CN105222724B - 多线阵列激光三维扫描系统及多线阵列激光三维扫描方法 - Google Patents

多线阵列激光三维扫描系统及多线阵列激光三维扫描方法 Download PDF

Info

Publication number
CN105222724B
CN105222724B CN201510574982.XA CN201510574982A CN105222724B CN 105222724 B CN105222724 B CN 105222724B CN 201510574982 A CN201510574982 A CN 201510574982A CN 105222724 B CN105222724 B CN 105222724B
Authority
CN
China
Prior art keywords
laser
host computer
trigger signal
programmable gate
gate array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510574982.XA
Other languages
English (en)
Other versions
CN105222724A (zh
Inventor
杜华
李仁举
叶成蔚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tenyoun 3d Tianjin Technology Co ltd
Original Assignee
Beijing Tianyuan Three Dimensional Polytron Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Tianyuan Three Dimensional Polytron Technologies Inc filed Critical Beijing Tianyuan Three Dimensional Polytron Technologies Inc
Priority to CN201510574982.XA priority Critical patent/CN105222724B/zh
Publication of CN105222724A publication Critical patent/CN105222724A/zh
Priority to ES16843363T priority patent/ES2961734T3/es
Priority to JP2018515340A priority patent/JP6550536B2/ja
Priority to EP16843363.9A priority patent/EP3348958B1/en
Priority to PCT/CN2016/072451 priority patent/WO2017041419A1/zh
Priority to US15/741,238 priority patent/US10267627B2/en
Priority to KR1020177032099A priority patent/KR102015606B1/ko
Application granted granted Critical
Publication of CN105222724B publication Critical patent/CN105222724B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/24Measuring arrangements characterised by the use of mechanical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B5/25Measuring arrangements characterised by the use of mechanical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2545Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with one projection direction and several detection directions, e.g. stereo
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2513Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with several lines being projected in more than one direction, e.g. grids, patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2518Projection by scanning of the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2518Projection by scanning of the object
    • G01B11/2522Projection by scanning of the object the position of the object changing and being recorded
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B6/00Internal feedback arrangements for obtaining particular characteristics, e.g. proportional, integral, differential
    • G05B6/02Internal feedback arrangements for obtaining particular characteristics, e.g. proportional, integral, differential electric
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/45Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/52Combining or merging partially overlapping images to an overall image

Abstract

本发明提供了一种多线阵列激光三维扫描系统及多线阵列激光三维扫描方法,该系统通过可编程门阵列FPGA实现多线阵列激光三维扫描系统的精确同步和逻辑控制,采用线激光器阵列作为投影图案光源,通过FPGA向立体视觉图像传感器、惯性传感器和线激光器阵列发送触发信号,上位机接收立体视觉图像传感器拍摄的图像对,对该图像对中的激光线阵图案进行编码解码及三维重建,对被测物体表面特征点进行三维重建和不同时刻间三维特征点匹配对齐,采用混合传感定位技术对匹配计算进行预测和纠错,用于时域激光三维扫描数据的配准拼接,同时实时进行测量误差等级评估并反馈至误差反馈控制器做出调整指示,从而实现低成本、高效率、高可靠性和高精度的激光三维扫描。

Description

多线阵列激光三维扫描系统及多线阵列激光三维扫描方法
技术领域
本发明涉及物体表面几何形状的三维扫描技术领域,尤其涉及一种多线阵列激光三维扫描系统及多线阵列激光三维扫描方法。
背景技术
近年来,三维扫描作为一种快速三维数字化技术被越来越多地应用在各个领域,包括逆向工程、工业检测、计算机视觉、CG制作等等,特别是在当前发展迅猛的3D打印和智能制造领域,三维扫描作为前端三维数字化和三维视觉传感技术,已经成为产业链上的重要一环;同时,各类应用在三维扫描设备的成本、实用性、精确性和可靠性等诸多方面提出了更高的要求。
光学三维扫描是三维数字化领域最常见的一种现代化技术手段,较高测量效率和较高的精度兼备是技术的突出特点。白光三维扫描是一种传统的光学扫描技术,通过光栅投影在物体表面进行编码标记,再由相机拍照进行三角测量,在三维测量领域已经被广泛应用,其特点是精度高、空间分辨率高,数据质量较为精细。随着应用领域的不断扩展,各种复杂使用环境对三维扫描技术提出了新的要求,例如人们希望设备具有更高的扫描便捷性以及更好的光学抗干扰性能,扫描流程能够更加快速自如,尽可能地省去不必要的环节,并能够在大多数的光线环境下完成测量。白光扫描设备由于自身的光栅投影器结构以及依赖时序编码的测量原理限制,体积和重量较大,并且需要三脚架等稳定支撑结构辅助测量,测量便捷性有所局限;另外,白光光源亮度有限,测量受环境光和物体本身颜色材质等光学属性影响较大,在较亮的环境中或面向较深颜色的物体,都难以进行有效测量。
为了弥补白光三维扫描技术的不足,一种以线激光作为光源的扫描技术应运而生,该技术仍然是基于多目视觉的三角测量原理,不同的是采用线激光作为图案投影器,图案简单且不随时间改变,激光器小巧结构简单,扫描设备随之变得轻便,且无需额外支撑稳定装置辅助测量,可以手持测量是其典型特征;同时,激光线中心亮度极高,可以适应大多数光线环境或深色物体对象的扫描。然而现有的激光三维扫描技术在面向整个三维扫描领域普及之前,仍然存在几大重要问题亟待解决:
扫描效率与成本优势不可兼得。单线激光扫描技术实现较为简单,成本较低,但扫描性能受到很大限制,扫描速度慢,使得实用性有限;而多线激光扫描技术扫描速度有较大提升,但由于依赖特殊订制的激光发生器,工艺复杂且成本很高,同样为技术的普及应用带来阻碍。
使用寿命低。持续满功率的扫描工作使得光学器件特别是各类LED元件(激光器LED以及LED照明灯等)光衰加剧直接导致扫描性能(包括数据质量和扫描速度)下降;另外,持续工作的LED大量发热也带来设备散热问题,良好的散热性能与小巧轻便的整体结构要求相矛盾,而散热性能不好除了造成光学元件过早失效外,还可能影响整个扫描结构发生微小变形,导致扫描精度的损失。
扫描误拼接率较高,可靠性缺乏保障。传统的标记点拼接技术存在误拼接率高的问题,其表现是多次扫描的数据在统一配准到同一个坐标系时出现歧义,导致某片扫描数据脱离整体数据,生成错误模型。这个问题在白光三维扫描过程中可以在每次单面扫描之后通过手动删除等方法解决,但在连续扫描模式下的激光三维扫描过程中无法采用类似方法解决,因此出现误拼接后通常需要重新扫描,大大影响工作效率。
扫描精度低。激光扫描数据质量与多种因素有关,其中工作距离控制是一大重要因素,景深一定的情况下,工作距离变化超过景深大小会造成图像模糊导致数据噪声大,精度大幅降低。传统的激光扫描技术中工作距离主要依靠操作人员主观判断,在持续扫描的过程中工作距离难以准确控制,导致扫描精度较低。
发明内容
针对现有技术中的缺陷,本发明提供了解决上述技术问题的一种多线阵列激光三维扫描系统及多线阵列激光三维扫描方法。
第一方面,本发明提供了一种多线阵列激光三维扫描系统,包括:多线阵列激光三维扫描设备和上位机,所述多线阵列激光三维扫描设备包括可编程门阵列FPGA、至少一个立体视觉图像传感器、惯性传感器、线激光器阵列和误差反馈控制器,所述可编程门阵列FPGA与所述立体视觉图像传感器、惯性传感器、线激光器阵列和误差反馈控制器分别相连,所述上位机分别与所述可编程门阵列FPGA、立体视觉图像传感器和惯性传感器相连;
所述可编程门阵列FPGA,用于向所述线激光器阵列发送第一触发信号,以使所述线激光器阵列根据所述第一触发信号频闪照射被测物体的表面;
所述可编程门阵列FPGA,还用于向所述立体视觉图像传感器发送第二触发信号,以使所述立体视觉图像传感器根据所述第二触发信号对被测物体进行曝光拍摄,并将拍摄的图像对发送至上位机;
所述可编程门阵列FPGA,还用于向所述惯性传感器发送第三触发信号,以使所述惯性传感器根据所述第三触发信号将多线阵列激光三维扫描设备的位姿信息发送至上位机;
所述上位机,还用于对测量数据实时进行误差评估并将评估结果反馈至可编程门阵列FPGA;
所述可编程门阵列FPGA,还用于在接收到所述上位机反馈的评估结果后,根据所述评估结果向所述误差反馈控制器发送控制信号,并根据所述评估结果调整所述激光三维扫描设备与被测物体的距离;
所述上位机,用于对所述立体视觉图像传感器拍摄的图像对中的激光线进行编码和解码;
所述上位机,还用于对被测物体图像对中的特征点以及所述被测物体的表面反射的激光线进行三维重建;
所述上位机,还用于以所述惯性传感器回传的位姿信息以及特征点为基准,将不同帧上的三维激光线数据配准到同一坐标系中生成形面点云。
可选的,所述可编程门阵列FPGA,还用于接收所述上位机发送的预设脉冲触发信号和预设曝光时间,并根据所述预设脉冲触发信号,分别向所述线激光器阵列发送第一触发信号和向所述惯性传感器发送第三触发信号,并根据所述预设曝光时间向所述立体视觉图像传感器发送第二触发信号。
可选的,所述误差反馈控制器,用于接收所述可编程门阵列FPGA发送的控制信号,输出与所述控制信号对应的指示灯光。
可选的,所述误差反馈控制器为变色LED灯,包括红、绿、蓝三种基色组合的光。
可选的,所述立体视觉图像传感器为多目视觉图像传感器,由两个或两个以上的光学相机组成。
可选的,所述立体视觉传感器中设置有照明装置。
可选的,所述照明装置的照射时间与所述立体视觉传感器的曝光时间同步。
可选的,所述线激光器阵列包括由多个线激光器按照矩阵式的排列方式组成。
可选的,所述上位机,用于对所述特征点进行跟踪,并通过跟踪相邻时间帧间的同名特征点,将不同帧上的三维激光线数据配准到同一坐标系中。
可选的,所述上位机,还用于实时评估所述激光三维扫描设备与被测物体的距离,并在所述距离超出预设距离时,向所述可编程门阵列FPGA反馈评估结果。
可选的,所述上位机上还设置有通讯接口,所述通讯接口用于向与所述上位机连接的控制设备进行通讯,以使所述控制设备调整所述多线阵列激光三维扫描设备与被测物体间的距离。
第二方面,本发明还提供了一种基于上述的多线阵列激光三维扫描系统的多线阵列激光三维扫描方法,包括:
所述可编程门阵列FPGA向所述线激光器阵列发送第一触发信号,以使所述线激光阵列根据所述第一触发信号频闪照射被测物体的表面;
所述可编程门阵列FPGA向所述立体视觉图像传感器发送第二触发信号,以使所述立体视觉图像传感器根据所述第二触发信号对被测物体进行曝光拍摄,并将拍摄的图像对发送至上位机;
所述上位机对所述立体视觉图像传感器拍摄的图像对中被测物体的表面反射的激光线进行编码解码;
所述上位机对所述立体视觉图像传感器拍摄的图像对中被测物体特征点以及所述被测物体的表面反射的激光线进行三维重建;
所述上位机以所述惯性传感器回传的位姿信息以及特征点为基准,将不同帧上的三维激光线数据配准到同一坐标系中生成形面点云。
所述上位机对测量数据实时进行误差评估并将评估结果反馈至可编程门阵列FPGA;
所述可编程门阵列FPGA在接收到所述上位机反馈的评估结果后,根据所述评估结果向所述误差反馈控制器发送控制信号,并根据所述评估结果调整所述激光三维扫描设备与被测物体的距离。
可选的,在所述可编程门阵列FPGA向所述线激光阵列发送第一触发信号之前,所述方法还包括:
所述可编程门阵列FPGA接收所述上位机发送预设曝光时间以及预设脉冲触发信号,根据所述预设脉冲触发信号,分别向所述线激光器阵列发送第一触发信号和向所述惯性传感器发送第三触发信号,根据所述预设曝光时间向所述立体视觉图像传感器发送第二触发信号。
由上述技术方案可知,本发明提供一种多线阵列激光三维扫描系统及多线阵列激光三维扫描方法,该系统通过可编程门阵列FPGA实现多线阵列激光三维扫描系统的精确同步和逻辑控制,采用线激光器阵列作为投影图案光源,通过可编程门阵列FPGA向立体视觉图像传感器、惯性传感器和线激光器阵列发送触发信号,使得上位机接收到立体视觉图像传感器拍摄的图像对,并对该图像对中的激光线阵图案进行编码解码及三维重建,对被测物体表面特征点进行三维重建和不同时刻间三维特征点匹配对齐,采用混合传感式定位技术对匹配计算进行预测和纠错,用于时域激光三维扫描数据的配准拼接,同时实时进行测量误差等级评估并反馈至误差反馈控制器做出调整指示,从而完成低成本、高效率、高可靠性和高精度的激光三维扫描。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些图获得其他的附图。
图1是本发明一实施例提供的多线阵列激光三维扫描系统的结构示意图;
图2为本发明一实施例提供的多线阵列激光三维扫描设备的结构示意图;
图3是本发明一实施例提供的可编程门阵列FPGA工作方法的流程示意图;
图4为本发明一实施例提供的上位机对激光线阵列进行编码方法的流程示意图;
图5为本发明一实施例提供的基于多线阵列激光三维扫描系统进行三维扫描方法流程示意图;
图6是本发明另一实施例提供的基于多线阵列激光三维扫描系统进行三维扫描方法流程示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
首先对本申请中的多线阵列激光三维扫描系统进行说明如图1所示,其中所述多线阵列激光三维扫描系统包括可编程门阵列FPGA、至少一个立体视觉图像传感器、惯性传感器、线激光器阵列、误差反馈控制器和上位机,该上位机可以理解为操控设备,例如:上位机。其具有激光线编码解码、三维重建、混合传感式定位和误差评估计算的功能。
本发明基于可编程门阵列FPGA实现多线阵列激光三维扫描系统的精确同步和逻辑控制,采用群组线激光器阵列作为投影图案光源,多激光线编码解码单元对激光线进行标号识别,混合传感式定位技术对动态特征点定位配准进行预测和纠错,实时进行测量误差等级评估并反馈至硬件系统做出调整指示,从而完成低成本、高效率、高可靠性和高精度的激光三维扫描。
在一种多线阵列激光三维扫描系统中包括:多线阵列激光三维扫描设备和上位机,如图2所示,所述多线阵列激光三维扫描设备包括可编程门阵列FPGA101、至少一个立体视觉图像传感器102A、惯性传感器102B和线激光器阵列103,所述可编程门阵列FPGA101与所述立体视觉图像传感器102A、惯性传感器102B、线激光器阵列103和误差反馈控制器104分别相连,所述上位机105分别与所述可编程门阵列FPGA101、立体视觉图像传感器102A和惯性传感器102B相连;
所述可编程门阵列FPGA101,用于向所述线激光器阵列103发送第一触发信号,以使所述线激光器阵列103根据所述第一触发信号频闪照射被测物体的表面;
所述可编程门阵列FPGA101,还用于向所述立体视觉图像传感器102A发送第二触发信号,以使所述立体视觉图像传感器102A根据所述第二触发信号对被测物体进行曝光拍摄,并将拍摄的图像对发送至上位机;
所述可编程门阵列FPGA101,还用于向所述惯性传感器102B发送第三触发信号,以使所述惯性传感器102B根据所述第三触发信号将多线阵列激光三维扫描设备的位姿信息发送至上位机;
所述上位机105,还用于对测量数据实时进行误差评估并将评估结果反馈至可编程门阵列FPGA101;
所述可编程门阵列FPGA101,还用于在接收到所述上位机105反馈的评估结果后,根据所述评估结果向所述误差反馈控制器发送控制信号,并根据所述评估结果调整所述激光三维扫描设备与被测物体的距离;
所述上位机105,用于对所述立体视觉图像传感器102A拍摄的图像对中的激光线进行编码和解码;
所述上位机105,还用于对被测物体图像对中的特征点以及所述被测物体的表面反射的激光线进行三维重建;
所述上位机105,还用于以所述惯性传感器102B回传的位姿信息以及特征点为基准,将不同帧上的三维激光线数据配准到同一坐标系中生成形面点云。
上述系统通过可编程门阵列FPGA实现多线阵列激光三维扫描系统的精确同步和逻辑控制,采用线激光器阵列作为投影图案光源,通过可编程门阵列FPGA向立体视觉图像传感器、惯性传感器和线激光器阵列发送触发信号,使得上位机接收到立体视觉图像传感器拍摄的图像对,并对该图像对中的激光线阵图案进行编码解码及三维重建,对被测物体表面特征点进行三维重建和不同时刻间三维特征点匹配对齐,采用混合传感式定位技术对匹配计算进行预测和纠错,用于时域激光三维扫描数据的配准拼接,同时实时进行测量误差等级评估并反馈至误差反馈控制器做出调整指示,从而完成低成本、高效率、高可靠性和高精度的激光三维扫描。
所述可编程门阵列FPGA101,还用于接收所述上位机105发送的预设脉冲触发信号和预设曝光时间,并根据所述预设脉冲触发信号,分别向所述线激光器阵列发送第一触发信号和向所述惯性传感器102B发送第三触发信号,并根据所述预设曝光时间向所述立体视觉图像传感器102A发送第二触发信号。
下面分别对上述系统中各部分的功能进行详细说明。
可编程门阵列FPGA101与立体视觉图像传感器102A、惯性传感器102B、线激光器阵列103以及误差反馈控制器104分别连接。FPGA101向立体视觉图像传感器102A、惯性传感器102B和线激光器阵列103发送脉冲触发信号,精确控制线激光器阵列103的频闪照射以及立体视觉图像传感器102A的同步拍摄和惯性传感器102B的实时位姿信息获取;FPGA101与上位机通讯,将上位机反馈的测量误差评估等级转化为逻辑信号控制误差反馈控制器104作出调整指示。FPGA101精确同步控制的具体流程参照图3,在S301中,通过上位机人机交互设定扫描频率;S302中,上位机与立体视觉图像传感器102A通讯,检测预先设定的图像采集曝光时间;S303中,上位机将上述曝光时间发送至FPGA101;S304中,FPGA101根据接收到的曝光时间以及扫描频率设定脉冲信号输出宽度及触发输出频率;S305中,FPGA101向线激光器阵列103以及立体视觉图像传感器102A分别发出脉冲触发信号;S306中,光学元件(包括线激光器阵列103以及立体视觉图像传感器102A上可能附加的辅助照明光源等)在脉冲信号上升沿通电亮起;S307中,立体视觉图像传感器102A在脉冲信号上升沿开始曝光,同时惯性传感器102B获取实时位姿信息并传回上位机;S308中,立体立体视觉图像传感器曝光结束,完成一次图像对采集;S309中,光学元件在脉冲下降沿断电熄灭;S310中,硬件设备等待FPGA101下一次触发即循环至S305。
立体视觉图像传感器102A是一种多目图像传感器,由两个或两个以上的多个光学相机组成,多个光学相机间的结构相对固定,且相机间的相对位置关系和相机内部参数是已知的,多个相机接收FPGA101发出的触发脉冲信号,在同一时间点曝光采集图像,每次采集的多幅图像组成一组立体匹配图像对,通过相机传输线缆传送至上位机,进行三维重建。立体视觉图像传感器102包括一种辅助照明设备,用于增加图像采集传感器采集到的被测物体表面的反射光强度,可选地,立体视觉图像传感器102A包括一种辅助照明设备,用于增加图像采集传感器采集到的被测物体表面的反射光强度,例如,一种与图像采集传感器光学镜头外圆轮廓同心的环形LED灯,且通过相机自身的信号输入输出接口与相机连接,该接口输出的闪光灯信号功能可以控制LED灯进行与相机采集同步的频闪工作。为便于说明,本实施例以双相机的立体视觉图像传感器为例,如图2结构示意图所示,双相机以上下结构布置,故上方相机简称为上相机,下方相机简称为下相机。
惯性传感器102B用于获取扫描设备的实时位姿,该位姿信息包含扫描设备的位移向量和旋转欧拉角向量,可转换为不同时刻扫描数据间的变换关系,即[R|T],R为3×3的旋转矩阵,T为3×1的位移向量。相比视觉传感器的易受外部因素干扰而出现定位错误,惯性传感器的优势在于获取设备位姿信息方便简单,不依赖于外部因素,如被测物体表面的标记点或特征点等,因此位姿信息不易受外部因素干扰而出错,用于获取扫描设备的粗略定位较为可靠;但是由于惯性传感器自身获取的位姿信息与光学测量获取的位姿数据相比精度较低,特别是位移累积误差较大,因此该位姿信息不能独立用于数据配准,而是用来辅助后续混合传感式定位单元结合光学定位的精度优势进行更加快速可靠的数据配准。
惯性传感器102B获取的位姿信息是基于惯性传感器自身坐标系的数据,不能直接用于代替扫描设备在全局坐标系下的位姿信息,因此在进行三维扫描前需要对扫描设备进行系统定标,建立惯性传感器、视觉传感器与世界坐标系之间的相互变换关系,在三维扫描过程中通过惯性传感器的位姿信息计算出相机坐标系到世界坐标系的变换关系即可。使用标定板从不同角度拍摄多幅图像,记录在拍摄每幅图像时惯性传感器输出的横滚角和俯仰角;定义世界坐标系、摄像机坐标系、惯性传感器坐标系和地磁坐标系;基于每幅图像中标定物的图像信息和空间信息,计算该时刻世界坐标系到摄像机坐标系的旋转矩阵;将摄取图像两两组合,对于每个组合均建立一个关于惯性传感器坐标系到摄像机坐标系旋转矩阵的方程组并进行求解,计算出惯性传感器坐标系到摄像机坐标系的旋转矩阵;对于每幅图像建立一个关于地磁坐标系到世界坐标系旋转矩阵的方程组并进行求解,计算出地磁坐标系到世界坐标系的旋转矩阵。在三维扫描过程中通过上述三个已标定的变换关系即可实时得到相机坐标系到世界坐标系的旋转矩阵。
线激光器阵列103由多个线激光器按照矩阵式的排列方式组成,线激光器间位置关系相对固定,激光器阵列103与立体视觉图像传感器102A间位置关系相对固定。线激光器阵列103接收FPGA101发送的脉冲触发信号,在信号上升沿通电亮起,在信号下降沿断电熄灭。线激光器阵列103照射到被测物体表面的投影图案由激光器的排列方式决定。多个线激光器的排列方式可以是多样的,通过不同的结构排列,可以投射出不同的投影图案,例如,一种平行的排列方式,即激光器沿激光线方向一致排列,使得多条激光线平行出射,当激光阵列垂直投影在一个平面上时,投影图案为一组平行线;一种矩阵式的排列方式,当激光阵列垂直投影在一个平面上时,投影图案为一组网格线;一种随机的排列方式,当激光阵列垂直投影在一个平面上时,投影图案为一组无序的直线簇。其中,矩阵阵列的优点是在有限的设备空间内可以获得最大化数量的激光线阵列,以提升扫描效率,并且便于后续的激光线编码实现,因此本实施例以矩阵式的激光器排列方式为例,如图2中的部件103所示。
误差反馈控制器104包含一个变色LED灯、一个通讯输入接口和一个通讯输出接口。误差反馈控制器104通过通讯输入接口接收FPGA101发送的逻辑信号,LED灯基于红、绿、蓝三种基色组合可发出至少5种以上颜色的光,不同颜色的光代表不同的工作距离指示。所述可编程门阵列FPGA,用于向所述误差反馈控制器发送所述三维扫描距离的指示信息,以使所述误差反馈控制器根据所述指示信息输出与所述指示信息对应的指示灯光。例如,指示灯显示为绿色时,表示工作距离在合理范围内;指示灯显示为其它颜色时,表示工作距离不在合理范围内,或太近或太远,该指示可帮助人工操作时实时调整工作距离。所述上位机上还设置有通讯接口,所述通讯接口用于向与所述上位机连接的控制设备进行通讯,以使所述控制设备调整所述多线阵列激光三维扫描设备与被测物体间的距离。通过通讯输出接口将工作距离控制信息反馈至与系统连接的其它自动化控制设备,例如机器人,指示机器人调整所述便携式扫描传感设备与被测物体间的工作距离以实现智能化扫描。
上位机中的激光线编码解码的功能,用于对群组激光线图案进行编码和解码处理,由于线激光器阵列103与立体视觉图像传感器102A间的位置关系相对固定,各激光器出射的激光平面与立体视觉图像传感器102A间的位置关系同样相对固定,因此激光平面方程在与所述扫描传感设备自身绑定的坐标系中唯一且固定不变。在前期系统定标阶段,处理器对每条激光线所在激光平面进行编码;在三维扫描阶段,再利用激光平面属性对每条激光线进行解码,使得每条激光线编码唯一,用以立体匹配图像对中的相同编码激光线进行三维重建。
激光线阵列编码的具体实现流程如图4所示:S401中,FPGA101控制线激光器阵列开启;S402中,将设备移动至下一个预先设定的工作距离并将激光图案投影照射到参考平面上,由于激光平面与参考平面在三维空间中相交于一条直线,因此投影在参考平面上的各条激光线均为直线;S403中,FPGA101发送触发信号控制立体视觉图像传感器102A曝光一次采集图像对,根据光学透镜成像原理,参考平面上的准直激光线图案投影到相机的成像平面上仍然为一条直线,即图像上的激光线阵列图案仍然为一个直线簇阵列;S404中,立体视觉图像传感器102A将采集的图像对传送至上位机;S405中,各图像分别进行图像处理,提取所有激光线中心高亮像素,根据直线性质分离提取出所有激光线,并根据激光线在图像上从上至下、从左至右的顺序对图像上的二维激光线进行排列;S406中,根据上位机中的三维重建计算功能按照匹配图像对中的对应序号激光线进行三维重建;S407中,将激光线上的离散三维点数据累积计入对应序号的激光平面上的观测点集{P|pi(xi,yi,zi)};S408中,判断是否完成所有设定工作距离的采集;S409中,如果判断没有完成所有设定工作距离的采集,跳转至S402进入循环;如果判断已完成所有设定工作距离的采集,拟合所有激光平面方程。一般空间平面方程满足Ax+By+Cz+D=0,空间平面上的三维观测点集{P|pi(xi,yi,zi)}满足该平面方程,利用最小二乘法可解算出A、B、C、D四个方程系数,每个激光平面有且只有一个平面方程,该平面方程的顺序编号即为激光平面的编码。
激光线阵列解码在三维扫描过程中进行,各图像分别进行基本图像处理,根据连续性原则进行激光线分割。在双相机图像采集系统中,上相机图像中的各激光线段上的离散像素点分别对应三维空间中上相机成像平面上的一个像点,该像点与上相机光学中心连接的射线与空间激光平面相交解得一个三维空间点,根据相机成像原理计算该点在下相机图像上的像点,若上相机图像中某激光线段上的大部分离散像素点通过上述方法在下相机图像上找到的对应像素点集恰好位于同一条激光线段上,则对上相机和下相机的这两条激光线段进行编号标识,编号与所采用的激光平面编号一致。通常情况下,各条激光线段通过遍历所有激光平面进行上述计算,都可以找出唯一对应的激光平面及其编码。
上位机中的三维重建计算的功能,用于对立体视觉传感器102A采集的图像对中的物体表面特征点进行三维重建,以及物体表面反射的激光线进行三维重建,即利用立体匹配图像对中的二维特征点集基于三角测量计算法转化为三维特征点集,将立体匹配图像对中的二维相同编码激光线基于三角测量计算法转化为三维空间激光线条。本实施例中,物体表面特征是一种粘贴在物体表面的人工设计的圆形标记,图像处理提取的椭圆中心即为图像上的二维特征点。根据对极几何原理,对于上相机图像中的每个特征点,在下相机图像的极线上寻找距离最近的二维特征点,上下相机对应的二维特征点对根据三角测量法可计算出该特征点的三维空间坐标。对于上相机图像中的每个已被激光平面解码的激光点,在下相机图像上寻找极线与相同编码二维激光线段的交叉点,上下相机对应的二维激光点对根据三角测量法可计算出该激光点的三维空间坐标,激光线实质上是这些激光点的集合。
上位机中的混合传感式定位的功能,用于将每一个时刻t的三维扫描数据配准到全局坐标系中。首先通过惯性传感器获取t时刻的位姿信息以及前述的视觉-惯性多传感器融合定标结果计算出当前相机坐标系到世界坐标系的粗略变换关系,即[R0|T0],其中R0为3×3的旋转矩阵,T0为3×1的位移向量。t时刻在相机坐标系下三维重建的特征点集为{P|pi(xi,yi,zi)},利用变换关系[M0|T0]将点集P中的每一个三维特征点空间坐标XP变换至全局坐标系,在每个变换后空间坐标值的领域内寻找t时刻以前三维重建的特征点集中的最近点,得到对应全局坐标系下的点集{Q|qi(xi,yi,zi)},点集P与Q构成一组映射关系,即坐标变换,存在变换关系[R|T]满足RXP+T=XQ,其中XP为点集P中的空间坐标向量,XQ为点集Q中的空间坐标向量,R为3×3的旋转矩阵,T为3×1的平移向量,利用最小二乘及四元数法可计算得到变换关系[R|T]。值得注意的是,[R0|T0]与[R|T]事实上描述的是同一个变换关系,但经过光学特征定位计算后的[R|T]与由惯性传感器位姿直接推算出的[R0|T0]相比,更加精确;而[R0|T0]的意义在于在t时刻之前全局坐标系下三维重建的特征点集中快速准确地找到了与t时刻相机坐标系下三维重建的特征点集P相匹配的子集,避免了单一光学特征点匹配搜索方法由于几何特征近似造成的错误匹配问题,从而提升了扫描数据配准的可靠性。得到坐标变换关系[R|T]后,将t时刻三维重建的所有激光点集{M|mi(xi,yi,zi)}通过RXM+T的运算即可将所有相机坐标系下重建的激光点三维空间坐标变换至t时刻前统一的全局坐标系中,与t时刻前的点集一起构成同一个坐标系下的点云数据。最后将平移向量T通过坐标变换逆变换反算回惯性传感器坐标系,对惯性传感器坐标系下的平移向量T0进行修正,最大程度上减少惯性传感器在位移测量上的累计误差,实时进行惯性传感器位移测量的自校准。
上位机中的误差评估计算功能,用于评估当前测量误差等级,并将误差等级结果通过上位机与FPGA101的通讯接口反馈至FPGA。测量误差根据t时刻三维重建的所有特征点的空间坐标到扫描传感设备的两相机光学中心坐标连线中点的平均距离(此处定义为设备工作距离)作为评估测量误差等级的一个考量,当工作距离在设备测量景深范围内时,误差等级评估为0,表示合理;当工作距离与景深范围相比较大或较小时,误差等级评估为+1或-1,表示警示工作距离应当作出调整;当工作距离与景深范围相比过大或过小时,误差等级评估为+2或-2,表示工作距离必须作出调整,否则数据不再更新累积,防止影响整体数据质量。可选地,误差评估计算单元108也可以采用物体表面三维重建的所有激光点的空间坐标与设备光学中心的平均距离作为工作距离,对测量误差等级进行评估。
图5示出了本发明实施例提供的一种基于上述的多线阵列激光三维扫描系统的多线阵列激光三维扫描方法的流程示意图,如图5所示,包括:
S501、所述可编程门阵列FPGA向所述线激光器阵列发送第一触发信号,以使所述线激光阵列根据所述第一触发信号频闪照射被测物体的表面;
S502、所述可编程门阵列FPGA向所述立体视觉图像传感器发送第二触发信号,以使所述立体视觉图像传感器根据所述第二触发信号对被测物体进行曝光拍摄,并将拍摄的图像对发送至上位机;
S503、所述上位机对所述立体视觉图像传感器拍摄的图像对中被测物体的表面反射的激光线进行编码解码;
S504、所述上位机对所述立体视觉图像传感器拍摄的图像对中被测物体特征点以及所述被测物体的表面反射的激光线进行三维重建;
S505、所述上位机以所述惯性传感器回传的位姿信息以及特征点为基准,将不同帧上的三维激光线数据配准到同一坐标系中生成形面点云;
S506、所述上位机对测量数据实时进行误差评估并将评估结果反馈至可编程门阵列FPGA;
S507、所述可编程门阵列FPGA在接收到所述上位机反馈的评估结果后,根据所述评估结果向所述误差反馈控制器发送控制信号,并根据所述评估结果调整所述激光三维扫描设备与被测物体的距离。
在上述步骤S501在所述可编程门阵列FPGA向所述线激光阵列发送第一触发信号之前,所述方法还包括图5中未示出的步骤:
S500、所述可编程门阵列FPGA接收所述上位机发送预设曝光时间以及预设脉冲触发信号,根据所述预设脉冲触发信号向所述线激光阵列发送第一触发信号,根据所述预设曝光时间向所述立体视觉图像传感器发送第二触发信号。
图6所示为本实施例的一种多线阵列激光三维扫描方法的整体实现流程:S601、上位机控制FPGA101、视觉-惯性混合传感器102(立体视觉图像传感器102A和惯性传感器102B)以及上位机开启,进入工作状态;S602中,FPGA101发送触发信号控制光学元件频闪并控制立体立体视觉图像传感器102A开始曝光采集图像对,同时控制惯性传感器102B获取实时位姿信息;S603中,惯性传感器102B将实时位姿信息传送至上位机,立体立体视觉图像传感器102A将采集的图像对传送至上位机;S604中,上位机通过激光线阵列编码解码的功能对激光线进行解码标识,为图像上的每条激光线段识别激光平面编号;S605中,上位机还通过三维重建计算的功能对激光线和特征点三维重建;S606中,上位机还通过混合传感式定位的功能进行设备空间定位、数据配准及惯性传感器自校准;S607中,上位机通过误差等级评估计算功能进行测量误差等级评估计算;S608中,上位机将误差等级发送至FPGA101;S609中,FPGA101根据误差等级控制误差反馈控制器104发出指示;S610中,根据误差反馈控制器提示调整工作距离;S611中,等待下一次FPGA触发信号,跳转至S602进入循环。
图2所示为本实施例的一种工作状态下的设备结构示意图,便携式多线阵列激光三维扫描设备主要由可编程门阵列FPGA101、视觉-惯性混合传感器102(含立体立体视觉图像传感器102A以及惯性传感器102B)、线激光器阵列103以及误差反馈控制器104组成,线激光器阵列103出射一组激光平面,投影在被测物体表面501上形成一组激光线阵列502,圆形标记点503为光学三维扫描普遍使用的一种人工标记,用来进行多次扫描数据之间的配准拼接。
上述系统扫描效率大幅提升。采用激光线阵列图案与现有技术中的单激光线扫描相比,数据重建效率成倍增加。如果阵列中激光线数量为n,则在单位时间内重建的数据量是单线扫描的n倍,即在完成相同数据量的扫描情况下,激光线阵列扫描的时间只有单线扫描的1/n。例如,采用6个线激光器组成的阵列扫描效率约为单线扫描的6倍,扫描时间缩短5/6。
设备成本大幅下降。特殊订制的多线激光发生器工艺复杂,且技术被极少数公司垄断,成本很高,通常这类激光扫描设备的激光器成本在数万元人民币;而采用单线激光器阵列,同等激光线数量的激光器阵列成本只有几百元人民币,即激光器部分成本节省95/100以上,整个扫描设备的成本随之降低约2/3。
使用寿命大幅增加。受图像采集传感器的处理速度限制,图像有效曝光时间对扫描总时间的占比约为1/10,因此在现有技术的持续扫描模式下,主要光学LED元件(如激光LED等)有高达9/10的无效工作时间,而采用脉冲频闪式扫描后,主要光学LED元件的无效工作时间占比由9/10降为0,按照LED标称参数估计,使用寿命提升10倍以上,能耗大幅降低,散热几乎可忽略不计,同时省去了散热结构的设计和制造成本。
扫描误拼接率下降,可靠性提升。采用视觉-惯性混合传感器定位技术与现有的单一光学特征定位技术相比,提升了特征点匹配可靠性,避免了光学特征几何相似性导致的误匹配问题,进而提升了扫描数据拼接配准的正确率。以含200个定位参考标记点的物体扫描为例,两种技术分别扫描50次进行实验统计,单一光学特征定位技术出现误拼接的概率约为50%,而混合传感定位技术出现误拼接的次数为0。
扫描精度显著提升。根据国际权威的德国VDI-2634光学三维测量设备精度检测标准进行测试,采用误差评估及反馈控制技术后,激光扫描精度从0.1mm以上提升至0.03mm,为原来的3倍左右。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解;其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (12)

1.一种多线阵列激光三维扫描系统,其特征在于,包括:多线阵列激光三维扫描设备和上位机,所述多线阵列激光三维扫描设备包括可编程门阵列FPGA、至少一个立体视觉图像传感器、惯性传感器、线激光器阵列和误差反馈控制器,所述可编程门阵列FPGA与所述立体视觉图像传感器、惯性传感器、线激光器阵列和误差反馈控制器分别相连,所述上位机分别与所述可编程门阵列FPGA、立体视觉图像传感器和惯性传感器相连;
所述可编程门阵列FPGA,用于向所述线激光器阵列发送第一触发信号,以使所述线激光器阵列根据所述第一触发信号频闪照射被测物体的表面;
所述可编程门阵列FPGA,还用于向所述立体视觉图像传感器发送第二触发信号,以使所述立体视觉图像传感器根据所述第二触发信号对被测物体进行曝光拍摄,并将拍摄的图像对发送至上位机;
所述可编程门阵列FPGA,还用于向所述惯性传感器发送第三触发信号,以使所述惯性传感器根据所述第三触发信号将多线阵列激光三维扫描设备的位姿信息发送至上位机;
所述上位机,还用于对测量数据实时进行误差评估并将评估结果反馈至可编程门阵列FPGA;
所述可编程门阵列FPGA,还用于在接收到所述上位机反馈的评估结果后,根据所述评估结果向所述误差反馈控制器发送控制信号,并根据所述评估结果调整所述激光三维扫描设备与被测物体的距离;
所述上位机,用于对所述立体视觉图像传感器拍摄的图像对中的激光线进行编码和解码;
所述上位机,还用于对被测物体图像对中的特征点以及所述被测物体的表面反射的激光线进行三维重建;
所述上位机,还用于以所述惯性传感器回传的位姿信息以及特征点为基准,将不同帧上的三维激光线数据配准到同一坐标系中生成形面点云;
所述误差反馈控制器,用于接收所述可编程门阵列FPGA发送的控制信号,输出与所述控制信号对应的指示灯光。
2.根据权利要求1所述的系统,其特征在于,所述可编程门阵列FPGA,还用于接收所述上位机发送的预设脉冲触发信号和预设曝光时间,并根据所述预设脉冲触发信号,分别向所述线激光器阵列发送第一触发信号和向所述惯性传感器发送第三触发信号,并根据所述预设曝光时间向所述立体视觉图像传感器发送第二触发信号。
3.根据权利要求1所述的系统,其特征在于,所述误差反馈控制器为变色LED灯,包括红、绿、蓝三种基色组合的光。
4.根据权利要求1所述的系统,其特征在于,所述立体视觉图像传感器为多目视觉图像传感器,由两个或两个以上的光学相机组成。
5.根据权利要求1所述的系统,其特征在于,所述立体视觉图像传感器中设置有照明装置。
6.根据权利要求5所述的系统,其特征在于,所述照明装置的照射时间与所述立体视觉图像传感器的曝光时间同步。
7.根据权利要求1所述的系统,其特征在于,所述线激光器阵列包括由多个线激光器按照矩阵式的排列方式组成。
8.根据权利要求1所述的系统,其特征在于,所述上位机,用于对所述特征点进行跟踪,并通过跟踪相邻时间帧间的同名特征点,将不同帧上的三维激光线数据配准到同一坐标系中。
9.根据权利要求1所述的系统,其特征在于,所述上位机,还用于实时评估所述激光三维扫描设备与被测物体的距离,并在所述距离超出预设距离时,向所述可编程门阵列FPGA反馈评估结果。
10.根据权利要求1-9中任一项所述的系统,其特征在于,所述上位机上还设置有通讯接口,所述通讯接口用于向与所述上位机连接的可编程门阵列FPGA进行通讯,以使所述可编程门阵列FPGA调整所述多线阵列激光三维扫描设备与被测物体间的距离。
11.一种基于权利要求1-10中任一项所述的多线阵列激光三维扫描系统的多线阵列激光三维扫描方法,其特征在于,包括:
所述可编程门阵列FPGA向所述线激光器阵列发送第一触发信号,以使所述线激光阵列根据所述第一触发信号频闪照射被测物体的表面;
所述可编程门阵列FPGA向所述立体视觉图像传感器发送第二触发信号,以使所述立体视觉图像传感器根据所述第二触发信号对被测物体进行曝光拍摄,并将拍摄的图像对发送至上位机;
所述上位机对所述立体视觉图像传感器拍摄的图像对中被测物体的表面反射的激光线进行编码解码;
所述上位机对所述立体视觉图像传感器拍摄的图像对中被测物体特征点以及所述被测物体的表面反射的激光线进行三维重建;
所述上位机以所述惯性传感器回传的位姿信息以及特征点为基准,将不同帧上的三维激光线数据配准到同一坐标系中生成形面点云;
所述上位机对测量数据实时进行误差评估并将评估结果反馈至可编程门阵列FPGA;
所述可编程门阵列FPGA在接收到所述上位机反馈的评估结果后,根据所述评估结果向所述误差反馈控制器发送控制信号,并根据所述评估结果调整所述激光三维扫描设备与被测物体的距离。
12.根据权利要求11所述的方法,其特征在于,在所述可编程门阵列FPGA向所述线激光阵列发送第一触发信号之前,所述方法还包括:
所述可编程门阵列FPGA接收所述上位机发送预设曝光时间以及预设脉冲触发信号,根据所述预设脉冲触发信号,分别向所述线激光器阵列发送第一触发信号和向所述惯性传感器发送第三触发信号,根据所述预设曝光时间向所述立体视觉图像传感器发送第二触发信号。
CN201510574982.XA 2015-09-10 2015-09-10 多线阵列激光三维扫描系统及多线阵列激光三维扫描方法 Active CN105222724B (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201510574982.XA CN105222724B (zh) 2015-09-10 2015-09-10 多线阵列激光三维扫描系统及多线阵列激光三维扫描方法
ES16843363T ES2961734T3 (es) 2015-09-10 2016-01-28 Sistema de escaneo tridimensional por láser de matriz multilineal y procedimiento de escaneo tridimensional por láser de matriz multilineal
JP2018515340A JP6550536B2 (ja) 2015-09-10 2016-01-28 マルチラインアレイレーザ光3次元走査システム、及びマルチラインアレイレーザ光3次元走査方法
EP16843363.9A EP3348958B1 (en) 2015-09-10 2016-01-28 Multi-line array laser three-dimensional scanning system, and multi-line array laser three-dimensional scanning method
PCT/CN2016/072451 WO2017041419A1 (zh) 2015-09-10 2016-01-28 多线阵列激光三维扫描系统及多线阵列激光三维扫描方法
US15/741,238 US10267627B2 (en) 2015-09-10 2016-01-28 Multi-line array laser three-dimensional scanning system, and multi-line array laser three-dimensional scanning method
KR1020177032099A KR102015606B1 (ko) 2015-09-10 2016-01-28 멀티 라인 레이저 어레이 3차원 스캐닝 시스템 및 멀티 라인 레이저 어레이 3차원 스캐닝 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510574982.XA CN105222724B (zh) 2015-09-10 2015-09-10 多线阵列激光三维扫描系统及多线阵列激光三维扫描方法

Publications (2)

Publication Number Publication Date
CN105222724A CN105222724A (zh) 2016-01-06
CN105222724B true CN105222724B (zh) 2018-09-18

Family

ID=54991817

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510574982.XA Active CN105222724B (zh) 2015-09-10 2015-09-10 多线阵列激光三维扫描系统及多线阵列激光三维扫描方法

Country Status (7)

Country Link
US (1) US10267627B2 (zh)
EP (1) EP3348958B1 (zh)
JP (1) JP6550536B2 (zh)
KR (1) KR102015606B1 (zh)
CN (1) CN105222724B (zh)
ES (1) ES2961734T3 (zh)
WO (1) WO2017041419A1 (zh)

Families Citing this family (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105222724B (zh) 2015-09-10 2018-09-18 北京天远三维科技股份有限公司 多线阵列激光三维扫描系统及多线阵列激光三维扫描方法
US10438036B1 (en) 2015-11-09 2019-10-08 Cognex Corporation System and method for reading and decoding ID codes on a curved, sloped and/or annular object
CN106017355A (zh) * 2016-03-22 2016-10-12 武汉武大卓越科技有限责任公司 一种基于线结构光的三维测量传感器
CN105759280A (zh) * 2016-05-17 2016-07-13 上海酷哇机器人有限公司 对人眼安全的激光三角测量系统
CN106153074B (zh) * 2016-06-20 2023-05-05 浙江大学 一种惯性测量组合动态导航性能的光学标定系统和方法
CN108020825B (zh) * 2016-11-03 2021-02-19 岭纬公司 激光雷达、激光摄像头、视频摄像头的融合标定系统及方法
CN108274463B (zh) * 2017-01-06 2024-03-26 苏州华兴致远电子科技有限公司 列车库检机器人和列车零部件检测方法
CN106969724B (zh) * 2017-05-09 2023-03-24 河南科技大学 一种自旋转十字线激光扫描的环境三维形貌感知装置
CN107167118B (zh) * 2017-06-05 2019-10-11 南京航空航天大学 一种基于非编码平行多线的稳定实时激光测量方法
CN108317954B (zh) * 2017-10-27 2020-06-12 广东康云多维视觉智能科技有限公司 一种激光引导扫描系统和方法
CN107678040B (zh) * 2017-11-03 2023-09-26 长春理工大学 用于车载三维成像固态激光雷达系统
US10516876B2 (en) 2017-12-19 2019-12-24 Intel Corporation Dynamic vision sensor and projector for depth imaging
CN107976157A (zh) * 2017-12-26 2018-05-01 天远三维(天津)科技有限公司 一种于获取物体表面三维形貌的无线手持式三维扫描设备
CN108007385B (zh) * 2017-12-31 2023-11-14 中国人民解放军陆军工程大学 一种大视场弹坑表面形貌成像系统及方法
US10949700B2 (en) * 2018-01-10 2021-03-16 Qualcomm Incorporated Depth based image searching
US10819972B2 (en) 2018-05-03 2020-10-27 Osram Sylvania Inc. Method and apparatus for light and computer vision based dimensional metrology and 3D reconstruction
CN109141236A (zh) * 2018-08-17 2019-01-04 上海交通大学 基于振镜扫描的激光频闪三维视觉测量系统及方法
TWI676781B (zh) * 2018-08-17 2019-11-11 鑑微科技股份有限公司 三維掃描系統
US10883823B2 (en) * 2018-10-18 2021-01-05 Cyberoptics Corporation Three-dimensional sensor with counterposed channels
CN209224071U (zh) * 2018-11-19 2019-08-09 炬星科技(深圳)有限公司 机器人的传感器布局系统
CN109443237B (zh) * 2018-11-30 2023-09-22 广西师范大学 一种远距离结构光三维测量装置
CN109584288B (zh) * 2018-12-26 2023-05-02 苏州大学 一种五轴系统中三维模型的重构方法及系统
CN109920007B (zh) * 2019-01-26 2023-04-07 中国海洋大学 基于多光谱光度立体与激光扫描的三维成像装置及方法
JP7412983B2 (ja) 2019-02-04 2024-01-15 キヤノン株式会社 情報処理装置、情報処理方法、及びプログラム
US10488185B1 (en) * 2019-03-14 2019-11-26 The Boeing Company Methods and systems for characterizing a surface of a structural component
JP2020153718A (ja) * 2019-03-18 2020-09-24 株式会社リコー 測定装置及び造形装置
GB201904072D0 (en) * 2019-03-25 2019-05-08 Secr Defence Dazzle resilient video camera or video camera module
CN110153417A (zh) * 2019-04-30 2019-08-23 大族激光科技产业集团股份有限公司 一种激光成型设备
CN110295533A (zh) * 2019-08-02 2019-10-01 武汉夕睿光电技术有限公司 一种路面移动测量装置、系统及方法
JP2022551129A (ja) 2019-10-06 2022-12-07 オルボテック リミテッド ハイブリッド3d検査システム
CN110887486B (zh) * 2019-10-18 2022-05-20 南京航空航天大学 一种基于激光线辅助的无人机视觉导航定位方法
CN110763194B (zh) * 2019-11-01 2021-11-02 中国矿业大学 一种地面三维激光扫描无标靶监测矿区地表沉陷的方法
CN110930382A (zh) * 2019-11-19 2020-03-27 广东博智林机器人有限公司 基于标定板特征点提取的点云拼接精度评估方法及系统
CN110986904A (zh) * 2019-12-20 2020-04-10 上海振华重工(集团)股份有限公司 一种自动运输车的激光器标定系统及方法
US10996051B1 (en) * 2020-02-21 2021-05-04 The Boeing Company Systems and methods for determining space availability in an aircraft
CN111325796B (zh) * 2020-02-28 2023-08-18 北京百度网讯科技有限公司 用于确定视觉设备的位姿的方法和装置
KR102444879B1 (ko) * 2020-03-05 2022-09-19 고려대학교 산학협력단 라이다(Lidar)를 이용한 실내 공간의 3차원 모델링 방법
CN115280780A (zh) * 2020-03-16 2022-11-01 Lg电子株式会社 点云数据发送装置、发送方法、处理装置和处理方法
CA3169767A1 (en) * 2020-03-17 2021-09-23 Roof Asset Management Usa Ltd. Method for evaluating artificial lighting of a surface
CN111649729A (zh) * 2020-05-16 2020-09-11 阿勒泰正元国际矿业有限公司 一种基于三维激光扫描的矿山采空区探测方法
CN111632279B (zh) * 2020-05-23 2021-12-10 四川中测辐射科技有限公司 利用多传感器进行三维射束分析仪的ssd精确调整方法
US20230334711A1 (en) * 2020-06-29 2023-10-19 Lg Electronics Inc. Point cloud data transmission device, transmission method, processing device, and processing method
CN111854601B (zh) * 2020-07-17 2023-03-28 湖南华曙高科技股份有限公司 用于多激光多扫描系统的校准装置及其校准方法
US11763473B2 (en) 2020-07-23 2023-09-19 Zhejiang Hanchine Ai Tech. Co., Ltd. Multi-line laser three-dimensional imaging method and system based on random lattice
CN111854642B (zh) * 2020-07-23 2021-08-10 浙江汉振智能技术有限公司 基于随机点阵的多线激光三维成像方法及系统
CN111860544A (zh) * 2020-07-28 2020-10-30 杭州优链时代科技有限公司 一种投影辅助衣物特征提取方法及系统
CN111982021A (zh) * 2020-07-29 2020-11-24 江苏大学 一种船舶曲板成形便携式三维视觉检测系统及方法
CN112082513A (zh) * 2020-09-09 2020-12-15 易思维(杭州)科技有限公司 一种多激光阵列三维扫描系统及方法
WO2022060176A1 (ko) * 2020-09-17 2022-03-24 엘지전자 주식회사 포인트 클라우드 데이터 전송 방법, 포인트 클라우드 데이터 전송 장치, 포인트 클라우드 데이터 수신 방법 및 포인트 클라우드 데이터 수신 장치
CN112113505B (zh) * 2020-09-23 2022-02-01 华中科技大学鄂州工业技术研究院 一种基于线结构光的便携扫描测量装置及方法
CN112254650B (zh) * 2020-09-25 2022-03-01 武汉科技大学 激光测距式动态检测皮带跑偏系统
CN112284294A (zh) * 2020-09-27 2021-01-29 浙江大学 一种水下多波段交叉线阵激光三维扫描系统
US20230388557A1 (en) * 2020-10-07 2023-11-30 Lg Electronics Inc. Point cloud data transmission device, point cloud data transmission method, point cloud data reception device, and point cloud data reception method
US20230419552A1 (en) * 2020-10-16 2023-12-28 Lg Electronics Inc. Point cloud data transmission method, point cloud data transmission device, point cloud data reception method, and point cloud data reception device
CN112307562B (zh) * 2020-10-30 2022-03-01 泉州装备制造研究所 综合热变形与重力变形的大型飞机上复杂部件的装配方法
CN112489110A (zh) * 2020-11-25 2021-03-12 西北工业大学青岛研究院 一种水下动态场景光学混合三维成像方法
CN112781470B (zh) * 2020-12-24 2022-08-16 中广核核电运营有限公司 U型槽多维度间隙测量方法及系统
CN112833816A (zh) * 2020-12-31 2021-05-25 武汉中观自动化科技有限公司 一种标志点定位与智能反向定位混合的定位方法和系统
CN112819774A (zh) * 2021-01-28 2021-05-18 上海工程技术大学 基于三维重建技术的大型构件外形误差检测方法及其应用
CN112958958B (zh) * 2021-02-08 2023-03-21 西安知象光电科技有限公司 一种mems微镜面扫描与线扫描混合的激光焊缝扫描装置及扫描方法
CN113029041B (zh) * 2021-04-02 2022-11-01 扬州大学 一种多条激光线错位插补的测量方法
CN113390362B (zh) * 2021-05-26 2023-02-28 武汉钢铁有限公司 一种用于激光线性扫描的高精度自适应平台
CN113531018B (zh) * 2021-06-23 2022-09-06 中国矿业大学 一种基于激光网格的矿井提升机制动盘故障监测系统及方法
CN113390357B (zh) * 2021-07-08 2022-06-07 南京航空航天大学 一种基于双目多线结构光的铆钉齐平度测量方法
CN113624142B (zh) * 2021-07-26 2022-12-13 成都飞机工业(集团)有限责任公司 一种飞机装配紧固件凹凸量检测方法
CN113640824A (zh) * 2021-08-20 2021-11-12 西安外事学院 一种光摄一体式控制系统及控制方法
CN113983953A (zh) * 2021-09-29 2022-01-28 江苏兴邦能源科技有限公司 基于三维建模技术的燃料电池双极板测试系统及方法
CN114295046B (zh) * 2021-11-30 2023-07-11 宏大爆破工程集团有限责任公司 一种爆堆形态综合评价方法及系统、电子设备、存储介质
CN114264249B (zh) * 2021-12-14 2023-06-16 中国石油大学(华东) 深孔狭小内腔三维测量系统及方法
CN114199132B (zh) * 2021-12-16 2024-02-27 上海应用技术大学 一种基于机器视觉的激光三维扫描仪及扫描方法
CN114485479B (zh) * 2022-01-17 2022-12-30 吉林大学 基于双目相机和惯性导航的结构光扫描测量方法及系统
CN114719775B (zh) * 2022-04-06 2023-08-29 新拓三维技术(深圳)有限公司 一种运载火箭舱段自动化形貌重建方法及系统
CN114620091A (zh) * 2022-04-11 2022-06-14 南京拓控信息科技股份有限公司 一种基于三维信息的列车车轮不圆度检测方法
CN114820489B (zh) * 2022-04-15 2022-10-25 北京昆迈医疗科技有限公司 一种基于空间标记点的opm阵列快速光学扫描定位方法
CN114779465B (zh) * 2022-06-23 2022-09-13 杭州灵西机器人智能科技有限公司 一种双线激光扫描系统和方法
CN115243022B (zh) * 2022-08-22 2024-03-05 周口师范学院 一种激光投影互动展示系统
CN115511688B (zh) * 2022-11-04 2023-03-10 思看科技(杭州)股份有限公司 数据处理设备和三维扫描系统
CN115830181B (zh) * 2023-01-04 2023-05-09 深圳市先地图像科技有限公司 一种用于激光成像的图像处理方法、装置及相关设备
CN116206069B (zh) * 2023-04-28 2023-10-13 思看科技(杭州)股份有限公司 三维扫描中的图像数据处理方法、装置和三维扫描仪
CN116756893B (zh) * 2023-06-16 2024-01-05 深圳讯道实业股份有限公司 应用于工矿控制系统的输配电电缆布设及控制方法
CN116760931B (zh) * 2023-06-20 2024-01-30 深圳市光太科技有限公司 一种提高线扫相机拍摄精度的方法与装置
CN116781837B (zh) * 2023-08-25 2023-11-14 中南大学 一种自动化激光三维扫描系统
CN117237230B (zh) * 2023-11-09 2024-03-22 武汉中观自动化科技有限公司 激光线及标志点识别方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102589476A (zh) * 2012-02-13 2012-07-18 天津大学 高速扫描整体成像三维测量方法
CN103604366A (zh) * 2013-11-06 2014-02-26 深圳市华星光电技术有限公司 用于检测误差并引导误差校正的系统及方法
CN104165600A (zh) * 2014-07-03 2014-11-26 杭州鼎热科技有限公司 一种无线手持3d激光扫描系统

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07260444A (ja) * 1994-03-24 1995-10-13 Nippon Avionics Co Ltd 光切断法による対象物の三次元計測方法およびその装置
US6377700B1 (en) * 1998-06-30 2002-04-23 Intel Corporation Method and apparatus for capturing stereoscopic images using image sensors
WO2003060424A1 (en) * 2002-01-18 2003-07-24 Mv Research Limited A machine vision system
US7196300B2 (en) * 2003-07-18 2007-03-27 Rudolph Technologies, Inc. Dynamic focusing method and apparatus
CN1203292C (zh) * 2003-08-15 2005-05-25 清华大学 测量物体三维表面轮廊的方法
JP3991040B2 (ja) 2003-08-20 2007-10-17 独立行政法人科学技術振興機構 三次元計測装置及び三次元計測方法
US7375826B1 (en) 2004-09-23 2008-05-20 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration (Nasa) High speed three-dimensional laser scanner with real time processing
US8797552B2 (en) * 2009-07-03 2014-08-05 Leica Geosystems Ag Apparatus for generating three-dimensional image of object
KR101126626B1 (ko) * 2010-03-02 2012-03-26 한국과학기술원 광역 3차원 복원을 위한 시스템 및 방법
JP2012058076A (ja) * 2010-09-09 2012-03-22 3D Media Co Ltd 3次元計測装置及び3次元計測方法
DE102010049672B3 (de) * 2010-10-20 2012-02-16 Technische Universität Dresden Laser-Doppler-Linien-Distanzsensor zur dreidimensionalen Formvermessung bewegter Festkörper
KR101706093B1 (ko) * 2010-11-30 2017-02-14 삼성전자주식회사 3차원 좌표 추출 시스템 및 그 방법
US9402036B2 (en) * 2011-10-17 2016-07-26 Rudolph Technologies, Inc. Scanning operation with concurrent focus and inspection
CN102607462B (zh) * 2012-03-26 2014-02-12 武汉迅能光电科技有限公司 一种三维激光扫描信号同步及修正方法
WO2013176362A1 (ko) 2012-05-22 2013-11-28 한국생산기술연구원 3차원 스캐닝 시스템 및 이를 이용한 3차원 영상획득방법
KR20140049361A (ko) * 2012-10-17 2014-04-25 한국과학기술원 다중 센서 시스템, 이를 이용하는 3차원 월드 모델링 장치 및 방법
WO2014152254A2 (en) * 2013-03-15 2014-09-25 Carnegie Robotics Llc Methods, systems, and apparatus for multi-sensory stereo vision for robotics
KR101458696B1 (ko) * 2013-04-19 2014-11-05 이기창 고속 전자식 3차원 레이저 스캐너 장치
JP2015045587A (ja) 2013-08-28 2015-03-12 株式会社キーエンス 三次元画像処理装置、三次元画像処理装置の状態変化判定方法、三次元画像処理装置の状態変化判定プログラム及びコンピュータで読み取り可能な記録媒体並びに記録した機器
JP6230434B2 (ja) * 2014-01-31 2017-11-15 株式会社キーエンス 画像検査装置、画像検査方法及び画像検査プログラム並びにコンピュータで読み取り可能な記録媒体
KR101604037B1 (ko) * 2014-05-09 2016-03-16 한국건설기술연구원 카메라와 레이저 스캔을 이용한 3차원 모델 생성 및 결함 분석 방법
US10043282B2 (en) * 2015-04-13 2018-08-07 Gerard Dirk Smits Machine vision for ego-motion, segmenting, and classifying objects
US10122998B2 (en) * 2015-04-30 2018-11-06 Seiko Epson Corporation Real time sensor and method for synchronizing real time sensor data streams
US9964398B2 (en) * 2015-05-06 2018-05-08 Faro Technologies, Inc. Three-dimensional measuring device removably coupled to robotic arm on motorized mobile platform
US9903934B2 (en) * 2015-06-30 2018-02-27 Faro Technologies, Inc. Apparatus and method of measuring six degrees of freedom
CN104990518A (zh) * 2015-07-13 2015-10-21 深圳市易尚展示股份有限公司 一种基于fpga的三维扫描控制装置和方法
CN105222724B (zh) 2015-09-10 2018-09-18 北京天远三维科技股份有限公司 多线阵列激光三维扫描系统及多线阵列激光三维扫描方法
CN105203046B (zh) * 2015-09-10 2018-09-18 北京天远三维科技股份有限公司 多线阵列激光三维扫描系统及多线阵列激光三维扫描方法
EP3397921A1 (en) * 2015-12-30 2018-11-07 Faro Technologies, Inc. Registration of three-dimensional coordinates measured on interior and exterior portions of an object

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102589476A (zh) * 2012-02-13 2012-07-18 天津大学 高速扫描整体成像三维测量方法
CN103604366A (zh) * 2013-11-06 2014-02-26 深圳市华星光电技术有限公司 用于检测误差并引导误差校正的系统及方法
CN104165600A (zh) * 2014-07-03 2014-11-26 杭州鼎热科技有限公司 一种无线手持3d激光扫描系统

Also Published As

Publication number Publication date
JP6550536B2 (ja) 2019-07-24
US20180180408A1 (en) 2018-06-28
EP3348958A4 (en) 2019-10-09
US10267627B2 (en) 2019-04-23
EP3348958B1 (en) 2023-08-02
WO2017041419A1 (zh) 2017-03-16
JP2018516377A (ja) 2018-06-21
KR20170135914A (ko) 2017-12-08
CN105222724A (zh) 2016-01-06
KR102015606B1 (ko) 2019-08-28
EP3348958A1 (en) 2018-07-18
ES2961734T3 (es) 2024-03-13
EP3348958C0 (en) 2023-08-02

Similar Documents

Publication Publication Date Title
CN105222724B (zh) 多线阵列激光三维扫描系统及多线阵列激光三维扫描方法
CN105203046B (zh) 多线阵列激光三维扫描系统及多线阵列激光三维扫描方法
CN106289106B (zh) 一种线阵相机和面阵相机相结合的立体视觉传感器及标定方法
CN108151671B (zh) 一种三维数字成像传感器、三维扫描系统及其扫描方法
US10508902B2 (en) Three-dimensional measurement device
US9115986B2 (en) Device for optically scanning and measuring an environment
CN107131848B (zh) 能实现快速和致密形状检测的光学三维传感器
US20150070468A1 (en) Use of a three-dimensional imager's point cloud data to set the scale for photogrammetry
US20170193673A1 (en) Device for optically scanning and measuring an environment
JP6429772B2 (ja) 3d走査および位置決めシステム
CN110044300A (zh) 基于激光器的两栖三维视觉探测装置及探测方法
CN104634276A (zh) 三维测量系统、拍摄设备和方法、深度计算方法和设备
CN110390719A (zh) 基于飞行时间点云重建设备
CN110530292A (zh) 一种基于无线同步的扫描系统及扫描方法
CN107860337A (zh) 基于阵列相机的结构光三维重建方法与装置
CN108175535A (zh) 一种基于微透镜阵列的牙科三维扫描仪
CN105333838A (zh) 一种彩色3d测量系统
CN106247944A (zh) 编码靶标及基于编码靶标的视觉坐标测量方法
CN104034729A (zh) 用于电路板分选的五维成像系统及其成像方法
CN109506562A (zh) 一种用于太阳翼展开锁定深度检测的双目视觉测量装置
CN209312098U (zh) 激光点云与可见光图像共光路配准装置
CN108759712A (zh) 激光投影立体视觉的航空行李三维探测装置
CN108592886B (zh) 图像采集设备和图像采集方法
CN205192446U (zh) 一种彩色3d测量系统用的照明装置
CN105571522A (zh) 一种彩色3d测量系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 100083 Haidian District, Beijing into the house road, building 35-1, North building, the new floor, the floor of the

Applicant after: TENYOUN 3D (TIANJIN) TECHNOLOGY Co.,Ltd.

Address before: 100083 Haidian District, Beijing into the house road, building 35-1, North building, the new floor, the floor of the

Applicant before: TENYOUN 3D (TIANJIN) TECHNOLOGY Co.,Ltd.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: No. 517-519, Floor 5, Complex Building, No. A1, Qinghe Yongtai Garden, Haidian District, Beijing 100192

Patentee after: TENYOUN 3D (TIANJIN) TECHNOLOGY Co.,Ltd.

Address before: 100083 4th Floor, New Dongyuan North Building, Yard 35-1, Chengfu Road, Haidian District, Beijing

Patentee before: TENYOUN 3D (TIANJIN) TECHNOLOGY Co.,Ltd.

CP03 Change of name, title or address