CN111856774A - 高分辨率和高光学效率双视3d显示装置及方法 - Google Patents

高分辨率和高光学效率双视3d显示装置及方法 Download PDF

Info

Publication number
CN111856774A
CN111856774A CN202010891104.1A CN202010891104A CN111856774A CN 111856774 A CN111856774 A CN 111856774A CN 202010891104 A CN202010891104 A CN 202010891104A CN 111856774 A CN111856774 A CN 111856774A
Authority
CN
China
Prior art keywords
dimensional
image
pinholes
image element
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010891104.1A
Other languages
English (en)
Other versions
CN111856774B (zh
Inventor
吴非
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Aeronautic Polytechnic
Original Assignee
Chengdu Technological University CDTU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Technological University CDTU filed Critical Chengdu Technological University CDTU
Priority to CN202010891104.1A priority Critical patent/CN111856774B/zh
Publication of CN111856774A publication Critical patent/CN111856774A/zh
Application granted granted Critical
Publication of CN111856774B publication Critical patent/CN111856774B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • G02B30/32Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers characterised by the geometry of the parallax barriers, e.g. staggered barriers, slanted parallax arrays or parallax arrays of varying shape or size
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

本发明公开了高分辨率和高光学效率双视3D显示装置及方法,包括显示屏和复合针孔阵列;复合针孔阵列包含一维针孔和二维针孔;一维针孔和二维针孔在奇数行依次排列,二维针孔和一维针孔在偶数行依次排列;一维图像元I透过对应的一维针孔重建出一个一维3D图像I,二维图像元I透过对应的二维针孔重建出一个二维3D图像I,一维3D图像I与二维3D图像I在3D视区I合并成一个高分辨率3D图像I;一维图像元II透过对应的一维针孔重建出一个一维3D图像II,二维图像元II透过对应的二维针孔重建出一个二维3D图像II,一维3D图像II与二维3D图像II在3D视区II合并成一个高分辨率3D图像II。

Description

高分辨率和高光学效率双视3D显示装置及方法
技术领域
本发明涉及3D显示,更具体地说,本发明涉及高分辨率和高光学效率双视3D显示装置及方法。
背景技术
基于集成成像的3D显示,简称集成成像3D显示,是一种真3D显示。较之助视/光栅3D显示,它具有无立体观看视疲劳等显著优点;较之全息3D显示,它具有相对较小的数据量、无需相干光源并且无苛刻的环境要求等优点。因此,集成成像3D显示已成为目前国际上的前沿3D显示方式之一,也是最有希望实现3D电视的一种裸视真3D显示方式。
近年来,集成成像3D显示与双视显示融合形成集成成像双视3D显示。它可以在不同的观看方向上提供不同的3D画面。但是,3D分辨率不足的瓶颈问题严重影响了观看者的体验。在传统的集成成像双视3D显示中,垂直方向上的3D像素过少,从而进一步影响了观看效果,制约了集成成像双视3D显示的广泛应用。此外,传统的集成成像双视3D显示还存在光学效率低等问题。
发明内容
本发明提出了高分辨率和高光学效率双视3D显示装置,如附图1和2所示,其特征在于,包括显示屏和复合针孔阵列;复合针孔阵列平行放置在显示屏前方,且对应对齐;复合针孔阵列包含一维针孔和二维针孔,如附图3所示;一维针孔和二维针孔在奇数行依次排列,二维针孔和一维针孔在偶数行依次排列;显示屏显示复合微图像阵列,如附图4所示;复合微图像阵列包含一维图像元I、二维图像元I、一维图像元II和二维图像元II;一维图像元I、一维图像元II、二维图像元I和二维图像元II在奇数行依次排列;二维图像元I、二维图像元II、一维图像元I和一维图像元II在偶数行依次排列;一维图像元I透过对应的一维针孔重建出一个一维3D图像I,二维图像元I透过对应的二维针孔重建出一个二维3D图像I,一维3D图像I与二维3D图像I在3D视区I合并成一个高分辨率3D图像I;一维图像元II透过对应的一维针孔重建出一个一维3D图像II,二维图像元II透过对应的二维针孔重建出一个二维3D图像II,一维3D图像II与二维3D图像II在3D视区II合并成一个高分辨率3D图像II。
优选的,3D图像I每一行均具有全视差;3D图像I每一列均具有全视差;3D图像II每一行均具有全视差;3D图像II每一列均具有全视差。
优选的,复合微图像阵列中一维图像元I、二维图像元I、一维图像元II和二维图像元II的水平节距均相同;复合微图像阵列中一维图像元I、二维图像元I、一维图像元II和二维图像元II的垂直节距均相同;复合针孔阵列中一维针孔和二维针孔的水平节距均相同;复合针孔阵列中一维针孔和二维针孔的垂直节距均相同。
优选的,复合针孔阵列中一维针孔和二维针孔的垂直节距均等于复合微图像阵列中一维图像元I的垂直节距。
优选的,复合微图像阵列水平方向上的一维图像元I、二维图像元I、一维图像元II和二维图像元II的数目均相同;复合微图像阵列垂直方向上的一维图像元I、二维图像元I、一维图像元II和二维图像元II的数目均相同;复合针孔阵列水平方向上的一维针孔和二维针孔的数目均相同;复合针孔阵列垂直方向上的一维针孔和二维针孔的数目均相同;复合微图像阵列水平方向上的一维图像元I的数目等于复合针孔阵列水平方向上的一维针孔的数目,复合微图像阵列垂直方向上的一维图像元I的数目等于复合针孔阵列垂直方向上的一维针孔的数目。
优选的,一维针孔的水平节距p和垂直节距q由下式计算得到:
Figure 398907DEST_PATH_IMAGE002
(1)
Figure 316047DEST_PATH_IMAGE004
(2)
其中,s是一维图像元I的水平节距,l是观看距离,g是显示屏与复合针孔阵列的间距,a是复合针孔阵列的水平宽度,b是复合针孔阵列的垂直宽度,x是显示屏单个像素的节距。
优选的,3D图像I每一行的水平分辨率、3D图像I每一列的垂直分辨率、3D图像II每一行的水平分辨率和3D图像II每一列的垂直分辨率均相同;3D图像I的观看视角和3D图像II的观看视角均相同。
优选的,双视3D显示装置的光学效率φ
Figure 718953DEST_PATH_IMAGE006
(3)
其中,p是一维针孔的水平节距,q是一维针孔的垂直节距,w是一维针孔和二维针孔的孔径宽度,l是观看距离,g是显示屏与复合针孔阵列的间距。
优选的,3D图像I的水平分辨率R 1、垂直分辨率R 2和观看视角θ分别为
Figure 114163DEST_PATH_IMAGE008
(4)
Figure 866218DEST_PATH_IMAGE010
(5)
其中,a是复合针孔阵列的水平宽度,p是一维针孔的水平节距,q是一维针孔的垂直节距,l是观看距离,g是显示屏与复合针孔阵列的间距,w是一维针孔和二维针孔的孔径宽度。
高分辨率和高光学效率双视3D显示方法,其特征在于,包括:
复合针孔阵列包含一维针孔和二维针孔;一维针孔和二维针孔在奇数行依次排列,二维针孔和一维针孔在偶数行依次排列;复合微图像阵列包含一维图像元I、二维图像元I、一维图像元II和二维图像元II;一维图像元I、一维图像元II、二维图像元I和二维图像元II在奇数行依次排列;二维图像元I、二维图像元II、一维图像元I和一维图像元II在偶数行依次排列;一维图像元I透过对应的一维针孔重建出一个一维3D图像I,二维图像元I透过对应的二维针孔重建出一个二维3D图像I,一维3D图像I与二维3D图像I在3D视区I合并成一个高分辨率3D图像I;一维图像元II透过对应的一维针孔重建出一个一维3D图像II,二维图像元II透过对应的二维针孔重建出一个二维3D图像II,一维3D图像II与二维3D图像II在3D视区II合并成一个高分辨率3D图像II。
附图说明
附图1为本发明的结构和奇数行参数示意图
附图2为本发明的结构和偶数行参数示意图
附图3为本发明的复合针孔阵列的示意图
附图4为本发明的复合微图像阵列的示意图
上述附图中的图示标号为:
1.显示屏,2.复合针孔阵列,3.复合微图像阵列,4.一维针孔,5.二维针孔,6.一维图像元I,7. 二维图像元I,8.一维图像元II,9.二维图像元II,10.3D视区I,11. 3D视区II。
应该理解上述附图只是示意性的,并没有按比例绘制。
具体实施方式
下面详细说明本发明的高分辨率和高光学效率双视3D显示装置及方法的一个典型实施例,对本发明进行进一步的具体描述。有必要在此指出的是,以下实施例只用于本发明做进一步的说明,不能理解为对本发明保护范围的限制,该领域技术熟练人员根据上述本发明内容对本发明做出一些非本质的改进和调整,仍属于本发明的保护范围。
本发明提出了高分辨率和高光学效率双视3D显示装置,如附图1和2所示,其特征在于,包括显示屏和复合针孔阵列;复合针孔阵列平行放置在显示屏前方,且对应对齐;复合针孔阵列包含一维针孔和二维针孔,如附图3所示;一维针孔和二维针孔在奇数行依次排列,二维针孔和一维针孔在偶数行依次排列;显示屏显示复合微图像阵列,如附图4所示;复合微图像阵列包含一维图像元I、二维图像元I、一维图像元II和二维图像元II;一维图像元I、一维图像元II、二维图像元I和二维图像元II在奇数行依次排列;二维图像元I、二维图像元II、一维图像元I和一维图像元II在偶数行依次排列;一维图像元I透过对应的一维针孔重建出一个一维3D图像I,二维图像元I透过对应的二维针孔重建出一个二维3D图像I,一维3D图像I与二维3D图像I在3D视区I合并成一个高分辨率3D图像I;一维图像元II透过对应的一维针孔重建出一个一维3D图像II,二维图像元II透过对应的二维针孔重建出一个二维3D图像II,一维3D图像II与二维3D图像II在3D视区II合并成一个高分辨率3D图像II。
优选的,3D图像I每一行均具有全视差;3D图像I每一列均具有全视差;3D图像II每一行均具有全视差;3D图像II每一列均具有全视差。
优选的,复合微图像阵列中一维图像元I、二维图像元I、一维图像元II和二维图像元II的水平节距均相同;复合微图像阵列中一维图像元I、二维图像元I、一维图像元II和二维图像元II的垂直节距均相同;复合针孔阵列中一维针孔和二维针孔的水平节距均相同;复合针孔阵列中一维针孔和二维针孔的垂直节距均相同。
优选的,复合针孔阵列中一维针孔和二维针孔的垂直节距均等于复合微图像阵列中一维图像元I的垂直节距。
优选的,复合微图像阵列水平方向上的一维图像元I、二维图像元I、一维图像元II和二维图像元II的数目均相同;复合微图像阵列垂直方向上的一维图像元I、二维图像元I、一维图像元II和二维图像元II的数目均相同;复合针孔阵列水平方向上的一维针孔和二维针孔的数目均相同;复合针孔阵列垂直方向上的一维针孔和二维针孔的数目均相同;复合微图像阵列水平方向上的一维图像元I的数目等于复合针孔阵列水平方向上的一维针孔的数目,复合微图像阵列垂直方向上的一维图像元I的数目等于复合针孔阵列垂直方向上的一维针孔的数目。
优选的,一维针孔的水平节距p和垂直节距q由下式计算得到:
Figure 688681DEST_PATH_IMAGE002
(1)
Figure 955714DEST_PATH_IMAGE004
(2)
其中,s是一维图像元I的水平节距,l是观看距离,g是显示屏与复合针孔阵列的间距,a是复合针孔阵列的水平宽度,b是复合针孔阵列的垂直宽度,x是显示屏单个像素的节距。
优选的,3D图像I每一行的水平分辨率、3D图像I每一列的垂直分辨率、3D图像II每一行的水平分辨率和3D图像II每一列的垂直分辨率均相同;3D图像I的观看视角和3D图像II的观看视角均相同。
优选的,双视3D显示装置的光学效率φ
Figure 154614DEST_PATH_IMAGE006
(3)
其中,p是一维针孔的水平节距,q是一维针孔的垂直节距,w是一维针孔和二维针孔的孔径宽度,l是观看距离,g是显示屏与复合针孔阵列的间距。
优选的,3D图像I的水平分辨率R 1、垂直分辨率R 2和观看视角θ分别为
Figure 761176DEST_PATH_IMAGE008
(4)
Figure 754540DEST_PATH_IMAGE010
(5)
其中,a是复合针孔阵列的水平宽度,p是一维针孔的水平节距,q是一维针孔的垂直节距,l是观看距离,g是显示屏与复合针孔阵列的间距,w是一维针孔和二维针孔的孔径宽度。
高分辨率和高光学效率双视3D显示方法,其特征在于,包括:
复合针孔阵列包含一维针孔和二维针孔;一维针孔和二维针孔在奇数行依次排列,二维针孔和一维针孔在偶数行依次排列;复合微图像阵列包含一维图像元I、二维图像元I、一维图像元II和二维图像元II;一维图像元I、一维图像元II、二维图像元I和二维图像元II在奇数行依次排列;二维图像元I、二维图像元II、一维图像元I和一维图像元II在偶数行依次排列;一维图像元I透过对应的一维针孔重建出一个一维3D图像I,二维图像元I透过对应的二维针孔重建出一个二维3D图像I,一维3D图像I与二维3D图像I在3D视区I合并成一个高分辨率3D图像I;一维图像元II透过对应的一维针孔重建出一个一维3D图像II,二维图像元II透过对应的二维针孔重建出一个二维3D图像II,一维3D图像II与二维3D图像II在3D视区II合并成一个高分辨率3D图像II。
复合针孔阵列的水平宽度为180mm,复合针孔阵列的垂直宽度为90mm,一维图像元I的水平节距为1.53mm,观看距离为250mm,显示屏与复合针孔阵列的间距为5mm,显示屏单个像素的节距为1mm,一维针孔和二维针孔的孔径宽度为0.6mm,则由式(1)计算得到一维针孔的水平节距为3mm,由式(2)计算得到一维针孔的垂直节距为3mm;;由式(3)计算得到双视3D显示装置的光学效率为11.8°由式(4)计算得到3D图像I和3D图像II的水平分辨率、垂直分辨率均为60;由式(5)计算得到3D图像I和3D图像II的观看视角均为10°。传统的双视3D显示的水平分辨率、垂直分辨率和光学效率分别为60、30和3.9%。

Claims (10)

1.高分辨率和高光学效率双视3D显示装置,其特征在于,包括显示屏和复合针孔阵列;复合针孔阵列平行放置在显示屏前方,且对应对齐;复合针孔阵列包含一维针孔和二维针孔;一维针孔和二维针孔在奇数行依次排列,二维针孔和一维针孔在偶数行依次排列;显示屏显示复合微图像阵列;复合微图像阵列包含一维图像元I、二维图像元I、一维图像元II和二维图像元II;一维图像元I、一维图像元II、二维图像元I和二维图像元II在奇数行依次排列;二维图像元I、二维图像元II、一维图像元I和一维图像元II在偶数行依次排列;一维图像元I透过对应的一维针孔重建出一个一维3D图像I,二维图像元I透过对应的二维针孔重建出一个二维3D图像I,一维3D图像I与二维3D图像I在3D视区I合并成一个高分辨率3D图像I;一维图像元II透过对应的一维针孔重建出一个一维3D图像II,二维图像元II透过对应的二维针孔重建出一个二维3D图像II,一维3D图像II与二维3D图像II在3D视区II合并成一个高分辨率3D图像II。
2.根据权利要求1所述的高分辨率和高光学效率双视3D显示装置,其特征在于,3D图像I每一行均具有全视差;3D图像I每一列均具有全视差;3D图像II每一行均具有全视差;3D图像II每一列均具有全视差。
3.根据权利要求1所述的高分辨率和高光学效率双视3D显示装置,其特征在于,复合微图像阵列中一维图像元I、二维图像元I、一维图像元II和二维图像元II的水平节距均相同;复合微图像阵列中一维图像元I、二维图像元I、一维图像元II和二维图像元II的垂直节距均相同;复合针孔阵列中一维针孔和二维针孔的水平节距均相同;复合针孔阵列中一维针孔和二维针孔的垂直节距均相同。
4.根据权利要求3所述的高分辨率和高光学效率双视3D显示装置,其特征在于,复合针孔阵列中一维针孔和二维针孔的垂直节距均等于复合微图像阵列中一维图像元I的垂直节距。
5.根据权利要求4所述的高分辨率和高光学效率双视3D显示装置,其特征在于,复合微图像阵列水平方向上的一维图像元I、二维图像元I、一维图像元II和二维图像元II的数目均相同;复合微图像阵列垂直方向上的一维图像元I、二维图像元I、一维图像元II和二维图像元II的数目均相同;复合针孔阵列水平方向上的一维针孔和二维针孔的数目均相同;复合针孔阵列垂直方向上的一维针孔和二维针孔的数目均相同;复合微图像阵列水平方向上的一维图像元I的数目等于复合针孔阵列水平方向上的一维针孔的数目,复合微图像阵列垂直方向上的一维图像元I的数目等于复合针孔阵列垂直方向上的一维针孔的数目。
6.根据权利要求5所述的高分辨率和高光学效率双视3D显示装置,其特征在于,一维针孔的水平节距p和垂直节距q由下式计算得到:
Figure 165180DEST_PATH_IMAGE002
Figure 902192DEST_PATH_IMAGE004
其中,s是一维图像元I的水平节距,l是观看距离,g是显示屏与复合针孔阵列的间距,a是复合针孔阵列的水平宽度,b是复合针孔阵列的垂直宽度,x是显示屏单个像素的节距。
7.根据权利要求5所述的高分辨率和高光学效率双视3D显示装置,其特征在于,3D图像I每一行的水平分辨率、3D图像I每一列的垂直分辨率、3D图像II每一行的水平分辨率和3D图像II每一列的垂直分辨率均相同;3D图像I的观看视角和3D图像II的观看视角均相同。
8.根据权利要求6所述的高分辨率和高光学效率双视3D显示装置,其特征在于,双视3D显示装置的光学效率φ
Figure 363260DEST_PATH_IMAGE006
其中,p是一维针孔的水平节距,q是一维针孔的垂直节距,w是一维针孔和二维针孔的孔径宽度,l是观看距离,g是显示屏与复合针孔阵列的间距。
9.根据权利要求7所述的高分辨率和高光学效率双视3D显示装置,其特征在于,3D图像I的水平分辨率R 1、垂直分辨率R 2和观看视角θ分别为
Figure 793105DEST_PATH_IMAGE008
Figure 34730DEST_PATH_IMAGE010
其中,a是复合针孔阵列的水平宽度,p是一维针孔的水平节距,q是一维针孔的垂直节距,l是观看距离,g是显示屏与复合针孔阵列的间距,w是一维针孔和二维针孔的孔径宽度。
10.高分辨率和高光学效率双视3D显示方法,其特征在于,包括:
复合针孔阵列包含一维针孔和二维针孔;一维针孔和二维针孔在奇数行依次排列,二维针孔和一维针孔在偶数行依次排列;复合微图像阵列包含一维图像元I、二维图像元I、一维图像元II和二维图像元II;一维图像元I、一维图像元II、二维图像元I和二维图像元II在奇数行依次排列;二维图像元I、二维图像元II、一维图像元I和一维图像元II在偶数行依次排列;一维图像元I透过对应的一维针孔重建出一个一维3D图像I,二维图像元I透过对应的二维针孔重建出一个二维3D图像I,一维3D图像I与二维3D图像I在3D视区I合并成一个高分辨率3D图像I;一维图像元II透过对应的一维针孔重建出一个一维3D图像II,二维图像元II透过对应的二维针孔重建出一个二维3D图像II,一维3D图像II与二维3D图像II在3D视区II合并成一个高分辨率3D图像II。
CN202010891104.1A 2020-08-30 2020-08-30 高分辨率和高光学效率双视3d显示装置及方法 Active CN111856774B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010891104.1A CN111856774B (zh) 2020-08-30 2020-08-30 高分辨率和高光学效率双视3d显示装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010891104.1A CN111856774B (zh) 2020-08-30 2020-08-30 高分辨率和高光学效率双视3d显示装置及方法

Publications (2)

Publication Number Publication Date
CN111856774A true CN111856774A (zh) 2020-10-30
CN111856774B CN111856774B (zh) 2023-08-04

Family

ID=72967511

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010891104.1A Active CN111856774B (zh) 2020-08-30 2020-08-30 高分辨率和高光学效率双视3d显示装置及方法

Country Status (1)

Country Link
CN (1) CN111856774B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112859366A (zh) * 2021-04-01 2021-05-28 成都工业学院 基于复合偏振片的双视3d显示方法
CN113703178A (zh) * 2021-09-11 2021-11-26 成都工业学院 均匀分辨率的集成成像3d显示装置
CN114895482A (zh) * 2022-05-18 2022-08-12 成都工业学院 基于狭缝光栅和复合针孔阵列的3d显示装置

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040218245A1 (en) * 2003-03-21 2004-11-04 Kean Diana Ulrich Parallax barrier and multiple view display
WO2012016092A2 (en) * 2010-07-28 2012-02-02 Unipixel Displays, Inc. Two and three-dimensional image display with optical emission frequency control
CN103823308A (zh) * 2014-03-04 2014-05-28 四川大学 一种基于偏振光栅的集成成像双视3d显示装置
CN103852896A (zh) * 2014-02-13 2014-06-11 京东方科技集团股份有限公司 双视场显示装置
CN105259665A (zh) * 2015-11-26 2016-01-20 成都工业学院 一种基于障壁阵列的集成成像双视3d显示装置及方法
CN105929551A (zh) * 2016-06-16 2016-09-07 成都工业学院 一种基于复合针孔阵列的集成成像双视3d显示系统
WO2017071534A1 (zh) * 2015-10-30 2017-05-04 成都工业学院 一种基于双显示屏的集成成像3d显示装置及方法
CN108594448A (zh) * 2018-08-13 2018-09-28 成都工业学院 高光学效率和均匀分辨率双视3d显示装置及方法
CN108663819A (zh) * 2018-08-13 2018-10-16 成都工业学院 宽视角和均匀分辨率的双视3d显示装置及方法
CN108761824A (zh) * 2018-08-13 2018-11-06 成都工业学院 无串扰和高分辨率双视3d显示装置及方法
CN109870818A (zh) * 2019-03-12 2019-06-11 成都工业学院 一种高亮度增强现实3d显示装置及方法
US20200183152A1 (en) * 2018-12-10 2020-06-11 Daqri, Llc Optical hyperfocal reflective systems and methods, and augmented reality and/or virtual reality displays incorporating same
CN212276128U (zh) * 2020-08-30 2021-01-01 成都工业学院 高分辨率和高光学效率双视3d显示装置
CN212276124U (zh) * 2020-08-30 2021-01-01 成都工业学院 基于偏振阵列的双视3d显示装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040218245A1 (en) * 2003-03-21 2004-11-04 Kean Diana Ulrich Parallax barrier and multiple view display
WO2012016092A2 (en) * 2010-07-28 2012-02-02 Unipixel Displays, Inc. Two and three-dimensional image display with optical emission frequency control
CN103852896A (zh) * 2014-02-13 2014-06-11 京东方科技集团股份有限公司 双视场显示装置
CN103823308A (zh) * 2014-03-04 2014-05-28 四川大学 一种基于偏振光栅的集成成像双视3d显示装置
WO2017071534A1 (zh) * 2015-10-30 2017-05-04 成都工业学院 一种基于双显示屏的集成成像3d显示装置及方法
CN105259665A (zh) * 2015-11-26 2016-01-20 成都工业学院 一种基于障壁阵列的集成成像双视3d显示装置及方法
CN105929551A (zh) * 2016-06-16 2016-09-07 成都工业学院 一种基于复合针孔阵列的集成成像双视3d显示系统
CN108594448A (zh) * 2018-08-13 2018-09-28 成都工业学院 高光学效率和均匀分辨率双视3d显示装置及方法
CN108663819A (zh) * 2018-08-13 2018-10-16 成都工业学院 宽视角和均匀分辨率的双视3d显示装置及方法
CN108761824A (zh) * 2018-08-13 2018-11-06 成都工业学院 无串扰和高分辨率双视3d显示装置及方法
US20200183152A1 (en) * 2018-12-10 2020-06-11 Daqri, Llc Optical hyperfocal reflective systems and methods, and augmented reality and/or virtual reality displays incorporating same
CN109870818A (zh) * 2019-03-12 2019-06-11 成都工业学院 一种高亮度增强现实3d显示装置及方法
CN212276128U (zh) * 2020-08-30 2021-01-01 成都工业学院 高分辨率和高光学效率双视3d显示装置
CN212276124U (zh) * 2020-08-30 2021-01-01 成都工业学院 基于偏振阵列的双视3d显示装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HAO-YU ZHOU等: "An integral imaging display using rectangular pinhole array", OPTIK, vol. 127, no. 5, pages 3075 - 3077 *
吴非;于军胜;: "基于狭缝光栅的一维集成成像双视3D显示", 电子科技大学学报, vol. 47, no. 02, pages 317 - 320 *
范钧;吴非;吕国皎;赵百川;邓欢;王琼华;: "基于可变孔径针孔阵列的集成成像3D显示", 红外与激光工程, vol. 47, no. 06, pages 38 - 41 *
赵百川;邓慧;: "基于线光源阵列的一维集成成像3D显示器的线光源宽度对性能参数的影响", 成都工业学院学报, no. 01, pages 29 - 31 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112859366A (zh) * 2021-04-01 2021-05-28 成都工业学院 基于复合偏振片的双视3d显示方法
CN113703178A (zh) * 2021-09-11 2021-11-26 成都工业学院 均匀分辨率的集成成像3d显示装置
CN113703178B (zh) * 2021-09-11 2023-05-30 成都航空职业技术学院 均匀分辨率的集成成像3d显示装置
CN114895482A (zh) * 2022-05-18 2022-08-12 成都工业学院 基于狭缝光栅和复合针孔阵列的3d显示装置
CN114895482B (zh) * 2022-05-18 2023-07-25 成都航空职业技术学院 基于狭缝光栅和复合针孔阵列的3d显示装置

Also Published As

Publication number Publication date
CN111856774B (zh) 2023-08-04

Similar Documents

Publication Publication Date Title
CN108776388B (zh) 基于渐变狭缝光栅的双视3d显示装置及方法
CN212276124U (zh) 基于偏振阵列的双视3d显示装置
CN111856774B (zh) 高分辨率和高光学效率双视3d显示装置及方法
CN111781737B (zh) 一种高分辨率双视3d显示装置及方法
CN214795442U (zh) 基于偏振片的集成成像双视3d显示装置
CN111781734B (zh) 基于双显示屏的双视3d显示装置及方法
CN111781738A (zh) 大视角和高分辨率的双视3d显示装置
CN212276123U (zh) 一种高分辨率双视3d显示装置
CN211206973U (zh) 基于渐变孔径针孔阵列的双视3d显示装置
CN212276128U (zh) 高分辨率和高光学效率双视3d显示装置
CN212694184U (zh) 基于矩形偏振阵列的集成成像双视3d显示装置
CN208459700U (zh) 无串扰和高分辨率双视3d显示装置
CN111781735B (zh) 基于偏振阵列的双视3d显示装置及方法
CN212276126U (zh) 大视角和高分辨率的双视3d显示装置
CN212276122U (zh) 基于双显示屏的双视3d显示装置
CN111781742A (zh) 基于阶梯渐变复合针孔阵列的双视3d显示装置
CN112859372B (zh) 基于复合针孔阵列的双视3d显示方法
CN111781745B (zh) 高分辨率和全视差3d显示装置及方法
CN212229359U (zh) 高分辨率和全视差3d显示装置
CN212276127U (zh) 基于阶梯渐变复合针孔阵列的双视3d显示装置
CN214623206U (zh) 一种3d显示装置
CN214896042U (zh) 集成成像双视3d显示装置
CN212391679U (zh) 基于渐变节距矩形针孔阵列的3d显示装置
CN214751133U (zh) 基于复合针孔阵列和障壁阵列的装置
CN212229358U (zh) 基于阶梯渐变复合针孔阵列的3d显示装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20230629

Address after: No.699, Checheng East 7th Road, Longquanyi District, Chengdu, Sichuan Province, 610000

Applicant after: CHENGDU AERONAUTIC POLYTECHNIC

Address before: 610031 Sichuan province Chengdu City Street No. 2

Applicant before: CHENGDU TECHNOLOGICAL University

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant