WO2017161835A1 - 一种电池模组 - Google Patents

一种电池模组 Download PDF

Info

Publication number
WO2017161835A1
WO2017161835A1 PCT/CN2016/097782 CN2016097782W WO2017161835A1 WO 2017161835 A1 WO2017161835 A1 WO 2017161835A1 CN 2016097782 W CN2016097782 W CN 2016097782W WO 2017161835 A1 WO2017161835 A1 WO 2017161835A1
Authority
WO
WIPO (PCT)
Prior art keywords
upper cover
battery module
lower casing
module according
bare
Prior art date
Application number
PCT/CN2016/097782
Other languages
English (en)
French (fr)
Inventor
马林
秦峰
肖信福
邓平华
项延火
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2017161835A1 publication Critical patent/WO2017161835A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • H01M50/273Lids or covers for the racks or secondary casings characterised by the material
    • H01M50/278Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/227Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • H01M50/273Lids or covers for the racks or secondary casings characterised by the material
    • H01M50/276Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/522Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/591Covers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of battery pack technologies, and in particular, to a battery module.
  • the structure of the multi-cell is generally prepared by first preparing a single battery core, and then arranging into a group by a single battery core according to requirements, and then welding a single module by four bottom plates, four side plates and an outer cover.
  • the existing technical defects are: the existing modules are all composed of a single core arrangement, the manufacturing cost of the battery core is high, and the space between the batteries is wasted; the module shell is welded by metal, and the weld seam consistency is low. The process is cumbersome, the labor cost is high, and the production efficiency is low; after the batteries are grouped, the connection between the batteries needs to be neatly arranged and welded through the copper bars, and the process is difficult.
  • An object of the present invention is to provide a battery module that uses a lower casing having a plurality of grids and an upper cover provided with a conductive connecting body to directly package a plurality of bare cells into a battery module, thereby eliminating a single battery.
  • the outer packaging of the core only retains the internal bare cell (or JR), the process is simple, the manufacturing and labor costs are greatly reduced, and the space between the cell pole and the top cover is fully utilized, and the energy density can be theoretically improved by 20 %about.
  • a battery module includes: a lower casing, an upper cover and a plurality of bare cells; the lower casing is open at one end and has a plurality of mutually non-intersecting grids therein; a bare cell; the upper cover is provided with an electrical connection; the electrically conductive connector is electrically connected to the bare cell; the upper cover is sealed on the opening of the lower casing and is opposite to the grid Sealed connection.
  • the lower casing is partitioned by a partition into a plurality of mutually non-intersecting grids.
  • the partition and the lower casing are fixedly connected by gluing or welding; the welding may be laser welding or friction welding.
  • the lower casing is integrally formed with the grid.
  • the integrally formed molding process may be an injection molding process, a plastic molding process, a blow molding process, a press molding process, a multilayer coextrusion process, a casting molding, a melt molding process, or other molding processes.
  • the inner and/or outer surface of the lower casing is provided with one or more lower casing protective layers having water vapor barrier and oxygen barrier properties.
  • the surface of the separator is provided with one or more separator protective layers having water vapor barrier and oxygen barrier properties.
  • the lower surface and/or the upper surface of the upper cover is provided with one or more upper cover protective layers having water vapor barrier and oxygen barrier properties.
  • the protective layer is a metal layer or a plastic layer;
  • the metal layer such as aluminum, copper, nickel, silver, gold, etc.
  • the metal layer can generally be formed on the surface by electroplating, electroless plating, deposition, spraying, and evaporation adhesion.
  • a surface dense structure more preferably a method of electroplating deposition;
  • the plastic layer such as polyethylene, polypropylene, fluoroplastic, etc., may be a high barrier material film formed by blistering or blow molding.
  • the metal layer is an aluminum layer, and the cost performance is relatively high.
  • the plastic film is a fluoroplastic film, and the corrosion resistance is relatively good.
  • the number of grids in the lower casing is greater than or equal to two.
  • one or more bare cells are placed in the grid, and more preferably one bare cell is placed in one grid.
  • the cross section of the grid is square, circular, triangular, elliptical or any other structure that can be formed by an integrated molding process.
  • a plurality of the grids are linearly arranged side by side, and may also be arranged in a circular shape. formula.
  • the grid has a square cross section, and a plurality of the grids are linearly arranged side by side.
  • the top end on the bare cell is provided with a positive electrode tab and a negative electrode tab.
  • the conductive connecting body is in contact connection with the positive electrode tab and the negative electrode tab; forming a parallel circuit or a series circuit.
  • the conductive connecting body is provided with a positive total output electrode and a negative total output electrode protruding from the upper cover.
  • a portion of the conductive connecting body correspondingly connected to the positive electrode tab and the negative electrode tab is exposed, and the rest is embedded in the upper cover.
  • an opening is provided in the upper cover at a position corresponding to the positive electrode tab and the negative electrode tab, and a portion of the conductive connecting body that is in contact with the positive electrode tab and the negative electrode tab is exposed in the The inside of the opening is embedded in the upper cover.
  • the upper cover is provided with a safety valve.
  • the safety valve is equal in number to the bare cells; the safety valve is located in a region of the upper cover corresponding to an upper surface of the bare cell.
  • the safety valve When the battery is overcharged or used for nailing experiments, it will cause the inside of the battery to bulge, causing the internal pressure to be too large, causing an explosion and other dangers.
  • the valve When the internal pressure is too high, the valve is opened and the internal pressure is released to ensure safety.
  • the safety valve is a fuse, a notched flap, an explosion-proof valve, or other safety component with a current fuse or open circuit mechanism.
  • a check valve can be used.
  • the upper cover is provided with a liquid injection hole.
  • the liquid injection hole is equal to the number of the bare cells, and the electrolyte may be injected into the bare cell through the liquid injection hole; the liquid injection hole is located on the upper cover and the bare battery The upper surface of the core corresponds to the area.
  • the material of the conductive connecting body is a metal material having a conductive function such as copper bar, aluminum bar or the like; more preferably copper bar.
  • the material of the lower casing is a single polymer material, a compound of a plurality of polymer materials, a fiber reinforced polymer matrix composite material, a metal material or an inorganic non-metal material.
  • the material of the upper cover is a single polymer material, a compound of a plurality of polymer materials, a fiber reinforced polymer matrix composite material, a metal material or an inorganic non-metal material, and the like.
  • the inorganic non-metal material is a ceramic material.
  • the single polymer material is selected from engineering plastics such as polyamide, polycarbonate, polyoxymethylene, polybutylene terephthalate and polyphenylene ether, and may also be polypropylene, polyvinyl chloride, poly A general-purpose plastic such as styrene or acrylonitrile-butadiene-styrene copolymer.
  • engineering plastics such as polyamide, polycarbonate, polyoxymethylene, polybutylene terephthalate and polyphenylene ether
  • polypropylene such as polyvinyl chloride, poly A general-purpose plastic such as styrene or acrylonitrile-butadiene-styrene copolymer.
  • the monomeric polymer material is a polyphenylene ether.
  • the reinforcing fibers of the fiber-reinforced polymer-based composite material are selected from the group consisting of glass fibers, carbon fibers, mineral fibers, and metal fibers, and the like, which can be used to reinforce the fibrous material of the substrate; further preferred are glass fibers.
  • the metal material is selected from the group consisting of aluminum, aluminum alloy, steel, copper, etc., which may be formed by casting or powder metallurgy; further preferred is an aluminum alloy.
  • the upper cover and the lower case are not limited to the same material, and may be used in combination of the above different materials.
  • the invention further provides a method of manufacturing the battery module as described:
  • the lower case is formed by an integrated molding process.
  • a safety valve is disposed in a region of the upper cover corresponding to the upper surface of the bare cell.
  • a liquid injection hole is disposed in an area corresponding to the upper surface of the bare cell on the upper cover, and the electrolyte may be injected into the bare cell through the liquid injection hole .
  • the electrolyte is injected into the bare cell through the liquid injection hole before the lower casing and the upper cover are sealed and combined.
  • step (2) the conductive joint body and the safety valve and the upper cover are integrally formed into one body by a method of pre-embedding injection molding.
  • the lower case is partitioned into a plurality of mutually non-intersecting grids by using a partition plate.
  • the lower casing and the grid are integrally formed into one body.
  • the one The process of forming is the same as described above.
  • the sealing combination of the upper and lower casings may be a physical combination or a combination of chemical methods. Physical combination, including friction welding, laser welding, etc.; chemical combination, including bonding.
  • the lower case having a plurality of grids and the upper cover provided with the conductive connecting body and the safety valve are used because the bare cell is directly placed in the lower case and the upper cover is sealed, so that the cells are between The space is fully utilized, the space between the cells, the cell and the upper cover is utilized, and the energy density of the battery is greatly improved; and the upper and lower casings can be integrally formed, and the bare cells can be directly used.
  • the package omits a large number of welds, thereby avoiding the problem of low weld consistency and improving production efficiency.
  • FIG. 1 is a top plan view of an upper cover of a battery module according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view (A-A) of an upper cover of a battery module according to an embodiment of the present invention
  • Figure 3 is an enlarged view (5:1) of a portion C of a cross-sectional view of the upper cover of the battery module shown in Figure 2;
  • FIG. 4 is a cross-sectional view (B-B) of an upper cover of a battery module according to an embodiment of the present invention
  • FIG. 5 is an isometric side view of an upper cover of a battery module according to an embodiment of the present invention.
  • FIG. 6 is an isometric side view of a lower case of a battery module according to an embodiment of the present invention.
  • FIG. 7 is a top plan view of a lower case of a battery module according to an embodiment of the present invention.
  • FIG. 8 is an isometric side view of a lower case of a battery module according to another embodiment of the present invention.
  • FIG. 9 is an enlarged view of a portion D of a top view of the lower case of the battery module shown in FIG. 7;
  • Figure 10 is an isometric side view of a battery module in accordance with an embodiment of the present invention.
  • FIG. 11 is an exploded view of a battery module according to an embodiment of the present invention.
  • Figure 12 is a longitudinal cross-sectional view of a battery module in accordance with an embodiment of the present invention.
  • the embodiment provides a battery module, which is formed by sealing and combining the upper cover 1 and the lower housing 6 and a plurality of bare cells 9 as follows:
  • the lower casing 6 of the aluminum alloy material is integrally molded by a press molding process, and the upper end is open, and the inner cross-section is formed by 12 grids 7 having a square cross section and linearly arranged.
  • the grid 7 has only the upper end opening, so that the inner cavity of the grid 7 coincides with the outer structure of the square bare cell 9.
  • the four side edges of the lower casing 6 may have a certain curvature as shown in FIG.
  • the top of the square bare cell 9 is selected with a positive pole and a negative pole.
  • 12 bare cells 9 are directly placed in 12 grids 7, and the ear is directed toward the opening of the grid 7. ; as shown in Figure 11;
  • the copper sheets, the 12 one-way venting valves respectively serving as the conductive connecting body and the upper cover 1 made of the aluminum alloy are collectively integrated, as shown in FIGS. 1-3 and 11 .
  • a corresponding opening is provided on the upper cover 1 at a position corresponding to the positive electrode tab and the negative electrode tab of the bare cell 9, and the conductive connector 3 and the positive and negative tabs of the bare cell 9 are provided.
  • the portion in close contact is exposed in the opening, and the rest is embedded in the upper cover 1;
  • the total pole output pole 4-2 and the negative pole total output pole 4-1 protrude from the upper cover 1; a single position is placed on the upper cover 1 corresponding to the center of the upper surface of each bare cell 9 a valve inlet; and a liquid injection hole is also provided in the upper cover 1 corresponding to the upper surface of each bare cell 9;
  • the sealing combination is performed, and the bare cell 9 is placed in the grid 7 of the lower casing 6 and then passed through the liquid injection hole.
  • the electrolyte is injected into the battery core 9, and then the upper cover 1 and the lower casing 6 (the aluminum alloy material can meet the barrier requirements) are sealed and combined by friction welding, and the upper cover 1 is also sealed with the open end of the grid 7.
  • the sealed battery module, the copper bar exposed in the opening of the upper cover 1 is in close contact with the positive and negative electrodes of the bare cell 9, as shown in FIG. 12, to ensure the normal operation of the battery;
  • a longitudinal cross-sectional view of the set is shown in FIG.
  • the line is theoretically connected to the conductive connecting body 3, and charging and discharging can be performed.
  • the actual use process there are temperature sampling lines, high and low voltage sampling lines and other wiring harness structures.
  • the lower casing 6 is integrally formed by injection molding, the upper cover 1 is integrated, and the upper and lower structures are sealed, the welding between the conductive connecting bodies 3 is omitted, and the welding of the end plates of the modules greatly improves the production efficiency.
  • the embodiment provides a battery module, which is formed by sealing and combining the upper cover 1 and the lower housing 6 and a plurality of bare cells 9 as follows:
  • the lower casing 6 of the polyphenylene ether material shown in Fig. 6 and Fig. 7 is integrally formed by an injection molding process, and the upper end is open, and 12 internal grids are uniformly formed into a rectangular grid 7 and linear. Arranged, and the grid 7 has only the upper end opening, so that the inner cavity of the grid 7 fits exactly with the outer structure of the square bare cell 9.
  • the four side edges of the lower casing 6 may have a certain curvature as shown in FIG.
  • the selected square bare cell 9 has a positive pole and a negative pole.
  • 12 bare cells 9 are directly placed in 12 grids 7 with the poles facing the grid opening direction;
  • the copper sheet as the conductive connecting body 3, the 12 one-way venting valves and the upper cover 1 made of polyphenylene ether are collectively integrated by the processing method of the pre-embedded injection molding, as shown in FIG.
  • Corresponding openings are provided on the upper cover 1 at positions corresponding to the positive and negative poles of the bare cell 9, and the conductive connecting body 3 is in close contact with the positive and negative poles of the bare cell 9 a portion is exposed in the opening, and the rest is embedded in the upper cover 1; and a positive total output pole 4-2 and a negative total output pole 4-1 are disposed on the copper bus sheet, and protrude from the upper cover 1;
  • a one-way valve is disposed on the upper cover 1 corresponding to the center of the upper surface of each bare cell 9; the lower surface of the upper cover 1 is subjected to surface electroplating aluminizing treatment to form a waterproof and dense upper cover protective layer 5;
  • a liquid injection hole is further disposed in the upper cover 1 corresponding
  • the bare cell 9 is placed in the grid 7 of the lower casing 6, and then the electrolyte is injected into the bare cell 9 through the liquid injection hole, and then rubbed.
  • the upper cover 1 and the lower casing 6 are sealingly combined, and the upper cover 1 is sealingly connected with the opening of the grid 7; the sealed battery module is sealed, and the copper and bare exposed in the opening of the upper cover 1 are bare.
  • the positive and negative electrodes of the battery core 9 are in close contact with each other to ensure normal operation of the battery.
  • the structure of the lower casing 6 of the battery module of this embodiment is as shown in FIG. 8.
  • the grid 7 has a circular cross section, an open upper end, and a built-in cylindrical battery core. This is the same as the structure and preparation process as in the first embodiment.
  • the material of the upper cover 1 and the lower casing 6 it is polyamide, polycarbonate, polyoxymethylene, polybutylene terephthalate, polypropylene, polyvinyl chloride, polystyrene or acrylonitrile-butadiene.
  • a monomeric polymer such as a styrene copolymer or a combination of a plurality of polymer materials; or a fiber-reinforced polymer such as glass fiber, carbon fiber, mineral fiber or metal fiber; or aluminum, steel, copper, etc. may be cast or Powder metallurgy formed metal.
  • the integrated molding process adopts a plastic forming process, a blow molding process, a multi-layer coextrusion process, a casting molding, a melt molding or other molding process; the surface molding process, the blow molding process, and the multilayer co-extrusion process
  • the process is suitable for plastics, casting and melting for metals.
  • the sealing combination of the upper cover 1 and the lower casing 6 may be laser welding, cementation or the like in addition to friction welding.
  • the upper cover 1 and the lower casing 6 of the embodiment 1-3 are made of the same material, but are not required to be of the same material.
  • the upper cover 1 and the lower case 6 of the above different materials can also realize the technical solution of the present invention.
  • the material of the lower case protective layer 8 as the upper cover protective layer 5 and the inner surface of the lower case 6 of the lower surface of the upper cover 1 may have other layers or layers in addition to the aluminum layer and the fluoroplastic film.
  • Metal layer or plastic layer with water vapor barrier and oxygen barrier properties such as copper, nickel, silver, gold and other metals, as well as plastics such as polyethylene and polypropylene; metal layers are generally plated, electrolessly plated, deposited, sprayed, and evaporated.
  • the method forms a surface dense structure on the surface, and the plastic film can form a high barrier protective film by means of blistering or blow molding.
  • the cross-sectional shape of the grid 7 may also be a triangle, an ellipse or the like, which is compatible with the structure of the bare cell 9.
  • the material of the conductive connecting body 3 in addition to the copper bar, it may also be aluminum bar;
  • a fuse As a safety member of the safety valve 2, in addition to the check valve, a fuse, a notched piece with a score, or the like can be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

一种电池模组,包括下壳体(6)、上盖(1)和多个裸电芯(9);所述下壳体(6)一端开口且内部设有多个互不相通的栅格(7);所述栅格(7)内放置有所述裸电芯(9);所述上盖(1)内设导电连接体(3);所述导电连接体(3)与所述裸电芯(9)电连接;所述上盖(1)密封组合在所述下壳体(6)的开口上并与所述栅格(7)密封连接;该电池模组,将多个裸电芯(9)直接封装,裸电芯(9)之间的空间得到充分利用,电池能量密度得到很大提高,而且制造工艺大大简化,省略了大量的焊接,从而避免了焊缝一致性低的问题,提高了生产效率。

Description

一种电池模组
交叉引用
本申请要求在2016年3月22日提交中国专利局、申请号为201610164344.5、发明名称为“一种电池模组”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电池组技术领域,具体涉及一种电池模组。
背景技术
电动汽车作为一种新型环保汽车,是未来的发展趋势。但是一直以来,电动汽车就受制于电池容量低、造价成本高等技术难题,因此,有必要开发一种以多电芯为单元高度集成的新型电池,用以提高电池容量,同时降低电池成本。
现有技术中,多电芯的结构一般是先制备单个电芯,再根据需求由单电芯排布成组,再由一个底板、四个侧板以及上盖外包装焊接成一个模组。
存在的技术缺陷在于:现有模组,均是由单电芯排布组成,电芯制造成本高,电芯之间空间浪费大;模组外壳由金属焊接而成,焊缝一致性低,工艺繁琐,人工成本高,生产效率低;电芯成组之后,电芯之间连接需通过铜巴需整齐排布焊接,工艺难度大。
发明内容
本发明的目的在于提供一种电池模组,采用具有多个栅格的下壳体和设有导电连接体的上盖,直接将多个裸电芯封装成电池模组,省去了单电芯的外包装,只保留内部裸电芯(或称JR),工序简单,制造和人工成本大幅度下降,充分利用了电芯极柱与顶盖之间的空间,能量密度理论上可提高20%左右。
本发明的具体技术方案为:
一种电池模组,包括:包括下壳体、上盖和多个裸电芯;所述下壳体一端开口且内部设有多个互不相通的栅格;所述栅格内放置有所述裸电芯;所述上盖内设导电连接体;所述导电连接体与所述裸电芯电连接;所述上盖密封组合在所述下壳体的开口上并与所述栅格密封连接。
优选的,所述下壳体由隔板分隔成多个互不相通的栅格。
优选的,所述隔板和所述下壳体之间通过胶接或焊接固定连接;所述焊接可以是激光焊接或摩擦焊接。
优选的,所述下壳体与所述栅格一体化成型为一体。
优选的,所述一体化成型的成型工艺可以是注塑成型工艺、吸塑成型工艺、吹塑成型工艺、模压成型工艺、多层共挤成型工艺、铸造成型、融模成型或其它成型工艺。
优选的,所述下壳体的内表面和/或外表面设有一层或多层具有水蒸汽阻隔以及氧气阻隔性能的下壳体保护层。
优选的,所述隔板的表面设有一层或多层具有水蒸汽阻隔以及氧气阻隔性能的隔板保护层。
优选的,所述上盖的下表面和/或上表面设有一层或多层具有水蒸汽阻隔以及氧气阻隔性能的上盖保护层。
优选的,所述保护层为金属层或塑料层;所述金属层,如铝,铜,镍,银,金等,一般可以通过电镀、化学镀、沉积、喷涂以及蒸发附着等方法在表面形成表面致密结构;更优选电镀沉积的方法;所述塑料层,如聚乙烯,聚丙烯,氟塑料等,可以是通过吸塑或者吹塑的方式形成的高阻隔的材料膜。
优选的,所述金属层的为铝层,性价比相对较高。
优选的,所述塑料膜为氟塑料膜,其耐腐蚀性能相对较好。
优选的,所述下壳体内的栅格数大于或等于两个。
优选的,所述栅格内放置一个或多个裸电芯,更优选一个栅格内放置一个裸电芯。
优选的,所述栅格的横截面为方形、圆形、三角形、椭圆形或是其他任何可通过一体化成型工艺形成的结构。
优选的,多个所述栅格之间呈线性并排分布,也可以是圆形等排布方 式。
更优选的,所述栅格的横截面为方形,且多个所述栅格呈线性并排分布。
优选的,所述裸电芯上的顶端设有正极极耳和负极极耳。
优选的,所述导电连接体与所述正极极耳和负极极耳接触连接;形成并联电路或串联电路。
优选的,所述导电连接体设有凸出于所述上盖之外的正极总输出极和负极总输出极。
优选的,所述导电连接体与所述正极极耳和负极极耳对应连接的部分裸露,其余嵌入所述上盖内。
优选的,在所述上盖上对应所述正极极耳和负极极耳的位置上设有开孔,所述导电连接体与所述正极极耳和负极极耳接触连接的部分裸露在所述开孔内,其余嵌入所述上盖内。
优选的,所述上盖上设有安全阀。
优选的,所述安全阀与所述裸电芯的数量相等;所述安全阀位于所述上盖上与所述裸电芯的上表面对应的区域内。当电池发生过充或是用于穿钉实验等,会造成电芯内部鼓胀,使得内部压力过大,引起爆炸等危险。安全阀在内部压力过大时候,阀门被冲开,释放内部压力,保证安全性。
优选的,所述安全阀为保险丝、带刻痕的翻转片、防爆阀门、或其它具备电流熔断或是断路机制的安全部件。防爆阀门中,可选用单向阀。
优选的,所述上盖上设有注液孔。
优选的,所述注液孔与所述裸电芯的数量相等,通过注液孔可以向所述裸电芯内注入电解液;所述注液孔位于所述上盖上与所述裸电芯的上表面对应的区域内。
优选的,所述导电连接体的材料为铜巴、铝巴等具有导电功能的金属材料;更优选为铜巴。
优选的,所述下壳体的材料为单种聚合物材料、多种聚合物材料的复配、纤维增强聚合物基复合材料、金属材料或无机非金属材料等。
优选的,所述上盖的材料为单种聚合物材料、多种聚合物材料的复配、纤维增强聚合物基复合材料、金属材料或无机非金属材料等。
优选的,所述无机非金属材料为陶瓷材料。
优选的,所述单种聚合物材料选自聚酰胺、聚碳酸酯、聚甲醛、聚对苯二甲酸丁二醇酯和聚苯醚等工程塑料,也可以是聚丙烯、聚氯乙烯、聚苯乙烯、丙烯腈-丁二烯-苯乙烯共聚物等通用塑料。
进一步优选的,所述单体聚合物材料为聚苯醚。
优选的,所述纤维增强聚合物基复合材料的增强纤维选自玻璃纤维、碳纤维、矿物纤维以及金属纤维等可用于增强基材的纤维材料;进一步优选的是玻璃纤维。
优选的,所述金属材料选自铝、铝合金、钢、铜等可以通过铸造或是粉末冶金成型的金属;进一步优选的是铝合金。
所述上盖和下壳体不限定为同一种材料,可以是以上不同材料组合使用。
本发明进而还提供所述的一种电池模组的制造方法:
(1)制备下壳体,并在下壳体内设置多个栅格;
(2)制备设有导电连接体的上盖;
(3)在所述下壳体的栅格内放置裸电芯;
(4)将上盖密封组合在所述下壳体上,并使上盖和栅格密封连接。
其中,
优选的,通过一体化成型工艺形成所述下壳体。
优选的,步骤(2)中,在所述上盖上与所述裸电芯的上表面对应的区域内设置安全阀。
优选的,步骤(2)中,在所述上盖上与所述裸电芯的上表面对应的区域内设置注液孔,可以通过所述注液孔向所述裸电芯中注入电解液。
优选的,在所述下壳体和上盖密封组合之前通过所述注液孔向所述裸电芯内注入电解液。
优选的,步骤(2)中采用预埋注塑的方法,将导电连接体和安全阀与上盖一体化成型为一体。
优选的,所述(1)中,采用隔板将所述下壳体隔成多个互不相通的栅格。
优选的,步骤(1)中使下壳体和栅格一体化成型为一体。所述一体 化成型的工艺方法同上所述。
所述上盖和下壳体的密封组合方式可以是物理组合或化学方法组合。物理组合,包括摩擦焊接、激光焊接等;化学组合,包括胶接等。
本发明提供的技术方案可以达到以下有益效果:
采用具有多个栅格的下壳体和设有导电连接体和安全阀的上盖,因为是将裸电芯直接放入下壳体中,再密封上盖的过程,所以电芯之间的空间得到充分利用,电芯之间、电芯与上盖之间的空间得到利用,电池能量密度得到很大提高;而可以采用一体化成型的上盖和下壳体,直接将裸电芯进行封装,省略了大量的焊接,从而避免了焊缝一致性低的问题,提高了生产效率。
附图说明
图1为本发明实施例的电池模组的上盖俯视图;
图2为本发明实施例的电池模组的上盖的剖视图(A-A);
图3为图2所示的电池模组的上盖的剖视图的局部C的放大图(5:1);
图4为本发明实施例的电池模组的上盖的剖视图(B-B);
图5为本发明实施例的电池模组的上盖等轴侧视图;
图6为本发明实施例的电池模组的下壳体的等轴侧视图;
图7为本发明实施例的电池模组的下壳体的俯视图;
图8为本发明另一实施例的电池模组的下壳体的等轴侧视图;
图9为图7所示的电池模组的下壳体的俯视图的局部D的放大图;
图10为本发明实施例的电池模组的等轴侧视图;
图11为本发明实施例的电池模组的爆炸图;
图12为本发明实施例的电池模组的纵向剖视图;
附图标记,
1-上盖;
2-安全阀;
3-导电连接体;
4-1负极总输出极;
4-2-正极总输出极;
5-上盖保护层;
6-下壳体;
7-栅格;
8-下壳体保护层;
9-裸电芯。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明实施例及附图,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明提供的技术方案及所给出的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
文中所述“上”、“下”、“左”、“右”、“前”、“后”均以附图中的电池的放置状态为参照。
实施例1
本实施例提供一种电池模组,由上盖1、下壳体6以及多个裸电芯9密封组合而成,具体如下:
采用模压成型工艺一体化成型呈如图6所示的材料为铝合金的下壳体6,上端开口,内部一体化成型的12个横截面为方形的栅格7,并呈线性排列,且栅格7只有上端开口,使栅格7内腔与方形裸电芯9外部结构刚好相契合。下壳体6的四个侧棱可以具有一定的弧度,如图9所示。
选用的方形裸电芯9的顶端带有正极极耳和负极极耳,密封组合时,将12个裸电芯9分别直接置于12个栅格7内,极耳朝栅格7开口的方向;如图11所示;
通过预埋注塑的处理方法,将分别作为导电连接体的铜巴片、12个单向通气阀与材料为铝合金的上盖1集合成一个整体,如图1-3以及图11所示,其中,在上盖1上与裸电芯9的正极极耳和负极极耳对应的位置上设有对应的开孔,所述导电连接体3与裸电芯9的正极极耳和负极极耳紧密接触的部分裸露在所述开孔内,其余嵌入上盖1内;并在铜巴片上设正 极总输出极4-2和负极总输出极4-1,并凸出于上盖1之外;在上盖1上与每个裸电芯9的上表面的中心对应的位置各设一个单向阀;并在上盖1上与每个裸电芯9的上表面对应的区域内还设置注液孔;
如图11所示,在上盖1和下壳体6均一体化成型之后,再进行密封组合,将裸电芯9置于下壳体6的栅格7内,再通过注液孔向裸电芯9内注入电解液,然后通过摩擦焊接的方式将上盖1与下壳体6(铝合金自身材料能达到阻隔要求)密封组合,且上盖1与栅格7的开口端也密封连接;密封组合后的电池模组,裸露在上盖1的开孔中的铜巴与裸电芯9的正极耳和负极耳紧密接触连接,如图12所示,保证电池的正常运作;电池模组的纵向剖视图如图12所示。
上述组装完之后,理论上在导电连接体3上接入线路,就可以进行充放电了。实际使用过程,还有温度采样线,高低压采样线等线束结构。
组装完之后,由于相邻裸电芯9之间的铝壳省略了,且裸电芯9与上盖1之间的空间也被充分利用,电池能量密度得到提高。同时,下壳体6通过注塑方式一体成型,上盖1集成化,上下结构密封,省去了导电连接体3之间的焊接,模组四周端板的焊接,很大程度的提高生产效率。
实施例2
本实施例提供一种电池模组,由上盖1、下壳体6以及多个裸电芯9密封组合而成,具体如下:
采用注塑成型工艺一体化成型呈如图6和图7所示的材料为聚苯醚的下壳体6,上端开口,内部一体化成型的12个横截面为方形的栅格7,并呈线性排列,且栅格7只有上端开口,使栅格7内腔与方形裸电芯9外部结构刚好相契合。下壳体6的四个侧棱可以具有一定的弧度,如图9所示。
然后对下壳体6和各栅格7的内表面进行表面处理,通过电镀沉积的方法,在内表面形成一层金属铝的防水致密下壳体保护层8,如图9所示。
选用的方形裸电芯9带有正极极耳和负极极耳,密封组合时,将12个裸电芯9分别直接置于12个栅格7内,极耳朝栅格开口的方向;
通过预埋注塑的处理方法,将作为导电连接体3的铜巴片、12个单向通气阀与材料为聚苯醚的上盖1集合成一个整体,如图1-5所示,其中, 在上盖1上与裸电芯9的正极极耳和负极极耳对应的位置上设有对应的开孔,导电连接体3与裸电芯9的正极极耳和负极极耳紧密接触电连接的部分裸露在所述开孔内,其余嵌入上盖1内;并在铜巴片上设正极总输出极4-2和负极总输出极4-1,并凸出于上盖1之外;在上盖1上与每个裸电芯9的上表面的中心对应的位置上各设一个单向阀;上盖1的下表面进行表面电镀镀铝处理,形成防水的致密上盖保护层5;以及上盖1上与每个裸电芯9的上表面对应的区域内还设有注液孔;
在上盖1和下壳体6均一体化成型之后,将裸电芯9置于下壳体6的栅格7内,再通过注液孔向裸电芯9内注入电解液,再通过摩擦焊接的方式将上盖1与下壳体6密封组合,以及上盖1与栅格7的开口密封连接;密封组合后的电池模组,裸露在上盖1的开孔中的铜巴与裸电芯9的正极耳和负极耳紧密接触连接,保证电池的正常运作。
实施例3
本实施例电池模组的下壳体6的结构如图8所示,栅格7的横截面为圆形,上端开口,内置圆柱电芯。其与结构和制备过程与实施例1相同。
除了实施例1-3外,作为本发明的实施例,还可以是以下具体实施方式中的任一或多项:
作为上盖1和下壳体6的材料,为聚酰胺、聚碳酸酯、聚甲醛、聚对苯二甲酸丁二醇酯,聚丙烯、聚氯乙烯、聚苯乙烯或丙烯腈-丁二烯-苯乙烯共聚物等单体聚合物或多种聚合物材料的复配;或玻璃纤维、碳纤维、矿物纤维以及金属纤维等纤维增强的聚合物;或铝、钢、铜等可以通过铸造或是粉末冶金成型的金属。
一体化成型工艺采用吸塑成型工艺、吹塑成型工艺、多层共挤成型工艺、铸造成型、融模成型或其它成型工艺;这里面吸塑成型工艺、吹塑成型工艺、多层共挤成型工艺适用于塑料,铸造成型、融模适用于金属。
上盖1和下壳体6的密封组合方式,除了摩擦焊接,还可以是激光焊接、胶结等。实施例1-3上盖1和下壳体6采用相同材料,但并不要求必须为同种材料,采用上述不同材料的上盖1和下壳体6也可实现本发明的技术方案。
作为上盖1的下表面的上盖保护层5和下壳体6的内表面的下壳体保护层8的材料,除了铝层和氟塑料膜外,还可以是其它一层或多层具有水蒸汽阻隔以及氧气阻隔性能的金属层或塑料层,如铜,镍,银,金等金属,以及聚乙烯,聚丙烯等塑料;金属层一般通过电镀、化学镀、沉积、喷涂以及蒸发附着等方法在表面形成表面致密结构,塑料膜可以通过吸塑或者吹塑的方式形成高阻隔的保护膜。
栅格7的横截面形状还可以是三角形、椭圆形等,与裸电芯9的结构相适应。
作为导电连接体3的材料除了铜巴,还可以为铝巴;
作为安全阀2的安全部件,除了单向阀之外,还可使用保险丝、带刻痕的翻转片等。
本申请虽然以较佳实施例公开如上,但并不是用来限定权利要求,任何本领域技术人员在不脱离本申请构思的前提下,都可以做出若干可能的变动和修改,因此本申请的保护范围应当以本申请权利要求所界定的范围为准。

Claims (10)

  1. 一种电池模组,其特征在于,包括下壳体、上盖和多个裸电芯;所述下壳体一端开口且内部设有多个互不相通的栅格;所述栅格内放置有所述裸电芯;所述上盖内设导电连接体;所述导电连接体与所述裸电芯电连接;所述上盖密封组合在所述下壳体的开口上并与所述栅格密封连接。
  2. 根据权利要求1所述一种电池模组,其特征在于,所述下壳体由隔板分隔成多个互不相通的所述栅格。
  3. 根据权利要求1或2所述一种电池模组,其特征在于,所述下壳体和所述栅格一体化成型为一体。
  4. 根据权利要求1所述一种电池模组,其特征在于,所述栅格的横截面为方形,且多个所述栅格呈线性并排分布。
  5. 根据权利要求1所述一种电池模组,其特征在于,所述下壳体的内表面和/或外表面设有一层或多层具有水蒸汽阻隔以及氧气阻隔性能的下壳体保护层。
  6. 根据权利要求1所述一种电池模组,其特征在于,所述上盖的下表面和/或上表面设有一层或多层具有水蒸汽阻隔以及氧气阻隔性能的上盖保护层。
  7. 根据权利要求1所述一种电池模组,其特征在于,所述裸电芯的顶端设有正极极耳和负极极耳;所述导电连接体与所述正极极耳和负极极耳电连接。
  8. 根据权利要求7所述一种电池模组,其特征在于,在所述上盖上对应所述正极极耳和负极极耳的位置上设有开孔,所述导电连接体与所述正极极耳和负极极耳电连接的部分裸露在所述开孔内,其余嵌入所述上盖内。
  9. 根据权利要求1所述一种电池模组,其特征在于,所述上盖上设有安全阀和注液孔。
  10. 根据权利要求9所述一种电池模组,其特征在于,所述安全阀与所述裸电芯的数量相等;所述注液孔与所述裸电芯的数量相等;所述安全阀和注液孔位于所述上盖上与所述裸电芯的上表面对应的区域内。
PCT/CN2016/097782 2016-03-22 2016-09-01 一种电池模组 WO2017161835A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610164344.5A CN105576171A (zh) 2016-03-22 2016-03-22 一种电池模组
CN201610164344.5 2016-03-22

Publications (1)

Publication Number Publication Date
WO2017161835A1 true WO2017161835A1 (zh) 2017-09-28

Family

ID=55886075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/097782 WO2017161835A1 (zh) 2016-03-22 2016-09-01 一种电池模组

Country Status (2)

Country Link
CN (1) CN105576171A (zh)
WO (1) WO2017161835A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108417766A (zh) * 2018-05-18 2018-08-17 中兴高能技术有限责任公司 线束隔离复合片、电池模组和电池管理系统
CN108899464A (zh) * 2018-07-02 2018-11-27 中兴高能技术有限责任公司 一种电池模组的汇流排和电池模组
CN110581302A (zh) * 2019-10-17 2019-12-17 北京普莱德新能源电池科技有限公司 一种电池模组及电动装置
CN110854329A (zh) * 2019-11-26 2020-02-28 浙江天能能源科技股份有限公司 一种方型电芯用电池盒结构
CN113118624A (zh) * 2021-04-22 2021-07-16 远景动力技术(江苏)有限公司 双层极耳与巴片光纤激光焊接方法
CN113690513A (zh) * 2021-08-18 2021-11-23 Oppo广东移动通信有限公司 电池模块及电子设备
CN113851698A (zh) * 2021-10-12 2021-12-28 合肥国轩高科动力能源有限公司 一种动力锂离子电池
CN114079111A (zh) * 2020-08-11 2022-02-22 北京好风光储能技术有限公司 一种大型竖式储能电池以及储能集装箱

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105576171A (zh) * 2016-03-22 2016-05-11 宁德时代新能源科技股份有限公司 一种电池模组
CN206490102U (zh) * 2017-02-28 2017-09-12 宁德时代新能源科技股份有限公司 电池模组上盖及电池模组
CN107199393A (zh) * 2017-06-02 2017-09-26 深圳吉阳智能科技有限公司 一种电池注液口密封钉焊接设备
CN107331802B (zh) * 2017-06-19 2020-03-24 惠州市海龙模具塑料制品有限公司 电池箱体及其制造方法
CN109428021B (zh) * 2017-08-31 2024-04-02 宁德时代新能源科技股份有限公司 框体以及电池模组
CN107959041A (zh) * 2017-11-27 2018-04-24 桑顿新能源科技有限公司 一种软包电芯小模组及其成组方法
CN110323462B (zh) * 2019-04-19 2021-07-27 欣旺达电子股份有限公司 电池包
CN110165133A (zh) * 2019-05-28 2019-08-23 华为技术有限公司 一种电池及电池组
CN110571377A (zh) * 2019-08-26 2019-12-13 江西优特汽车技术有限公司 电池模组组装结构及组装方法
CN110571387A (zh) * 2019-10-12 2019-12-13 荣盛盟固利新能源科技有限公司 一体化电池模组
CN112838333A (zh) * 2019-11-22 2021-05-25 比亚迪股份有限公司 一种电池、电池模组、电池包和汽车
CN111293253B (zh) * 2020-04-24 2020-10-23 比亚迪股份有限公司 电池包及电动车
CN113594612B (zh) * 2020-04-30 2024-06-21 蜂巢能源科技有限公司 用于车辆的电池模组以及具有其的车辆
CN113594610B (zh) * 2020-04-30 2024-02-23 蜂巢能源科技有限公司 用于车辆的电池模组以及车辆
CN114614178A (zh) 2020-12-09 2022-06-10 华为数字能源技术有限公司 一种电池模组、电池包及车辆
CN113300034A (zh) * 2021-06-15 2021-08-24 江苏中兴派能电池有限公司 一种密封式电池及电池模组
EP4318755A4 (en) * 2022-01-05 2024-08-14 Contemporary Amperex Technology Co Ltd BATTERY, ELECTRIC DEVICE, AND BATTERY PREPARATION METHOD AND DEVICE
WO2023133747A1 (zh) * 2022-01-13 2023-07-20 宁德时代新能源科技股份有限公司 电池、用电设备、制备电池的方法和设备
CN115810805A (zh) * 2022-12-30 2023-03-17 蔚来电池科技(安徽)有限公司 一种电池制造方法、电池及电化学装置
CN117254189B (zh) * 2023-08-22 2024-08-20 山东大学 面向ctc技术的超级集成式动力电池系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101789522A (zh) * 2010-04-20 2010-07-28 沧州荣泰新能源科技有限公司 塑壳型动力锂电池
CN102460816A (zh) * 2009-05-20 2012-05-16 江森自控帅福得先进能源动力系统有限责任公司 锂离子电池模块
CN103647112A (zh) * 2013-12-24 2014-03-19 淄博洁力特种电池材料科技有限公司 侧面极柱多电压镍氢电池模组
CN203660011U (zh) * 2013-12-24 2014-06-18 淄博洁力特种电池材料科技有限公司 侧面极柱多电压镍氢电池模组
CN105576171A (zh) * 2016-03-22 2016-05-11 宁德时代新能源科技股份有限公司 一种电池模组
CN205429047U (zh) * 2016-03-22 2016-08-03 宁德时代新能源科技股份有限公司 一种电池模组

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201904409U (zh) * 2010-10-29 2011-07-20 上海卡能迪蓄能科技有限公司 可修复大型锂离子二次电池
CN202174779U (zh) * 2011-07-07 2012-03-28 昆山雅森电子材料科技有限公司 电池壳层结构
CN203521509U (zh) * 2013-08-12 2014-04-02 深圳市沃特玛电池有限公司 大容量锂离子电池包

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102460816A (zh) * 2009-05-20 2012-05-16 江森自控帅福得先进能源动力系统有限责任公司 锂离子电池模块
CN101789522A (zh) * 2010-04-20 2010-07-28 沧州荣泰新能源科技有限公司 塑壳型动力锂电池
CN103647112A (zh) * 2013-12-24 2014-03-19 淄博洁力特种电池材料科技有限公司 侧面极柱多电压镍氢电池模组
CN203660011U (zh) * 2013-12-24 2014-06-18 淄博洁力特种电池材料科技有限公司 侧面极柱多电压镍氢电池模组
CN105576171A (zh) * 2016-03-22 2016-05-11 宁德时代新能源科技股份有限公司 一种电池模组
CN205429047U (zh) * 2016-03-22 2016-08-03 宁德时代新能源科技股份有限公司 一种电池模组

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108417766A (zh) * 2018-05-18 2018-08-17 中兴高能技术有限责任公司 线束隔离复合片、电池模组和电池管理系统
CN108899464A (zh) * 2018-07-02 2018-11-27 中兴高能技术有限责任公司 一种电池模组的汇流排和电池模组
CN110581302A (zh) * 2019-10-17 2019-12-17 北京普莱德新能源电池科技有限公司 一种电池模组及电动装置
CN110854329A (zh) * 2019-11-26 2020-02-28 浙江天能能源科技股份有限公司 一种方型电芯用电池盒结构
CN114079111A (zh) * 2020-08-11 2022-02-22 北京好风光储能技术有限公司 一种大型竖式储能电池以及储能集装箱
CN114079111B (zh) * 2020-08-11 2023-11-14 好风光储能技术(成都)有限公司 一种大型竖式储能电池以及储能集装箱
CN113118624A (zh) * 2021-04-22 2021-07-16 远景动力技术(江苏)有限公司 双层极耳与巴片光纤激光焊接方法
CN113690513A (zh) * 2021-08-18 2021-11-23 Oppo广东移动通信有限公司 电池模块及电子设备
CN113690513B (zh) * 2021-08-18 2023-08-29 Oppo广东移动通信有限公司 电池模块及电子设备
CN113851698A (zh) * 2021-10-12 2021-12-28 合肥国轩高科动力能源有限公司 一种动力锂离子电池

Also Published As

Publication number Publication date
CN105576171A (zh) 2016-05-11

Similar Documents

Publication Publication Date Title
WO2017161835A1 (zh) 一种电池模组
CN205429047U (zh) 一种电池模组
KR20190069527A (ko) 단추형전지 및 그 제조방법
KR100770115B1 (ko) 배터리 팩
KR100973313B1 (ko) 보호회로기판 및 이를 구비하는 배터리 팩
CN206490120U (zh) 电池模组
TW201637262A (zh) 蓄電裝置用外裝體
CN109449322A (zh) 一种具有超薄金属外壳的新型锂电池
JP7034408B2 (ja) ベンティング装置およびその製造方法
EP2866275B1 (en) Pouch-type secondary cell and method for manufacturing same
CN114175368B (zh) 二次电池的电池壳体及制造排气部的方法
CN113557630A (zh) 电池和具有所述电池的用电装置
CN102456910B (zh) 一种锂离子动力电池
EP4037049A1 (en) Secondary battery and sealing block
KR20160080559A (ko) 실링부가 보강된 파우치형 이차 전지 및 이의 제조 방법
KR20080087192A (ko) 우수한 내구성의 이차전지
KR101308325B1 (ko) 이차전지
JP7515951B2 (ja) 電極組立体およびその製造方法
JP2021517710A (ja) 二次電池用パウチ及びパウチ型二次電池
CN201868522U (zh) 一种锂离子动力电池
KR20080036739A (ko) 이차 전지
CN110048077A (zh) 电极构件、电极组件和充电电池
KR20080036738A (ko) 이차전지 및 그 제조방법
CN220065861U (zh) 一种电池盖板及其电池
CN206076293U (zh) 改良的铜塑膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16895184

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16895184

Country of ref document: EP

Kind code of ref document: A1