WO2017156889A1 - 一种显示基板、内嵌式触摸屏及显示装置 - Google Patents

一种显示基板、内嵌式触摸屏及显示装置 Download PDF

Info

Publication number
WO2017156889A1
WO2017156889A1 PCT/CN2016/084699 CN2016084699W WO2017156889A1 WO 2017156889 A1 WO2017156889 A1 WO 2017156889A1 CN 2016084699 W CN2016084699 W CN 2016084699W WO 2017156889 A1 WO2017156889 A1 WO 2017156889A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
display substrate
metal layer
touch
pressure sensitive
Prior art date
Application number
PCT/CN2016/084699
Other languages
English (en)
French (fr)
Inventor
丁小梁
董学
王海生
陈小川
刘英明
杨盛际
刘伟
王鹏鹏
李昌峰
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/526,975 priority Critical patent/US10579182B2/en
Publication of WO2017156889A1 publication Critical patent/WO2017156889A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • G06F3/04144Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position using an array of force sensing means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/041012.5D-digitiser, i.e. digitiser detecting the X/Y position of the input means, finger or stylus, also when it does not touch, but is proximate to the digitiser's interaction surface and also measures the distance of the input means within a short range in the Z direction, possibly with a separate measurement setup
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04105Pressure sensors for measuring the pressure or force exerted on the touch surface without providing the touch position

Definitions

  • the present disclosure relates to the field of touch technologies, and in particular, to a display substrate, an in-cell touch panel, and a display device.
  • touch technology has become an indispensable part of mobile phone applications, and most of the touch technologies of the existing liquid crystal display panels adopt a two-dimensional structure, and the user interacts with the screen of the mobile phone through the operation in the XY direction on the two-dimensional plane. .
  • 3D touch has become a trend in the future.
  • X-position and Y-position operations can only be performed on the LCD panel, and the user's fingers cannot be sensed.
  • the force of the pressing force the three-dimensional touch can convey the depth Z position of the user's finger pressing to the mobile phone to make the corresponding response of the mobile phone, making the liquid crystal display panel more intelligent.
  • liquid crystal display panel can realize intelligent operation in three directions of XYZ, it is inevitably accompanied by a problem of excessive load. Due to the increase of the sensor, the resistance is too large, causing the load to be too large, resulting in the user. The reduced comfort of the operating experience affects the market application of 3D touch technology. Therefore, it is particularly important to design a liquid crystal display panel capable of low-load three-dimensional touch.
  • the present disclosure provides a display substrate, an in-cell touch panel, and a display device.
  • the display substrate realizes low-load three-dimensional touch by reducing the trace resistance, thereby improving the user experience.
  • a display substrate including a thin film transistor, a 2D touch electrode, and a pressure sensitive electrode, and a first signal derivation trace for deriving an electrical signal of the pressure sensitive electrode.
  • the first signal derivation trace is formed by a metal layer forming a source drain in the thin film transistor, and the first signal derivation trace is electrically connected to the pressure sensitive electrode through a via
  • the extension surface of the display substrate is set to be the plane of the X-axis and the Y-axis in the coordinate system, and the touch driving module of the display substrate can determine the user's touch in the X-axis and the Y-axis direction through the 2D touch electrode. Control operation, and can judge the user in Z through the pressure sensitive electrode The touch operation in the axial direction enables 3D touch.
  • the pressure sensitive electrode and the first signal lead-out line formed by the source/drain metal layer are electrically connected through the via hole, and the signal generated when the pressure sensitive electrode is pressed is transmitted to the touch driving module.
  • the resistivity of the source-drain metal layer is much smaller than the resistivity of the pressure-sensitive electrode, the resistance of the first signal-derived trace formed by the source-drain metal layer is greatly reduced, thereby reducing the load of the touch-driving module and shortening the user The reaction time of the operation.
  • the above display substrate realizes low-load three-dimensional touch by reducing the trace resistance, thereby improving the user experience.
  • the display substrate further includes a base substrate and a light shielding metal layer, the light shielding metal layer and the thin film transistor are sequentially disposed on the base substrate, and the pressure sensitive electrode is composed of the light shielding metal layer form.
  • the display substrate further includes a common electrode layer disposed on the thin film transistor, and the 2D touch electrode is formed of the common electrode layer.
  • the three-dimensional touch is realized without significantly increasing the thickness of the display substrate. Control, thus facilitating the thinning of the three-dimensional touch display substrate.
  • the display substrate further includes a second signal derivation trace for deriving an electrical signal of the 2D touch electrode, the second signal derivation trace being formed by a source drain formed in the thin film transistor A metal layer is formed, and the second signal derivation trace is electrically connected to the 2D touch electrode through a via.
  • a via for connecting the first signal lead and the pressure sensitive electrode and a via for connecting the second signal lead and the 2D touch electrode are The projections on the substrate are not coincident.
  • the display substrate further includes a gate line formed of a metal layer (also referred to herein as a gate metal layer) forming a gate of the thin film transistor, the pressure sensitive electrode having the first a signal deriving a first electrode line facing the trace and a second electrode line facing the gate line formed by the gate metal layer, the first electrode lines being parallel to each other, the second electrode lines being parallel to each other, and The first electrode line and the second electrode line are interdigitated to form a grid-like structure.
  • a gate line formed of a metal layer (also referred to herein as a gate metal layer) forming a gate of the thin film transistor
  • the pressure sensitive electrode having the first a signal deriving a first electrode line facing the trace and a second electrode line facing the gate line formed by the gate metal layer, the first electrode lines being parallel to each other, the second electrode lines being parallel to each other, and The first electrode line and the second electrode line are interdigitated to form a grid-like structure.
  • each of the first electrode lines and each of the second electrode lines forms a node, and each of the first signals leads to a trace and The nodes on the first electrode line opposite thereto are electrically connected through the via holes.
  • the mesh openings in the grid-like structure of the pressure sensitive electrodes are in one-to-one correspondence with the pixel units of the display substrate.
  • the metal layer forming the source drain also forms a data line, the first signal derivation trace being parallel to the data line.
  • the thin film transistor includes: an active layer, a gate insulating layer, a gate metal layer, an interlayer insulating layer, a source/drain metal layer sequentially formed on a base substrate, and A buffer layer is disposed between the source layer and the light shielding metal layer.
  • an in-cell touch panel including any of the display substrates provided by the above technical solutions.
  • a display device including the in-cell touch panel provided by the above technical solution is provided.
  • FIG. 1 is a schematic structural diagram of a display substrate according to an embodiment of the present disclosure
  • FIG. 2 is a partial cross-sectional view showing a display substrate according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a 2D touch electrode in a display substrate according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a position of a via hole in a display substrate according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of a grid-like structure of a pressure sensitive electrode in a display substrate according to an embodiment of the present disclosure
  • FIG. 6 and FIG. 7 are partial cross-sectional views of a display substrate according to an embodiment of the present disclosure, wherein FIG. 6 is a cross-sectional view taken along line A-A' of FIG. 7;
  • FIG. 8 is a schematic diagram of a position of a via hole in a display substrate according to an embodiment of the present disclosure.
  • a display substrate includes a substrate substrate 1 and a light-shielding metal layer 2, a thin film transistor, a common electrode layer 9, a pixel electrode layer 12, and a common electrode layer 9 and a pixel which are sequentially formed on the base substrate 1.
  • the thin film transistor includes an active layer 6, a gate insulating layer 4, a gate metal layer 7, an interlayer insulating layer 5, and a source/drain metal layer 8 which are sequentially formed on the base substrate 1.
  • the light-shielding metal layer 2 serves to prevent the light generated by the light source under the display substrate from affecting the gate of the thin film transistor.
  • a buffer layer 3 is provided between the active layer 6 and the light-shielding metal layer 2 to prevent elements in the light-shielding metal layer 2 from diffusing into the active layer 6, resulting in an influence on the performance of the display substrate. Further, a flat layer 10 is provided between the common electrode layer 9 and the source/drain metal layer 8.
  • the display substrate further includes a 2D touch electrode 13 and a pressure sensitive electrode 15, wherein the 2D touch electrode 13 is formed by the common electrode layer 9 (FIG. 1), and the pressure sensitive electrode 15 is composed of the light shielding metal layer 2 (Fig. 1) Formation.
  • the display substrate further includes a first signal derivation trace 18 for deriving an electrical signal of the pressure sensitive electrode 15, the first signal deriving trace 18 being formed of a metal layer 8 (source/drain metal layer 8) forming a source and a drain in the thin film transistor.
  • FIG. 1) is formed, and the first signal lead-out line 18 is electrically connected to the pressure-sensitive electrode 15 through the via hole 16.
  • the extension surface of the display substrate is set to be the plane of the X-axis and the Y-axis in the coordinate system, and the touch driving module of the display substrate can determine the user in the X-axis and the Y-axis direction through the 2D touch electrode 13
  • the touch operation can determine the touch operation of the user in the Z-axis direction through the pressure sensitive electrode 15, thereby enabling 3D touch.
  • the pressure sensitive electrode 15 formed of the light-shielding metal layer 2 and the first signal lead-out trace 18 formed by the source/drain metal layer 8 are electrically connected through the via hole 16, thereby receiving the pressure sensitive electrode 15
  • the signal generated during the pressing is conducted to the touch driving module.
  • the resistivity of the source/drain metal layer 8 is much smaller than the resistivity of the light shielding metal layer 2, the first signal formed by the source/drain metal layer 8 leads to the trace 18 The resistance is greatly reduced, thereby reducing the load of the touch driving module and shortening the response time to the user operation.
  • the above display substrate realizes low-load three-dimensional touch by reducing the trace resistance, thereby improving the user experience.
  • the display substrate further includes a second signal deriving line 17 for deriving an electrical signal of the 2D touch electrode 13.
  • the second signal derivation line 17 is formed by forming the source and drain metal layer 8, and the second signal derivation line 17 and the 2D touch electrode 13 are electrically connected through the via hole 14, and the via hole 14 is connected to the second signal and is led out.
  • Line 17 and 2D touch electrode 13, and The 2D touch electrode 13 is led out to the touch driving module through the second signal lead-out line 17 , so that the signal sensed by the 2D touch electrode can be transmitted to the touch driving module.
  • the resistivity of the source/drain metal layer 8 is small, the trace resistance of the second signal deriving trace 17 formed by the metal layer 8 forming the source and drain electrodes is small, thereby reducing the connection with the 2D touch electrode 13.
  • the load of the touch drive module is small.
  • the display substrate can include a plurality of 2D touch electrodes 13 , a plurality of pressure sensitive electrodes 15 and corresponding plurality of via holes 14 , 16 , and the first and second signals are led out as needed. Line 17, 18.
  • the vias 16 of 15 do not coincide with the projections of the vias 14 for connecting the second signal deriving traces 17 and the 2D touch electrodes 13 on the base substrate 1 (the positional relationship in which such projections do not coincide in this case) Called the "misplacement" setting). Since the first signal derivation trace 18 and the second signal derivation trace 17 are both formed by the source/drain metal layer 8, the misalignment between the via 16 and the second via 14 can be avoided in the same layer.
  • the first signal lead-out line 18 and the second signal lead-out line 17 are connected to each other, thereby ensuring the stability and safety of the operation of the 2D touch electrode 13 and the pressure-sensitive electrode 15.
  • FIG. 5 illustrates a schematic view of a grid-like structure of a pressure sensitive electrode according to an embodiment of the present disclosure.
  • the pressure sensitive electrode 15 has a first electrode line 151 facing the first signal lead-out line 18 and a second electrode line 152 facing the gate line formed by the gate metal layer, the first electrode line The 151 are parallel to each other, the second electrode lines 152 are parallel to each other, and the first electrode lines 151 and the second electrode lines 152 are interdigitated to form a lattice structure.
  • the formed pressure sensitive electrode 15 includes two portions, and a plurality of mutually parallel first electrodes facing the first signal lead-out line.
  • the line 151 serves as a vertical pattern, and a plurality of mutually parallel second electrode lines 152 which are opposite to the gate lines formed by the gate metal layers serve as a lateral pattern.
  • the mesh in which the first electrode line 151 and the second electrode line 152 are alternately formed as a sensing pattern enables the pressure sensitive electrode 15 to detect the user's operation in the Z direction.
  • a first signal derivation trace is schematically shown. 18.
  • the first electrode line 151 of the pressure sensitive electrode 15 is directly opposite to the first signal lead-out line 18, only the first electrode line 151 and the first signal can be actually seen in the top view shown in FIG.
  • One of the traces 18 is derived while the other is occluded due to the pair.
  • the gate line is not shown in FIG. 5 because the gate line is opposite to the second electrode line 15 of the pressure sensitive electrode 15, so that only the second electrode can be actually seen in the top view shown in FIG.
  • One of the line 151 and the gate line (in this specific example, the second electrode line 151), while the other (in this specific example, the gate line) is blocked due to the pair.
  • FIG. 6 and 7 further illustrate in partial detail a schematic cross-sectional view of a display substrate provided by an embodiment of the present disclosure, wherein FIG. 6 is a cross-sectional view taken along line A-A' of FIG.
  • each of the strips An intersection between an electrode line 151 and the second electrode line 152 forms a node, and each of the first signal lead-out traces 18 and its corresponding node are electrically connected through the via hole 16.
  • the pressure sensitive electrode 15 having a grid-like structure is divided into small portions through a node, and then connected to the first signal lead-out trace 18 through the via hole 16 and led out to the touch driving module, and each resistor includes a trace resistance and The resistance of the small pressure sensitive electrode 15 and all the small portions are connected in parallel, so that the resistance of the entire pressure sensitive electrode 15 is greatly reduced, thereby further reducing the load of the touch driving module.
  • the mesh openings in the grid-like structure of the pressure sensitive electrode 15 are in one-to-one correspondence with the pixel units of the display substrate. Forming the pressure sensitive electrode 15 in units of pixels, and ensuring that the mesh opening in the mesh structure of the pressure sensitive electrode 15 is in one-to-one correspondence with the pixel unit of the display substrate, the reaction sensitivity of the pressure sensitive electrode 15 can be improved, thereby improving the user experience.
  • the traces in the display substrate are in the form of dual source traces, and the source and drain metal layers 8 also form data lines, and the first signal lead traces 18 are parallel to the data lines.
  • An embodiment of the present disclosure further provides an in-cell touch panel, including any of the display substrates provided by the above technical solutions. Since the display substrate can realize low-load three-dimensional touch and improve user experience, the user experience of the in-cell touch panel with the display substrate is better.
  • An embodiment of the present disclosure further provides a display device including the in-cell touch panel provided by the above technical solution, and a user experience of an in-cell touch panel having a display substrate is better, thereby enabling a display device including an in-cell touch panel. User experience is better.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Liquid Crystal (AREA)
  • Position Input By Displaying (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Push-Button Switches (AREA)

Abstract

一种显示基板、内嵌式触摸屏及显示装置,涉及触控技术领域。该显示基板,包括薄膜晶体管、2D触控电极(13)和压感电极(15),以及用于导出压感电极(15)的电信号的第一信号导出走线(18),第一信号导出走线(18)由形成薄膜晶体管中的源漏极的金属层(8)形成,第一信号导出走线(18)与压感电极(15)通过过孔(16)电连接。

Description

一种显示基板、内嵌式触摸屏及显示装置 技术领域
本公开涉及触控技术领域,尤其涉及一种显示基板、内嵌式触摸屏及显示装置。
背景技术
目前,触控技术已经成为手机应用必不可少的部分,而现有液晶显示面板的触控技术多数是采用二维结构,用户通过二维平面上的XY方向上的操作实现与手机屏幕的互动。
随着手机功能的多样化以及智能化,三维触控成为了未来的发展趋势,相较于二维触控用户只能在液晶显示面板上进行X位置和Y位置的操作,无法感应出用户手指下压的力道,三维触控能够将用户手指下压的深度Z位置传达给手机以使手机给出相应的反应,使得液晶显示面板变得更加智能。
但是随着液晶显示面板在XYZ三个方向上均能够实现操作智能化的同时,也不可避免的伴随有负载过大的问题,由于传感器的增多,导致电阻过大,使得负载过大,导致用户操作体验的舒适度下降,影响了三维触控技术的市场应用,因此,设计一种能够实现低负载三维触控的液晶显示面板就显得尤为重要。
发明内容
本公开提供一种显示基板、内嵌式触摸屏及显示装置。该显示基板通过降低走线电阻实现低负载的三维触控,提升用户体验。
在本公开的第一方面中,提供了一种显示基板,包括薄膜晶体管、2D触控电极和压感电极,以及用于导出所述压感电极的电信号的第一信号导出走线,所述第一信号导出走线由形成所述薄膜晶体管中的源漏极的金属层形成,所述第一信号导出走线与所述压感电极通过过孔电连接
在上述显示基板中,设定显示基板的延展面为坐标系中X轴和Y轴所在平面,显示基板的触控驱动模块能够通过2D触控电极判断用户在X轴、Y轴方向上的触控操作,且能够通过压感电极判断用户在Z 轴方向上的触控操作,进而能够实现3D触控。在上述显示基板中,压感电极与由源漏极金属层形成的第一信号导出走线之间通过过孔电连接,进而将压感电极受压时产生的信号传导至触控驱动模块。由于源漏极金属层的电阻率远小于压感电极的电阻率,故由源漏极金属层形成的第一信号导出走线的电阻大大降低,进而减低触控驱动模块的负载,缩短对用户操作的反应时间。
因此,上述显示基板通过降低走线电阻实现低负载的三维触控,提升用户体验。
在一些实施例中,显示基板还包括衬底基板和遮光金属层,所述遮光金属层和所述薄膜晶体管依次布置在所述衬底基板上,并且所述压感电极由所述遮光金属层形成。
在一些实施例中,显示基板还包括布置在所述薄膜晶体管上的公共电极层,并且所述2D触控电极由所述公共电极层形成。
在上述实施例中,通过使压感电极与遮光金属层同层形成,和/或使2D触控电极与公共电极层同层形成,在不明显增加显示基板的厚度的情况下,实现三维触控,因而有利于三维触控显示基板的轻薄化。
在一些实施例中,显示基板还包括用于导出所述2D触控电极的电信号的第二信号导出走线,所述第二信号导出走线由形成所述薄膜晶体管中的源漏极的金属层形成,且所述第二信号导出走线与所述2D触控电极之间通过过孔电连接。
在一些实施例中,用于连接所述第一信号导出走线与所述压感电极的过孔与用于连接所述第二信号导出走线与所述2D触控电极的过孔在所述衬底基板上的投影不重合。
在一些实施例中,显示基板还包括由形成所述薄膜晶体管的栅极的金属层(在本文中还称为栅极金属层)形成的栅线,所述压感电极具有与所述第一信号导出走线正对的第一电极线和与所述栅极金属层形成的栅线正对的第二电极线,所述第一电极线相互平行,所述第二电极线相互平行,并且所述第一电极线和第二电极线相互交错以形成网格状结构。
在一些实施例中,在具有网格状结构的压感电极中,每一条第一电极线与每一条第二电极线之间的交点形成一个结点,且每一条第一信号导出走线和与其正对的第一电极线上的结点通过过孔电连接。
在一些实施例中,所述压感电极的网格状结构中的网格开口与所述显示基板的像素单元一一对应。
在一些实施例中,形成所述源漏极的金属层(在本文中还称为源漏极金属层)还形成数据线,所述第一信号导出走线与所述数据线平行。
在一些实施例中,所述薄膜晶体管包括:依次形成在衬底基板上的有源层、栅极绝缘层、栅极金属层、层间绝缘层、源漏极金属层,并且在所述有源层与所述遮光金属层之间设有缓冲层。
在本公开的第二方面中,提供了一种内嵌式触摸屏,包括上述技术方案提供的任一种显示基板。
在本公开的第三方面中,提供了一种显示装置,包括上述技术方案提供的内嵌式触摸屏。
附图说明
图1为本公开的实施例提供的一种显示基板的结构示意图;
图2为本公开的实施例提供的一种显示基板的部分截面示意图;
图3为本公开的实施例提供的一种显示基板中2D触控电极的示意图;
图4为本公开的实施例提供的一种显示基板中过孔的位置示意图;
图5为本公开的实施例提供的一种显示基板中压感电极的网格状结构示意图;
图6和图7分别为本公开的实施例提供的一种显示基板的部分截面示意图,其中图6为沿图7中的A-A’线的截面图;
图8为本公开的实施例提供的一种显示基板中过孔的位置示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
如图1,一种显示基板,包括衬底基板1以及依次形成在衬底基板1上的遮光金属层2、薄膜晶体管、公共电极层9、像素电极层12以及夹在公共电极层9与像素电极层12之间的绝缘层11。薄膜晶体管包括依次形成在衬底基板1上的有源层6、栅极绝缘层4、栅极金属层7、层间绝缘层5、源漏极金属层8。遮光金属层2用于防止显示基板下方的光源所产生的光对薄膜晶体管的栅极的影响。在有源层6与遮光金属层2之间设有缓冲层3,用以防止遮光金属层2中的元素扩散到有源层6中,从而导致对显示基板的性能的影响。另外,在公共电极层9与源漏极金属层8之间设有平坦层10。
如图2所示,显示基板还包括2D触控电极13和压感电极15,其中2D触控电极13由公共电极层9(图1)形成,并且压感电极15由遮光金属层2(图1)形成。显示基板还包括用于导出压感电极15的电信号的第一信号导出走线18,第一信号导出走线18由形成薄膜晶体管中的源漏极的金属层8(源漏极金属层8,图1)形成,第一信号导出走线18与压感电极15通过过孔16电连接。
在上述显示基板中,设定显示基板的延展面为坐标系中X轴和Y轴所在平面,显示基板的触控驱动模块能够通过2D触控电极13判断用户在X轴、Y轴方向上的触控操作,且能够通过压感电极15判断用户在Z轴方向上的触控操作,进而能够实现3D触控。在上述显示基板中,由遮光金属层2形成的压感电极15与由源漏极金属层8形成的第一信号导出走线18之间通过过孔16电连接,进而将压感电极15受压时产生的信号传导至触控驱动模块,由于源漏极金属层8的电阻率远小于遮光金属层2的电阻率,故由源漏极金属层8形成的第一信号导出走线18的电阻大大降低,进而减低触控驱动模块的负载,缩短了对用户操作的响应时间。
因此,上述显示基板通过降低走线电阻实现低负载的三维触控,提升用户体验。
在上述显示基板的基础上为了进一步减小触控驱动模块的负载,如图2以及图3所示,显示基板还包括用于导出2D触控电极13的电信号的第二信号导出走线17,第二信号导出走线17由形成源漏极金属层8形成,且第二信号导出走线17与2D触控电极13之间通过过孔14电连接,过孔14连通第二信号导出走线17和2D触控电极13,且 2D触控电极13通过第二信号导出走线17引出至触控驱动模块,进而能够将2D触控电极感应到的信号传导至触控驱动模块。由于源漏极金属层8的电阻率较小,由形成源漏极的金属层8形成的第二信号导出走线17的走线电阻较小,因而减小了与2D触控电极13相连的触控驱动模块的负载。
应当指出的是,尽管在图2中示意性地图示了单个2D触控电极13、单个压感电极15、与单个2D触控电极13对应的单个过孔14和第二信号导出走线17,以及与单个压感电极15对应的单个过孔16和第一信号导出走线18,但是图2仅图示了显示基板的一部分。如本领域技术人员将领会到的,显示基板可以根据需要而包括多个2D触控电极13、多个压感电极15以及对应的多个过孔14,16、第一和第二信号导出走线17,18。
在上述显示基板的基础上,为了保证2D触控电极13以及压感电极15工作的稳定性,具体地,如图2以及4所示,用于连接第一信号导出走线18与压感电极15的过孔16与用于连接第二信号导出走线17与2D触控电极13的过孔14在衬底基板1上的投影不重合(在本文中还将这种投影不重合的位置关系称为“错位”设置)。由于第一信号导出走线18和第二信号导出走线17都是由源漏极金属层8形成的,因此,通过过孔16和第二过孔14之间的错位设置能够避免处于同一层的第一信号导出走线18和第二信号导出走线17之间相连通,进而保证了2D触控电极13以及压感电极15工作的稳定性以及安全性。
图5图示了根据本公开的实施例的压感电极的网格状结构示意图。如图5所示,压感电极15具有与第一信号导出走线18正对的第一电极线151、与栅极金属层形成的栅线正对的第二电极线152,第一电极线151相互平行,第二电极线152相互平行,并且第一电极线151和第二电极线152相互交错以形成网格结构。在用于检测用户在XY方向上的操作的2D触控电极13的基础上,所形成的压感电极15包括两部分,与第一信号导出走线正对的多条相互平行的第一电极线151作为纵向图形,与栅极金属层形成的栅线正对的多条相互平行的第二电极线152作为横向图形。第一电极线151与第二电极线152相互交错形成的网格作为感应图形能够使压感电极15检测用户在Z方向上的操作。应当指出的是,在图5中,示意性地示出一条第一信号导出走线 18。实际上,由于压感电极15的第一电极线151与第一信号导出走线18正对,因此在图5所示的顶视图中实际上只能看到第一电极线151和第一信号导出走线18中的一者,而另一者由于正对而被遮挡。同理,在图5中并未示出栅线,因为栅线与压感电极15的第二电极线15正对,因此在图5所示的顶视图中实际上只能看到第二电极线151和栅线中的一者(在该具体示例中,第二电极线151),而另一者(在该具体示例中,栅线)由于正对而被遮挡。
图6和图7进一步地详细图示了本公开的实施例提供的显示基板的部分截面示意图,其中图6为沿图7中的A-A’线的截面图。
在上述压感电极15的基础上,为了进一步降低压感电极15的电阻以降低触控驱动模块的负载,如图8所示,在具有网格状结构的压感电极15中,每一条第一电极线151与第二电极线152之间的交点形成一个结点,且每一条第一信号导出走线18和其对应的结点之间均通过过孔16电连接。将具有网格状结构的压感电极15通过节点分割成小份,然后通过过孔16与第一信号导出走线18相连且引出至触控驱动模块,每一份的电阻包括走线电阻和小份的压感电极15的电阻,所有小份相并联,使得整个压感电极15的电阻大大减小,进而使触控驱动模块的负载大大减小。
具体地,压感电极15的网格状结构中的网格开口与显示基板的像素单元一一对应。以像素为单位形成压感电极15,且保证压感电极15的网格状结构中的网格开口与显示基板的像素单元一一对应可以提高压感电极15的反应灵敏度,进而提高用户体验。
上述显示基板中的走线采用双源走线的方式,源漏极金属层8还形成数据线,第一信号导出走线18与数据线平行。
本公开的实施例还提供了一种内嵌式触摸屏,包括上述技术方案提供的任一种显示基板。由于显示基板能够实现低负载的三维触控,提升用户体验,因此具有显示基板的内嵌式触摸屏的用户体验较好。
本公开的实施例还提供了一种显示装置,包括上述技术方案提供的内嵌式触摸屏,而具有显示基板的内嵌式触摸屏的用户体验较好,进而使得包括内嵌式触摸屏的显示装置的用户体验较好。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变 型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (12)

  1. 一种显示基板,包括薄膜晶体管、2D触控电极和压感电极,以及用于导出所述压感电极的电信号的第一信号导出走线,所述第一信号导出走线由形成所述薄膜晶体管中的源漏极的金属层形成,所述第一信号导出走线与所述压感电极通过过孔电连接。
  2. 根据权利要求1所述的显示基板,还包括衬底基板和遮光金属层,所述遮光金属层和所述薄膜晶体管依次布置在所述衬底基板上,并且所述压感电极由所述遮光金属层形成。
  3. 根据权利要求1或2所述的显示基板,还包括布置在所述薄膜晶体管上的公共电极层,并且所述2D触控电极由所述公共电极层形成。
  4. 根据权利要求1所述的显示基板,还包括用于导出所述2D触控电极的电信号的第二信号导出走线,所述第二信号导出走线由形成所述薄膜晶体管中的源漏极的金属层形成,且所述第二信号导出走线与所述2D触控电极之间通过过孔电连接。
  5. 根据权利要求4所述的显示基板,其中,用于连接所述第一信号导出走线与所述压感电极的过孔与用于连接所述第二信号导出走线与所述2D触控电极的过孔在所述衬底基板上的投影不重合。
  6. 根据权利要求1所述的显示基板,还包括由形成所述薄膜晶体管的栅极的金属层形成的栅线,所述压感电极具有与所述第一信号导出走线正对的第一电极线和与所述栅线正对的第二电极线,所述第一电极线相互平行,所述第二电极线相互平行,并且所述第一电极线和第二电极线相互交错以形成网格状结构。
  7. 根据权利要求6所述的显示基板,其中,在具有网格状结构的压感电极中,每一条第一电极线与每一条第二电极线之间的交点形成一个结点,且每一条第一信号导出走线和与其正对的第一电极线上的结点通过过孔电连接。
  8. 根据权利要求6所述的显示基板,其中,所述压感电极的网格状结构中的网格开口与所述显示基板的像素单元一一对应。
  9. 根据权利要求1所述的显示基板,其中,形成所述源漏极的金属层还形成数据线,所述第一信号导出走线与所述数据线平行。
  10. 根据权利要求2-9任一项所述的显示基板,其中,所述薄膜晶体管包括:依次形成在衬底基板上的有源层、栅极绝缘层、栅极金属层、层间绝缘层、源漏极金属层,并且在所述有源层与所述遮光金属层之间设有缓冲层。
  11. 一种内嵌式触摸屏,包括如权利要求1-10所述的显示基板。
  12. 一种显示装置,包括如权利要求11所述的内嵌式触摸屏。
PCT/CN2016/084699 2016-03-15 2016-06-03 一种显示基板、内嵌式触摸屏及显示装置 WO2017156889A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/526,975 US10579182B2 (en) 2016-03-15 2016-06-03 Display substrate, in-cell touch screen and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610147600.X 2016-03-15
CN201610147600.XA CN105824469B (zh) 2016-03-15 2016-03-15 一种显示基板、内嵌式触摸屏及显示装置

Publications (1)

Publication Number Publication Date
WO2017156889A1 true WO2017156889A1 (zh) 2017-09-21

Family

ID=56987270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/084699 WO2017156889A1 (zh) 2016-03-15 2016-06-03 一种显示基板、内嵌式触摸屏及显示装置

Country Status (3)

Country Link
US (1) US10579182B2 (zh)
CN (1) CN105824469B (zh)
WO (1) WO2017156889A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106292035B (zh) * 2016-09-22 2018-05-08 京东方科技集团股份有限公司 压感显示面板及其制造方法、压感显示装置
KR102521058B1 (ko) 2018-05-18 2023-04-12 삼성디스플레이 주식회사 터치 센서 및 표시 장치
WO2020003364A1 (ja) * 2018-06-26 2020-01-02 凸版印刷株式会社 ブラックマトリクス基板及び表示装置
CN111367436B (zh) * 2020-03-30 2024-08-13 福建华佳彩有限公司 一种触控显示结构
CN113157150B (zh) * 2021-03-19 2023-07-25 武汉华星光电半导体显示技术有限公司 一种触控模组及显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100004324A (ko) * 2008-07-03 2010-01-13 한국과학기술원 3차원 신호 처리가 가능한 터치스크린
US20110291977A1 (en) * 2009-01-26 2011-12-01 Sharp Kabushiki Kaisha Touch panel incorporating display device
CN104220964A (zh) * 2010-12-24 2014-12-17 石墨烯广场株式会社 用于同时检测压力和位置的使用石墨烯的触摸传感器
CN204557438U (zh) * 2014-02-05 2015-08-12 Lg伊诺特有限公司 触摸窗
CN204833200U (zh) * 2015-06-10 2015-12-02 宸鸿科技(厦门)有限公司 触控装置
CN204965385U (zh) * 2015-10-15 2016-01-13 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
CN204990228U (zh) * 2015-06-10 2016-01-20 宸鸿科技(厦门)有限公司 触控装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4799237B2 (ja) * 2006-03-27 2011-10-26 三洋電機株式会社 変位検出センサ、変位検出装置及び端末装置
KR101297387B1 (ko) * 2006-11-09 2013-08-19 삼성디스플레이 주식회사 터치 패널 일체형 액정 표시 장치
KR102024782B1 (ko) * 2012-12-27 2019-09-24 엘지디스플레이 주식회사 터치센서 일체형 표시장치
JP2015056005A (ja) * 2013-09-11 2015-03-23 ソニー株式会社 センサ装置、入力装置及び電子機器
US9910530B2 (en) * 2015-02-27 2018-03-06 Panasonic Liquid Crystal Display Co., Ltd. Display panel with touch detection function
CN106502444B (zh) * 2015-09-03 2019-03-19 敦泰电子股份有限公司 触控显示装置及其驱动方法以及压力检测方法
TWI564771B (zh) * 2015-10-21 2017-01-01 敦泰電子股份有限公司 觸控顯示裝置及其驅動方法
US20170249030A1 (en) * 2016-02-29 2017-08-31 Stmicroelectronics Asia Pacific Pte Ltd Force sensor patterns

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100004324A (ko) * 2008-07-03 2010-01-13 한국과학기술원 3차원 신호 처리가 가능한 터치스크린
US20110291977A1 (en) * 2009-01-26 2011-12-01 Sharp Kabushiki Kaisha Touch panel incorporating display device
CN104220964A (zh) * 2010-12-24 2014-12-17 石墨烯广场株式会社 用于同时检测压力和位置的使用石墨烯的触摸传感器
CN204557438U (zh) * 2014-02-05 2015-08-12 Lg伊诺特有限公司 触摸窗
CN204833200U (zh) * 2015-06-10 2015-12-02 宸鸿科技(厦门)有限公司 触控装置
CN204990228U (zh) * 2015-06-10 2016-01-20 宸鸿科技(厦门)有限公司 触控装置
CN204965385U (zh) * 2015-10-15 2016-01-13 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置

Also Published As

Publication number Publication date
CN105824469A (zh) 2016-08-03
CN105824469B (zh) 2018-10-30
US20180059848A1 (en) 2018-03-01
US10579182B2 (en) 2020-03-03

Similar Documents

Publication Publication Date Title
WO2017156889A1 (zh) 一种显示基板、内嵌式触摸屏及显示装置
CN105677111B (zh) 一种阵列基板及显示面板
JP6430536B2 (ja) インセルタッチパネル及び表示装置
CN103676264B (zh) 用金属线连接触控感应层电极的内嵌式触控显示面板系统
WO2015180356A1 (zh) 电容式触摸结构、内嵌式触摸屏、显示装置及其扫描方法
WO2017004986A1 (zh) 触控显示面板及其制作方法、触控显示装置
TWI654549B (zh) Touch screen, touch display device and display driving method
WO2015180321A1 (zh) 内嵌式触摸屏及显示装置
WO2015180312A1 (zh) 内嵌式触摸屏及显示装置
WO2015158083A1 (zh) 触摸屏及显示装置
WO2015180313A1 (zh) 内嵌式触摸屏及显示装置
CN103885660B (zh) 一种内嵌式触摸屏及显示装置
WO2015180359A1 (zh) 阵列基板及其制作方法、以及显示装置
US20130176234A1 (en) Touch panel and a manufacturing method thereof
WO2018040233A1 (zh) 具有触控感测器的液晶显示装置及其驱动方法
WO2018223689A1 (zh) 一种阵列基板、显示面板及显示装置
WO2015180315A1 (zh) 电容式触摸结构、内嵌式触摸屏、显示装置及其扫描方法
WO2018205660A1 (zh) 一种触控基板、触控显示面板和触控显示装置
TW201510812A (zh) 內建觸控感測器之顯示裝置及端子連接構造
CN105094414A (zh) 集成有触摸传感器的显示装置
TW201335813A (zh) 單層觸摸感測器的信號圖案結構
WO2017045222A1 (zh) 一种触摸面板、阵列基板及其制造方法
JP2020501205A (ja) タッチスクリーン、表示装置及びタッチパネル
JP2015520898A (ja) 投影式容量性タッチスクリーン及びその製造方法
CN106843591B (zh) 一种触控面板、其制作方法及触控显示装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894051

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16894051

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 160519)

122 Ep: pct application non-entry in european phase

Ref document number: 16894051

Country of ref document: EP

Kind code of ref document: A1