WO2017161828A1 - 一种基于线结构光的三维测量传感器 - Google Patents

一种基于线结构光的三维测量传感器 Download PDF

Info

Publication number
WO2017161828A1
WO2017161828A1 PCT/CN2016/096911 CN2016096911W WO2017161828A1 WO 2017161828 A1 WO2017161828 A1 WO 2017161828A1 CN 2016096911 W CN2016096911 W CN 2016096911W WO 2017161828 A1 WO2017161828 A1 WO 2017161828A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
sensor
controller
measurement
laser
Prior art date
Application number
PCT/CN2016/096911
Other languages
English (en)
French (fr)
Inventor
李清泉
张德津
曹民
王新林
林红
Original Assignee
武汉武大卓越科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉武大卓越科技有限责任公司 filed Critical 武汉武大卓越科技有限责任公司
Priority to CA3021730A priority Critical patent/CA3021730C/en
Priority to US16/098,105 priority patent/US10571256B2/en
Priority to AU2016399114A priority patent/AU2016399114B2/en
Publication of WO2017161828A1 publication Critical patent/WO2017161828A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/245Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using a plurality of fixed, simultaneously operating transducers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/521Depth or shape recovery from laser ranging, e.g. using interferometry; from the projection of structured light
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods

Definitions

  • the present invention relates to the field of three-dimensional measurement technology, and in particular to a three-dimensional measurement sensor based on line structure light.
  • 3D laser scanning measurement technology overcomes the limitations of traditional measurement technology. It uses non-contact active measurement to directly acquire high-precision 3D data. It can scan any object around the clock and quickly convert real-world information into data that can be processed. Reduce costs, save time and ease of use. Typical products include Leica, Switzerland, Rigel, Austria, Optech, Canada, and FARO.
  • the three-dimensional data characteristics required for a particular research object are not exactly the same, that is, the way in which the three-dimensional data is acquired will be subject to special requirements as the research object changes.
  • the three-dimensional point cloud of the object surface is obtained from a macroscopic point of view, and the point cloud modeling can be used to meet the demand, which is characterized by a wide range and relatively low precision requirements.
  • the basic principle is to use a rotating prism to measure a single section and a rotating pan-tilt to scan the entire field of view to obtain a three-dimensional point cloud of the object. Based on the time-of-flight pulse measurement, the measurement accuracy reaches millimeter level, and the measurement speed reaches more than one million points per second.
  • the prism and the pan/tilt rotate synchronously, and the measurement section is a non-strict section (obtained in the same time and space), that is, a three-dimensional point cloud of the object surface composed of discrete points.
  • the measurement width is at least 2000 mm
  • the measurement resolution the interval of the same section is at least 100 mm
  • the distance measurement accuracy is 0.01 mm
  • the measurement frequency is 10 KHz or more.
  • Synchronous control and acquisition of data requires high-precision object and image conversion calibration, especially data processing needs to be professionally processed according to application requirements. Therefore, research on integrated 3D cameras, lasers, attitude sensors and data preprocessing methods for 3D measurement sensors, design fast, fully automatic and high precision sensor calibration methods and tools to achieve high frequency, high precision and high dynamic environment measurement The sensor has great practical significance.
  • the technical problem to be solved by the present invention is to provide a three-dimensional measuring sensor based on line structured light to overcome the problem that the existing three-dimensional measuring sensor cannot satisfy the three-dimensional measurement based on the section.
  • the present invention provides a three-dimensional measuring sensor based on line structure light, which comprises a sensor head and a controller.
  • the sensing head is used for measuring, including the acquisition of the cross-section data and the self-pose information, and matching the cross-section data with the self-pose information, and acquiring the state information of the sensing head;
  • the controller is configured to measure and control the sensing head, perform data processing transmission, and support external control, including controlling power supply of each sensor head, triggering sensor head acquisition, controlling sensor head control parameters, verifying sensor head data, and matching And splicing the data of each sensor head, and using the built-in algorithm to process the sensor head data.
  • the number of sensing heads of the present invention is plural, and is respectively connected to the controller, and each sensing head is configured by using RS485 or CAN bus.
  • the controller supports external control, including receiving positioning and positioning information of the external system, and matching the positioning and positioning information with the sectional data; receiving a trigger signal of the external system, triggering the sensing head to collect data.
  • the controller performs data processing transmission, including outputting state information of each sensor head operation, and receiving a control instruction of the host computer; and outputting the collected original data, the original data including the cross-section data of each matched sensor head and itself The attitude information; the output result data is the result of the controller performing data processing.
  • the sensing head is composed of a three-dimensional camera (including a lens and a filter), an attitude sensor, a laser, and a control circuit sub-board.
  • the three-dimensional camera is mounted at an angle to the laser, and uses the principle of triangulation to acquire elevation and gray scale information of the surface of the object corresponding to the laser line;
  • the attitude sensor is mounted on the same rigid plane as the three-dimensional camera and the laser, and the attitude sensor reacts to the measurement posture of the three-dimensional camera and the laser in real time;
  • the control circuit daughter board includes a first power supply unit, a first control unit, and an acquisition unit.
  • the first power supply unit supplies power to all devices in the sensing head; the first control unit controls the operation of the three-dimensional camera and the laser; the acquisition unit collects the three-dimensional camera, the attitude sensor, the trigger signal and the status information, and performs the three-dimensional camera, the attitude sensor and the trigger signal.
  • the data matches.
  • the controller is composed of a control circuit motherboard, an embedded computer, and a storage device.
  • the controller is connected to one or more of the sensing heads;
  • the control circuit motherboard includes a second power supply unit and a second control unit;
  • the second power supply unit is configured to supply power to the device in the controller and supply power to the sensing head;
  • the second control unit is configured to receive an external trigger signal or generate a trigger signal autonomously, trigger the operation of the sensor head, and control the control parameter of the sensor head by using the trigger signal, and the upper computer controls the operation of the plurality of sensors by using an external trigger signal. ;
  • the second control unit is configured to receive status information of one or more sensing heads, perform an alarm according to the status information, or stop the operation of the sensing head, and feed back the operating status to the upper computer;
  • the embedded computer is configured to receive cross-section data matched by one or more sensing heads, verify data validity, and use a trigger signal to match data of the plurality of sensing heads and externally input positioning and positioning data;
  • the embedded computer generates and outputs the result data by performing processing such as image data to object side data conversion, abnormal data replacement, measurement posture correction, and target feature extraction on the collected raw data.
  • the invention is based on line structure light, high-speed high-resolution vision sensor, high-precision attitude sensor, high dynamic precision three-dimensional measurement technology adopting triangulation principle, and the measurement precision reaches micron level, frequency is above 10KHz, and the research is developed.
  • the high-dynamic precision three-dimensional measuring sensor realizes synchronous measurement of the measured object at the same attitude and at the same time, and supports high-speed and high-precision measurement in a high dynamic environment.
  • the measurement technology can be applied to industrial production, such as chip defect detection, using the measurement technology to establish a micron-scale three-dimensional model of the chip, and realize automatic detection of weak defects of the online chip.
  • FIG. 1 is a schematic diagram of a three-dimensional measuring sensor based on line structured light according to the present invention.
  • FIG. 2 is a block diagram showing the principle of the sensing head of the present invention.
  • FIG. 3 is a block diagram showing the principle of the controller of the present invention.
  • FIG. 4 is a top plan view showing the structure of the sensing head of the present invention.
  • Figure 5 is a rear elevational view of the structure of the sensing head of the present invention.
  • FIG. 6 is a schematic structural view of a front panel of a controller of the present invention.
  • FIG. 7 is a schematic structural view of a rear panel of the controller of the present invention.
  • Figure 8 is a data flow diagram of the operation of the sensing head of the present invention.
  • Figure 9 is a data flow diagram of the operation of the controller of the present invention.
  • FIG. 10 is a flowchart of a built-in algorithm processing of the controller of the present invention
  • Figure 11 is an illustration of measurement section data of the present invention.
  • the three-dimensional measuring sensor based on the line structure light is composed of a sensing head and a controller.
  • the sensing head realizes the measurement
  • the controller realizes the measurement control and the data processing transmission.
  • the sensor head is responsible for collecting the cross-section data and its own attitude information, and matching the two.
  • the controller integrates and controls each sensor head, including controlling the power supply of each sensor head, triggering the sensor head acquisition, controlling the sensor head control parameters, and verifying the transmission.
  • One controller is connected to one or more sensing heads while the controller supports external control.
  • a three-dimensional measuring sensor based on line structure light can receive positioning and positioning information of an external measuring system and break it The surface data is matched; the trigger signal of the external measurement system is received, the system is triggered to collect data, and the data can be collected according to a certain frequency.
  • Each sensor in the three-dimensional measuring sensor based on the line structure light uses the RS485 or CAN bus to network and transmit the operating state of each sensor in the system.
  • the three-dimensional measurement sensor based on the line structure light outputs the state information of the system operation, and simultaneously receives the control instruction of the upper computer; and also outputs the original data collected by the system, and the original data includes the cross-section data and the attitude data of each matched sensor head;
  • the output result data is data processed by an algorithm built into the controller. According to different measurement needs, different algorithms can be built in to obtain different result data.
  • the sensing head of the three-dimensional measuring sensor based on the line structured light is composed of a three-dimensional camera (including a lens and a filter), an attitude sensor, a laser, and a control circuit sub-board.
  • the three-dimensional camera is mounted at an angle to the laser, and the triangulation principle is used to obtain the elevation and gray scale information of the surface of the object corresponding to the laser line;
  • the attitude sensor is mounted on the same rigid plane as the three-dimensional camera and the laser, and the attitude sensor reacts to the measurement posture of the three-dimensional camera and the laser in real time;
  • the control circuit daughter board includes a first power supply unit, a first control unit, and an acquisition unit.
  • the first power supply unit supplies power to all devices in the sensing head; the first control unit controls the operation of the three-dimensional camera and the laser; the acquisition unit collects the three-dimensional camera, the attitude sensor, the trigger signal and the status information, and performs the three-dimensional camera, the attitude sensor and the trigger signal.
  • the data matches.
  • the controller is composed of a control circuit motherboard, an embedded computer, and a storage device.
  • the controller is connected to one or more of the sensing heads;
  • the control circuit motherboard includes a second power supply unit and a second control unit;
  • the second power supply unit is configured to supply power to the device in the controller and supply power to the sensing head;
  • the second control unit is configured to receive an external trigger signal or generate a trigger signal autonomously, trigger the operation of the sensor head, and control the control parameter of the sensor head by using the trigger signal, and the upper computer controls the operation of the plurality of sensors by using an external trigger signal. ;
  • the second control unit is configured to receive status information of one or more sensing heads, perform an alarm according to the status information, or stop the operation of the sensing head, and feed back the operating status to the upper computer;
  • the embedded computer is configured to receive cross-section data matched by one or more sensing heads, verify data validity, and use a trigger signal to match data of the plurality of sensing heads and externally input positioning and positioning data;
  • the embedded computer performs image-to-object data conversion and abnormal number on the collected raw data. According to the replacement, measurement posture correction, target feature extraction and the like, the result data is generated and outputted.
  • the sensor head is the core part of data acquisition, and its structural applicability reflects the applicability of the entire 3D measurement sensor based on line structure light.
  • the specific structure is shown in Figure 4 and Figure 5:
  • the laser is perpendicular to the surface of the object to be measured.
  • the angle between the three-dimensional camera and the laser is ⁇ , ⁇ is in the range of 4 to 45 degrees, the distance between the two is L, L is 60 to 1000 mm, and the working distance of the sensor is 100 to 5000 mm. 20 ⁇ 300mm, the resolution of the measurement can reach 0.0005 ⁇ 0.2mm.
  • the working distance changes, it is necessary to adjust the angle and spacing between the camera and the laser.
  • Table 1 the specific installation parameters are shown in Table 1 below:
  • the controller is the sensor control core, its structure is standardized, and the interface is universalized. It also reflects the applicability of the whole three-dimensional measurement sensor based on line structure light. Its structure is shown in Figures 6 and 7.
  • the sensor head power-on data flow chart after the sensor head is powered on, three tasks are started: the attitude sensor data acquisition task, the three-dimensional camera data acquisition task, and the state information collection task.
  • Attitude sensor data acquisition task :
  • the flow of the 3D camera data collection task is:
  • the control circuit daughter board waits for the trigger signal, if not, continues to wait, if any, proceeds to the next step;
  • the controller As shown in the working data flow chart of the controller shown in FIG. 9 , after the controller is powered on, four tasks are started: the sensor head data collection task, the data processing task, the data sending task, and the state information collection task.
  • the sensor head data collection task flow is as follows:
  • the data processing task flow is as follows:
  • the data transmission process is as follows:
  • Image data is converted to object data.
  • the line structure light three-dimensional measuring sensor directly acquires the position of the laser line at the image side, so the image side sectional contour of the measurement is converted into the object side sectional contour by calibration, and the specific calibration method may have multiple prior art techniques.
  • the selection of the scheme is a conventional means by those skilled in the art, and therefore will not be described again.
  • the measuring sensor has its own measuring posture (including the mounting posture and the moving posture) during the measurement process, and combines the positioning and positioning information to correct the measurement error caused by the measurement posture, thereby obtaining the true sectional contour of the measured object.
  • Target feature extraction Combine the difference between the contour feature of the measured object and the target feature (for example, by comparing the difference between the measured profile profile and the standard profile to obtain the object deformation information), and extract the target signal.
  • the extracted target signal is recorded in the specified data format, and the target signal information is recorded, thereby generating result data.
  • Figure 11 shows an example of the measurement section data.
  • the left picture shows the 7mm high-volume block and 10mm on the 2m plane profile.
  • An example of a section measurement result of a high-volume block (a gauge width of about 5 cm to 8 cm); the right figure is an example of an actual measured asphalt pavement section result.
  • the three-dimensional measuring sensor based on line structure light proposed by the invention can synchronously measure the measured object at the same posture and at the same time, and supports high speed in high dynamic environment such as road disease detection, tunnel measurement, track disease detection and cultural relics archaeology. High-precision measurement with measurement accuracy up to the micron level.
  • the three-dimensional measuring sensor based on the line structure light integrates the three-dimensional camera, the laser and the attitude sensor into the sensing head, and the working distance can reach 100-5000 mm, and the range of the three-dimensional measuring sensor based on the line structure light can be guaranteed within the working range. 20 to 300 mm, the accuracy is 0.0005 to 0.2 mm.
  • the attitude sensor can complete the matching of the attitude data and the section data.
  • the posture data can be used to correct the section data section value according to the need, so as to improve the data precision.
  • a controller can connect multiple sensing heads for data acquisition and complete matching between multiple sensor head data, thus increasing the measurement range of the three-dimensional measuring sensor based on line structured light.
  • the three-dimensional measuring sensor based on the line structure light reduces the requirements of the upper computer. Since the controller completes some data processing tasks, the amount of data interaction with the upper computer is reduced, thereby reducing the requirements of the upper computer.

Abstract

一种基于线结构光的三维测量传感器,包括传感头和控制器,传感头用于断面数据与自身姿态信息的采集,并进行断面数据与自身姿态信息的匹配;传感头包括三维相机、姿态传感器、激光器及控制子板;三维相机与激光器成一定角度安装,利用三角测量原理,获取激光线所对应物体表面的高程与灰度信息;姿态传感器与三维相机、激光器安装在同一个刚性平面上,姿态传感器实时反应三维相机与激光器的测量姿态。控制器用于测量控制传感头、进行数据处理传输以及支持外部控制。该传感器实现了同一姿态、同一时间对被测对象进行同步测量,支持高动态环境下高速、高精度测量,测量精度达到微米级,频率10KHz以上。

Description

一种基于线结构光的三维测量传感器 技术领域
本发明涉及三维测量技术领域,尤其涉及到一种基于线结构光的三维测量传感器。
背景技术
三维激光测量技术的出现和发展为空间三维信息的获取提供了全新的技术手段,为信息数字化发展提供了必要的生存条件。三维激光扫描测量技术克服了传统测量技术的局限性,采用非接触主动测量方式直接获取高精度三维数据,能够全天候对任意物体进行扫描,快速将现实世界的信息转换成可以处理的数据,极大地降低成本,节约时间且使用方便,典型产品包括瑞士Leica、奥地利Rigel、加拿大Optech和美国FARO等。
然而,特定研究对象所需的三维数据特征并不完全一样,即获取三维数据的方式会随研究对象的变化而提出特殊要求。比如对于传统国土调查、测量测绘、建筑物建模、矿产调查等,从宏观角度获取物体表面三维点云,利用点云建模即可满足需求,其特征是范围广,精度要求相对较低,允许固定站点测量,要求点云覆盖被研究对象,对组成点云的单点间关系没有特殊要求,测量结果往往是相对于测量站点的绝对距离;对于特定研究如文物考古、路面病害检测、隧道测量、机场跑道异物及病害检测、芯片缺陷检测等要求在高动态环境测量,精度达到微米级,点云间需要满足特定关系,测量结果往往是相对于被测物自身的相对距离。宏观三维点云获取及建模国内外已经进行了较多研究,基于激光测量技术的三维激光雷达已经成熟并得到广泛应用,如奥地利RIEGL、美国FARO及国内海达数云等均都有成熟产品,基本原理均采用旋转棱镜测量单个断面、旋转云台扫描整个视场方式获取物体三维点云,基于时间飞行差脉冲测量,测量精度达到毫米级,测量速度达到每秒百万点以上,测量时棱镜和云台同步旋转,测量断面是非严格意义上的断面(非同一时空下获取),即为离散点组成的物体表面三维点云。但是,在诸如公路检测、隧道测量、轨道病害检测及文物考古等方面,要求在高动态环境下测量,且要求一次测量能获取严格意义上的一个断面,即断面上的点是同一姿态、同一时间测量,如轨道轨廓检测和公路车辙检测等,测量幅宽至少2000毫米以上,测量分辨率(同一断面的点采用间隔)至少达到毫米,距离测量精度达到0.01毫米,测量频率10KHz以上,相当于每秒测量2亿个点,现有激光三维雷达测量技术都无法满足测 量需求。因此,研究基于线扫描的三维测量传感器具有极大的社会和经济价值。
国际上,本世纪初就已经开始线扫描三维测量技术研究,如德国SICK公司的RANGER系列产品,但受制于传感器,测量频率和精度相对较低。随着新一代三维测量相机发展,在相机中集成断面提取算法,相机输出测量断面像方点云,频率得到大幅提高,达到20KHz以上,使得高动态环境下三维测量成为可能。三维相机虽然实现了三维断面的高频率提取,但是面对不同使用环境的特定测量要求,三维相机自身无法直接满足测量应用要求,三维相机需要配合合适激光光源,需要根据环境融合姿态信息,需要对数据进行同步控制和采集,需要实现高精度的物方和像方转换标定,特别是数据处理需要根据应用要求专业处理。因此,研究集成三维相机、激光器、姿态传感器及数据预处理方法的三维测量传感器,设计快速、全自动和高精度的传感器标定方法和工具,实现在高频率、高精度和满足高动态环境测量的传感器有着巨大的实用意义。
发明内容
本发明所要解决的技术问题是提供一种基于线结构光的三维测量传感器,以克服现有三维测量传感器不能满足基于断面的三维测量问题。
为解决上述技术问题,本发明提出了一种基于线结构光的三维测量传感器,包括传感头和控制器两部分,
所述传感头用于测量,包括断面数据与自身姿态信息的采集,并进行断面数据与自身姿态信息两者的匹配,同时采集传感头的状态信息;
所述控制器用于测量控制所述传感头、进行数据处理传输以及支持外部控制,包括控制各传感头供电,触发传感头采集,控制传感头控制参数,检验传感头数据,匹配与拼接各传感头数据,并利用内置算法处理传感头数据。
优选的,在道路病害检测、隧道测量检测过程中,由于被测物宽度(垂直于行车方向)较大,单个传感头无法同时覆盖,需要多个传感头同时工作,以达到增大测量范围的目的。因此,本发明的传感头数量为多个,同时分别与控制器连接,各传感头利用RS485或CAN总线的方式进行组网。
所述控制器支持外部控制,包括接收外部系统的定位定姿信息,并将所述定位定姿信息与断面数据进行匹配;接收外部系统的触发信号,触发传感头采集数据。
所述控制器进行数据处理传输,包括输出各传感头运行的状态信息,同时接收上位机的控制指令;输出采集到的原始数据,原始数据包括匹配后的各传感头的断面数据与自身姿态信息;输出的结果数据是控制器进行数据处理后的结果。
进一步的,所述传感头由三维相机(包含镜头与滤光片)、姿态传感器、激光器及控制电路子板组成。
所述三维相机与激光器成一定角度安装,利用三角测量原理,获取激光线所对应物体表面的高程与灰度信息;
所述姿态传感器与三维相机、激光器安装在同一个刚性平面上,姿态传感器实时反应三维相机与激光器的测量姿态;
所述控制电路子板,包括第一供电单元、第一控制单元与采集单元。第一供电单元对传感头内所有设备供电;第一控制单元控制三维相机与激光器工作;采集单元采集三维相机、姿态传感器、触发信号及状态信息,并对三维相机、姿态传感器与触发信号进行数据匹配。
所述控制器由控制电路母板、嵌入式计算机、储存设备组成。
所述控制器连接一个或多个所述传感头;
所述控制电路母板包括第二供电单元、第二控制单元;
所述第二供电单元,用于为所述控制器内的设备供电以及为所述传感头供电;
所述第二控制单元,用于接收外部的触发信号或自主产生触发信号,触发传感头工作,并利用触发信号控制传感头的控制参数,上位机利用外部触发信号控制多个本传感器工作;
所述第二控制单元,用于接收一个或多个传感头的状态信息,根据状态信息进行报警或停止传感头工作,并将运行状态反馈给上位机;
所述嵌入式计算机,用于接收一个或多个传感头匹配的断面数据,检验数据有效性,并利用触发信号对多个传感头的数据,以及外部输入的定位定姿数据进行匹配;
所述嵌入式计算机,通过对采集的原始数据进行像方数据到物方数据转换、异常数据替换、测量姿态矫正、目标特征提取等处理,从而生成并对外输出结果数据。
有益效果:
本发明研究基于线结构光、高速高分辨率视觉传感器、高精度姿态传感器,采用三角测量原理的高动态精密三维测量技术,测量精度达到微米级,频率10KHz以上,研制 出高动态精密三维测量传感器,实现同一姿态、同一时间对被测对象进行同步测量,支持高动态环境下高速、高精度测量。同时,该测量技术可应用于工业生产,如在芯片缺陷检测方面,利用该测量技术建立芯片微米级三维模型,实现在线芯片微弱缺陷的自动检测等。
附图说明
下面结合附图和具体实施方式对本发明的技术方案作进一步具体说明。
图1为本发明基于线结构光的三维测量传感器原理图。
图2为本发明传感头组成原理框图。
图3为本发明控制器组成原理框图。
图4为本发明传感头结构俯视示意图。
图5为本发明传感头结构后视示意图。
图6为本发明控制器前面板结构示意图。
图7为本发明控制器后面板结构示意图。
图8为本发明传感头工作的数据流程图。
图9为本发明控制器工作的数据流程图。
图10为本发明控制器内置算法处理流程图。
图11为本发明测量断面数据示例。
具体实施方式
如图1所示,基于线结构光的三维测量传感器由传感头和控制器两部分组成,传感头实现测量,控制器实现测量控制和数据处理传输。传感头负责采集断面数据与自身姿态信息,并进行两者匹配,控制器集成控制各传感头,包括控制各传感头供电,触发传感头采集,控制传感头控制参数,检验传感头数据,匹配与拼接各传感头数据,并利用内置算法处理传感头数据。在道路病害检测、隧道测量检测过程中,由于被测物宽度(垂直于行车方向)较大,单个传感头无法同时覆盖,需要多个传感头同时工作,以达到增大测量范围的目的。一个控制器连接一个或多个传感头,同时控制器支持外部控制。
基于线结构光的三维测量传感器可接收外部测量系统的定位定姿信息,并将其与断 面数据进行匹配;接收外部测量系统的触发信号,触发系统采集数据,同时也可按照一定的频率进行数据采集。
基于线结构光的三维测量传感器中各传感器利用RS485或CAN总线的方式进行组网,传输系统中各传感器的运行状态。
基于线结构光的三维测量传感器输出系统运行的状态信息,同时接收上位机的控制指令;也可输出系统采集到的原始数据,原始数据包括匹配后的各传感头的断面数据与姿态数据;输出的结果数据是利用内置于控制器内的算法进行处理后的数据。根据不同的测量需要可内置不同的算法,获取不同的结果数据。
如图2所示,基于线结构光的三维测量传感器的传感头由三维相机(包含镜头与滤光片)、姿态传感器、激光器及控制电路子板组成。三维相机与激光器成一定角度安装,利用三角测量原理,获取激光线所对应物体表面的高程与灰度信息;
姿态传感器与三维相机、激光器安装在同一个刚性平面上,姿态传感器实时反应三维相机与激光器的测量姿态;
控制电路子板,包括第一供电单元、第一控制单元与采集单元。第一供电单元对传感头内所有设备供电;第一控制单元控制三维相机与激光器工作;采集单元采集三维相机、姿态传感器、触发信号及状态信息,并对三维相机、姿态传感器与触发信号进行数据匹配。
如图3所示,控制器由控制电路母板、嵌入式计算机、储存设备组成。
所述控制器连接一个或多个所述传感头;
所述控制电路母板包括第二供电单元、第二控制单元;
所述第二供电单元,用于为所述控制器内的设备供电以及为所述传感头供电;
所述第二控制单元,用于接收外部的触发信号或自主产生触发信号,触发传感头工作,并利用触发信号控制传感头的控制参数,上位机利用外部触发信号控制多个本传感器工作;
所述第二控制单元,用于接收一个或多个传感头的状态信息,根据状态信息进行报警或停止传感头工作,并将运行状态反馈给上位机;
所述嵌入式计算机,用于接收一个或多个传感头匹配的断面数据,检验数据有效性,并利用触发信号对多个传感头的数据,以及外部输入的定位定姿数据进行匹配;
所述嵌入式计算机,通过对采集的原始数据进行像方数据到物方数据转换、异常数 据替换、测量姿态矫正、目标特征提取等处理,从而生成并对外输出结果数据。
传感头是数据采集的核心部分,其结构上的适用性,反映了整个基于线结构光的三维测量传感器的适用性。其具体结构如图4、图5所示:
激光器垂直于被测物表面,三维相机与激光器成夹角α,α的范围是4~45度,两者相距L,L的范围是60~1000mm,传感器的工作距离为100~5000mm,测量范围20~300mm,测量的分辨率可达到0.0005~0.2mm。在工作距离发生变化时,需要调节相机与激光器的夹角与间距。针对不同车型,其具体安装参数如下表一所示:
表一传感头安装参数表
Figure PCTCN2016096911-appb-000001
控制器是传感器控制核心,其结构的标准化,接口的通用化,同样反映了整个基于线结构光的三维测量传感器的适用性,其结构如图6、7所示。
如图8所示的传感头上电工作数据流程图,传感头上电工作后,开启三项任务:姿态传感器数据采集任务,三维相机数据采集任务,状态信息采集任务。
姿态传感器数据采集任务:
(1)采集姿态传感器数据;
(2)解析姿态传感器数据,并将其存入数据缓存;
(3)重复1、2。
三维相机数据采集任务的流程为:
(1)控制电路子板等待触发信号,若无则继续等待,若有则进行下一步;
(2)触发信号记数加1,用于后期数据匹配;
(3)触发三维相机采集数据,并等待三维相机回传数据;
(4)接收三维相机数据,并存入数据缓存;
(5)从姿态传感器数据缓存中获取最新的姿态数据;
(6)对三维相机数据,姿态数据,触发信号进行数据匹配;
(7)重复1、2、3、4、5、6。
状态信息采集任务:
(1)采集状态数据;
(2)发送状态数据;
(3)重复1、2。
如图9所示的控制器工作数据流程图,控制器上电工作后,开启四项任务:传感头数据采集任务,数据处理任务,数据发送任务,状态信息采集任务。
传感头数据采集任务流程如下:
(1)等待外部输入的触发信号或控制电路母板自产生的触发信号;
(2)接收到触发信号后,接收外部输入的定位定姿信息;
(3)向各传感头发送触发信号,控制其采集与控制参数;
(4)等待接收各传感头的原始数据,检验数据有效性,并将原始数据与定位定姿信息存入原始数据缓存中;
(5)重复1、2、3、4。
数据处理任务流程如下:
(1)等待原始数据,主要是检测原始数据缓存中是否有数据更新;
(2)利用触发信号,对原始数据,包含各传感头断面数据以及定位定姿信息,进行数据匹配;
(3)利用嵌入式计算机内置数据处理算法对原始数据进行处理,生成结果数据,并将其存入结果数据缓存中;
(4)重复1、2、3。
数据发送流程如下:
(1)等待结果数据,主要是检测结果数据缓存中是否有数据更新;
(2)向上位机发送结果数据;
(3)重复1、2。
如图10所示数据处理算法流程,具体步骤如下:
(1)像方数据到物方数据转化。所述线结构光三维测量传感器直接获取的是激光线在像方的位置,故需通过标定,将测量的像方断面轮廓转化为物方断面轮廓,具体的标定方法可有多个现有技术方案选用,是本领域技术人员的常规手段,故不再赘述。
(2)异常数据处理。由于测量环境的变化,所述线结构光三维测量传感器测量的物体断面轮廓中可能存在部分异常噪声点,本发明结合被测物体轮廓特征,定位异常数据区域,并利用异常数据区域附近的非异常值替换该异常数据区域的异常值。
(3)测量姿态矫正。测量传感器在测量过程中存在自身的测量姿态(包含安装姿态、运动姿态),结合定位定姿信息,矫正测量姿态引起的测量误差,从而获被测取物体的真实断面轮廓。
(4)目标特征提取。结合被测物体轮廓特征与目标特征差异(如通过比较测量断面轮廓与标准轮廓差异,获取物体形变信息),提取目标信号。
(5)结果数据生成。将提取的目标信号,按指定数据格式,记录目标信号信息,进而生成结果数据。
图11为测量断面数据示例,左图为2m平面型材上依次摆放7mm高量块、10mm 高量块(量块宽度约为5cm~8cm)的断面测量结果示例;右图为实际测量的沥青路面断面结果示例。
本发明提出的基于线结构光的三维测量传感器能实现同一姿态、同一时间对被测对象进行同步测量,支持在诸如道路病害检测、隧道测量、轨道病害检测及文物考古等高动态环境下完成高速、高精度测量,测量精度达到微米级。
基于线结构光的三维测量传感器中将三维相机、激光器、姿态传感器集成在传感头内,工作距离能达到100~5000mm,在此工作范围内可保证基于线结构光的三维测量传感器的量程达到20~300mm,精度达到0.0005~0.2mm。
在传感头采集数据时,其中的姿态传感器能完成姿态数据与断面数据的匹配,在后续的数据处理过程中可根据需要运用姿态数据对断面数据断面值的修正,达到提高数据精度的目的。
一个控制器能连接多个传感头进行数据采集,并完成多传感头数据间的匹配,因此可以增大基于线结构光的三维测量传感器的测量范围。
基于线结构光的三维测量传感器降低上位机要求,由于控制器完成了部分数据处理任务,减少了与上位机的数据交互量,从而降低了上位机的要求。
最后所应说明的是,以上具体实施方式仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (5)

  1. 一种基于线结构光的三维测量传感器,其特征在于,包括传感头和控制器两部分,
    所述传感头用于测量,包括断面数据与自身姿态信息的采集,断面数据与自身姿态信息匹配和与控制器的通讯维持;
    所述控制器用于控制所述传感头、数据处理与传输以及外部控制指令支持,包括控制各传感头供电、传感头采集触发、传感头控制参数、传感头数据校验、传感头数据匹配与拼接和数据处理;
    所述传感头包括三维相机、姿态传感器、激光器及控制电路子板;
    所述三维相机与激光器以一定夹角安装,基于三角测量原理获取被测物体表面的高程与灰度信息;
    所述姿态传感器与三维相机、激光器安装在同一个刚性平面上,姿态传感器实时反馈三维相机与激光器的测量姿态;
    所述控制电路子板,包括第一供电单元、第一控制单元与采集单元;所述第一供电单元用于对传感头内所有设备供电;所述第一控制单元用于控制三维相机与激光器工作;所述采集单元用于采集三维相机、姿态传感器、触发信号及状态信息,并对三维相机、姿态传感器与触发信号进行数据匹配,最终将匹配后的断面数据与状态信息发送给控制器。
  2. 根据权利要求1所述的基于线结构光的三维测量传感器,其特征在于,所述传感头数量为多个,同时分别与所述控制器连接,各传感头利用RS485或CAN总线的方式进行组网。
  3. 根据权利要求1所述的基于线结构光的三维测量传感器,其特征在于,所述控制器支持外部控制,包括接收外部系统的定位定姿信息,并将所述定位定姿信息与断面数据进行匹配;接收外部系统的触发信号,触发传感头采集数据。
  4. 根据权利要求1所述的基于线结构光的三维测量传感器,其特征在于,所述控制器进行数据处理传输,包括输出各传感头运行的状态信息,同时接收上位机的控制指令;输出采集到的原始数据,原始数据包括匹配后的各传感头的断面数据与自身姿态信息;输出的结果数据是控制器进行数据处理后的结果。
  5. 根据权利要求1所述的基于线结构光的三维测量传感器,其特征在于,所述控制 器由控制电路母板、嵌入式计算机、储存设备组成。
    所述控制器连接一个或多个所述传感头;
    所述控制电路母板包括第二供电单元、第二控制单元;
    所述第二供电单元,用于为所述控制器内设备供电及为所述传感头供电;
    所述第二控制单元,用于接收外部的触发信号或自主产生触发信号,触发传感头工作,并利用触发信号控制传感头的控制参数,外部系统利用外部触发信号控制多个本传感器工作;
    所述第二控制单元,用于接收一个或多个传感头的状态信息,根据状态信息进行报警或停止传感头工作,并将运行状态反馈给上位机;
    所述嵌入式计算机,用于接收一个或多个传感头匹配的断面数据,检验数据有效性,并利用触发信号对多个传感头的数据,以及外部输入的定位定姿数据进行匹配;
    所述嵌入式计算机,通过对采集的原始数据进行像方数据到物方数据转换、异常数据替换、测量姿态矫正、目标特征提取等处理,从而生成并对外输出结果数据。
PCT/CN2016/096911 2016-03-22 2016-08-26 一种基于线结构光的三维测量传感器 WO2017161828A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA3021730A CA3021730C (en) 2016-03-22 2016-08-26 Three-dimensional measurement sensor based on line structured light
US16/098,105 US10571256B2 (en) 2016-03-22 2016-08-26 Three-dimensional measurement sensor based on line structured light
AU2016399114A AU2016399114B2 (en) 2016-03-22 2016-08-26 Three-dimensional measurement sensor based on line structured light

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610163636.7 2016-03-22
CN201610163636.7A CN106017355A (zh) 2016-03-22 2016-03-22 一种基于线结构光的三维测量传感器

Publications (1)

Publication Number Publication Date
WO2017161828A1 true WO2017161828A1 (zh) 2017-09-28

Family

ID=57082847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/096911 WO2017161828A1 (zh) 2016-03-22 2016-08-26 一种基于线结构光的三维测量传感器

Country Status (5)

Country Link
US (1) US10571256B2 (zh)
CN (1) CN106017355A (zh)
AU (1) AU2016399114B2 (zh)
CA (1) CA3021730C (zh)
WO (1) WO2017161828A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113310428A (zh) * 2021-06-11 2021-08-27 安徽工程大学 一种基于线结构光的同步传动表面轮廓测量系统及测量方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017120897A1 (zh) * 2016-01-15 2017-07-20 武汉武大卓越科技有限责任公司 基于线扫描三维点云的物体表面变形特征提取方法
JP7156896B2 (ja) * 2018-10-09 2022-10-19 株式会社日立ビルシステム 昇降路内計測システム
JP7130544B2 (ja) * 2018-12-20 2022-09-05 三星電子株式会社 3次元情報算出装置、3次元計測装置、3次元情報算出方法及び3次元情報算出プログラム
US11776143B2 (en) * 2019-03-28 2023-10-03 Nec Corporation Foreign matter detection device, foreign matter detection method, and program
CN112710250B (zh) * 2020-11-23 2022-12-23 武汉光谷卓越科技股份有限公司 基于线结构光的三维测量方法以及传感器
CN112729151B (zh) * 2020-12-04 2022-12-13 深圳大学 一种焊缝结构三维点云测量方法
CN113093690B (zh) * 2021-03-05 2022-11-01 杭州航天电子技术有限公司 一种姿态控制一体化控制器的检测装置
CN113483684B (zh) * 2021-07-02 2023-03-21 桂林理工大学 一种轨距在线测量系统
CN113640824A (zh) * 2021-08-20 2021-11-12 西安外事学院 一种光摄一体式控制系统及控制方法
CN113847884A (zh) * 2021-09-18 2021-12-28 武汉光谷卓越科技股份有限公司 基于线扫描的精细化三维测量与建模方法
CN113701639B (zh) * 2021-10-21 2022-01-25 易思维(杭州)科技有限公司 一种激光器光平面的获取方法及应用
CN114119477B (zh) * 2021-10-25 2023-04-14 华南理工大学 一种基于线结构光的夜间高压输电线路异物检测方法
CN114383702A (zh) * 2022-01-25 2022-04-22 河南牧原智能科技有限公司 一种用于动物体重测量的视觉估重装置
CN116000475B (zh) * 2023-03-23 2023-06-09 深圳欧斯普瑞智能科技有限公司 激光切割头的控制方法、装置、计算机设备和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02110789A (ja) * 1988-10-20 1990-04-23 Niigata Eng Co Ltd 3次元物体の形状認識方法
JPH09178437A (ja) * 1995-12-21 1997-07-11 Yunisun:Kk 3次元計測装置
CN1877253A (zh) * 2005-06-09 2006-12-13 山东科技大学 车载式近景目标三维测量系统及方法
CN101694084A (zh) * 2009-10-14 2010-04-14 武汉武大卓越科技有限责任公司 地面车载移动检测系统
CN102878928A (zh) * 2012-09-19 2013-01-16 武汉武大卓越科技有限责任公司 一种堆场实时动态三维测控系统
CN104005325A (zh) * 2014-06-17 2014-08-27 武汉武大卓越科技有限责任公司 基于深度和灰度图像的路面裂缝检测装置和方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007114071A (ja) * 2005-10-20 2007-05-10 Omron Corp 三次元形状計測装置、プログラム、コンピュータ読み取り可能な記録媒体、及び三次元形状計測方法
JP2009031150A (ja) * 2007-07-27 2009-02-12 Omron Corp 三次元形状計測装置、三次元形状計測方法、三次元形状計測プログラム、および記録媒体
CN101539405B (zh) * 2009-04-09 2011-03-30 南京航空航天大学 基于姿态传感器的多视角测量数据自拼合方法
JP2015224909A (ja) * 2014-05-27 2015-12-14 シャープ株式会社 3次元計測装置及び3次元計測方法
CN105222724B (zh) * 2015-09-10 2018-09-18 北京天远三维科技股份有限公司 多线阵列激光三维扫描系统及多线阵列激光三维扫描方法
JP6681743B2 (ja) * 2016-02-26 2020-04-15 株式会社キーエンス 画像検査装置、画像検査方法、画像検査プログラム及びコンピュータで読み取り可能な記録媒体並びに記録した機器
JP6886985B2 (ja) * 2016-03-22 2021-06-16 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ イメージに基づいたトリガーを持つ対象物の三次元測定のための装置および方法およびコンピュータプログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02110789A (ja) * 1988-10-20 1990-04-23 Niigata Eng Co Ltd 3次元物体の形状認識方法
JPH09178437A (ja) * 1995-12-21 1997-07-11 Yunisun:Kk 3次元計測装置
CN1877253A (zh) * 2005-06-09 2006-12-13 山东科技大学 车载式近景目标三维测量系统及方法
CN101694084A (zh) * 2009-10-14 2010-04-14 武汉武大卓越科技有限责任公司 地面车载移动检测系统
CN102878928A (zh) * 2012-09-19 2013-01-16 武汉武大卓越科技有限责任公司 一种堆场实时动态三维测控系统
CN104005325A (zh) * 2014-06-17 2014-08-27 武汉武大卓越科技有限责任公司 基于深度和灰度图像的路面裂缝检测装置和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG DEJIN ET AL.: "A New Method for laser Rut Depth measurement", ACTA OPTICA SINICA, vol. 33, no. 1, 31 January 2013 (2013-01-31) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113310428A (zh) * 2021-06-11 2021-08-27 安徽工程大学 一种基于线结构光的同步传动表面轮廓测量系统及测量方法
CN113310428B (zh) * 2021-06-11 2023-06-02 安徽工程大学 一种基于线结构光的同步传动表面轮廓测量系统及测量方法

Also Published As

Publication number Publication date
AU2016399114B2 (en) 2019-08-15
CA3021730C (en) 2020-09-22
CN106017355A (zh) 2016-10-12
US10571256B2 (en) 2020-02-25
CA3021730A1 (en) 2017-09-28
AU2016399114A1 (en) 2018-11-15
US20190234728A1 (en) 2019-08-01

Similar Documents

Publication Publication Date Title
WO2017161828A1 (zh) 一种基于线结构光的三维测量传感器
CN109459439B (zh) 一种基于移动式三维激光扫描技术的隧道衬砌裂缝检测方法
CN107702662A (zh) 基于激光扫描仪和bim的逆向监控方法及其系统
CN103941748A (zh) 自主导航方法及系统和地图建模方法及系统
CN106017312B (zh) 结构光三角测量自动标定系统及标定方法
CN110208771B (zh) 一种移动二维激光雷达的点云强度改正方法
JP2014098683A (ja) 遠距離クラック測量方法
CN101923163A (zh) 一种激光扫描仪的检校方法及检校系统
US20200124406A1 (en) Method for referencing a plurality of sensors and associated measuring device
CN110645921A (zh) 一种基于偏振成像的冰形三维测量方法
CN102706288A (zh) 基于图像测量姿态补偿方法及其装置和隧道沉降变形监测系统
CN101949689A (zh) 一种oct系统校正方法
JP2022171677A (ja) 画像取込デバイスを用いて測定ポイントを探し出すデバイス及び方法
CN112710250B (zh) 基于线结构光的三维测量方法以及传感器
WO2023123221A1 (zh) 一种线激光3d轮廓扫描重建系统及其控制方法
CN108311545A (zh) 一种y型轧机连轧对中及孔型检测系统及方法
CN110702343B (zh) 一种基于立体视觉的挠度测量系统及方法
CN203479260U (zh) 一种铁路隧道裂缝宽度测量仪
CN109085603A (zh) 光学三维成像系统和彩色三维图像成像方法
TWI632347B (zh) 立體影像與雷射掃描測距整合方法
Senthilvel et al. Comparison of handheld devices for 3D reconstruction in construction
CN113359154A (zh) 一种室内外通用的高精度实时测量方法
TWM552589U (zh) 雷射全斷面掃描測距裝置
CN106942813A (zh) 非接触式便捷获取人体数据的测量方法
EP3333593B1 (en) Intra-sensor relative positioning

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3021730

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2016399114

Country of ref document: AU

Date of ref document: 20160826

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16895177

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16895177

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16895177

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/04/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16895177

Country of ref document: EP

Kind code of ref document: A1