WO2017158968A1 - 酸化亜鉛膜及びその製造方法 - Google Patents
酸化亜鉛膜及びその製造方法 Download PDFInfo
- Publication number
- WO2017158968A1 WO2017158968A1 PCT/JP2016/087032 JP2016087032W WO2017158968A1 WO 2017158968 A1 WO2017158968 A1 WO 2017158968A1 JP 2016087032 W JP2016087032 W JP 2016087032W WO 2017158968 A1 WO2017158968 A1 WO 2017158968A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- zinc oxide
- oxide film
- raw material
- film
- material solution
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G9/00—Compounds of zinc
- C01G9/02—Oxides; Hydroxides
Definitions
- the present invention relates to a zinc oxide film and a manufacturing method thereof.
- Zinc oxide is expected to be applied to transparent conductive films, solar cells, light-emitting elements, and the like.
- ZnO can be controlled in conductivity by doping elements such as Al and Ga.
- a sputtering method and an ion plating method are widely known. Although these methods have obtained a film having a specific resistance as low as 10 ⁇ 4 ⁇ cm, these methods require a vacuum process. For this reason, there exists a problem that manufacturing cost becomes excessive.
- Non-Patent Document 1 Advanced Mater. 26 (2014) pp. 632-636
- a ZnO film having a specific resistance of 5.0 ⁇ 10 ⁇ 3 ⁇ cm can be obtained by chemical bath deposition (CBD method).
- CBD method chemical bath deposition
- ing since unevenness is seen on the film surface, it is not suitable for manufacturing a device that requires lamination or bonding.
- citric acid is added as an additive in order to obtain a dense film, and there is a problem that it is taken into the film as an impurity.
- the present inventors have recently adopted a wet method to control the hydrogen concentration of the zinc oxide film, so that it has a smooth surface with few irregularities, and has low resistance, moisture resistance and transparency. We have obtained knowledge that an excellent and dense zinc oxide film can be provided.
- an object of the present invention is to provide a dense zinc oxide film having a smooth surface with few irregularities and having low resistance and excellent moisture resistance and transparency.
- a zinc oxide film containing zinc oxide The surface of the zinc oxide film has an arithmetic average roughness Ra of 50 nm or less measured according to JIS B 0601-2001,
- the zinc oxide film has a specific resistance of 1.0 ⁇ 10 ⁇ 2 ⁇ cm or less, and
- a zinc oxide film is provided in which the hydrogen concentration of the zinc oxide film is 1.0 ⁇ 10 20 atoms / cm 3 or more.
- a method for producing a zinc oxide film wherein the zinc oxide film is produced by a wet method.
- Zinc film present invention oxidation, relates a zinc oxide film containing zinc oxide.
- the surface of the zinc oxide film has an arithmetic average roughness Ra of 50 nm or less measured in accordance with JIS B 0601-2001.
- the zinc oxide film has a specific resistance of 1.0 ⁇ 10 ⁇ 2 ⁇ cm or less, and the hydrogen concentration of the zinc oxide film is 1.0 ⁇ 10 20 atoms / cm 3 or more.
- the zinc oxide film is a film mainly composed of zinc oxide.
- the zinc oxide film preferably contains 80% by weight or more, more preferably 90% by weight or more, further preferably 95% by weight or more, 98% by weight or 99% by weight or more, with the balance being a conductive dopant. And / or a film that is an inevitable impurity.
- the arithmetic average roughness Ra of the surface of the zinc oxide film measured in accordance with JIS B 0601-2001 is 50 nm or less, preferably 1 to 50 nm, more preferably 1 to 40 nm, still more preferably 1 to 30 nm, Particularly preferred is 1 to 20 nm.
- Such a low Ra makes the surface excellent in flatness with few irregularities, so it is extremely suitable for application as a transparent conductive film to various devices such as solar cells and light emitting elements, especially devices that require lamination and bonding. It will be.
- the specific resistance of the zinc oxide film is 1.0 ⁇ 10 ⁇ 2 ⁇ cm or less, preferably 8.0 ⁇ 10 ⁇ 3 ⁇ cm or less, more preferably 5.0 ⁇ 10 ⁇ 3 ⁇ cm or less.
- a zinc oxide film having a low specific resistance is extremely suitable for application to various devices such as solar cells and light emitting elements as a transparent conductive film.
- the lower specific resistance is desirable, the lower limit is not particularly limited, but the specific resistance is typically 1.0 ⁇ 10 ⁇ 4 ⁇ cm or more, more typically 3.0 ⁇ 10 ⁇ 4 ⁇ cm or more. .
- the hydrogen concentration of the zinc oxide film is 1.0 ⁇ 10 20 atoms / cm 3 or more, preferably 5.0 ⁇ 10 20 to 1.0 ⁇ 10 22 atoms / cm 3 , more preferably 8.0 ⁇ 10 20.
- To 1.0 ⁇ 10 22 atoms / cm 3 more preferably 1.0 ⁇ 10 21 to 1.0 ⁇ 10 22 atoms / cm 3 , and particularly preferably 5.0 ⁇ 10 21 to 1.0 ⁇ 10 22 atoms. / Cm 3 .
- Such a hydrogen concentration can be desirably realized by forming a zinc oxide film by a wet method.
- a zinc oxide film having a hydrogen concentration within the above range is less likely to deteriorate with time.
- such a zinc oxide film is excellent in moisture resistance. For example, even when the zinc oxide film is placed in a high temperature and high humidity environment for a long time, the specific resistance increase rate of the zinc oxide film can be kept low.
- the carbon concentration of the zinc oxide film is 1.0 ⁇ 10 19 atoms / cm 3 or less, preferably 8.0 ⁇ 10 18 atoms / cm 3 or less, more preferably 5.0 ⁇ 10 18 atoms / cm 3 or less. More preferably, it is 2.0 ⁇ 10 18 atoms / cm 3 or less. Since the lower carbon concentration is desirable, the lower limit is not particularly limited, and is preferably zero. Such a carbon concentration can be desirably realized by forming the zinc oxide film by a wet method without adding an organic additive such as citric acid. Since carbon is an undesirable impurity in the transparent conductive film, a zinc oxide film having a carbon concentration reduced within the above range is excellent in general performance, that is, surface smoothness, low resistance, moisture resistance, and transparency.
- the thickness of the zinc oxide film is not particularly limited as long as it is appropriately determined depending on the application, but is preferably 0.1 to 10 ⁇ m, more preferably 0.1 to 8 ⁇ m, still more preferably 0.1 to 5 ⁇ m, particularly The thickness is preferably 0.1 to 3 ⁇ m, and most preferably 0.1 to 2 ⁇ m. Within such a range, both crystal quality and productivity can be achieved, and there is an advantage that peeling due to film stress hardly occurs.
- Zinc oxide preferably contains a conductive dopant.
- a conductive dopant By adding a conductive dopant, desired conductivity can be imparted to the zinc oxide film.
- Preferred examples of the conductive dopant include group 3B elements such as B, Al, Ga, and In, and group 7B elements such as F, Cl, Br, and I, and particularly preferably Al and Ga, most preferably Al. It is.
- the zinc oxide film of the present invention can be preferably produced by a wet method which is a low cost process. That is, according to one aspect of the present invention, there is provided a method for producing a zinc oxide film, wherein the zinc oxide film is produced by a wet method.
- the production of a zinc oxide film by a wet method has a Zn concentration of 0.05 to 0.15 mol / L, a pH of 10.0 to 11.0, and citric acid. It is carried out using a raw material solution that does not contain.
- a zinc oxide film having both surface flatness and conductivity can be conveniently produced by a liquid phase method that is a low-cost process.
- an additive such as citric acid is not required, a high-quality zinc oxide film with less impurities can be produced.
- Non-Patent Document 1 Advanced Mater.
- the Zn source concentration is 0.036 mol / L
- the pH is 11 or more
- the citric acid concentration is 0.001 mol / L. Yes.
- the use of a high-concentration Zn source causes an increase in initial nuclear density, homogenization of raw material adsorption on the film surface during growth, and the like.
- the Zn concentration of the raw material solution (that is, the concentration of the Zn source) is preferably 0.05 to 0.15 mol / L, more preferably 0.07 to 0.13 mol / L. By setting the Zn concentration within the above range, a dense zinc oxide film with little unevenness can be obtained.
- the Zn concentration in the raw material solution can be realized by dissolving a zinc ion supply source (Zn source). Examples of the Zn source include zinc sulfate, zinc nitrate, zinc chloride and the like.
- the pH of the raw material solution is preferably 10.0 to 11.0, more preferably 10.2 to 10.8.
- the pH may be adjusted by adding aqueous ammonia to the raw material aqueous solution.
- the raw material solution contains a conductive dopant.
- a conductive dopant By adding a conductive dopant, desired conductivity can be imparted to the zinc oxide film.
- the conductive dopant include 3B group elements such as Al and Ga, 7B group elements such as F, Cl, Br, and I, and particularly preferably Al and Ga, and most preferably Al.
- the conductive dopant may be dissolved in the raw material solution in the form of a compound or ion containing the conductive dopant.
- the conductive dopant is Al
- an aluminum salt is dissolved as an Al source in the raw material solution.
- the Al concentration of the raw material solution is preferably 0.001 to 0.010 mol / L, more preferably 0.001 to 0.008 mol / L, and still more preferably 0.001 to 0.005 mol / L. is there.
- the aluminum salt include aluminum nitrate, aluminum acetate, and aluminum chloride.
- the production of a zinc oxide film by a wet method includes (1) a step of preparing a substrate with a seed layer, (2) a step of immersing the substrate in a raw material solution, and (3) Heat treatment step.
- a substrate having a seed layer composed of zinc oxide on its surface is prepared.
- the seed layer may be formed by any method, but it is preferable that the seed layer is formed by sputtering using a zinc oxide sintered body as a target because a dense and less uneven seed layer can be formed.
- the base substrate on which the seed layer is formed is not particularly limited as long as the seed layer composed of zinc oxide can be formed on the surface thereof.
- a GaN film is formed on the sapphire substrate by MOCVD or the like. These are preferably exemplified.
- the substrate with the seed layer is immersed in the pH-adjusted raw material solution at a liquid temperature of 50 to 100 ° C. to deposit a deposit on the seed layer in a film form.
- the precipitate can include fine particles of zinc oxide.
- the liquid temperature of the raw material solution is preferably 50 to 100 ° C., more preferably 50 to 95 ° C., still more preferably 60 to 95 ° C., and particularly preferably 70 to 95 ° C.
- the immersion time of the substrate with the seed layer is not particularly limited as long as the time required for obtaining the required film thickness is appropriately selected, but is preferably 30 minutes or more, more preferably 30 to 120 minutes, and still more preferably 60 to 120. Minutes.
- the raw material solution Before immersing the substrate in the raw material solution, the raw material solution is preferably heated until the liquid temperature is reached. It is more preferable to immerse the substrate after holding the raw material solution for 15 to 60 minutes after reaching the liquid temperature. As described above, it is preferable to adjust the pH of the raw material solution containing the Zn source and the Al source to 10.0 to 11.0 using NH 3 or the like. By heating this raw material solution, the solubility of NH 3 is increased. Decreases and the pH decreases. As a result, the state changes to a state in which Zn and Al are precipitated simultaneously. Al is taken into the zinc oxide film by immersing the substrate with the seed layer in the raw material solution in that state.
- the substrate with precipitates taken out from the raw material solution is preferably washed with ion exchange water. This cleaning is preferably performed by ultrasonic cleaning.
- the obtained film-like precipitate is heat-treated at a predetermined temperature to form a zinc oxide film.
- the heat treatment temperature is preferably 300 to 800 ° C., more preferably 300 to 700 ° C., further preferably 300 to 600 ° C., and particularly preferably 300 to 500 ° C.
- the heat treatment time at the above temperature is not particularly limited, but is preferably 1 hour or more, more preferably 1 to 10 hours, and further preferably 5 to 10 hours.
- the heat treatment of the precursor film is preferably performed in a reducing atmosphere containing hydrogen or the like from the viewpoint of easily realizing a lower specific resistance. And by heat-processing the produced film
- Al is taken as an example of the conductive dopant, but other conductive dopants such as Ga can be used in the same manner as Al.
- SPPF-210H sputtering apparatus
- Ar / O 2 4/1
- gas pressure 1 Pa gas pressure
- Zinc nitrate hexahydrate (manufactured by Kanto Chemical Co., Ltd.) as the Zn source and aluminum nitrate nonahydrate (manufactured by Kanto Chemical Co., Ltd.) as the Al source are dissolved in ion-exchanged water, respectively.
- aqueous solution was prepared.
- Aqueous ammonia (manufactured by Sigma-Aldrich) was added to the obtained aqueous raw material solution so that the pH was 10.4.
- the aqueous solution thus adjusted to pH was heated to 90 ° C.
- the substrate with the seed layer was immersed in the raw material aqueous solution 30 minutes after reaching 90 ° C.
- the substrate with the seed layer was allowed to stand while maintaining the liquid temperature at 90 ° C. to deposit a deposit on the seed layer in the form of a film, which was taken out after 60 minutes.
- the substrate taken out was ultrasonically cleaned in ion-exchanged water, and then heat-treated at 400 ° C. for 10 hours in an Ar-4% H 2 atmosphere.
- a ZnO thin film having a thickness of 1.0 ⁇ m was obtained.
- C concentration and H concentration in ZnO film C concentration and H concentration in the vicinity of the center in the thickness direction of the ZnO film were measured by dynamic SIMS (secondary ion mass spectrometry).
- arithmetic mean roughness Ra As the surface roughness, arithmetic average roughness Ra measured in accordance with JIS B 0601-2001 was measured in an area of 125 ⁇ m ⁇ 100 ⁇ m on the surface of the ZnO film using an optical measuring instrument (Zygo).
- resistivity The resistivity of the ZnO film was measured by a four-probe method using a resistivity meter (Loresta GP MCP-T610 type, manufactured by Mitsubishi Chemical Analytech).
- Example 2 A ZnO film was prepared and evaluated in the same manner as in Example 1 except that the Zn concentration of the raw material aqueous solution was 0.05 mol / L.
- Example 3 A ZnO film was prepared and evaluated in the same manner as in Example 1 except that the concentration of Zn in the raw material aqueous solution was 0.15 mol / L.
- Example 4 (Comparison) A ZnO film was prepared and evaluated in the same manner as in Example 1 except that the Zn concentration of the raw material aqueous solution was 0.03 mol / L.
- Example 5 (Comparison) An attempt was made to produce a ZnO film in the same manner as in Example 1 except that the Zn concentration of the raw material aqueous solution was 0.20 mol / L. However, the film could not be evaluated because of poor film formation.
- Example 6 A ZnO film was prepared and evaluated in the same manner as in Example 1 except that the pH of the raw material aqueous solution was 10.1.
- Example 7 A ZnO film was produced and evaluated in the same manner as in Example 1 except that the pH of the raw material aqueous solution was 10.9.
- Example 8 (Comparison) A ZnO film was prepared and evaluated in the same manner as in Example 1 except that the pH of the aqueous raw material solution was 9.4.
- Example 9 (Comparison) An attempt was made to produce a ZnO film in the same manner as in Example 1 except that the pH of the raw material aqueous solution was 11.8. However, the film could not be evaluated because the film did not grow.
- Example 10 (Comparison) A ZnO film was prepared and evaluated in the same manner as in Example 1 except that citric acid was further added to the raw material aqueous solution at 0.005 mol / L.
- SPPF-210H manufactured by Canon Anelva
- a ZnO-2 wt% Al 2 O 3 sintered body target manufactured by High Purity Chemical Laboratory
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Physical Vapour Deposition (AREA)
- Non-Insulated Conductors (AREA)
- Manufacturing Of Electric Cables (AREA)
Abstract
酸化亜鉛を含む酸化亜鉛膜であって、酸化亜鉛膜の表面が、JIS B 0601-2001に準拠して測定される50nm以下の算術平均粗さRaを有し、酸化亜鉛膜が、1.0×10-2Ωcm以下の比抵抗を有し、かつ、酸化亜鉛膜の水素濃度が1.0×1020atoms/cm3以上である、酸化亜鉛膜が開示される。本発明によれば、凹凸の少ない平滑な表面を有しながらも、低抵抗で、かつ、耐湿性及び透明性に優れた、緻密な酸化亜鉛膜が提供される。
Description
本発明は、酸化亜鉛膜及びその製造方法に関するものである。
酸化亜鉛(ZnO)は、透明導電膜や太陽電池、発光素子等への応用が期待されている。ZnOはAlやGa等の元素をドープすることで導電性を制御することが可能である。導電性ZnO膜の製造法としてはスパッタリング法やイオンプレーディング法が広く知られている。これらの手法では10-4Ωcmという低い比抵抗の膜が得られているが、これらの手法は真空プロセスを要する。このため、製造コストが過大になるという問題がある。
これに対し、低コストプロセスである液相法を用いた導電性ZnO膜の成膜が試みられている。非特許文献1(Adv. Mater. 26 (2014) pp.632-636)では、化学浴析出法(CBD法)を用いて、比抵抗が5.0×10-3ΩcmのZnO膜が得られている。しかし、膜表面に凹凸が見られることから、積層や接合を必要とするデバイスを作製するには不向きである。また、緻密な膜を得るために添加剤としてクエン酸を加えており、不純物として膜中に取り込まれてしまうという問題がある。
Harald Hagendorfer et al., "Highly Transparent and Conductive ZnO: Al Thin Films from a Low Temperature Aqueous Solution Approach", Adv. Mater. 26 (2014) pp.632-636
本発明者らは、今般、湿式法を採用して酸化亜鉛膜の水素濃度を制御することで、凹凸の少ない平滑な表面を有しながらも、低抵抗で、かつ、耐湿性及び透明性に優れた、緻密な酸化亜鉛膜を提供できるとの知見を得た。
したがって、本発明の目的は、凹凸の少ない平滑な表面を有しながらも、低抵抗で、かつ、耐湿性及び透明性に優れた、緻密な酸化亜鉛膜を提供することにある。
本発明の一態様によれば、酸化亜鉛を含む酸化亜鉛膜であって、
前記酸化亜鉛膜の表面が、JIS B 0601-2001に準拠して測定される50nm以下の算術平均粗さRaを有し、
前記酸化亜鉛膜が、1.0×10-2Ωcm以下の比抵抗を有し、かつ、
前記酸化亜鉛膜の水素濃度が1.0×1020atoms/cm3以上である、酸化亜鉛膜が提供される。
前記酸化亜鉛膜の表面が、JIS B 0601-2001に準拠して測定される50nm以下の算術平均粗さRaを有し、
前記酸化亜鉛膜が、1.0×10-2Ωcm以下の比抵抗を有し、かつ、
前記酸化亜鉛膜の水素濃度が1.0×1020atoms/cm3以上である、酸化亜鉛膜が提供される。
本発明の他の一態様によれば、前記酸化亜鉛膜を湿式法により製造することを特徴とする、酸化亜鉛膜の製造方法が提供される。
酸化亜鉛膜
本発明は、酸化亜鉛を含む酸化亜鉛膜に関する。本発明の酸化亜鉛膜は、酸化亜鉛膜の表面が、JIS B 0601-2001に準拠して測定される50nm以下の算術平均粗さRaを有する。そして、酸化亜鉛膜は、1.0×10-2Ωcm以下の比抵抗を有し、かつ、酸化亜鉛膜の水素濃度が1.0×1020atoms/cm3以上である。湿式法を採用して酸化亜鉛膜の水素濃度を制御することで、凹凸の少ない平滑な表面を有しながらも、低抵抗で、かつ、耐湿性及び透明性に優れた、緻密な酸化亜鉛膜を提供することができる。
本発明は、酸化亜鉛を含む酸化亜鉛膜に関する。本発明の酸化亜鉛膜は、酸化亜鉛膜の表面が、JIS B 0601-2001に準拠して測定される50nm以下の算術平均粗さRaを有する。そして、酸化亜鉛膜は、1.0×10-2Ωcm以下の比抵抗を有し、かつ、酸化亜鉛膜の水素濃度が1.0×1020atoms/cm3以上である。湿式法を採用して酸化亜鉛膜の水素濃度を制御することで、凹凸の少ない平滑な表面を有しながらも、低抵抗で、かつ、耐湿性及び透明性に優れた、緻密な酸化亜鉛膜を提供することができる。
酸化亜鉛膜は、酸化亜鉛を主体とした膜である。例えば、酸化亜鉛膜は、好ましくは80重量%以上、より好ましくは90重量%以上、さらに好ましくは95重量%以上、98重量%以上又は99重量%以上の酸化亜鉛を含み、残部が導電性ドーパント及び/又は不可避不純物である膜である。
酸化亜鉛膜の表面の、JIS B 0601-2001に準拠して測定される算術平均粗さRaは50nm以下であり、好ましくは1~50nm、より好ましくは1~40nm、さらに好ましくは1~30nm、特に好ましくは1~20nmである。このように低いRaであると凹凸の少ない平坦性に優れた表面となるため、透明導電膜として太陽電池、発光素子等の各種デバイス、とりわけ積層や接合を必要とするデバイスへの応用に極めて適したものとなる。
酸化亜鉛膜の比抵抗は1.0×10-2Ωcm以下であり、好ましくは8.0×10-3Ωcm以下、より好ましくは5.0×10-3Ωcm以下である。このように低い比抵抗の酸化亜鉛膜は、透明導電膜として太陽電池、発光素子等への各種デバイスへの応用に極めて適したものとなる。比抵抗は低い方が望ましいためその下限値は特に限定されないが、典型的には比抵抗は1.0×10-4Ωcm以上、より典型的には3.0×10-4Ωcm以上である。
酸化亜鉛膜の水素濃度は1.0×1020atoms/cm3以上であり、好ましくは5.0×1020~1.0×1022atoms/cm3、より好ましくは8.0×1020~1.0×1022atoms/cm3、さらに好ましくは1.0×1021~1.0×1022atoms/cm3、特に好ましくは5.0×1021~1.0×1022atoms/cm3である。このような水素濃度は、酸化亜鉛膜を湿式法で作製することにより望ましく実現することができる。水素濃度が上記範囲内の酸化亜鉛膜は経時劣化しにくくなる。特にそのような酸化亜鉛膜は耐湿性に優れており、例えば高温多湿環境下に長時間置かれた場合においても酸化亜鉛膜の比抵抗増加率を低く抑えることができる。
酸化亜鉛膜の炭素濃度は1.0×1019atoms/cm3以下であり、好ましくは8.0×1018atoms/cm3以下、より好ましくは5.0×1018atoms/cm3以下、さらに好ましくは2.0×1018atoms/cm3以下である。炭素濃度は低い方が望ましいためその下限値は特に限定されず、望ましくはゼロである。このような炭素濃度は、酸化亜鉛膜をクエン酸等の有機添加物を加えることなく湿式法で作製することにより、望ましく実現することができる。炭素は透明導電膜において望ましくない不純物であるため、炭素濃度が上記範囲内に低減された酸化亜鉛膜は全般的な性能、すなわち表面の平滑性、低抵抗性、耐湿性及び透明性により優れる。
酸化亜鉛膜の厚さは用途に応じて適宜決定すればよく特に限定されないが、好ましくは0.1~10μmであり、より好ましくは0.1~8μm、さらに好ましくは0.1~5μm、特に好ましくは0.1~3μm、最も好ましくは0.1~2μmである。このような範囲内であると結晶品質と生産性の両立が可能であり、膜応力による剥れが生じにくいといった利点がある。
酸化亜鉛は導電性ドーパントを含むのが好ましい。導電性ドーパントの添加により所望の導電性を酸化亜鉛膜に付与することができる。導電性ドーパントの好ましい例としては、B、Al、Ga、In等の3B属元素、F、Cl、Br、I等の7B族元素等が挙げられ、特に好ましくはAl及びGa、最も好ましくはAlである。
酸化亜鉛膜の製造方法
本発明の酸化亜鉛膜は低コストプロセスである湿式法により好ましく製造することができる。すなわち、本発明の一態様によれば、上記酸化亜鉛膜を湿式法により製造することを特徴とする、酸化亜鉛膜の製造方法が提供される。
本発明の酸化亜鉛膜は低コストプロセスである湿式法により好ましく製造することができる。すなわち、本発明の一態様によれば、上記酸化亜鉛膜を湿式法により製造することを特徴とする、酸化亜鉛膜の製造方法が提供される。
本発明の好ましい態様によれば、湿式法による酸化亜鉛膜の製造は、Zn濃度が0.05~0.15mol/Lであり、pHが10.0~11.0であり、かつ、クエン酸を含まない、原料溶液を用いて行われる。このように原料溶液のZn濃度とpHを制御することによって、低コストプロセスである液相法で、表面平坦性と導電性とを両立した酸化亜鉛膜を好都合に作製することができる。また、クエン酸等の添加剤を必要としないため、不純物の混入が少ない高品位の酸化亜鉛膜を製造することができる。この点、非特許文献1(Adv. Mater. 26 (2014) pp.632-636)ではZn源の濃度を0.036mol/L、pHを11以上、クエン酸の濃度を0.001mol/Lとしている。これに対して、本態様においては非特許文献1の方法よりも原料溶液中におけるZn源の濃度を高くすることで、添加剤を加えることなく、緻密で凹凸の少ない酸化亜鉛膜を得ることができる。そのメカニズムは明確ではないが、高濃度のZn源を用いることで、初期の核密度の増大、成長時の膜表面への原料吸着の均質化等が生じているものと考えられる。
原料溶液のZn濃度(すなわちZn源の濃度)は、好ましくは0.05~0.15mol/Lであり、より好ましくは0.07~0.13mol/Lである。Zn濃度を上記範囲内とすることで緻密で凹凸の少ない酸化亜鉛膜を得ることができる。原料溶液中の上記Zn濃度は亜鉛イオン供給源(Zn源)の溶解により実現することができる。Zn源の例としては、硫酸亜鉛、硝酸亜鉛、塩化亜鉛等が挙げられる。
原料溶液のpHは、好ましくは10.0~11.0であり、より好ましくは10.2~10.8である。pHの調整は原料水溶液にアンモニア水を添加することにより行えばよい。
好ましくは、原料溶液は導電性ドーパントを含む。導電性ドーパントの添加により所望の導電性を酸化亜鉛膜に付与することができる。導電性ドーパントの好ましい例としては、Al、Ga等の3B属元素、F、Cl、Br、I等の7B族元素等が挙げられ、特に好ましくはAl及びGa、最も好ましくはAlである。導電性ドーパントはそれを含む化合物又はイオンの形態で原料溶液に溶解させればよい。
導電性ドーパントがAlである場合、原料溶液にAl源としてアルミニウム塩が溶解されているのが好ましい。このとき、原料溶液のAl濃度が0.001~0.010mol/Lであるのが好ましく、より好ましくは0.001~0.008mol/L、さらに好ましくは0.001~0.005mol/Lである。アルミニウム塩の例としては、硝酸アルミニウム、酢酸アルミニウム、塩化アルミニウムが挙げられる。この原料溶液の調製は、Zn源とAl源とを含む溶液を作製した後、NH3等を用いて溶液のpHを10.0~11.0に調整するのが好ましい。
本発明のより好ましい態様によれば、湿式法による酸化亜鉛膜の製造は、(1)種層付き基板を用意する工程と、(2)この基板を原料溶液に浸漬する工程と、(3)熱処理工程とを含む。
(1)種層付き基板の用意
まず、酸化亜鉛で構成される種層を表面に備えた基板を用意する。種層は、いかなる方法によって形成されたものであってもよいが、酸化亜鉛焼結体をターゲットとして用いたスパッタリングにより形成されるのが、緻密で凹凸の少ない種層を形成できる点で好ましい。一方、種層が形成される下地基板は、その表面に酸化亜鉛で構成される種層を形成可能なものであれば特に限定されないが、例えば、サファイア基板上にMOCVD法等によりGaN膜を形成したものが好ましく例示される。
まず、酸化亜鉛で構成される種層を表面に備えた基板を用意する。種層は、いかなる方法によって形成されたものであってもよいが、酸化亜鉛焼結体をターゲットとして用いたスパッタリングにより形成されるのが、緻密で凹凸の少ない種層を形成できる点で好ましい。一方、種層が形成される下地基板は、その表面に酸化亜鉛で構成される種層を形成可能なものであれば特に限定されないが、例えば、サファイア基板上にMOCVD法等によりGaN膜を形成したものが好ましく例示される。
(2)原料溶液への浸漬
次に、種層付き基板をpH調整された原料溶液に50~100℃の液温で浸漬して、種層上に析出物を膜状に堆積させる。析出物は酸化亜鉛の微細粒子を含みうる。原料溶液の液温は好ましくは50~100℃であり、より好ましくは50~95℃、さらに好ましくは60~95℃、特に好ましくは70~95℃である。種層付き基板の浸漬時間は必要とする膜厚が得られるまでの時間を適宜選択すればよく特に限定されないが、好ましくは30分以上、より好ましくは30~120分、さらに好ましくは60~120分である。
次に、種層付き基板をpH調整された原料溶液に50~100℃の液温で浸漬して、種層上に析出物を膜状に堆積させる。析出物は酸化亜鉛の微細粒子を含みうる。原料溶液の液温は好ましくは50~100℃であり、より好ましくは50~95℃、さらに好ましくは60~95℃、特に好ましくは70~95℃である。種層付き基板の浸漬時間は必要とする膜厚が得られるまでの時間を適宜選択すればよく特に限定されないが、好ましくは30分以上、より好ましくは30~120分、さらに好ましくは60~120分である。
原料溶液への基板の浸漬前に、原料溶液を上記液温に到達するまで加熱するのが好ましい。そして、上記液温に到達してから原料溶液を15~60分保持した後、基板の浸漬を行うのがより好ましい。上述したとおり、Zn源とAl源とを含む原料溶液のpHをNH3等を用いて10.0~11.0に調整するのが好ましいところ、この原料溶液を加熱することでNH3の溶解度が減少してpHの低下が生じる。その結果、ZnとAlが同時に析出する状態へと変化する。その状態の原料溶液に種層付き基板を浸漬することにより酸化亜鉛膜中にAlが取り込まれる。
原料溶液から取り出した析出物付き基板はイオン交換水で洗浄するのが好ましい。この洗浄は超音波洗浄により行われるのが好ましい。
(3)熱処理
得られた膜状の析出物を所定の温度で熱処理して酸化亜鉛膜を形成させる。好ましい熱処理温度は300~800℃であり、より好ましくは300~700℃、さらに好ましくは300~600℃、特に好ましくは300~500℃である。上記温度での熱処理時間は特に限定されないが、好ましくは1時間以上であり、より好ましくは1~10時間であり、さらに好ましくは5~10時間である。前駆体膜の熱処理は水素等を含む還元性雰囲気で行われるのがより低い比抵抗を実現しやすい点で好ましい。そして、作製した膜を熱処理することにより膜中に取り込まれたAlがドーパントとして機能するようになり、導電性が向上する。
得られた膜状の析出物を所定の温度で熱処理して酸化亜鉛膜を形成させる。好ましい熱処理温度は300~800℃であり、より好ましくは300~700℃、さらに好ましくは300~600℃、特に好ましくは300~500℃である。上記温度での熱処理時間は特に限定されないが、好ましくは1時間以上であり、より好ましくは1~10時間であり、さらに好ましくは5~10時間である。前駆体膜の熱処理は水素等を含む還元性雰囲気で行われるのがより低い比抵抗を実現しやすい点で好ましい。そして、作製した膜を熱処理することにより膜中に取り込まれたAlがドーパントとして機能するようになり、導電性が向上する。
なお、上記説明において、導電性ドーパントとしてAlを例にとり説明したが、Ga等の他の導電性ドーパントもAlと同様に使用可能である。
本発明を以下の例によってさらに具体的に説明する。
例1
(1)ZnO膜の作製
サファイア基板上にMOCVD法を用いてGaN膜を形成して成膜用基板を得た。この成膜用基板のGaN膜上に、RFマグネトロンスパッタリングによりZnO層を種層として形成した。このスパッタリングは、スパッタリング装置(SPF-210H、キャノンアネルバ製)及びZnO焼結体ターゲット(高純度化学研究所製)を用いて、ガス流量比Ar/O2=4/1、ガス圧1Pa、及び出力100Wの条件で行った。こうして種層付き基板を得た。
(1)ZnO膜の作製
サファイア基板上にMOCVD法を用いてGaN膜を形成して成膜用基板を得た。この成膜用基板のGaN膜上に、RFマグネトロンスパッタリングによりZnO層を種層として形成した。このスパッタリングは、スパッタリング装置(SPF-210H、キャノンアネルバ製)及びZnO焼結体ターゲット(高純度化学研究所製)を用いて、ガス流量比Ar/O2=4/1、ガス圧1Pa、及び出力100Wの条件で行った。こうして種層付き基板を得た。
Zn源として硝酸亜鉛六水和物(関東化学製)を、Al源として硝酸アルミニウム九水和物(関東化学製)をそれぞれイオン交換水に溶かして、Zn濃度が0.10mol/L、Al濃度が0.002mol/Lの原料水溶液を調製した。得られた原料水溶液にアンモニア水(シグマアルドリッチ製)をpHが10.4となるように添加した。こうしてpH調整した水溶液を90℃にまで加熱した。90℃に到達してから30分経過後に種層付き基板を原料水溶液中に浸漬した。液温を90℃に保持したまま種層付き基板を静置して種層上に析出物を膜状に堆積させ、60分後に取り出した。取り出した基板をイオン交換水中で超音波洗浄した後、Ar-4%H2雰囲気中400℃で10時間の熱処理を行った。こうして厚さ1.0μmのZnO薄膜を得た。
(2)ZnO膜の評価
こうして作製されたZnO膜の諸特性を以下のようにして測定した。結果は表1に示されるとおりであった。
こうして作製されたZnO膜の諸特性を以下のようにして測定した。結果は表1に示されるとおりであった。
(ZnO膜中のC濃度及びH濃度)
ダイナミックSIMS(二次イオン質量分析)によって、ZnO膜の厚さ方向における中心付近におけるC濃度及びHの濃度を測定した。
ダイナミックSIMS(二次イオン質量分析)によって、ZnO膜の厚さ方向における中心付近におけるC濃度及びHの濃度を測定した。
(算術平均粗さRa)
表面粗さとして、JIS B 0601-2001に準拠して測定される算術平均粗さRaを、光学計測機器(Zygo)を用いて、ZnO膜表面の125μm×100μmの領域で測定した。
表面粗さとして、JIS B 0601-2001に準拠して測定される算術平均粗さRaを、光学計測機器(Zygo)を用いて、ZnO膜表面の125μm×100μmの領域で測定した。
(比抵抗)
抵抗率計(ロレスタGP MCP-T610型、三菱化学アナリテック製)を用いて四探針法により、ZnO膜の比抵抗を測定した。
抵抗率計(ロレスタGP MCP-T610型、三菱化学アナリテック製)を用いて四探針法により、ZnO膜の比抵抗を測定した。
(耐湿試験後の比抵抗増加率)
ZnO膜に耐湿試験を行い、膜の比抵抗増加率を評価した。この耐湿試験は、ZnO膜を60℃、90%RHの条件下にて300時間保持することにより行った。耐湿試験後のZnO膜に対して上記同様にして比抵抗を測定した後、耐湿試験後の比抵抗増加率をρ1/ρ0(式中、ρ1は耐湿試験後の比抵抗、ρ0は耐湿試験前の比抵抗である)として算出した。
ZnO膜に耐湿試験を行い、膜の比抵抗増加率を評価した。この耐湿試験は、ZnO膜を60℃、90%RHの条件下にて300時間保持することにより行った。耐湿試験後のZnO膜に対して上記同様にして比抵抗を測定した後、耐湿試験後の比抵抗増加率をρ1/ρ0(式中、ρ1は耐湿試験後の比抵抗、ρ0は耐湿試験前の比抵抗である)として算出した。
(透明性)
目視にてZnO膜の透明性を判定した。
目視にてZnO膜の透明性を判定した。
例2
原料水溶液のZn濃度を0.05mol/Lとしたこと以外は例1と同様にして、ZnO膜の作製及び評価を行った。
原料水溶液のZn濃度を0.05mol/Lとしたこと以外は例1と同様にして、ZnO膜の作製及び評価を行った。
例3
原料水溶液のZn濃度を0.15mol/Lとしたこと以外は例1と同様にして、ZnO膜の作製及び評価を行った。
原料水溶液のZn濃度を0.15mol/Lとしたこと以外は例1と同様にして、ZnO膜の作製及び評価を行った。
例4(比較)
原料水溶液のZn濃度を0.03mol/Lとしたこと以外は例1と同様にして、ZnO膜の作製及び評価を行った。
原料水溶液のZn濃度を0.03mol/Lとしたこと以外は例1と同様にして、ZnO膜の作製及び評価を行った。
例5(比較)
原料水溶液のZn濃度を0.20mol/Lとしたこと以外は例1と同様にして、ZnO膜の作製を試みた。しかし、成膜不良であったため膜評価は行えなかった。
原料水溶液のZn濃度を0.20mol/Lとしたこと以外は例1と同様にして、ZnO膜の作製を試みた。しかし、成膜不良であったため膜評価は行えなかった。
例6
原料水溶液のpHを10.1としたこと以外は例1と同様にして、ZnO膜の作製及び評価を行った。
原料水溶液のpHを10.1としたこと以外は例1と同様にして、ZnO膜の作製及び評価を行った。
例7
原料水溶液のpHを10.9としたこと以外は例1と同様にして、ZnO膜の作製及び評価を行った。
原料水溶液のpHを10.9としたこと以外は例1と同様にして、ZnO膜の作製及び評価を行った。
例8(比較)
原料水溶液のpHを9.4としたこと以外は例1と同様にして、ZnO膜の作製及び評価を行った。
原料水溶液のpHを9.4としたこと以外は例1と同様にして、ZnO膜の作製及び評価を行った。
例9(比較)
原料水溶液のpHを11.8としたこと以外は例1と同様にして、ZnO膜の作製を試みた。しかし、膜成長しなかったため膜評価は行えなかった。
原料水溶液のpHを11.8としたこと以外は例1と同様にして、ZnO膜の作製を試みた。しかし、膜成長しなかったため膜評価は行えなかった。
例10(比較)
原料水溶液にクエン酸を0.005mol/Lとなるようにさらに添加したこと以外は例1と同様にして、ZnO膜の作製及び評価を行った。
原料水溶液にクエン酸を0.005mol/Lとなるようにさらに添加したこと以外は例1と同様にして、ZnO膜の作製及び評価を行った。
例11(比較)
サファイア基板にMOCVD法を用いてGaN膜を形成して成膜用基板を得た。この成膜用基板のGaN膜上に、RFマグネトロンスパッタリングによりZnO膜を種層として形成した。このスパッタリングは、スパッタリング装置(SPF-210H、キャノンアネルバ製)及びZnO-2wt%Al2O3焼結体ターゲット(高純度化学研究所製)を用いて、ガス流量比Ar/O2=4/1、ガス圧1Pa、出力100Wの条件で行った。こうして作製したZnO膜の評価を例1と同様にして行った。
サファイア基板にMOCVD法を用いてGaN膜を形成して成膜用基板を得た。この成膜用基板のGaN膜上に、RFマグネトロンスパッタリングによりZnO膜を種層として形成した。このスパッタリングは、スパッタリング装置(SPF-210H、キャノンアネルバ製)及びZnO-2wt%Al2O3焼結体ターゲット(高純度化学研究所製)を用いて、ガス流量比Ar/O2=4/1、ガス圧1Pa、出力100Wの条件で行った。こうして作製したZnO膜の評価を例1と同様にして行った。
Claims (14)
- 酸化亜鉛を含む酸化亜鉛膜であって、
前記酸化亜鉛膜の表面が、JIS B 0601-2001に準拠して測定される50nm以下の算術平均粗さRaを有し、
前記酸化亜鉛膜が、1.0×10-2Ωcm以下の比抵抗を有し、かつ、
前記酸化亜鉛膜の水素濃度が1.0×1020atoms/cm3以上である、酸化亜鉛膜。 - 前記酸化亜鉛膜の炭素濃度が1.0×1019atoms/cm3以下である、請求項1に記載の酸化亜鉛膜。
- 前記酸化亜鉛膜が0.1~10μmの厚さを有する、請求項1又は2に記載の酸化亜鉛膜。
- 前記酸化亜鉛が導電性ドーパントを含む、請求項1~3のいずれか一項に記載の酸化亜鉛膜。
- 請求項1~4のいずれか一項に記載の酸化亜鉛膜を湿式法により製造することを特徴とする、酸化亜鉛膜の製造方法。
- 前記湿式法による前記酸化亜鉛膜の製造が、Zn濃度が0.05~0.15mol/Lであり、pHが10.0~11.0であり、かつ、クエン酸を含まない、原料溶液を用いて行われる、請求項5に記載の方法。
- 酸化亜鉛で構成される種層を表面に備えた基板を用意する工程と、
前記基板を前記原料溶液に50~100℃の液温で浸漬して、前記種層上に析出物を膜状に堆積させる工程と、
前記析出物を300~800℃で熱処理して酸化亜鉛膜を形成させる工程と、
を含む、請求項5又は6に記載の方法。 - 前記種層が、酸化亜鉛焼結体をターゲットとして用いたスパッタリングにより形成される、請求項7に記載の方法。
- 前記原料溶液が導電性ドーパントを含む、請求項6~8のいずれか一項に記載の方法。
- 前記導電性ドーパントがAlであり、前記原料溶液にアルミニウム塩が溶解されている、請求項9に記載の方法。
- 前記原料溶液のAl濃度が0.001~0.010mol/Lである、請求項10に記載の方法。
- 前記原料溶液への前記基板の浸漬前に、前記原料溶液を前記液温に到達するまで加熱する工程をさらに含む、請求項8~11のいずれか一項に記載の方法。
- 前記液温に到達してから前記原料溶液を15~60分保持した後、前記基板の浸漬を行う、請求項12に記載の方法。
- 前記前駆体膜の熱処理が還元性雰囲気で行われる、請求項8~13のいずれか一項に記載の方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018505259A JPWO2017158968A1 (ja) | 2016-03-16 | 2016-12-13 | 酸化亜鉛膜及びその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-053002 | 2016-03-16 | ||
JP2016053002 | 2016-03-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017158968A1 true WO2017158968A1 (ja) | 2017-09-21 |
Family
ID=59851365
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/087032 WO2017158968A1 (ja) | 2016-03-16 | 2016-12-13 | 酸化亜鉛膜及びその製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2017158968A1 (ja) |
WO (1) | WO2017158968A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109004044A (zh) * | 2018-07-19 | 2018-12-14 | 深圳清华大学研究院 | 铜锌锡硫太阳电池用顶电极的制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012195416A (ja) * | 2011-03-16 | 2012-10-11 | Fujifilm Corp | 光電変換素子の製造方法 |
JP2013254845A (ja) * | 2012-06-07 | 2013-12-19 | Panasonic Corp | 太陽電池素子 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7867636B2 (en) * | 2006-01-11 | 2011-01-11 | Murata Manufacturing Co., Ltd. | Transparent conductive film and method for manufacturing the same |
-
2016
- 2016-12-13 JP JP2018505259A patent/JPWO2017158968A1/ja active Pending
- 2016-12-13 WO PCT/JP2016/087032 patent/WO2017158968A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012195416A (ja) * | 2011-03-16 | 2012-10-11 | Fujifilm Corp | 光電変換素子の製造方法 |
JP2013254845A (ja) * | 2012-06-07 | 2013-12-19 | Panasonic Corp | 太陽電池素子 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109004044A (zh) * | 2018-07-19 | 2018-12-14 | 深圳清华大学研究院 | 铜锌锡硫太阳电池用顶电极的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017158968A1 (ja) | 2019-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kim et al. | Effects of Cu doping on nickel oxide thin film prepared by sol–gel solution process | |
TWI249471B (en) | Transparent conductive laminate and process of producing the same | |
Muhunthan et al. | Growth of CZTS thin films by cosputtering of metal targets and sulfurization in H2S | |
WO2007080738A1 (ja) | 透明導電膜および透明導電膜の製造方法 | |
Abduev et al. | A revised growth model for transparent conducting Ga doped ZnO films: Improving crystallinity by means of buffer layers | |
KR101041655B1 (ko) | 투명 도전막 및 투명 도전막의 제조방법 | |
Fuchs et al. | Doping strategies for highly conductive Al‐doped ZnO films grown from aqueous solution | |
CN105190842A (zh) | 成膜方法、半导体发光元件的制造方法、半导体发光元件和照明装置 | |
US20140065766A1 (en) | Method for fabricating well-aligned zinc oxide microrods and nanorods and application thereof | |
KR101223415B1 (ko) | 전해도금을 이용한 cigs 박막 제조방법 및 이에 의한 태양전지 | |
US20130248780A1 (en) | Electrically conductive film, preparation method and application therefor | |
WO2017158968A1 (ja) | 酸化亜鉛膜及びその製造方法 | |
JP2012219301A (ja) | 結晶性ito膜およびその製造方法ならびに太陽電池 | |
Aliyu et al. | High quality indium tin oxide (ITO) film growth by controlling pressure in RF magnetron sputtering | |
CN110819958A (zh) | 一种改变硒化锑薄膜电学性质的方法及硒化锑太阳电池 | |
Duan et al. | Transparent and conducting Ga-doped ZnO films on flexible substrates prepared by sol–gel method | |
JPWO2012026599A1 (ja) | ZnO膜の製造方法、透明導電膜の製造方法、ZnO膜、及び透明導電膜 | |
CN110835740A (zh) | 一种高透射的复合Ag薄膜的制备方法 | |
JP6714071B2 (ja) | 酸化亜鉛膜の製造方法 | |
Shankar et al. | Influence of Al concentration on structural and optical properties of Aluminum doped zinc oxide thin films prepared by sol gel spin coating method | |
Su et al. | Two-step deposition of Al-doped ZnO on p-GaN to form ohmic contacts | |
KR101108126B1 (ko) | 산화아연계 박막 및 투명전도막의 제조방법 | |
Xiu et al. | The properties of transparent conducting molybdenum-doped ZnO films grown by radio frequency magnetron sputtering | |
Chang et al. | Optical and Electrical Properties of ITO: Ga/Ag Double-layer Thin Films for Photosensor Applications. | |
US9219254B2 (en) | Method of forming nanocrystals and method of manufacturing an organic light-emitting display apparatus including a thin film having nanocrystals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018505259 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16894585 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16894585 Country of ref document: EP Kind code of ref document: A1 |