WO2017159812A1 - イオン交換装置及びその使用方法 - Google Patents

イオン交換装置及びその使用方法 Download PDF

Info

Publication number
WO2017159812A1
WO2017159812A1 PCT/JP2017/010750 JP2017010750W WO2017159812A1 WO 2017159812 A1 WO2017159812 A1 WO 2017159812A1 JP 2017010750 W JP2017010750 W JP 2017010750W WO 2017159812 A1 WO2017159812 A1 WO 2017159812A1
Authority
WO
WIPO (PCT)
Prior art keywords
exchange tank
ion exchange
tank
cation exchange
anion exchange
Prior art date
Application number
PCT/JP2017/010750
Other languages
English (en)
French (fr)
Inventor
洋一 宮▲崎▼
秀章 飯野
直樹 深澤
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to KR1020187026844A priority Critical patent/KR102177091B1/ko
Priority to US16/085,998 priority patent/US20190099750A1/en
Priority to SG11201807384PA priority patent/SG11201807384PA/en
Priority to CN201780018206.9A priority patent/CN108779004A/zh
Publication of WO2017159812A1 publication Critical patent/WO2017159812A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/022Column or bed processes characterised by the construction of the column or container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/026Column or bed processes using columns or beds of different ion exchange materials in series
    • B01J47/028Column or bed processes using columns or beds of different ion exchange materials in series with alternately arranged cationic and anionic exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/05Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds
    • B01J49/08Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds containing cationic and anionic exchangers in separate beds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/006Water distributors either inside a treatment tank or directing the water to several treatment tanks; Water treatment plants incorporating these distributors, with or without chemical or biological tanks
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/422Treatment of water, waste water, or sewage by ion-exchange using anionic exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/425Treatment of water, waste water, or sewage by ion-exchange using cation exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/04Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/346Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from semiconductor processing, e.g. waste water from polishing of wafers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/004Seals, connections
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters

Definitions

  • the present invention is a two-bed one-column regenerative pure water production apparatus comprising an anion exchange resin and a cation exchange resin. About.
  • raw water is passed through an apparatus equipped with a tower filled with an ion exchange resin, for example, to remove various components contained in the raw water.
  • a column packed with an ion exchange resin used for pure water production in addition to a mixed bed column in which a cation exchange resin and an anion exchange resin are mixed and packed in one column, a positive column is used.
  • a positive column is used.
  • multi-bed towers in which ion exchange resins and anion exchange resins are packed in separate towers.
  • FIG. 1 there is a single tower type (see FIG. 1) in which a cation exchange resin and an anion exchange resin are laminated via a partition plate in the same tower. Since the one-column type has a simple device configuration, a single-column type device shown in FIG. 1 has been conventionally employed (see, for example, Patent Document 1). As described above, when raw water is passed through a pure water production apparatus composed of a cation exchange resin and an anion exchange resin, ions in the raw water are removed by the action of the cation exchange resin and the anion exchange resin. Is obtained.
  • the maintenance management (maintenance) of the pure water production apparatus is also desired to have a structure that allows maintenance personnel and the like to enter the apparatus and check the resin filling status from the outside of the apparatus. It was rare.
  • the ion exchange device described in Patent Document 1 is a tower for an ion exchange device in which an ion exchange resin is filled, and an upper chamber and a lower chamber are provided by providing a partition plate curved in a water-proof convex shape inside. And is provided with supply / discharge piping for supplying or discharging liquid to and from the upper chamber and the lower chamber, communication means for supplying / discharging the liquid, and opening / closing means for the communication pipe.
  • a water collection / distribution member (collection / distribution pipe) that allows water to pass but blocks the passage of ion exchange resin is disposed in the upper chamber upper part, upper chamber lower part, lower chamber upper part and lower chamber lower part, respectively.
  • These water collecting / distributing members and the upper water collecting / distributing member have a shape along the partition plate, and the upper upper portion and the lower upper portion are filled with granular inert resin.
  • this device has the following problems. 1) Some water collection and distribution members have a shape like an umbrella bone extending radially from the center to the periphery along the partition plate. In such a case, the interval between the collection and distribution pipes is wider in the peripheral portion than in the central portion, and a staying portion is likely to occur. Since this tendency becomes prominent when the apparatus is enlarged, the processing capacity is limited. 2) The inert resin filled in the upper and upper chambers is provided for the purpose of improving the efficiency of the regeneration of the ion exchange resin. The height of the exchange device had to be increased.
  • the two-column type apparatus in which the anion exchange resin and the cation exchange resin are packed in separate towers has the following problems. 1) It is necessary to separately install a column packed with an anion exchange resin and a column packed with a cation exchange resin. Usually, these columns are installed side by side. For this reason, it is necessary to secure a place necessary for installing these towers, and it is difficult to secure a sufficiently large place for installing the apparatus in a limited processing facility. 2) When connecting the towers by piping, the structure in which the towers are arranged side by side increases the length of the piping, and the structure becomes complicated, making it difficult to manage the facility.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an apparatus that is easy to maintain despite having a compact size that requires a small installation area. Another object is to provide an apparatus having a large raw water treatment capacity. Still another object is to provide an apparatus that can efficiently regenerate the ion exchange resin.
  • anion exchange tank an anion exchange resin
  • cation exchange tank a tank filled with a cation exchange resin
  • the two-bed / one-column apparatus of the above-mentioned is installed with either one of the cation exchange tank and the anion exchange tank on the upper side and the other on the lower side, and keeps the space between the anion exchange tank and the cation exchange tank.
  • the area occupied by the ion exchange device can be reduced, and it can be efficiently operated in the factory as a single tower integrating the anion exchange tank and the cation exchange tank. Furthermore, the present inventors have found that an apparatus that is easier to maintain can be provided.
  • the ion exchange apparatus of the present invention comprises: An ion exchange apparatus comprising an anion exchange tank filled with an anion exchange resin on the upper side and a cation exchange tank filled with a cation exchange resin on the lower side,
  • the anion exchange tank and the cation exchange tank each independently have an outer shell composed of an outer convex end plate provided on the upper and lower parts and a support on the side of the ion exchange tank.
  • the anion exchange tank and the cation exchange tank are communicated by communication means outside these ion exchange tanks, A supply / discharge pipe for supplying or discharging the liquid to the upper part of the anion exchange tank and a supply / discharge pipe for supplying or discharging the liquid to the lower part of the cation exchange tank;
  • the communication means includes a first communication pipe for supplying and discharging liquid to and from the lower part of the anion exchange tank, A second communication pipe for supplying and discharging liquid to and from the upper part of the cation exchange tank; A third communication pipe communicating the first communication pipe and the second communication pipe; Opening and closing means for the third communication pipe; Regenerative liquid supply / discharge means respectively provided in the first communication pipe and the second communication pipe; With On the flat plate, a water collecting and distributing member that allows water to pass but prevents passage of the ion exchange resin is disposed, The supply / exhaust piping at the upper part of the anion exchange resin is disposed, The supply / exhaust piping at the upper part of the anion
  • the present invention is an ion exchange apparatus comprising a cation exchange tank filled with a cation exchange resin on the upper side and an anion exchange tank filled with an anion exchange resin on the lower side,
  • a cation exchange tank filled with a cation exchange resin on the upper side and an anion exchange tank filled with an anion exchange resin on the lower side
  • Each of the cation exchange tank and the anion exchange tank independently has an outer shell constituted by an outer end convex plate provided on the upper part and the lower part and a support on the side part of the ion exchange tank.
  • the cation exchange tank and the anion exchange tank are communicated by communication means outside these ion exchange tanks, A supply / discharge pipe for supplying or discharging the liquid to the upper part of the cation exchange tank and a supply / discharge pipe for supplying or discharging the liquid to the lower part of the anion exchange tank;
  • the communication means is A first communication pipe for supplying and discharging liquid to the lower part of the cation exchange tank;
  • a second communication pipe for supplying and discharging liquid to and from the upper part of the anion exchange tank;
  • a third communication pipe communicating the first communication pipe and the second communication pipe; Opening and closing means for the third communication pipe;
  • Regenerative liquid supply / discharge means respectively provided in the first communication pipe and the second communication pipe;
  • the apparatus of the present invention is installed as a variation of the water-impervious flat plate of the water collecting and distributing member at regular intervals on a plurality of concentric circles spaced apart from the central portion of the flat plate so that the vertical and horizontal intervals are constant on the flat plate.
  • the water collecting and distributing member has a conical shape, it is installed so as to protrude in a conical shape toward the ion exchange resin layer side of the flat plate, and when the water collecting and distributing member has a cylindrical shape, it is installed so as to protrude from both the front and back surfaces of the flat plate can do.
  • the water collecting and distributing member has a cylindrical shape
  • a granular inert resin is filled between the flat plate and the ion exchange resin layer, and the water collecting and distributing member above the anion exchange tank and the water collecting and distributing member above the cation exchange tank Each have a layer embedded in an inert resin.
  • the cross-sectional shapes of the anion exchange tank and the cation exchange tank are substantially circular, and preferably the cross-sectional diameters of the anion exchange tank and the cation exchange tank are the same length. It has a predetermined diameter.
  • the diameter of the cross section is not particularly limited, it is preferably 500 mm or more, and preferably 3000 mm or less from the relationship between the amount of treated water and the linear velocity (LV).
  • the anion exchange resin layer and the cation exchange resin layer preferably have a predetermined height.
  • the distance between the lower end of the anion exchange tank and the upper end of the cation exchange tank, or the distance between the lower end of the cation exchange tank and the upper end of the anion exchange tank may have a predetermined distance.
  • a linear velocity (LV) of 50 m / hr (hours) is used in order to float the raw water into the cation exchange tank and treat the ion exchange resin.
  • the ion exchange apparatus of the present invention has the following effects. 1) Since the installation area is small and the size is small, a large amount can be allocated to the production part in the factory, and the facility can be used effectively. 2) Since the raw water treatment capacity is large, it can be applied even when a large amount of high-purity pure water such as a semiconductor manufacturing factory is used. 3) Since the regeneration of the ion exchange resin can be performed efficiently, the rise of pure water production after the regeneration treatment is quick and efficient operation is possible.
  • FIG. 2 is a schematic cross-sectional view showing a one-column type ion exchange apparatus in which a cation exchange resin and an anion exchange resin are laminated on one tower via a partition plate, which is a conventional technique.
  • FIG. 2 is a schematic cross-sectional view showing an ion exchange apparatus provided with an anion exchange tank above the tower and a cation exchange tank below, according to the present invention.
  • FIG. 2a is an example in which the shape of the water collecting and distributing member (strainer) is a conical shape.
  • 2b is an example of a cylindrical shape.
  • FIG. 3 is a schematic cross-sectional view showing an ion exchange apparatus having a cation exchange tank above the tower and an anion exchange tank below, according to the present invention
  • FIG. 3A is an example in which the shape of the water collection and distribution member (strainer) is conical.
  • 3b is an example of a cylindrical shape.
  • FIG. 4 is a schematic cross-sectional view of the apparatus during ion exchange treatment of raw water (treated water) using the ion exchange apparatus of the present invention (FIGS. 4a and 4c) and during resin regeneration (FIGS. 4b and 4d).
  • 4a and 4b are examples in which the shape of the water collection and distribution member (strainer) is conical
  • FIGS. 4c and 4d are examples in which the shape is cylindrical.
  • FIG. 5A and 5B are schematic cross-sectional views showing a state before assembly (FIGS. 5a, 5b, c-1, and c-2) and a state after assembly (FIG. 5d) in which the conical water collection and distribution member is installed on a flat plate
  • FIG. 5c-2 is an enlarged view of the member 7a of FIG. 5a
  • FIG. 6A is an enlarged cross-sectional view of the cylindrical water collecting and distributing member installed on a flat plate (FIG. 6 a), and a portion where the cylindrical water collecting and distributing member on the side surrounded by the upper and lower flat plates protrudes from an inert resin (inert resin).
  • FIG. 7 is a schematic view showing a state in which a water collecting / distributing member is installed on a flat plate, and is a schematic view showing variations (FIGS. 7a to 7d) of installation positions of the water collecting / distributing member.
  • a black rhombus ( ⁇ ) shows the result of a new resin, and a horizontal axis (X axis) is water flow time. (Minute) and vertical axis (Y-axis) indicate TOC concentration (unit: ppb as C).
  • FIG. 2 as an example of the apparatus of the present invention, an ion exchange apparatus (1) provided with an anion exchange tank (2) filled with an anion exchange resin on the upper side and a cation exchange tank (3) filled with a cation exchange resin on the lower side. ).
  • the anion exchange tank (2) constituting a part of the ion exchange device (1) of the present invention includes a barrel (2b) at the side of the anion exchange tank with the cylindrical axis direction as a vertical direction, and a top end plate (5a). ) And the bottom end plate (5b) constitute an outer shell.
  • the cation exchange tank (3) which comprises a part of ion exchange apparatus (1) of this invention consists of the trunk
  • the above-mentioned end plate (5a) and end plate (5c) are convexly curved upward, and the end plate (5b) and end plate (5d) are convexly curved downward.
  • the anion exchange tank (2) is divided into three chambers, an upper chamber (13a), an anion exchange resin filling chamber (2a), and a lower chamber (13b) by an upper water-impervious flat plate (6a) and a lower flat plate (6b). It is partitioned.
  • the cation exchange tank (3) is composed of an upper chamber (13c), a cation exchange resin filling chamber (3a), and a lower chamber (13d) by an upper water-impervious flat plate (6c) and a lower flat plate (6d). It is divided into.
  • the flat plate 6 (6a to 6d) is made of a metal or synthetic resin that does not allow water to pass through at all, and has a planar structure.
  • the first water collection / distribution member (7a) is disposed on the flat plate (6a) separating the upper chamber (13a) and the anion exchange resin filling chamber (2a) of the anion exchange tank (2), and the water collection / distribution water on the upper chamber (13a) side.
  • the member (7a1) and the water collecting / distributing member (7a2) on the side of the anion exchange resin filling chamber (2a) are disposed so as to penetrate the flat plate (6a), and the upper chamber (13a) of the first water collecting / distributing member (7a) )
  • Side water collection / distribution member (7a1) communicates with the upper supply / discharge pipe (10a) whose end is connected to the end plate (5a) via the upper chamber (13a).
  • the second water collecting / distributing member (7b) is disposed on the flat plate (6b) that partitions the lower chamber (13b) and the anion exchange resin filling chamber (2a) of the anion exchange tank (2), and the lower chamber (13b) side collects and distributes water.
  • the member (7b1) and the water collecting / distributing member (7b2) on the side of the anion exchange resin filling chamber (2a) are disposed so as to penetrate the flat plate (6b), and the lower chamber (13b) of the second water collecting / distributing member (7b) )
  • Side water collection / distribution member (7b1) communicates with the first communication pipe (9a) whose end is connected to the end plate (5b) via the lower chamber (13b).
  • the cation exchange tank (3) is the same as the anion exchange tank (2) and will be described below.
  • a third water collection / distribution member (7c) is provided on the flat plate (6c) that partitions the upper chamber (13c) and the cation exchange resin filling chamber (3a) of the cation exchange tank (3), and the water collection / distribution water on the upper chamber (13c) side.
  • the member (7c1) and the water collecting / distributing member (7c2) on the side of the anion exchange resin filling chamber (3a) are disposed so as to penetrate the flat plate (6c), and the upper chamber (13c) of the third water collecting / distributing member (7c) ) Side water collection / distribution member (7c1) communicates with the second communication pipe (9b) whose end is connected to the end plate (5c) via the upper chamber (13c).
  • a fourth water collection / distribution member (7d) is provided on a flat plate (6d) that partitions the lower chamber (13d) and the cation exchange resin filling chamber (3a) of the cation exchange tank (3), and the water collection / distribution water on the lower chamber (13d) side.
  • the member (7d1) and the water collecting / distributing member (7d2) on the side of the anion exchange resin filling chamber (3a) are disposed so as to penetrate the flat plate (6d), and the lower chamber (13d) of the fourth water collecting / distributing member (7d) )
  • Side water collection / distribution member (7d1) communicates with the lower supply / discharge pipe (10b) whose end is connected to the end plate (5d) via the lower chamber (13d).
  • the flat plate (6b) below the anion exchange tank (2) and the cation exchange tank (2) constituting a part of the ion exchange apparatus (1) having an anion exchange tank above the tower and a cation exchange tank below the tower of the present invention.
  • the column body (8a) whose vertical direction is the cylinder axis, and the lower plate (6d) below the cation exchange tank (3) A tower body (8b) is installed in which the cylinder axis direction is the vertical direction.
  • the tower body (8a) and the tower body (8b) support the anion exchange tank (2) and the cation exchange tank (3) of the ion exchange device (1) of the present invention and connect the pipes shown above. Can be supported.
  • the first communication pipe (9a) communicates with the water collection / distribution member (7b1) on the lower chamber (13b) side of the second water collection / distribution member (7b) via the lower chamber (13b).
  • the first communication pipe (9a) is supported at a predetermined position of the tower body (8a), and is a regenerated liquid of the raw water introduced through the cation exchange tank (3) and an anion exchange resin. Used to discharge aqueous sodium hydroxide (NaOH).
  • the second communication pipe (9b) communicates with the water collecting / distributing member (7c1) on the upper chamber (13c) side of the third water collecting / distributing member (7c) through the upper chamber (13c).
  • the second communication pipe (9b) is supported at a predetermined position of the tower body (8a), discharges raw water that has passed through the cation exchange tank (3), and hydrochloric acid (HCl) that is a regenerated solution of the cation exchange resin. ) Used to introduce aqueous solution.
  • the pipe (10b) communicates with the water collection / distribution member (7d1) on the lower chamber (13d) side of the fourth water collection / distribution member (7d) via the lower chamber (13d).
  • a second water collection and distribution member (7b) is installed on the flat plate (6b) below the anion exchange tank (2), and the water collection and distribution member (7b1) on the lower chamber (13b) side of the second water collection and distribution member (7b). ) Is connected to the first communication pipe (9a) via the lower chamber (13b).
  • the 3rd water collection / distribution member (7c) is installed in the flat plate (6c) above a cation exchange tank (3), and the 3rd water collection / distribution member of the upper chamber (13c) side of this 3rd water collection / distribution member (7c) (7c1) is connected to the second communication pipe (9b) via the upper chamber (13c). Further, the first communication pipe (9a) and the second communication pipe (9b) are connected to each other outside the tower of the ion exchange device (1) through the third communication pipe (9c). (Not shown in FIG. 2, see FIG. 3). A valve (11a) is installed in the communication pipe (9c).
  • a valve (11b) and a valve (11c) as a supply / discharge unit for the regenerated liquid are installed at the end portions of the first communication pipe (9a) and the second communication pipe (9b). And at the time of raw
  • the member supporting the anion exchange tank (2) and the cation exchange tank (3) is supported by, for example, only an aggregate (framework) other than the tower body (8a), or an angle
  • the anion exchange tank (2) and / or the cation exchange tank (3) as a whole may be provided with a holding member that can be stably held.
  • FIG. 3 shows an upper direction as an example of the apparatus of this invention.
  • the schematic of the ion exchange apparatus (1) provided with the cation exchange tank (3) filled with the cation exchange resin in FIG. 1, and the cation exchange tank (2) filled with the anion exchange resin below is shown.
  • the arrangement of the ion exchange tank is different from that of the apparatus of FIG. 2, the piping and other aspects can be understood in accordance with the apparatus of FIG.
  • the valve (11b) and the valve (11c) are closed, and raw water (treated water) is supplied from the supply / discharge pipe (10b) below the cation exchange tank (3).
  • the raw water includes a lower chamber (13d) of the cation exchange tank (3), a water collection / distribution member (7d), a cation exchange resin filling chamber (3a), and an inert resin (4b when a cylindrical water collection / distribution member is used).
  • the upper chamber (13a) and the anion exchange tank (3) flow in the order of the supply / discharge pipe (10a) and are taken out as treated water (deionized water).
  • FIG. 3b shows a flow of regeneration of the used anion exchange resin filled in the anion exchange resin filling chamber (2a) and the used cation exchange resin filled in the cation exchange resin filling chamber (3a).
  • the alkaline solution is supplied from the supply / discharge pipe (10a) to the upper chamber (13a) of the anion exchange tank (2), the water collection / distribution member (7a), (inert resin (4a) when a cylindrical water collection / distribution member is used).
  • the anion exchange resin filling chamber (2a), the water collecting and distributing member (7b), the lower chamber (13b) of the anion exchange tank (2), the first communication pipe (9a), and the pipe 9d flow in this order to regenerate waste water (alkali) As a result, the anion exchange resin in the anion exchange resin filling chamber (2a) is regenerated.
  • the acid solution passes from the pipe 9e through the second communication pipe 9b to the upper chamber (13c) of the cation exchange tank (3), the water collecting / distributing member (7c), and (in the case of using a cylindrical water collecting / distributing member, an inert resin. (4b)), cation exchange resin filling chamber (3a), water collection and distribution member (7d), lower chamber (13d) of cation exchange tank (3), supply / exhaust pipe (10b) at the bottom of cation exchange tank (3) It flows out and flows out as reclaimed waste water (acid), whereby the cation exchange resin in the cation exchange resin filling chamber (3a) is regenerated.
  • the anion exchange tank (2) and the cation exchange tank (3) are arranged downward while the anion exchange tank (2) and the cation exchange tank (3) are independent from each other.
  • the cation exchange tank (3) is disposed above and the anion exchange tank (2) is disposed below.
  • the anion exchange tank (2) and / or the cation exchange tank (3) are supported by a holder such as a tower body (8a) or a framework. By setting it as such a structure, an installation space can be small rather than making an anion exchange tank (2) and a cation exchange tank (3) horizontally.
  • the piping which connects an anion exchange tank (2) and a cation exchange tank (3) is also short.
  • the height of these resin layers is set. By devising it, the height of the tower can be made as low as possible. Furthermore, since the ion exchange tanks are arranged at the top and bottom, maintenance and management of the ion exchange apparatus can be performed efficiently.
  • FIG. 3 shows an upper direction as an example of the apparatus of this invention.
  • the schematic of the ion exchange apparatus (1) provided with the cation exchange tank (3) filled with the cation exchange resin in FIG. 1, and the cation exchange tank (2) filled with the anion exchange resin below is shown.
  • the arrangement of the ion exchange tank is different from that of the apparatus of FIG. 2, the piping and other aspects can be understood in accordance with the apparatus of FIG.
  • inert resins (4a) and (4b) are provided above the anion exchange resin filling chamber (2a) and the cation exchange resin filling chamber (3a), respectively.
  • the flow of the cation exchange resin and the anion exchange resin is prevented, and the liquid is evenly contacted with the cation exchange resin and the anion exchange resin at the time of water sampling and regeneration, so that high-quality deionized water is used. Can be obtained and reproduction can be performed sufficiently.
  • the end plate (5b) at the bottom of the anion exchange tank (2) and the end plate (5c) at the top of the cation exchange tank (3) are communicated via a pipe (communication means).
  • the means may be outside each ion exchange resin tank of the ion exchange device.
  • the tower body provided with the tower body (8) it may be outside the tower body, but may be arranged below the ion exchange tank in the tower body if space is allowed.
  • three valves (11a), (11b), and (11c) are used.
  • the flow path switching may be performed using two three-way valves.
  • the conical water collecting / distributing member can be arranged in a state (cross-sectional enlarged view) installed on the flat plate.
  • the conical water collecting / distributing member has a conical water collecting / distributing part having a male screw-like convex portion as shown in FIG. 5a and a female screw-like concave portion that can be fitted to the convex portion as shown in FIG. Both can be fixed from both sides of the flat plate as in 5b.
  • the male screw-like convex portion shown in FIG. 5a has a hollow inside, and the hollow portion has a structure through which a regenerating liquid such as raw water or NaOH or HCl can pass.
  • the reason for (i) is that the raw water or regenerated liquid is actually collected and distributed at the inclined portion (umbrella-shaped portion) of the conical shape, and the distance between the apex of the conical shape and the flat plate is relatively small, That is, since the height of the cone shape is low, water is collected and distributed not only from the apex portion but also from the entire inclined portion. Therefore, since the area of the portion related to the collection and distribution water becomes relatively large, the pressure loss due to the flow of raw water and the extrusion of reclaimed water can be relatively small. For this reason, even if it is a large flow rate at the time of raw water treatment or regeneration, liquid can be smoothly passed, which is suitable for mass treatment and quick regeneration.
  • the reason for the problem (ii) is that if the regenerated waste liquid remains after the regeneration treatment, the ion exchange resin does not work properly, and it is necessary to produce the regenerated waste liquid promptly.
  • the distance between the apex of the conical shape and the flat plate is relatively small, that is, the height of the conical shape is low, so that the recycled wastewater is drained not only from the apex but also from the entire inclined part. It becomes.
  • the base of the cone is connected to the flat plate in a generally planar manner, the structure is not configured to collect the regenerated waste liquid. For this reason, the regenerated waste liquid is quickly discharged and can be regenerated in a short time, and the ion exchange apparatus can be operated efficiently.
  • the cylindrical water collecting and distributing member may be arranged in a state (cross-sectional enlarged view) installed on a flat plate.
  • the method of fixing the cylindrical water collecting / distributing member to the flat plate is the same as that of the conical water collecting / distributing member.
  • the portion where the cylindrical water collecting and distributing member on the side surrounded by the upper and lower flat plates protrudes may be arranged as a state filled with inert resin (inert resin) (cross-sectional enlarged view).
  • the collection and distribution members are installed on the flat plate in consideration of various factors such as the size and shape of the collection and distribution member, the ion exchange device, the size of the flat plate, and the amount of raw water treatment required.
  • the number of members and the installation pattern can be determined as appropriate.
  • the ion exchange apparatus of this invention installs a water collection / distribution member on a flat plate at predetermined intervals in order to improve raw water treatment capacity. For this reason, as shown in FIG. 7a, the water collecting / distributing member is installed on a plurality of concentric circles spaced apart from the central portion of the flat plate at regular intervals, or at regular intervals vertically and horizontally on the flat plate. It is good to install like this.
  • the flat plate center point of the water-impervious plate is uniformly arranged in the vertical and horizontal directions, or the flat plate center point is included in FIG.
  • FIG. 7d it is possible to exemplify a mode in which the plates are evenly arranged on a concentric circle having a fixed interval from the flat plate center point.
  • the water collecting and distributing member it is installed so as to protrude in a conical shape toward the flat plate ion exchange resin layer side, or when the water collecting and distributing member has a cylindrical shape, it protrudes from both sides of the flat plate. It is good to install in.
  • a granular inert resin may be filled between the flat plate and the ion exchange resin layer.
  • the water collection / distribution member above the anion exchange tank and the water collection / distribution member above the cation exchange tank are in the inert resin. It is possible to take an embodiment having a layer embedded in the substrate. When installing a cylindrical water collection / distribution member, the protrusion part of a water collection / distribution member arises between a flat plate and an ion exchange resin layer.
  • the anion exchange resin or the cation exchange resin when filled so as to embed the protruding portion of the water collection / distribution member, the vicinity of the inlet of the water collection / distribution member (for example, the anion exchange tank and the cation exchange tank of FIG. Raw water enters the water collection / distribution member from the vicinity of the lower end of each upper water collection / distribution member), and the anion exchange resin or cation exchange resin above the lower end of the water collection / distribution member cannot substantially participate in ion exchange and is wasted. There is a risk that.
  • the water collecting / distributing member has a structure that allows water to pass through but blocks the passage of ion exchange resin, but if raw water is passed, it first contacts the lower end of the water collecting / distributing member as raw water flow. This is because the raw water flows in a concentrated manner at the lower end portion of the water collection and distribution member. For this reason, as shown in FIG.
  • the anion exchange resin and the cation exchange resin above the lower end of the water collecting and distributing member are filled with an inert resin as a dummy resin having no ion exchange action, so that expensive ions can be obtained.
  • an exchange resin can be used effectively.
  • the inert resin a polyethylene or polypropylene resin having a specific gravity smaller than that of the ion exchange resin is used.
  • the particle size of the inert resin is preferably larger than that of the ion exchange resin.
  • the ion exchange apparatus tower which covers the anion exchange tank (2) lower part and the cation exchange tank (3) upper part by making the cross-sectional diameter of an anion exchange tank (2) and a cation exchange tank (3) into the same length.
  • the body trunk (8) is installed, and the ion exchange device (1) has robustness.
  • the layer height of the anion exchange resin layer may be 500 mm to 2000 mm, more preferably 750 mm to 1500 mm, and the layer height of the cation exchange resin layer may be 400 mm to 800 mm, more preferably 500 mm to 750 mm.
  • the layer height of the anion exchange resin layer may be 1.5 to 2.5 times, more preferably about twice the layer height of the cation exchange resin layer.
  • the ion exchange apparatus includes an anion exchange tank (2) on a cation exchange tank, and a tower body (8) covering the lower part of the anion exchange tank (2) and the upper part of the cation exchange tank (3). It is provided. Furthermore, the distance between the lower end of the anion exchange tank (2) and the upper end of the cation exchange tank (3) is preferably 500 mm to 1000 mm. This structure allows maintenance personnel to enter the equipment for equipment maintenance and management, making it easier to properly manage the equipment, introducing raw water or reclaimed liquid, and discharging treated water and reclaimed waste liquid. Necessary piping can be installed in the space below the anion exchange tank (2) and the top of the cation exchange tank (3), and the apparatus can be made compact.
  • the maintenance of the ion exchange apparatus (1) can be observed from the outside of the apparatus, such as the resin filling status and the operating status inside the apparatus.
  • a window provided with a transparent material such as transparent resin and glass, and an ion exchange resin supply port and a discharge port for exchanging the resin filled therein.
  • the size, shape, and installation position of the window, ion exchange resin supply and discharge ports should be designed and applied as appropriate, and the transparent material of the window should be strong enough not to interfere with operation or regeneration. Good.
  • the ion exchange apparatus of the present invention can be sufficiently treated.
  • the regeneration time can be shortened by increasing the flow rate, and the working efficiency of the raw water treatment can be improved.
  • the following may be used as a guide for the amount of water flow relative to the tower diameter of the ion exchange device.
  • Example 1 Production of pure water by the ion exchange apparatus of the present invention Pure water was produced under the following conditions using the apparatus shown in FIG. 2a.
  • BTC: B ⁇ 1 ng / L 0.43 mg-B / LR TOC: 10 ppb Ion exchange resin;
  • Cation exchange tank: SV 150 / h (hours)
  • Anion exchange tank: SV 75 / h (hours)
  • Regeneration conditions NaOH: 4.0% by mass
  • Example 2 Effect of Strainer Installation
  • the device shown in FIG. 2a uses the conical water collecting / distributing member shown in FIG. 5 or the cylindrical water collecting / distributing member shown in FIG. 6 under the same conditions as in Example 1.
  • the recovered water was supplied to the resin under the above water flow conditions, and the specific resistance value of the water to be treated was measured.
  • a cylindrical water collecting and distributing member was used, as shown in FIG. 6b, both the case where the inert resin layer was installed and the case where it was not installed were carried out.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

アニオン交換槽と、カチオン交換槽と、塔体側部とを備え、アニオン交換槽およびカチオン交換槽の外を引き回された連通手段によってアニオン交換槽とカチオン交換槽とが連通され、アニオン交換槽の上部および下部に液を供給又は排出するための給排配管と該カチオン交換槽の上部および下部に液を供給又は排出するための給排配管とを備えており、平板には、水は通すがイオン交換樹脂の通過を阻止する集配水部材が配置され、上部給排配管、第1の連通配管、第2の連通配管及び下部給排配管の末端がそれぞれ該集配水部材に接続されている、イオン交換装置を用いる。

Description

イオン交換装置及びその使用方法
  本発明は、工業用水などの原水をイオン交換樹脂の充填層に通して純水を製造する技術分野において、アニオン交換樹脂とカチオン交換樹脂とを備えた、2床1塔再生型純水製造装置に関する。
  工業用水などの原水より純水を製造するには、例えばイオン交換樹脂を充填した塔を備えた装置に原水を通水し、原水に含まれる種々の成分を除去する操作による。このような純水製造に用いられるイオン交換樹脂を充填した塔を備えた装置としては、陽イオン交換樹脂と陰イオン交換樹脂とを混合して1つの塔に充填した混床塔の他、陽イオン交換樹脂と陰イオン交換樹脂とをそれぞれ別の塔に充填した、多床塔などがある。
  例えば同じ一つの塔に、陽イオン交換樹脂と陰イオン交換樹脂とを仕切板を介して積層させた1塔式(図1参照)がある。1塔式は装置構成が簡単なことから、従来より図1に示す1塔式による装置が採用されていた(例えば特許文献1参照)。
  このように、陽イオン交換樹脂と陰イオン交換樹脂から構成される純水製造装置に原水を通水すると、原水中のイオンが陽イオン交換樹脂および陰イオン交換樹脂の作用により除去され、純水が得られる。
  ところで、例えば半導体等の電子材料を製造する工場においては、大容量でかつ高純度な純水が必要であり、さらには製造工場の立地条件によっては、コンパクトな純水製造装置が必要とされた。
  さらに、当該純水製造装置の保守管理(メンテナンス)には、保守要員等が装置に入りこめると共に、装置の外から中の樹脂充填状況等を確認できるような構造を有する装置であることも望まれていた。
  特許文献1に記載のイオン交換装置は、内部にイオン交換樹脂が充填されるイオン交換装置用塔体において、内部に遮水性の凸状に湾曲した仕切板を設けることによって上室と下室とに区画形成し、上室と下室に液を供給又は排出するための給排配管、液を給排するための連通手段、連通配管の開閉手段を備える。さらに、上室の上部、上室の下部、下室の上部及び下室の下部にそれぞれ、水は通すがイオン交換樹脂の通過を阻止する集配水部材(集配水管)が配置され、上室下部の集配水部材及び下室上部の集配水部材が仕切板に沿う形状を有し、上室上部及び下室上部に粒状の不活性樹脂が充填された構成を有するものである。
  しかしながら、この装置は次の課題を有する。
1)集配水部材は仕切板に沿って中心から周辺部へと放射状に広がる傘の骨のような形状をしているものがある。このような場合、中心部に比較して周辺部では集配水管同士の間隔が広くなり、滞留部が生じやすくなる。この傾向は装置を大型化した場合に顕著になるため、処理能力に限界があった。
2)上室上部及び下室上部に充填された不活性樹脂はイオン交換樹脂の再生の効率化などの目的で設けられているが、不活性樹脂が充填される分、その容積に応じてイオン交換装置の高さを高くする必要があった。
  また陰イオン交換樹脂と陽イオン交換樹脂をそれぞれ別々の塔に充填した2塔式の装置においては、次の課題を有する。
1)陰イオン交換樹脂を充填した塔と陽イオン交換樹脂を充填した塔を別々に設置する必要があり、通常はこれらの塔を横に並べて設置する。このため、これらの塔を設置するのに必要な場所を確保する必要があり、限られた処理施設内で装置を設置するにあたり十分に広い場所を確保することが難しかった。
2)塔間を配管により連通させる場合、塔を横に並べた構成では配管の長さが長くなると共に、その構造も複雑となって施設の管理が難しくなりうるものであった。
特許第5672687号公報(特許請求の範囲、図1)
  本発明は上記事情に鑑みてなされたもので、その目的は、設置面積が少なくてすむコンパクトな大きさであるにも関わらずメンテナンスの容易な装置を提供することにある。他の目的として、原水処理能力が大きい装置を提供することにある。さらに他の目的として、イオン交換樹脂の再生を効率的に行なうことができる装置を提供することにある。
  本発明者らは、従来の課題を解決すべく鋭意検討した結果、陰イオン交換樹脂を充填した槽(以下「アニオン交換槽」という)と陽イオン交換樹脂を充填した槽(以下「カチオン交換槽」という)の2床1塔式の装置であって、カチオン交換槽とアニオン交換槽とのいずれか一方を上方に他方を下方に設置すると共に、アニオン交換槽とカチオン交換槽とを空間を保った状態で上下方向に保持する保持部材を備えることで、イオン交換装置の占める面積を少なくでき、またアニオン交換槽とカチオン交換槽とを一体化した一つの塔として、工場で効率的に稼働でき、さらにメンテナンスの容易な装置を提供できることを見出した。
  さらに、アニオン交換槽およびカチオン交換槽の各々の上部および下部に平板を設置して、交換槽の上室と樹脂充填室と下室とに区画すると共に、当該平板の所定位置に水は通すがイオン交換樹脂の通過を阻止する集配水部材(集配水管)を設置することで、原水の大量処理を実現でき、さらに樹脂再生から再稼働までの時間を短縮できることを見出し、本発明を完成させるに至った。
  以下、本発明を詳細に説明する。
  本発明のイオン交換装置は、
  上方にアニオン交換樹脂が充填されたアニオン交換槽と、下方にカチオン交換樹脂が充填されたカチオン交換槽とを備えたイオン交換装置であって、
  前記アニオン交換槽及び前記カチオン交換槽は、各々独立して、上部と下部に備えられた外側に凸状である鏡板とイオン交換槽側部の支持体により外殻が構成され、かつ、上下二枚の平板により区画された上室、樹脂充填室及び下室を備えており、
  前記アニオン交換槽と前記カチオン交換槽とは、これらのイオン交換槽の外側で連通手段により連通されており、
  前記アニオン交換槽の上部に液を供給又は排出するための給排配管と前記カチオン交換槽の下部に液を供給又は排出するための給排配管とを備えており、
  前記連通手段は、    前記アニオン交換槽の下部に液を給排するための第1の連通配管と、
    前記カチオン交換槽の上部に液を給排するための第2の連通配管と、
    前記第1の連通配管と前記第2の連通配管とを連通する第3の連通配管と、
    前記第3の連通配管の開閉手段と、
    前記第1の連通配管及び前記第2の連通配管にそれぞれ設けられた再生液の給排手段と、
    を備え、
  前記平板には、水は通すがイオン交換樹脂の通過を阻止する集配水部材が配置され、
  前記アニオン交換槽上部の給排配管、前記第1の連通配管、前記第2の連通配管および前記カチオン交換槽下部の給排配管、つまりそれらの末端が、前記アニオン交換槽および前記カチオン交換槽のそれぞれの上部と下部に設けられた鏡板に連通している、装置である。
  また本発明は、上方にカチオン交換樹脂が充填されたカチオン交換槽と、下方にアニオン交換樹脂が充填されたアニオン交換槽とを備えたイオン交換装置であって、
  前記カチオン交換槽及び前記アニオン交換槽は、各々独立して、上部と下部に備えられた外側に凸状である鏡板とイオン交換槽側部の支持体により外殻が構成され、かつ、上下二枚の平板により区画された上室、樹脂充填室及び下室を備えており、
  前記カチオン交換槽と前記アニオン交換槽とは、これらのイオン交換槽の外で連通手段により連通されており、
  前記カチオン交換槽の上部に液を供給又は排出するための給排配管と前記アニオン交換槽の下部に液を供給又は排出するための給排配管とを備えており、
  前記連通手段は、
    前記カチオン交換槽の下部に液を給排するための第1の連通配管と、
    前記アニオン交換槽の上部に液を給排するための第2の連通配管と、
    前記第1の連通配管と前記第2の連通配管とを連通する第3の連通配管と、
    前記第3の連通配管の開閉手段と、
    前記第1の連通配管及び前記第2の連通配管にそれぞれ設けられた再生液の給排手段と、
    を備え、
  前記平板には、水は通すがイオン交換樹脂の通過を阻止する集配水部材が配置され、
  前記カチオン交換槽上部の給排配管、前記第1の連通配管、前記第2の連通配管および前記アニオン交換槽下部の給排配管、つまりそれらの末端が、前記カチオン交換槽および前記アニオン交換槽のそれぞれの上部と下部に設けられた鏡板に連通している、装置である。
  また本発明の装置は、集配水部材の遮水性の平板における設置バリエーションとして、平板の中心部から一定間隔離れた複数の同心円上に一定間隔毎に設置、平板上に縦横に一定間隔となるように設置することができる。また、集配水部材が円錐形状を有するときは平板のイオン交換樹脂層の側へ円錐形状にて突き出すように設置し、集配水部材が円筒形状を有するときは平板の表裏両面から突き出すように設置することができる。さらに集配水部材が円筒形状を有するときは、平板とイオン交換樹脂層の間に、粒状の不活性樹脂が充填されており、アニオン交換槽上部の集配水部材及びカチオン交換槽上部の集配水部材がそれぞれ不活性樹脂中に埋設された層を有する。
  また本発明の装置は、アニオン交換槽およびカチオン交換槽の断面形状が略円形状であって、好ましくはアニオン交換槽とカチオン交換槽との断面直径が同じ長さであるとよく、その断面は所定の直径を有する。断面の直径は特に限定されるものではないが、被処理水の処理量と線速度(LV)の関係から500mm以上であることが好ましく、また、3000mm以下であることが好ましい  また本発明の装置は、アニオン交換樹脂層の層高およびカチオン交換樹脂層の層高が所定の高さを有するとよい。
  また本発明の装置は、アニオン交換槽下端とカチオン交換槽上端との距離、またはカチオン交換槽下端とアニオン交換槽上端との距離が所定の距離を有するとよい。
  本発明のアニオン交換槽およびカチオン交換槽を有するイオン交換装置の使用方法としては、原水をカチオン交換槽へ、イオン交換樹脂を浮上させて処理するために、線速度(LV)50m/hr(時間)以上で通水することが好ましい
  本発明のイオン交換装置は、次の効果を奏する。
1)設置面積が少なくてすむコンパクトな大きさであるため、工場内の生産部分に多くを割り当てることができ、施設の有効利用を図ることができる。
2)原水処理能力が大きいため、半導体製造工場のような高純度の純水を大量使用する場合にも適応できる。
3)イオン交換樹脂の再生を効率的に行なうことができるため、再生処理後の純水製造の立ち上がりが早く、効率的な運転ができる。
従来技術である、一つの塔に陽イオン交換樹脂と陰イオン交換樹脂とを仕切板を介して積層させた1塔式のイオン交換装置を示す概略的な断面図である。 本発明の、塔上方にアニオン交換槽、下方にカチオン交換槽を備えたイオン交換装置を示す概略的な断面図であり、図2aは集配水部材(ストレーナー)の形状が円錐形状による例、図2bは円筒形状による例である。 本発明の、塔上方にカチオン交換槽、下方にアニオン交換槽を備えたイオン交換装置を示す概略的な断面図であり、図3aは集配水部材(ストレーナー)の形状が円錐形状による例、図3bは円筒形状による例である。 本発明のイオン交換装置を使用した原水(被処理水)のイオン交換処理時(図4a、図4c)及び樹脂の再生時(図4b、図4d)の概略的な装置断面図であり、図4a及び図4bは集配水部材(ストレーナー)の形状が円錐形状による例、図4c及び図4dは円筒形状による例である。 円錐型集配水部材を平板に設置する組立前(図5a、5b、c-1、c-2)と組立後(図5d)を示す概略的な断面図であり、図5c-1は図5aの部材7aの側面図を上方からみた図であり、図5c-2は図5aの部材7aの拡大図である。 円柱型集配水部材が平板に設置された状態の断面拡大図(図6a)であり、さらに上下の平板で囲まれた側の円柱型集配水部材が突出した部分を、イナート樹脂(不活性樹脂)で充填した状態の断面拡大図(図6b)である。 平板に集配水部材が設置された状態の概略図であって、集配水部材の設置位置のバリエーション(図7a~d)を示す概略図である。 実施例1に係る本発明のイオン交換装置による純水の製造の結果を示す図であり、図中、黒ひし形(◆)は新品樹脂の結果を示し、横軸(X軸)は通水時間(分)、縦軸(Y軸)はTOC濃度(単位はppb  as  C)を示す。 実施例1に係る本発明のイオン交換装置に組み込んだストレーナー設置の影響を検討した結果を示す図であり、図示するように、従来のストレーナーと不活性(イナート)樹脂を組み合わせたもの(従来ストレーナー+イナート樹脂と表示)、新規ストレーナーの結果を示し、横軸(X軸)は通水時間(時間)、縦軸(Y軸)は比抵抗値(単位はMΩ・cm)を示す。
  以下、本発明の実施形態を図面にしたがって説明する。
<イオン交換装置>
  図2には、本発明の装置の一例として、上方にアニオン交換樹脂を充填したアニオン交換槽(2)、下方にカチオン交換樹脂を充填したカチオン交換槽(3)を備えたイオン交換装置(1)の概略図を示す。
  本発明のイオン交換装置(1)の一部を構成するアニオン交換槽(2)は、筒軸心方向を鉛直方向としたアニオン交換槽の側部の胴(2b)と、頂部の鏡板(5a)と、底部の鏡板(5b)とによって外殻が構成されている。
  また本発明のイオン交換装置(1)の一部を構成するカチオン交換槽(3)は、筒軸心方向を鉛直方向としたカチオン交換槽の側部の胴(3b)と、頂部の鏡板(5c)と、底部の鏡板(5d)とによって外殻が構成されている。上記の鏡板(5a)と鏡板(5c)は上に凸に湾曲し、鏡板(5b)と鏡板(5d)は下に凸に湾曲している。
  アニオン交換槽(2)は、上方の遮水性の平板(6a)および下方の平板(6b)によって上室(13a)とアニオン交換樹脂充填室(2a)と下室(13b)との3室に区画されている。またカチオン交換槽(3)は、上方の遮水性の平板(6c)および下方の平板(6d)によって上室(13c)とカチオン交換樹脂充填室(3a)と下室(13d)との3室に区画されている。
  平板6(6a~6d)は、水を全く通過させない金属又は合成樹脂製のものであり、平面構造となっている。
  アニオン交換槽(2)の上室(13a)とアニオン交換樹脂充填室(2a)とを区画する平板(6a)に第1の集配水部材(7a)が、上室(13a)側の集配水部材(7a1)とアニオン交換樹脂充填室(2a)側の集配水部材(7a2)とで平板(6a)を貫通するように配置され、この第1の集配水部材(7a)の上室(13a)側の集配水部材(7a1)は上室(13a)を介して、末端が鏡板(5a)に接続された上部給排配管(10a)と連通している。
  アニオン交換槽(2)の下室(13b)とアニオン交換樹脂充填室(2a)とを区画する平板(6b)に第2の集配水部材(7b)が、下室(13b)側の集配水部材(7b1)とアニオン交換樹脂充填室(2a)側の集配水部材(7b2)とで平板(6b)を貫通するように配置され、この第2の集配水部材(7b)の下室(13b)側の集配水部材(7b1)は下室(13b)を介して、末端が鏡板(5b)に接続された第1の連通配管(9a)と連通している。
  カチオン交換槽(3)についてもアニオン交換槽(2)同様であり、以下に説明する。
  カチオン交換槽(3)の上室(13c)とカチオン交換樹脂充填室(3a)とを区画する平板(6c)に第3の集配水部材(7c)が、上室(13c)側の集配水部材(7c1)とアニオン交換樹脂充填室(3a)側の集配水部材(7c2)とで平板(6c)を貫通するように配置され、この第3の集配水部材(7c)の上室(13c)側の集配水部材(7c1)は上室(13c)を介して、末端が鏡板(5c)に接続された第2の連通配管(9b)と連通している。
  カチオン交換槽(3)の下室(13d)とカチオン交換樹脂充填室(3a)とを区画する平板(6d)に第4の集配水部材(7d)が、下室(13d)側の集配水部材(7d1)とアニオン交換樹脂充填室(3a)側の集配水部材(7d2)とで平板(6d)を貫通するように配置され、この第4の集配水部材(7d)の下室(13d)側の集配水部材(7d1)は下室(13d)を介して、末端が鏡板(5d)に接続された下部給排配管(10b)と連通している。
  さらに本発明の、塔上方にアニオン交換槽、下方にカチオン交換槽を備えたイオン交換装置(1)の一部を構成するアニオン交換槽(2)の下方の平板(6b)とカチオン交換槽(3)の上方の平板(6c)との間には、筒軸心方向を鉛直方向とした塔体胴(8a)と、カチオン交換槽(3)の下方の平板(6d)から下方には、筒軸心方向を鉛直方向とした塔体胴(8b)が設置されている。
  塔体胴(8a)および塔体胴(8b)は、本発明のイオン交換装置(1)のアニオン交換槽(2)とカチオン交換槽(3)を支持すると共に、上記に示した配管を接続し支持することができる。
  具体的には、第2の集配水部材(7b)の下室(13b)側の集配水部材(7b1)に、下室(13b)を介して、第1の連通配管(9a)が連通しているが、この第1の連通配管(9a)は塔体胴(8a)の所定位置で支持されて、カチオン交換槽(3)を通過した原水の導入及び、アニオン交換樹脂の再生液である水酸化ナトリウム(NaOH)水溶液の排出に使用される。
  また、第3の集配水部材(7c)の上室(13c)側の集配水部材(7c1)に、上室(13c)を介して、第2の連通配管(9b)が連通しているが、この第2の連通配管(9b)は塔体胴(8a)の所定位置で支持されて、カチオン交換槽(3)を通過した原水の排出及び、カチオン交換樹脂の再生液である塩酸(HCl)水溶液の導入に使用される。
  さらに、第4の集配水部材(7d)の下室(13d)側の集配水部材(7d1)に、下室(13d)を介して、配管(10b)が連通しているが、この配管(10b)は塔体胴(8a)の所定位置で支持されて、原水の導入及び、カチオン交換樹脂の再生液である塩酸(HCl)水溶液の排出に使用される。
<連通配管の切替>
  アニオン交換槽(2)の下方の平板(6b)に第2の集配水部材(7b)が設置され、この第2の集配水部材(7b)の下室(13b)側の集配水部材(7b1)は下室(13b)を介して第1の連通配管(9a)と接続されている。また、カチオン交換槽(3)の上方の平板(6c)に第3の集配水部材(7c)が設置され、この第3の集配水部材(7c)の上室(13c)側の集配水部材(7c1)は上室(13c)を介して第2の連通配管(9b)と接続されている。さらに第1の連通配管(9a)と第2の連通配管(9b)とは、イオン交換装置(1)の塔体の外部にて、第3の連通配管(9c)を介して接続されている(図2には示さず、図3参照)。この連通配管(9c)に弁(11a)が設置されている。
  また、第1の連通配管(9a)と第2の連通配管(9b)の末端部に、再生液の給排手段としての弁(11b)および弁(11c)が設置されている。
  そして、原水処理時は弁(11a)を開き、弁(11b)および弁(11c)を閉じた状態で処理を行う。樹脂再生時は、弁(11a)を閉じ、弁(11b)および弁(11c)を開いた状態で樹脂再生処理を行う。
  なお、本発明の装置のバリエーションとして、アニオン交換槽(2)やカチオン交換槽(3)を支持する部材を、塔体胴(8a)以外の、例えば骨材(骨組み)だけで支えたり、アングルを組んで支持することでも良く、装置全体としてアニオン交換槽(2)及び/又はカチオン交換槽(3)を安定して保持できる保持部材を備えることでよい。
  また、上記態様ではアニオン交換槽(2)を上方に、カチオン交換槽(3)を下方に配置したイオン交換装置について説明しているが、図3には、本発明の装置の一例として、上方にカチオン交換樹脂を充填したカチオン交換槽(3)、下方にアニオン交換樹脂を充填したカチオン交換槽(2)を備えたイオン交換装置(1)の概略図を示す。図2の装置とはイオン交換槽の配置が異なっているものの、配管その他の態様は図2の装置に準じて理解することができる。
  アニオン交換槽(2)とカチオン交換槽(3)のいずれの槽を塔の上方に配置するかは、本イオン交換装置と併用して用いる水処理装置や処理する被処理水の水質などによって異なるが、得られる処理水の水質の点から、通常、アニオン交換槽(2)が上方に、カチオン交換槽(3)が下方に配置される。
<イオン交換フロー>
  本発明のイオン交換装置を用いた脱イオン水の生産(採水)時のフローを図4aに示す。第1の連通配管(9a)と第2の連通配管(9b)の末端部に、再生液の給排手段としての弁(11b)および弁(11c)を設けた場合、弁(11a)を開、弁(11b)および弁(11c)を閉とし、カチオン交換槽(3)下部の給排配管(10b)から原水(被処理水)を供給する。この原水は、カチオン交換槽(3)の下室(13d)、集配水部材(7d)、カチオン交換樹脂充填室(3a)、(円柱型集配水部材を使用する場合は不活性樹脂(4b))、集配水部材(7c)、上室(13c)、第2の連通配管(9b)、第3の連通配管(9c)、第1の連通配管(9a)、アニオン交換槽(2)の下室(13b)、集配水部材(7b)、アニオン交換樹脂充填室(2a)、(円柱型集配水部材を使用する場合は不活性樹脂(4a))、集配水部材(7a)、アニオン交換槽(2)の上室(13a)、アニオン交換槽(3)上部の給排配管(10a)の順に流れ、処理水(脱イオン水)として取り出される。
  アニオン交換樹脂充填室(2a)に充填されている使用済のアニオン交換樹脂及びカチオン交換樹脂充填室(3a)に充填されている使用済のカチオン交換樹脂の再生時のフローを図3bに示す。第1の連通配管(9a)と第2の連通配管(9b)の末端部に、再生液の給排手段としての弁(11b)および弁(11c)を設けた場合、弁(11a)を閉、弁(11b)および弁(11c)を開とし、アニオン交換槽(3)上部の給排配管(10a)からNaOHなどのアルカリ溶液を供給すると共に、配管(9e)からHClなどの酸溶液を供給する。
  アルカリ溶液は、給排配管(10a)から、アニオン交換槽(2)の上室(13a)、集配水部材(7a)、(円柱型集配水部材を使用する場合は不活性樹脂(4a))、アニオン交換樹脂充填室(2a)、集配水部材(7b)、アニオン交換槽(2)の下室(13b)、第1の連通配管(9a)、配管9dの順に流れ、再生廃水(アルカリ)として流出し、これにより、アニオン交換樹脂充填室(2a)内のアニオン交換樹脂が再生される。
  酸溶液は、配管9eから第2の連通配管9bを経て、カチオン交換槽(3)の上室(13c)、集配水部材(7c)、(円柱型集配水部材を使用する場合は不活性樹脂(4b))、カチオン交換樹脂充填室(3a)、集配水部材(7d)、カチオン交換槽(3)の下室(13d)、カチオン交換槽(3)下部の給排配管(10b)の順に流れ、再生廃水(酸)として流出し、これによりカチオン交換樹脂充填室(3a)内のカチオン交換樹脂が再生される。
  再生終了後は、図3bで示されたHCl溶液、NaOH溶液の代わりに、それぞれ純水を通水し、各経路及び樹脂に残留する再生液を押し出した後、必要に応じて純水でアニオン交換槽(2)およびカチオン交換槽(3)を個別に洗浄しながら洗浄排水を排出し、その後、純水をアニオン交換槽(2)とカチオン交換槽(3)との間で所定時間循環させ、次いで、採水工程に復帰する。この再生に際しては、アニオン交換樹脂およびカチオン交換樹脂は平板(6)と集配水部材(7)により移動を阻止されており、互いに混ざり合うことはない。また、再生用の酸溶液がアニオン交換槽(2)に流入し、またはアルカリ溶液がカチオン交換槽(3)に混入することはない。加えて、カチオン交換樹脂とアニオン交換樹脂とを同時に並行して再生することができるため、再生時間を短くすることができる。
  本発明のイオン交換装置は、アニオン交換槽(2)とカチオン交換槽(3)を各々独立させたまま、アニオン交換槽(2)を上方に、カチオン交換槽(3)を下方に配置し、あるいはカチオン交換槽(3)を上方に、アニオン交換槽(2)を下方に配置している。このような配置とするために、塔体胴(8a)や骨組み等の保持体によりアニオン交換槽(2)及び/又はカチオン交換槽(3)を支持している。このような構成とすることで、アニオン交換槽(2)とカチオン交換槽(3)を各々横置きにするよりも設置スペースが小さくてすむ。また、アニオン交換槽(2)とカチオン交換槽(3)とを連通する配管も短くてすむ。さらに、使用する集配水部材(7)の形状などを工夫したことおよびアニオン交換槽(2)およびカチオン交換槽(3)中の樹脂のイオン交換効率を勘案してこれらの樹脂層の高さを工夫することで塔体の高さを極力低くできる。さらに、上下にイオン交換槽が配置されているため、イオン交換装置の維持管理(メンテナンス)も効率的に行うことができる。
  また、上記態様ではアニオン交換槽(2)を上方に、カチオン交換槽(3)を下方に配置したイオン交換装置について説明しているが、図3には、本発明の装置の一例として、上方にカチオン交換樹脂を充填したカチオン交換槽(3)、下方にアニオン交換樹脂を充填したカチオン交換槽(2)を備えたイオン交換装置(1)の概略図を示す。図2の装置とはイオン交換槽の配置が異なっているものの、配管その他の態様は図2の装置に準じて理解することができる。
<集配水部材>
  上記したように、集配水部材(7)を円錐形状のものを使用することで不活性樹脂(4)は不要とでき、アニオン交換槽(2)中の樹脂層の高さをカチオン交換槽(3)中の樹脂層の高さの1.5~2.5倍程度、好ましくは2倍程度とするとよい。ただし、本発明において、集排水部材(7)として円錐形状のものを使用した場合であっても、不活性樹脂を用いた場合を排除するものではなく、下記の通り、必要に応じて不活性(イナート)樹脂を充填して使用すればよい。
  集配水部材(7)を円筒形状のものを使用する場合には、アニオン交換樹脂充填室(2a)およびカチオン交換樹脂充填室(3a)の上部に、それぞれ不活性樹脂(4a)および(4b)を充填しており、カチオン交換樹脂及びアニオン交換樹脂の流動が防止され、採水時及び再生時に液が均等にカチオン交換樹脂及びアニオン交換樹脂と接触するようにしており、高水質の脱イオン水が得られると共に、十分に再生が行われるようになる。
  上記実施の形態では、アニオン交換槽(2)の底部の鏡板(5b)とカチオン交換槽(3)の頂部の鏡板(5c)とが配管(連通手段)を介して連通されているが、連通手段は、イオン交換装置のイオン交換樹脂槽の各々の外にあればよい。例えば、塔体胴(8)を備えた塔体の場合、塔体の外にあってもよいが、スペースが許容されるのであれば塔体内のイオン交換槽の下側に配置することでも良い。また、この実施の形態では、3個の弁(11a)、(11b)、(11c)を用いているが、2個の三方弁を用いて流路切り替えを行うようにしてもよい。
  集配水部材(7)が平板に設置される具体的態様としては、図5dに示すように円錐型集配水部材が平板に設置された状態(断面拡大図)に配置することを挙げることができる。
  円錐型集配水部材は図5aに示すように雄ネジ様の凸部を有した円錐形状の集配水部品と図5cに示すような凸部に嵌合できる雌ネジ様の凹部を有し、図5bのように平板の両側から両者を固定することができる。ここで、図5aに示す雄ネジ様の凸部では、その内部が中空を有し、当該中空部分を原水あるいはNaOH、HClといった再生液が通過できる構造とするのがよい。
  円錐型集配水部材を使用することで、(i)原水の給排水時や再生液による再生時に大流量での処理が可能であり、(ii)再生液による樹脂再生後の再生廃液を速やかにイオン交換部より排水でき、(iii)複数の集配水部材を使用した場合でも、集配水部材間での原水や再生液の流速のバラツキは少なくなると考えられる。
  (i)の理由として、実際に原水あるいは再生液を集配水するのは、円錐形状の内の傾斜部分(傘形状部分)であるところ、比較的円錐形状の頂点と平板との距離が小さく、すなわち円錐形状の高さが低いため、頂点部分のみならず傾斜部分全体から集配水されることとなる。従って、集配水に関与する部分の面積が比較的大きくなるため、原水の通液や再生水の押出による圧力損失も比較的少なくてすむこととなる。このため、原水処理時や再生時の大流量であっても円滑に通液でき、大量処理、速やかな再生に適している。
  (ii)の理由として、再生処理後に再生廃液が残存すればイオン交換樹脂が適正に働かなくなるため、速やかに再生廃液を輩出する必要がある。円錐形状の集配水部材の場合、比較的に円錐形状の頂点と平板との距離が小さく、すなわち円錐形状の高さが低いため、頂点部分のみならず傾斜部分全体から再生廃液が排水されることとなる。また円錐の裾野部分は平板に対し、概ね平面的に繋がっていることから、再生廃液が溜まるような構造となっていない。このため、再生廃液は速やかに排出され、短時間での再生が可能となり、効率的にイオン交換装置を稼働することが可能となる。
  (iii)の理由として、上記(i)に記載したように、円錐形状の集配水部材では原水の通液や再生水の押出による圧力損失も比較的少なくてすむため、円滑に通液でき、流速のバラツキは少なくなる。
  集配水部材の平板への固定方法については特に制限はなく、上記の尾ネジと雌ネジによる固定のみならず、接着剤を使って固定してもよい。さらに、金属製などの材質によってはハンダ、溶接によって固定することもできる。固定化されたものが図5dに示す状態である。
  また、図6aに示すように円柱型集配水部材が平板に設置された状態(断面拡大図)に配置してもよい。この円柱型集配水部材を平板へ固定する方法は、上記の円錐型集配水部材の場合と同様である。この場合、図6bに示すように上下の平板で囲まれた側の円柱型集配水部材が突出した部分を、イナート樹脂(不活性樹脂)で充填した状態(断面拡大図)として配置するとよい。
  上記の通り、集配水部材の平板への設置は、集配水部材の大きさ、形状、イオン交換装置、平板の大きさ、必要とする原水処理量など、種々の要因にを勘案して集配水部材の設置数や設置パターンを適宜決定することができる。
  この中で、本発明のイオン交換装置は、原水処理能力を向上させるために、集配水部材を平板に所定間隔で設置したものである。このため、集配水部材の平板への設置は、図7aに示すように平板の中心部から一定間隔離れた複数の同心円上に一定間隔毎に設置したり、平板上に縦横に一定間隔となるように設置するとよい。
  具体的には、図7bに示すように遮水性の平板中心点を含み縦横に均等配置したり、図7cに示すように平板中心点を含み各列ごとにずらして斜め方向に均等配置したり、図7dに示すように平板中心点より一定の間隔を有した同心円上均等配置する、などの態様を例示することができる。
  また集配水部材の形状にもよるが、平板のイオン交換樹脂層の側へ円錐形状にて突き出すように設置したり、集配水部材が円筒形状を有する場合には、平板の表裏両面から突き出すように設置するとよい。
  さらに、平板とイオン交換樹脂層の間に、粒状の不活性樹脂を充填してもよく、その場合、アニオン交換槽上部の集配水部材及びカチオン交換槽上部の集配水部材がそれぞれ不活性樹脂中に埋設された層を有する態様を取ることができる。
  円筒形状の集配水部材を設置する場合、平板とイオン交換樹脂層の間に集配水部材の突出部分が生じる。その場合、アニオン交換樹脂又はカチオン交換樹脂を集配水部材の当該突出部分を埋設するように充填すると、原水処理時においては集配水部材の入り口付近(例えば図4bのアニオン交換槽及びカチオン交換槽のそれぞれの上方の集配水部材の下端付近)から原水が集配水部材へ入りこみ、集配水部材の下端より上方のアニオン交換樹脂又はカチオン交換樹脂は実質的にイオン交換に関与できず、無駄になってしまうおそれがある。
  すなわち、図6aに示すように、円筒形状の集配水部材を使用した場合、平板とイオン交換樹脂層の間に集配水部材の突出部分が生じる。ここで、集配水部材はどこであっても水は通すがイオン交換樹脂の通過を阻止する構造を有しているものの、原水を通水すれば原水の流れとして集配水部材の下端に最初に接触するため、原水は集配水部材の下端部分に集中して流れるようになるからである。このため、図6bに示すように、集配水部材の下端より上方のアニオン交換樹脂及びカチオン交換樹脂を、イオン交換作用を有しないダミー樹脂として不活性樹脂を充填しておくことで、高価なイオン交換樹脂を有効に使用できるというメリットがある。
  不活性樹脂としては、イオン交換樹脂よりも比重の小さいポリエチレン系又はポリプロピレン系樹脂などが用いられる。不活性樹脂の粒径は、イオン交換樹脂よりも大きい方が好ましい。
<装置構成の詳細>
  本発明のイオン交換装置において、アニオン交換槽(2)およびカチオン交換槽(3)の断面が略円形状の場合、その直径を500mm~3000mmとするとよい。このような大きな直径を有するアニオン交換槽(2)およびカチオン交換槽(3)とすることで、原水処理量は極めて大きくなり、例えば半導体等の電子材料製造にも好適となる。
  また、アニオン交換槽(2)とカチオン交換槽(3)との断面直径を同じ長さとすることで、アニオン交換槽(2)下部とカチオン交換槽(3)上部とを覆う、イオン交換装置塔体胴(8)を設置して、イオン交換装置(1)として堅牢性を有するものとなる。
  本発明においては、アニオン交換樹脂層の層高を500mm~2000mm、より好ましくは750mm~1500mmとするとよく、また、カチオン交換樹脂層の層高を400mm~800mm、より好ましくは500mm~750mmとするとよい。さらに、アニオン交換樹脂層の層高をカチオン交換樹脂層の層高の1.5倍~2.5倍、より好ましくはおおむね2倍とするとよい。
  本発明のイオン交換装置は、カチオン交換槽の上にアニオン交換槽(2)を設置すると共に、アニオン交換槽(2)下部とカチオン交換槽(3)上部とを覆う塔体胴(8)を備えたものである。さらに、アニオン交換槽(2)下端とカチオン交換槽(3)上端との距離が500mm~1000mmとするとよい。このような構造とすることで、装置の保守管理に保守要員等が装置に入りこめ、装置の適正管理がより便宜となると共に、原水あるいは再生液の導入や、処理水、再生廃液の排出に必要な配管類をアニオン交換槽(2)下部とカチオン交換槽(3)上部の空間に設置でき、装置のコンパクト化を実現できる。
  また、アニオン交換槽(2)やカチオン交換槽(3)の側壁に、イオン交換装置(1)の保守管理のために、装置の外から装置内部の樹脂充填状況、運転状況などを観察できるように、透明な樹脂、ガラス等の透明材料を備えた窓や、内部に充填されている樹脂を交換するためのイオン交換樹脂の供給口および排出口を設置することが好ましい。窓、イオン交換樹脂の供給口および排出口の大きさ、形状および設置位置は適宜設計し適用すればよく、窓の透明材質も運転時、再生時等に支障がない強度を有しておればよい。さらに、イオン交換装置(1)の保守管理のために、アニオン交換槽(2)やカチオン交換槽(3)の側壁やこれらの交換部の間の塔体胴(8)およびアニオン交換槽(2)やカチオン交換槽(3)それぞれの上下にもうけた鏡板部にマンホールなどの人が出来るできる設備を設置することが好ましい。
<イオン交換装置の使用方法>
  本発明のイオン交換装置(1)の運転において、原水(被処理水)をカチオン交換槽(3)に、線速度(LV)で55m/hr(時間)以上、通常は55~75m/hr(時間)で通水するとよい。このような大流量の原水を流しても、本発明のイオン交換装置では十分に処理できる。また同様に再生液を導入する場合にも、流速を早めることで再生時間を短縮し、原水処理の作業効率を向上させることができる。
  例えば、イオン交換装置の塔径に対する通水量として以下を目安とするとよい。
Figure JPOXMLDOC01-appb-T000001
  以下実施例により本発明を具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。
  以下の実施例において、CaCO3、シリカ(SiO2)、ホウ素(B)の量は以下により分析した。
分析装置;アジレント・テクノロジー株式会社製  ICP-MS  Agilent7500
分析方法はJIS  K-0133に準拠して行った。
TOC濃度は  GE  社製装置(型式  シーバス500RLe  )を使用して測定した。
比抵抗値は  東亜DKK    社製装置(型式  MX-4  )を使用して測定した。
  実施例1  本発明のイオン交換装置による純水の製造
  図2aに示す装置を用い、以下の条件で純水を製造した。
  原水(被処理水)水質;
    ホウ素  :80ng/L
    IC    :1mg/L  as  CaCO3
    SiO2:20μg/L
    Na    :1mg/L  as  CaCO3
    Cl    :0.4mg/L  as  CaCO3
ホウ素BTC:B≦1ng/L=0.43mg-B/L-R
  TOC    :10ppb
  イオン交換樹脂;
    カチオン交換樹脂:ダウ・ケミカル社製MONOSPHERE 650C UPW(H)    アニオン交換樹脂:ダウ・ケミカル社製MONOSPHERE 550A UPW(OH)
    不活性樹脂:ダウ・ケミカル社製IF-62
  通水条件;
    カチオン交換槽:SV=150/h(時間)
    アニオン交換槽:SV=75/h(時間)
  再生条件(再生液濃度);
    NaOH:4.0質量%
    HCl  :4.0質量%
  装置の大きさ
    アニオン交換槽の直径;700mm
    アニオン交換樹脂層の高さ;1000mm
    カチオン交換槽の直径;700mm
    カチオン交換樹脂層の高さ;500mm
  新品樹脂に上記通水条件にて原水を給水した後、使用したイオン交換樹脂に対して上記再生液を用いて再生30分、超純水により押し出しを30分行った。その後、原水を用いて洗浄を15分実施した後、引き続き原水を通水して、洗浄終了後を起点とした通水時間ごとのTOC濃度を測定した。
  その結果、下記図8に示すように、新品樹脂を使用した場合、本発明のイオン交換装置においては30分以内にTOCが3μg/L未満となった。
  実施例2  ストレーナー設置の影響
  図2aに示す装置に、図5で示される円錐形状の集配水部材または、図6で示される円筒形状の集配水部材を用い、実施例1と同じ条件でイオン交換樹脂に上記通水条件にて回収水を給水し、被処理水の比抵抗値を測定した。なお円筒形状の集配水部材を用いた場合は、図6bで示されるように、不活性樹脂層を設置した場合と設置しなかった場合の両方を実施した。
  その結果、図9に示すように、円錐形状の集配水部材を設置した場合は、円筒形状の集配水部材(不活性樹脂層あり)よりも若干、比抵抗値の低下が遅くなり、すなわちイオン交換の処理容量が大きいことが分かる。一方、円筒形状の集配水部材(不活性樹脂層なし)の場合は、比抵抗値は早く低下した。このことは、イオン交換能力がある樹脂が円筒形状の集配水部材では有効に被処理水(回収水)と接触できず、みかけ上イオン交換能力を低下させてしまっていることと考えられる。
1  イオン交換装置
2  アニオン交換槽
2a  アニオン交換樹脂充填室
2b  アニオン交換槽円筒部
3  カチオン交換槽
3a  カチオン交換樹脂充填室
3b  カチオン交換槽円筒部
4a、4b  不活性樹脂
5a、5b、5c、5d  鏡板
6a、6b、6c、6d  平板
7a、7b、7c、7d  集配水部材
8  イオン交換装置塔体胴
8a  イオン交換装置上側胴
8b  イオン交換装置下側胴
9a  第1の連通配管
9b  第2の連通配管
9c  第3の連通配管
9d、9e  配管
10a  アニオン交換槽上部配管
10b  カチオン交換槽下部配管
11a、11b、11c  弁(バルブ)
12  集配水部材設置用孔
13a  アニオン交換槽上室
13b  アニオン交換槽下室
13c  カチオン交換槽上室
13d  カチオン交換槽下室

 

Claims (12)

  1.  上方にアニオン交換樹脂が充填されたアニオン交換槽と、下方にカチオン交換樹脂が充填されたカチオン交換槽とを備えたイオン交換装置であって、
     前記アニオン交換槽及び前記カチオン交換槽は、各々独立して、上部と下部に備えられた外側に凸状である鏡板とイオン交換槽側部の支持体により外殻が構成され、かつ、上下二枚の平板により区画された上室、樹脂充填室及び下室を備えており、
     前記アニオン交換槽と前記カチオン交換槽とは、これらのイオン交換槽の外側で連通手段により連通されており、
     前記アニオン交換槽の上部に液を供給又は排出するための給排配管と前記カチオン交換槽の下部に液を供給又は排出するための給排配管とを備えており、
     前記連通手段は、
      前記アニオン交換槽の下部に液を給排するための第1の連通配管と、
      前記カチオン交換槽の上部に液を給排するための第2の連通配管と、
      前記第1の連通配管と前記第2の連通配管とを連通する第3の連通配管と、
      前記第3の連通配管の開閉手段と、
      前記第1の連通配管及び前記第2の連通配管にそれぞれ設けられた再生液の給排手段と、
      を備え、
     前記平板には、水は通すがイオン交換樹脂の通過を阻止する集配水部材が配置され、
     前記アニオン交換槽上部の給排配管、前記第1の連通配管、前記第2の連通配管および前記カチオン交換槽下部の給排配管が、前記アニオン交換槽および前記カチオン交換槽のそれぞれの上部と下部に設けられた鏡板に連通している、
     イオン交換装置。
  2.  上方にカチオン交換樹脂が充填されたカチオン交換槽と、下方にアニオン交換樹脂が充填されたアニオン交換槽とを備えたイオン交換装置であって、
     前記カチオン交換槽及び前記アニオン交換槽は、各々独立して、上部と下部に備えられた外側に凸状である鏡板とイオン交換槽側部の支持体により外殻が構成され、かつ、上下二枚の平板により区画された上室、樹脂充填室及び下室を備えており、
     前記カチオン交換槽と前記アニオン交換槽とは、これらのイオン交換槽の外側で連通手段により連通されており、
     前記カチオン交換槽の上部に液を供給又は排出するための給排配管と前記アニオン交換槽の下部に液を供給又は排出するための給排配管とを備えており、
     前記連通手段は、
      前記カチオン交換槽の下部に液を給排するための第1の連通配管と、
      前記アニオン交換槽の上部に液を給排するための第2の連通配管と、
      前記第1の連通配管と前記第2の連通配管とを連通する第3の連通配管と、
      前記第3の連通配管の開閉手段と、
      前記第1の連通配管及び前記第2の連通配管にそれぞれ設けられた再生液の給排手段と、
      を備え、
     前記平板には、水は通すがイオン交換樹脂の通過を阻止する集配水部材が配置され、
     前記カチオン交換槽上部の給排配管、前記第1の連通配管、前記第2の連通配管および前記アニオン交換槽下部の給排配管が、前記カチオン交換槽および前記アニオン交換槽のそれぞれの上部と下部に設けられた鏡板に連通している、
     イオン交換装置。
  3.  前記集配水部材が、前記平板の中心部から一定間隔離れた複数の同心円上に一定間隔毎に設置されている、請求項1または請求項2記載のイオン交換装置。
  4.  前記集配水部材が、前記平板上に縦横に一定間隔となるように設置されている、請求項1または請求項2記載のイオン交換装置。
  5.  前記集配水部材が、前記平板の該イオン交換樹脂層の側へ略円錐形状にて突き出すように設置されている、請求項1~4のいずれかに記載のイオン交換装置。
  6.  前記集配水部材が略円筒形状を有し、前記平板の表裏両面から突き出すように設置されている、請求項1~4のいずれかに記載のイオン交換装置。
  7.  前記平板と前記イオン交換樹脂層の間に、粒状の不活性樹脂が充填されており、アニオン交換槽上部の集配水部材及びカチオン交換槽上部の集配水部材がそれぞれ前記不活性樹脂中に埋設された層を有する、請求項5または請求項6に記載のイオン交換装置。
  8.  前記アニオン交換槽および前記カチオン交換槽の断面が略円形状であって、直径300mm~3000mmである、請求項1または請求項2記載のイオン交換装置。
  9.  前記アニオン交換槽と前記カチオン交換槽との断面直径が同じ長さである、請求項1または請求項2記載のイオン交換装置。
  10.  前記アニオン交換樹脂層の層高が500mm~2000mmである、請求項1または請求項2記載のイオン交換装置。
  11.  前記カチオン交換樹脂層の層高が500mm~1000mmである、請求項1または請求項2記載のイオン交換装置。
  12.  原水をカチオン交換槽に、イオン交換樹脂を浮上させて処理するように、線速度(LV)50m/hr(時間)以上で通水する、請求項1~11のいずれかに記載のイオン交換装置の使用方法。
PCT/JP2017/010750 2016-03-18 2017-03-16 イオン交換装置及びその使用方法 WO2017159812A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187026844A KR102177091B1 (ko) 2016-03-18 2017-03-16 이온 교환 장치 및 그 사용 방법
US16/085,998 US20190099750A1 (en) 2016-03-18 2017-03-16 Ion exchange device and method of using same
SG11201807384PA SG11201807384PA (en) 2016-03-18 2017-03-16 Ion exchange device and method of using same
CN201780018206.9A CN108779004A (zh) 2016-03-18 2017-03-16 离子交换装置及其使用方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016055690A JP5999400B1 (ja) 2016-03-18 2016-03-18 イオン交換装置及びその使用方法
JP2016-055690 2016-03-18

Publications (1)

Publication Number Publication Date
WO2017159812A1 true WO2017159812A1 (ja) 2017-09-21

Family

ID=56997706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010750 WO2017159812A1 (ja) 2016-03-18 2017-03-16 イオン交換装置及びその使用方法

Country Status (7)

Country Link
US (1) US20190099750A1 (ja)
JP (1) JP5999400B1 (ja)
KR (1) KR102177091B1 (ja)
CN (1) CN108779004A (ja)
SG (1) SG11201807384PA (ja)
TW (1) TWI707714B (ja)
WO (1) WO2017159812A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7446155B2 (ja) * 2020-05-18 2024-03-08 三菱ケミカルアクア・ソリューションズ株式会社 イオン交換装置
CN112759031A (zh) * 2020-12-17 2021-05-07 苏州业华环境科技有限公司 一种超纯水的处理工艺及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09294934A (ja) * 1996-05-07 1997-11-18 Mitsubishi Heavy Ind Ltd イオン交換樹脂塔
JPH1043510A (ja) * 1996-08-06 1998-02-17 Japan Organo Co Ltd ストレーナ
JPH11223501A (ja) * 1998-02-09 1999-08-17 Japan Organo Co Ltd 寸法検査装置及びストレーナの取付け状態検査方法
JP5672687B2 (ja) * 2009-09-30 2015-02-18 栗田工業株式会社 イオン交換装置
JP2016002540A (ja) * 2014-06-19 2016-01-12 栗田工業株式会社 複層式陰イオン交換樹脂塔の再生方法および装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5223849A (en) * 1975-08-18 1977-02-23 Kurita Water Ind Ltd Water treatment apparatus
JP3212816B2 (ja) * 1994-10-24 2001-09-25 オルガノ株式会社 複合型濾過脱塩装置
JPH1043610A (ja) * 1996-08-06 1998-02-17 Japan Organo Co Ltd 板状体の開口近傍の液体滞留防止構造
JP2001334108A (ja) * 2000-05-29 2001-12-04 Epoch:Kk 濾過装置およびこの濾過装置を使用した濾過システム
KR100602458B1 (ko) 2004-07-22 2006-07-19 한국서부발전 주식회사 복수탈염설비 외부재생시 중성수지를 사용하지 않는수지분리방법
JP4869881B2 (ja) 2006-11-21 2012-02-08 野村マイクロ・サイエンス株式会社 イオン交換装置及びイオン交換方法
CN102548906A (zh) * 2009-09-30 2012-07-04 栗田工业株式会社 离子交换装置及其塔体以及水处理装置
JP5775677B2 (ja) * 2010-06-18 2015-09-09 三菱レイヨンアクア・ソリューションズ株式会社 イオン交換装置および固液分離装置
CN102010029A (zh) * 2010-12-22 2011-04-13 南京中电联环保股份有限公司 一种核电凝结水精处理大直径柱形高速混床
CN201971661U (zh) * 2011-01-21 2011-09-14 中广核工程有限公司 一种布水板
JP5849419B2 (ja) * 2011-03-29 2016-01-27 栗田工業株式会社 純水製造装置
JP5862029B2 (ja) * 2011-03-29 2016-02-16 栗田工業株式会社 イオン交換装置
KR20130027678A (ko) * 2011-09-08 2013-03-18 손정우 이온교환수지필터 모듈
JP5672333B2 (ja) * 2013-04-25 2015-02-18 栗田工業株式会社 再生型イオン交換装置の運転方法
CN203700077U (zh) * 2014-02-13 2014-07-09 广州益方田园环保股份有限公司 一种高效离子交换器
CN204522401U (zh) * 2015-01-04 2015-08-05 安徽菲利特过滤系统股份有限公司 一种承插式滤水帽

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09294934A (ja) * 1996-05-07 1997-11-18 Mitsubishi Heavy Ind Ltd イオン交換樹脂塔
JPH1043510A (ja) * 1996-08-06 1998-02-17 Japan Organo Co Ltd ストレーナ
JPH11223501A (ja) * 1998-02-09 1999-08-17 Japan Organo Co Ltd 寸法検査装置及びストレーナの取付け状態検査方法
JP5672687B2 (ja) * 2009-09-30 2015-02-18 栗田工業株式会社 イオン交換装置
JP2016002540A (ja) * 2014-06-19 2016-01-12 栗田工業株式会社 複層式陰イオン交換樹脂塔の再生方法および装置

Also Published As

Publication number Publication date
TW201735978A (zh) 2017-10-16
SG11201807384PA (en) 2018-09-27
JP5999400B1 (ja) 2016-09-28
TWI707714B (zh) 2020-10-21
JP2017170271A (ja) 2017-09-28
KR20180121920A (ko) 2018-11-09
US20190099750A1 (en) 2019-04-04
KR102177091B1 (ko) 2020-11-10
CN108779004A (zh) 2018-11-09

Similar Documents

Publication Publication Date Title
JP5720364B2 (ja) イオン交換装置
CN101830536B (zh) 排水的吸附装置
JP5672687B2 (ja) イオン交換装置
US20090114583A1 (en) Ion exchange equipment
WO2011040278A1 (ja) イオン交換装置及びその塔体、並びに水処理装置
WO2017159812A1 (ja) イオン交換装置及びその使用方法
JP5849419B2 (ja) 純水製造装置
CN108855248A (zh) 离子交换反应及再生装置
JP2001205263A (ja) 複床式イオン交換装置
JP5862029B2 (ja) イオン交換装置
CN215048889U (zh) 一种水处理设备
JP2017170419A (ja) イオン交換装置及びその使用方法
US3272340A (en) Quickly detachable strainer system for water treatment tanks
JP5609181B2 (ja) イオン交換装置
CN214714778U (zh) 一种全自动过滤器
JP6015737B2 (ja) 再生型イオン交換装置の運転方法
KR100797025B1 (ko) 연수기
WO2018211794A1 (ja) 復水脱塩装置
CN205294908U (zh) 一种钻井废水处理的离子交换器
JP2017170419A5 (ja)
KR100499644B1 (ko) 복수탈염설비의 이온교환수지 분리/재생 방법 및 장치
CN212050649U (zh) 一种工业中水回用设备
CN212864406U (zh) 重金属渗滤液处理装置
KR100514695B1 (ko) 복수탈염설비의 이온교환수지 분리 및 재생방법
RU2121873C1 (ru) Способ очистки воды путем ионного обмена с противоточной регенерацией ионита и устройство для его осуществления

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 11201807384P

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 20187026844

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766807

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17766807

Country of ref document: EP

Kind code of ref document: A1