WO2017157025A1 - 千米深井提升机浮动式盘式制动器 - Google Patents

千米深井提升机浮动式盘式制动器 Download PDF

Info

Publication number
WO2017157025A1
WO2017157025A1 PCT/CN2016/104506 CN2016104506W WO2017157025A1 WO 2017157025 A1 WO2017157025 A1 WO 2017157025A1 CN 2016104506 W CN2016104506 W CN 2016104506W WO 2017157025 A1 WO2017157025 A1 WO 2017157025A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
valve
disc
seat
heat
Prior art date
Application number
PCT/CN2016/104506
Other languages
English (en)
French (fr)
Inventor
刘超
王大刚
翟维东
杜悟迪
梁皓
马钟旻
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Publication of WO2017157025A1 publication Critical patent/WO2017157025A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D5/00Braking or detent devices characterised by application to lifting or hoisting gear, e.g. for controlling the lowering of loads
    • B66D5/02Crane, lift hoist, or winch brakes operating on drums, barrels, or ropes
    • B66D5/12Crane, lift hoist, or winch brakes operating on drums, barrels, or ropes with axial effect
    • B66D5/14Crane, lift hoist, or winch brakes operating on drums, barrels, or ropes with axial effect embodying discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/0006Monitoring devices or performance analysers
    • B66B5/0018Devices monitoring the operating condition of the elevator system
    • B66B5/0031Devices monitoring the operating condition of the elevator system for safety reasons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/38Slack adjusters
    • F16D65/40Slack adjusters mechanical
    • F16D65/52Slack adjusters mechanical self-acting in one direction for adjusting excessive play
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D66/00Arrangements for monitoring working conditions, e.g. wear, temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D66/00Arrangements for monitoring working conditions, e.g. wear, temperature
    • F16D66/02Apparatus for indicating wear
    • F16D66/021Apparatus for indicating wear using electrical detection or indication means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D66/00Arrangements for monitoring working conditions, e.g. wear, temperature
    • F16D2066/005Force, torque, stress or strain

Definitions

  • the invention relates to a floating disc brake suitable for lifting a deep well of a kilometer.
  • Coal is the leading energy source in China. About 63% of the energy is directly or indirectly derived from coal. However, 53% of the domestic coal resources are buried deep below the kilometer formation. Coal mining must be carried out using an ultra-deep vertical shaft lifting system.
  • the lifting system consists of a hoist, a lifting container, a lifting wire rope, a disc brake system, and the like.
  • the hoist is responsible for important tasks such as upgrading coal, ore, decentralized materials, lifting personnel and equipment. Whether the mine hoist can be safely and reliably braked under normal operation and emergency situations directly affects the safety of coal mine production and the life safety of miners.
  • the hoist disc brake is the key brake component of the mine lifting equipment. Its braking force, brake shoe clearance and wear, disc spring fatigue fracture and installation deviation directly affect the safe and reliable braking performance of the hoist disc brake.
  • High-safety and high-reliability disc brakes are an important guarantee for the safe production of deep-well high-speed large inertia hoists. Research on disc brakes with large braking torque, fast braking response and high reliability is the safety of deep well high-speed and large inertia hoists.
  • the disc brake device for the mine hoist includes: a disc brake for monitoring the positive pressure of the brake disclosed in Patent No. 200810155643. 8, the brake positive pressure is monitored by the disc spring seat sensor, and the brake shoe wear amount and dynamics cannot be monitored in real time. Monitoring fatigue fracture state; Patent No. 200910025508. 6 discloses a hoist reliability disc brake, which adopts two oil chamber structure, wherein the side pressure oil chamber oil is used for monitoring the brake positive pressure, the pressure chamber high pressure oil The compressibility of the liquid will cause the hysteresis of the pressure transmission during the braking process of the brake shoe; Patent No. 201510584071.
  • Patent No. 201020555843 discloses a mine hoist disc brake condition monitoring device, Used for online monitoring of mine hoist disc brake positive pressure, brake shoe clearance and disc spring fatigue fracture failure, but not Implementation of automatic compensation for brake shoe wear fault condition.
  • none of the above patents has a floating structure, but the disc brakes are separately mounted symmetrically on both sides of the brake disc, resulting in uneven force on both sides of the brake disc, which leads to uneven wear of the symmetrical disc brake shoe. Reduce the reliability and service life of disc brakes. Therefore, the highly reliable floating disc brakes that integrate monitoring and real-time regulation are still blank.
  • the object of the present invention is to overcome the deficiencies in the prior art and provide a floating disc brake of a kilometer deep well hoist with compact structure, complete functions and easy operation, which can dynamically monitor brake shoes and brake discs.
  • the positive brake pressure and clearance, the brake shoe wear and the disc spring fatigue fracture state, and the brake shoe wear and self-aligning brake disc can be automatically compensated in real time.
  • a kilometer deep well hoist floating disc brake including a brake disc, and also includes a main disc body, a sub-disc body and a floating structure;
  • the main disc body comprises a mechanical brake unit and a condition monitoring unit
  • the mechanical brake unit comprises a brake shoe 13, a lining plate B, a pressure sleeve, a pressure plate, a screw, a brake cylinder barrel, a brake piston, a T-shaped piston and a disc.
  • the spring assembly and the cylinder head, the condition monitoring unit comprises a pressure sensor, a disc spring seat sensor and an eddy current sensor
  • the brake shoe B is laterally attached to the side of the brake disc, and the other side of the brake shoe B is provided with a lining plate B
  • the sleeve is provided On the brake shoe B and the lining plate B, the pressure sleeve and the brake shoe B are connected by screws, and a stepped hole is arranged in the middle of the lining plate B.
  • the stepped hole is fastened to the brake shoe B-end with a pressure plate embedded therein, and the brake piston head end is embedded with the stepped hole.
  • the brake cylinder body is set on the brake piston, and the eddy current sensor is installed on both sides of the brake cylinder body, and the brake cylinder body is made.
  • a brake oil chamber is formed between the moving pistons, and the brake cylinder body opens a fuel injection port that communicates with the brake oil chamber.
  • the T-shaped piston head end is embedded in the groove of the brake piston tail end, and the pressure sensor is disposed on the T-shaped piston head.
  • the disc spring assembly and the cylinder head are set on the piston ring of the T-shaped piston, and one end of the disc spring assembly bears against the piston ring shoulder of the T-shaped piston head end, and the cylinder head and the brake cylinder barrel are screwed Pressing the disc spring sensor to the other end of the disc spring assembly through the cylinder head;
  • the sub-disc body comprises a brake shoe A and a lining plate A, the brake shoe A-side is adjacent to the other side of the brake disc, the other side of the brake shoe A is provided with a lining plate A, and the lining plate A and the brake shoe A are passed between the screws A connection;
  • the floating structure comprises a sliding pin shaft, a spring and a bracket.
  • the bracket is disposed between the lining plate A and the brake cylinder body, and the middle portion of the sliding pin shaft is matched with the through hole of the bracket, and the lining plate A and the sliding pin shaft are fixed at one end.
  • the brake cylinder body is fixed to the other end of the slide pin, and the spring is placed between the bracket and the lining plate A.
  • a Y-shaped sealing ring is disposed between the middle portion of the brake piston and the cylinder of the brake cylinder, and a 0-type sealing ring is disposed between the tail end of the brake piston and the cylinder of the brake cylinder.
  • the sliding pin shafts respectively pass through the lining plate A and the brake cylinder barrel body, and spring washers, nuts and positioning are arranged on the sliding pin shafts on both sides of the lining plate A and the brake cylinder body.
  • the shoulder is pressed against the lining A and the brake cylinder by spring washers, nuts and positioning shoulders.
  • the number of the sliding pin shafts is at least three, and the distance between the center line of each sliding pin shaft and the center line of the cylinder block of the brake cylinder is equal, and the center lines of the adjacent two sliding pin shafts are braked. Connection between the centerline of the cylinder barrel The angle of the line is 30°.
  • Figure 2 is a cross-sectional view taken along line A-A of Figure 1;
  • Figure 3 is a partial cross-sectional view taken along line B-B of Figure 1;
  • Figure 4 is a schematic view showing the installation of the floating brake
  • Figure 5 shows the installation of the pressure sensor.
  • a kilometer deep well hoist floating disc brake of the present invention includes a brake disc 3, and also includes a main disc body, a sub-disc body and a floating structure.
  • the main disc body comprises a mechanical brake unit and a condition monitoring unit
  • the mechanical brake unit comprises a brake shoe R6, a lining plate B5, a pressure sleeve 4, a pressure plate 19, a screw 22, a brake cylinder 10, a brake piston 21,
  • the T-shaped piston 15, the disc spring assembly 11 and the cylinder head 12, the condition monitoring unit includes a pressure sensor 17, a disc spring holder sensor 13, and an eddy current sensor 30.
  • the brake shoe B6 the side is close to the side of the brake disc 3—the other side of the brake shoe B6 is provided with the lining plate B5, and the pressure sleeve 4 is set on the brake shoe R6 and the lining plate R5, and the pressure sleeve 4 and the brake shoe R6 are connected by the screw 22 a stepped hole is arranged in the middle of the lining plate R5, and the stepped hole is fastened to the brake shoe B6-end with a pressure plate 19 embedded therein, the head end of the brake piston 21 is embedded in the stepped hole, and the pressure plate 19, the lining plate R5 and the brake piston 21 pass the countersunk screw 18 fixed together.
  • the brake cylinder 10 is set on the brake piston 21, and a Y-ring 20 is disposed between the middle of the brake piston 21 and the brake cylinder 10, and the rear end of the brake piston 21 and the brake cylinder 10
  • a 0-type seal 9 for high-pressure oil sealing, eddy current sensor 30 installation A brake oil chamber 8 is formed between the brake cylinder 10 and the brake piston 21 on both sides of the brake cylinder 10, and the brake cylinder 10 opens a fuel injection port 7 communicating with the brake oil chamber 8 to fill the oil.
  • Port 7 is connected to the hydraulic station via a seamless steel tube 29 and a tee fitting 28.
  • the head end of the T-shaped piston 15 is embedded in the groove of the rear end of the brake piston 21.
  • the head end of the T-shaped piston 15 is provided with four grooves according to the shape of the pressure sensor 17, and the pressure sensor 17 is disposed in the groove of the tip end of the T-shaped piston 15, T In the middle of the piston 15 is provided an outlet through hole 16 for taking out the sensor lead 31 of the pressure sensor 17.
  • the disc spring assembly 11 and the cylinder head 12 are fitted on the piston ring 14 of the T-shaped piston 15, and the disc spring assembly 11 has one end of the piston ring shoulder at the head end of the T-shaped piston 15, the cylinder head 12 and the brake cylinder 10
  • the disc spring seat sensor 13 is pressed against the other end of the disc spring assembly 11 by the cylinder head 12 by a screw connection.
  • the brake piston 21 transmits the brake positive pressure to the pressure sensor 17, and the pressure sensor 17 converts the brake positive pressure into an electrical signal which is led out through the lead through hole 16 and transmitted to the computer to achieve positive braking pressure.
  • the pressure generated by the disc spring assembly 11 acts on the disc spring seat sensor 13, thereby causing the disc spring seat sensor 13 to be deformed, and transmitting the signal to the computer through the strain gauge attached to the inner side of the disc spring seat sensor 13
  • Real-time monitoring of the deformation parameters of the disc spring assembly 11 using the eddy current sensor 30 mounted on both sides of the brake cylinder 10 to monitor the change in the distance between the brake cylinder and the lining R5, by analyzing the change in the distance and The difference in data measured by the two sensors on both sides can be used to obtain the movement of the brake shoe 6 and the lining plate B5, thereby real-time monitoring of the brake shoe-brake disc clearance and brake shoe wear.
  • the auxiliary disc body comprises a brake shoe A2 and a lining plate A1, the brake shoe A2 is laterally attached to the other side of the brake disc 3, the other side of the brake shoe A2 is provided with a lining plate A1, and the lining plate A1 is used for fixing the brake shoe A2.
  • the lining plate A1 and the brake shoe A2 are connected by a screw A22.
  • the floating structure includes a sliding pin 24, a spring 27 and a bracket 26.
  • the bracket 26 is disposed between the lining plate A1 and the brake cylinder 10, and the number of the sliding pins 24 is at least three, and each sliding pin
  • the distance between the 24 center lines and the center line of the brake cylinder 10 is equal, and the angle between the center line of the adjacent two sliding pin 24s and the center line of the brake cylinder 10 is 30 °.
  • the middle of the sliding pin 24 is in clearance with the through hole of the bracket 26, the lining plate A1 is fixed at the end of the sliding pin 24, the brake cylinder 10 is fixed to the other end of the sliding pin 24, and the spring 27 is placed on the bracket 26 and the lining plate A. Between 1.
  • the two ends of the sliding pin shaft 24 respectively pass through the lining plate A 1 and the brake cylinder body 10 , and are disposed on the lining plate A1 and the sliding pin shaft 24 on both sides of the brake cylinder body 10 .
  • the spring washer 25, the nut 23 and the positioning shoulder press the liner A1 and the brake cylinder 10 through the spring washer 25, the nut 23 and the positioning shoulder.
  • the spring 27 is retracted between the lining plate A1 and the bracket 26, and the lining plate A1 and the brake shoe A2 are brought to the other side of the brake disc 3.
  • the brake shoe B6 of the main disk body and the brake shoe A2 of the secondary disk body are attached to the brake disk 3 until the gap is zero, and the pressure between the brake shoe A2, the brake shoe B6 and the brake disk reaches a set value,
  • the moving plate 3 generates a corresponding braking torque due to the positive braking pressure, so that the brake disk 3 is stopped due to the friction braking effect, and the braking operation process is realized.
  • the disc spring 11 applies thrust to the brake shoe B6 of the main disc body on the one hand, and transmits the tensile force to the brake shoe A2 of the sub-disc body by the sliding pin shaft 24 on the other hand; main and auxiliary discs The body acts on both sides of the brake disc 3, applying positive pressure and braking torque to realize the brake process.
  • the high pressure oil is injected into the brake oil chamber 8 through the oil filling port 7 through the hydraulic station, and the high pressure oil pushes the brake piston 21, the pressure sensor 17, the T-shaped piston 15 and the piston ring 14 on the one hand, and then compresses the disc.
  • the spring 11 is simultaneously pulled away from the brake disc 3 by the lining plate B5 and the brake shoe B6; the high pressure oil pushes the brake cylinder 10 to the other side of the brake disc 3 on the other hand, when the high pressure oil is opposite
  • the inner surface of the brake cylinder 10 is strong enough to overcome the force exerted on the cylinder head 12 and the brake cylinder 10 by the compression of the disc spring 11, and the spring 27 in the compressed state pushes the sub-disc under the restoring force.
  • the brake shoe A2 of the body is separated from the brake disc 3 and the main disc body is pushed to the bracket by the sliding pin shaft 24, and finally the action of the release gate is realized under the joint action of the main and auxiliary disc bodies.
  • the invention relates to a pressure reducing valve, and is particularly suitable for a self-heating pressure reducing valve used in a coal chemical equipment in an industrial and mining enterprise.
  • High-pressure differential pressure reducing valve is a key equipment in petrochemical, coal chemical and other industries. Due to the particularity of coal chemical industry, most of the pressure reducing valves work in large diameter, high temperature and high pressure medium pipelines, especially in coal liquefaction process.
  • the high pressure differential pressure reducing valve decompresses the medium with a pressure of 19 MPa and 400 ° C to 2.8 M Pa, wherein the maximum flow rate of the medium is up to hundreds of meters per second, which is the most demanding valve in the direct liquefaction process of coal. Therefore, it is not only subject to considerable internal pressure during work, but also suffers from thermal shock and thermal load caused by drastic changes in temperature in a short period of time due to changes in working conditions, which may be accompanied by creep during use.
  • the patented new water-cooled high-temperature regulating butterfly valve uses a round-trip spiral cooling water passage to increase the operating temperature of the valve.
  • a patented air-cooled structural valve (Public No.: CN1 0471 2843A) improves the heat transfer efficiency and lowers the valve temperature by providing a cooling air chamber with a labyrinth type air passage in the valve body.
  • heat sinks, external water cooling or air cooling are basically used to solve the heat dissipation problem of the valve, but the heat dissipation effect of the high temperature and high pressure medium is not ideal, and the external power is relied on to reduce the temperature of the valve, and the valve cannot be used. Its own structure achieves heat dissipation.
  • a pressure reducing valve having a simple structure, a good heat dissipation effect, and capable of achieving heat dissipation by its own structure is provided.
  • the heat dissipating valve core comprises a valve core and a valve core heat dissipating fin, wherein the valve core head has a convex conical structure, the middle portion of the valve core is provided with an external thread near the tail portion, and the valve core heat dissipating fin is set at the tail end of the valve core And fixed by soldering;
  • the valve body is a hollow three-way structure, and a hollow heat dissipation valve seat is arranged below the valve body, and a valve cover with a stepped hole in the center is arranged above the valve body, and an upper valve cover is assembled through the bolt at the upper opening of the valve cover , the heat dissipation valve core passes through the upper valve cover
  • the threaded through hole is inserted into the valve body and fastened with the upper valve cover through the external thread on the valve core, the turbine heat sink is arranged on the inlet pipe on the side of the valve body, and the inlet flange is arranged on the turbine heat sink;
  • the tapered head of the valve core cooperates with the top shoulder of the heat dissipation valve seat to form a pressure reducing throttle port;
  • the fan heat dissipating device comprises a fan casing and a turbine.
  • the fan casing has a hollow columnar structure, and has convex threads on both sides, a fan blade is arranged outside the fan casing, a bracket is arranged inside the fan casing, and a turbine is arranged on the bracket;
  • the male thread on one side of the fan casing is mounted with a tapered roller bearing on the pipe of the valve body through the inner ring of the bearing and the outer ring of the bearing, and the male thread on the other side is mounted on the inlet flange through the inner ring of the bearing. Tapered Roller Bearings.
  • the valve core is a carbon steel material heat pipe structure, a portion of the valve core tail portion away from the upper valve cover is a hexagonal structure, a surface of the valve core is sprayed with a wear resistant material, the valve core heat radiating fin and the valve seat heat radiating fin are copper. Or solar fancy fins made of aluminum.
  • the threaded through hole in the center of the upper valve cover cooperates with the external thread of the valve core to adjust the opening degree of the pressure reducing valve, and the middle cavity of the upper valve cover and the pilot valve cover is filled with the sealing packing, the top flange
  • the disc cooperates with the pilot valve cover by bolts and presses the intermediate cavity seal packing.
  • the guiding valve cover has a stepped hole in the center, the diameter of the lower circular hole is slightly larger than the diameter of the outer wall of the cylindrical section of the valve core, and the diameter of the upper circular hole corresponds to the diameter of the outer circumferential surface of the lower valve cover, and the external processing has a stepped hole with the upper end of the valve body.
  • the mating shoulder, the flange on the upper part of the shoulder is fixed to the valve body by a stud bolt, and a sealing gasket is arranged at the joint between the flange and the valve body.
  • the diameter of the lower hole of the stepped hole of the valve seat shell corresponds to the diameter of the large end of the conical hole at the bottom of the valve seat bushing, and the diameter of the upper round hole is slightly larger than the diameter of the outer wall of the seat bushing after the heat pipe is wound, and the top flange is opened with a heat pipe
  • a scalloped groove has four heat pipes.
  • the bearing inner ring retaining ring is divided into a circular hole section and a conical section, and the inner wall of the circular hole section is provided with a pipe thread connected with the fan casing, and the circle
  • the outer wall of the cone section is fitted with the inlet flange and the valve body inlet, and a rotary seal is used at the mating point.
  • the turbine front end is provided with a tapered fairing structure for reducing the flow resistance of the medium.
  • the middle part is provided with a keyway and a key to drive the fan casing to rotate, and the tail part is machined with a thread and a nut to ensure the axial fastening of the turbine on the turbine.
  • the turbine blade pitch and the blade pitch on the fan casing must ensure that when liquid flows from the inlet flange from left to right and drives the turbine and fan casing to rotate, the fan casing drives the fan to produce the same liquid as the self-heating pressure reducing valve.
  • Directional airflow is required to ensure that when liquid flows from the inlet flange from left to right and drives the turbine and fan casing to rotate, the fan casing drives the fan to produce the same liquid as the self-heating pressure reducing valve.
  • the flow guide cover comprises a left and right half shell structure wrapped around the main structure of the heat dissipation pressure reducing valve, and the left and right half shells are connected by bolts, and the inner diameter of the air guide cover of the inlet pipeline of the main structure of the heat dissipation pressure reducing valve is larger than the fan.
  • the outer diameter of the fan blade on the casing, the inside of the shroud is provided with a support frame that cooperates with the main body of the pressure reducing valve, and the shroud at the inlet of the valve body is a curved structure for reducing the loss of wind fluid, wherein the body of the wrapped body is a hemisphere Shape structure, the upper and lower ends are necked.
  • the valve core is made of heat pipe made of carbon steel material, which can quickly and effectively bring the heat generated when the spool head reduces the medium flow rate to the external spool heat sink, and the valve core and the spool heat sink adopt tin. Welding and welding treatment increases the thermal conductivity.
  • the outer surface of the valve core is coated with wear-resistant materials to reduce the erosion of the valve core and the effects of cavitation;
  • the outer circumferential surface of the valve seat bushing is a multi-threaded groove structure.
  • a plurality of heat pipes can be respectively wound into the thread groove and led out through the opening at the top of the valve seat casing and fixed by soldering to the heat sink fin of the valve seat to accelerate
  • the heat dissipation efficiency of the valve seat, the gap between the inner surface of the valve seat housing and the outer circumferential surface of the heat pipe and the seat bushing are treated by tin filling to improve the integrity of the valve seat, the pressure resistance and the space between the seat bushing and the heat pipe. Heat transfer efficiency;
  • the turbine body is installed at the entrance of the valve body by a tapered roller bearing.
  • the medium impact turbine drives the fan casing to rotate through the tapered roller bearing.
  • the fan blade rotates on the fan casing to generate the wind direction.
  • the heat dissipation of the valve seat fins thereby realizing self-heat dissipation of the pressure reducing valve, and generating heat dissipation wind energy by using the pressure of the medium itself;
  • the medium impacts the internal fan to rotate, and the local resistance of the turbine consumes the kinetic energy of the medium, which is equivalent to achieving a step-down at the inlet of the valve body, sharing the pressure of the valve at the orifice, reducing the cavitation to the spool and The destruction of the seat bushing increases the service life of the valve and reduces maintenance and repair costs.
  • FIG. 2 is a perspective view of the main structure of the self-heating pressure reducing valve of the present invention
  • Figure 3 is a partial enlarged view of the inlet of the valve body of the self-heating pressure reducing valve of the present invention
  • Figure 5 is a structural diagram of a heat dissipating fin of a self-heating and reducing pressure reducing valve of the present invention
  • FIG. 6 is a structural view of a heat dissipation valve seat of a self-heating pressure reducing valve of the present invention.
  • Figure 7 is a structural view of a self-heating pressure reducing valve seat bushing of the present invention
  • Figure 8 is a structural view showing the outer casing of the self-heating pressure reducing valve seat of the present invention
  • Figure 9 is a structural view of the valve body of the self-heating pressure reducing valve of the present invention.
  • Figure 10 is a structural view of a self-heating pressure reducing valve turbine heat sink according to the present invention.
  • Figure 11 is a structural view of a self-heating pressure reducing valve fan casing of the present invention.
  • Figure 12 is a structural view of a self-heating pressure reducing valve turbine of the present invention.
  • Figure 13 is a structural view of the self-heating pressure reducing valve fairing of the present invention.
  • the self-heating pressure reducing valve of the present invention comprises a shroud 6 and a self-heating pressure reducing valve main body structure, wherein: the heat-dissipating pressure reducing valve main body structure comprises a heat-dissipating valve core 1.
  • the heat dissipating valve core 1 includes a valve core 12 and a spool heat dissipating fin 13 in which the head of the valve core 12 has a convex tapered structure, and the middle portion of the valve core 12 is near the tail end.
  • the valve core heat dissipating fins 13 are set on the tail of the valve core 1 2 and are fixed by soldering.
  • the valve core 12 is a carbon steel material heat pipe structure, and the tail portion of the valve core 12 is away from the upper valve cover 2
  • the surface of the valve core 12 is sprayed with a wear-resistant material, and the valve core heat-dissipating fins 13 and the valve seat heat-dissipating fins 17 are sun-shaped heat-dissipating fins made of copper or aluminum;
  • the valve body 4 is a hollow three-way structure, and a hollow heat-dissipating valve seat 5 is disposed below the valve body 4.
  • the valve body 4 is provided with a pilot valve cover 3 having a stepped hole at the center thereof, and the upper opening of the valve cover 3 passes through
  • the bolt is equipped with an upper valve cover 2, and the heat dissipation valve core 1 is inserted into the valve body 4 through the threaded through hole of the upper valve cover 2, and is fastened to the upper valve cover 2 through the external thread on the valve core 12, the upper valve cover 2
  • the center has a threaded through hole that cooperates with the external thread of the valve core 1 2 to adjust the opening degree of the pressure reducing valve.
  • the upper cavity of the upper valve cover 2 and the pilot valve cover 3 is filled with a sealing packing, and the top flange plate The bolt is engaged with the pilot valve cover and the intermediate cavity sealing packing is pressed.
  • the guiding valve cover 3 has a stepped hole in the center thereof, and the diameter of the lower circular hole is slightly larger than the diameter of the outer wall of the cylindrical section of the valve body 12, and the diameter of the upper circular hole is
  • the outer circumferential surface of the upper bonnet 2 has a corresponding diameter, and the outer surface is machined with a shoulder that cooperates with the stepped hole at the upper end of the valve body 4.
  • the flange of the upper portion of the shoulder is fixed to the valve body 4 by a stud bolt, and is flanged.
  • a gasket is fitted to the valve body 4.
  • a turbine heat sink 8 is disposed on the inlet pipe on the side of the valve body 4, and an inlet is provided on the turbine heat sink 8.
  • the front end of the turbine 19 is provided with a tapered fairing structure for reducing the flow resistance of the medium, and the central portion is provided with a keyway and a key to drive the fan housing 18 to rotate.
  • the tail machining has a threaded and nut-fitted engagement to ensure that the turbine 19 is axially tightened, the turbine blade pitch on the turbine 19 and the blade pitch on the fan casing must ensure that liquid flows from the inlet flange 7 from left to right and drives the turbine and fan.
  • the housing rotates, and the fan housing drives the fan to generate airflow in the same direction as the liquid in the self-heating pressure reducing valve.
  • the opening at both ends of the valve body 4 is a stepped hole
  • the inner cavity of the valve body 4 is a spherical cavity
  • the inner side of the fan casing 18 is installed at the inlet of the liquid pipeline with a groove on the inner wall side
  • the bearing outer ring retaining ring 11 The outer ring of the tapered roller bearing 10 is fixed in the groove by bolts with the inlet of the valve body 4.
  • the heat dissipation valve seat 5 includes a valve seat bushing 14, a valve seat housing 15, a heat pipe 16, and a valve seat heat radiating fin 17, wherein a top end of the valve seat housing 15 is provided with a connecting mechanism connected to the valve body 4.
  • the connecting mechanism is provided with four notches, the valve seat bushing 14 is disposed in the valve seat outer casing 15, the top of the valve seat bushing 14 is provided with a shoulder that cooperates with the lower end of the valve body 4, and the bottom of the valve seat outer casing 15 is opened with a valve
  • the stepped holes of the seat bushing 14 are matched, as shown in FIG. 7 and FIG.
  • the seat heat radiating fins 17 are disposed around the outer side of the valve seat outer casing 15, and the outer wall of the side surface of the valve seat bushing is provided with a multi-thread thread groove.
  • the plurality of heat pipes 16 are wound and fixed on the side wall of the valve seat bushing by a multi-threaded groove, and the gap between the seat bushing M and the seat shell 15 is filled by the tin filling process, and the tail ends of the plurality of heat pipes 16 are respectively It is fixed to the seat heat dissipating fin 17 through four notches on the seat shell 15; the lower end of the valve body 4 is a stepped hole matching the shoulder of the upper end of the seat bushing M, and the lower end of the valve body 4 and the valve seat A gasket is arranged between the three sections of the bushing M, and the bottom end surface of the seat bushing M is matched with the seat shell 1 5 The joint is fitted with a gasket.
  • the tapered head of the valve body 12 cooperates with the top shoulder of the heat dissipation valve seat 5 to form a pressure reducing throttle port;
  • the fan heat sink 8 includes a fan housing 18 and a turbine 19, and the fan housing 18 has a hollow columnar structure with convex threads on both sides, a fan blade outside the fan housing 18, and a bracket inside the fan housing 18.
  • a turbine 19 is disposed on the bracket; the convex thread on the side of the fan casing 18 is mounted on the pipeline of the valve body 4 through the bearing inner ring retaining ring 9 and the bearing outer ring retaining ring 1 1 , and the tapered roller bearing 10 is mounted on the other side.
  • the threaded roller bearing 10 is mounted on the inlet flange 7 through the bearing inner ring retaining ring 9.
  • the inner ring of the bearing ring 9 is divided into a circular hole section and a conical section.
  • the inner wall of the circular hole section is provided with a pipe thread connected with the fan casing 18, and the outer wall of the conical section is matched with the inlet flange 7 and the valve body inlet, and the rotation is adopted at the joint portion. seal.
  • the air guiding cover 6 includes a left and right half shell structure wrapped around the main structure of the heat dissipation pressure reducing valve, and the left and right halves are connected by bolts, and the inlet tube of the main structure of the self-heating and reducing pressure reducing valve
  • the inner diameter of the guide shroud 6 of the road is larger than the outer diameter of the fan blade on the fan casing 18.
  • the inside of the shroud 6 is provided with a support frame for cooperating with the main body of the pressure reducing valve, and the shroud 6 at the inlet of the valve body is for reducing wind fluid loss.
  • the curved structure, the middle part of the valve body is a hemispherical structure, and the upper and lower ends are a necked structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Braking Arrangements (AREA)

Abstract

一种千米深井提升机浮动式盘式制动器,包括制动盘(3)、主盘体、副盘体和浮动式结构,主盘体包括机械制动单元和状态监测单元,机械制动单元包括闸瓦B(6)、衬板B(5)、压套(4)、压板(19)、螺钉(22)、制动油缸筒体(10)、制动活塞(21)、T形活塞(15)、碟形弹簧组件(11)和缸盖(12),状态监测单元包括压力传感器(17)、碟簧座传感器(13)和电涡流传感器(30),副盘体包括闸瓦A(2)和衬板A(1),浮动式结构包括滑动销轴(24)、弹簧(27)和支架(26)。该制动器能够动态监测闸瓦(6,2)与制动盘(3)之间的制动正压力和间隙、闸瓦(6,2)磨损量和碟形弹簧组件(11)疲劳断裂状态,同时可以实时自动补偿闸瓦(6,2)磨损和自对正制动盘(3)。

Description

千米深井提升机浮动式盘式制动器 技术领域
本发明涉及一种适用于千米深井提升的浮动式盘式制动器。
背景技术
煤炭是我国的主导能源, 约 63%能源直接或者间接来源于煤炭, 但国内 53%的煤炭 资源深埋在千米地层以下, 煤炭采挖必须采用超深立井提升系统进行, 这种超深立井提 升系统由提升机、 提升容器、 提升钢丝绳、 盘式制动系统等组成。
提升机担负着提升煤炭、 矿石、 下放材料、 升降人员和设备等重要任务, 矿井提升 机能否在正常运行以及紧急情况下安全可靠的制动, 直接影响煤矿生产的安全性和矿工 的生命安全。 提升机盘式制动器是矿山提升装备的关键制动部件, 其制动力、 闸瓦间隙 和磨损、 碟簧疲劳断裂、 安装偏差等直接影响提升机盘式制动器的安全可靠制动性能。 高安全性和高可靠性的盘式制动器是深井高速大惯量提升机安全生产的重要保障,研究 制动力矩大、 制动响应快、 可靠性高的盘式制动器为深井高速大惯量提升机安全、 可靠 运行提供重要保障。 目前, 多数矿井提升机制动器为对称安装, 两侧单独加载, 易导致 两侧制动盘受力不均和两侧闸瓦的不均匀磨损, 进而易导致盘式制动装置的过早失效。
有关矿井提升机盘式制动器装置包括: 专利号为 200810155643. 8公开的一种监测 制动正压力的盘式制动器, 通过碟簧座传感器监测制动正压力, 不能实时监测闸瓦磨损 量和动态监测疲劳断裂状态; 专利号为 200910025508. 6公开的一种提升机可靠性盘式 制动器, 采用两油腔式结构, 其中侧压油腔油液用于监测制动正压力, 测压腔高压油液 的可压縮性会导致闸瓦制动过程中对压力传递的滞后性; 专利号为 201510584071. 5公 开的 一种磁场调控摩擦的磁摩耦合提升机盘式制动器,采用摩擦和磁力两种耦合制动 方式对制动盘施加正压力, 但并不能实时监测闸瓦磨损量和碟形弹簧疲劳断裂特性; 专 利号为 201020555843. 5公布的一种矿用提升机盘式制动器状态监测装置, 用于在线监 测矿井提升机盘式制动器正压力、 闸瓦间隙和碟形弹簧的疲劳断裂失效, 但并不能对闸 瓦磨损等故障状态实行自动补偿。 同时, 上述专利均不具有浮动式结构, 而是采用制动 盘两侧对称单独安装盘式制动器, 导致制动盘两侧面受力不均, 进而导致对称盘式制动 器闸瓦的不均匀磨损, 降低盘式制动器的可靠性和使用寿命。 因此, 集监测和实时调控 于一体的高可靠性浮动式盘式制动装置还是空白。
因此, 研制一种集监测闸瓦与制动盘之间的制动正压力和间隙、 闸瓦磨损量和碟形 弹簧疲劳断裂状态, 并能够实时自对正制动盘和自动补偿闸瓦磨损的高可靠性浮动式盘 式制动装置, 对避免因制动失灵造成的冲撞井口设备、 坠罐和人员伤亡等安全事故具有
后提交 重要意义。
发明内容
发明目的: 本发明的目的是克服现有技术中的不足之处, 提供一种结构紧凑、 功能 齐全、 易操作的千米深井提升机浮动式盘式制动器, 能够动态监测闸瓦与制动盘之间的 制动正压力和间隙、 闸瓦磨损量和碟形弹簧疲劳断裂状态, 同时可以实时自动补偿闸瓦 磨损和自对正制动盘。
为了实现上述目的, 本发明采用了如下的技术方案: 一种千米深井提升机浮动式盘 式制动器, 包括制动盘, 还包括主盘体、 副盘体和浮动式结构;
所述主盘体包括机械制动单元和状态监测单元, 机械制动单元包括闸瓦13、 衬板 B、 压套、 压板、 螺钉、 制动油缸筒体、 制动活塞、 T形活塞、 碟形弹簧组件和缸盖, 状态 监测单元包括压力传感器、碟簧座传感器和电涡流传感器,闸瓦 B—侧贴近制动盘一侧, 闸瓦 B另一侧设有衬板 B,压套套装在闸瓦 B和衬板 B上,压套与闸瓦 B通过螺钉连接, 衬板 B中部设有阶梯孔,阶梯孔紧靠闸瓦 B—端嵌有压板,制动活塞头端嵌入阶梯孔内, 压板、 衬板和制动活塞通过沉头螺钉固定在一起, 制动油缸筒体套装在制动活塞上, 电 涡流传感器安装于制动油缸筒体两侧, 制动油缸筒体与制动活塞之间形成制动油腔, 制 动油缸筒体开设与制动油腔开连通的注油口, T形活塞头端嵌入制动活塞尾端凹槽内, 压力传感器设置在 T形活塞头端凹槽内, T形活塞中部设有出线通孔, 碟形弹簧组件和 缸盖套装在 T形活塞的活塞环上, 碟形弹簧组件一端顶住 T形活塞头端的活塞环台肩, 缸盖与制动油缸筒体通过螺纹连接,通过缸盖将碟簧座传感器压紧在碟形弹簧组件另一 端;
所述副盘体包括闸瓦 A和衬板 A, 闸瓦 A—侧贴近制动盘另一侧, 闸瓦 A另一侧设 有衬板 A, 衬板 A与闸瓦 A之间通过螺钉 A连接;
所述浮动式结构包括滑动销轴、 弹簧和支架, 支架设置在衬板 A与制动油缸筒体之 间, 滑动销轴中部与支架通孔间隙配合, 衬板 A与滑动销轴一端固定, 制动油缸筒体与 滑动销轴另一端固定, 弹簧置于支架与衬板 A之间。
进一步的, 所述制动活塞中部与制动油缸筒体之间设有 Y型密封圈, 制动活塞尾端 与制动油缸筒体之间设有 0型密封圈。
进一步的, 所所述滑动销轴两端分别穿过衬板 A和制动油缸筒体, 在衬板 A和制动 油缸筒体两侧的滑动销轴上均设有弹簧垫圈、 螺母和定位轴肩, 通过弹簧垫圈、 螺母和 定位轴肩压紧衬板 A和制动油缸筒体。
进一步的, 所所述滑动销轴的数量至少为 3个, 每个滑动销轴中心线到制动油缸筒 体中心线之间的距离均相等,相邻两个滑动销轴中心线与制动油缸筒体中心线之间的连 线夹角均为 30° 。
有益效果: 本发明专利提出一种千米深井提升机浮动式盘式制动器, 具有能够自对 正制动盘和自动补偿闸瓦磨损的浮动式结构, 使得制动盘与主、 副盘体之间的受力均衡 和避免不均匀磨损; 制动活塞与 T形活塞通过刚性的压力传感器连接, 使得碟形弹簧对 制动活塞的加载动作快、 可靠性高; 能够动态实时监测闸瓦与制动盘之间的制动正压力 和间隙、 闸瓦磨损量和碟形弹簧疲劳断裂状态, 实现了集监测和实时调控于一体的高可 靠性浮动式盘式制动装置。
附图说明
图 1为本浮动式制动器的主视图;
图 2为图 1的 A-A剖视图;
图 3为图 1的 B-B局部剖视图;
图 4为本浮动式制动器的安装示意图;
图 5为压力传感器的安装示意图。
图中: 衬板 A— 1; 闸瓦 A— 2; 制动盘一 3; 压套一 4; 衬板 B— 5; 闸瓦 R— 6; 注油 口一 7; 制动油腔一 8; ◦型密封圈一 9; 制动油缸筒体一 10; 碟形弹簧组件一 11; 缸盖 -12;碟簧座传感器一 13;活塞环一 14; T形活塞一 15; 出线通孔一 16;压力传感器一 17; 沉头螺钉一 18; 压板一 19; Y型密封圈一 20; 制动活塞一 21; 螺钉一 22; 螺母一 23; 滑 动销轴一 24; 弹簧垫圈一 25; 支架一 26; 弹簧一 27; 三通管接头一 28; 无缝钢管一 29; 电涡流传感器一 30; 传感器引线一 31。
具体实施方式:
下面结合附图对本发明做更进一步的解释。
如图 1至 5所示,本发明的一种千米深井提升机浮动式盘式制动器,包括制动盘 3, 还包括主盘体、 副盘体和浮动式结构。
所述主盘体包括机械制动单元和状态监测单元, 机械制动单元包括闸瓦 R6、 衬板 B5、 压套 4、 压板 19、 螺钉 22、 制动油缸筒体 10、 制动活塞 21、 T形活塞 15、 碟形弹 簧组件 11和缸盖 12, 状态监测单元包括压力传感器 17、 碟簧座传感器 13和电涡流传 感器 30。 闸瓦 B6—侧贴近制动盘 3—侧, 闸瓦 B6另一侧设有衬板 B5, 压套 4套装在 闸瓦 R6和衬板 R5上, 压套 4与闸瓦 R6通过螺钉 22连接, 衬板 R5中部设有阶梯孔, 阶梯孔紧靠闸瓦 B6—端嵌有压板 19, 制动活塞 21头端嵌入阶梯孔内, 压板 19、 衬板 R5和制动活塞 21通过沉头螺钉 18固定在一起。 制动油缸筒体 10套装在制动活塞 21 上, 制动活塞 21中部与制动油缸筒体 10之间设有 Y型密封圈 20, 制动活塞 21尾端与 制动油缸筒体 10之间设有 0型密封圈 9, 用于高压油液的密封, 电涡流传感器 30安装 于制动油缸筒体 10两侧,制动油缸筒体 10与制动活塞 21之间形成制动油腔 8,制动油 缸筒体 10开设与制动油腔 8连通的注油口 7, 注油口 7通过无缝钢管 29和三通管接头 28与液压站相连。 T形活塞 15头端嵌入制动活塞 21尾端凹槽内, T形活塞 15头端根据 压力传感器 17外形设置四个凹槽, 压力传感器 17设置在 T形活塞 15头端凹槽内, T 形活塞 15中部设有出线通孔 16, 用于引出压力传感器 17的传感器引线 31。 碟形弹簧 组件 11和缸盖 12套装在 T形活塞 15的活塞环 14上, 碟形弹簧组件 11一端顶住 T形 活塞 15头端的活塞环台肩, 缸盖 12与制动油缸筒体 10通过螺纹连接, 通过缸盖 12将 碟簧座传感器 13压紧在碟形弹簧组件 11另一端。
工作时, 制动活塞 21将制动正压力传递到压力传感器 17上, 压力传感器 17将制 动正压力转变为电信号通过引线由出现通孔 16引出, 传递到计算机, 实现对制动正压 力的实时监测; 碟形弹簧组件 11产生的压力作用于碟簧座传感器 13, 进而引起碟簧座 传感器 13产生形变, 通过贴于碟簧座传感器 13内侧的应变片将信号传递至计算机, 从 而实现对碟形弹簧组件 11变形参数的实时监测; 运用安装于制动油缸筒体 10两侧的电 涡流传感器 30可以监测制动油缸与衬板 R5之间的距离变化,通过分析该距离的变化以 及两侧两个传感器测得的数据差异可以得出闸瓦 6和衬板 B5的运动情况, 进而实时监 测闸瓦-制动盘间隙以及闸瓦磨损情况。
所述副盘体包括闸瓦 A2和衬板 A1, 闸瓦 A2—侧贴近制动盘 3另一侧, 闸瓦 A2另 一侧设有衬板 A1,衬板 A1用于固定闸瓦 A2,衬板 A1与闸瓦 A2之间通过螺钉 A22连接。
所述浮动式结构包括滑动销轴 24、 弹簧 27和支架 26, 支架 26设置在衬板 A1与制 动油缸筒体 10之间, 滑动销轴 24的数量至少为 3个, 每个滑动销轴 24中心线到制动 油缸筒体 10中心线之间的距离均相等,相邻两个滑动销轴 24中心线与制动油缸筒体 10 中心线之间的连线夹角均为 30 ° 。 滑动销轴 24中部与支架 26通孔间隙配合, 衬板 A1 与滑动销轴 24—端固定, 制动油缸筒体 10与滑动销轴 24另一端固定, 弹簧 27置于支 架 26与衬板 A 1之间。 本实施例中, 所述滑动销轴 24两端分别穿过衬板 A 1和制动油缸 筒体 10, 在衬板 A1和制动油缸筒体 10两侧的滑动销轴 24上均设有弹簧垫圈 25、 螺母 23和定位轴肩,通过弹簧垫圈 25、螺母 23和定位轴肩压紧衬板 A1和制动油缸筒体 10。
本发明千米深井提升机浮动式盘式制动器的施闸和松闸动作的步骤如下: 施闸动作: 制动油腔 8高压油液通过注油口 7回油, 处于压缩状态的碟形弹簧 1 1 一方面迅速动作,经由活塞环 14、 T形活塞 15、压力传感器 17、制动活塞 21和衬板 B5, 推动闸瓦 B6贴向制动盘 3—侧面; 处于压縮状态的碟形弹簧 1 1另一方面依次作用于碟 簧座传感器 25和缸盖 12, 推动与缸盖 12螺纹连接的制动油缸筒体 10远离制动盘 3— 侧, 从而在推力作用下, 滑动销轴 24随制动油缸筒体 10向制动盘 3—侧移动, 进而压
后提交 縮置于衬板 A1与支架 26之间的弹簧 27,并带动衬板 A1和闸瓦 A2贴向制动盘 3另一侧 面。 随着主盘体的闸瓦 B6和副盘体的闸瓦 A2贴向制动盘 3直至间隙为零, 且闸瓦 A2、 闸瓦 B6与闸盘之间的压力达到设定值时, 制动盘 3因制动正压力作用产生相应的制动 力矩, 使得制动盘 3因摩擦制动作用而停止, 实现了施闸动作过程。 简而言之, 碟形弹 簧 11一方面将推力施加到主盘体的闸瓦 B6上, 另一方面通过滑动销轴 24作用将拉力 传递到副盘体的闸瓦 A2上; 主、 副盘体共同作用在制动盘 3两侧, 施加正压力和制动 力矩, 实现施闸过程。
松闸动作: 通过液压站经注油口 7向制动油腔 8注入高压油液, 高压油液一方面推 动制动活塞 21、 压力传感器 17、 T形活塞 15和活塞环 14, 进而压縮碟形弹簧 11, 同时 经衬板 B5和闸瓦 B6拉离制动盘 3—侧面; 高压油液另一方面推动制动油缸筒体 10向 制动盘 3另一侧移动, 当高压油液对制动油缸筒体 10内表面作用力足以克服因碟形弹 簧 11压縮作用对缸盖 12和制动油缸筒体 10作用力时, 处于压縮状态的弹簧 27在回复 力作用下推动副盘体的闸瓦 A2脱离制动盘 3以及通过滑动销轴 24推动主盘体贴向支架, 最终在主、 副盘体共同作用下, 实现松闸动作过程。
以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术领域的普通技术人员 来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这些改进和润饰也 应视为本发明的保护范围。
一种自散热减压阀
技术领域
本发明涉及一种减压阀, 尤其适用于一种工矿企业中油煤化工设备中使用的自散热减压 阀。
背景技术
高压差减压阀是石油化工、 煤化工等工业的关键设备, 由于煤化工等工业的特殊性, 减 压阀大多在大口径、 输送高温高压介质的管路中工作, 特别在煤液化工艺中, 高压差减压阀 将压力为 19MPa、 400°C以上的介质减压至 2.8M Pa, 其中介质最高流速高达上百米每秒, 是 煤直接液化工艺中使用条件最为苛刻的阀门。 因此在工作时不仅要承受相当大的内压, 而且 由于工况的变化, 还要承受在较短时间内温度剧烈变化所引起的热冲击和热载荷, 在使用过 程中可能会伴随着蠕变、 过热氧化、 渗碳、 腐蚀等现象, 使得阀门使用寿命减短。 同时, 在 减压阀内流体温度过高, 阀门不能有效散热, 使得阀门的过流道及节流部件在短时间内因产 生气蚀、 磨损等丧失压力调节功能, 影响装置的运行从而使整套设备停止生产运作, 降低生 产效率, 造成重大经济损失。 现有专利散热球阀 (公开号: CN204592370U) 中通过在阀杆外 部设置散热片来降低阀杆温度, 使阀杆不会因变形而导致阀门开启困难。 专利新型水冷式高 温调节蝶阀 (公开号: CN20371 7961 U) 中通过采用往返螺旋冷却水道提高阀门的使用温度。 专利一种风冷结构阀门 (公开号: CN1 0471 2843A ) 中通过在阀体中设置带有迷宫型风道的冷 却风腔, 提高热传导效率, 降低阀门温度。 在现有技术中基本是采用散热片、 外部水冷或风 冷来解决阀的散热问题, 但对于高温高压介质的散热效果并不理想, 同时都是依靠外部动力 来降低阀门温度, 并不能利用阀门自身的结构实现散热。
发明内容
技术目的: 为解决现有技术的不足之处, 提供一种结构简单, 散热效果良好, 并且能够 利用自身结构实现散热的减压阀。
技术手段: 为弥补现有技术的不足, 本发明提供一种自散热减压阀, 自散热减压阀, 包 括导流罩和自散热减压阀主体结构, 所述散热减压阀主体结构包括散热阀芯、 上阀盖、 导向 阀盖、 阀体、 散热阀座、 入口法兰和涡轮散热装置;
所述的散热阀芯包括阀芯和阀芯散热翅片, 其中阀芯头部为凸起的锥形结构, 阀芯中段 靠近尾部处设有外螺纹, 阀芯散热翅片套装于阀芯尾部并采用锡焊固定;
所述阀体为中空的三通结构, 阀体下方设有中空的散热阀座, 阀体上方设有中心开有阶 梯孔的导向阀盖, 阀盖的上方开口处通过螺栓装配有上阀盖, 所述的散热阀芯通过上阀盖的 螺纹通孔插入阀体并通过阀芯上的外螺纹与上阀盖紧固, 阀体侧面的入口管路上设置涡轮散 热装置, 涡轮散热装置上设置入口法兰;
所述散热阀座包括阀座衬套、 阀座外壳、 热管、 阀座散热翅片, 其中阀座外壳顶端设有 与阀体连接的连接机构, 连接机构上开有四个缺口, 阀座衬套设在阀座外壳内, 阀座衬套顶 部设有与阀体下端配合的台肩, 阀座外壳底部开有与阀座衬套匹配的阶梯孔, 阀座散热翅片 围绕设置在阀座外壳外侧, 阀座衬套侧面外壁上开有多线螺纹凹槽, 多根热管通过多线螺纹 凹槽缠绕固定在阀座衬套侧壁上, 阀座衬套与阀座外壳之间的空隙利用灌锡处理填充, 多根 热管的尾端分别通过阀座外壳上的四个缺口固定在阀座散热翅片上;
所述阀芯的锥形头部与散热阀座的顶部台肩配合构成减压节流口;
所述涡轮散热装置包括风扇壳体和涡轮, 风扇壳体为中空柱状结构, 两侧设有凸螺纹, 风扇壳体外侧设有风扇叶片, 风扇壳体内部设有支架, 支架上设有涡轮; 风扇壳体一侧的凸 螺纹通过轴承内圈挡圈和轴承外圈挡圈在阀体的管路上安装圆锥滚子轴承, 另一侧的凸螺纹 通过轴承内圈挡圈在入口法兰上安装圆锥滚子轴承。
所述阀芯为碳钢材料热管结构, 阀芯尾部远离上阀盖的部分为六棱结构, 阀芯表面喷涂 有耐磨材料, 阀芯散热翅片和所述的阀座散热翅片为铜或铝制成的太阳花式散热翅片。
所述的上阀盖中心开有螺纹通孔与阀芯外螺纹配合, 起到调节减压阀开度的作用, 所述 的上阀盖与导向阀盖中间空腔填充密封填料, 顶部法兰盘通过螺栓与导向阀盖配合并将中间 空腔密封填料压紧。
所述的导向阀盖中心开有阶梯孔, 下部圆孔直径略大于阀芯圆柱段外壁直径, 上部圆孔 直径与上阀盖下部外圆周面直径相对应, 外部加工有与阀体上端阶梯孔配合的台肩, 台肩上 部的法兰盘通过双头螺栓固定在阀体上, 且在法兰盘与阀体配合处装有密封垫片。
所述的阀体两端的开口为阶梯孔, 阀体内腔为球形空腔, 液体管路入口处安装风扇壳体 处内壁侧开有凹槽, 轴承外圈挡圈通过螺栓与阀体入口配合将圆锥滚子轴承外圈固定在凹槽 内。
所述阀体下端为与阀座衬套上端的台肩相匹配的阶梯孔, 阀体下端与阀座衬套三段之间 设有密封垫片, 阀座衬套的底部端面与阀座外壳配合处装有密封垫片。
所述阀座外壳的阶梯孔下部圆孔直径与阀座衬套底部圆锥孔大端直径对应, 上部圆孔直 径略大于缠绕热管之后的阀座衬套外壁直径, 顶部法兰盘开有可引出热管的扇形凹槽, 所述 热管共有四根。
所述的轴承内圈挡圈分为圆孔段和圆锥段, 圆孔段内壁设有管螺纹与风扇壳体连接, 圆 锥段外壁与入口法兰和阀体入口配合, 同时在配合处采用旋转密封。
所述的涡轮前端设有减小介质流动阻力的锥形整流罩结构, 中部开有键槽与键配合带动 风扇壳体转动, 尾部加工有螺纹与螺帽配合保证涡轮在轴向紧固, 涡轮上的涡轮叶片倾角和 风扇壳体上叶片倾角须确保当液体从入口法兰从左向右流动并驱动涡轮及风扇壳体转动, 此 时风扇壳体带动风扇产生与自散热减压阀内液体相同方向的气流。
所述的导流罩包括包裹自散热减压阀主体结构的左右两半壳体结构, 左右两半壳体利用 螺栓连接, 自散热减压阀主体结构处入口管路的导流罩内径大于风扇壳体上的扇叶外径, 导 流罩内部设有与减压阀主体配合的支撑架, 阀体入口处的导流罩为减少风流体损耗的弧形结 构, 其中部包裹阀体为半球形结构, 上下两端为缩颈结构。
有益成果: 1.利用碳钢材料的热管制作阀芯, 能够快速有效的将阀芯头部降低介质流速 时产生的热量带到外部的阀芯散热片, 且阀芯与阀芯散热片采用锡焊焊接处理, 增加了导热 效率, 阀芯外部表面涂有耐磨材料, 降低介质对阀芯的冲蚀以及空蚀影响;
2.阀座衬套的外部圆周面为多线螺纹凹槽结构, 多根热管可以分别绕进螺纹凹槽并经过 阀座外壳顶部的开口引出并采用锡焊固定于阀座散热翅片上, 加快了阀座的散热效率, 阀座 外壳内孔面、 热管与阀座衬套外圆周面间的间隙采用灌锡处理提高了阀座的整体性、 耐压性 能和阀座衬套与热管间的热传递效率;
3.阀体入口处利用圆锥滚子轴承安装涡轮散热装置, 介质冲击涡轮通过圆锥滚子轴承带 动风扇壳体转动, 风扇壳体上的扇叶旋转产生风向通过整流罩定向实现对阀芯散热片和阀座 散热片的散热, 从而实现减压阀的自散热, 利用介质自身压力产生散热风能;
4.介质冲击内部风扇转动, 利用涡轮的局部阻力损耗介质的动能, 相当于在阀体入口处 实现了一次降压, 分担了阀门在节流口处的压力, 降低了空蚀对阀芯及阀座衬套的破坏, 增 加了阀门的使用寿命, 减少维护、 维修成本。
附图说明
图 1为本发明的自散热减压阀半剖轴测图;
图 2为本发明的自散热减压阀主体结构轴测图
图 3为本发明的自散热减压阀阀体入口处局部放大图;
图 4为本发明的自散热减压阀散热阀芯结构图;
图 5为本发明的自散热减压阀阀芯散热翅片结构图;
图 6为本发明的自散热减压阀散热阀座结构图;
图 7为本发明的自散热减压阀阀座衬套结构图; 图 8为本发明的自散热减压阀阀座外壳结构图;
图 9为本发明的自散热减压阀阀体结构图;
图 10为本发明的自散热减压阀涡轮散热装置结构图;
图 11为本发明的自散热减压阀风扇壳体结构图;
图 12为本发明的自散热减压阀涡轮结构图;
图 13为本发明的自散热减压阀整流罩结构图;
图中: 1-散热阀芯, 2-上阀盖, 3-导向阀盖, 4-阀体, 5-散热阀座, 6-导流罩, 7-入口法兰, 8-涡轮散热装置, 9-轴承内圈挡圈, 10-圆锥滚子轴承, 11-轴承外圈挡圈, 12-阀芯、 13-阀 芯散热翅片、 14-阀座衬套、 15-阀座外壳, 16-热管, 17-阀座散热翅片, 18-风扇壳体, 19- 涡轮。
具体实施方案
以下结合附图对本发明实施例作进一步详细说明:
如图 1和图 2所示, 本发明的自散热减压阀, 包括导流罩 6和自散热减压阀主体结构, 其特征在于: 所述散热减压阀主体结构包括散热阀芯 1、 上阀盖 2、 导向阀盖 3、 阀体 4、 散 热阀座 5、 入口法兰 7和涡轮散热装置 8 ;
如图 5所示, 所述的散热阀芯 1包括阀芯 1 2和阀芯散热翅片 1 3, 其中阀芯 1 2头部为凸 起的锥形结构, 阀芯 1 2中段靠近尾部处设有外螺纹, 阀芯散热翅片 1 3套装于阀芯 1 2尾部并 采用锡焊固定, 所述阀芯 1 2为碳钢材料热管结构, 阀芯 1 2尾部远离上阀盖 2的部分为六棱 结构, 阀芯 1 2表面喷涂有耐磨材料, 阀芯散热翅片 1 3和所述的阀座散热翅片 1 7为铜或铝制 成的太阳花式散热翅片;
所述阀体 4为中空的三通结构, 阀体 4下方设有中空的散热阀座 5, 阀体 4上方设有中心 开有阶梯孔的导向阀盖 3, 阀盖 3的上方开口处通过螺栓装配有上阀盖 2, 所述的散热阀芯 1 通过上阀盖 2的螺纹通孔插入阀体 4, 并通过阀芯 1 2上的外螺纹与上阀盖 2紧固, 上阀盖 2 中心开有螺纹通孔与阀芯 1 2外螺纹配合, 起到调节减压阀开度的作用, 所述的上阀盖 2与导 向阀盖 3中间空腔填充密封填料, 顶部法兰盘通过螺栓与导向阀盖配合并将中间空腔密封填 料压紧, 所述的导向阀盖 3中心开有阶梯孔, 下部圆孔直径略大于阀芯 1 2圆柱段外壁直径, 上部圆孔直径与上阀盖 2下部外圆周面直径相对应, 外部加工有与阀体 4上端阶梯孔配合的 台肩, 台肩上部的法兰盘通过双头螺栓固定在阀体 4上, 且在法兰盘与阀体 4配合处装有密 封垫片。
如图 3所示, 阀体 4侧面的入口管路上设置涡轮散热装置 8, 涡轮散热装置 8上设置入口 法兰 7; 如图 10、 图 11和图 12所示, 所述的涡轮 19前端设有减小介质流动阻力的锥形整流 罩结构, 中部开有键槽与键配合带动风扇壳体 18转动,尾部加工有螺纹与螺帽配合保证涡轮 19在轴向紧固,涡轮 19上的涡轮叶片倾角和风扇壳体上叶片倾角须确保当液体从入口法兰 7 从左向右流动并驱动涡轮及风扇壳体转动, 此时风扇壳体带动风扇产生与自散热减压阀内液 体相同方向的气流。
如图 9所示, 阀体 4两端的开口为阶梯孔, 阀体 4内腔为球形空腔, 液体管路入口处安 装风扇壳体 18处内壁侧开有凹槽, 轴承外圈挡圈 11通过螺栓与阀体 4入口配合将圆锥滚子 轴承 10外圈固定在凹槽内。
如图 6所示, 所述散热阀座 5包括阀座衬套 14、 阀座外壳 15、 热管 16、 阀座散热翅片 17, 其中阀座外壳 15顶端设有与阀体 4连接的连接机构, 连接机构上开有四个缺口, 阀座衬 套 14设在阀座外壳 15内, 阀座衬套 14顶部设有与阀体 4下端配合的台肩, 阀座外壳 15底 部开有与阀座衬套 14匹配的阶梯孔, 如图 7和图 8所示, 阀座散热翅片 1 7围绕设置在阀座 外壳 1 5外侧, 阀座衬套侧面外壁上开有多线螺纹凹槽, 多根热管 16通过多线螺纹凹槽缠绕 固定在阀座衬套侧壁上, 阀座衬套 M与阀座外壳 1 5之间的空隙利用灌锡处理填充, 多根热 管 16的尾端分别通过阀座外壳 1 5上的四个缺口固定在阀座散热翅片 1 7上;阀体 4下端为与 阀座衬套 M上端的台肩相匹配的阶梯孔,阀体 4下端与阀座衬套 M三段之间设有密封垫片, 阀座衬套 M的底部端面与阀座外壳 1 5配合处装有密封垫片。
所述阀芯 1 2的锥形头部与散热阀座 5的顶部台肩配合构成减压节流口;
所述涡轮散热装置 8包括风扇壳体 18和涡轮 19, 风扇壳体 18为中空柱状结构, 两侧设 有凸螺纹,风扇壳体 18外侧设有风扇叶片,风扇壳体 18内部设有支架,支架上设有涡轮 19; 风扇壳体 18—侧的凸螺纹通过轴承内圈挡圈 9和轴承外圈挡圈 1 1在阀体 4的管路上安装圆 锥滚子轴承 10, 另一侧的凸螺纹通过轴承内圈挡圈 9在入口法兰 7上安装圆锥滚子轴承 10。 轴承内圈挡圈 9分为圆孔段和圆锥段, 圆孔段内壁设有管螺纹与风扇壳体 18连接, 圆锥段外 壁与入口法兰 7和阀体入口配合, 同时在配合处采用旋转密封。
如图 1 3所示, 所述的导流罩 6包括包裹自散热减压阀主体结构的左右两半壳体结构, 左 右两半壳体利用螺栓连接, 自散热减压阀主体结构处入口管路的导流罩 6内径大于风扇壳体 18上的扇叶外径, 导流罩 6内部设有与减压阀主体配合的支撑架, 阀体入口处的导流罩 6为 减少风流体损耗的弧形结构, 其中部包裹阀体为半球形结构, 上下两端为缩颈结构。

Claims

权 利 要 求 书
1、 一种千米深井提升机浮动式盘式制动器, 包括制动盘 (3), 其特征在于: 还包 括主盘体、 副盘体和浮动式结构;
所述主盘体包括机械制动单元和状态监测单元, 机械制动单元包括闸瓦 B (6)、 衬 板 B (5)、 压套 (4)、 压板 (19)、 螺钉 (22)、 制动油缸筒体 (10)、 制动活塞 (21)、 T 形活塞 (15)、 碟形弹簧组件 (11) 和缸盖 (12), 状态监测单元包括压力传感器 (17)、 碟簧座传感器 (13)和电涡流传感器 (30), 闸瓦 B (6)一侧贴近制动盘 (3) —侧, 闸 瓦 B (6) 另一侧设有衬板 B (5), 压套 (4) 套装在闸瓦 B (6) 和衬板 B (5) 上, 压套
(4) 与闸瓦 B (6) 通过螺钉 (22) 连接, 衬板 B (5) 中部设有阶梯孔, 阶梯孔紧靠闸 瓦 B (6) 一端嵌有压板 (19), 制动活塞 (21) 头端嵌入阶梯孔内, 压板 (19)、 衬板 B
(5) 和制动活塞 (21) 通过沉头螺钉 (18) 固定在一起, 制动油缸筒体 (10) 套装在 制动活塞 (21) 上, 电涡流传感器 (30) 安装于制动油缸筒体(10) 两侧, 制动油缸筒 体 (10) 与制动活塞 (21) 之间形成制动油腔 (8), 制动油缸筒体 (10) 开设与制动油 腔 (8) 连通的注油口 (7), T形活塞 (15) 头端嵌入制动活塞 (21)尾端凹槽内, 压力 传感器(17)设置在 T形活塞(15)头端凹槽内, T形活塞(15)中部设有出线通孔(16), 碟形弹簧组件 (11) 和缸盖 (12) 套装在 T形活塞 (15) 的活塞环 (14) 上, 碟形弹簧 组件(11 )一端顶住 T形活塞(15)头端的活塞环台肩,缸盖(12)与制动油缸筒体(10) 通过螺纹连接, 通过缸盖 (12) 将碟簧座传感器(13)压紧在碟形弹簧组件 (11) 另一 端;
所述副盘体包括闸瓦 A (2) 和衬板 A (1), 闸瓦 A (2)一侧贴近制动盘 (3) 另一 侧, 闸瓦 A (2)另一侧设有衬板 A (1), 衬板 A (1)与闸瓦 A (2)之间通过螺钉 A (22) 连接;
所述浮动式结构包括滑动销轴 (24)、 弹簧 (27) 和支架 (26), 支架 (26) 设置在 衬板 A (1) 与制动油缸筒体(10)之间, 滑动销轴 (24) 中部与支架(26) 通孔间隙配 合, 衬板 A (1) 与滑动销轴 (24) —端固定, 制动油缸筒体(10) 与滑动销轴 (24) 另 一端固定, 弹簧 (27) 置于支架 (26) 与衬板 A (1) 之间。
2、 根据权利要求 1所述的一种千米深井提升机浮动式盘式制动器, 其特征在于: 所述制动活塞 (21) 中部与制动油缸筒体 (10) 之间设有 Y型密封圈 (20), 制动活塞
(21) 尾端与制动油缸筒体 (10) 之间设有 0型密封圈 (9)。
3、 根据权利要求 1所述的一种千米深井提升机浮动式盘式制动器, 其特征在于: 所述滑动销轴 (24) 两端分别穿过衬板 A (1) 和制动油缸筒体(10), 在衬板 A (1) 和 制动油缸筒体 (10) 两侧的滑动销轴 (24) 上均设有弹簧垫圈 (25)、 螺母 (23) 和定 位轴肩, 通过弹簧垫圈 (25)、 螺母 (23) 和定位轴肩压紧衬板 A (1) 和制动油缸筒体
后提交: f ( 10)。
4、 根据权利要求 1所述的一种千米深井提升机浮动式盘式制动器, 其特征在于: 所述滑动销轴(24)的数量至少为 3个,每个滑动销轴(24)中心线到制动油缸筒体(10) 中心线之间的距离均相等, 相邻两个滑动销轴 (24) 中心线与制动油缸筒体(10) 中心 线之间的连线夹角均为 30° 。
后提交:^ 权 利 要 求 书
1. 一种自散热减压阀, 包括导流罩 (6) 和自散热减压阀主体结构, 其特征在于: 所述 散热减压阀主体结构包括散热阀芯 (1) 、 上阀盖 (2) 、 导向阀盖 (3) 、 阀体 (4) 、 散热 阀座 (5) 、 入口法兰 (7) 和涡轮散热装置 (8) ;
所述的散热阀芯 (1)包括阀芯(12)和阀芯散热翅片(13) , 其中阀芯(12)头部为凸 起的锥形结构, 阀芯(12)中段靠近尾部处设有外螺纹, 阀芯散热翅片(13)套装于阀芯(12) 尾部并采用锡焊固定;
所述阀体(4) 为中空的三通结构, 阀体(4) 下方设有中空的散热阀座(5) , 阀体(4) 上方设有中心开有阶梯孔的导向阀盖 (3) , 导向阀盖(3) 的上方开口处通过螺栓装配有上 阀盖(2),所述的散热阀芯(12)通过上阀盖(2)的螺纹通孔插入阀体(4)并通过阀芯(12) 上的外螺纹与上陶盖 (2)紧固, 阀体(4)侧面的入口管路上设置涡轮散热装置(8) , 涡轮 散热装置 (8) 上设置入口法兰 (7) ;
所述散热阀座(5)包括阀座衬套(14) 、 阀座外壳(15) 、 热管 (16) 、 阀座散热翅片 (17) , 其中阀座外壳(15)顶端设有与陶体(4)连接的连接机构, 连接机构上开有四个缺 口, 阀座衬套(14)设在阀座外壳(15) 内, 陶座衬套 (14) 顶部设有与阀体(4) 下端配合 的台肩, 阀座外壳(15) 底部开有与阀座衬套 (14) 匹配的阶梯孔, 阀座散热翅片 (17) 围 绕设置在阀座外壳(15) 外侧, 阀座衬套侧面外壁上开有多线螺纹凹槽, 多根热管 (16) 通 过多线螺纹凹槽缠绕固定在阀座衬套侧壁上, 阀座衬套 (14) 与阀座外壳(15) 之间的空隙 利用灌锡处理填充, 多根热管 (16) 的尾端分别通过阀座外壳 (15) 上的四个缺口固定在阀 座散热翅片 (17) 上;
所述阔芯 (12) 的锥形头部与散热陶座 (5) 的顶部台肩配合构成减压节流口; 所述涡轮散热装置(8) 包括风扇壳体(18)和涡轮(19) , 风扇壳体(18) 为中空柱状 结构, 两侧设有凸螺纹, 风扇壳体(18)外侧设有风扇叶片, 风扇壳体(18) 内部设有支架, 支架上设有涡轮(19) ; 风扇壳体(18)—侧的凸螺纹通过轴承内圈挡圈 (9)和轴承外圈挡 圈 (11)在阀体(4) 的管路上安装圆锥滚子轴承(10) , 另一侧的凸螺纹通过轴承内圈挡圈 (9) 在入口法兰 〔7) 上安装圆锥滚子轴承 (10) 。
2. 根据权利要求〗所述的自散热减压阀, 其特征在于: 所述阀芯(12)为碳钢材料热管 结构, 阀芯(12)尾部远离上阀盖(2) 的部分为六棱结构, 阀芯(12)表面喷涂有耐磨材料, 陶芯散热翅片 (13) 和所述的阀座散热翅片 (17) 为铜或铝制成的太阳花式散热翅片。
3. 根据权利要求〗所述的自散热减压阀, 其特征在于: 所述的上阀盖 (2) 中心开有螺 纹通孔与陶芯(12)外螺纹配合, 起到调节减压陶开度的作用, 所述的上陶盖(2)与导向阀 盖(3) 中间空腔填充密封填料, 顶部法兰盘通过螺栓与导向阀盖配合并将中间空腔密封填料 压紧。
4. 根据权利要求 1所述的自散热减压阀, 其特征在于: 所述的导向阀盖 (3) 中心开有 阶梯孔, 下部圆孔直径略大于阀芯 (12) 圆柱段外壁直径, 上部圆孔直径与上阀盖(2) 下部 外圆周面直径相对应, 外部加工有与阀体(4)上端阶梯孔配合的台肩, 台肩上部的法兰盘通 过双头螺栓固定在阀体 (4) 上, 且在法兰盘与阀体 (4) 配合处装有密封垫片。
5. 根据权利要求 1所述的自散热减压阀, 其特征在于: 所述的阀体 (4) 两端的开口为 阶梯孔, 阀体(4) 内腔为球形空腔, 液体管路入口处安装风扇壳体(18)处内壁侧开有凹槽, 轴承外圈挡圈(11 )通过螺栓与阀体(4)入口配合将圆锥滚子轴承(10)外圈固定在凹槽内。
6. 根据权利要求 1所述的一种自散热减压阀, 其特征在于: 所述阀体 (4) 下端为与阀 座衬套 (14) 上端的台肩相匹配的阶梯孔, 阀体(4) 下端与阀座衬套 (14) 三段之间设有密 封垫片, 阀座衬套 (M) 的底部端面与阀座外壳 (15) 配合处装有密封垫片。
7. 根据权利要求 1所述的自散热减压阀, 其特征在于: 所述阀座外壳(15) 的阶梯孔下 部圆孔直径与阀座衬套(14)底部圆锥孔大端直径对应, 上部圆孔直径略大于缠绕热管(16) 之后的阀座衬套 (14) 外壁直径, 顶部法兰盘开有可引出热管 (16) 的扇形凹槽, 所述热管
( 16) 共有四根。
8. 根据权利要求 1所述的自散热减压阀, 其特征在于: 所述的轴承内圈挡圈 (9) 分为 圆孔段和圆锥孔段, 圆孔段内壁设有管螺纹与风扇壳体 (18) 连接, 圆锥孔段外壁与入口法 兰 (7) 和阀体入口配合, 同时在配合处采用旋转密封。
9. 根据权利要求 1所述的自散热减压阀, 其特征在于: 所述的涡轮(19)前端设有减小 介质流动阻力的锥形整流罩结构, 中部开有键槽与键配合带动风扇壳体 (18 ) 转动, 尾部加 工有螺纹与螺帽配合保证涡轮 (19) 在轴向紧固, 涡轮 (19) 上的涡轮叶片倾角和风扇壳体 上叶片倾角须确保当液体从入口法兰(7)从左向右流动并驱动涡轮及风扇壳体转动, 此时风 扇壳体带动风扇产生与自散热减压阀内液体相同方向的气流。
10. 根据权利要求 1或 9所述的一种自散热减压阀, 其特征在于: 所述的导流罩(6)包 括包裹自散热减压阀主体结构的左右两半壳体结构, 左右两半壳体利用螺栓连接, 自散热减 压阀主体结构处入口管路的导流罩(6) 内径大于风扇壳体(18) 上的扇叶外径, 导流罩(6) 内部设有与减压阀主体配合的支撑架, 阀体入口处的导流罩(6)为减少风流体损耗的弧形结 构, 其中部包裹阀体 (4) 为半球形结构, 上下两端为缩颈结构。
PCT/CN2016/104506 2016-03-14 2017-01-10 千米深井提升机浮动式盘式制动器 WO2017157025A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610144214.5 2016-03-14
CN201610144214.5A CN105600697B (zh) 2016-03-14 2016-03-14 千米深井提升机浮动式盘式制动器

Publications (1)

Publication Number Publication Date
WO2017157025A1 true WO2017157025A1 (zh) 2017-09-21

Family

ID=55981138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/104506 WO2017157025A1 (zh) 2016-03-14 2017-01-10 千米深井提升机浮动式盘式制动器

Country Status (2)

Country Link
CN (1) CN105600697B (zh)
WO (1) WO2017157025A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105600697B (zh) * 2016-03-14 2017-11-10 中国矿业大学 千米深井提升机浮动式盘式制动器
CN105909702B (zh) * 2016-06-24 2019-06-25 徐州大恒测控技术有限公司 一种诊断制动故障和监测制动力的盘式制动器
CN110835065B (zh) * 2018-08-17 2022-02-01 奥的斯电梯公司 电梯制动装置以及电梯系统
CN109114139B (zh) * 2018-09-05 2024-02-02 宁波合力制动系统有限公司 气压盘式制动器
CN109083612A (zh) * 2018-10-23 2018-12-25 招商局重工(江苏)有限公司 一种防喷器液压锁紧装置及锁紧方法
CN110356992B (zh) * 2019-05-30 2021-01-05 武汉船用机械有限责任公司 绞车的盘式制动装置
CN111043191A (zh) * 2019-12-07 2020-04-21 徐州东兴能源有限公司 一种焦炭矿井提升机的制动装置
CN111412235B (zh) * 2020-03-18 2021-06-11 东风汽车集团有限公司 一种浮动式制动器车辆的摩擦片磨损监测系统及方法
CN112174010A (zh) * 2020-09-27 2021-01-05 浙江理工大学 具有制动性能检测功能的曳引式升降机制动器及升降机
CN112720298B (zh) * 2020-12-23 2022-09-13 扬州曙光光电自控有限责任公司 一种基于碟形弹簧的电动式夹持装置
CN112963475A (zh) * 2021-04-20 2021-06-15 徐州大恒测控技术有限公司 一种监测制动正压力的内置移动轴盘式制动器及其监测方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0857644A2 (fr) * 1997-02-11 1998-08-12 Formula di Frati Daniela Frein à disque perfectionné
CN101101028A (zh) * 2007-07-17 2008-01-09 平顶山煤业(集团)有限责任公司 制动状态下监测制动正压力的盘式制动器
CN101475131A (zh) * 2009-01-23 2009-07-08 中国矿业大学 一种提升机可靠性盘式制动器
CN201517573U (zh) * 2009-10-15 2010-06-30 焦作市制动器开发有限公司 单簧浮动常闭式制动器
CN201771997U (zh) * 2010-07-06 2011-03-23 孙孝奎 可自动回位的浮钳盘式汽车制动器
US20130256077A1 (en) * 2012-03-28 2013-10-03 Shantaram Ashok More Floating housing force transmitting assembly
CN105152064A (zh) * 2015-09-15 2015-12-16 中国矿业大学 一种磁场调控摩擦的磁摩耦合提升机盘式制动器
CN105600697A (zh) * 2016-03-14 2016-05-25 中国矿业大学 千米深井提升机浮动式盘式制动器
CN205419644U (zh) * 2016-03-14 2016-08-03 中国矿业大学 千米深井提升机浮动式盘式制动器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CS246837B1 (cs) * 1984-07-31 1986-11-13 Josef Blazek Ovládací jednotka kotoučové brzdy
CN100554129C (zh) * 2006-01-20 2009-10-28 苏州通润驱动设备股份有限公司 自浮式电磁制动器
CN101423183B (zh) * 2008-11-19 2010-06-30 苏州通润驱动设备股份有限公司 改进结构的碟式制动器
CN201347340Y (zh) * 2009-01-23 2009-11-18 中国矿业大学 一种提升机可靠性盘式制动器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0857644A2 (fr) * 1997-02-11 1998-08-12 Formula di Frati Daniela Frein à disque perfectionné
CN101101028A (zh) * 2007-07-17 2008-01-09 平顶山煤业(集团)有限责任公司 制动状态下监测制动正压力的盘式制动器
CN101475131A (zh) * 2009-01-23 2009-07-08 中国矿业大学 一种提升机可靠性盘式制动器
CN201517573U (zh) * 2009-10-15 2010-06-30 焦作市制动器开发有限公司 单簧浮动常闭式制动器
CN201771997U (zh) * 2010-07-06 2011-03-23 孙孝奎 可自动回位的浮钳盘式汽车制动器
US20130256077A1 (en) * 2012-03-28 2013-10-03 Shantaram Ashok More Floating housing force transmitting assembly
CN105152064A (zh) * 2015-09-15 2015-12-16 中国矿业大学 一种磁场调控摩擦的磁摩耦合提升机盘式制动器
CN105600697A (zh) * 2016-03-14 2016-05-25 中国矿业大学 千米深井提升机浮动式盘式制动器
CN205419644U (zh) * 2016-03-14 2016-08-03 中国矿业大学 千米深井提升机浮动式盘式制动器

Also Published As

Publication number Publication date
CN105600697B (zh) 2017-11-10
CN105600697A (zh) 2016-05-25

Similar Documents

Publication Publication Date Title
WO2017157025A1 (zh) 千米深井提升机浮动式盘式制动器
US10989019B2 (en) Fully-electrically driven downhole safety valve
WO2018068349A1 (zh) 一种自散热减压阀
CN107859699B (zh) 制动器
US10371282B2 (en) Shaft blowout prevention device
CN110657308A (zh) 组合式多道端面密封旋转补偿器
CN211117922U (zh) 伸缩法兰软密封闸阀
CN104295762B (zh) 一种低扭矩强制密封式固定球球阀
CN109848347B (zh) 一种数控电动螺旋压力机
CN209830158U (zh) 一种数控电动螺旋压力机
CN114635973B (zh) 主蒸汽高温高压可更换阀座截止阀
CN103470790A (zh) 三偏心金属密封蝶阀
CN104633142A (zh) 四偏心双向密封蝶阀
CN102966749A (zh) 伺服差压式自锁闸阀
WO2019047916A1 (zh) 密封性优越式手动高温高压疏水球阀
RU180680U1 (ru) Превентор плашечный сдвоенный кабельный с гидравлическим и ручным управлением
US9850730B2 (en) Ram blowout preventer piston rod subassembly
CN211549787U (zh) 一种汽轮机独立控制高压主汽调节阀
CN211039752U (zh) 一种可实现在线快速拆卸检修的上装式固定球阀
CN203585359U (zh) 三偏心金属密封蝶阀
CN104005724A (zh) 井口加压钻塞装置
CN207195819U (zh) 双阀盘雨淋报警阀
CN111022130A (zh) 一种汽轮机独立控制高压主汽调节阀
CN108061114B (zh) 一种用于风力发电机的刹车制动装置
CN216200649U (zh) 一种伸缩式矢量密封也阀结构

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894184

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16894184

Country of ref document: EP

Kind code of ref document: A1