images |
US11125866B2 (en) * | 2015-06-04 | 2021-09-21 | Chikayoshi Sumi | Measurement and imaging instruments and beamforming method |
JP6566825B2 (ja) * | 2015-10-01 | 2019-08-28 | キヤノンメディカルシステムズ株式会社 | A/d変換回路および放射線画像診断装置 |
-
2017
- 2017-03-16 WO PCT/JP2017/010705 patent/WO2017164070A1/ja active Application Filing
- 2017-03-16 EP EP17770112.5A patent/EP3434193B1/en active Active
- 2017-03-16 JP JP2018507280A patent/JP6750000B2/ja active Active
-
2018
- 2018-09-25 US US16/140,774 patent/US11701003B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013145690A1 (ja) * | 2012-03-26 | 2013-10-03 | テルモ株式会社 | 断層画像生成装置および制御方法 |
JP2014180575A (ja) | 2013-03-15 | 2014-09-29 | Lightlab Imaging Inc | プローブ、システム及び画像を整合する方法(プローブ) |
WO2014162367A1 (ja) * | 2013-04-05 | 2014-10-09 | テルモ株式会社 | 画像診断装置及びプログラム |
WO2014162368A1 (ja) * | 2013-04-05 | 2014-10-09 | テルモ株式会社 | 画像診断装置及びプログラム |
JP2016062392A (ja) | 2014-09-19 | 2016-04-25 | ヤフー株式会社 | 情報処理装置、情報処理方法及びプログラム |
Also Published As
Publication number | Publication date |
---|---|
JP6750000B2 (ja) | 2020-09-02 |
JPWO2017164070A1 (ja) | 2019-01-31 |
EP3434193B1 (en) | 2021-01-06 |
US20190021599A1 (en) | 2019-01-24 |
US11701003B2 (en) | 2023-07-18 |
EP3434193A1 (en) | 2019-01-30 |
EP3434193A4 (en) | 2019-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5559145B2 (ja) | 画像診断装置及びその作動方法 | |
US10271818B2 (en) | Image processing apparatus, method of controlling image processing apparatus, program, and storage medium | |
JP5981557B2 (ja) | 画像診断装置 | |
WO2011039983A1 (ja) | 画像診断装置及びその制御方法 | |
JP2012200532A (ja) | 画像診断装置及び表示方法 | |
JPWO2014162368A1 (ja) | 画像診断装置及びプログラム | |
WO2014162365A1 (ja) | 画像診断装置及びその制御方法、プログラム及びコンピュータ可読記憶媒体 | |
JP6125615B2 (ja) | 画像診断装置及びプログラム | |
JPWO2014136137A1 (ja) | 画像診断装置及び情報処理装置及びそれらの作動方法、プログラム及びコンピュータ可読記憶媒体 | |
JPWO2016152624A1 (ja) | 画像診断装置及びその作動方法、プログラム及びコンピュータ可読記憶媒体 | |
JP5431852B2 (ja) | 画像診断装置及びその作動方法、並びにプログラム | |
JPWO2013145635A1 (ja) | プローブ及び画像診断装置 | |
WO2010095370A1 (ja) | 画像診断装置及びその制御方法 | |
WO2017164070A1 (ja) | 画像診断装置、画像診断装置の制御方法、コンピュータプログラム、コンピュータ読み取り可能な記憶媒体 | |
WO2014049641A1 (ja) | 画像診断装置及び情報処理装置並びにそれらの制御方法 | |
JP6827054B2 (ja) | 画像診断装置、画像診断装置の作動方法、コンピュータプログラム、コンピュータ読み取り可能な記憶媒体 | |
JP5399844B2 (ja) | 画像診断装置及びその作動方法 | |
WO2014162366A1 (ja) | 画像診断装置及びその制御方法、プログラム及びコンピュータ可読記憶媒体 | |
JP6791976B2 (ja) | 制御装置、画像診断装置、制御装置の処理方法およびプログラム | |
JP5960832B2 (ja) | 画像診断装置及びその作動方法及びプログラム | |
JP6767221B2 (ja) | 画像診断装置、画像診断装置の制御方法、コンピュータプログラム、コンピュータ読み取り可能な記憶媒体 | |
JP6563666B2 (ja) | 画像診断装置及びその制御方法、プログラム及びコンピュータ可読記憶媒体 | |
JP2018153563A (ja) | 断層像撮影装置およびその制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2018507280 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017770112 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017770112 Country of ref document: EP Effective date: 20181025 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17770112 Country of ref document: EP Kind code of ref document: A1 |