WO2017156937A1 - 三维显示装置 - Google Patents

三维显示装置 Download PDF

Info

Publication number
WO2017156937A1
WO2017156937A1 PCT/CN2016/089599 CN2016089599W WO2017156937A1 WO 2017156937 A1 WO2017156937 A1 WO 2017156937A1 CN 2016089599 W CN2016089599 W CN 2016089599W WO 2017156937 A1 WO2017156937 A1 WO 2017156937A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional display
grating
display panel
slit
units
Prior art date
Application number
PCT/CN2016/089599
Other languages
English (en)
French (fr)
Inventor
魏伟
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/522,757 priority Critical patent/US10349043B2/en
Publication of WO2017156937A1 publication Critical patent/WO2017156937A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/317Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using slanted parallax optics

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a three-dimensional display device.
  • the grating 3D display does not require viewers to view 3D images with any visual aid such as glasses or helmets.
  • the grating 3D display has attracted much attention due to its advantages such as simple structure, low cost, and good performance.
  • the grating 3D display can be divided into a slit grating 3D display and a cylindrical lens grating 3D display.
  • the slit grating 3D display alternately displays the left eye image and the right eye image (images taken from two different viewing angles of the same object) along the row direction of the display panel, and is arranged in parallel on one side of the display panel. Seam grating.
  • the slit grating includes a plurality of grating sheets arranged at intervals in the row direction of the display panel, and slits formed between adjacent two grating sheets extend in the column direction of the display panel.
  • the occlusion effect of the lenticular sheet is used to make the left eye and the right eye respectively see the left eye image and the right eye image from the slit, and the left eye image and the right eye image become stereoscopic image pairs with horizontal parallax, through the fusion of the brain, Finally, a stereoscopic image with a sense of depth is formed.
  • the display panel is provided with a black matrix, and the pixels are arranged in an array in the black matrix. Since the spatial frequencies of the black matrix and the slit grating are close, the light emitted by the pixels passes through the slit grating and generates moiré, which seriously affects the viewing time. Visual effect.
  • Fig. 1 schematically shows the principle of generating moiré in a prior art 3D display device.
  • the pixels are arranged in an array in the black matrix 200.
  • the slit grating 300 includes a plurality of grating pieces arranged at intervals. Since the spatial frequencies of the black matrix 200 and the slit grating 300 are close, the light emitted by the pixels passes through the slit grating 300. Moiré 400 is produced, which seriously affects the visual effect when viewing.
  • embodiments of the present invention provide a three-dimensional display device.
  • the three-dimensional display device includes a two-dimensional display panel, and a slit grating disposed on one side of the two-dimensional display panel;
  • the two-dimensional display panel includes a plurality of first display units displaying left eye images and a plurality of second display units displaying right eye images, the first display unit and the second display unit being in the two-dimensional display
  • the row direction and the column direction of the panel are alternately set;
  • the slit grating includes a plurality of grating units arranged in an array, and each row forms a slit between two adjacent grating units in the grating unit arranged along the row direction of the two-dimensional display panel.
  • the slit and the grating unit are alternately arranged in a column direction of the two-dimensional display panel, and the slit grating is configured to display the left eye image and the right eye image on a left eye and a right side of a person, respectively eye.
  • the center line of the most intermediate slit in one row of said grating elements is in the same line as the center line of the most intermediate grating element in the other row of said grating elements On the line.
  • the two-dimensional display panel further includes a black matrix for spacing the first display unit and the second display unit, the black matrix extending along a column direction of the two-dimensional display panel
  • the center line is on the same line as the center line of the most middle slit of the row of the grating elements in any two adjacent rows of the grating elements.
  • each of the first display units includes one or more pixels
  • each of the second display units includes one or more pixels
  • the same row is arranged along the row direction of the two-dimensional display panel.
  • a display unit and a second display unit include the same number of pixels.
  • each of the pixels includes three sub-pixels of different colors arranged along a column direction of the two-dimensional display panel, and the size of the sub-pixels along a column direction of the two-dimensional display panel is smaller than The size of the two-dimensional display panel in the row direction.
  • the ratio of the size of the sub-pixels along the column direction of the two-dimensional display panel to the size along the row direction of the two-dimensional display panel is 1:3.
  • the inclination angle ⁇ of the equivalent oblique slit of the array of slits in the adjacent two rows of said grating elements satisfies one of the following conditions:
  • the inclination angle ⁇ is defined as: a sum of lengths of the grating units in adjacent rows in the column direction of the two-dimensional display panel is a long side, and adjacent to the grating unit in a row The sum of the pitch of the two grating elements and the width of one of the grating elements is a rectangle of a short side, and the angle between the diagonal of the rectangle and a line extending along the row direction of the two-dimensional display panel.
  • each of the first display unit and each of the second display units comprises five arranged along the column direction of the two-dimensional display panel
  • Each of the first display units and each of the second display units in the other row includes four pixels arranged in the column direction of the two-dimensional display panel.
  • each of the first display unit and each of the second display units in each row comprises five pixels arranged in a column direction of the two-dimensional display panel.
  • each of the first display unit and each of the second display units in each row comprises four pixels arranged in a column direction of the two-dimensional display panel.
  • the slit grating is disposed on a light exiting side of the two-dimensional display panel, and a distance h between the slit grating and the two-dimensional display panel satisfies the following equation:
  • A is a dimension of the sub-pixel along a row direction of the two-dimensional display panel
  • s is a distance between the slit grating and a human eye observation point
  • L is a pitch of a human eye.
  • the spacing B of two adjacent grating elements in the same row of grating elements satisfies the following equation:
  • A is the dimension of the sub-pixel along the row direction of the two-dimensional display panel
  • s is the distance between the slit grating and the human eye observation point
  • h is the distance between the slit grating and the two-dimensional display panel.
  • the slit grating is disposed on a light incident side of the two-dimensional display panel, and a distance h between the slit grating and the two-dimensional display panel satisfies the following relationship:
  • A is a dimension of the sub-pixel along a row direction of the two-dimensional display panel
  • s is a distance between the slit grating and a human eye observation point
  • L is a pitch of a human eye.
  • the spacing B of two adjacent grating elements in the same row of grating elements satisfies the following equation:
  • A is the dimension of the sub-pixel along the row direction of the two-dimensional display panel
  • s is the distance between the slit grating and the human eye observation point
  • h is the distance between the slit grating and the two-dimensional display panel.
  • a slit is formed between two adjacent grating elements in the grating unit arranged along the row direction of the two-dimensional display panel, and the slit and the grating unit are alternately arranged in the column direction of the two-dimensional display panel due to the black matrix and
  • the moiré generated by the spatial frequency of the slit grating is arranged along the column direction of the two-dimensional display panel, and the influence of the moiré can be reduced when the size of the spaced moiré is smaller than the size recognizable by the human eye.
  • FIG. 1 is a schematic structural view of a moiré generated according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a three-dimensional display device according to an embodiment of the present invention.
  • 3a and 3b are schematic structural views of a two-dimensional display panel and a slit grating of the three-dimensional display device shown in FIG. 2;
  • 4a-4d are schematic structural diagrams showing the relationship between a pixel and a grating unit according to an embodiment of the present invention.
  • FIG. 5 is a structural diagram of a vertical screen display provided by an embodiment of the present invention in both vertical and horizontal directions. intention;
  • FIG. 6 is a schematic structural diagram of a moiré generation situation according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a relationship between a slit grating and a two-dimensional display panel according to an embodiment of the present invention.
  • Embodiments of the present invention provide a three-dimensional display device.
  • the three-dimensional display device includes a two-dimensional display panel 10 and a slit grating 20 disposed on one side of the two-dimensional display panel 10.
  • the two-dimensional display panel 10 includes a plurality of first display units 11 that display left eye images and a plurality of second display units 12 that display right eye images, and the first display unit 11 and the second display unit 12 are on the two-dimensional display panel 10 . Both the row direction and the column direction are alternately set. In an exemplary embodiment, the row direction is perpendicular to the column direction.
  • the slit grating 20 includes a plurality of grating units 21 arranged in an array, and each of the two grating units 21 arranged in the row direction of the two-dimensional display panel 10 forms a slit 22 between the adjacent two grating units 21, and the slit 22 is formed. And the grating unit 21 are alternately arranged in the column direction of the two-dimensional display panel 10, and the slit grating 20 is for displaying the left eye image and the right eye image on the left and right eyes of the person, respectively.
  • slits are formed between adjacent two grating units in the grating unit arranged along the row direction of the two-dimensional display panel, and the slit and the grating unit are alternately arranged in the column direction of the two-dimensional display panel. Since the moiré lines of the black matrix and the slit grating are close to each other, the moiré lines are arranged along the column direction of the two-dimensional display panel, and the moiré lines arranged at intervals are smaller than the size recognizable by the human eye to reduce the moiré. influences.
  • the two-dimensional display panel 10 is as shown in Fig. 3a, and the slit grating 20 disposed on the side of the two-dimensional display panel 10 is as shown in Fig. 3b.
  • the two-dimensional display panel 10 includes a plurality of first display units 11 that display left eye images and a plurality of second display units 12 that display right eye images.
  • the first display unit 11 and the second display unit 12 are in two dimensions.
  • the display panel 10 is alternately arranged in the row direction and the column direction.
  • the slit grating 20 includes a plurality of grating units 21 arranged in an array, and a slit 22 is formed between adjacent two grating units 21 in each of the grating units 21 arranged in the row direction of the two-dimensional display panel 10.
  • the slit 22 and the grating unit 21 are alternately arranged in the column direction of the two-dimensional display panel 10, and the slit grating 20 is for displaying the left eye image and the right eye image on the left and right eyes of the person, respectively.
  • the slits and the grating elements are alternately arranged in the column direction of the two-dimensional display panel, so that the moiré lines generated by the spatial frequencies of the black matrix and the slit grating are arranged along the column direction of the two-dimensional display panel.
  • the effect of the moiré can be reduced when the size of the spaced moiré is smaller than the size that can be recognized by the human eye.
  • the slit grating is still placed vertically, which ensures that the left eye image and the right eye image are respectively located on both sides of the slit, and the left eye image and the right eye image respectively enter the left and right eyes of the person through the opposite slits, and do not exist. Due to the oblique placement of the slit grating, the left eye image causes the right eye and part of the right eye image to enter the left eye and the crosstalk between the pixels.
  • the center line of the most intermediate slit 22 in one row of grating elements 21 may be combined with another line.
  • the center line (indicated by a broken line in the figure) of the most intermediate grating unit 21 in the grating unit 21 is located on the same straight line.
  • the most middle grating unit and the slit of the slit grating are aligned, so that the viewing effect of the human eye when it is located in the middle of the three-dimensional display device is optimal, which is in accordance with the viewing habit of the human eye.
  • the two-dimensional display panel 10 further includes a black matrix 13 for separating the first display unit 11 and the second display unit 12, the black matrix 13 along the two-dimensional display panel
  • the center line extending in the column direction may be in the same line as the center line (Fig. 3b) of the most intermediate slit 22 in one row of the grating elements 21 of any two adjacent rows of grating units 21. on.
  • the black matrix 13 includes a plurality of black stripes extending in the row direction of the two-dimensional display panel 10 and a plurality of black stripes extending along the column direction of the two-dimensional display panel 10 along the rows of the two-dimensional display panel 10 .
  • the black stripe extending in the direction and the black stripe extending in the column direction of the two-dimensional display panel 10 are arranged to form a grid arranged in an array, and the sub-pixels constituting the first display unit 11 or the second display unit 12 are provided in the grid. Subpixels (detailed description of subpixels will be described below in connection with Figures 4a-4d). In FIG.
  • the center line of the black matrix 13 extending in the column direction of the two-dimensional display panel refers to a center line of a plurality of black stripes extending in the middle of the black stripe extending in the column direction of the two-dimensional display panel 10.
  • the isolation from the black matrix can make the slit from the middlemost portion transparent.
  • the left eye image just enters the person's left eye, and the right eye image just enters the person's right eye, and the viewing effect is optimal.
  • a portion of the black matrix is provided between the left eye image and the right eye image that are exposed by all the slits.
  • the eye, or part of the right eye image enters the left eye of the person, and there is crosstalk between the pixels, so usually the width of the grating unit and the slit are adjusted correspondingly if the sum of the widths of one grating unit and one slit is constant (eg Increasing the width of the grating unit and reducing the width of the slit, or reducing the width of the grating unit and increasing the width of the slit), so that the line of sight when the human eye is in the middle of the three-dimensional display device just passes through the narrow
  • the portion of the seam that reaches the black matrix that is, the middle point of the eyes of the person, the center line of the slit, and the center line of the portion of the corresponding black matrix are located on the same plane.
  • each of the first display units 11 may include one or more pixels 100
  • each of the second display units 12 may include one or more pixels 100, and the same line is displayed in two dimensions.
  • the pixels included in the first display unit 11 and the second display unit 12 in the row direction of the panel 10 The number of 100 is the same.
  • first display unit and the second display unit are not limited, and the display requirements of different sizes can be satisfied.
  • the first display unit and the second display unit of the same row comprise the same number of pixels, and the left eye image displayed by the first display unit through the same slot and the right eye image displayed by the second display unit are symmetric, and the viewing effect is achieved. optimal.
  • each pixel 100 includes three different color sub-pixels 100a arranged along the column direction of the two-dimensional display panel, and the sub-pixels 100a are along the column direction of the two-dimensional display panel 10.
  • the size may be smaller than the size along the row direction of the two-dimensional display panel 10.
  • the sub-pixel 100a is generally rectangular, and the long sides of the rectangle extend in the row direction of the two-dimensional display panel 10, and the short sides of the rectangle extend in the column direction of the two-dimensional display panel 10.
  • a three-dimensional display device is generally used as a vertical display such as a mobile phone or a tablet computer, as shown in the left diagram of FIG.
  • the vertical display rotator can be rotated 90° for video playback, as shown on the right side of Figure 5, to avoid picture distortion. Improve the display.
  • the size of the sub-pixels 100a along the column direction of the two-dimensional display panel 10 may be smaller than the size along the row direction of the two-dimensional display panel 10.
  • the ratio of the size of the sub-pixel 100a along the column direction of the two-dimensional display panel 10 to the size along the row direction of the two-dimensional display panel 10 may be 1:3 to achieve a better display effect.
  • the moiré is because the light passing through the black matrix and the vibration frequency of the light passing through the grating unit are close to each other, and interference occurs to form a light-dark phase fringe.
  • the black matrix 13 intersecting vertically and horizontally can form a plurality of rectangular frames a arranged in a matrix form in a microscopic state, and the black matrix 13 can have lateral, vertical, and diagonal directions in a rectangular frame a as viewed from a macroscopic angle. Dark state in three directions.
  • the staggered slits 22 can basically form a plurality of parallel oblique lines, and thus will be inclined in FIG. Line b is equivalent to the staggered slit 22 for the following calculation.
  • P is the width of the smallest moiré visible to the human eye
  • A is the width of the pixel
  • B is the spacing of the grating elements
  • n is a positive integer
  • P is the width of the smallest moiré visible to the human eye
  • A is the width of the pixel
  • B is the spacing of the grating elements
  • n is a positive integer
  • P is the width of the smallest moiré that can be resolved by the human eye
  • A is the width of the pixel
  • B is the spacing of the grating elements
  • n is a positive integer
  • the range of ⁇ 1 , ⁇ 2 , ⁇ 3 , ..., ⁇ 100 is calculated, and then their intersection is taken as the range of the angle ⁇ .
  • Equations (1)-(3) are known to those skilled in the art, and the derivation process and principle thereof will not be described in detail herein.
  • the inclination angle ⁇ of the slit in the adjacent two rows of grating elements is obtained as follows (4):
  • the included angle ⁇ is defined as follows: the sum of the lengths of the two rows of raster elements 21 adjacent in the column direction of the two-dimensional display panel 10 is a long side, and one row of raster units In the rectangle c in which the sum of the pitches of the adjacent two grating units 21 and the width of one grating unit 21 is the short side, the diagonal d of the rectangle and the straight line b extending in the row direction of the two-dimensional display panel The angle ⁇ between them is shown in Figures 4a-4d.
  • any two adjacent rows of the first display unit 11 and the second display unit 12 one of each of the first display units 11 and each of the rows
  • the second display units 12 may each include five pixels arranged in the column direction of the two-dimensional display panel 10, and each of the first display units 11 and each of the second display units 12 may include a two-dimensional display panel Four pixels arranged in the column direction of 10.
  • each of the first display unit 11 and each of the second display units 12 in each row may include five arranged in the column direction of the two-dimensional display panel 10. Pixels.
  • each of the first display unit 11 and each of the second display units 12 in each row may include four arranged in the column direction of the two-dimensional display panel 10. Pixels.
  • the width of the pixel can be determined, and the pitch of the grating unit can be calculated according to the width of the pixel as follows.
  • the slit grating 20 is disposed on the light exiting side of the two-dimensional display panel 10, and the distance h between the slit grating 20 and the two-dimensional display panel 10 satisfies the following equation (5) :
  • A is the dimension of the sub-pixel 100a along the row direction of the two-dimensional display panel 10
  • s is the distance between the slit grating 20 and the human eye observation point
  • L is the pitch of the human eyes.
  • the pitch B of the adjacent two grating units 21 in the same row of grating units 21 is calculated by the following relationship (6). :
  • A is the dimension of the sub-pixel 100a along the row direction of the two-dimensional display panel 10
  • s is the distance between the slit grating 20 and the human eye observation point
  • h is between the slit grating 20 and the two-dimensional display panel 10. distance.
  • the slit grating 20 is disposed on the light incident side of the two-dimensional display panel 10, and the distance h between the slit grating 20 and the two-dimensional display panel 10 satisfies the following relationship ( 7):
  • A is the dimension of the sub-pixel 100a along the row direction of the two-dimensional display panel 10
  • s is the distance between the slit grating 20 and the human eye observation point
  • L is the pitch of the human eyes.
  • the pitch B of the adjacent two grating units 21 in the same row of grating units 21 is calculated by the following relationship (8). :
  • A is the dimension of the sub-pixel 100a along the row direction of the two-dimensional display panel 10
  • s is the distance between the slit grating 20 and the human eye observation point
  • h is between the slit grating 20 and the two-dimensional display panel 10. distance.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种三维显示装置,包括二维显示面板(10)、以及设置在二维显示面板(10)一侧的狭缝光栅(20);二维显示面板(10)包括多个显示左眼图像的第一显示单元(11)和多个显示右眼图像的第二显示单元(12),第一显示单元(11)和第二显示单元(12)在二维显示面板(10)的行方向和列方向上均交替设置;狭缝光栅(20)包括阵列排布的多个光栅单元(21),每行沿二维显示面板(10)的行方向排列的光栅单元(21)中相邻的两个光栅单元(21)之间形成狭缝(22),狭缝(22)和光栅单元(21)在二维显示面板(10)的列方向上交替设置,狭缝光栅(20)用于将左眼图像和右眼图像分别显示在人的左眼和右眼。

Description

三维显示装置 技术领域
本发明涉及显示技术领域,特别涉及一种三维显示装置。
背景技术
裸眼三维(Three Dimensions,简称3D)显示器不需要观看者佩戴眼镜或头盔等任何助视设备就能观看到3D影像。裸眼3D显示器中,光栅3D显示器由于结构简单、造价低廉、性能良好等优点而备受关注。根据采用的光栅不同,光栅3D显示器可分为狭缝光栅3D显示器和柱透镜光栅3D显示器两种。
狭缝光栅3D显示器将显示面板的像素沿显示面板的行方向交替显示左眼图像和右眼图像(对同一物体从两个不同的视角拍摄的图像),并在显示面板的一侧面平行设置狭缝光栅。狭缝光栅包括沿显示面板的行方向间隔排列的多个光栅片,相邻两个光栅片之间形成的狭缝沿显示面板的列方向延伸。利用光栅片的遮挡作用使左眼和右眼从狭缝中分别看到左眼图像和右眼图像,左眼图像和右眼图像成了具有水平视差的立体图像对,通过大脑的融合作用,最终形成一幅具有深度感的立体图像。
在实现本发明的过程中,发明人发现现有技术至少存在以下问题:
显示面板上设有黑矩阵,像素以阵列形式设置在黑矩阵中,由于黑矩阵和狭缝光栅的空间频率接近,因此像素发出的光通过狭缝光栅后会产生摩尔纹,严重影响观看时的视觉效果。
图1示意性地示出了现有技术的3D显示装置中产生摩尔纹的原理。像素以阵列形式设置在黑矩阵200中,狭缝光栅300包括间隔排列的多个光栅片,由于黑矩阵200和狭缝光栅300的空间频率接近,因此像素发出的光通过狭缝光栅300后会产生摩尔纹400,严重影响观看时的视觉效果。
发明内容
为了解决现有技术中的技术问题中的至少一部分,本发明实施例提供了一种三维显示装置。
根据示例性的实施例,所述三维显示装置包括二维显示面板、以及设置在所述二维显示面板一侧的狭缝光栅;
所述二维显示面板包括多个显示左眼图像的第一显示单元和多个显示右眼图像的第二显示单元,所述第一显示单元和所述第二显示单元在所述二维显示面板的行方向和列方向上均交替设置;
所述狭缝光栅包括阵列排布的多个光栅单元,每行沿所述二维显示面板的行方向排列的所述光栅单元中相邻的两个所述光栅单元之间形成狭缝,所述狭缝和所述光栅单元在所述二维显示面板的列方向上交替设置,所述狭缝光栅用于将所述左眼图像和所述右眼图像分别显示在人的左眼和右眼。
根据进一步的实施例,任意相邻的两行所述光栅单元中,一行所述光栅单元中最中间的狭缝的中心线与另一行所述光栅单元中最中间的光栅单元的中心线位于同一直线上。
根据进一步的实施例,所述二维显示面板还包括用于隔开所述第一显示单元和所述第二显示单元的黑矩阵,所述黑矩阵沿所述二维显示面板的列方向延伸的中心线,与任意相邻的两行所述光栅单元中的一行所述光栅单元中最中间的狭缝的中心线位于同一直线上。
具体地,每个所述第一显示单元均包括一个或多个像素,每个所述第二显示单元均包括一个或多个像素,同一行沿所述二维显示面板的行方向排列的第一显示单元和第二显示单元包括的像素数量相同。
根据进一步的实施例,每个所述像素包括沿所述二维显示面板的列方向排列的三种不同颜色的亚像素,所述亚像素沿所述二维显示面板的列方向的尺寸小于沿所述二维显示面板的行方向的尺寸。
根据进一步的实施例,所述亚像素沿所述二维显示面板的列方向的尺寸与沿所述二维显示面板的行方向的尺寸之比为1:3。
根据进一步的实施例,相邻的两行所述光栅单元中的狭缝组成的阵列的等效倾斜狭缝的倾斜角度θ满足如下条件之一:
15.9°<θ<62.5°以及
73.7°<θ<82.9°,
其中,所述倾斜角度θ为定义为:在以所述二维显示面板的列方向上的相邻的两行所述光栅单元的长度之和为长边、以一行所述光栅单元中相邻的两个所述光栅单元的间距与一个光栅单元的宽度之和为短边的矩形中,该矩形的对角线与沿所述二维显示面板的行方向延伸的直线之间的夹角。
根据进一步的实施例,任意相邻的两行所述光栅单元中,其中一行中的每个第一显示单元和每个第二显示单元均包括沿所述二维显示面板的列方向排列的五个像素,另一行中的每个第一显示单元和每个第二显示单元均包括沿所述二维显示面板的列方向排列的四个像素。
根据进一步的实施例,每行中的每个第一显示单元和每个第二显示单元均包括沿所述二维显示面板的列方向排列的五个像素。
根据进一步的实施例,每行中的每个第一显示单元和每个第二显示单元均包括沿所述二维显示面板的列方向排列的四个像素。
根据进一步的实施例,所述狭缝光栅设置在所述二维显示面板的出光侧,所述狭缝光栅与所述二维显示面板之间的距离h满足如下方程:
h=A*s/L;
其中,A为所述亚像素沿所述二维显示面板的行方向的尺寸,s为所述狭缝光栅与人眼观测点之间的距离,L为人双眼的间距。
根据进一步的实施例,同一行光栅单元中相邻的两个光栅单元的间距B满足如下方程:
B=2*A*s/(s+h)
其中,A为亚像素沿二维显示面板的行方向的尺寸,s为狭缝光栅与人眼观测点之间的距离,h为狭缝光栅与二维显示面板之间的距离。
根据进一步的实施例,所述狭缝光栅设置在所述二维显示面板的入光侧,所述狭缝光栅与所述二维显示面板之间的距离h满足如下关系:
h=A*s/L-s;
其中,A为所述亚像素沿所述二维显示面板的行方向的尺寸,s为所述狭缝光栅与人眼观测点之间的距离,L为人双眼的间距。
根据进一步的实施例,同一行光栅单元中相邻的两个光栅单元的间距B满足如下方程:
B=2*A*s/(s-h)
其中,A为亚像素沿二维显示面板的行方向的尺寸,s为狭缝光栅与人眼观测点之间的距离,h为狭缝光栅与二维显示面板之间的距离。
本发明实施例提供的技术方案带来的有益效果是:
通过每行沿二维显示面板的行方向排列的光栅单元中相邻的两个光栅单元之间形成狭缝,狭缝和光栅单元在二维显示面板的列方向上交替设置,由于黑矩阵和狭缝光栅的空间频率接近而产生的摩尔纹会沿二维显示面板的列方向间隔排列,间隔排列的摩尔纹的尺寸小于人眼所能识别的尺寸时即可减少摩尔纹的影响。
附图说明
本发明的上述以其他特征将通过参照附图对示例性实施例进行详细的描述而变得更加显而易见,在这些附图中:
图1是本发明实施例提供的产生摩尔纹的结构示意图;
图2是本发明实施例提供的一种三维显示装置的结构示意图;
图3a和图3b分别是图2所示三维显示装置的二维显示面板和狭缝光栅的结构示意图;
图4a-图4d是本发明实施例提供的像素和光栅单元之间关系的结构示意图;
图5是本发明实施例提供的竖屏显示器在竖用和横用两种情况下的结构示 意图;
图6是本发明实施例提供的摩尔纹产生情况的结构示意图;
图7a和图7b是本发明实施例提供的狭缝光栅和二维显示面板设置关系的结构示意图。
具体实施方式
下面将结合附图详细地描述本发明的示例性实施例。附图中的类似的附图标记指代类似的特征。本发明也可以其他不同形式实现,因此本文阐述的实施例不应当被解释为本发明的限制。提供这些实施例是为了使本领域技术人员能够充分和完全的理解本发明的构思。
本发明实施例提供了一种三维显示装置,参见图2,该三维显示装置包括二维显示面板10、以及设置在二维显示面板10一侧的狭缝光栅20。
二维显示面板10包括多个显示左眼图像的第一显示单元11和多个显示右眼图像的第二显示单元12,第一显示单元11和第二显示单元12在二维显示面板10的行方向和列方向上均交替设置。在示例性的实施例中,所述行方向与所述列方向垂直。
狭缝光栅20包括阵列排布的多个光栅单元21,每行沿二维显示面板10的行方向排列的光栅单元21中相邻的两个光栅单元21之间形成狭缝22,狭缝22和光栅单元21在二维显示面板10的列方向上交替设置,狭缝光栅20用于将左眼图像和右眼图像分别显示在人的左眼和右眼。
本发明实施例通过每行沿二维显示面板的行方向排列的光栅单元中相邻的两个光栅单元之间形成狭缝,狭缝和光栅单元在二维显示面板的列方向上交替设置,由于黑矩阵和狭缝光栅的空间频率接近而产生的摩尔纹会沿二维显示面板的列方向间隔排列,间隔排列的摩尔纹的尺寸小于人眼所能识别的尺寸时即可减少摩尔纹的影响。
在上述实施例中,二维显示面板10如图3a所示,设置在二维显示面板10一侧的狭缝光栅20如图3b所示。
参见图3a,二维显示面板10包括多个显示左眼图像的第一显示单元11和多个显示右眼图像的第二显示单元12,第一显示单元11和第二显示单元12在二维显示面板10的行方向和列方向上均交替设置。
参见图3b,狭缝光栅20包括阵列排布的多个光栅单元21,每行沿二维显示面板10的行方向排列的光栅单元21中相邻的两个光栅单元21之间形成狭缝22,狭缝22和光栅单元21在二维显示面板10的列方向上交替设置,狭缝光栅20用于将左眼图像和右眼图像分别显示在人的左眼和右眼。
本发明实施例通过将狭缝和光栅单元在二维显示面板的列方向上交替设置,使黑矩阵和狭缝光栅的空间频率接近而产生的摩尔纹沿二维显示面板的列方向间隔排列,间隔排列的摩尔纹的尺寸小于人眼所能识别的尺寸时即可减少摩尔纹的影响。而且狭缝光栅依然采用垂直放置,可以确保左眼图像和右眼图像分别位于狭缝两侧,左眼图像和右眼图像透过相对的狭缝分别进入人的左眼和右眼,不存在由于狭缝光栅倾斜放置而导致左眼图像进行右眼、部分右眼图像进入左眼、像素之间串扰的问题。
在示意性的实施例中,如图3b所示,任意相邻的两行光栅单元21中,一行光栅单元21中最中间的狭缝22的中心线(图中用虚线表示)可以与另一行光栅单元21中最中间的光栅单元21的中心线(图中用虚线表示)位于同一直线上。
可以理解地,将狭缝光栅的最中间的光栅单元和狭缝对齐,使人眼位于正对三维显示装置最中间的区域时的观看效果达到最佳,符合人眼的观看习惯。
在示例性的实施例中,如图3a所示,二维显示面板10还包括用于隔开第一显示单元11和第二显示单元12的黑矩阵13,黑矩阵13沿二维显示面板的列方向延伸的中心线(图3a中用虚线表示),可以与任意相邻的两行光栅单元21中的一行光栅单元21中最中间的狭缝22的中心线(图3b)位于同一直线 上。
在具体实现中,黑矩阵13包括多条沿二维显示面板10的行方向延伸的黑色条纹、以及多条沿二维显示面板10的列方向延伸的黑色条纹,沿二维显示面板10的行方向延伸的黑色条纹与沿二维显示面板10的列方向延伸的黑色条纹交叉设置形成呈阵列排列的网格,网格中设有组成第一显示单元11的亚像素或组成第二显示单元12的亚像素(关于亚像素的详细说明将在下文中结合图4a-图4d加以描述)。在图3a中,交替设置的第一显示单元11和第二显示单元12之间的黑色条纹,将第一显示单元11和第二显示单元12隔开。黑矩阵13沿二维显示面板的列方向延伸的中心线,是指多条沿二维显示面板10的列方向延伸的黑色条纹最中间的黑色条纹的中心线。
可以理解地,将黑矩阵最中间的部分和最中间的狭缝对齐,使人眼位于正对三维显示装置最中间的区域时,通过黑矩阵的隔离作用,可以使从最中间的狭缝透出的左眼图像刚好全部进入人的左眼,右眼图像刚好全部进入人的右眼,观看效果达到最佳。
在实际应用中,所有狭缝透出的左眼图像和右眼图像之间均设有黑矩阵的部分。当人眼位于正对三维显示装置最中间的区域时,若黑矩阵非最中间的部分的中心线与对应的狭缝的中心线位于同一直线上,则会造成部分左眼图像进入人的右眼,或者部分右眼图像进入人的左眼,像素之间存在串扰,因此通常在一个光栅单元和一个狭缝的宽度之和不变的情况下,相应调整光栅单元和狭缝的宽度(如增大光栅单元的宽度并减小狭缝的宽度,或者减小光栅单元的宽度并增大狭缝的宽度),使人眼位于正对三维显示装置最中间的区域时的视线刚好穿过狭缝到达黑矩阵的部分,即人双眼的中间点、狭缝的中心线、对应的黑矩阵的部分的中心线位于同一平面上。
具体地,参见图4a-图4d,每个第一显示单元11均可以包括一个或多个像素100,每个第二显示单元12均可以包括一个或多个像素100,同一行沿二维显示面板10的行方向排列的第一显示单元11和第二显示单元12包括的像素 100数量相同。
可以理解地,不限定第一显示单元和第二显示单元包括的像素数量,可以满足不同尺寸的显示要求。同一行的第一显示单元和第二显示单元包括的像素数量相同,透过同一狭缝的第一显示单元显示的左眼图像和第二显示单元显示的右眼图像是对称的,观看效果达到最佳。
根据示例性的实施例,参见图4a-图4d,每个像素100包括沿二维显示面板的列方向排列的三种不同颜色的亚像素100a,亚像素100a沿二维显示面板10的列方向的尺寸可以小于沿二维显示面板10的行方向的尺寸。
具体地,亚像素100a通常为矩形,矩形的长边沿二维显示面板10的行方向延伸,矩形的短边沿二维显示面板10的列方向延伸。
在实际应用中,三维显示装置一般被用作手机、平板电脑等竖屏显示器,如图5中的左图所示。在观看视频(或图片等)时,为了使视频的尺寸与显示器的尺寸匹配,可以将竖屏显示器旋转器旋转90°后用于视频的播放,如图5右边所示,以避免画面失真,提高显示效果。
对于这种二维显示面板,亚像素100a沿二维显示面板10的列方向的尺寸可以小于沿二维显示面板10的行方向的尺寸。
在示例性的实施例中,亚像素100a沿二维显示面板10的列方向的尺寸与沿二维显示面板10的行方向的尺寸之比可以为1:3,以达到较好的显示效果。
摩尔纹是由于通过黑矩阵的光线和通过光栅单元的光线的振动频率接近,发生干涉而形成明暗相间的条纹。如图6所示,纵横交叉的黑矩阵13在微观状态下可以形成多个呈矩阵形式排列的矩形框a,黑矩阵13在矩形框a中从宏观角度观察可以具有横向、纵向、对角线三个方向的暗态。
同时狭缝22和光栅单元21在二维显示面板10的列方向上交替设置,从整体上看,交错排列的狭缝22基本上可以形成若干条平行的斜线,因此在图6中将斜线b等同于交错排列的狭缝22进行下面的计算。
首先,为了消除斜线b与黑矩阵13对角线方向的暗态之间产生的摩尔纹, 斜线b与横向的夹角(或称倾斜角度)θ需要满足如下公式(1):
Figure PCTCN2016089599-appb-000001
其中,P为人眼能看到的最小摩尔纹的宽度,A为像素的宽度,B为光栅单元的间距,n为正整数,将n=1、2、3、……、100逐一代入公式(1)算出θ1、θ2、θ3、……、θ100的范围,然后将它们的交集作为夹角θ的范围。
其次,为了消除斜线b与黑矩阵13横向的暗态之间产生的摩尔纹,斜线b与横向的夹角θ满足如下公式(2):
Figure PCTCN2016089599-appb-000002
其中,P为人眼能看到的最小摩尔纹的宽度,A为像素的宽度,B为光栅单元的间距,n为正整数,将n=1、2、3、……、100逐一代入公式(1)算出θ1、θ2、θ3、……、θ100的范围,然后将它们的交集作为夹角θ的范围。
最后,为了消除斜线b与黑矩阵13纵向的暗态之间产生的摩尔纹,斜线b与横向的夹角θ满足如下公式(3):
Figure PCTCN2016089599-appb-000003
其中,P为人眼能分辨的最小摩尔纹的宽度,A为像素的宽度,B为光栅单元的间距,n为正整数,将n=1、2、3、……、100逐一代入公式(1)算出θ1、θ2、θ3、……、θ100的范围,然后将它们的交集作为夹角θ的范围。
公式(1)-(3)对于本领域技术人员来说是已知的,其推导过程及原理在此不再详述。
以通用的4.7寸的三维显示装置为例,像素的宽度A=0.05418mm,人眼能分辨的最小摩尔纹的宽度P=0.291mm,光栅单元的间距B=0.103mm,分别带入公式(1)-(3),得到相邻的两行光栅单元中的狭缝的倾斜角度θ满足如下条件(4):
15.9°<θ<62.5°或者73.7°<θ<82.9°;             (4)
实验证明,当相邻的两行光栅单元中的狭缝的倾斜角度θ满足上述关系时,可以较好的消除狭缝光栅和黑矩阵空间频率接近而产生的摩尔纹的影响。
在上述方程(1)-(3)中,夹角θ被定义如下:在以二维显示面板10的列方向上相邻的两行光栅单元21的长度之和为长边、以一行光栅单元21中相邻的两个光栅单元21的间距与一个光栅单元21的宽度之和为短边的矩形c中,该矩形的对角线d与沿二维显示面板的行方向延伸的直线b之间的夹角θ,如图4a-4d所示。
在示例性的实施例中,如图4a和图4b所示,任意相邻的两行第一显示单元11和第二显示单元12中,其中一行中的每个第一显示单元11和每个第二显示单元12可以均包括沿二维显示面板10的列方向排列的五个像素,另一行中的每个第一显示单元11和每个第二显示单元12可以均包括沿二维显示面板10的列方向排列的四个像素。
在另一示例性的实施例中,如图4c所示,每一行中的每个第一显示单元11和每个第二显示单元12可以均包括沿二维显示面板10的列方向排列的五个像素。
在又一示例性的实施例中,如图4d所示,每一行中的每个第一显示单元11和每个第二显示单元12可以均包括沿二维显示面板10的列方向排列的四个像素。
通过计算可证明,图4a-4d所示的实施例中的设置能够使得狭缝的倾斜角度θ满足如下条件:15.9°<θ<62.5°或者73.7°<θ<82.9°。
在实际应用中,在确定二维显示面板的尺寸之后,即可确定像素的宽度,进而根据像素的宽度采用如下方式计算光栅单元的间距。
根据本发明的一个示例性实施例,参见图7a,狭缝光栅20设置在二维显示面板10的出光侧,狭缝光栅20与二维显示面板10之间的距离h满足如下方程(5):
h=A*s/L;                (5)
其中,A为亚像素100a沿二维显示面板10的行方向的尺寸,s为狭缝光栅20与人眼观测点之间的距离,L为人双眼的间距。
在采用上述关系(5)计算出狭缝光栅20与二维显示面板10之间的距离h之后,采用如下关系(6)计算同一行光栅单元21中相邻的两个光栅单元21的间距B:
B=2*A*s/(s+h);               (6)
其中,A为亚像素100a沿二维显示面板10的行方向的尺寸,s为狭缝光栅20与人眼观测点之间的距离,h为狭缝光栅20与二维显示面板10之间的距离。
根据本发明的另一示例性实施例,参见图7b,狭缝光栅20设置在二维显示面板10的入光侧,狭缝光栅20与二维显示面板10之间的距离h满足如下关系(7):
h=A*s/L-s;                  (7)
其中,A为亚像素100a沿二维显示面板10的行方向的尺寸,s为狭缝光栅20与人眼观测点之间的距离,L为人双眼的间距。
在采用上述关系(7)计算出狭缝光栅20与二维显示面板10之间的距离h之后,采用如下关系(8)计算同一行光栅单元21中相邻的两个光栅单元21的间距B:
B=2*A*s/(s-h);                   (8)
其中,A为亚像素100a沿二维显示面板10的行方向的尺寸,s为狭缝光栅20与人眼观测点之间的距离,h为狭缝光栅20与二维显示面板10之间的距离。
尽管已经结合附图示出并描述了多个示例性的实施例,但本领域技术人员将会意识到,可以在不背离本发明的原理和实质的前提下对这些实施例作出各种修改和变化,因此,本发明的范围应由所附权利要求及其等同技术方案限定。

Claims (14)

  1. 一种三维显示装置,其特征在于,所述三维显示装置包括二维显示面板、以及设置在所述二维显示面板一侧的狭缝光栅;
    所述二维显示面板包括多个显示左眼图像的第一显示单元和多个显示右眼图像的第二显示单元,所述第一显示单元和所述第二显示单元在所述二维显示面板的行方向和列方向上均交替设置;
    所述狭缝光栅包括阵列排布的多个光栅单元,每行沿所述二维显示面板的行方向排列的所述光栅单元中相邻的两个所述光栅单元之间形成狭缝,所述狭缝和所述光栅单元在所述二维显示面板的列方向上交替设置,所述狭缝光栅用于将所述左眼图像和所述右眼图像分别显示在人的左眼和右眼。
  2. 根据权利要求1所述的三维显示装置,其特征在于,任意相邻的两行所述光栅单元中,一行所述光栅单元中最中间的狭缝的中心线与另一行所述光栅单元中最中间的光栅单元的中心线位于同一直线上。
  3. 根据权利要求2所述的三维显示装置,其特征在于,所述二维显示面板还包括用于隔开所述第一显示单元和所述第二显示单元的黑矩阵,所述黑矩阵沿所述二维显示面板的列方向延伸的中心线,与任意相邻的两行所述光栅单元中的一行所述光栅单元中最中间的狭缝的中心线位于同一直线上。
  4. 根据权利要求1-3任一项所述的三维显示装置,其特征在于,每个所述第一显示单元均包括一个或多个像素,每个所述第二显示单元均包括一个或多个像素,同一行沿所述二维显示面板的行方向排列的第一显示单元和第二显示单元包括的像素数量相同。
  5. 根据权利要求4所述的三维显示装置,其特征在于,每个所述像素包括沿所述二维显示面板的列方向排列的三种不同颜色的亚像素,所述亚像素沿所述二维显示面板的列方向的尺寸小于沿所述二维显示面板的行方向的尺寸。
  6. 根据权利要求5所述的三维显示装置,其特征在于,所述亚像素沿所 述二维显示面板的列方向的尺寸与沿所述二维显示面板的行方向的尺寸之比为1:3。
  7. 根据权利要求6所述的三维显示装置,其特征在于,相邻的两行所述光栅单元中的狭缝组成的阵列的等效倾斜狭缝的倾斜角度θ满足如下条件之一:
    15.9°<θ<62.5°,以及
    73.7°<θ<82.9°,
    其中,所述倾斜角度θ为定义为:在以所述二维显示面板的列方向上的相邻的两行所述光栅单元的长度之和为长边、以一行所述光栅单元中相邻的两个所述光栅单元的间距与一个光栅单元的宽度之和为短边的矩形中,该矩形的对角线与沿所述二维显示面板的行方向延伸的直线之间的夹角。
  8. 根据权利要求7所述的三维显示装置,其特征在于,任意相邻的两行所述光栅单元中,其中一行中的每个第一显示单元和每个第二显示单元均包括沿所述二维显示面板的列方向排列的五个像素,另一行中的每个第一显示单元和每个第二显示单元均包括沿所述二维显示面板的列方向排列的四个像素。
  9. 根据权利要求7所述的三维显示装置,其特征在于,每行中的每个第一显示单元和每个第二显示单元均包括沿所述二维显示面板的列方向排列的五个像素。
  10. 根据权利要求7所述的三维显示装置,其特征在于,每行中的每个第一显示单元和每个第二显示单元均包括沿所述二维显示面板的列方向排列的四个像素。
  11. 根据权利要求5所述三维显示装置,其特征在于,所述狭缝光栅设置在所述二维显示面板的出光侧,所述狭缝光栅与所述二维显示面板之间的距离h满足如下方程:
    h=A*s/L;
    其中,A为所述亚像素沿所述二维显示面板的行方向的尺寸,s为所述狭缝光栅与人眼观测点之间的距离,L为人双眼的间距。
  12. 根据权利要求11所述三维显示装置,其特征在于,同一行光栅单元中相邻的两个光栅单元的间距B满足如下方程:
    B=2*A*s/(s+h)
    其中,A为亚像素沿二维显示面板的行方向的尺寸,s为狭缝光栅与人眼观测点之间的距离,h为狭缝光栅与二维显示面板之间的距离。
  13. 根据权利要求5所述的三维显示装置,其特征在于,所述狭缝光栅设置在所述二维显示面板的入光侧,所述狭缝光栅与所述二维显示面板之间的距离h满足如下方程:
    h=A*s/L-s;
    其中,A为所述亚像素沿所述二维显示面板的行方向的尺寸,s为所述狭缝光栅与人眼观测点之间的距离,L为人双眼的间距。
  14. 根据权利要求13所述三维显示装置,其特征在于,同一行光栅单元中相邻的两个光栅单元的间距B满足如下方程:
    B=2*A*s/(s-h)
    其中,A为亚像素沿二维显示面板的行方向的尺寸,s为狭缝光栅与人眼观测点之间的距离,h为狭缝光栅与二维显示面板之间的距离。
PCT/CN2016/089599 2016-03-17 2016-07-11 三维显示装置 WO2017156937A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/522,757 US10349043B2 (en) 2016-03-17 2016-07-11 Three-dimensional display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610154134.8 2016-03-17
CN201610154134.8A CN105549214B (zh) 2016-03-17 2016-03-17 三维显示装置

Publications (1)

Publication Number Publication Date
WO2017156937A1 true WO2017156937A1 (zh) 2017-09-21

Family

ID=55828498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/089599 WO2017156937A1 (zh) 2016-03-17 2016-07-11 三维显示装置

Country Status (3)

Country Link
US (1) US10349043B2 (zh)
CN (1) CN105549214B (zh)
WO (1) WO2017156937A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105549214B (zh) * 2016-03-17 2017-12-29 京东方科技集团股份有限公司 三维显示装置
CN106226915B (zh) * 2016-08-03 2018-12-21 京东方科技集团股份有限公司 一种显示模组及显示装置
CN106405703A (zh) * 2016-11-30 2017-02-15 深圳市华星光电技术有限公司 3d光栅与3d显示装置
CN108469682A (zh) * 2018-03-30 2018-08-31 京东方科技集团股份有限公司 一种三维显示装置及其三维显示方法
CN110806646B (zh) * 2018-07-20 2021-01-22 京东方科技集团股份有限公司 显示面板及其驱动方法、显示装置
US10854648B2 (en) * 2018-12-14 2020-12-01 Novatek Microelectronics Corp. Image sensor of fingerprint
DE102019100066A1 (de) * 2019-01-03 2020-07-09 Psholix Ag Autostereoskopisches Display mit Integral-Imaging ähnlichen optischen Elementen
CN112635510B (zh) * 2019-09-24 2024-08-02 新谱光科技股份有限公司 减轻摩尔纹裸视立体显示设备的发光面板及制作方法
CN114584754B (zh) * 2022-02-28 2023-12-26 广东未来科技有限公司 3d显示方法及相关装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060032547A (ko) * 2004-10-12 2006-04-17 아녹시스 인코포레이티드 입체 화상 표시 장치
CN202453582U (zh) * 2012-02-29 2012-09-26 京东方科技集团股份有限公司 像素结构及显示装置
CN202720395U (zh) * 2012-07-17 2013-02-06 Tcl集团股份有限公司 一种光栅板及裸眼立体显示装置
CN104597611A (zh) * 2015-02-11 2015-05-06 京东方科技集团股份有限公司 3d显示装置及其驱动方法
CN104849870A (zh) * 2015-06-12 2015-08-19 京东方科技集团股份有限公司 显示面板及显示装置
CN105549214A (zh) * 2016-03-17 2016-05-04 京东方科技集团股份有限公司 三维显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004059729B3 (de) * 2004-12-11 2006-04-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur autostereoskopischen Erzeugung von dreidimensionalen Bildinformationen aus gerasterten Subpixelauszügen und Anordnung zur Verfahrensdurchführung
US9645399B2 (en) * 2010-10-19 2017-05-09 Superd Co. Ltd. Autostereoscopic display apparatus and method
CN102681185B (zh) * 2012-05-30 2014-07-30 深圳超多维光电子有限公司 一种立体显示装置及其调整方法
CN103424874B (zh) * 2013-08-19 2015-11-25 京东方科技集团股份有限公司 3d显示驱动方法
CN103926698B (zh) * 2013-12-10 2016-09-07 上海天马微电子有限公司 一种阵列基板、3d显示面板和3d显示装置
CN103796000B (zh) * 2014-01-08 2015-11-25 深圳超多维光电子有限公司 立体显示方法和立体显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060032547A (ko) * 2004-10-12 2006-04-17 아녹시스 인코포레이티드 입체 화상 표시 장치
CN202453582U (zh) * 2012-02-29 2012-09-26 京东方科技集团股份有限公司 像素结构及显示装置
CN202720395U (zh) * 2012-07-17 2013-02-06 Tcl集团股份有限公司 一种光栅板及裸眼立体显示装置
CN104597611A (zh) * 2015-02-11 2015-05-06 京东方科技集团股份有限公司 3d显示装置及其驱动方法
CN104849870A (zh) * 2015-06-12 2015-08-19 京东方科技集团股份有限公司 显示面板及显示装置
CN105549214A (zh) * 2016-03-17 2016-05-04 京东方科技集团股份有限公司 三维显示装置

Also Published As

Publication number Publication date
CN105549214A (zh) 2016-05-04
US10349043B2 (en) 2019-07-09
US20180091801A1 (en) 2018-03-29
CN105549214B (zh) 2017-12-29

Similar Documents

Publication Publication Date Title
WO2017156937A1 (zh) 三维显示装置
CN108776388B (zh) 基于渐变狭缝光栅的双视3d显示装置及方法
CN104570370B (zh) 一种立体显示装置
US9762894B2 (en) 3D display method
TWI420152B (zh) A Method of Multi - view Three - dimensional Image Display
WO2017020473A1 (zh) 三维显示装置及其显示方法
WO2016197499A1 (zh) 显示面板及显示装置
JP5772688B2 (ja) 裸眼立体ディスプレイ装置
US9964671B2 (en) Display substrate, display panel, and stereoscopic display device
TW201320717A (zh) 一種三次元影像顯示之方法
EP3023830B1 (en) Imaging system
CN107942525B (zh) 显示装置
CN106959522B (zh) 一种立体显示器件
CN208569201U (zh) 宽视角和均匀分辨率的双视3d显示装置
JP2016018108A (ja) 裸眼立体映像表示装置
US20110096152A1 (en) Stereoscopic image display
KR100828696B1 (ko) 가변형 패럴렉스 배리어와 이를 이용한 입체 영상 표시장치
CN111856774A (zh) 高分辨率和高光学效率双视3d显示装置及方法
CN102981196A (zh) 柱透镜光栅、光栅视差屏障式立体显示装置及视差屏障
KR20140041102A (ko) 표시 패널 및 이를 포함하는 표시 장치
TWI489413B (zh) A Method of Multi - view Three - dimensional Image Display
CN113009709B (zh) 基于复合针孔阵列的双视3d显示方法
KR102680855B1 (ko) 패널 장치 및 디스플레이 장치
KR101911776B1 (ko) 3차원 영상 표시 장치 및 그 방법
WO2015143791A1 (zh) 双方向立体显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15522757

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894098

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16894098

Country of ref document: EP

Kind code of ref document: A1