WO2017155238A1 - 시스템 정보 신호 수신 방법 및 사용자기기와, 시스템 정보 신호 전송 방법 및 기지국 - Google Patents

시스템 정보 신호 수신 방법 및 사용자기기와, 시스템 정보 신호 전송 방법 및 기지국 Download PDF

Info

Publication number
WO2017155238A1
WO2017155238A1 PCT/KR2017/002243 KR2017002243W WO2017155238A1 WO 2017155238 A1 WO2017155238 A1 WO 2017155238A1 KR 2017002243 W KR2017002243 W KR 2017002243W WO 2017155238 A1 WO2017155238 A1 WO 2017155238A1
Authority
WO
WIPO (PCT)
Prior art keywords
prach
random access
system information
resource
transmission
Prior art date
Application number
PCT/KR2017/002243
Other languages
English (en)
French (fr)
Inventor
김은선
김기준
양석철
고현수
이윤정
이길봄
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=59789535&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017155238(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/084,078 priority Critical patent/US20200305197A1/en
Priority to EP17763500.0A priority patent/EP3419340B1/en
Priority to KR1020187026304A priority patent/KR102145743B1/ko
Publication of WO2017155238A1 publication Critical patent/WO2017155238A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • H04W74/085Random access procedures, e.g. with 4-step access with collision treatment collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/14Access restriction or access information delivery, e.g. discovery data delivery using user query or user detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0838Random access procedures, e.g. with 4-step access using contention-free random access [CFRA]

Definitions

  • the present invention relates to a wireless communication system.
  • it relates to a method and apparatus for receiving / transmitting system information.
  • M2M smartphone-to-machine communication
  • smart phones and tablet PCs which require high data transmission rates
  • M2M smartphone-to-machine communication
  • carrier aggregation technology, cognitive radio technology, etc. to efficiently use more frequency bands, and the like, increase the data capacity transmitted within a limited frequency.
  • Multi-antenna technology, multi-base station cooperation technology, and the like are developing.
  • a typical wireless communication system performs data transmission / reception over one downlink (DL) band and one uplink (UL) band corresponding thereto (frequency division duplex (FDD) mode). Or a predetermined radio frame divided into an uplink time unit and a downlink time unit in a time domain, and perform data transmission / reception through uplink / downlink time units (time division duplex). (for time division duplex, TDD) mode).
  • a base station (BS) and a user equipment (UE) transmit and receive data and / or control information scheduled in a predetermined time unit, for example, a subframe (SF). Data is transmitted and received through the data area set in the uplink / downlink subframe, and control information is transmitted and received through the control area set in the uplink / downlink subframe.
  • the carrier aggregation technique can collect a plurality of uplink / downlink frequency blocks to use a wider frequency band and use a larger uplink / downlink bandwidth, so that a greater amount of signals can be processed simultaneously than when a single carrier is used. .
  • a node is a fixed point capable of transmitting / receiving a radio signal with a UE having one or more antennas.
  • a communication system having a high density of nodes can provide higher performance communication services to the UE by cooperation between nodes.
  • mMTC massive machine type communication
  • system information is transmitted at the request of the user equipment.
  • a random access channel resource is set for the system information request.
  • the user device may transmit a random access channel using the random access channel resource.
  • the base station receives the random access channel using the random access channel resources set for the system information request, it can transmit the corresponding system information.
  • a method for a user equipment to receive a system information signal includes: receiving first information indicating a random access channel resource for a system information request; Transmitting a random access channel for the system information request using the random access channel resource; And attempting to receive system information after transmitting the random access channel.
  • a method is provided by a base station for transmitting a system information signal.
  • the method includes: transmitting first information indicating a random access channel resource for a system information request; And transmitting system information when receiving a random access channel for the system information request by using the random access channel resource.
  • a user equipment for receiving a system information signal comprises a radio frequency (RF) unit and a processor configured to control the RF unit.
  • the processor further comprises: controlling the RF unit to receive first information indicating a random access channel resource for a system information request; Control the RF unit to transmit a random access channel for the system information request using the random access channel resource; And control the RF unit to receive system information after transmitting the random access channel.
  • RF radio frequency
  • a base station for transmitting a system information signal.
  • the base station includes a radio frequency (RF) unit and a processor configured to control the RF unit.
  • the processor further comprises: controlling the RF unit to transmit first information indicating a random access channel resource for a system information request; And controlling the RF unit to transmit system information upon receiving the random access channel for the system information request using the random access channel resource.
  • RF radio frequency
  • second information indicating a system information update may be transmitted to the user equipment.
  • the random access channel may be transmitted after receiving the second information.
  • the first information may be transmitted or received through a synchronization signal or a broadcast signal.
  • the random access channel resource may be a time-frequency resource or a random access sequence reserved for the system information request.
  • the random access channel may carry a random access message with indication information indicating that the random transport channel is for the system information request.
  • the wireless communication signal can be efficiently transmitted / received. Accordingly, the overall throughput of the wireless communication system can be high.
  • delays / delays generated in the communication process between the user equipment and the base station may be reduced.
  • the adaptive amount of data can be efficiently transmitted / received or data generated at a low frequency can be efficiently transmitted / received.
  • Signals can also be transmitted / received in systems that support new radio access technologies.
  • FIG. 1 illustrates an example of a radio frame structure used in an LTE / LTE-A based wireless communication system.
  • FIG. 2 illustrates an example of a downlink (DL) / uplink (UL) slot structure in an LTE / LTE-A based wireless communication system.
  • FIG. 3 illustrates a radio frame structure for transmission of a synchronization signal (SS) in an LTE / LTE-A based wireless communication system.
  • SS synchronization signal
  • FIG. 4 illustrates a downlink (DL) subframe structure used in an LTE / LTE-A based wireless communication system.
  • FIG. 5 shows an example of an uplink (UL) subframe structure used in an LTE / LTE-A based wireless communication system.
  • FIG. 6 shows an example of a short TTI and an example of transmission of a control channel and a data channel in the short TTI.
  • FIG. 9 shows an example of a time point and a resource region in which a PSS / SSS / PBCH is transmitted in a new system.
  • FIG. 10 shows examples of a method of transmitting a synchronization signal in a new system.
  • FIG. 11 shows an example of transmission / reception of system information according to the present invention.
  • FIG. 13 illustrates a format of a random access response message according to the present invention.
  • 15 is a block diagram showing the components of the transmitter 10 and the receiver 20 for carrying out the present invention.
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA).
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • MCD division multiple access
  • MCDMA multi-carrier frequency division multiple access
  • CDMA may be implemented in a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented in radio technologies such as Global System for Mobile Communication (GSM), General Packet Radio Service (GPRS), Enhanced Data Rates for GSM Evolution (EDGE) (i.e., GERAN), and the like.
  • GSM Global System for Mobile Communication
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in wireless technologies such as Institute of Electrical and Electronics Engineers (IEEE) 802.11 (WiFi), IEEE 802.16 (WiMAX), IEEE802-20, evolved-UTRA (E-UTRA), and the like.
  • IEEE Institute of Electrical and Electronics Engineers
  • WiFi WiFi
  • WiMAX WiMAX
  • IEEE802-20 evolved-UTRA
  • UTRA is part of Universal Mobile Telecommunication System (UMTS)
  • 3GPP 3rd Generation Partnership Project
  • LTE Long Term Evolution
  • 3GPP LTE adopts OFDMA in downlink (DL) and SC-FDMA in uplink (UL).
  • LTE-advanced (LTE-A) is an evolution of 3GPP LTE. For convenience of explanation, hereinafter, it will be described on the assumption that the present invention is applied to 3GPP LTE / LTE-A.
  • an eNB allocates a downlink / uplink time / frequency resource to a UE, and the UE receives a downlink signal according to the allocation of the eNB and transmits an uplink signal.
  • it can be applied to contention-based communication such as WiFi.
  • an access point (AP) or a control node controlling the access point allocates resources for communication between a UE and the AP, whereas a competition-based communication technique connects to an AP. Communication resources are occupied through contention among multiple UEs that are willing to.
  • CSMA carrier sense multiple access
  • MAC probabilistic media access control
  • the transmitting device determines if another transmission is in progress before attempting to send traffic to the receiving device. In other words, the transmitting device attempts to detect the presence of a carrier from another transmitting device before attempting to transmit. When the carrier is detected, the transmission device waits for transmission to be completed by another transmission device in progress before initiating its transmission.
  • CSMA is a communication technique based on the principle of "sense before transmit” or “listen before talk”.
  • Carrier Sense Multiple Access with Collision Detection (CSMA / CD) and / or Carrier Sense Multiple Access with Collision Avoidance (CSMA / CA) are used as a technique for avoiding collision between transmission devices in a contention-based communication system using CSMA.
  • CSMA / CD is a collision detection technique in a wired LAN environment. First, a PC or a server that wants to communicate in an Ethernet environment checks if a communication occurs on the network, and then another device If you are sending on the network, wait and send data.
  • CSMA / CD monitors the collisions to allow flexible data transmission.
  • a transmission device using CSMA / CD detects data transmission by another transmission device and adjusts its data transmission using a specific rule.
  • CSMA / CA is a media access control protocol specified in the IEEE 802.11 standard.
  • WLAN systems according to the IEEE 802.11 standard use a CA, that is, a collision avoidance method, without using the CSMA / CD used in the IEEE 802.3 standard.
  • the transmitting devices always detect the carrier of the network, and when the network is empty, wait for a certain amount of time according to their location on the list and send the data.
  • Various methods are used to prioritize and reconfigure transmission devices within a list.
  • a collision may occur, in which a collision detection procedure is performed.
  • Transmission devices using CSMA / CA use specific rules to avoid collisions between data transmissions by other transmission devices and their data transmissions.
  • the expression “assuming” may mean that the subject transmitting the channel transmits the channel so as to correspond to the "assuming”.
  • the subject receiving the channel may mean that the channel is received or decoded in a form conforming to the "home", provided that the channel is transmitted to conform to the "home”.
  • a channel is punctured in a specific resource except that a signal of the channel is mapped to the specific resource in the resource mapping process of the channel, but a signal portion mapped to the punctured resource is transmitted when the channel is transmitted.
  • a specific resource to be punctured is counted as a resource of the corresponding channel in the resource mapping process of the corresponding channel, a signal mapped to the specific resource among the signals of the corresponding channel is not actually transmitted.
  • the receiving device of the corresponding channel receives, demodulates or decodes the corresponding channel on the assumption that the signal portion mapped to the punctured specific resource is not transmitted.
  • the rate-matching of a channel in a specific resource means that the channel is not mapped to the specific resource at all in the resource mapping process of the channel and thus is not used for transmission of the channel.
  • a rate-matched specific resource is not counted as a resource of the corresponding channel at all in the resource mapping process of the corresponding channel.
  • the receiving device of the corresponding channel receives, demodulates, or decodes the corresponding channel, assuming that a rate-matched specific resource is not used for mapping and transmission of the corresponding channel.
  • the UE may be fixed or mobile, and various devices which communicate with a base station (BS) to transmit and receive user data and / or various control information belong to the same.
  • BS Base station
  • UE Terminal Equipment
  • MS Mobile Station
  • MT Mobile Terminal
  • UT User Terminal
  • SS Subscribe Station
  • wireless device PDA (Personal Digital Assistant), wireless modem
  • a BS generally refers to a fixed station communicating with the UE and / or another BS, and communicates with the UE and another BS to exchange various data and control information.
  • the BS may be referred to in other terms such as ABS (Advanced Base Station), Node-B (NB), evolved-NodeB (NB), Base Transceiver System (BTS), Access Point, and Processing Server (PS).
  • ABS Advanced Base Station
  • NB Node-B
  • NB evolved-NodeB
  • BTS Base Transceiver System
  • PS Access Point
  • eNB Processing Server
  • a node refers to a fixed point capable of transmitting / receiving a radio signal by communicating with a UE.
  • Various forms of eNBs may be used as nodes regardless of their names.
  • a node may be a BS, an NB, an eNB, a pico-cell eNB (PeNB), a home eNB (HeNB), a relay, a repeater, or the like.
  • the node may not be an eNB.
  • it may be a radio remote head (RRH), a radio remote unit (RRU).
  • RRH, RRU, etc. generally have a power level lower than the power level of the eNB.
  • RRH or RRU, RRH / RRU is generally connected to the eNB by a dedicated line such as an optical cable
  • RRH / RRU and eNB are generally compared to cooperative communication by eNBs connected by a wireless line.
  • cooperative communication can be performed smoothly.
  • At least one antenna is installed at one node.
  • the antenna may mean a physical antenna or may mean an antenna port, a virtual antenna, or an antenna group. Nodes are also called points.
  • a cell refers to a certain geographic area in which one or more nodes provide communication services. Therefore, in the present invention, communication with a specific cell may mean communication with an eNB or a node that provides a communication service to the specific cell.
  • the downlink / uplink signal of a specific cell means a downlink / uplink signal from / to an eNB or a node that provides a communication service to the specific cell.
  • the cell providing uplink / downlink communication service to the UE is particularly called a serving cell.
  • the channel state / quality of a specific cell means a channel state / quality of a channel or communication link formed between an eNB or a node providing a communication service to the specific cell and a UE.
  • the UE transmits a downlink channel state from a specific node to a CRS in which antenna port (s) of the specific node are transmitted on a Cell-specific Reference Signal (CRS) resource allocated to the specific node. It may be measured using the CSI-RS (s) transmitted on the (s) and / or Channel State Information Reference Signal (CSI-RS) resources.
  • CRS Cell-specific Reference Signal
  • the 3GPP LTE / LTE-A system uses the concept of a cell to manage radio resources.
  • Cells associated with radio resources are distinguished from cells in a geographic area.
  • a "cell” in a geographic area may be understood as coverage in which a node can provide services using a carrier, and a "cell” of radio resources is a bandwidth (frequency) that is a frequency range configured by the carrier. bandwidth, BW).
  • Downlink coverage which is a range in which a node can transmit valid signals
  • uplink coverage which is a range in which a valid signal can be received from a UE, depends on a carrier carrying the signal, so that the coverage of the node is determined by the radio resources used by the node. It is also associated with the coverage of the "cell”.
  • the term "cell” can sometimes be used to mean coverage of a service by a node, sometimes a radio resource, and sometimes a range within which a signal using the radio resource can reach a valid strength.
  • a "cell" associated with a radio resource is defined as a combination of DL resources and UL resources, that is, a combination of a DL component carrier (CC) and a UL CC.
  • the cell may be configured with DL resources alone or with a combination of DL resources and UL resources.
  • the linkage between the carrier frequency of the DL resource (or DL CC) and the carrier frequency of the UL resource (or UL CC) is indicated by system information.
  • SIB2 System Information Block Type 2
  • the carrier frequency means a center frequency of each cell or CC.
  • a cell operating on a primary frequency is referred to as a primary cell (Pcell) or a PCC
  • a cell operating on a secondary frequency (or SCC) is referred to as a secondary cell.
  • cell, Scell) or SCC The carrier corresponding to the Pcell in downlink is called a DL primary CC (DL PCC), and the carrier corresponding to the Pcell in the uplink is called a UL primary CC (DL PCC).
  • Scell refers to a cell that can be configured after RRC (Radio Resource Control) connection establishment is made and can be used for providing additional radio resources.
  • RRC Radio Resource Control
  • the Scell may form a set of serving cells for the UE with the Pcell.
  • the carrier corresponding to the Scell in downlink is called a DL secondary CC (DL SCC)
  • the carrier corresponding to the Scell in the uplink is called a UL secondary CC (UL SCC).
  • DL SCC DL secondary CC
  • UL SCC UL secondary CC
  • the 3GPP LTE / LTE-A standard corresponds to downlink physical channels corresponding to resource elements carrying information originating from an upper layer and resource elements used by the physical layer but not carrying information originating from an upper layer.
  • Downlink physical signals are defined.
  • a physical downlink shared channel (PDSCH), a physical broadcast channel (PBCH), a physical multicast channel (PMCH), a physical control format indicator channel (physical control) format indicator channel (PCFICH), physical downlink control channel (PDCCH) and physical hybrid ARQ indicator channel (PHICH) are defined as downlink physical channels
  • reference signal and synchronization signal Is defined as downlink physical signals.
  • a reference signal also referred to as a pilot, refers to a signal of a predetermined special waveform known to the eNB and the UE.
  • a cell specific RS, UE- UE-specific RS, positioning RS (PRS), and channel state information RS (CSI-RS) are defined as downlink reference signals.
  • the 3GPP LTE / LTE-A standard corresponds to uplink physical channels corresponding to resource elements carrying information originating from a higher layer and resource elements used by the physical layer but not carrying information originating from an upper layer.
  • Uplink physical signals are defined. For example, a physical uplink shared channel (PUSCH), a physical uplink control channel (PUCCH), and a physical random access channel (PRACH) are the uplink physical channels.
  • a demodulation reference signal (DMRS) for uplink control / data signals and a sounding reference signal (SRS) used for uplink channel measurement are defined.
  • Physical Downlink Control CHannel / Physical Control Format Indicator CHannel (PCFICH) / PHICH (Physical Hybrid automatic retransmit request Indicator CHannel) / PDSCH (Physical Downlink Shared CHannel) are respectively DCI (Downlink Control Information) / CFI ( Means a set of time-frequency resources or a set of resource elements that carry downlink format ACK / ACK / NACK (ACKnowlegement / Negative ACK) / downlink data, and also a Physical Uplink Control CHannel (PUCCH) / Physical (PUSCH) Uplink Shared CHannel / PACH (Physical Random Access CHannel) means a set of time-frequency resources or a set of resource elements that carry uplink control information (UCI) / uplink data / random access signals, respectively.
  • DCI Downlink Control Information
  • CFI Means a set of time-frequency resources or a set of resource elements that carry downlink format ACK / ACK
  • the PDCCH / PCFICH / PHICH / PDSCH / PUCCH / PUSCH / PRACH resource is referred to below ..
  • the user equipment transmits the PUCCH / PUSCH / PRACH, respectively.
  • PDCCH / PCFICH / PHICH / PDSCH is used for downlink data / control information on or through PDCCH / PCFICH / PHICH / PDSCH, respectively. It is used in the same sense as sending it.
  • CRS / DMRS / CSI-RS / SRS / UE-RS is assigned or configured OFDM symbol / subcarrier / RE to CRS / DMRS / CSI-RS / SRS / UE-RS symbol / carrier / subcarrier / RE It is called.
  • an OFDM symbol assigned or configured with a tracking RS (TRS) is called a TRS symbol
  • a subcarrier assigned or configured with a TRS is called a TRS subcarrier
  • an RE assigned or configured with a TRS is called a TRS RE.
  • a subframe configured for TRS transmission is called a TRS subframe.
  • a subframe in which a broadcast signal is transmitted is called a broadcast subframe or a PBCH subframe
  • a subframe in which a sync signal (for example, PSS and / or SSS) is transmitted is a sync signal subframe or a PSS / SSS subframe. It is called.
  • OFDM symbols / subcarriers / RE to which PSS / SSS is assigned or configured are referred to as PSS / SSS symbols / subcarriers / RE, respectively.
  • the CRS port, the UE-RS port, the CSI-RS port, and the TRS port are an antenna port configured to transmit CRS, an antenna port configured to transmit UE-RS, and an antenna configured to transmit CSI-RS, respectively.
  • Port an antenna port configured to transmit TRS.
  • Antenna ports configured to transmit CRSs may be distinguished from each other by the location of REs occupied by the CRS according to the CRS ports, and antenna ports configured to transmit UE-RSs may be UE-RS according to the UE-RS ports.
  • the RSs may be distinguished from each other by locations of REs occupied, and antenna ports configured to transmit CSI-RSs may be distinguished from each other by locations of REs occupied by the CSI-RSs according to the CSI-RS ports. Therefore, the term CRS / UE-RS / CSI-RS / TRS port may be used as a term for a pattern of REs occupied by CRS / UE-RS / CSI-RS / TRS in a certain resource region.
  • 3GPP LTE / LTE-A standard document for example, 3GPP TS 36.211, 3GPP TS 36.212, 3GPP TS 36.213, 3GPP TS 36.321 and 3GPP TS 36.331 and the like.
  • FIG. 1 illustrates an example of a radio frame structure used in an LTE / LTE-A based wireless communication system.
  • Figure 1 (a) shows a frame structure for frequency division duplex (FDD) used in the 3GPP LTE / LTE-A system
  • Figure 1 (b) is used in the 3GPP LTE / LTE-A system
  • the frame structure for time division duplex (TDD) is shown.
  • a radio frame used in a 3GPP LTE / LTE-A system has a length of 10 ms (307200 T s ) and consists of 10 equally sized subframes (subframes). Numbers may be assigned to 10 subframes in one radio frame.
  • Each subframe has a length of 1 ms and consists of two slots. 20 slots in one radio frame may be sequentially numbered from 0 to 19. Each slot is 0.5ms long.
  • the time for transmitting one subframe is defined as a transmission time interval (TTI).
  • the time resource may be classified by a radio frame number (also called a radio frame index), a subframe number (also called a subframe number), a slot number (or slot index), and the like.
  • TTI means an interval at which data can be scheduled.
  • a transmission opportunity of a UL grant or a DL grant exists every 1 ms, and there are no multiple UL / DL grant opportunities within a time shorter than 1 ms. Therefore, in the current LTE / LTE-A system, the TTI is 1 ms.
  • the radio frame may be configured differently according to the duplex mode. For example, in the FDD mode, since downlink transmission and uplink transmission are divided by frequency, a radio frame includes only one of a downlink subframe or an uplink subframe for a specific frequency band. In the TDD mode, since downlink transmission and uplink transmission are separated by time, a radio frame includes both a downlink subframe and an uplink subframe for a specific frequency band.
  • FIG. 2 illustrates an example of a downlink (DL) / uplink (UL) slot structure in an LTE / LTE-A based wireless communication system.
  • a slot includes a plurality of Orthogonal Frequency Division Multiplexing (OFDM) symbols in a time domain and a plurality of resource blocks (RBs) in a frequency domain.
  • An OFDM symbol may mean a symbol period.
  • a signal transmitted in each slot may be represented by a resource grid including N DL / UL RB * N RB sc subcarriers and N DL / UL symb OFDM symbols.
  • N DL RB represents the number of resource blocks (RBs) in the downlink slot
  • N UL RB represents the number of RBs in the UL slot.
  • N DL RB and N UL RB depend on DL transmission bandwidth and UL transmission bandwidth, respectively.
  • N DL symb represents the number of OFDM symbols in the downlink slot
  • N UL symb represents the number of OFDM symbols in the UL slot.
  • N RB sc represents the number of subcarriers constituting one RB.
  • the OFDM symbol may be called an OFDM symbol, a Single Carrier Frequency Division Multiplexing (SC-FDM) symbol, or the like according to a multiple access scheme.
  • the number of OFDM symbols included in one slot may vary depending on the channel bandwidth and the length of the cyclic prefix (CP). For example, in case of a normal CP, one slot includes 7 OFDM symbols, whereas in case of an extended CP, one slot includes 6 OFDM symbols.
  • FIG. 2 illustrates a subframe in which one slot is composed of seven OFDM symbols for convenience of description, embodiments of the present invention can be applied to subframes having different numbers of OFDM symbols in the same manner. Referring to FIG.
  • each OFDM symbol includes N DL / UL RB * N RB sc subcarriers in the frequency domain.
  • the type of subcarriers may be divided into data subcarriers for data transmission, reference signal subcarriers for transmission of reference signals, null subcarriers for guard band or direct current (DC) components. .
  • the DC component is mapped to a carrier frequency f 0 during an OFDM signal generation process or a frequency upconversion process.
  • the carrier frequency is also called a center frequency ( f c ).
  • FIG. 3 illustrates a radio frame structure for transmission of a synchronization signal (SS) in an LTE / LTE-A based wireless communication system.
  • FIG. 3 illustrates a radio frame structure for transmission of a synchronization signal and a PBCH in a frequency division duplex (FDD), and
  • FIG. 3 (a) is configured as a normal cyclic prefix (CP).
  • FIG. 3B illustrates a transmission position of an SS and a PBCH in a radio frame
  • FIG. 3B illustrates a transmission position of an SS and a PBCH in a radio frame configured as an extended CP.
  • the UE When the UE is powered on or wants to access a new cell, the UE acquires time and frequency synchronization with the cell and detects a cell such as a physical layer cell ID N cell ID of the cell. Perform an initial cell search procedure. To this end, the UE receives a synchronization signal from the eNB, for example, a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) to synchronize with the eNB, and synchronizes with the eNB. , ID) and the like can be obtained.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PSS is used to obtain time domain synchronization and / or frequency domain synchronization such as OFDM symbol synchronization, slot synchronization, etc.
  • SSS is used for frame synchronization, cell group ID and / or cell CP configuration (i.e., general CP or extension). It is used to get usage information of CP).
  • PSS and SSS are transmitted in two OFDM symbols of every radio frame, respectively.
  • the SS may be configured in the first slot of subframe 0 and the first slot of subframe 5 in consideration of 4.6 ms, which is a Global System for Mobile Communication (GSM) frame length.
  • GSM Global System for Mobile Communication
  • the PSS is transmitted in the last OFDM symbol of the first slot of subframe 0 and the last OFDM symbol of the first slot of subframe 5, respectively, and the SSS is the second to second OFDM symbols and subframe of the first slot of subframe 0, respectively.
  • the boundary of the radio frame can be detected through the SSS.
  • the PSS is transmitted in the last OFDM symbol of the slot and the SSS is transmitted in the OFDM symbol immediately before the PSS.
  • the transmission diversity scheme of the SS uses only a single antenna port and is not defined in the standard.
  • the UE Since the PSS is transmitted every 5 ms, the UE detects the PSS to know that the corresponding subframe is one of the subframe 0 and the subframe 5, but the subframe may not know what the subframe 0 and the subframe 5 specifically. . Therefore, the UE does not recognize the boundary of the radio frame only by the PSS. That is, frame synchronization cannot be obtained only by PSS.
  • the UE detects the boundary of the radio frame by detecting the SSS transmitted twice in one radio frame but transmitted as different sequences.
  • the UE that performs a cell discovery process using PSS / SSS and determines a time and frequency parameter required to perform demodulation of DL signals and transmission of UL signals at an accurate time point is further determined from the eNB.
  • system information required for system configuration of the system must be obtained.
  • System information is configured by a Master Information Block (MIB) and System Information Blocks (SIBs).
  • MIB Master Information Block
  • SIBs System Information Blocks
  • Each system information block includes a collection of functionally related parameters, and includes a master information block (MIB), a system information block type 1 (SIB1), and a system information block type according to the included parameters.
  • MIB Master Information Block
  • SIB1 system information block type 1
  • SIB3 System Information Block Type 2
  • the MIB contains the most frequently transmitted parameters that are necessary for the UE to have initial access to the eNB's network.
  • the UE may receive the MIB via a broadcast channel (eg, PBCH).
  • PBCH broadcast channel
  • the MIB includes a downlink system bandwidth (dl-Bandwidth, DL BW), a PHICH configuration, and a system frame number (SFN). Therefore, the UE can know the information on the DL BW, SFN, PHICH configuration explicitly by receiving the PBCH.
  • the information that the UE implicitly (implicit) through the reception of the PBCH includes the number of transmit antenna ports of the eNB.
  • Information about the number of transmit antennas of the eNB is implicitly signaled by masking (eg, XOR operation) a sequence corresponding to the number of transmit antennas to a 16-bit cyclic redundancy check (CRC) used for error detection of the PBCH.
  • masking eg, XOR operation
  • CRC cyclic redundancy check
  • SIB1 includes not only information on time domain scheduling of other SIBs, but also parameters necessary for determining whether a specific cell is a cell suitable for cell selection. SIB1 is received by the UE through broadcast signaling or dedicated signaling.
  • the DL carrier frequency and the corresponding system bandwidth can be obtained by the MIB carried by the PBCH.
  • the UL carrier frequency and corresponding system bandwidth can be obtained through system information that is a DL signal.
  • the UE applies the value of the DL BW in the MIB to the UL-bandwidth (UL BW) until a system information block type 2 (SystemInformationBlockType2, SIB2) is received.
  • the UE may acquire a system information block type 2 (SystemInformationBlockType2, SIB2) to determine the entire UL system band that can be used for UL transmission through UL-carrier frequency and UL-bandwidth information in the SIB2. .
  • PSS / SSS and PBCH are transmitted only within a total of six RBs, that is, a total of 72 subcarriers, three on the left and right around a DC subcarrier within a corresponding OFDM symbol, regardless of the actual system bandwidth. Therefore, the UE is configured to detect or decode the SS and the PBCH regardless of the downlink transmission bandwidth configured for the UE.
  • the UE may perform a random access procedure to complete the access to the eNB. To this end, the UE may transmit a preamble through a physical random access channel (PRACH) and receive a response message for the preamble through a PDCCH and a PDSCH.
  • PRACH physical random access channel
  • additional PRACH transmission and contention resolution procedure such as PDCCH and PDSCH corresponding to the PDCCH may be performed.
  • the UE may perform PDCCH / PDSCH reception and PUSCH / PUCCH transmission as a general uplink / downlink signal transmission procedure.
  • the random access process is also referred to as a random access channel (RACH) process.
  • the random access procedure is used for initial access, the random access procedure is used for various purposes such as initial access, uplink synchronization coordination, resource allocation, handover, and the like.
  • the random access process is classified into a contention-based process and a dedicated (ie non-competition-based) process.
  • the contention-based random access procedure is generally used, including initial access, and the dedicated random access procedure is limited to handover and the like.
  • the UE randomly selects a RACH preamble sequence. Therefore, it is possible for a plurality of UEs to transmit the same RACH preamble sequence at the same time, which requires a contention cancellation process later.
  • the dedicated random access process the UE uses the RACH preamble sequence that is allocated only to the UE by the eNB. Therefore, the random access procedure can be performed without collision with another UE.
  • the contention-based random access procedure includes four steps.
  • the messages transmitted in steps 1 to 4 may be referred to as messages 1 to 4 (Msg1 to Msg4), respectively.
  • Step 1 RACH preamble (via PRACH) (UE to eNB)
  • Step 2 random access response (RAR) (via PDCCH and PDSCH) (eNB to UE)
  • Step 3 Layer 2 / Layer 3 message (via PUSCH) (UE to eNB)
  • Step 4 Contention Resolution Message (eNB to UE)
  • the dedicated random access procedure includes three steps.
  • the messages transmitted in steps 0 to 2 may be referred to as messages 0 to 2 (Msg0 to Msg2), respectively.
  • uplink transmission ie, step 3) corresponding to the RAR may also be performed.
  • the dedicated random access procedure may be triggered using a PDCCH (hereinafter, referred to as a PDCCH order) for the purpose of instructing the base station to transmit the RACH preamble.
  • Step 0 RACH preamble allocation via dedicated signaling (eNB to UE)
  • Step 1 RACH preamble (via PRACH) (UE to eNB)
  • Step 2 Random Access Response (RAR) (via PDCCH and PDSCH) (eNB to UE)
  • RAR Random Access Response
  • the UE After transmitting the RACH preamble, the UE attempts to receive a random access response (RAR) within a pre-set time window. Specifically, the UE attempts to detect a PDCCH (hereinafter, RA-RNTI PDCCH) having a random access RNTI (RA-RNTI) (eg, CRC in the PDCCH is masked to RA-RNTI) within a time window. Upon detecting the RA-RNTI PDCCH, the UE checks whether there is a RAR for itself in the PDSCH corresponding to the RA-RNTI PDCCH.
  • RA-RNTI PDCCH a PDCCH having a random access RNTI (RA-RNTI) (eg, CRC in the PDCCH is masked to RA-RNTI)
  • RA-RNTI PDCCH a random access RNTI
  • the RAR includes timing advance (TA) information indicating timing offset information for UL synchronization, UL resource allocation information (UL grant information), a temporary terminal identifier (eg, temporary cell-RNTI, TC-RNTI), and the like. .
  • the UE may perform UL transmission (eg, Msg3) according to the resource allocation information and the TA value in the RAR.
  • HARQ is applied to UL transmission corresponding to the RAR. Therefore, after transmitting the Msg3, the UE may receive reception response information (eg, PHICH) corresponding to the Msg3.
  • the random access preamble ie, the RACH preamble
  • the RACH preamble consists of a cyclic prefix of length T CP and a sequence portion of length T SEQ in the physical layer.
  • the T SEQ of the T CP depends on the frame structure and the random access configuration.
  • the preamble format is controlled by higher layers.
  • the PACH preamble is transmitted in a UL subframe. Transmission of the random access preamble is restricted to certain time and frequency resources. These resources are referred to as PRACH resources, and the PRACH resources are numbered in order of subframe number in the radio frame, followed by increasing PRBs in the frequency domain, so that index 0 corresponds to the lower number PRB and subframe in the radio frame. Lose. Random access resources are defined according to the PRACH configuration index (see 3GPP TS 36.211 standard document). The PRACH configuration index is given by the higher layer signal (sent by the eNB).
  • FIG. 4 illustrates a downlink (DL) subframe structure used in an LTE / LTE-A based wireless communication system.
  • the DL subframe is divided into a control region and a data region in the time domain.
  • up to three (or four) OFDM symbols located at the front of the first slot of a subframe correspond to a control region to which a control channel is allocated.
  • a resource region available for PDCCH transmission in a DL subframe is called a PDCCH region.
  • the remaining OFDM symbols other than the OFDM symbol (s) used as the control region correspond to a data region to which a Physical Downlink Shared CHannel (PDSCH) is allocated.
  • PDSCH region a resource region available for PDSCH transmission in a DL subframe.
  • Examples of DL control channels used in 3GPP LTE include a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), a physical hybrid ARQ indicator channel (PHICH), and the like.
  • PCFICH physical control format indicator channel
  • PDCCH physical downlink control channel
  • PHICH physical hybrid ARQ indicator channel
  • DCI downlink control information
  • DCI includes resource allocation information and other control information for the UE or UE group.
  • the transmission format and resource allocation information of a downlink shared channel (DL-SCH) may also be called DL scheduling information or a DL grant, and may be referred to as an uplink shared channel (UL-SCH).
  • the transmission format and resource allocation information is also called UL scheduling information or UL grant.
  • the DCI carried by one PDCCH has a different size and use depending on the DCI format, and its size may vary depending on a coding rate.
  • formats 0 and 4 for uplink and formats 1, 1A, 1B, 1C, 1D, 2, 2A, 2B, 2C, 3, and 3A are defined for uplink.
  • Hopping flag, RB allocation, modulation coding scheme (MCS), redundancy version (RV), new data indicator (NDI), transmit power control (TPC), and cyclic shift DMRS Control information such as shift demodulation reference signal (UL), UL index, CQI request, DL assignment index, HARQ process number, transmitted precoding matrix indicator (TPMI), and precoding matrix indicator (PMI) information
  • UL shift demodulation reference signal
  • UL index UL index
  • CQI request UL assignment index
  • HARQ process number transmitted precoding matrix indicator
  • PMI precoding matrix indicator
  • the PDCCH is transmitted on an aggregation of one or a plurality of consecutive control channel elements (CCEs).
  • CCE is a logical allocation unit used to provide a PDCCH with a coding rate based on radio channel conditions.
  • the CCE corresponds to a plurality of resource element groups (REGs).
  • each CCE includes 9 REGs, which are first 1/2/3 (4 if necessary for 1.4 MHz) through interleaving to mitigate interference to enable diversity. ) Is spread over OFDM symbols and system bandwidth.
  • One REG corresponds to four REs.
  • Four QPSK symbols are mapped to each REG.
  • the resource element RE occupied by the reference signal RS is not included in the REG.
  • the REG concept is also used for other downlink control channels (ie, PCFICH and PHICH).
  • FIG. 5 shows an example of an uplink (UL) subframe structure used in an LTE / LTE-A based wireless communication system.
  • a UL subframe may be divided into a control region and a data region in the frequency domain.
  • One or several physical uplink control channels may be allocated to the control region to carry uplink control information (UCI).
  • One or several physical uplink shared channels may be allocated to a data region of a UL subframe to carry user data.
  • subcarriers having a long distance based on a direct current (DC) subcarrier are used as a control region.
  • subcarriers located at both ends of the UL transmission bandwidth are allocated for transmission of uplink control information.
  • the DC subcarrier is a component that is not used for signal transmission and is mapped to a carrier frequency f 0 during frequency upconversion.
  • the PUCCH for one UE is allocated to an RB pair belonging to resources operating at one carrier frequency in one subframe, and the RBs belonging to the RB pair occupy different subcarriers in two slots.
  • the PUCCH allocated in this way is expressed as that the RB pair allocated to the PUCCH is frequency hopped at the slot boundary. However, if frequency hopping is not applied, RB pairs occupy the same subcarrier.
  • MTC machine type communication
  • MTC mainly refers to information exchange performed between a machine and an eNB without human intervention or with minimal human intervention.
  • MTC can be used for data communication such as meter reading, level measurement, surveillance camera utilization, measurement / detection / reporting such as inventory reporting of vending machines, etc. It may be used for updating an application or firmware.
  • the amount of transmitted data is small, and uplink / downlink data transmission or reception (hereinafter, transmission / reception) sometimes occurs. Due to the characteristics of the MTC, for the UE for MTC (hereinafter referred to as MTC UE), it is efficient to lower the UE manufacturing cost and reduce battery consumption at a low data rate.
  • MTC UEs are less mobile, and thus, the channel environment is hardly changed.
  • the MTC UE is likely to be located at a location that is not covered by a normal eNB, for example, a basement, a warehouse, a mountain, and the like.
  • the signal for the MTC UE is better to have a wider coverage than the signal for a legacy UE (hereinafter, a legacy UE).
  • the MTC UE is likely to require a signal with a wider coverage than the legacy UE. Therefore, when the PDCCH, PDSCH, etc. are transmitted to the MTC UE in the same manner as the eNB transmits to the legacy UE, the MTC UE has difficulty in receiving them. Therefore, in order to enable the MTC UE to effectively receive a signal transmitted by the eNB, the eNB may select a subframe repetition (subframe having a signal) when transmitting a signal to the MTC UE having a coverage issue. It is proposed to apply a technique for coverage enhancement such as repetition), subframe bundling, and the like. For example, a PDCCH and / or PDSCH may be transmitted through a plurality of subframes (eg, about 100) to an MTC UE having a coverage problem.
  • Embodiments of the present invention can be applied to a new radio access technology (RAT) system in addition to the 3GPP LTE / LTE-A system.
  • RAT radio access technology
  • Massive MTC which connects multiple devices and objects to provide various services anytime and anywhere, is also one of the major issues to be considered in next-generation communication.
  • a communication system design considering a service / UE that is sensitive to reliability and latency has been discussed.
  • the introduction of next generation RAT considering such advanced mobile broadband communication, Massive MTC, and Ultra-Reliable and Low Latency Communication (URLLC) is being discussed.
  • the technique is referred to as a new RAT for convenience.
  • Packet data delay is one of the performance metrics regularly measured by vendors, operators and end-users (via a speed test application). Delay measurement is used in all phases of a radio access network system lifetime, when verifying new software releases or system components, when deploying the system, and when the system is in commercial operation. Is done.
  • LTE Long Term Evolution
  • 3GPP RATs 3rd Generation Partnership Project
  • Packet data delay is a parameter that not only affects the perceived sensitivity of the system, but also indirectly affects throughput.
  • HTTP / TCP is the dominant application and transport layer protocol suite used on the Internet today. According to the HTTP archive (http://httparchive.org/trends.php), HTTP-based transactions on the Internet can range from a few 10's to 1 megabytes of Kbytes. It is in range. Within this size range, the TCP slow start period is a significant portion of the total transport period of the packet stream. Performance is constrained by delay during TCP slow start. Therefore, an improved delay can be easily presented to improve the average throughput for this type of TCP-based data transaction.
  • UE L2 buffers need to be dimensioned correspondingly.
  • the only way to reduce buffer requirements within the UE and eNB is to reduce the delay.
  • Radio resource efficiency can also be positively affected by delay reduction.
  • Low data packet delays can reduce the number of possible transmission attempts within a certain delay bound. Therefore, higher block error ratio (BLER) targets can be used for data transmission while freeing up radio resources while maintaining the same level of robustness for the user equipment under poor radio conditions. Maintaining the same BLER target, an increased number of possible transmissions within a certain delay bound can be interpreted as a more robust of real-time data streams (eg, VoLTE). This will improve the VoLTE voice system capacity.
  • BLER block error ratio
  • gaming real-time applications such as VoLTE / OTT VoIP, and video telephony / conferencing: reduced latency in terms of perceived experience quality
  • video telephony / conferencing reduced latency in terms of perceived experience quality
  • FIG. 6 shows an example of a short TTI and an example of transmission of a control channel and a data channel in the short TTI.
  • sTTIs shorter than 1 ms may be configured.
  • a normal CP there may be an sTTI composed of two OFDM symbols, an sTTI composed of four OFDM symbols, and / or an sTTI composed of seven OFDM symbols.
  • All OFDM symbols constituting the TTI on some or all frequency resources in a frequency band of a default TTI are divided into two or more sTTIs in the time domain or other OFDM symbols except for OFDM symbols occupied by the PDCCH region of the TTI are two or more sTTIs. Can be divided.
  • a default or main TTI used in a system is called a TTI or a subframe
  • a TTI having a shorter time length than the default / main TTI of the system is called an sTTI.
  • a TTI having a time length shorter than 1 ms may be referred to as an sTTI.
  • the method of transmitting / receiving signals in TTI and sTTI can be applied in the same manner to the system based on the current LTE / LTE-A neurology as well as the default / major TTI and sTTI of the system according to the new RAT environment.
  • a PDCCH for transmitting / scheduling data in the sTTI and a PDSCH (ie, sPDSCH) in which transmission is performed in the sTTI may be transmitted.
  • a plurality of sTTIs in one subframe may be configured using different OFDM symbols.
  • OFDM symbols in a subframe may be divided into one or more sTTIs in the time domain.
  • the OFDM symbols constituting the sTTI may be configured by excluding the leading OFDM symbols through which legacy control channels are transmitted.
  • Transmission of the sPDCCH and the sPDSCH in the sTTI may be transmitted in a TDM format using different OFDM symbol regions. Transmission of the sPDCCH and the sPDSCH in the sTTI may be transmitted in FDM form using different PRB (s) area / frequency resources.
  • the new RAT system uses an OFDM transmission scheme or a similar transmission scheme.
  • the new RAT system may follow the OFDM parameters defined in the following table.
  • Subcarrier-spacing 75 kHz OFDM symbol length 13.33us Cyclic Prefix (CP) length 1.04us / 0 / 94us System bw 100 MHz No. of available subcarriers 1200 Subframe length 0.2ms Number of OFDM symbol per Subframe 14 symbols
  • the wavelength is shortened, enabling the installation of multiple antenna elements in the same area.
  • a total of 100 antenna elements can be installed in a two-dimensional arrangement in a 0.5 by (wavelength) interval on a panel of 5 by 5 cm. Therefore, in mmW, it is considered to use a plurality of antenna elements to increase the beamforming gain to increase coverage or to increase throughput.
  • TXRU transceiver unit
  • a method of mapping a plurality of antenna elements to a single TXRU and adjusting a beam direction with an analog phase shifter is considered.
  • Such an analog beamforming method has a disadvantage in that only one beam direction can be made in the entire band and thus frequency selective beamforming (BF) cannot be performed.
  • a hybrid BF with B TXRUs which is less than Q antenna elements in the form of digital BF and analog BF, can be considered.
  • the direction of beams that can be simultaneously transmitted is limited to B or less.
  • a signal may be transmitted / received while changing the direction of a beam over time.
  • the present invention describes an initial access procedure that differs in mmWave due to the characteristics of analog beamforming, and proposes a UE and eNB operation and signaling information / method to be transmitted between the UE and eNB accordingly.
  • a self-contained subframe structure is considered in the fifth generation new RAT.
  • the hatched region indicates a transmission region of a DL control channel (eg, PDCCH) carrying DCI
  • a black part shows a transmission region of an UL control channel (eg, PUCCH) carrying UCI.
  • DCI is control information delivered by the eNB to the UE
  • the DCI is UL specific information such as information on cell configuration that the UE needs to know, DL specific information such as DL scheduling, and UL grant. Information and the like.
  • the UCI is control information delivered from the UE to the eNB, and the UCI may include HARQ ACK / NACK report on DL data, CSI report on DL channel state, and scheduling request (SR).
  • SR scheduling request
  • the symbol regions 1 to 12 may be used for transmission of a physical channel (eg, PDSCH) that carries downlink data, and may be used for transmission of a physical channel (eg, PUSCH) that carries uplink data. May be used.
  • a physical channel eg, PDSCH
  • PUSCH physical channel
  • DL transmission and UL transmission are sequentially performed in one subframe, so that transmission / reception of DL data and reception / transmission of UL ACK / NACK for the DL data are performed. It can be done in a frame.
  • the time required for data retransmission is reduced, thereby minimizing the delay of the final data transfer.
  • a time gap is required for an eNB and a UE to switch from a transmission mode to a reception mode or a process of switching from a reception mode to a transmission mode.
  • some OFDM symbols at the time of switching from DL to UL in the self-contained subframe structure are set to a guard period (GP).
  • a DL control channel may be transmitted by time division multiplexing (TDM) with DL data or UL data on a broadband.
  • TDM time division multiplexing
  • the eNB may transmit DL control channel (s) over the entire band, but from one UE perspective, the UE may receive its DL control channel within some specific band rather than the entire band.
  • the DL control channel is control information transmitted by the eNB to the UE, and includes not only DL specific information such as DL scheduling but also information about cell configuration that the UE needs to know, as well as UL specific information such as a UL grant. do.
  • the new RAT referred to as mmWave and 5G
  • 5 MHz, 10 MHz, 40 MHz, 80 MHz, etc. may need to be supported as the minimum system bandwidth.
  • the minimum system band may vary depending on the base subcarrier spacing of the system. For example, if the default subcarrier spacing is 15 kHz, the minimum system band is 5 MHz, if the basic subcarrier spacing is 30 kHz, the minimum system band is 10 MHz, if the basic subcarrier spacing is 120 kHz, the minimum system band is 40 MHz, and the basic subcarrier spacing is 240 kHz.
  • the minimum system band may be 80 MHz.
  • the new RATs are designed for sub-6 GHz and above 6 GHz bands and are designed to support multiple subcarriers within a system to support various scenarios and use cases. Due to the different subcarrier lengths, the subframe length is also reduced / extended accordingly. For example, one subframe may be defined as a short time such as ms 0.5 ms, 0.25 ms, 0.125 ms. Higher frequency bands (eg, 6 GHz and above) can be used in the new RAT system, and subcarrier spacing is expected to be supported by a wide subcarrier spacing, whereas the existing LTE system was 15 kHz. For example, assuming a subcarrier spacing of 60 kHz, one resource unit (RU) may be defined by 12 subcarriers on the frequency axis and one subframe on the time axis.
  • RU resource unit
  • the first operation that the UE must perform in order to associate with a specific system to receive a service is to acquire time and frequency synchronization of the corresponding system, receive basic system information (SI), and uplink to an uplink. It is to set the link timing.
  • SI basic system information
  • This process is commonly referred to as an initial access procedure.
  • the initial access procedure generally includes a synchronization procedure and a RACH procedure (ie, random access procedure).
  • RACH procedure ie, random access procedure
  • PSS symbol timing acquisition, frequency synchronization, cell ID detection in cell ID group (three hypotheses).
  • SSS cell ID group detection (168 assumptions), 10ms frame boundary detection, CP detection (two assumptions).
  • PBCH decoding antenna configuration, 40ms timing detection, system information, system bandwidth, etc.
  • the UE acquires OFDM symbol timing and subframe timing through the PSS and SSS, obtains a cell ID, and descrambles and decodes the PBCH using the cell ID to obtain important information in the corresponding system.
  • mmWave or new RAT hereinafter referred to as mmWave / new RAT
  • the basic synchronization process is similar, but there is a big difference in the way of transmitting / receiving PSS / SSS.
  • Figure 9 shows an example of a time point and a resource region in which a PSS / SSS / PBCH is transmitted in a new system.
  • Figure 9 (a) shows an example of the PSS / SSS / PBCH transmission interval
  • Figure 9 (b) shows an example of the PSS / SSS / ESS / PBCH transmission interval.
  • PSS / SSS / PBCH in different beam directions may be transmitted for each OFDM symbol.
  • the number of beam directions may be from one to N.
  • the number of beams (directions) may be determined depending on the frequency, or may be dynamically determined in consideration of cell interference and the like.
  • the UE that detects the PSS may acquire symbol synchronization and obtain a physical cell ID. Alternatively, the cell ID may be obtained through PSS and SSS detection.
  • PSS / SSS is transmitted omni-directional, whereas signals such as PSS / SSS / PBCH are rotated omni-directionally by an eNB applying mmWave.
  • a method of beamforming a beam and transmitting the beam is considered.
  • transmitting / receiving a signal while rotating the beam direction is referred to as beam sweeping or beam scanning.
  • the eNB can have up to N beam directions
  • signals such as PSS / SSS / PBCH are transmitted for the N beam directions, respectively. That is, the eNB transmits synchronization signals such as PSS / SSS / PBCH for each direction while sweeping directions that it may have or support.
  • the eNB can form N beams, several beams may be bundled into one beam group, and PSS / SSS / PBCH may be transmitted / received for each beam group. At this time, one beam group includes one or more beams.
  • the UE may acquire system timing in the following manner.
  • the UE first detects PSS transmitted at a fixed position (e.g., 6 PRBs or x PRBs centered on a center frequency) or a variable position to obtain information about symbol timing. Similarly, the UE can obtain the subframe timing and / or the frame timing by detecting the SSS transmitted at a location already known, that is, transmitted at a relative location from the PSS transmission resource, and obtain the cell ID from the combination of the PSS and the SSS. Can be. In order to prevent too many signals and hypotheses transmitted to the SSS, the subframe timing may be obtained by detecting a separate additional synchronization signal (eg, an extended synchronization signal (ESS)) transmitted by the eNB. .
  • ESS extended synchronization signal
  • a beam reference signal may be transmitted to measure link quality for each beam direction. That is, the BRS may be transmitted for the purpose of RSRP / RRM / RLM measurement and the like, and may also be used for neighbor cell measurement and the like.
  • the BRS may be transmitted over the entire band to enable the UE to make measurements for the entire band.
  • the BRS may be an RS transmitted for each antenna port over the entire band with respect to the corresponding analog beam direction in which the PSS / SSS is transmitted. In this case, the UE needs to know in advance information about the number of ports used for the transmission of the BRS and the resource location where the BRS is transmitted for each port.
  • the number of ports used for transmission of the BRS may be provided through the ESS. For example, if the maximum number of BRS ports is 8, the eNB may inform the UE of one value in a combination having ⁇ 1, 2, 4, 8 ⁇ or ⁇ 2, 4, 6, 8 ⁇ or another value. I can tell you through Here, the UE may mean that the UE should attempt detection in the ESS for a plurality of premises for the number of antenna ports. As another method of notifying the number of BRS ports, the number of ports for BRS transmitted in the same direction as the beam through which the PBCH is transmitted in the PBCH may be signaled. When information on the BSR port is transmitted on the PBCH, the UE may need to measure the BRS of the neighbor cell after decoding the PBCH of the neighbor cell for neighbor cell measurement.
  • the ESS may be transmitted through a frequency resource different from the PSS / SSS in the same symbol in which the PSS / SSS is transmitted.
  • the UE may acquire the subframe timing and the frame timing through the ESS. Acquiring the subframe timing means that the position at which the subframe starts, that is, the information on which symbol the UE detects is located in the corresponding subframe can be obtained.
  • Frame timing may be related to the period in which the synchronization signal is transmitted. After detecting the synchronization signal, the UE can estimate the time it takes for the same synchronization signal to be transmitted thereafter, and can know which subframe is a particular subframe within the time interval.
  • the number of BRS ports may be indicated in the ESS.
  • information about the number of DM-RS ports of the PBCH may be indicated to the ESS.
  • the PBCH DM-RS port may be limited to two assuming that the PBCH is transmitted in a transmit diversity scheme such as SFBC.
  • the number of PBCH DM-RS ports (eg, 1, 2, 4, 8) may be indicated by the ESS.
  • information on the system bandwidth or the BRS transmission bandwidth may be indicated in the ESS. In this case, the UE can identify the resource to which the BRS is transmitted for RSRP measurement without performing decoding of the PBCH.
  • the ESS sequence should be designed so that it is possible to find out the number of symbols in the subframe the symbol with the ESS. Therefore, the ESS sequence should be a function of the cell ID and the OFDM symbol index on which the ESS is transmitted.
  • FIG. 10 shows examples of a method of transmitting a synchronization signal in a new system.
  • the synchronization signal refers to a signal such as PSS / SSS / SSS transmitted by the eNB for synchronization.
  • a period in which a synchronization signal (SS) is transmitted is P subframes, and one eNB can generate B beams.
  • SS1 transmitted in the first subframe of the two SS subframes is SS1 and the second in one period of the P subframes.
  • the SS transmitted in the subframe is referred to as SS2.
  • SS1 and SS2 represent part of a set of SSs having a plurality of beam directions, and refer to parts of SSs transmitted in different subframes.
  • SS may be transmitted by dividing SS1 in another subframe into SS2 in another subframe, and SS1 and SS2 may be transmitted with a specific time interval as shown in FIG. As shown in (b), it may be transmitted in consecutive subframes.
  • the time required for the eNB to transmit both SS1 and SS2 and transmit the next SS1 and SS2 may be defined as a transmission period of the synchronization signal. That is, the time taken before the synchronization signals for all beam directions of the eNB are completely transmitted, and then the signals are transmitted again in the same beam direction may be understood as the period of the synchronization signal.
  • 2T subframes may be a transmission period of a synchronization signal. If the synchronization signal is divided into a plurality of subframes and transmitted, the synchronization signal should include information on the number of subframes when the synchronization signal is distributed into the plurality of subframes.
  • the corresponding ESS sequence may have information on which subframe the ESS is transmitted.
  • the ESS sequence may be generated as a function of the subframe index so that the ESS sequence may indicate which subframe among the subframes in which the synchronization signal is transmitted or among the subframes of the synchronization signal period.
  • the BRS is an RS transmitted in a different beam direction for each symbol
  • the BRS sequence is generated as a function of the symbol index and / or the beam index along with the cell ID.
  • the BRS is additionally generated as a function of the BRS antenna port number and the BRS transmission subframe number.
  • the PBCH DM-RS sequence is generated as a function of cell ID, symbol index, PBCH transmission subframe number, and DM-RS port number.
  • the PBCH may include basic system information, system frame number, number of antenna ports, system bandwidth, and the like.
  • time-frequency resources or SIB transmission periods, etc.
  • SIB system information block
  • SI time-resource frequencies that may be used for transmission of paging, etc.
  • Information about the resource may be carried.
  • the PRACH configuration information may be included in the SIB (ie, SI) and transmitted.
  • Information about time-frequency resources that may be used for transmission of the SIB and paging may be independently signaled by beam direction (eg, by beam index).
  • the UE which has obtained information about time-frequency resources that can be used for reception of the SIB and paging, performs blind decoding for detection of the PDCCH in order to receive the corresponding information in a subframe designated for the SIB and paging reception. Since information on transmission resources of the SIB / paging corresponds to system information, when a UE specific search space (USS) and a common search space are configured for the UE, the UE is configured for SIB / paging. It expects common channel to be transmitted in subframe and performs blind decoding on CSS with USS. The UE does not perform BD for CSS in subframes other than subframes for SIB / paging.
  • CSS may be a discovery space for all UEs in the cell.
  • the group RNTI or group ID to be read by the UE is a function of beam ID and cell ID for the same beam direction as the symbol of PSS / SSS successfully received by the UE or PSS / SSS successfully received by the UE. Can be determined.
  • this group ID may be a value that can be determined after the UE detects the beam ID and the cell ID.
  • the UE receives an RNTI value set for receiving each group common data data and control information based on the group ID (eg, the RNTI value is signaled to the UE), scrambling the group ID, DM-RS scrambling ID, etc. Can be used as
  • FIG. 11 shows an example of transmission / reception of system information according to the present invention.
  • SI system information
  • the MIB is transmitted using a BCH having a period of 40 ms
  • the SIB1 is transmitted using a DL-SCH having a period of 80 ms
  • other applicable SIBs are time-frequency domain scheduling by SI-RNTI on a PDCCH. Transmitted using a DL-SCH.
  • the other applicable SIBs are each located within a time window with configurable periodicity.
  • the system information is part of a radio resource control (RRC) reconfiguration procedure for the (P) SCell for a UE configured with carrier aggregation and / or dual connectivity (DC).
  • RRC radio resource control
  • This approach to broadcasting SI is mainly suitable for macro cell deployment. However, this approach may not be optimal in other scenarios.
  • a disadvantage of the broadcasting approach is that resources can be wasted, for example, when there are few or no UEs interested in connecting to the system and / or interested in certain types of SIBs, camping on the cell.
  • Another disadvantage of the broadcasting approach is the latency caused by the nature of the periodic broadcasting of the SI when the UE acquires the initial system information. For some SIBs, the UE must wait for the next period until the relevant SIB (s) are transmitted, and an average delay equal to half of the set period is determined by the UE's characteristics of the system. This is typically needed before a feature can determine if it is reachable.
  • Another disadvantage is the impact of the scalability of the broadcasting approach as the system evolves and new features are added. As the amount of system information increases, more resources are needed for the broadcasting approach. As new informational messages are added, each may need to be broadcast in a new time window. This means that the UE may have to wake up more often, which may affect the power consumption of the UE. In particular, there may be additional disadvantages when the broadcasting approach is applied to a new RAT. When a new RAT is deployed in a high frequency band (eg, 6 GHz or more), multiple beams may be needed to provide adequate coverage.
  • a high frequency band eg, 6 GHz or more
  • a broadcasting approach similar to that of the existing LTE / LTE-A system is used, that is, it may be inadequate or inefficient for each of the multiple beams to transmit an SI.
  • the new RAT deployment is expected to include high density cells with macro placement and small coverage.
  • a broadcasting approach for all applicable system information is suitable for providing functions such as system access, camping, mobility and the like.
  • For cells with small coverage it is desirable to efficiently support features and functions similar to macro cells, but these cells are better suited for dedicated transmissions since there may be only a few UEs in the cell's area at any given time. can do.
  • the UE may be faster to obtain system information using a dedicated signal than to wait for system information that is periodically broadcast. This may be necessary to properly support URLLC services.
  • the broadcasting approach also increases the level of interference in high density deployments and affects network power consumption.
  • the present invention proposes an on-demand SI to reduce the amount of SI broadcasted.
  • On-demand SI may be provided at the request of the UE.
  • all or part of the system information can be on-demand SI. That is, in the frequency band to which the new RAT is applied, the SI may be broadcast on demand or part of the always-on, and part of the SI may be transmitted on demand.
  • the permanent SI may be an SI common to all beam-directions and all UEs of a corresponding cell.
  • an SI essential for initial connection may be broadcast periodically as a permanent SI.
  • the remaining SI may be an on-demand SI.
  • the on-demand SI may be an SI specific to a particular beam-direction, UE or UE group.
  • the SI tag indicates whether there is a change in corresponding SI messages.
  • an SI tag may be transmitted in PBCH or ESS.
  • the UE may request SIB transmission through the RACH process (S1130).
  • SIB ie, SI
  • the UE may request SIB transmission through the RACH process (S1130).
  • the RACH resource that can be used by the UE may be predefined (S1110). For example, a specific time / frequency or time / frequency / preamble in the system may be pre-designated for the purpose of the SI request.
  • the RACH resource for the SI request may be common to all UEs of the cell (for a frequency band below 6 GHz).
  • the RACH resource for SI request may be designated for each beam direction, that is, for each SS block.
  • the eNB may perform SIB transmission after or before random access response (RAR) transmission (S1150).
  • RAR random access response
  • the eNB detects the SI request on the RACH resource for SI request, the corresponding cell may broadcast system information (in the corresponding beam direction) or transmit the corresponding system information in the RAR for the corresponding preamble index.
  • scheduling information for a time / frequency domain in which corresponding system information with an SI request is transmitted may be included in the RAR for the SI request and transmitted.
  • the UE may indicate to the eNB in a message carried by the corresponding PRACH that the transmission purpose of the corresponding PRACH is to request the SIB. That is, the UE explicitly transmits a PRACH to receive specific data on the downlink, rather than transmitting a PRACH to transmit specific data on the uplink, specifically, to request system information. Can be directed. Such explicit indication may be performed by setting a specific value in a field in the message carried by the PRACH, or by sending a specific sequence on the PRACH.
  • a separate PRACH resource or sequence for requesting on-demand SIB or PBCH transmission may be reserved (by eNB for a specific UE or beam direction) (S1110).
  • Such an indication may be performed through msg 1 or msg 3 of the RACH procedure. For example, if the UL timing synchronization is not correct, the UE may attempt to transmit a PRACH and transmit an SI request through msg3.
  • FIG. 12 shows an example of SS transmission for each beam direction on a cell or carrier.
  • SS blocks that is, a plurality of corresponding SS blocks for a plurality of beams are sequentially transmitted, but as shown in FIG. 10 (a), for a set of beams on a corresponding cell / carrier SS blocks may not be transmitted continuously.
  • the eNB may have N beam directions and transmit the PSS / SSS in each of the N beam directions, when the UE detects the PSS / SSS, signal strength may be observed differently in each direction.
  • the UE performs PSS / SSS detection on the PSS / SSS transmitted in different directions for each symbol in a subframe in which the PSS / SSS is transmitted (hereinafter, referred to as a PSS / SSS subframe).
  • the PSS / SSS the ESS, the PBCH, and the RS for decoding the PBCH (hereinafter, PBCH DM-RS) will be beamformed and transmitted like the PSS / SSS.
  • the UE can determine the beam direction through which these signals are received with the best channel quality, which is best suited to them. And by reporting to the eNB about the optimal beam direction or resources with the PSS / SSS / PBCH having the best channel quality, it is possible to receive the PDCCH / PDSCH transmitted in the optimal beam later. Similarly, the eNB may allow the eNB to appropriately perform reception (RX) beamforming for the PUSCH / PUCCH sent by the UE.
  • RX reception
  • an index or ID may be given for each beam (ie, for each beam direction) or for each beam group.
  • the beam index may be tied to the symbol index on which the PSS / SSS / PBCH and BRS are transmitted to implicitly be defined / defined between the eNB and the UE.
  • the beam index may be tied to a symbol index in which PSS / SSS / PBCH and BRS are transmitted and a BRS port number received with the best quality in the symbol, and may be promised / defined between the eNB and the UE.
  • a unit in which a signal such as PSS / SSS / PBCH transmitted in the same beam direction is transmitted may be defined as one SS block. If there are a plurality of SS blocks, there may be a separate SS block index to distinguish between the SS blocks.
  • the specific SS block may indicate a transmission direction of a DL signal / channel such as PSS / SSS / PBCH. For example, when PSS / SSS / PBCH is transmitted in 10 beam directions in one system, PSS / SSS / PBCH in the same direction may be configured as one SS block, and in the system, 10 SS blocks It can be understood to exist. Since the SS block and the beam direction correspond one-to-one, the beam index may be interpreted as being the SS block index.
  • the index for a particular beam is implied by the symbol index to which the PSS / SSS corresponding to the cell ID is transmitted and the BRS port index received at the highest quality in the symbol. Can be identified.
  • the beam index may be identified using only a simple cell ID and a symbol index. Can not.
  • the beam index can be identified by combining the cell ID, the symbol index, and information on whether the corresponding PSS / SSS is a subframe in which the PSS / SSS is detected (for example, the subframe among the subframes having the PSS / SSS). have.
  • the beam index may be explicitly signaled between the eNB and the UE by SSS, ESS, beam RS (BRS), or PBCH.
  • the BRS refers to an RS transmitted in all bands for estimation of the beam direction transmitted for each symbol.
  • the beam index may be an index having an explicit number or order with respect to the beam direction.
  • the beam index may not mean an explicit number or index for a specific beam direction, but may mean a specific beam direction in a symbol in which the PSS / SSS is transmitted.
  • the beam index may refer to a beam direction transmitted by a BRS port most optimally received among specific beam directions transmitted by an eNB in a symbol in which PSS / SSS is transmitted.
  • the beam index may be an index of a beam group including a plurality of beam directions, and may indicate a grouped beam direction having a plurality of beam directions.
  • the beam index may be an index of the SS block.
  • the UE may inform the eNB which beam direction is optimally received for the UE, even if the beam index is not explicitly reported as mentioned above.
  • the UE may inform this.
  • the beam direction most optimally received by the UE is a beam direction such as PSS / SSS / PBCH connected with the specific RACH resource, to the eNB.
  • the eNB can infer the beam index, that is, the SS block index, optimally received by the UE among the beam indexes of the eNB.
  • the manner in which the UE determines a suitable or preferred beam index or SS block index may have the following alternatives. One or more of these combinations allows the UE to select its preferred set of beams and to list up a plurality of RACH resource candidates associated with the beams.
  • the UE can successfully detect the PSS / SSS or ESS and select a beam index or SS block index where the received SINR of the PSS / SSS is above a certain threshold.
  • the UE transmits a beam direction (eg, beam) in which the received reference signal received power (RSRP) of the PBCH DM-RS is greater than or equal to a predetermined threshold before PBCH demodulation. Index) or SS block index.
  • RSRP received reference signal received power
  • the UE selects a beam index or SS block index in which the reception RSRP of the BRS transmitted in a full band or a partial band is higher than a certain threshold among the beams in which the UE successfully performs PSS / SSS detection and PBCH decoding.
  • Alt4 Assuming load or priority information is transmitted via ESS or PBCH with Alt1, Alt2 or Alt3, the UE utilizes this information to load the beams beyond the threshold of the received signal. A low or high priority beam or SS block index may be selected, or the beam or SS block index may be selected by combining received signal quality and load / priority information. Alt4 may be used, for example, to prevent downlink / uplink and RACH resources from being excessively concentrated in a certain beam direction and to distribute downlink / uplink load in the beam directions.
  • Alt5 The UE transmits information (eg beam indexes or SS block indexes) about several selected or detected beams (eg, SS blocks) through the first uplink transmission corresponding to PRACH msg3, May allow the network to select a beam for the UE.
  • information eg beam indexes or SS block indexes
  • SS blocks selected or detected beams
  • the UE selects an optimal beam index or SS block index and reports the information to the eNB.
  • Evidence can be sent.
  • the UE may report the received signal quality and the like together with the beam index or the SS block index.
  • the received SINR information of PSS / SSS and the corresponding beam index are used.
  • PBCH DM-RS received RSRP information and the corresponding beam index are selected based on BRS in Alt3 or Alt4.
  • Information such as BRS RSRP and a corresponding beam index may be transmitted together.
  • the UE receives DL in the beam direction at the time of UL transmission after the RACH message 3 (msg3). Report the quality of the signal.
  • the UE may select a plurality of optimal beam indices or SS block indices whose reception signal quality exceeds a predetermined threshold, and report information on the selected DL beam direction and DL reception signal quality for each beam direction to the network, and RACH When msg3 or later UL data is transmitted, the corresponding information may be transmitted.
  • TRP transmission and reception point
  • the UE may not shoot an uplink signal in the beam direction in which the downlink signal is received. This is because the optimal path of the UL and the optimal path of the DL may be different.
  • TX / RX beam correspondence in the TRP if the TRP can determine a TRP RX beam for uplink reception based on the UE's downlink measurement for one or more TX beams of the TRP and / or the TRP is one or more RX of the TRP If the TRP TX beam for the corresponding downlink transmission can be determined based on the TRP 'uplink measurement for the beams, it is held.
  • TX / RX beam correspondence at the UE if the UE can determine the UE RX beam for the corresponding uplink transmission based on the downlink measurement of the UE with respect to the one or more RX beams of the UE and / or the UE is at least one TX of the UE If the UE TX beam for the downlink reception can be determined based on the indication of the TRP based on the uplink measurement for the beams, it is held.
  • the PRACH resource used when the UE attempts random access on the uplink also needs to be RX beamformed according to the direction in which the PSS / SSS is transmitted from the eNB to successfully receive the PRACH.
  • PRACH resources may also be allocated for each PSS / SSS direction, that is, for each beam index (or SS block index).
  • RACH resources may be connected for each SS block index on which PSS / SSS and PBCH are transmitted.
  • the RACH resource may mean a time-frequency resource capable of transmitting the RACH preamble.
  • the UE which successfully detects the PSS / SSS and selects the best N beams, needs to acquire information on PRACH resources for each beam index or SS block index.
  • the PRACH resource basically means a time-frequency resource used by the UE to transmit a PRACH, and may include information such as a PRACH sequence, a root sequence, a PRACH transmission power, a maximum retransmission number, and a repetition number. For example, using a time-frequency resource used by a UE for transmission of a PRACH preamble and a PRACH preamble index used by the UE, the UE may inform the network of a preference for a specific SS block index.
  • a subframe number (or a corresponding value that may refer to a subframe) that can be used when transmitting the PRACH in a direction corresponding to the beam index, a symbol number and a symbol within the subframe Information such as the number of s, the PRB index (or a corresponding value capable of indicating a frequency position) on the frequency axis, and / or the frequency axis bandwidth.
  • PRACH resources for different beam indexes or SS block indexes may be time division multiplexed (TDM). Assuming RX beam scanning for RACH reception of an eNB for one beam, a reservation in the corresponding beam direction is assumed during the corresponding symbol or beam scanning duration, regardless of the presence or absence of the RACH transmission.
  • multiple PRACH resources can also be configured on the frequency axis, code division multiplexing (CDM) is supported, or through frequency division multiplexing (FDM) instead of CDM, or both CDM and FDM UEs can be distinguished by using. That is, even though the UEs use the same time-frequency RACH resource, the UEs use different codes (eg, preamble sequences), so that the UE prefers a particular SS block index or receives for the SS block index. Information indicating that the signal quality is good may be signaled.
  • CDM code division multiplexing
  • FDM frequency division multiplexing
  • PRACH resources can be set in common for all beam indices. That is, time-frequency resources that a UE can transmit a PRACH on, and an eNB can expect that a PRACH from any UE will be transmitted, are common to all beam directions or one time-frequency resource per specific beam index group. Can be assigned. If the PRACH resource is set in common for a plurality of beams, there is an advantage that the delay is reduced. When a PRACH resource is set in common for a plurality or all the beams, a PRACH corresponding to a plurality of beam indexes may be transmitted in one time-frequency resource.
  • PRACH transmission time-frequency resources of UEs having different optimal beam directions may be shared between a plurality of UEs and a plurality of beam indices.
  • PRACH time-frequency resources may be configured in cell-common.
  • whether to select a common PRACH resource or a PRACH resource assuming an RX beam may be determined by a latency requirement, a power constraint, RSRP, etc. of the UE, and transmit a PRACH of the UE according to each RACH resource selection.
  • the approach may be slightly different.
  • the network may not know the beam direction optimized for the UE.
  • a subsequent transmission channel such as RAR may be transmitted without using the TX beam.
  • the advantage of the common RACH resource may compensate for the disadvantage that the corresponding radio resource is not used by the UE in another beam direction when the RACH resource is fixed and reserved according to the beam direction.
  • the network can dynamically adjust the amount of these common RACH resources and RACH resources along the beam direction. More generally, the transmission resources through the TX beam / RX beam may be divided between the resources for wide beam or omni-directional transmission, although the coverage may be low.
  • the eNB may dynamically inform the UE of the type of resource (eg, PUSCH resource) so that the UE can operate with different power settings or different repetition levels depending on whether it is a omni-directional transmission resource or an RX beam resource. have. That is, the eNB informs the information about the receiver gain semi-statically or dynamically, allowing the UE to make UE power decisions and repetitive decisions.
  • the RACH transmission resources mutually promised so that the transmission / reception beam directions between the UE and the eNB are relatively well aligned may be distinguished from the RACH transmission resources used by the eNB to receive the PRACH preappl while rotating the reception beam direction. .
  • Transmission resources may be distinguished.
  • the eNB can set the beam direction in which the RAR is transmitted together with the RACH resource, and in case of a UE that does not support the set RAR beam direction, selects the corresponding RACH resource.
  • PRACH resources may be shared by UEs in all directions, but PRACH resources may be subdivided according to the TX beam direction of the RAR transmission, and each UE may be subdivided according to the RAR transmission beam direction. May select its PRACH resource.
  • the network may allow the eNB to use the TX beam but allow RACH reception without RX beam scanning.
  • the RACH resource may not be fixed in a specific reception beam direction, but may be set to a resource that allows the eNB to perform reception beam scanning.
  • the manner in which the RACH resources are shared by the plurality of SS block indexes may be more efficiently applied when the beam correspondence of the eNB or the TRP does not match. If the beam correspondence of the TRP is not correct, the UE may repeatedly transmit the PRACH preamble, and the TRP may perform a reception beam scanning operation for reception of the PRACH preamble.
  • the preamble index used by the UE may be part of an index set connected to a specific SS block index.
  • the UE transmits a PRACH preamble in a time-frequency RACH resource shared by a plurality of SS block indexes, but the UE can inform the network of a specific SS block index that it prefers by transmitting an SS block index specific PRACH preamble.
  • the PRACH resource configuration information includes a time-frequency resource region that can be used by the UE to transmit the PRACH, a PRACH transmission preamble index, a preamble transmission power, and RA-RNTI information used when transmitting the PRACH.
  • PRACH resources may be separately set for each beam index or SS block index, and information included in the PRACH configuration may be independently set according to the beam index or the SS block index.
  • the preamble index, the preamble transmission power, and the RA-RNTI may be set differently for each beam index or SS block index.
  • All of the information included in the PRACH configuration may be beam index-specific, or only some information may be beam index-specific.
  • a time-frequency resource capable of transmitting a PRACH may be shared by a plurality of beam indexes or all beam indexes, in which case the PRACH time-frequency resource in the PRACH configuration is assigned to beam indexes belonging to a specific beam index group. For all beam indices or for all beam indices. However, each information should be transmitted for each beam index.
  • the RAR window size and the time-frequency resource in which the RAR is transmitted may be configured / signaled for each beam index (eg, SS block index).
  • time-frequency resources through which the RAR window and / or the RAR are transmitted may also be common among the plurality of beam indices.
  • the RACH configuration information may also include configuration information for the RAR and be provided to the UE (s).
  • the RAR configuration information typically includes information on the time-frequency domain in which the RAR is transmitted. Details will be described later.
  • Information on the PRACH resource setting corresponding to the beam index may be transmitted on another channel transmitted in a symbol having PSS / SSS of the same beam index as the corresponding PRACH resource. Options of channels that can transmit a PRACH configuration are as follows.
  • PBCH Carries PRACH Configuration The PRACH configuration may be transmitted over the PBCH transmitted in the same direction (ie with the same beam index) in the same symbol as the PSS / SSS.
  • PBCH needs to transmit essential information that must be successfully decoded to the cell-edge UE of the system, if the PBCH carries the PRACH setting, the amount of information to be transmitted in the PBCH increases, so that the PRACH setting must be made. It may not be appropriate to transmit on the PBCH. However, if the amount of resources that can transmit the PBCH is sufficient, PRACH information may be transmitted in the PBCH.
  • SIB carries PRACH configuration: SIBs having the PRACH configuration as the main information in the same direction (with the same beam index) in the same symbol as the PSS / SSS can be transmitted.
  • the transmission resource location of the SIB may be indicated in the PBCH, and by receiving the SIB at the corresponding transmission resource location, the UE may obtain information on the PRACH configuration of the corresponding beam index.
  • a plurality of beam indexes / directions may be selected for a beam direction received by the UE in a preferred or best quality, and the UE may obtain PRACH configuration information for each beam index or beam direction. That is, the eNB may transmit PRACH configuration information for each beam index.
  • a plurality of SS blocks may be defined. Each of the plurality of SS blocks may be transmitted in its own DL transmission beam direction.
  • RACH resources may be configured for each SS direction.
  • the UE may receive a signal / channel in the SS block, select an SS block index having the best reception quality, and transmit a PRACH preamble by selecting a RACH resource connected with the corresponding SS block index. In this case, the UE may select one or more SS block indexes, and may attempt PRACH preamble transmission on RACH resources connected for each SS block.
  • a scheme in which the UE transmits a PRACH preamble is proposed as follows.
  • Sequential PRACH Transmission The UE preferentially attempts PRACH transmission for the most preferred beam index (ie, SS block index) among the preferred best N beam indexes (eg, SS block index).
  • the PRACH is transmitted in the PRACH resource corresponding to the best beam index.
  • An eNB that receives a PRACH message 1 (msg1) from a specific PRACH resource may understand that the UE prefers a beam corresponding to the corresponding PRACH resource.
  • the RAR for the corresponding PRACH may be transmitted to confirm that the UE uses the corresponding beam index (ie, the corresponding beam direction). RARs are sent in predefined RAR resources.
  • the UE that has not received the RAR for the PRACH transmitted on the PRACH resource corresponding to the corresponding beam index then transmits the PRACH on the PRACH resource for the high quality beam index (eg SS block index). Wait for RAR.
  • the UE can report its preferred beam index, which the eNB sends by sending a RAR for that PRACH. It may approve the use of the beam index or may not approve the use of the beam index by not sending a RAR.
  • the UE that has not received the RAR for the previously transmitted PRACH attempts to transmit the PRACH using PRACH resources for another beam index (eg, SS block index) and waits for the RAR.
  • the UE may select a plurality of preferred PRACH configurations. PRACH may be transmitted for each. And the eNB can transmit the RAR for each beam index. In other words, the UE may perform a separate RACH procedure for each beam index (eg, SS block index).
  • option 2 has a disadvantage in that a probability of collision between UEs in a PRACH resource increases because one UE transmits a PRACH by occupying a plurality of PRACH resources.
  • the UE may transmit a plurality of PRACHs for different beam indices even without receiving the RAR for the previously transmitted PRACH.
  • the eNB may respond with a single RAR within a given RAR window for a plurality of PRACHs transmitted by a particular UE, whereby using that beam index while sending a RAR for a particular beam index (eg, SS block index) Can be approved.
  • the eNB grants the use of the specific beam index by transmitting the RAR in the RAR resource corresponding to the specific beam index, or by transmitting the RAR using the RA-RNTI or sequence corresponding to the specific beam index in the specific RAR resource. You can confirm.
  • Preferred Preamble Sequence Transmission Selecting the best N beam indexes (e.g. SS block index) preferred by the UE and transmitting the PRACH for a specific beam, while the most preferred beam index (e.g. SS block index) ) Can be reported to the eNB.
  • the UE selectively transmits the PRACH by selecting the earliest time position or home preferred PRACH resource, and the preamble index used at this time may be selected and transmitted in the PRACH configuration corresponding to the beam index that is most preferred. That is, the PRACH preamble transmitted by the UE may not be actually related to the beam index (eg, SS block index) of the PRACH resource through which the corresponding PRACH is transmitted.
  • the UE transmits a PRACH in a specific PRACH resource that the eNB knows in which direction the RX beamforming is performed for receiving the PRACH, and the preamble index used for transmitting the PRACH is a beam index associated with the resource.
  • a preamble index connected to another beam index eg, SS block index
  • the eNB may know that the UE prefers a direction for a beam index (eg, SS block index) corresponding to the corresponding preamble index.
  • a beam index ie, beam direction
  • PRACH transmission with preferred RA-RNTI Similar to Option 3 described above, any beam index (e.g. SS block index) among the best N beam directions that the UE is suitable for The PRACH is transmitted to a PRACH resource corresponding to), but the RA-RNTI may be transmitted using a corresponding beam index. Similar to option 3, the UE also prefers for the resource transmitting the PRACH, and the channel environment is established for that beam index (e.g. SS block index) by selecting the RN-RNTI from another beam index (e.g. SS block index). Good can be signaled to the eNB.
  • the RA-RNTI is a function of the PRACH transmission time resource index (eg subframe number or symbol index), frequency resource index (eg PRB index or absolute frequency) and beam index.
  • PRACH Transmission on Common PRACH Resource The above-listed options are described based on the case where the PRACH resource is allocated / signaled for each beam index (eg, SS block index), but the PRACH transmission time-frequency resource is The same may be applied to a case in which all beam indexes (eg, SS block indexes) are commonly allocated or a plurality of beam index groups are allocated to be shared.
  • the eNB transmits PRACH settings on a beam-by-beam basis (i.e., SS block index) or beam group, and some information of each beam index (eg, SS block index) or PRACH configuration on a beam group basis is determined by a beam index (eg, , SS block index) may be common information, and some information may be beam index (eg, SS block index) -specific information.
  • the PRACH time-frequency resource may be beam index (eg, SS block index) common information.
  • the UE transmits the PRACH on the signaled PRACH time-frequency resource, but uses information about a preferred beam index (eg, SS block index) by using a preamble sequence / index corresponding to a specific beam index (eg, SS block index).
  • a preferred beam index eg, SS block index
  • a reception beam direction preferred by each UE that is, a transmission beam direction of an eNB
  • the UE may signal the preferred beam direction while transmitting the PRACH.
  • a preferred beam direction may be transmitted to the eNB using a preamble index or RA-RNTI in a PRACH configuration corresponding to a specific beam index (eg, SS block index).
  • the UE may be to use the fastest PRACH resource among the PRACH resources for the candidate beams or among the available PRACH resources. If timing such as RAR, Msg3, msg4, etc. is used in conjunction with the PRACH configuration, the UE can select a resource for which the overall process time can be reduced the most.
  • the UE may select a PRACH resource corresponding to a beam or SS block having the largest amount of resources, or may select a PRACH resource in consideration of a load, as described above.
  • load information may be signaled as RACH configuration information for each SS block index.
  • the load information may be used to limit RACH attempts for a particular SS block index, ie random access attempts on a particular RACH resource.
  • the transmit power offset may be signaled in the RACH configuration information per SS block index. For example, when the UE measures the received signal level for each beam (ie, for each SS block), the UE may add or subtract by the signaled power offset to derive the actual received signal level.
  • the power offset may serve to force the UE to select a particular SS block index and attempt a RACH procedure through the RACH resources associated with that SS block, or not to select a particular SS block index.
  • a message transmitted to the RAR includes a timing advance (TA) command, uplink transmission power information, and power ramping for correcting the RACH preamble sequence index detected by the eNB and the uplink transmission timing of the UE. ramping information, UL grants for message 3 (msg3) transmission, temporary IDs, and the like.
  • TA timing advance
  • the transmission of the RAR typically indicates that the RACH transmission by the UE is successful. Accordingly, the UE that receives the RAR for the RACH preamble transmitted on a specific cell / carrier does not transmit the RACH preamble again unless the RACH process is triggered again by a radio link on the cell / carrier or a PDCCH order. Uplink transmission is performed according to the corresponding RAR.
  • the RAR may include load information of a network in a corresponding beam direction.
  • the eNB can cause the UE that sent the preamble to make an RACH attempt for another beam.
  • the load information in the RAR may be used as the beam switching command.
  • the network may specify a separate preamble for beam switching in the RAR message.
  • the eNB when instructing beam switching through the RAR, the eNB may designate the transmission power for the preamble for another beam direction. If there is no separate signaling for the transmit power in the RAR indicating beam switching, the UE may regard the PRACH transmission for the other beam direction as the PRACH retransmission and ramp up the power together. In this case, the UE may transmit the PRACH preamble for the beam direction having the best received signal quality among other beam directions except the beam direction in which the load indication is signaled.
  • the RAR configuration for each PRACH configuration may be independently or collectively configured.
  • the UE having transmitted the PRACH may expect that the RAR will be transmitted in a specific window from the kth subframe after the transmission time point or after a specific time. That is, the UE expects the RAR to be transmitted within a certain time interval (ie, time window) from the kth subframe (or a specific time) after the PRACH transmission. For example, a UE transmitting a PRACH in subframe n expects to receive a RAR for the PRACH within a specific time period (ie, a RAR arrival window) from subframe k.
  • the k value and the RAR arrival window may be signaled / defined for each PRACH configuration. In other words, these two values may be signaled / defined for each beam index.
  • the k value and the RAR arrival window may be signaled or defined as values common to all PRACH configurations. Although the PRACH resources according to the beam direction are different, several RACHs belonging to the same beam-group may share the same RAR window.
  • the PRACH preambles for the plurality of beam directions are transmitted in different time resources within the uplink time interval corresponding to the downlink time interval required for the eNB to transmit the SS / PBCH for all the beam directions, the UE One may expect to receive RAR (s) for the PRACH preambles within the same time resource.
  • FIG. 13 illustrates a format of a random access response message according to the present invention.
  • the UE transmits preamble 1 in the RACH resource for beam index A, and the (same / other) UE transmits preamble 2 in the RACH resource for beam index B.
  • the RAR for the preamble 1 and the RAR for the preamble 2 may be transmitted within the same window.
  • responses to a plurality of PRACH may be transmitted in one RAR message.
  • responses to PRACH transmission for various beam indices or SS blocks may be included in one RAR message.
  • For each PRACH response in the RAR message it is signaled with which beam index the response is.
  • a response to the RACH preamble transmission associated with the plurality of beam indexes may be transmitted in one RAR message.
  • the beam index for each PRACH response is signaled in one RAR message.
  • the RAR may be transmitted for each beam index.
  • the corresponding beam index per RAR message is signaled.
  • PRACH responses corresponding to the corresponding beam index may be transmitted.
  • RAR1 for the preamble 1 and RAR2 for the preamble 2 transmitted in the beam direction A are transmitted together with the beam index A in one RAR message, and for the beam direction B.
  • RAR1 for the transmitted preamble 1 and RAR2 for the preamble 2 may be transmitted together with the beam index B in another RAR message.
  • M RAR message reception time units corresponding to the corresponding N PRACH signals may be set to be continuous or at equal intervals.
  • M may be equal to or less than N.
  • N may be less than or equal to K.
  • the UE may determine that the beam index included in the received RAR matches its preferred beam index or the beam index corresponding to the PRACH time unit transmitted by the UE, and / or the PRACH transmitted by the PRACH preamble ID included in the RAR. If it matches that of the signal, subsequent operations (eg, Msg3 transmission) according to the corresponding RAR may be performed, and further RAR detection / reception operations may be stopped within the corresponding RAR window.
  • subsequent operations eg, Msg3 transmission
  • the UE fails to receive the RAR. And perform subsequent operations (e.g., PRACH signal retransmission, PRACH power ramping, and / or PRACH transmission count increments).
  • the eNB can efficiently utilize resources by configuring / transmitting only the RAR for the PRACH actually received within the RAR window compactly.
  • the eNB may use only the first partial symbols / sections in the RAR window for RAR transmission and transmit DL / UL data / control channel for the remaining symbols.
  • the part related to the random access process in the 3GPP LTE system is as follows.
  • the L1 random access procedure encapsulates the transmission of the random access preamble and the random access response. Remaining messages are scheduled for transmission by higher layers on the shared data channel.
  • the random access channel occupies six resource blocks in one subframe or in a set of consecutive subframes reserved for random access preamble transmission.
  • the eNB is not prohibited from scheduling data in the resource blocks reserved for random access response. The following steps are required for the L1 random access procedure.
  • the layer 1 process is triggered on a request for preamble transmission by a higher layer.
  • the preamble index, the target preamble received power (PREAMBLE_RECEIVED_TARGET_POWER), the corresponding RA-RNTI and PRACH resources are indicated by the upper layer as part of the request.
  • P CMAX, c (i) is the configured UE transmit power, defined in 3GPP TS 36.101, for subframe i of serving cell c
  • PL c is the downlink path calculated in the UE for serving cell c It is a downlink path loss estimate.
  • the preamble sequence is selected from the preamble sequence set using the preamble index.
  • a single preamble is transmitted using the preamble sequence selected with transmit power P PRACH on the indicated PRACH resource.
  • Detection of the PDCCH with the indicated RA-RNTI is attempted during the window controlled by the higher layer (see section 5.1.4 of 3GPP TS 36.321). If detected, the corresponding DL-SCH transport block is passed to a higher layer. The upper layer parses the transport block and indicates a 20-bit uplink grant to the physical layer.
  • MAC medium access control
  • the UE is a bandwidth limited (BL) UE or a UE in enhanced coverage:
  • preambleInitialReceivedTargetPower a parameter that specifies the power of the UE.
  • powerRampingStep a parameter that specifies the power of the UE.
  • preambleTransMax a parameter that specifies the UE's power of the UE.
  • PREAMBLE_TRANSMISSION_COUNTER starts at 1 and increments by 1 each time a preamble transmission is attempted. Preamble transmission may be performed within the maximum number of preambleTransMax limits of the preamble transmission.
  • DELTA_PREAMBLE is a value defined according to the preamble format as follows (see Table 7.6-1 of 3GPP TS 36.321).
  • Preamble Format DELTA_PREAMBLE value 0 0 dB One 0 dB 2 -3 dB 3 -3 dB 4 8 dB
  • the PRACH preamble transmission power in the LTE / LTE-A system is determined by the following equation.
  • P PRACH min ⁇ P CMAX, c (i), PREAMBLE_RECEIVED_TARGET_POWER + PL c ⁇ _ [dBm].
  • a plurality of SS blocks may be defined. That is, a plurality of SS blocks are defined, and each SS block may be transmitted in a unique DL transmission beam direction.
  • an RACH resource may be configured for each SS block.
  • the UE may receive a signal / channel in the SS block, select an SS block index having the best reception quality, and transmit a PRACH preamble by selecting a RACH resource connected with the corresponding SS block index. In this case, the UE may select one or more SS block indexes, and may attempt to transmit PRACH preambles to RACH resources connected to each SS block.
  • the UE If the UE does not receive the RAR within the RAR window, it attempts to transmit PRACH again, and the UE repeats this process. This is called PRACH retransmission.
  • the UE ramps up the PRACH transmit power to some extent whenever retransmitting the PRACH.
  • the UE retransmits the number of allowed PRACH retransmissions and ramps up the power each time it is retransmitted, but the wrapped up power cannot exceed the maximum transmit power.
  • the number of PRACH retransmissions is reflected in the PREAMBLE_TRANSMISSION_COUNTER variable of Equation (2) below, and the amount of power ramping up is reflected in powerRampingStep .
  • the PRACH preamble transmit power in the LTE system is determined by Equation (1) and Equation (2) below.
  • PREAMBLE_RECEIVED_TARGET_POWER preambleInitialReceivedTargetPower + DELTA_PREAMBLE + (PREAMBLE_TRANSMISSION_COUNTER-1) * powerRampingStep .
  • PRACH retransmissions need to be defined before discussing the transmit power upon retransmission of the PRACH preamble.
  • repetition or beam sweeping of the PRACH preamble may be considered according to a transmission and reception point (TRP) or TX / RX reciprocal capability of the UE in a multi-beam environment.
  • TX / RX mutual capability is also referred to as TX / RX beam correspondence at TRP and UE.
  • the UE may not shoot an uplink signal in the beam direction in which the downlink signal is received.
  • TX / RX beam correspondence in the TRP if the TRP can determine a TRP RX beam for uplink reception based on the UE's downlink measurement for one or more TX beams of the TRP and / or the TRP is one or more RX of the TRP If the TRP TX beam for the corresponding downlink transmission can be determined based on the TRP 'uplink measurement for the beams, it is held.
  • TX / RX beam correspondence at the UE if the UE can determine the UE RX beam for the corresponding uplink transmission based on the downlink measurement of the UE with respect to the one or more RX beams of the UE and / or the UE is at least one TX of the UE If the UE TX beam for the downlink reception can be determined based on the indication of the TRP based on the uplink measurement for the beams, it is held.
  • PRACH resources for a set of beam directions applied to a cell / carrier are shown as contiguous in the time domain, but may be configured discontinuously.
  • PRACH resources for the set of beam directions available in the cell / carrier are shown to be identical to each other in the frequency domain in FIG. 14, the frequency resources may be set differently.
  • RACH resources may be defined for each beam direction or SS block in which the SS is transmitted. At this time, the corresponding RACH resources may be subdivided into finer level RACH basic units.
  • the RACH basic unit may be defined as a time-frequency resource used to transmit one PRACH preamble.
  • one PRACH resource configured for one beam direction or one SS block may be subdivided into two RACH basic units.
  • one PRACH resource is illustrated as being divided into two RACH base units, but may be divided into more than two RACH base units.
  • One PRACH attempt may mean transmitting a PRACH preamble in RACH resources defined for each SS block, and may be regarded as one PRACH attempt even if repetition or beam sweeping of the preamble is performed in the corresponding RACH resource.
  • the UE transmits the RACH preamble by changing the beam direction according to the RACH basic unit in the same RACH resource, it may be regarded as one PRACH attempt.
  • multiple PRACH preamble transmissions using other RACH basic units in the same RACH resource are not considered retransmissions. For example, referring to FIG.
  • the RACH resources connected to the same beam or SS block transmit the RACH preamble on the next RACH resource (that is, wait for the RAR window to receive the RAR, and then transmit the RACH preamble on the RACH resource after the RAR window).
  • PRACH preamble transmission using a PRACH resource connected to another beam / SS block it is regarded as retransmission.
  • the UE when the UE does not receive the RAR for the RACH preamble transmitted in the PRACH preamble resource associated with SS block 1 or receives the RAR indicating beam switching, the UE blocks the SS block.
  • the RACH preamble may be sent in the next PRACH preamble resource for 1 or a PRACH preamble associated with another SS block, which is considered to be a different attempt than the previous RACH preamble transmission.
  • PREAMBLE_TRANSMISSION_COUNTER representing the number of PRACH preamble retransmissions in Equation (2) is increased.
  • the UE indicates "PREAMBLE_TRANSMISSION_COUNTER”. Increases.
  • the amount of power ramping up may be different for each beam index.
  • the amount of power ramped up by the UE may be set / signaled independently between beam indices, and calculation for power increase in retransmission is performed for each beam index.
  • the calculation of the number of retransmissions (PREAMBLE_TRANSMISSION_COUNTER) is calculated by combining all the RACH resources even if the beam direction, that is, the RACH resources are different.
  • the PRACH transmission power is calculated by calculating the PRACH preamble transmission number for each UE without calculating the PRACH preamble transmission number for each RACH resource.
  • the path loss value may vary due to the different RS reception levels for each beam direction, that is, for each SS block. Accordingly, when the UE retransmits the PRACH preamble, the PRACH preamble transmission power compensates for the path loss for each RACH resource used for the PRACH preamble transmission. For example, assume that RACH resource j is associated with beam direction or SS block index j. PRACH transmission power P PRACH in the RACH resource j , j may be defined by equations (3) and (4).
  • c (i) is the set UE transmit power for subframe i of serving cell c, and PL c, beam (j) is for beam direction j (or SS block index j) of serving cell c; It is a downlink path loss estimate calculated in the UE.
  • PREAMBLE_RECEIVED_TARGET_POWER preambleInitialReceivedTargetPower + DELTA_PREAMBLE + (PREAMBLE_TRANSMISSION_COUNTER-1) * powerRampingStep ( j ) .
  • powerRampingStep (j) is powerRampingStep .
  • preambleInitialReceivedTargetPower and the preamble format are set for each RACH resource (i.e., for beam direction or for SS block index)
  • preambleInitialReceivedTargetPower is preambleInitialReceivedTargetPower (j) in Equation (4)
  • DELTA_PREAMBLE can be DELTA_PREAMBLE (j).
  • the network may signal by setting the number of RACH resources available to one UE. And, for example, when PRACH preamble in two RACH resources is allowed, the network sets an offset of the received signal level of the best beam and the second best beam and includes the offset in the RACH configuration. Can transmit Even in the case of two or more, the offset of the received signal level of the best beam, the lane beam, the third best beam is signaled. This means that the UE may attempt PRACH preamble transmission only for beams coming within the corresponding offset in addition to the best beam.
  • a plurality of RACH resources may be configured for the UE.
  • a method of selecting a RACH resource for a random access procedure among a plurality of RACH resources will be described.
  • the RACH resource selection scheme for the random access procedure that is, the RACH procedure, is described in association with the PRACH retransmission scheme.
  • Alt a means that when the UE transmits a PRACH, when there are a plurality of SS blocks received above a certain level, that is, when there are a plurality of preferred beam indices that are preferred, the UE preferentially receives a received signal strength level.
  • the PRACH for this best SS block (best beam index) is transmitted first. If no RAR is received for the corresponding PRACH within a given RAR window, the UE retransmits the PRACH for that beam index.
  • the UE preferentially transmits the PRACH preamble using the RACH resource associated with the SS block index having the best received signal strength level, and preferentially transmits the PRACH preamble to the SS block index having the best received signal strength even when retransmitting. Try.
  • a, b, and c there are three preferred beam indexes of the UE, and each beam index is referred to as a, b, and c.
  • beam index a corresponds to the best beam
  • beam index c corresponds to the beam of the lowest quality among the preferred beams.
  • the number of retransmissions for each beam index a, b, and c is called Ra, Rb, and Rc.
  • the UE receives the Rb number (Rb ⁇ 1) for the next good beam index. You can try to resend. If RAR is not received despite Rb PRACH retransmission attempts, Rc times (Rc ⁇ 1) may be attempted for the next good beam index.
  • the number of PRACH preamble retransmissions for each SS block index may be defined or set, respectively, and the UE first attempts to transmit the PRACH preamble for the SS block index having the best received signal strength. Retransmit the maximum number of retransmissions specified for the best SS block index.
  • the UE receives the next reception quality. PRACH transmission can be attempted for this good SS block.
  • each time the UE retransmits the PRACH it ramps up the power of the signal (delta) signaled to the UE to transmit the PRACH.
  • a PRACH for beam index a is transmitted, power is ramped up.
  • the PRACH for beam index a retransmits Ra times, ramps up the power for every retransmission until the maximum power is reached, and transmits at full power when retransmission for the corresponding beam index a when the maximum power is reached. If the RAR has not been received even after retransmitting the PRACH for the beam index a Ra times, the UE transmits the PRACH for the beam index b in the PRACH resource associated with the beam index b.
  • the transmit power should be reset or initialized. That is, it does not transmit at the maximum power used in the PRACH transmission for the beam index a.
  • the PRACH for the beam index b is transmitted using the power used for initial transmission, and when the RAR is not received and retransmits, the power is ramped up.
  • the UE transmits the PRACH for the next good beam index c.
  • the UE When attempting to transmit the PRACH preamble by changing the RACH resource, as in the power control scheme described in the method 1, the UE is initially based on the received signal strength (eg, RSRP) for the SS block associated with the corresponding RACH resource The transmit power value can be calculated. That is, when the UE retransmits the PRACH preamble, the PRACH preamble transmission power compensates for the path loss for each RACH resource or SS block index used for the PRACH preamble transmission.
  • the received signal strength eg, RSRP
  • the UE transmits the PRACH in the same process described above and has not received the RAR for this, that is, if it has not received the RAR for all the preferred beams it prefers, the UE reports this to the higher layer and reports the cell. Reselection may be performed. For example, unlike the power control method described in the above-described method 1, the UE may attempt power ramping for each beam index by separately using a power ramping counter for each beam index for RACH retransmission for a different beam index. have.
  • the UE when the UE performs RACH preamble retransmission for another beam index (ie, SS block index), unlike the method 1 in which the number of retransmissions is counted regardless of beam indexes (ie, SS block indexes), in the present method, The number of retransmissions is not inherited.
  • Alt b means that when the UE transmits a PRACH, when there are a plurality of SS blocks received above a certain signal strength level, that is, when there are a plurality of preferred beam indexes preferred, the UE preferentially receives a received signal.
  • the PRACH for the best SS block (that is, the best beam index) is transmitted first with the strength level. For example, if there is more than one preferred beam index, the PRACH for the best beam index is transmitted first, and if the RAR is not received for the PRACH within a given RAR window, the next reception quality is good. Send a PRACH for the beam index.
  • the PRACH for the next good beam index is transmitted. That is, when the UE has a plurality of SS block indexes having a predetermined level or more, the UE may sequentially perform PRACH preamble retransmission by sequentially selecting RACH preamble transmissions for the plurality of SS block indexes according to SS block reception quality. have. However, since the UE's PRACH preamble transmission for too many RACH resources may destabilize the performance of the system due to the ping-pong effect, the number of PRACH resources that the UE can attempt to transmit the PRACH preamble and the associated SS blocks. The range of reception quality may be limited.
  • the network may signal the maximum number of SS blocks or the number of RACH resources and the offset value from the best SS block received signal strength that the UE can attempt to RACH in the PRACH configuration.
  • the offset may be used to enable RACH preamble transmission only for SS block indexes within a range from the best SS block received signal strength.
  • the UE may consider this as a PRACH retransmission and ramp up power when transmitting the next higher quality PRACH.
  • the UE may consider this as a PRACH retransmission and ramp up power when transmitting the next higher quality PRACH.
  • the PRACH since the PRACH is transmitted for another beam index, it may be desirable that power is not ramped up.
  • the UE transmits each PRACH in its preferred beam index set it does not ramp up power if it first transmits the PRACH for a specific beam index. If the RAR is not received even though the UE attempts the PRACH once for all the preferred beam indices, the PRACH is transmitted again for the best beam index, but the power is ramped up.
  • the UE may set a power ramping for each SS block index (or beam index) separately and try power ramping for each beam index, similar to Alt a described above.
  • a path loss value may vary due to a different reception level for each beam direction, that is, for each SS block. Therefore, when the UE retransmits the PRACH preamble, the UE compensates the path loss for each RACH resource or SS block index used for the PRACH preamble transmission power.
  • a, b, and c There are three indices, and each beam index is referred to as a, b, and c. Assume that beam index a corresponds to the best beam and beam index c corresponds to the beam of the lowest quality among the preferred beams.
  • the number of retransmissions for each beam index a, b, and c is Ra, Rb, and Rc.
  • the UE transmits a PRACH for the beam index a, and if it does not receive a RAR for the beam index a, transmits a PRACH for the beam index b, and transmits a PRACH for the beam index c when the RAR for the beam index is not received. If the RAR is not received for all beam indices of the UE, the UE transmits the PRACH for the beam index a again but ramps up the PRACH transmission power.
  • the PRACH is transmitted with the power already ramped up one step for the next beam index b, that is, the transmission power used for the transmission of the PRACH for the previous beam index a.
  • the PRACH for the beam index c is transmitted at the same power. While ramping power in this manner, the UE may retransmit the PRACH by rotating each beam index.
  • Another way of setting the PRACH preamble transmit power is to ramp up power for retransmission in the same RACH resource, i.e., RACH resources associated with the same beam or the same SS block, and PRACH when moving to another RACH resource and retransmitting.
  • the power value of the previous retransmission can be inherited as is without resetting or resetting the transmit power. That is, when the power is ramped up only for retransmission on the same RACH resource and the RACH resource is changed and retransmitted, the previous PRACH preamble transmission power can be inherited.
  • the UE When the UE according to Alt c has a plurality of SS blocks that are received at a predetermined signal strength level or more, that is, when the UE itself has a plurality of preferred beam indices, the UE has a plurality of SS blocks.
  • the PRACH preamble may be transmitted with respect to the UE. That is, the UE may transmit PRACHs for a plurality of beam indices, respectively, and may retry the PRACH when no RAR is received for any of the beam indices. For example, the UE may transmit PRACHs for beam indices a, b, and c, respectively, and wait for the RAR for this in the same window or in overlapping windows.
  • the UE transmits the PRACH for the other beam index even without receiving the RAR for the specific beam index. If the RAR is not received for the PRACH transmission for the beam indices a, b and c, the UE may again retransmit the PRACH for the beam indices a, b and c. In this case, the UE ramps up and transmits the PRACH for each beam index.
  • the UE may transmit a plurality of PRACHs without waiting for reception of the RAR.
  • the PRACH for the same beam index cannot transmit the PRACH without waiting for RAR reception, that is, before the RAR transmission window arrives.
  • the UE can transmit the PRACH at the time when the UE does not wait for the RAR reception for the PRACH transmitted by the UE may be limited to the case of the PRACH for different beam indexes.
  • the method in which the UE attempts to transmit the PRACH while rotating the beam index in the manner of round robin is described, but the order and number of times the UE transmits the PRACH when the UE performs the round robin for the beam index are described. You can decide. Preferably, the best beam index is started first, and even if a channel in which a specific beam index is received with a certain quality or higher by the UE's selection, if the reception quality difference is large compared to other beam indexes, the UE is determined to have a good beam index. You can try PRACH transmission more often.
  • RACH transmission as [a, b, a, b, c, a, b, a, b, c, ..], not [a, b, c, a, b, c, ..]
  • the principle of power ramping ramps up power when retransmitting the same beam index, and ramps up power corresponding to the number of retransmissions for the corresponding beam index for another beam index.
  • the first available PRACH resource may be the first available resource among the available RACH resources or a resource with the lowest total delay.
  • the RACH resource corresponding to the beam with the highest amount of resources may be selected as the first available PRACH resource or as described above, the RACH resource may be selected as the first available PRACH resource in consideration of load and the like. It may be.
  • the maximum number of PRACH (re) transmissions that a UE can transmit must be specified.
  • the maximum number of retransmissions may be largely defined in two ways.
  • the maximum (re) transmission number R may be designated for each UE.
  • R Ra + Rb + Rc. That is, the PRACH maximum retransmission number R for each UE is defined and signaled, and this value may be the sum of the maximum retransmission number for each beam index.
  • the maximum number of retransmissions for each beam index may be set to be the same or different.
  • the maximum number of retransmissions R may be specified for each beam index.
  • the UE retransmits the PRACH a maximum number of times per beam index and attempts PRACH for another beam index.
  • the maximum number of retransmissions is defined for each beam index, the UE may determine the maximum number of retransmissions for each beam index. That is, even if the maximum number of retransmissions is Ra for the beam index a, the UE may retransmit PRACH for Rx (Rx ⁇ Ra) times for the corresponding beam index a.
  • Rmax ⁇ Ra + Rb + Rc.
  • a PRACH resource is set for each beam index for a UE requiring beamforming due to a certain distance from the eNB, UEs in a cell center need not receive RX beamforming at the eNB. . Therefore, the PRACH resource may be separately configured according to the coverage class of the UE.
  • the UE may transmit a PRACH through a common PRACH resource, and the eNB may not necessarily perform RX beamforming on the resource. Since the resource region is not limited to a specific beam direction, waste of resources can be prevented.
  • UEs that transmit a PRACH on a resource configured to receive the PRACH pre-directionally are mainly UEs having relatively little propagation loss or blockage or located in a cell center or have a very good channel condition.
  • a separate common PRACH resource may be allocated for the corresponding UEs. In the common PRACH resource, the UE may repeatedly transmit the PRACH regardless of the beam index.
  • the UE may transmit the PRACH for each beam index by using the beam index specific PRACH resource in the above-described manner.
  • the UE transmits PRACH for the best beam index and retries PRACH transmission for the beam index if no RAR is transmitted within a given window. .
  • This retry can be attempted x (x ⁇ 1) times and if the RAR reception is unsuccessful even after x attempts, the PRACH is sent for the next good beam index and waits to receive the RAR within the given window. .
  • the PRACH for the corresponding beam index may be attempted y (y ⁇ 1) times. If the RAR is not received after the y attempts, the PRACH transmission for the next good beam index is performed.
  • the UE may transmit a preferred beam index (eg, SS block index) set along with its C-RNTI if possible via the PUSCH. Based on this report on the beam index, the eNB may select and transmit a specific beam index within the beam index set when scheduling to the UE.
  • a preferred beam index eg, SS block index
  • the PRACH message 3 includes one preferred beam index or one or more arbitrary N beam indexes identified by the UE through downlink beam RS measurement, and received signal strength (eg, RSRP) for the corresponding beam index.
  • RSRP received signal strength
  • the eNB receiving the RACH message 3 from the UE transmits the RACH message 4 to the UE, in general, the RACH message 4 has a purpose for contention resolution.
  • the eNB based on the best N beam indexes (beam information) reported by the UE, the eNB signals in the beam indexer RACH message 4 to be used for data transmission to the UE.
  • the eNB may signal one or more plurality of beam indices.
  • the UE expects to transmit its PDCCH / PDSCH in a direction corresponding to the signaled beam index and may perform RX beamforming in the corresponding direction.
  • uplink transmission such as PUSCH / PUCCH is performed in a direction corresponding to the signaled beam index.
  • the UE reports its preferred beam index as follows. The following scheme may also be used when the UE's preferred beam direction is changed / added.
  • Method 1 The UE that has acquired the PRACH resource information for each beam index may transmit a PRACH to each PRACH resource for each beam index, thereby informing the eNB that the channel quality of the beam index is good.
  • the UE may perform RSRP measurement by measuring RS for each beam index.
  • the reference RS for performing RSRP measurement may be a BRS (Beam RS) or PBCH-RS used for demodulation of PBCH transmitted over a wide band.
  • RSRQ measurement may be performed based on the received signal strength of the PSS / SSS.
  • 15 is a block diagram showing the components of the transmitter 10 and the receiver 20 for carrying out the present invention.
  • the transmitter 10 and the receiver 20 are radio frequency (RF) units 13 and 23 capable of transmitting or receiving radio signals carrying information and / or data, signals, messages, and the like, and in a wireless communication system.
  • the device is operatively connected to components such as the memory 12 and 22, the RF unit 13 and 23, and the memory 12 and 22, which store various types of information related to communication, and controls the components.
  • a processor (11, 21) configured to control the memory (12, 22) and / or the RF unit (13, 23), respectively, to perform at least one of the embodiments of the invention described above.
  • the memories 12 and 22 may store a program for processing and controlling the processors 11 and 21, and may temporarily store input / output information.
  • the memories 12 and 22 may be utilized as buffers.
  • the processors 11 and 21 typically control the overall operation of the various modules in the transmitter or receiver. In particular, the processors 11 and 21 may perform various control functions for carrying out the present invention.
  • the processors 11 and 21 may also be called controllers, microcontrollers, microprocessors, microcomputers, or the like.
  • the processors 11 and 21 may be implemented by hardware or firmware, software, or a combination thereof.
  • application specific integrated circuits ASICs
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • the firmware or software when implementing the present invention using firmware or software, may be configured to include a module, a procedure, or a function for performing the functions or operations of the present invention, and configured to perform the present invention.
  • the firmware or software may be provided in the processors 11 and 21 or stored in the memory 12 and 22 to be driven by the processors 11 and 21.
  • the processor 11 of the transmission apparatus 10 is predetermined from the processor 11 or a scheduler connected to the processor 11 and has a predetermined encoding and modulation on a signal and / or data to be transmitted to the outside. After performing the transmission to the RF unit 13. For example, the processor 11 converts the data sequence to be transmitted into K layers through demultiplexing, channel encoding, scrambling, and modulation.
  • the coded data string is also called a codeword and is equivalent to a transport block, which is a data block provided by the MAC layer.
  • One transport block (TB) is encoded into one codeword, and each codeword is transmitted to a receiving device in the form of one or more layers.
  • the RF unit 13 may include an oscillator for frequency upconversion.
  • the RF unit 13 may include N t transmit antennas, where N t is a positive integer greater than or equal to one.
  • the signal processing of the receiver 20 is the reverse of the signal processing of the transmitter 10.
  • the RF unit 23 of the receiving device 20 receives a radio signal transmitted by the transmitting device 10.
  • the RF unit 23 may include N r receive antennas, and the RF unit 23 frequency down-converts each of the signals received through the receive antennas to restore the baseband signal. .
  • the RF unit 23 may include an oscillator for frequency downconversion.
  • the processor 21 may decode and demodulate a radio signal received through a reception antenna to restore data originally transmitted by the transmission apparatus 10.
  • the RF units 13, 23 have one or more antennas.
  • the antenna transmits a signal processed by the RF units 13 and 23 to the outside under the control of the processors 11 and 21, or receives a radio signal from the outside to receive the RF unit 13. , 23).
  • Antennas are also called antenna ports.
  • Each antenna may correspond to one physical antenna or may be configured by a combination of more than one physical antenna elements.
  • the signal transmitted from each antenna can no longer be decomposed by the receiver 20.
  • a reference signal (RS) transmitted in correspondence with the corresponding antenna defines the antenna as viewed from the perspective of the receiver 20, and whether the channel is a single radio channel from one physical antenna or includes the antenna.
  • RS reference signal
  • the receiver 20 enables channel estimation for the antenna. That is, the antenna is defined such that a channel carrying a symbol on the antenna can be derived from the channel through which another symbol on the same antenna is delivered.
  • the antenna In the case of an RF unit supporting a multi-input multi-output (MIMO) function for transmitting and receiving data using a plurality of antennas, two or more antennas may be connected.
  • MIMO multi-input multi-output
  • the UE operates as the transmitter 10 in the uplink and operates as the receiver 20 in the downlink.
  • the eNB operates as the receiving device 20 in the uplink, and operates as the transmitting device 10 in the downlink.
  • the processor, the RF unit and the memory provided in the UE will be referred to as a UE processor, the UE RF unit and the UE memory, respectively, and the processor, the RF unit and the memory provided in the eNB will be referred to as an eNB processor, the eNB RF unit and the eNB memory, respectively.
  • the eNB processor of the present invention may control the eNB RF unit to transmit a synchronization signal, a broadcast signal, and system information according to any one of the suggestions of the present invention.
  • the eNB processor may control the eNB RF unit to receive a RACH from a UE according to any of the suggestions of the present invention.
  • the eNB processor may control the eNB RF unit to transmit PDCCH / PDSCH according to the proposal of the present invention.
  • the eNB processor may control the eNB RF unit to receive PUSCH / PUCCH according to the proposal of the present invention.
  • the UE processor of the present invention may control the UE RF unit to receive a synchronization signal, a broadcast signal, and system information according to any one of the suggestions of the present invention.
  • the UE processor may control the UE RF unit to transmit the RACH in accordance with any of the suggestions of the present invention.
  • the UE processor may control the UE RF unit to receive the PDCCH / PDSCH according to the proposal of the present invention.
  • the UE processor may control the UE RF unit to transmit PUSCH / PUCCH according to the proposal of the present invention.
  • Embodiments of the present invention may be used in a base station or user equipment or other equipment in a wireless communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명에 따른 무선 통신 시스템에서 시스템 정보는 사용자기기의 요청이 있을 때 전송된다. 시스템 정보 요청을 위한 임의 접속 채널 자원이 설정된다. 사용자기기는 시스템 정보의 수신이 필요해지면 상기 임의 접속 채널 자원을 이용하여 임의 접속 채널을 전송할 수 있다. 기지국은 시스템 정보 요청용으로 설정된 임의 접속 채널 자원을 이용한 임의 접속 채널을 수신하면, 해당 시스템 정보를 전송할 수 있다.

Description

시스템 정보 신호 수신 방법 및 사용자기기와, 시스템 정보 신호 전송 방법 및 기지국
본 발명은 무선 통신 시스템에 관한 것이다. 특히, 시스템 정보를 수신/전송하는 방법 및 장치에 관한 것이다.
기기간(Machine-to-Machine, M2M) 통신과, 높은 데이터 전송량을 요구하는 스마트폰, 태블릿 PC 등의 다양한 장치 및 기술이 출현 및 보급되고 있다. 이에 따라, 셀룰러 망에서 처리될 것이 요구되는 데이터 양이 매우 빠르게 증가하고 있다. 이와 같이 빠르게 증가하는 데이터 처리 요구량을 만족시키기 위해, 더 많은 주파수 대역을 효율적으로 사용하기 위한 반송파 집성(carrier aggregation) 기술, 인지 무선(cognitive radio) 기술 등과, 한정된 주파수 내에서 전송되는 데이터 용량을 높이기 위한 다중 안테나 기술, 다중 기지국 협력 기술 등이 발전하고 있다.
일반적인 무선 통신 시스템은 하나의 하향링크(downlink, DL) 대역과 이에 대응하는 하나의 상향링크(uplink, UL) 대역을 통해 데이터 송/수신을 수행(주파수 분할 듀플렉스(frequency division duplex, FDD) 모드의 경우)하거나, 소정 무선 프레임(Radio Frame)을 시간 도메인(time domain)에서 상향링크 시간 유닛과 하향링크 시간 유닛으로 구분하고, 상/하향링크 시간 유닛을 통해 데이터 송/수신을 수행(시 분할 듀플렉스(time division duplex, TDD) 모드의 경우)한다. 기지국(base station, BS)와 사용자기기(user equipment, UE)는 소정 시간 유닛(unit), 예를 들어, 서브프레임(subframe, SF) 내에서 스케줄링된 데이터 및/또는 제어 정보를 송수신한다. 데이터는 상/하향링크 서브프레임에 설정된 데이터 영역을 통해 송수신되고, 제어 정보는 상/하향링크 서브프레임에 설정된 제어 영역을 통해 송수신된다. 이를 위해, 무선 신호를 나르는 다양한 물리 채널이 상/하향링크 서브프레임에 설정된다. 이에 반해 반송파 집성 기술은 보다 넓은 주파수 대역을 사용하기 위하여 복수의 상/하향링크 주파수 블록들을 모아 더 큰 상/하향링크 대역폭을 사용함으로써 단일 반송파가 사용될 때에 비해 많은 양의 신호가 동시에 처리될 수 있다.
한편, UE가 주변에서 접속(access)할 수 있는 노드(node)의 밀도가 높아지는 방향으로 통신 환경이 진화하고 있다. 노드라 함은 하나 이상의 안테나를 구비하여 UE와 무선 신호를 전송/수신할 수 있는 고정된 지점(point)을 말한다. 높은 밀도의 노드를 구비한 통신 시스템은 노드들 간의 협력에 의해 더 높은 성능의 통신 서비스를 UE에게 제공할 수 있다.
더 많은 통신 장치가 더 큰 통신 용량을 요구함에 따라, 레거시 무선 액세스 기술(radio access technology, RAT)에 비해 향상된 모바일 광대역 통신에 대한 필요성이 대두되고 있다. 또한, 복수의 장치 및 객체(object)를 서로 연결하여 언제 어디서나 다양한 서비스를 제공하기 위한 대규모 기계 타입 통신(massive machine type communication, mMTC)는 차세대 통신에서 고려해야 할 주요 쟁점 중 하나이다.
또한, 신뢰도 및 대기 시간에 민감한 서비스 / UE를 고려하여 설계될 통신 시스템에 대한 논의가 진행 중이다. 차세대(next generation) 무선 액세스 기술의 도입은 향상된 모바일 광대역 통신(eMBB), mMTC, 초 신뢰성 및 저 대기 시간 통신(ultra-reliable and low latency communication, URLLC) 등을 고려하여 논의되고 있다.
새로운 무선 통신 기술의 도입에 따라, 기지국이 소정 자원영역에서 서비스를 제공해야 하는 UE들의 개수가 증가할 뿐만 아니라, 상기 기지국이 서비스를 제공하는 UE들과 전송/수신하는 데이터와 제어정보의 양이 증가하고 있다. 기지국이 UE(들)과의 통신에 이용 가능한 무선 자원의 양은 유한하므로, 기지국이 유한한 무선 자원을 이용하여 상/하향링크 데이터 및/또는 상/하향링크 제어정보를 UE(들)로부터/에게 효율적으로 수신/전송하기 위한 새로운 방안이 요구된다.
아울러, 기술에 발달에 따라 딜레이(delay) 혹은 지연(latency) 극복이 중요한 문제로 떠오르고 있다. 딜레이/지연에 따라 성능이 중대하게 좌우되는 어플리케이션들이 증가하고 있다. 따라서 기존 시스템에서보다 딜레이/지연을 줄이기 위한 방안이 요구된다.
또한 스마트기기의 발달에 따라 적응 양의 데이터를 효율적으로 전송/수신 혹은 낮은 빈도로 발생하는 데이터를 효율적으로 전송/수신하기 위한 새로운 방안이 요구된다.
또한 새로운 무선 접속 기술을 지원하는 시스템에서 신호를 전송/수신 방법이 요구된다.
본 발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 이하의 발명의 상세한 설명으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 따른 무선 통신 시스템에서 시스템 정보는 사용자기기의 요청이 있을 때 전송된다. 시스템 정보 요청을 위한 임의 접속 채널 자원이 설정된다. 사용자기기는 시스템 정보의 수신이 필요해지면 상기 임의 접속 채널 자원을 이용하여 임의 접속 채널을 전송할 수 있다. 기지국은 시스템 정보 요청용으로 설정된 임의 접속 채널 자원을 이용한 임의 접속 채널을 수신하면, 해당 시스템 정보를 전송할 수 있다.
본 발명의 일 양상으로, 사용자기기가 시스템 정보 신호를 수신하는 방법이 제공된다. 상기 방법은: 시스템 정보 요청을 위한 임의 접속 채널 자원을 나타내는 제1정보를 수신; 상기 임의 접속 채널 자원을 이용하여 상기 시스템 정보 요청을 위한 임의 접속 채널을 전송; 및 상기 임의 접속 채널을 전송한 후에 시스템 정보의 수신을 시도하는 것을 포함할 수 있다.
본 발명의 다른 양상으로, 기지국이 시스템 정보 신호를 전송하는 방법이 제공된다. 상기 방법은: 시스템 정보 요청을 위한 임의 접속 채널 자원을 나타내는 제1정보를 전송; 및 상기 임의 접속 채널 자원을 이용하여 상기 시스템 정보 요청을 위한 임의 접속 채널을 수신하면 시스템 정보를 전송하는 것을 포함할 수 있다.
본 발명의 또 다른 양상으로, 시스템 정보 신호를 수신하는 사용자기기가 제공된다. 상기 사용자기기는 무선 주파수(radio frequency, RF) 유닛, 및 상기 RF 유닛을 제어하도록 구성된 프로세서를 포함하여 구성된다. 상기 프로세서는: 시스템 정보 요청을 위한 임의 접속 채널 자원을 나타내는 제1정보를 수신하도록 상기 RF 유닛을 제어; 상기 임의 접속 채널 자원을 이용하여 상기 시스템 정보 요청을 위한 임의 접속 채널을 전송하도록 상기 RF 유닛을 제어; 및 상기 임의 접속 채널을 전송한 후에 시스템 정보의 수신하도록 상기 RF 유닛을 제어하도록 구성될 수 있다.
본 발명의 또 다른 양상으로, 시스템 정보 신호를 전송하는 기지국이 제공된다. 상기 기지국은 무선 주파수(radio frequency, RF) 유닛, 및 상기 RF 유닛을 제어하도록 구성된 프로세서를 포함하여 구성된다. 상기 프로세서는: 시스템 정보 요청을 위한 임의 접속 채널 자원을 나타내는 제1정보를 전송하도록 상기 RF 유닛을 제어; 및 상기 임의 접속 채널 자원을 이용하여 상기 시스템 정보 요청을 위한 임의 접속 채널을 수신하면 시스템 정보를 전송하도록 상기 RF 유닛을 제어하도록 구성될 수 있다.
본 발명의 각 양상에 있어서, 시스템 정보 갱신을 나타내는 제2정보가 상기 사용자기기에게 전송될 수 있다. 상기 임의 접속 채널은 상기 제2정보의 수신 후에 전송될 수 있다.
본 발명의 각 양상에 있어서, 상기 제1정보는 동기 신호 혹은 방송 신호를 통해 전송 혹은 수신될 수 있다.
본 발명의 각 양상에 있어서, 상기 임의 접속 채널 자원은 상기 시스템 정보 요청을 위해 예약된 시간-주파수 자원 혹은 임의 접속 시퀀스일 수 있다.
본 발명의 각 양상에 있어서, 상기 임의 접속 채널은 상기 임의 전송 채널이 상기 시스템 정보 요청을 위한 것임을 나타내는 지시 정보를 갖는 임의 접속 메시지를 나를 수 있다.
상기 과제 해결방법들은 본 발명의 실시예들 중 일부에 불과하며, 본원 발명의 기술적 특징들이 반영된 다양한 실시예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 본 발명의 상세한 설명을 기반으로 도출되고 이해될 수 있다.
본 발명의 일 실시예에 의하면, 무선 통신 신호가 효율적으로 전송/수신될 수 있다. 이에 따라, 무선 통신 시스템의 전체 처리량(throughput)이 높아질 수 있다.
본 발명의 일 실시예에 의하면 사용자기기와 기지국이 통신 과정에서 발생하는 딜레이/지연이 낮아질 수 있다.
또한 스마트기기의 발달에 따라 적응 양의 데이터를 효율적으로 전송/수신 혹은 낮은 빈도로 발생하는 데이터를 효율적으로 전송/수신될 수 있다.
또한 새로운 무선 접속 기술을 지원하는 시스템에서 신호가 전송/수신될 수 있다.
본 발명에 따른 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과는 이하의 발명의 상세한 설명으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 LTE/LTE-A 기반 무선 통신 시스템에서 사용되는 무선 프레임 구조의 일 예를 나타낸 것이다.
도 2는 LTE/LTE-A 기반 무선 통신 시스템에서 하향링크(downlink, DL)/상향링크(uplink, UL) 슬롯 구조의 일례를 나타낸 것이다.
도 3은 LTE/LTE-A 기반 무선 통신 시스템에서 동기 신호(synchronization signal, SS)의 전송을 위한 무선 프레임 구조를 예시한 것이다.
도 4는 LTE/LTE-A 기반 무선 통신 시스템에서 사용되는 하향링크(downlink, DL) 서브프레임 구조를 예시한 것이다.
도 5는 LTE/LTE-A 기반 무선 통신 시스템에 사용되는 상향링크(uplink, UL) 서브프레임 구조의 일례를 나타낸 것이다.
도 6은 짧은(short) TTI의 예시와 짧은 TTI 내 제어 채널과 데이터 채널의 전송 예를 나타낸 것이다.
도 7은 아날로그 빔포밍의 적용 예를 나타낸 것이다.
도 8은 자족적 서브프레임 구조를 예시한 것이다.
도 9는 새로운 시스템에서 PSS/SSS/PBCH이 전송되는 시점 및 자원 영역의 예를 나타낸 것이다.
도 10은 새로운 시스템에서 동기 신호를 전송하는 방법의 예들을 나타낸 것이다.
도 11은 본 발명에 따른 시스템 정보의 전송/수신 예를 나타낸 것이다.
도 12는 셀 혹은 반송파 상에서 빔 방향별로 SS 전송하는 예를 나타낸 것이다.
도 13은 본 발명에 따른 임의 접속 응답 메시지의 포맷을 예시한 것이다.
도 14는 본 발명에 따른 PRACH 전송 예를 나타낸 것이다.
도 15은 본 발명을 수행하는 전송장치(10) 및 수신장치(20)의 구성요소를 나타내는 블록도이다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
이하에서 설명되는 기법(technique) 및 장치, 시스템은 다양한 무선 다중 접속 시스템에 적용될 수 있다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템, MC-FDMA(multi carrier frequency division multiple access) 시스템 등이 있다. CDMA는 UTRA (Universal Terrestrial Radio Access) 또는 CDMA2000과 같은 무선 기술(technology)에서 구현될 수 있다. TDMA는 GSM(Global System for Mobile communication), GPRS(General Packet Radio Service), EDGE(Enhanced Data Rates for GSM Evolution) (i.e., GERAN) 등과 같은 무선 기술에서 구현될 수 있다. OFDMA는 IEEE(Institute of Electrical and Electronics Engineers) 802.11(WiFi), IEEE 802.16(WiMAX), IEEE802-20, E-UTRA(evolved-UTRA) 등과 같은 무선 기술에서 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunication System)의 일부이며, 3GPP(3rd Generation Partnership Project) LTE(Long Term Evolution)은 E-UTRA를 이용하는 E-UMTS의 일부이다. 3GPP LTE는 하향링크(downlink, DL)에서는 OFDMA를 채택하고, 상향링크(uplink, UL)에서는 SC-FDMA를 채택하고 있다. LTE-A(LTE-advanced)는 3GPP LTE의 진화된 형태이다. 설명의 편의를 위하여, 이하에서는 본 발명이 3GPP LTE/LTE-A에 적용되는 경우를 가정하여 설명한다. 그러나 본 발명의 기술적 특징이 이에 제한되는 것은 아니다. 예를 들어, 이하의 상세한 설명이 이동통신 시스템이 3GPP LTE/LTE-A 시스템에 대응하는 이동통신 시스템을 기초로 설명되더라도, 3GPP LTE/LTE-A에 특유한 사항을 제외하고는 다른 임의의 이동 통신 시스템에도 적용 가능하다.
예를 들어, 본 발명은 3GPP LTE/LTE-A 시스템과 같이 eNB가 UE에게 하향링크/상향링크 시간/주파수 자원을 할당하고 UE가 eNB의 할당에 따라 하향링크 신호를 수신하고 상향링크 신호를 전송하는 비-경쟁 기반(non-contention based) 통신뿐만 아니라, WiFi와 같은 경쟁 기반(contention based) 통신에도 적용될 수 있다. 비-경쟁 기반 통신 기법은 접속 포인트(access point, AP) 혹은 상기 접속 포인트를 제어하는 제어 노드(node)가 UE와 상기 AP 사이의 통신을 위한 자원을 할당함에 반해 경쟁 기반 통신 기법은 AP에 접속하고자 하는 다수의 UE들 사이의 경쟁을 통해 통신 자원이 점유된다. 경쟁 기반 통신 기법에 대해 간략히 설명하면, 경쟁 기반 통신 기법의 일종으로 반송파 감지 다중 접속(carrier sense multiple access, CSMA)이 있는데, CSMA는 노드 혹은 통신 기기가 주파수 대역(band)와 같은, 공유 전송 매체(shared transmission medium)(공유 채널이라고도 함) 상에서 트래픽(traffic)을 전송하기 전에 동일한 공유 전송 매체 상에 다른 트래픽이 없음을 확인하는 확률적(probabilistic) 매체 접속 제어(media access control, MAC) 프로토콜(protocol)을 말한다. CSMA에서 전송 장치는 수신 장치에 트래픽을 보내는 것을 시도하기 전에 다른 전송이 진행 중인지를 결정한다. 다시 말해, 전송 장치는 전송을 시도하기 전에 다른 전송 장치로부터의 반송파(carrier)의 존재를 검출(detect)하는 것을 시도한다. 반송파가 감지되면 전송 장치는 자신의 전송을 개시하기 전에 진행 중인 다른 전송 장치에 의해 전송이 완료(finish)되기를 기다린다. 결국, CSMA는 "sense before transmit" 혹은 "listen before talk" 원리를 기반으로 한 통신 기법이라 할 수 있다. CSMA를 이용하는 경쟁 기반 통신 시스템에서 전송 장치들 사이의 충돌을 회피하기 위한 기법으로 CSMA/CD(Carrier Sense Multiple Access with Collision Detection) 및/또는 CSMA/CA(Carrier Sense Multiple Access with Collision Avoidance)가 사용된다. CSMA/CD는 유선 랜 환경에서 충돌 검출 기법으로서 이더넷(ethernet) 환경에서 통신을 하고자 하는 PC(Personal Computer)나 서버(server)가 먼저 네트워크 상에서 통신이 일어나고 있는지 확인한 후, 다른 장치(device)가 데이터를 상기 네트워크 상에서 실어 보내고 있으면 기다렸다가 데이터를 보낸다. 즉 2명 이상의 사용자(예, PC, UE 등)가 동시에 데이터를 실어 보내는 경우, 상기 동시 전송들 사이에 충돌이 발생하는데, CSMA/CD는 상기 충돌을 감시하여 유연성 있는 데이터 전송이 이루어질 수 있도록 하는 기법이다. CSMA/CD를 사용하는 전송 장치는 특정 규칙을 이용하여 다른 전송 장치에 의한 데이터 전송을 감지하여 자신의 데이터 전송을 조절한다. CSMA/CA는 IEEE 802.11 표준에 명시되어 있는 매체 접근 제어 프로토콜이다. IEEE 802.11 표준에 따른 WLAN 시스템은 IEEE 802.3 표준에서 사용되던 CSMA/CD를 사용하지 않고 CA, 즉, 충돌을 회피하는 방식을 사용하고 있다. 전송 장치들은 항상 네트워크의 반송파를 감지하고 있다가, 네트워크가 비어있을 때 목록에 등재된 자신의 위치에 따라 정해진 만큼의 시간을 기다렸다가 데이터를 보낸다. 목록 내에서 전송 장치들 간의 우선순위를 정하고, 이를 재설정(reconfiguration)하는 데에는 여러 가지 방법들이 사용된다. IEEE 802.11 표준의 일부 버전에 따른 시스템에서는, 충돌이 일어날 수 있으며, 이때에는 충돌 감지 절차가 수행된다. CSMA/CA를 사용하는 전송 장치는 특정 규칙을 이용하여 다른 전송 장치에 의한 데이터 전송과 자신의 데이터 전송 사이의 충돌을 회피한다.
후술하는 본 발명의 실시예들에서 "가정한다"는 표현은 채널을 전송하는 주체가 해당 "가정"에 부합하도록 상기 채널을 전송함을 의미할 수 있다. 상기 채널을 수신하는 주체는 상기 채널이 해당 "가정"에 부합하도록 전송되었다는 전제 하에, 해당 "가정"에 부합하는 형태로 상기 채널을 수신 혹은 복호하는 것임을 의미할 수 있다.
본 발명에서 특정 자원에서 채널이 펑처링된다고 함은 상기 채널의 자원 매핑 과정에서 상기 채널의 신호가 상기 특정 자원에 매핑은 되지만 상기 채널이 전송될 때 상기 펑처링되는 자원에 매핑된 신호 부분은 제외된 채 전송되는 것을 의미한다. 다시 말해, 펑처링되는 특정 자원은 해당 채널의 자원 매핑 과정에서 상기 해당 채널의 자원으로 카운트되기는 하지만, 상기 해당 채널의 신호들 중 상기 특정 자원에 매핑된 신호는 실제로는 전송되지 않는다. 상기 해당 채널의 수신 장치는 펑처링된 특정 자원에 매핑된 신호 부분은 전송되지 않았다고 가정하고 상기 해당 채널을 수신 혹은 복조 혹은 복호한다. 이에 반해 특정 자원에서 채널이 레이트-매칭된다고 함은 상기 채널의 자원 매핑 과정에서 상기 채널이 상기 특정 자원에 아예 매핑되지 않음으로써 상기 채널의 전송에 사용되지 않는 것을 의미한다. 다시 말해 레이트-매칭되는 특정 자원은 해당 채널의 자원 매핑 과정에서 아예 상기 해당 채널의 자원으로 카운트되지 않는다. 상기 해당 채널의 수신 장치는 레이트-매칭된 특정 자원이 아예 상기 해당 채널의 매핑 및 전송에 사용되지 않는다고 가정하고 상기 해당 채널을 수신 혹은 복조 혹은 복호한다.
본 발명에 있어서, UE는 고정되거나 이동성을 가질 수 있으며, 기지국(base station, BS)과 통신하여 사용자데이터 및/또는 각종 제어정보를 송수신하는 각종 기기들이 이에 속한다. UE는 (Terminal Equipment), MS(Mobile Station), MT(Mobile Terminal), UT(User Terminal), SS(Subscribe Station), 무선기기(wireless device), PDA(Personal Digital Assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등으로 불릴 수 있다. 또한, 본 발명에 있어서, BS는 일반적으로 UE 및/또는 다른 BS와 통신하는 고정국(fixed station)을 말하며, UE 및 타 BS와 통신하여 각종 데이터 및 제어정보를 교환한다. BS는 ABS(Advanced Base Station), NB(Node-B), eNB(evolved-NodeB), BTS(Base Transceiver System), 접속 포인트(Access Point), PS(Processing Server) 등 다른 용어로 불릴 수 있다. 이하의 본 발명에 관한 설명에서는, BS를 eNB로 통칭한다.
본 발명에서 노드(node)라 함은 UE와 통신하여 무선 신호를 전송/수신할 수 있는 고정된 지점(point)을 말한다. 다양한 형태의 eNB 들이 그 명칭에 관계없이 노드로서 이용될 수 있다. 예를 들어, BS, NB, eNB, 피코-셀 eNB(PeNB), 홈 eNB(HeNB), 릴레이(relay), 리피터(repeater) 등이 노드가 될 수 있다. 또한, 노드는 eNB 가 아니어도 될 수 있다. 예를 들어, 무선 리모트 헤드(radio remote head, RRH), 무선 리모트 유닛(radio remote unit, RRU)가 될 수 있다. RRH, RRU 등은 일반적으로 eNB의 전력 레벨(power level) 더욱 낮은 전력 레벨을 갖는다. RRH 혹은 RRU 이하, RRH/RRU)는 일반적으로 광 케이블 등의 전용 회선(dedicated line)으로 eNB에 연결되어 있기 때문에, 일반적으로 무선 회선으로 연결된 eNB 들에 의한 협력 통신에 비해, RRH/RRU 와 eNB에 의한 협력 통신이 원활하게 수행될 수 있다. 일 노드에는 최소 하나의 안테나가 설치된다. 상기 안테나는 물리 안테나를 의미할 수도 있으며, 안테나 포트, 가상 안테나, 또는 안테나 그룹을 의미할 수도 있다. 노드는 포인트(point)라고 불리기도 한다.
본 발명에서 셀(cell)이라 함은 하나 이상의 노드가 통신 서비스를 제공하는 일정 지리적 영역을 말한다. 따라서, 본 발명에서 특정 셀과 통신한다고 함은 상기 특정 셀에 통신 서비스를 제공하는 eNB 혹은 노드와 통신하는 것을 의미할 수 있다. 또한, 특정 셀의 하향링크/상향링크 신호는 상기 특정 셀에 통신 서비스를 제공하는 eNB 혹은 노드로부터의/로의 하향링크/상향링크 신호를 의미한다. UE에게 상/하향링크 통신 서비스를 제공하는 셀을 특히 서빙 셀(serving cell)이라고 한다. 또한, 특정 셀의 채널 상태/품질은 상기 특정 셀에 통신 서비스를 제공하는 eNB 혹은 노드와 UE 사이에 형성된 채널 혹은 통신 링크의 채널 상태/품질을 의미한다. LTE/LTE-A 기반의 시스템에서, UE는 특정 노드로부터의 하향링크 채널 상태를 상기 특정 노드의 안테나 포트(들)이 상기 특정 노드에 할당된 CRS (Cell-specific Reference Signal) 자원 상에서 전송되는 CRS(들) 및/또는 CSI-RS(Channel State Information Reference Signal) 자원 상에서 전송하는 CSI-RS(들)을 이용하여 측정할 수 있다.
한편, 3GPP LTE/LTE-A 시스템은 무선 자원을 관리하기 위해 셀(cell)의 개념을 사용하고 있는데, 무선 자원과 연관된 셀(cell)은 지리적 영역의 셀(cell)과 구분된다.
지리적 영역의 "셀"은 노드가 반송파를 이용하여 서비스를 제공할 수 있는 커버리지(coverage)라고 이해될 수 있으며, 무선 자원의 "셀"은 상기 반송파에 의해 설정(configure)되는 주파수 범위인 대역폭(bandwidth, BW)와 연관된다. 노드가 유효한 신호를 전송할 수 있는 범위인 하향링크 커버리지와 UE로부터 유효한 신호를 수신할 수 있는 범위인 상향링크 커버리지는 해당 신호를 나르는 반송파에 의해 의존하므로 노드의 커버리지는 상기 노드가 사용하는 무선 자원의 "셀"의 커버리지와 연관되기도 한다. 따라서 "셀"이라는 용어는 때로는 노드에 의한 서비스의 커버리지를, 때로는 무선 자원을, 때로는 상기 무선 자원을 이용한 신호가 유효한 세기로 도달할 수 있는 범위를 의미하는 데 사용될 수 있다.
한편, 3GPP LTE-A 표준은 무선 자원을 관리하기 위해 셀(cell)의 개념을 사용한다. 무선 자원과 연관된 "셀"이라 함은 하향링크 자원(DL resources)와 상향링크 자원(UL resources)의 조합, 즉, DL 컴포턴트 반송파(component carrier, CC) 와 UL CC의 조합으로 정의된다. 셀은 DL 자원 단독, 또는 DL 자원과 UL 자원의 조합으로 설정될(configured) 수 있다. 반송파 집성이 지원되는 경우, DL 자원(또는, DL CC)의 반송파 주파수(carrier frequency)와 UL 자원(또는, UL CC)의 반송파 주파수(carrier frequency) 사이의 링키지(linkage)는 시스템 정보에 의해 지시될 수 있다. 예를 들어, 시스템 정보 블록 타입 2(System Information Block Type2, SIB2) 링키지(linkage)에 의해서 DL 자원과 UL 자원의 조합이 지시될 수 있다. 여기서, 반송파 주파수라 함은 각 셀 혹은 CC의 중심 주파수(center frequency)를 의미한다. 이하에서는 1차 주파수(primary frequency) 상에서 동작하는 셀을 1차 셀(primary cell, Pcell) 혹은 PCC로 지칭하고, 2차 주파수(Secondary frequency)(또는 SCC) 상에서 동작하는 셀을 2차 셀(secondary cell, Scell) 혹은 SCC로 칭한다. 하향링크에서 Pcell에 대응하는 반송파는 하향링크 1차 CC(DL PCC)라고 하며, 상향링크에서 Pcell에 대응하는 반송파는 UL 1차 CC(DL PCC)라고 한다. Scell이라 함은 RRC(Radio Resource Control) 연결 개설(connection establishment)이 이루어진 이후에 설정 가능하고 추가적인 무선 자원을 제공을 위해 사용될 수 있는 셀을 의미한다. UE의 성능(capabilities)에 따라, Scell이 Pcell과 함께, 상기 UE를 위한 서빙 셀의 모음(set)을 형성할 수 있다. 하향링크에서 Scell에 대응하는 반송파는 DL 2차 CC(DL SCC)라 하며, 상향링크에서 상기 Scell에 대응하는 반송파는 UL 2차 CC(UL SCC)라 한다. RRC_CONNECTED 상태에 있지만 반송파 집성이 설정되지 않았거나 반송파 집성을 지원하지 않는 UE의 경우, Pcell로만 설정된 서빙 셀이 단 하나 존재한다.
3GPP LTE/LTE-A 표준은 상위 계층으로부터 기원한 정보를 나르는 자원 요소들에 대응하는 하향링크 물리 채널들과, 물리 계층에 의해 사용되나 상위 계층으로부터 기원하는 정보를 나르지 않는 자원 요소들에 대응하는 하향링크 물리 신호들을 정의된다. 예를 들어, 물리 하향링크 공유 채널(physical downlink shared channel, PDSCH), 물리 브로드캐스트 채널(physical broadcast channel, PBCH), 물리 멀티캐스트 채널(physical multicast channel, PMCH), 물리 제어 포맷 지시자 채널(physical control format indicator channel, PCFICH), 물리 하향링크 제어 채널(physical downlink control channel, PDCCH) 및 물리 하이브리드 ARQ 지시자 채널(physical hybrid ARQ indicator channel, PHICH)들이 하향링크 물리 채널들로서 정의되어 있으며, 참조 신호와 동기 신호가 하향링크 물리 신호들로서 정의되어 있다. 파일럿(pilot)이라고도 지칭되는 참조 신호(reference signal, RS)는 eNB와 UE가 서로 알고 있는 기정의된 특별한 파형의 신호를 의미하는데, 예를 들어, 셀 특정적 RS(cell specific RS), UE-특정적 RS(UE-specific RS, UE-RS), 포지셔닝 RS(positioning RS, PRS) 및 채널 상태 정보 RS(channel state information RS, CSI-RS)가 하향링크 참조 신호로서 정의된다. 3GPP LTE/LTE-A 표준은 상위 계층으로부터 기원한 정보를 나르는 자원 요소들에 대응하는 상향링크 물리 채널들과, 물리 계층에 의해 사용되나 상위 계층으로부터 기원하는 정보를 나르지 않는 자원 요소들에 대응하는 상향링크 물리 신호들을 정의하고 있다. 예를 들어, 물리 상향링크 공유 채널(physical uplink shared channel, PUSCH), 물리 상향링크 제어 채널(physical uplink control channel, PUCCH), 물리 임의 접속 채널(physical random access channel, PRACH)가 상향링크 물리 채널로서 정의되며, 상향링크 제어/데이터 신호를 위한 복조 참조 신호(demodulation reference signal, DMRS)와 상향링크 채널 측정에 사용되는 사운딩 참조 신호(sounding reference signal, SRS)가 정의된다.
본 발명에서 PDCCH(Physical Downlink Control CHannel)/PCFICH(Physical Control Format Indicator CHannel)/PHICH((Physical Hybrid automatic retransmit request Indicator CHannel)/PDSCH(Physical Downlink Shared CHannel)은 각각 DCI(Downlink Control Information)/CFI(Control Format Indicator)/하향링크 ACK/NACK(ACKnowlegement/Negative ACK)/하향링크 데이터를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 의미한다. 또한, PUCCH(Physical Uplink Control CHannel)/PUSCH(Physical Uplink Shared CHannel)/PRACH(Physical Random Access CHannel)는 각각 UCI(Uplink Control Information)/상향링크 데이터/랜덤 엑세스 신호를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 의미한다. 본 발명에서는, 특히, PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH에 할당되거나 이에 속한 시간-주파수 자원 혹은 자원요소(Resource Element, RE)를 각각 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH RE 또는 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH 자원이라고 칭한다. 이하에서 사용자기기가 PUCCH/PUSCH/PRACH를 전송한다는 표현은, 각각, PUSCH/PUCCH/PRACH 상에서 혹은 통해서 상향링크 제어정보/상향링크 데이터/랜덤 엑세스 신호를 전송한다는 것과 동일한 의미로 사용된다. 또한, eNB 가 PDCCH/PCFICH/PHICH/PDSCH를 전송한다는 표현은, 각각, PDCCH/PCFICH/PHICH/PDSCH 상에서 혹은 통해서 하향링크 데이터/제어정보를 전송한다는 것과 동일한 의미로 사용된다.
이하에서는 CRS/DMRS/CSI-RS/SRS/UE-RS가 할당된 혹은 설정된(configured) OFDM 심볼/부반송파/RE를 CRS/DMRS/CSI-RS/SRS/UE-RS 심볼/반송파/부반송파/RE라고 칭한다. 예를 들어, 트랙킹 RS(tracking RS, TRS)가 할당된 혹은 설정된 OFDM 심볼은 TRS 심볼이라고 칭하며, TRS가 할당된 혹은 설정된 부반송파는 TRS 부반송파라 칭하며, TRS가 할당된 혹은 설정된 RE 는 TRS RE라고 칭한다. 또한, TRS 전송을 위해 설정된(configured) 서브프레임을 TRS 서브프레임이라 칭한다. 또한 브로드캐스트 신호가 전송되는 서브프레임을 브로드캐스트 서브프레임 혹은 PBCH 서브프레임이라 칭하며, 동기 신호(예를 들어, PSS 및/또는 SSS)가 전송되는 서브프레임을 동기 신호 서브프레임 혹은 PSS/SSS 서브프레임이라고 칭한다. PSS/SSS가 할당된 혹은 설정된(configured) OFDM 심볼/부반송파/RE를 각각 PSS/SSS 심볼/부반송파/RE라 칭한다.
본 발명에서 CRS 포트, UE-RS 포트, CSI-RS 포트, TRS 포트라 함은 각각 CRS를 전송하도록 설정된(configured) 안테나 포트, UE-RS를 전송하도록 설정된 안테나 포트, CSI-RS를 전송하도록 설정된 안테나 포트, TRS를 전송하도록 설정된 안테나 포트를 의미한다. CRS들을 전송하도록 설정된 안테나 포트들은 CRS 포트들에 따라 CRS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있으며, UE-RS들을 전송하도록 설정된(configured) 안테나 포트들은 UE-RS 포트들에 따라 UE-RS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있으며, CSI-RS들을 전송하도록 설정된 안테나 포트들은 CSI-RS 포트들에 따라 CSI-RS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있다. 따라서 CRS/UE-RS/CSI-RS/TRS 포트라는 용어가 일정 자원 영역 내에서 CRS/UE-RS/CSI-RS/TRS가 점유하는 RE들의 패턴을 의미하는 용어로서 사용되기도 한다.
본 발명에서 사용되는 용어 및 기술 중 구체적으로 설명되지 않은 용어 및 기술에 대해서는 3GPP LTE/LTE-A 표준 문서, 예를 들어, 3GPP TS 36.211, 3GPP TS 36.212, 3GPP TS 36.213, 3GPP TS 36.321 및 3GPP TS 36.331 등을 참조할 수 있다.
도 1은 LTE/LTE-A 기반 무선 통신 시스템에서 사용되는 무선 프레임 구조의 일 예를 나타낸 것이다.
특히, 도 1(a)는 3GPP LTE/LTE-A 시스템에서 사용되는 주파수분할듀플렉스(frequency division duplex, FDD)용 프레임 구조를 나타낸 것이고, 도 1(b)는 3GPP LTE/LTE-A 시스템에서 사용되는 시분할듀플렉스(time division duplex, TDD)용 프레임 구조를 나타낸 것이다.
도 1을 참조하면, 3GPP LTE/LTE-A 시스템에서 사용되는 무선프레임은 10ms(307200Ts)의 길이를 가지며, 10개의 균등한 크기의 서브프레임(subframe, SF)으로 구성된다. 일 무선프레임 내 10개의 서브프레임에는 각각 번호가 부여될 수 있다. 여기에서, Ts는 샘플링 시간을 나타내고, Ts=1/(2048*15kHz)로 표시된다. 각각의 서브프레임은 1ms의 길이를 가지며 2개의 슬롯으로 구성된다. 일 무선프레임 내에서 20개의 슬롯들은 0부터 19까지 순차적으로 넘버링될 수 있다. 각각의 슬롯은 0.5ms의 길이를 가진다. 일 서브프레임을 전송하기 위한 시간은 전송 시간 간격(transmission time interval, TTI)로 정의된다. 시간 자원은 무선 프레임 번호(혹은 무선 프레임 인덱스라고도 함)와 서브프레임 번호(혹은 서브프레임 번호라고도 함), 슬롯 번호(혹은 슬롯 인덱스) 등에 의해 구분될 수 있다.
TTI라 함은 데이터가 스케줄링될 수 있는 간격을 의미한다. 예를 들어, 현재 LTE/LTE-A 시스템에서 UL 그랜트 혹은 DL 그랜트의 전송 기회는 1ms마다 존재하고, 1ms보다 짧은 시간 내에 UL/DL 그랜트 기회가 여러 번 존재하지는 않는다. 따라서, 현재 LTE/LTE-A 시스템에서 TTI는 1ms이다.
무선 프레임은 듀플렉스(duplex) 모드에 따라 다르게 설정(configure)될 수 있다. 예를 들어, FDD 모드에서, 하향링크 전송 및 상향링크 전송은 주파수에 의해 구분되므로, 무선 프레임은 특정 주파수 대역에 대해 하향링크 서브프레임 또는 상향링크 서브프레임 중 하나만을 포함한다. TDD 모드에서 하향링크 전송 및 상향링크 전송은 시간에 의해 구분되므로, 특정 주파수 대역에 대해 무선 프레임은 하향링크 서브프레임과 상향링크 서브프레임을 모두 포함한다.
도 2는 LTE/LTE-A 기반 무선 통신 시스템에서 하향링크(downlink, DL)/상향링크(uplink, UL) 슬롯 구조의 일례를 나타낸 것이다.
도 2를 참조하면, 슬롯은 시간 도메인(time domain)에서 복수의 OFDM(Orthogonal Frequency Division Multiplexing) 심볼을 포함하고, 주파수 도메인(frequency domain)에서 복수의 자원 블록(resource block, RB)을 포함한다. OFDM 심볼은 일 심볼 구간을 의미하기도 한다. 도 2를 참조하면, 각 슬롯에서 전송되는 신호는 N DL / UL RB*N RB sc개의 부반송파(subcarrier)와 N DL / UL symb개의 OFDM 심볼로 구성되는 자원격자(resource grid)로 표현될 수 있다. 여기서, N DL RB은 하향링크 슬롯에서의 자원 블록(resource block, RB)의 개수를 나타내고, N UL RB은 UL 슬롯에서의 RB 의 개수를 나타낸다. N DL RBN UL RB은 DL 전송 대역폭과 UL 전송 대역폭에 각각 의존한다. N DL symb은 하향링크 슬롯 내 OFDM 심볼의 개수를 나타내며, N UL symb은 UL 슬롯 내 OFDM 심볼의 개수를 나타낸다. N RB sc는 하나의 RB를 구성하는 부반송파의 개수를 나타낸다.
OFDM 심볼은 다중 접속 방식에 따라 OFDM 심볼, SC-FDM(Single Carrier Frequency Division Multiplexing) 심볼 등으로 불릴 수 있다. 하나의 슬롯에 포함되는 OFDM 심볼의 수는 채널 대역폭, CP(cyclic prefix)의 길이에 따라 다양하게 변경될 수 있다. 예를 들어, 정규(normal) CP의 경우에는 하나의 슬롯이 7개의 OFDM 심볼을 포함하나, 확장(extended) CP의 경우에는 하나의 슬롯이 6개의 OFDM 심볼을 포함한다. 도 2에서는 설명의 편의를 위하여 하나의 슬롯이 7개 OFDM 심볼로 구성되는 서브프레임을 예시하였으나, 본 발명의 실시예들은 다른 개수의 OFDM 심볼을 갖는 서브프레임들에도 마찬가지의 방식으로 적용될 수 있다. 도 2를 참조하면, 각 OFDM 심볼은, 주파수 도메인에서, N DL / UL RB*N RB sc개의 부반송파를 포함한다. 부반송파의 유형은 데이터 전송을 위한 데이터 부반송파, 참조신호(reference signal)의 전송 위한 참조신호 부반송파, 보호 밴드(guard band) 또는 직류(Direct Current, DC) 성분을 위한 널(null) 부반송파로 나뉠 수 있다. DC 성분은 OFDM 신호 생성 과정 혹은 주파수 상향변환 과정에서 반송파 주파수(carrier frequency, f 0)로 맵핑(mapping)된다. 반송파 주파수는 중심 주파수(center frequency, f c)라고도 한다.
도 3은 LTE/LTE-A 기반 무선 통신 시스템에서 동기 신호(synchronization signal, SS)의 전송을 위한 무선 프레임 구조를 예시한 것이다. 특히, 도 3은 주파수 분할 듀플렉스(frequency division duplex, FDD)에서 동기 신호 및 PBCH의 전송을 위한 무선 프레임 구조를 예시한 것으로서, 도 3(a)는 정규 CP(normal cyclic prefix)로써 설정된(configured) 무선 프레임에서 SS 및 PBCH의 전송 위치를 도시한 것이고 도 3(b)는 확장 CP(extended CP)로써 설정된 무선 프레임에서 SS 및 PBCH의 전송 위치를 도시한 것이다.
UE 는 전원이 켜지거나 새로이 셀에 접속하고자 하는 경우 상기 셀과의 시간 및 주파수 동기를 획득하고 상기 셀의 물리 계층 셀 식별자(physical layer 셀 IDentity) N cell ID를 검출(detect)하는 등의 셀 탐색(initial cell search) 과정(procedure)을 수행한다. 이를 위해, UE 는 eNB로부터 동기신호, 예를 들어, 1차 동기신호(Primary Synchronization Signal, PSS) 및 2차 동기신호(Secondary Synchronization Signal, SSS)를 수신하여 eNB와 동기를 맞추고, 셀 식별자(identity, ID) 등의 정보를 획득할 수 있다.
도 3을 참조하여, SS를 조금 더 구체적으로 설명하면 다음과 같다. SS는 PSS와 SSS로 구분된다. PSS는 OFDM 심볼 동기, 슬롯 동기 등의 시간 도메인 동기 및/또는 주파수 도메인 동기를 얻기 위해 사용되며, SSS는 프레임 동기, 셀 그룹 ID 및/또는 셀의 CP 설정(configuration)(즉, 일반 CP 또는 확장 CP 의 사용 정보)를 얻기 위해 사용된다. 도 3을 참조하면, PSS와 SSS는 매 무선 프레임의 2개의 OFDM 심볼에서 각각 전송된다. 구체적으로 SS는 인터-RAT(inter radio access technology) 측정의 용이함을 위해 GSM(Global System for Mobile communication) 프레임 길이인 4.6 ms를 고려하여 서브프레임 0의 첫 번째 슬롯과 서브프레임 5의 첫 번째 슬롯에서 각각 전송된다. 특히 PSS는 서브프레임 0의 첫 번째 슬롯의 마지막 OFDM 심볼과 서브프레임 5의 첫 번째 슬롯의 마지막 OFDM 심볼에서 각각 전송되고, SSS는 서브프레임 0의 첫 번째 슬롯의 마지막에서 두 번째 OFDM 심볼과 서브프레임 5의 첫 번째 슬롯의 마지막에서 두 번째 OFDM 심볼에서 각각 전송된다. 해당 무선 프레임의 경계는 SSS를 통해 검출될 수 있다. PSS는 해당 슬롯의 맨 마지막 OFDM 심볼에서 전송되고 SSS는 PSS 바로 앞 OFDM 심볼에서 전송된다. SS의 전송 다이버시티(diversity) 방식은 단일 안테나 포트(single antenna port)만을 사용하며 표준에서는 따로 정의하고 있지 않다.
PSS는 5ms마다 전송되므로 UE는 PSS를 검출함으로써 해당 서브프레임이 서브프레임 0와 서브프레임 5 중 하나임을 알 수 있으나, 해당 서브프레임이 서브프레임 0와 서브프레임 5 중 구체적으로 무엇인지는 알 수 없다. 따라서, UE는 PSS만으로는 무선 프레임의 경계를 인지하지 못한다. 즉, PSS만으로는 프레임 동기가 획득될 수 없다. UE는 일 무선 프레임 내에서 두 번 전송되되 서로 다른 시퀀스로서 전송되는 SSS를 검출하여 무선 프레임의 경계를 검출한다.
PSS/SSS를 이용한 셀(cell) 탐색 과정을 수행하여 DL 신호의 복조(demodulation) 및 UL 신호의 전송을 정확한 시점에 수행하는 데 필요한 시간 및 주파수 파라미터를 결정한 UE는, 또한, 상기 eNB로부터 상기 UE의 시스템 설정(system configuration)에 필요한 시스템 정보를 획득해야 상기 eNB와 통신할 수 있다.
시스템 정보는 마스터정보블록(Master Information Block, MIB) 및 시스템정보블록(System Information Block, SIB)들에 의해 설정된다(configured). 각 시스템정보블록은 기능적으로 연관된 파라미터들의 모음을 포함하며, 포함하는 파라미터에 따라 마스터정보블록(Master Information Block, MIB) 및 시스템정보블록타입 1(System Information Block Type 1, SIB1), 시스템정보블록타입 2(System Information Block Type 2, SIB2), SIB3∼SIB17로 구분될 수 있다.
MIB는 UE가 eNB의 네트워크(network)에 초기 접속(initial access)하는 데 필수적인, 가장 자주 전송되는 파라미터들을 포함한다. UE는 MIB를 브로드캐스트 채널(예, PBCH)를 통해 수신할 수 있다. MIB에는 하향링크 시스템 대역폭(dl-Bandwidth, DL BW), PHICH 설정(configuration), 시스템 프레임 넘버(SFN)가 포함된다. 따라서, UE는 PBCH를 수신함으로써 명시적(explicit)으로 DL BW, SFN, PHICH 설정에 대한 정보를 알 수 있다. 한편, PBCH를 수신을 통해 UE가 암묵적(implicit)으로 알 수 있는 정보로는 eNB의 전송 안테나 포트의 개수가 있다. eNB의 전송 안테나 개수에 대한 정보는 PBCH의 에러 검출에 사용되는 16-비트 CRC(Cyclic Redundancy Check)에 전송 안테나 개수에 대응되는 시퀀스를 마스킹(예, XOR 연산)하여 암묵적으로 시그널링된다.
SIB1은 다른 SIB들의 시간 도메인 스케줄링에 대한 정보뿐만 아니라, 특정 셀이 셀 선택에 적합한 셀인지를 판단하는 데 필요한 파라미터들을 포함한다. SIB1은 브로드캐스트 시그널링 혹은 전용(dedicated) 시그널링을 통해 UE에게 수신된다.
DL 반송파 주파수와 해당 시스템 대역폭은 PBCH가 나르는 MIB에 의해 획득될 수 있다. UL 반송파 주파수 및 해당 시스템 대역폭은 DL 신호인 시스템 정보를 통해 얻어질 수 있다. MIB를 수신한 UE는 해당 셀에 대해 저장된 유효한 시스템 정보가 없으면, 시스템 정보 블록 타입 2(SystemInformationBlockType2, SIB2)가 수신될 때까지, MIB 내 DL BW의 값을 UL-대역폭(UL BW)에 적용한다. 예를 들어, UE는 시스템 정보 블록 타입 2(SystemInformationBlockType2, SIB2)를 획득하여, 상기 SIB2 내 UL-반송파 주파수 및 UL-대역폭 정보를 통해 자신이 UL 전송에 사용할 수 있는 전체 UL 시스템 대역을 파악할 수 있다.
주파수 도메인에서, PSS/SSS 및 PBCH는 실제 시스템 대역폭과 관계없이 해당 OFDM 심볼 내에서 DC 부반송파를 중심으로 좌우 3개씩 총 6개의 RB, 즉 총 72개의 부반송파들 내에서만 전송된다. 따라서, UE는 상기 UE에게 설정된(configured) 하향링크 전송 대역폭과 관계없이 SS 및 PBCH를 검출(detect) 혹은 복호(decode)할 수 있도록 설정된다(configured).
초기 셀 탐색을 마친 UE는 eNB로의 접속을 완료하기 위해 임의 접속 과정(random access procedure)을 수행할 수 있다. 이를 위해 UE는 물리 임의 접속 채널(physical random access channel, PRACH)을 통해 프리앰블(preamble)을 전송하고, PDCCH 및 PDSCH을 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다. 경쟁 기반 임의 접속(contention based random access)의 경우 추가적인 PRACH의 전송, 그리고 PDCCH 및 상기 PDCCH에 대응하는 PDSCH와 같은 충돌 해결 절차(contention resolution procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 UE는 이후 일반적인 상/하향링크 신호 전송 절차로서 PDCCH/PDSCH 수신 및 PUSCH/PUCCH 전송을 수행할 수 있다.
상기 임의 접속 과정은 임의 접속 채널(random access channel, RACH) 과정으로도 지칭된다. 임의 접속 과정은 초기 접속, 임의 접속 과정은 초기 접속, 상향링크 동기 조정, 자원 할당, 핸드오버 등의 용도로 다양하게 사용된다. 임의 접속 과정은 경쟁-기반(contention-based) 과정과, 전용(dedicated)(즉, 비-경쟁-기반) 과정으로 분류된다. 경쟁-기반 임의 접속 과정은 초기 접속을 포함하여 일반적으로 사용되며, 전용 임의 접속 과정을 핸드오버 등에 제한적으로 사용된다. 경쟁-기반 임의 접속 과정에서 UE는 RACH 프리앰블 시퀀스를 임의로(randomly) 선택한다. 따라서, 복수의 UE들이 동시에 동일한 RACH 프리앰블 시퀀스를 전송하는 것이 가능하며, 이로 인해 이후 경쟁 해소 과정이 필요하다. 반면, 전용 임의 접속 과정에서 UE는 eNB가 해당 UE에게 유일하게 할당한 RACH 프리앰블 시퀀스를 사용한다. 따라서, 다른 UE와의 충돌없이 임의 접속 과정을 수행할 수 있다.
경쟁-기반 임의 접속 과정은 다음의 4 단계를 포함한다. 이하, 단계 1~4에서 전송되는 메시지는 각각 메시지 1~4(Msg1 ~ Msg4)로 지칭될 수 있다.
- 단계 1: RACH 프리앰블(via PRACH)(UE to eNB)
- 단계 2: 임의 접속 응답(random access response, RAR)(via PDCCH 및 PDSCH)(eNB to UE)
- 단계 3: 레이어 2 / 레이어 3 메시지(via PUSCH)(UE to eNB)
- 단계 4: 경쟁 해소(contention resolution) 메시지(eNB to UE)
전용 임의 접속 과정은 다음의 3 단계를 포함한다. 이하, 단계 0~2에서 전송되는 메시지는 각각 메시지 0~2(Msg0 ~ Msg2)로 지칭될 수 있다. 임의 접속 과정의 일부로 RAR에 대응하는 상향링크 전송(즉, 단계 3)도 수행될 수 있다. 전용 임의 접속 과정은 기지국이 RACH 프리앰블 전송을 명령하는 용도의 PDCCH(이하, PDCCH 오더(order))를 이용하여 트리거링될 수 있다.
- 단계 0: 전용 시그널링을 통한 RACH 프리앰블 할당(eNB to UE)
- 단계 1: RACH 프리앰블(via PRACH)(UE to eNB)
- 단계 2: 임의 접속 응답(RAR)(via PDCCH 및 PDSCH)(eNB to UE)
RACH 프리앰블을 전송한 뒤, UE는 미리-설정된 시간 윈도우 내에서 임의 접속 응답(RAR) 수신을 시도한다. 구체적으로, UE는 시간 윈도우 내에서 RA-RNTI(Random Access RNTI)를 갖는 PDCCH(이하, RA-RNTI PDCCH)(예, PDCCH에서 CRC가 RA-RNTI로 마스킹됨)의 검출을 시도한다. RA-RNTI PDCCH 검출 시, UE는 RA-RNTI PDCCH에 대응하는 PDSCH 내에 자신을 위한 RAR이 존재하는지 확인한다. RAR은 UL 동기화를 위한 타이밍 오프셋 정보를 나타내는 타이밍 어드밴스(timing advance, TA) 정보, UL 자원 할당 정보(UL 그랜트 정보), 임시 단말 식별자(예, temporary cell-RNTI, TC-RNTI) 등을 포함한다. UE는 RAR 내의 자원 할당 정보 및 TA 값에 따라 UL 전송(예, Msg3)을 수행할 수 있다. RAR에 대응하는 UL 전송에는 HARQ가 적용된다. 따라서, UE는 Msg3 전송한 후, Msg3에 대응하는 수신 응답 정보(예, PHICH)를 수신할 수 있다.
임의 접속 프리앰블, 즉, RACH 프리앰블은 물리 계층에서 길이 T CP의 순환 전치(cyclic prefix) 및 길이 T SEQ의 시퀀스 부분으로 구성된다. T CPT SEQ는 프레임 구조와 임의 접속 설정(configuration)에 의존한다. 프리앰블 포맷은 상위 계층에 의해 제어된다. PACH 프리앰블은 UL 서브프레임에서 전송된다. 임의 접속 프리앰블의 전송은 특정 시간 및 주파수 자원들에 제한(restrict)된다. 이러한 자원들을 PRACH 자원들이라고 하며, PRACH 자원들은, 인덱스 0가 무선 프레임에서 낮은 번호의 PRB 및 서브프레임에 대응하도록, 상기 무선 프레임 내 서브프레임 번호와, 주파수 도메인에서 PRB들의 증가 순으로 번호가 매겨진다. 임의 접속 자원들이 PRACH 설정 인덱스에 따라 정의된다(3GPP TS 36.211 표준 문서 참조). PRACH 설정 인덱스는 (eNB에 의해 전송되는) 상위 계층 신호에 의해 주어진다.
도 4는 LTE/LTE-A 기반 무선 통신 시스템에서 사용되는 하향링크(downlink, DL) 서브프레임 구조를 예시한 것이다.
도 4를 참조하면, DL 서브프레임은 시간 도메인에서 제어 영역(control region)과 데이터 영역(data region)으로 구분된다. 도 4를 참조하면, 서브프레임의 첫 번째 슬롯에서 앞부분에 위치한 최대 3(혹은 4)개의 OFDM 심볼은 제어 채널이 할당되는 제어 영역(control region)에 대응한다. 이하, DL 서브프레임에서 PDCCH 전송에 이용 가능한 자원 영역(resource region)을 PDCCH 영역이라 칭한다. 제어 영역으로 사용되는 OFDM 심볼(들)이 아닌 남은 OFDM 심볼들은 PDSCH(Physical Downlink Shared CHannel)가 할당되는 데이터 영역(data region)에 해당한다. 이하, DL 서브프레임에서 PDSCH 전송에 이용 가능한 자원 영역을 PDSCH 영역이라 칭한다.
3GPP LTE에서 사용되는 DL 제어 채널의 예는 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical hybrid ARQ indicator Channel) 등을 포함한다.
PDCCH를 통해 전송되는 제어 정보를 상향링크 제어 정보(downlink control information, DCI)라고 지칭한다. DCI는 UE 또는 UE 그룹을 위한 자원 할당 정보 및 다른 제어 정보를 포함한다. DL 공유 채널(downlink shared channel, DL-SCH)의 전송 포맷(Transmit Format) 및 자원 할당 정보는 DL 스케줄링 정보 혹은 DL 그랜트(DL grant)라고도 불리며, UL 공유 채널(uplink shared channel, UL-SCH)의 전송 포맷 및 자원 할당 정보는 UL 스케줄링 정보 혹은 UL 그랜트(UL grant)라고도 불린다. 일 PDCCH가 나르는 DCI는 DCI 포맷에 따라서 그 크기와 용도가 다르며, 코딩 레이트에 따라 그 크기가 달라질 수 있다. 현재 3GPP LTE 시스템에서는 상향링크용으로 포맷 0 및 4, 하향링크용으로 포맷 1, 1A, 1B, 1C, 1D, 2, 2A, 2B, 2C, 3, 3A 등의 다양한 포맷이 정의되어 있다. DCI 포맷 각각의 용도에 맞게, 호핑 플래그, RB 할당(RB allocation), MCS(modulation coding scheme), RV(redundancy version), NDI(new data indicator), TPC(transmit power control), 순환 천이 DMRS(cyclic shift demodulation reference signal), UL 인덱스, CQI(channel quality information) 요청, DL 할당 인덱스(DL assignment index), HARQ 프로세스 넘버, TPMI(transmitted precoding matrix indicator), PMI(precoding matrix indicator) 정보 등의 제어정보가 취사 선택된 조합이 하향링크 제어정보로서 UE에게 전송된다.
PDCCH는 하나 또는 복수의 연속적인 제어 채널 요소(control channel element, CCE)들의 집성(aggregation) 상에서 전송된다. CCE는 PDCCH에 무선 채널 상태에 기초한 코딩 레이트를 제공하는데 사용되는 논리적 할당 유닛이다. CCE는 복수의 자원 요소 그룹(resource element group, REG)에 대응한다. 예를 들어, 각 CCE는 9개 REG를 포함하고, 상기 9개 REG는 다이버시티를 가능하게 하기 위해 간섭을 완화하기 위해 인터리빙을 통해 첫 1/2/3개(1.4 MHz를 위해 필요하다면 4개) OFDM 심볼들 및 시스템 대역폭에 걸쳐 분산되어 있다. 하나의 REG는 4개의 RE에 대응한다. 4개의 QPSK 심볼이 각각의 REG에 매핑된다. 참조신호(RS)에 의해 점유된 자원요소(RE)는 REG에 포함되지 않는다. 따라서, 주어진 OFDM 심볼 내에서 REG의 개수는 RS의 존재 여부에 따라 달라진다. REG 개념은 다른 하향링크 제어채널(즉, PCFICH 및 PHICH)에도 사용된다.
도 5는 LTE/LTE-A 기반 무선 통신 시스템에 사용되는 상향링크(uplink, UL) 서브프레임 구조의 일례를 나타낸 것이다.
도 5를 참조하면, UL 서브프레임은 주파수 도메인에서 제어 영역과 데이터 영역으로 구분될 수 있다. 하나 또는 여러 PUCCH(physical uplink control channel)가 상향링크 제어 정보(uplink control information, UCI)를 나르기 위해, 상기 제어 영역에 할당될 수 있다. 하나 또는 여러 PUSCH(physical uplink shared channel)가 사용자 데이터를 나르기 위해, UL 서브프레임의 데이터 영역에 할당될 수 있다.
UL 서브프레임에서는 DC(Direct Current) 부반송파를 기준으로 거리가 먼 부반송파들이 제어 영역으로 활용된다. 다시 말해, UL 전송 대역폭의 양쪽 끝부분에 위치하는 부반송파들이 상향링크 제어정보의 전송에 할당된다. DC 부반송파는 신호 전송에 사용되지 않고 남겨지는 성분으로서, 주파수 상향변환 과정에서 반송파 주파수 f 0로 매핑된다. 일 UE에 대한 PUCCH는 일 서브프레임에서, 일 반송파 주파수에서 동작하는 자원들에 속한 RB 쌍에 할당되며, 상기 RB 쌍에 속한 RB들은 두 개의 슬롯에서 각각 다른 부반송파를 점유한다. 이와 같이 할당되는 PUCCH를, PUCCH에 할당된 RB 쌍이 슬롯 경계에서 주파수 호핑된다고 표현한다. 다만, 주파수 호핑이 적용되지 않는 경우에는, RB 쌍이 동일한 부반송파를 점유한다.
최근, 기계 타입 통신(machine type communication, MTC)이 중요한 통신 표준화 이슈들 중 하나로서 대두되고 있다. MTC라 함은 주로 사람의 개입 없이 혹은 사람의 개입을 최소화한 채 기계(machine)와 eNB 사이에서 수행되는 정보 교환을 의미한다. 예를 들어, MTC는 계량기검침, 수위측정, 감시카메라의 활용, 자판기의 재고 보고 등과 같은 측정/감지/보고 등의 데이터 통신 등에 이용될 수 있으며, 소정 특성을 공유하는 복수의 UE들에 대한 자동 어플리케이션 혹은 펌웨어의 갱신 과정 등에 이용될 수 있다. MTC의 경우, 전송 데이터 양이 적고, 상/하향링크 데이터 전송 또는 수신(이하 전송/수신)이 가끔씩 발생한다. 이러한 MTC의 특성 때문에 MTC를 위한 UE(이하 MTC UE)의 경우, 낮은 데이터 전송률에 맞춰 UE 제작 단가를 낮추고 배터리 소모를 줄이는 것이 효율적이다. 또한 이러한 MTC UE는 이동성이 적고, 따라서 채널 환경이 거의 변하지 않는 특성을 지닌다. MTC UE가 계랑, 검침, 감시 등에 사용될 경우, MTC UE는 통상의 eNB의 커버리지가 미치지 못하는 위치, 예를 들어, 지하나 창고, 산간 등에 위치할 가능성이 높다. 이러한 MTC UE의 용도를 고려하면 MTC UE를 위한 신호는 기존 UE(이하 레거시 UE)를 위한 신호에 비해 넓은 커버리지를 지니는 것이 좋다.
MTC UE의 용도를 고려하면 MTC UE는 레거시 UE에 비해 넓은 커버리지의 신호를 필요로 할 가능성이 높다. 따라서 eNB가 레거시 UE에게 전송하는 방식과 동일한 방식으로 PDCCH, PDSCH 등을 MTC UE에게 전송하면 MTC UE는 이를 수신하는 데 어려움을 겪게 된다. 따라서 본 발명은 MTC UE가 유효하게 eNB가 전송하는 신호를 수신할 수 있도록 하기 위하여, eNB는 커버리지 문제(coverage issue)가 존재하는 MTC UE에게 신호를 전송할 때 서브프레임 반복(신호를 갖는 서브프레임을 반복), 서브프레임 번들링 등과 같은 커버리지 강화(coverage enhancement)를 위한 기법을 적용할 것을 제안한다. 예를 들어, 커버리지 문제가 존재하는 MTC UE에게는 PDCCH 및/또는 PDSCH가 복수(예, 약 100개)의 서브프레임들을 통해 전송될 수 있다.
본 발명의 실시예들은 3GPP LTE/LTE-A 시스템 외에도 새(new) 무선 접속 기술(radio access technology, RAT) 시스템에서도 적용될 수 있다. 더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 RAT에 비해 향상된 모바일 브로드밴드 통신에 대한 필요성이 대두되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 매시브(massive) MTC 역시 차세대 통신에서 고려될 주요 이슈 중 하나이다. 아울러 신뢰성(reliability) 및 지연(latency)에 민감한 서비스/UE를 고려한 통신 시스템 디자인이 논의되고 있다. 이와 같이 진보된 모바일 브로드밴드 통신, 매시브 MTC, URLLC(Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 RAT의 도입이 논의되고 있다. 본 발명에서는 편의상 해당 기술을 새 RAT라고 칭한다.
LTE-A의 차기 시스템에서는 데이터 전송의 지연(latency)을 줄이는 방안을 고려하고 있다. 패킷 데이터 지연은 (속도 테스트 어플리케이션을 통해) 판매자(vendor)들, 오퍼레이터(operator)들 및 최종-사용자(end-user)들이 규칙적으로 측정하는 성능 메트릭(performance metric)들 중 하나이다. 지연 측정은 무선 접속 네트워크 시스템 일생(lifetime)의 모든 국면(phase)들에서, 새로운 소프트웨어 릴리즈 또는 시스템 컴포넌트를 검증(verify)할 때, 시스템을 배치(deploy)할 때 및 시스템이 상업적 운용 중에 있을 때, 행해진다.
3GPP RAT들의 이전 세대들보다 더 나은 지연은 LTE의 설계를 이끌었던 하나의 성능 메트릭이었다. LTE는 인터넷으로의 더 빠른 접속과 모바일 무선 기술들의 이전 세대들보다 낮은 데이터 지연을 제공하는 시스템이라고 현재 최종-사용자들에 의해 인식되고 있다
그러나 시스템 내 딜레이들을 특별히 타겟팅하는 개선(improvement)들은 거의 행해지지 않았다. 패킷 데이터 지연은 시스템의 감지된(perceived) 민감성(responsiveness)을 위해서뿐 아니라, 처리량(throughput)에 간접적으로 영향을 미치는 파라미터이다. HTTP/TCP는 지배적인 어플리케이션이고 오늘날 인터넷 상에서 사용되는 트랜스포트 레이어 프로토콜 묶음(suite)이다. HTTP 아카이브(http://httparchive.org/trends.php)에 따르면, 인터넷 상에서의 HTTP-기반 거래(transaction)들은 키로바이트(Kbyte)들의 10분의 몇(a few 10's)으로부터 1 메가바이트까지의 범위 내에 있다. 이러한 크기 범위 내에서, TCP 느린(slow) 시작 기간(period)은 패킷 스트림의 총 트랜스포트 기간 중 상당 부분이다. TCP 느린 시작 동안 성능은 지연에 의해 제약된다. 그러므로 개선된 지연이 이러한 타입의 TCP-기반 데이터 거래를 위한 평균 처리량을 개선하는 데 용이하게 제시될 수 있다. 또한, (Gbps의 범위로) 정말 높은 비트 레이트를 이루기 위해, UE L2 버퍼들이 대응하여(correspondingly) 만들어질(dimensioned) 필요가 있다. RTT(round trip time)가 길어질수록 버퍼들이 더 커질 필요가 있다. UE 및 eNB 내에서 버퍼 요구사항(requirement)들을 줄이기 위한 유일한 방법은 지연을 줄이는 것이다.
무선 자원 효율성(efficiency)도 지연 감소에 의해 긍정적 영향을 받을 수 있다. 낮은 데이터 패킷 지연은 일정(certain) 딜레이 바운드 내에서 가능한 전송 시도(attempt)들의 횟수를 줄일 수 있다. 그러므로 무선 자원을 풀어주면서(free up)도 나쁜 무선 조건들 하의 사용자기기를 위한 강인성(robustness)의 레벨을 동일하게 유지하면서, 더 높은 BLER(block error ratio) 타겟들이 데이터 전송을 위해 사용될 수 있다. 동일한 BLER 타겟을 유지하면, 일정 딜레이 바운드 내에서 증가된 개수의 가능한 전송은 실-시간(real-time) 데이터 스트림(예, VoLTE)의 더 강인한(robust)으로 해석될 수 있다. 이는 VoLTE 음성 시스템 용량(capacity)를 개선할 것이다.
예를 들어 게임하는 것(gaming), VoLTE/OTT VoIP와 같은 실-시간 어플리케이션들 그리고 화상(video) 통화(telephony)/회의(conferencing)와 같은: 감지되는 경험의 질의 면에서 감소된 지연에 의해 긍정적 영향을 받을 기존(existing) 어플리케이션들이 매우 많다.
미래에는 딜레이 극복이 중요할 새로운 어플리케이션이 점점 더 많아질 것이다. 예를 들어, 스마트 안경 또는 중대한(critical) 통신뿐 아니라 낮은 지연을 요구하는 특정 기계(machine) 통신들에서의 증강(augmented) 현실(reality) 어플리케이션들, 차량(vehicle)들의 리모트 제어/드라이빙 등에게 딜레이는 중대한 요소일 수 있다.
도 6은 짧은(short) TTI의 예시와 짧은 TTI 내 제어 채널과 데이터 채널의 전송 예를 나타낸 것이다.
사용자 플레인(user plane, U-plane) 지연을 1ms으로 줄이기 위해, 1ms보다 짧은 다른 길이의 sTTI가 구성될 수도 있다. 예를 들어, 정규 CP의 경우, 2개 OFDM 심볼들로 구성된 sTTI, 4개 OFDM 심볼들로 구성된 sTTI 및/또는 7개 OFDM 심볼들로 구성된 sTTI가 있을 수 있다.
디폴트 TTI의 주파수 대역 내 일부 또는 전체 주파수 자원 상에서 상기 TTI를 구성하는 전체 OFDM 심볼들이 시간 도메인에서 둘 이상의 sTTI로 분할 또는 상기 TTI의 PDCCH 영역이 점유하는 OFDM 심볼들을 제외한 나머지 OFDM 심볼들이 둘 이상의 sTTI로 분할될 수 있다.
이하에서는 시스템에서 사용되는 디폴트(default) 혹은 주요(main) TTI를 TTI 혹은 서브프레임이라 칭하고, 상기 시스템의 디폴트/주요 TTI가 아닌 이보다 짧은 시간 길이를 갖는 TTI를 sTTI로 칭한다. 예를 들어, 현재까지의 LTE/LTE-A 시스템처럼 1ms의 TTI가 디폴트 TTI로 사용되는 시스템에서는 1ms보다 짧은 시간 길이를 갖는 TTI가 sTTI로 칭해질 수 있다. TTI와 sTTI에서의 신호 전송/수신 방법은 현재 LTE/LTE-A 뉴머롤러지에 따른 시스템뿐만 아니라 새로운 RAT 환경에 따른 뉴머롤러지에 따른 시스템의 디폴트/주요 TTI와 sTTI에서도 마찬가지 방식으로 적용될 수 있다.
하향링크 환경에서는 이러한 sTTI 내에서 데이터의 전송/스케줄링을 위한 PDCCH를(즉, sPDCCH)와 sTTI 내에서 전송이 이루어지는 PDSCH(즉, sPDSCH)가 전송될 수 있다. 예를 들어 도 6을 참조하면 하나의 서브프레임 내에 복수 개의 sTTI가 서로 다른 OFDM 심볼들을 사용하여 구성될 수 있다. 예를 들어 서브프레임 내 OFDM 심볼들이 시간 도메인에서 하나 이상의 sTTI들로 분할될 수 있다. sTTI를 구성하는 OFDM 심볼들은 레거시 제어 채널들이 전송되는 선두 OFDM 심볼들을 제외하여 구성될 수 있다. sTTI 내에서 sPDCCH와 sPDSCH의 전송은 서로 다른 OFDM 심볼 영역을 사용하여 TDM된 형태로 전송될 수 있다. sTTI 내에서 sPDCCH와 sPDSCH의 전송은 서로 다른 PRB(들) 영역/주파수 자원을 사용하여 FDM된 형태로 전송될 수도 있다.
<OFDM 뉴머롤로지>
새로운 RAT 시스템은 OFDM 전송 방식 또는 이와 유사한 전송 방식을 사용한다. 예를 들어, 새로운 RAT 시스템은 다음 표에 정의된 OFDM 파라미터들을 따를 수 있다.
Parameter Value
Subcarrier-spacing (△f) 75kHz
OFDM symbol length 13.33us
Cyclic Prefix(CP) length 1.04us/0/94us
System BW 100MHz
No. of available subcarriers 1200
Subframe length 0.2ms
Number of OFDM symbol per Subframe 14 symbols
<아날로그 빔포밍(analog beamforming)>
밀리미터 파장(millimeter wave, mmW)에서는 파장이 짧아져서 동일 면적에 다수 개의 안테나 요소(element)의 설치가 가능해진다. 예를 들어, 1cm의 정도의 파장을 갖는 30GHz 대역에서 5 by 5cm의 패널(panel)에 0.5λ (파장) 간격으로 2-차원(dimension) 배열 형태로 총 100개의 안테나 요소 설치가 가능하다. 그러므로 mmW에서는 다수 개의 안테나 요소를 사용하여 빔포밍 이득을 높여 커버리지를 증가시키거나, 처리량(throughput)을 높이는 것이 고려된다.
안테나 요소별로 전송 파워 및 위상 조절이 가능하도록 트랜시버 유닛(transceiver unit, TXRU)을 가지면 주파수 자원별로 독립적인 빔포밍이 가능하다. 그러나 100여 개의 안테나 요소 모두에 TXRU를 설치하기에는 가격 측면에서 실효성이 떨어지는 문제를 있다. 그러므로 하나의 TXRU에 다수 개의 안테나 요소를 매핑하고 아날로그 위상 천이기(analog phase shifter)로 빔(beam)의 방향을 조절하는 방식이 고려되고 있다. 이러한 아날로그 빔포밍 방식은 전체 대역에 있어서 하나의 빔 방향만을 만들 수 있어 주파수 선택적 빔포밍(beamforming, BF)을 해줄 수 없는 단점이 있다.
디지털 BF와 아날로그 BF의 중간 형태로 Q개의 안테나 요소보다 적은 개수인 B개의 TXRU를 갖는 하이브리드(hybrid) BF가 고려될 수 있다. 하이브리드 BF의 경우, B개의 TXRU와 Q개의 안테나 요소의 연결 방식에 따라서 차이는 있지만, 동시에 전송할 수 있는 빔의 방향은 B개 이하로 제한되게 된다.
도 7은 아날로그 빔포밍의 적용 예를 나타낸 것이다.
도 7을 참조하면, 시간에 따라 빔의 방향을 바꿔가면서 신호가 전송/수신될 수 있다.
본 발명에서는 아날로그 빔포밍의 특성으로 인해서 mmWave에서 달라지게 되는 초기 접속 과정을 기술하고, 그에 따른 UE와 eNB동작, 그리고 UE와 eNB 사이에 전송되어야 하는 시그널링 정보/방식에 대해서 제안한다.
<자족적(self-contained) 서브프레임 구조>
도 8은 자족적 서브프레임 구조를 예시한 것이다.
TDD 시스템에서 데이터 전송 지연을 최소화하기 위하여 5세대 새로운 RAT에서는 자족적 서브프레임 구조가 고려되고 있다.
도 8에서 빗금 친 영역은 DCI를 나르는 DL 제어 채널(예, PDCCH)의 전송 영역을 나타내고, 검정색 부분은 UCI를 나르는 UL 제어 채널(예, PUCCH)의 전송 영역을 나타낸다. 여기서 DCI는 eNB가 UE에게 전달하는 제어 정보이며, 상기 DCI는 상기 UE가 알아야 하는 셀 설정(configuration)에 관한 정보, DL 스케줄링 등의 DL 특정적(specific) 정보, 그리고 UL 그랜트 등과 같은 UL 특정적 정보 등을 포함할 수 있다. 또한 UCI는 UE가 eNB에게 전달하는 제어 정보이며, 상기 UCI는 DL 데이터에 대한 HARQ ACK/NACK 보고, DL 채널 상태에 대한 CSI 보고, 그리고 스케줄링 요청 (scheduling request, SR) 등을 포함할 수 있다.
도 8에서 심볼 인덱스 1부터 심볼 인덱스 12까지의 심볼들 영역에서는 하향링크 데이터를 나르는 물리 채널(예, PDSCH)의 전송에 사용될 수도 있고, 상향링크 데이터를 나르는 물리 채널(예, PUSCH)의 전송에 사용될 수도 있다. 자족적 서브프레임 구조에 의하면, 1개의 서브프레임 내에서 DL 전송과 UL 전송의 순차적으로 진행되어, DL 데이터의 전송/수신과 상기 DL 데이터에 대한 UL ACK/NACK의 수신/전송이 상기 1개의 서브프레임 내에서 이루어질 수 있다. 결과적으로 데이터 전송 에러 발생시에 데이터 재전송까지 걸리는 시간을 줄이게 되며, 이로 인해 최종 데이터 전달의 지연이 최소화될 수 있다.
이러한 자족적 서브프레임 구조에서는, eNB과 UE가 전송 모드에서 수신 모드로의 전환 과정 또는 수신 모드에서 전송 모드로의 전환 과정을 위한 시간 갭(time gap)이 필요하다. 이러한 전송 모드와 수신 모드 간 전환 과정을 위하여 자족적 서브프레임 구조에서 DL에서 UL로 전환되는 시점의 일부 OFDM 심볼이 가드 기간(guard period, GP)로 설정되게 된다.
도 8을 참조하면, 광대역 상에서 DL 제어 채널이 DL 데이터 혹은 UL 데이터와 시간 분할 다중화(time division multiplexing, TDM)되어 전송될 수 있다. eNB에서는 상기 eNB가 DL 제어 채널(들)을 전 대역에 걸쳐 전송할 수 있겠지만, 하나의 UE 관점에서는 상기 UE가 전체 대역이 아닌 일부 특정 대역 내에서 자신의 DL 제어 채널을 수신할 수 있다. 여기서 DL 제어 채널이라 함은 eNB가 UE에게 전달하는 제어 정보로서 DL 스케줄링 등의 DL 특정적 정보뿐 아니라 UE가 알아야 하는 셀 설정(configuration)에 관한 정보뿐 아니라 UL 그랜트 등과 같은 UL 특정적 정보를 포함한다.
예를 들어, mmWave 및 5G로 지칭되는 새로운 RAT에서는 매우 넓은 크기의 시스템 대역을 가질 것으로 예상된다. 주파수 대역에 따라서 5MHz, 10MHz, 40MHz, 80MHz 등이 최소 시스템 대역폭으로서 지원되어야 할 수 있다. 최소 시스템 대역은 시스템의 기본 부반송파 간격에 따라서 달라질 수 있다. 예를 들어, 기본 부반송파 간격이 15kHz인 경우 최소 시스템 대역은 5MHz, 기본 부반송파 간격이 30khz인 경우 최소 시스템 대역은 10MHz, 기본 부반송파 간격이 120khz인 경우 최소 시스템 대역은 40MHz, 기본 부반송파 간격이 240kHz인 경우 최소 시스템 대역은 80MHz일 수 있다. 새로운 RAT는 6GHz 이하 대역 및 6GHz 이상의 대역을 대상으로 하여 디자인되고, 다양한 시나리오와 사용 사례(use case) 지원을 위하여 한 시스템 내에서 복수 개의 부반송파를 지원하도록 디자인된다. 부반송파 길이가 달라짐으로 인해서, 서브프레임 길이 또한 그에 따라서 축소/확장된다. 예를 들어, 한 서브프레임은ms0.5ms, 0.25ms, 0.125ms 등의 짧은 시간으로 정의될 수 있다. 새로운 RAT 시스템에서는 높은 주파수 대역(예, 6GHz 이상)이 사용될 수 있으며, 부반송파 간격(spacing)은 기존 LTE 시스템이 15kHz였던 것에 반해서 넓은 크기의 부반송파 간격이 지원될 것으로 예상된다. 예를 들어, 부반송파 간격을 60kHz로 가정하면, 하나의 자원 유닛(resource unit, RU)이 주파수 축으로는 12개의 부반송파, 시간 축으로는 하나의 서브프레임에 의해 정의될 수 있다.
UE가 특정 시스템에 연관(association)을 해서 서비스를 받기 위해서 가장 먼저 수행해야 하는 동작은 해당 시스템의 시간 및 주파수 동기를 획득하고 기본적인 시스템 정보(system information, SI)를 수신하고, 상향링크로의 상향링크 타이밍을 맞추는 것이다. 이러한 과정을 일반적으로 초기 접속 과정(initial access procedure)이라고 한다. 초기 접속 과정은 일반적으로 동기화 과정(synchronization procedure)과 RACH 과정(즉, 임의 접속 과정)을 포함한다. 설명의 편의를 위해서 앞서 설명된 LTE 시스템에서의 동기화 과정을 다시 간략하게 기술한다.
> PSS: 심볼 타이밍 획득, 주파수 동기화, 셀 ID 그룹 내 셀 ID 검출(detection) (3가지 전제(hypotheses)).
> SSS: 셀 ID 그룹 검출(168가지 전제), 10ms 프레임 경계(boundary) 검출, CP 검출(2가지 전제).
> PBCH 복호(decoding): 안테나 설정(configuration), 40ms 타이밍 검출, 시스템 정보, 시스템 대역폭 등.
즉, UE는 PSS와 SSS를 통해서 OFDM 심볼 타이밍 및 서브프레임 타이밍을 획득하고 더불어 셀 ID를 획득하고, 셀 ID를 이용하여 PBCH를 디스크램블링 및 복호하여 해당 시스템에서의 중요한 정보를 획득한다. mmWave 혹은 새로운 RAT(이하, mmWave/new RAT) 시스템에서도 기본적인 동기화 과정은 유사하지만 PSS/SSS를 전송/수신하는 방식에 큰 차이가 발생하게 된다.
도 9는 새로운 시스템에서 PSS/SSS/PBCH이 전송되는 시점 및 자원 영역의 예를 나타낸 것이다. 특히 도 9(a)는 PSS/SSS/PBCH 전송 구간의 예를 나타낸 것이고, 도 9(b)는 PSS/SSS/ESS/PBCH 전송 구간의 예를 나타낸 것이다.
도 9를 참조하면, 하나의 서브프레임에 14개의 OFDM 심볼이 존재할 경우, 각 OFDM 심볼마다 서로 다른 빔 방향의 PSS/SSS/PBCH가 전송될 수 있다. 빔 방향의 수는 1개에서 N개까지 가능할 수 있다. 빔 (방향)의 개수는 주파수에 따라 결정되거나, 셀의 간섭 등을 고려하여 동적으로 정해질 수 있다. PSS를 검출한 UE는 심볼 동기를 획득하고, 물리 셀 ID를 획득할 수 있다. 혹은 PSS와 SSS 검출을 통해서 셀 ID를 획득할 수 있다.
LTE/LTE-A 시스템에서 PSS/SSS는 전-방위적(omni-directional)으로 전송되는 것에 반해서, mmWave를 적용하는 eNB가 빔 방향을 전-방위적으로 돌려가면서 PSS/SSS/PBCH 등의 신호를 빔포밍하여 전송하는 방법이 고려되고 있다. 이와 같이 빔 방향을 돌려가면서 신호를 전송/수신하는 것을 빔 스위핑(beam sweeping) 혹은 빔 스캐닝이라 한다. 예를 들어 eNB가 최대 N개의 빔 방향을 가질 수 있다고 가정하면, N개의 빔 방향에 대해서 각각 PSS/SSS/PBCH 등의 신호를 전송한다. 즉 eNB는 자신이 가질 수 있는 혹은 지원하고자 하는 방향들을 스위핑하면서 각각의 방향에 대해서 PSS/SSS/PBCH 등의 동기 신호들을 전송한다. 혹은 eNB가 N개의 빔을 형성할 수 있는 경우, 몇 개씩의 빔들이 묶여 하나의 빔 그룹으로 구성할 수 있으며, 빔 그룹별로 PSS/SSS/PBCH를 전송/수신될 수 있다. 이 때, 하나의 빔 그룹은 하나 이상의 빔을 포함한다.
<새로운 시스템의 동기화 과정>
이하에서는 새로운 시스템에서 사용되는 동기 신호 및 방송 신호의 구조가 제안된다. 빔 스캐닝 방식의 PSS/SSS/PBCH가 전송되는 경우, 다음과 같은 방식으로 UE는 시스템 타이밍을 획득(acquire)할 수 있다.
* 심볼/서브프레임 타이밍 및 셀 ID 획득(acquisition)
UE는 고정된 위치(예를 들어, 중심 주파수를 중심으로 하여 6개 PRB 혹은 x개 PRB) 혹은 가변 위치에서 전송되는 PSS를 먼저 검출해서 심볼 타이밍에 관한 정보를 획득한다. 마찬가지로 UE는 이미 아는 위치에 전송되는, 즉, PSS 전송 자원으로부터 상대적인 위치에서 전송되는 SSS를 검출해서 서브프레임 타이밍 및/또는 프레임 타이밍을 획득할 수 있으며, PSS와 SSS의 조합으로부터 셀 ID를 획득할 수 있다. SSS로 전송되는 신호 및 전제(hypothesis)가 너무 많아 지는 것을 방지하기 위해서 서브프레임 타이밍은 eNB가 전송하는 별도의 추가적인 동기 신호(예, 확장(extended) 동기 신호(ESS)을 검출함으로써 획득할 수도 있다.
* 빔 RS 포트의 개수
각 빔 방향 별로 PSS/SSS/PBCH 그리고 ESS가 전송될 경우, 각 빔 방향 별 링크 품질 측정을 위해서 빔 참조 신호(bean reference signal, BRS)가 전송될 수 있다. 즉, BRS는 RSRP/RRM/RLM 측정 등의 목적을 위해서 전송될 수 있으며, 이웃 셀 측정 등에도 사용될 수 있다. BRS는 UE로 하여금 전체 대역에 대한 측정을 수행할 수 있도록 하기 위해 전체 대역에 걸쳐 전송될 수 있다. 예를 들어, BRS는 PSS/SSS가 전송되는 해당 아날로그 빔 방향에 대해서 전체 대역에 걸쳐 각 안테나 포트 별로 전송되는 RS일 수 있다. 이 경우, UE는 BRS의 전송에 사용되는 포트의 개수 및 각 포트 별로 BRS가 전송되는 자원 위치에 대한 정보를 사전에 알아야 한다. BRS의 전송에 사용되는 포트의 개수, 즉, UE가 해당 시점에서 측정해야 하는 BRS 포트의 개수는 ESS를 통해 제공될 수 있다. 예를 들어, 최대 BRS 포트의 개수가 8개라면, eNB는 UE에게 {1, 2, 4, 8} 또는 {2, 4, 6, 8} 혹은 다른 값을 갖는 조합 내의 하나의 값을 ESS를 통해서 알려 줄 수 있다. 여기서, UE는 안테나 포트의 개수에 대한 복수 개의 전제에 대해서 UE가 ESS에서 검출을 시도해야 의미할 수 있다. BRS 포트의 개수를 알려주는 다른 방식으로는 PBCH에서 상기 PBCH가 전송되는 빔과 동일한 방향으로 전송되는 BRS에 대한 포트의 개수가 시그널링될 수 있다. BSR 포트에 대한 정보가 PBCH에서 전송되는 경우, UE는 이웃 셀 측정을 위해서 이웃 셀의 PBCH를 복호한 후 상기 이웃 셀의 BRS를 측정해야 할 수 있다.
* 확장 동기 신호/시퀀스(extended synchronization signal/sequence, ESS)
전술한 바와 같이 ESS는 PSS/SSS가 전송되는 동일 심볼 내 상기 PSS/SSS와는 다른 주파수 자원을 통해 전송될 수 있다. 셀 ID와 심볼 타이밍을 획득한 UE가 ESS를 통해서 서브프레임 타이밍 및 프레임 타이밍을 획득할 수 있다. 서브프레임 타이밍을 획득한다고 함은, 서브프레임이 시작되는 위치, 즉 UE가 검출한 심볼이 해당 서브프레임에서 몇 번째 심볼에 위치하는 지의 정보를 획득할 수 있음을 의미한다. 프레임 타이밍은 동기 신호가 전송되는 주기와 관련이 있을 수 있다. UE는 동기 신호를 검출하고 나서 이후 동일한 동기 신호가 전송되는 데까지 걸리는 시간을 추정할 수 있으며, 해당 시간 구간 내에서 특정 서브프레임이 몇 번째 서브프레임인지를 알 수 있게 된다. 이와 더불어 ESS에서 BRS 포트 개수가 지시될 수 있다. 또한 PBCH의 DM-RS 포트의 개수에 대한 정보가 의해 ESS에 지시될 수도 있다. 단순하게는 PBCH가 SFBC와 같은 전송 다이버시티 방식(transmit diversity scheme)으로 전송된다는 가정하에 PBCH DM-RS 포트가 2개로 한정될 수 있다. 혹은 PBCH DM-RS 포트가 몇 개인지(예를 들어, 1, 2, 4, 8) 가 ESS에 의해 지시될 수 있다. 추가적으로 ESS에서 시스템 대역폭 또는 BRS 전송 대역폭에 대한 정보가 지시될 수 있다. 이 경우, UE는 PBCH의 복호를 수행하지 않고도, RSRP 측정을 위해, BRS가 전송되는 자원을 확인할 수 있게 된다.
* 시퀀스 생성
> ESS: ESS 검출을 통해서 UE가 서브프레임 타이밍을 획득할 수 있어야 하므로, ESS가 있는 심볼이 서브프레임 내에서 몇 번째 심볼인지의 정보를 알아낼 수 있도록 ESS 시퀀스가 설계(design)되어야 한다. 따라서 ESS 시퀀스는 셀 ID, 해당 ESS가 전송되는 OFDM 심볼 인덱스의 함수여야 한다.
도 10은 새로운 시스템에서 동기 신호를 전송하는 방법의 예들을 나타낸 것이다.
eNB가 모든 빔들에 대한 동기 신호들 한 서브프레임 내에 전송하기에 시간 자원이 부족한 경우, 이들 동기 신호들을 복수 개의 서브프레임에 나누어 전송할 수 있다. 여기서, 동기 신호는 동기화(synchronization)을 위해 eNB가 전송하는 PSS/SSS/SSS 등의 신호를 의미한다. 동기 신호(synchronization signal, SS)가 전송되는 주기가 P개 서브프레임이고, 하나의 eNB가 B개의 빔들을 생성할 수 있다고 가정하자. 이 때 상기 eNB는 상기 B개의 빔들 각각의 방향으로 자신의 SS를 모두 전송하는 데까지 B개의 서브프레임이 필요하다고 가정할 수 있다. 도 10은 B=2인 경우를 예시한 것이다. 예를 들어, SS가 각 빔 방향별로 모두 전송되는 데 2개의 서브프레임이 필요한 경우, P개 서브프레임의 한 주기 내에서 2개의 SS 서브프레임 중 첫 번째 서브프레임에서 전송되는 SS를 SS1, 두 번째 서브프레임에서 전송되는 SS를 SS2라 지칭한다. SS1과 SS2는 다수의 빔 방향을 갖는 SS의 집합의 일부를 나타내고, 서로 다른 서브프레임에서 전송되는 SS의 일부를 지칭한다. SS이 특정 서브프레임에서 SS1과 또 다른 서브프레임에서 SS2로 나누어 전송될 수 있고, 도 10(a)에 도시된 바와 같이 SS1과 SS2는 특정 시간 간격(interval)을 가지고 전송될 수도 있고, 도 10(b)에 도시된 바와 같이 연속된 서브프레임들에서 전송될 수 있다. eNB가 SS1과 SS2를 모두 전송하고 다음 SS1과 SS2를 전송하기까지 걸리는 시간이 동기 신호의 전송 주기로 정의될 수 있다. 즉, eNB가 가지는 모든 빔 방향에 대한 동기 신호가 다 전송되고, 이후 동일한 빔 방향에 신호가 다시 전송되기 전까지 걸리는 시간이 동기 신호의 주기로 이해될 수 있다. 예를 들어, 도 10을 참조하면 2T개 서브프레임이 동기 신호의 전송 주기가 될 수 있다. 만약 동기 신호가 복수 개의 서브프레임에 나누어져서 전송되는 경우, 상기 동기 신호가 상기 복수 개의 서브프레임으로 분산될 때 몇 번째 서브프레임에서 전송되는 동기 신호인지에 대한 정보를 포함해야 한다. 이와 같이 동기 신호가 쪼개져 전송될 때 해당 ESS 시퀀스가 자신이 몇 번째 서브프레임에서 전송되는 ESS인지의 정보를 가질 수 있다. ESS 시퀀스가 동기 신호가 전송되는 서브프레임들 중 혹은 동기 신호 주기의 서브프레임들 중 몇 번째 서브프레임인지를 나타낼 수 있도록 하기 위해, ESS 시퀀스가 서브프레임 인덱스의 함수로 생성될 수 있다.
> BRS 시퀀스
BRS은 심볼마다 다른 빔 방향으로 전송되는 RS이므로, BRS 시퀀스는 셀 ID와 더불어 심볼 인덱스 및/또는 빔 인덱스의 함수로 생성된다. BRS는 추가적으로 BRS 안테나 포트 번호, BRS 전송 서브프레임 번호의 함수로 생성된다.
> PBCH DM-RS 시퀀스
PBCH DM-RS 시퀀스는 셀 ID, 심볼 인덱스, PBCH 전송 서브프레임 번호, DM-RS 포트 번호의 함수로 생성된다.
> PBCH 정보 컨텐츠
PBCH에는 기본적인 시스템 정보, 시스템 프레임 번호, 안테나 포트의 개수, 시스템 대역폭 등의 정보가 실릴 수 있다. PBCH에는 추가적으로, PRACH 설정, 시스템 정보 블록(system information block, SIB)(즉, SI)의 전송에 사용되는 시간-주파수 자원(혹은 SIB 전송 주기 등), 페이징의 전송에 사용될 수 있는 시간-자원 주파수 자원 등에 관한 정보가 실릴 수 있다. PRACH 설정 정보는 SIB(즉, SI) 내에 포함되어 전송될 수 있다. SIB 및 페이징의 전송에 사용될 수 있는 시간-주파수 자원에 관한 정보는 빔 방향별로(예, 빔 인덱스별로) 독립적으로 시그널링될 수 있다. SIB 및 페이징의 수신에 사용될 수 있는 시간-주파수 자원에 대한 정보를 획득한 UE는 SIB 및 페이징 수신을 위해 지정된 서브프레임에서 해당 정보를 수신하기 위해, PDCCH의 검출을 위한 블라인드 복호를 수행한다. SIB/페이징의 전송 자원에 관한 정보는 시스템 정보에 해당하므로 UE에게 UE 특정적 탐색 공간(UE specific search space, USS)와 공통 탐색 공간(common search space)가 설정된 경우, UE는 SIB/페이징을 위한 서브프레임에서 공통 채널이 전송될 것으로 기대하고 USS와 더불어 CSS 상에서 블라인드 복호를 수행한다. UE는 SIB/페이징을 위한 서브프레임 외의 다른 서브프레임에서는 CSS에 대한 BD를 수행하지 않는다. 여기서 CSS라 함은 셀 전체의 모든 UE를 위한 탐색 공간일 수 있다. 또는 셀 전체 UE에 공통된 탐색 공간이라기 보다는 복수의 UE들에게 공통으로 해당되는 일종의 그룹 특정적 탐색 공간(group specific search space, GSS)일 수 있다. UE가 읽어야 하는 그룹 RNTI 혹은 그룹 ID는 상기 UE가 성공적으로 수신한 PSS/SSS의 심볼과 같은 심볼 혹은 상기 UE가 성공적으로 수신한 PSS/SSS와 같은 빔 방향에 대한 빔 ID와 셀 ID의 함수로 결정될 수 있다. 그룹 ID에 대한 설정이 UE에게 별도로 주어지지 않더라도, 이러한 그룹 ID는 UE가 빔 ID와 셀 ID를 검출한 후에 결정할 수 있는 값일 수 있다. UE는 그룹 ID를 기반으로 각 그룹 공통 데이터 데이터 및 제어 정보의 수신에 사용되는 RNTI 값을 설정받거나(예, 해당 RNTI 값이 상기 UE에게 시그널링), 상기 그룹 ID를 스크램블링, DM-RS 스크램블링 ID 등으로 사용할 수 있다.
* 주문형(on-demand) SI
도 11은 본 발명에 따른 시스템 정보의 전송/수신 예를 나타낸 것이다.
한편, 기존 LTE/LTE-A 시스템에서, 모든 적용 가능한(applicable) 시스템 정보(system information, SI)는 해당 셀의 물리적 자원을 사용하여 주기적으로 브로드캐스트된다. SI들은 상이한 메커니즘들을 사용하여 방송된다. 예를 들어, MIB는 주기가 40ms인 BCH를 사용하여 전송되고, SIB1는 80ms의 주기를 갖는 DL-SCH를 사용하여 전송되며, 다른 적용 가능한 SIB들은 PDCCH 상의 SI-RNTI에 의한 시간-주파수 도메인 스케줄링으로(with) DL-SCH를 사용하여 전송된다. 상기 다른 적용 가능한 SIB들은 각각이 설정 가능한(configurable) 주기성을 가지고 시간 윈도우 내에 위치한다. 시스템 정보는 반송파 집성(aggregation) 및/또는 이중 연결성(dual connectivity, DC)로써 설정된 UE에 대한 (P)SCell을 위한 무선 접속 제어(radio resource control, RRC) 재설정(reconfiguration) 과정(procedure)의 일부로서 전용(dedicated) 시그널링을 사용하여 제공되기도 한다. 이와 같이 SI를 브로드캐스트하는 접근법(approach)은 주로 매크로 셀 배치(deployment)에 주로 적합하다. 그러나, 이러한 접근 방식은 다른 시나리오에서는 최적이 아닐 수 있다. 브로드캐스팅 접근법의 단점은, 예를 들어, 셀 상에 캠핑 중인, 시스템에 접속 및/또는 특정 타입의 SIB들에 관심이 있는, UE가 소수이거나 없는 경우, 자원이 낭비될 수 있다. 브로드캐스팅 접근법의 다른 단점은 UE가 초기 시스템 정보를 획득할 때, SI의 주기적 브로드캐스팅의 특성에 의해 유발되는 지연(latency)이다. 일부 SIB들에 대해서, UE는 관련 SIB(들)이 전송될 때까지 다음 기간(period)을 기다려야 하며, 설정된 기간(period)의 절반에 해당하는 평균(average) 지연이 UE가 해당 시스템의 특성(feature)이 접속 가능한 지를 결정할 수 있기 전에 통상(typically) 필요하다. 또 다른 단점은 시스템이 발전하고 새로운 기능이 추가됨에 따라 브로드캐스팅 접근법의 확장성의 영향(impact)이다. 시스템 정보의 양이 증가함에 따라 브로드캐스팅 접근법을 위해 더 많은 자원이 필요하다. 새로운 정보 메시지들이 추가됨에 따라, 각각이 새로운 시간 윈도우에서 브로드캐스트될 필요가 있을 수 있다. 이는 UE가 더 자주 깨어나야 할 수 있음을 의미하므로 상기 UE의 전력 소비에 영향을 줄 수 있다. 특히, 브로드캐스팅 접근법이 새로운 RAT에 적용될 경우, 추가적인 단점이 있을 수 있다. 새로운 RAT는 고주파 대역(예, 6GHz 이상)에 배치될 경우, 적절한 커버리지의 제공을 위해 다수의 빔이 필요할 수 있다. 이러한 조건에서 기존 LTE/LTE-A 시스템에서와 유사한 브로드캐스팅 접근법이 사용되는 것, 즉, 다수의 빔 각각이 SI를 전송하는 것은 부적절하거나 비효율적일 수 있다. 새로운 RAT 배치는 매크로 배치 및 작은 커버리지를 갖는 고밀도의 셀들을 포함할 것으로 예상된다. 넓은 커버리지를 갖는 셀들의 경우, 모든 적용 가능한 시스템 정보를 위한 브로드캐스팅 접근법이 시스템 접속, 캠핑, 이동성(mobility) 등과 같은 기능들을 제공하기에 적합하다. 작은 커버리지를 갖는 셀들의 경우, 매크로 셀과 유사한 특징(feature)들 및 기능들을 효율적으로 지원하는 것이 바람직하지만, 주어진 시간에 셀의 영역 내에 소수의 UE들만 있을 수 있으므로 이들 셀은 전용 전송에 더 적합할 수 있다. 새로운 RAT 시스템에서 짧은 TTI가 지원되면, UE는 주기적으로 브로드캐스팅되는 시스템 정보를 기다리는 것보다 전용 신호를 사용하여 시스템 정보를 획득하는 것이 더 빠를 수 있다. 이는 URLLC 서비스들을 적절히 지원하기 위해 필요할 수 있다. 아울러 브로드캐스팅 접근법은 고 밀도 배치에서 간섭 레벨을 증가시키고 네트워크 전력 소비에 영향을 미친다.
따라서 본 발명은 브로드캐스팅되는 SI의 양을 줄이기 위해 주문형(on-demand) SI를 제안한다. 주문형 SI는 UE의 요청이 있을 때 제공될 수 있다. 새로운 RAT 시스템에서 시스템 정보의 전부 혹은 일부가 주문형 SI가 될 수 있다. 즉, 새로운 RAT가 적용되는 주파수 대역에서는 SI가 전부 주문형으로, 혹은 일부는 상시형(always-on)으로 브로드캐스트되고, 일부는 주문형으로 전송될 수 있다. 상시형 SI는 해당 셀의 모든 빔-방향, 모든 UE에 공통된 SI일 수 있다. 예를 들어, 초기 접속에 필수적인 SI가 상시형 SI로서 주기적으로 브로드캐스트될 수 있다. 브로드캐스트되는 최소한의 SI를 제외한 나머지 SI가 주문형 SI가 될 수 있다. 주문형 SI는 특정 빔-방향, UE 혹은 UE 그룹에 특정적인 SI일 수 있다.
SI 태그는 해당 SI 메시지들에 변화(change)가 있는지를 나타낸다. 주문형 SIB 혹은 PBCH 전송을 지원하기 위하여, PBCH 혹은 ESS에서 SI 태그가 전송될 수 있다. 도 11을 참조하면, 예를 들어, 본 발명에서 UE는 SI 태그가 변경된 경우, RACH 과정을 통해 SIB 전송을 요청할 수 있다(S1130). 이러한 주문형 SI 접근법에 의하면, 네트워크가 SIB(즉, SI)를 갱신(update)했더라도 UE가 필요하지 않으면 일정한 사이클 내에서 SIB를 읽지 않아도 됨을 의미한다. RACH 과정을 통해 SI 전송을 요청할 경우, UE는 갱신된 SI를 얻기 전이므로, 상기 갱신된 SI를 얻기 위해서는 낡은(out-of-date) SI를 기반으로 RACH 과정을 수행해야 한다. 상기 UE가 낡은 SIB를 기반으로 RACH 과정을 수행하는 경우, UE가 사용할 수 있는 RACH 자원은 미리 지정될 수 있다(S1110). 예를 들어, 시스템에서 특정 시간/주파수 혹은 시간/주파수/프리앰블이 SI 요청의 용도로 미리 지정될 수 있다. (6GHz 이하의 주파수 대역의 경우) SI 요청을 위한 RACH 자원은 셀의 모든 UE에게 공통된 것일 수 있다. 6GHz 이상의 주파수 대역에서 빔포밍이 적용되는 경우, 빔 방향 별, 즉, SS 블록별로 SI 요청용 RACH 자원이 지정될 수도 있다. 상기 UE가 해당 RACH 자원을 통한 PRACH 전송을 수행하면(S1130) eNB는 SIB 전송을 임의 접속 응답(random access response, RAR) 전송 후 혹은 이전에 수행할 수 있다(S1150). 또한 SI 태그가 변하는 경우, 모든 SIB가 전송되는 대신 갱신된 SIB만 전송될 수 있다. eNB가 SI 요청용 RACH 자원 상에서 SI 요청을 검출하면, 해당 셀에서 (해당 빔 방향으로) 시스템 정보를 브로드캐스트하거나, 해당 프리앰블 인덱스에 대한 RAR에서 해당 시스템 정보를 전송할 수 있다. 혹은, SI 요청이 있는 해당 시스템 정보가 전송되는 시간/주파수 영역에 대한 스케줄링 정보가 상기 SI 요청에 대한 RAR에 포함되어 전달될 수도 있다. 주문형 SIB 혹은 PBCH 전송을 요청하기 위한 목적으로 UE가 RACH를 전송하는 경우, UE는 eNB에게 해당 PRACH의 전송 목적이 SIB를 요청하는 것임을 해당 PRACH가 나르는 메시지 내에서 지시할 수 있다. 즉, UE는 상향링크로의 특정 데이터를 전송하기 위해서 PRACH를 전송하는 것이 아니라, 하향링크로의 특정 데이터를 수신하기 위해서 PRACH를 전송하는 것임을, 특히, 시스템 정보를 요청하는 것임을 명시적으로 PRACH 상에서 지시할 수 있다. 이러한 명시적인 지시는 상기 PRACH가 나르는 메시지 내 필드에 특정 값을 세팅함으로써 수행될 수도 있고, 상기 PRACH 상에서 특정 시퀀스를 전송함으로써 수행될 수도 있다. 다시 말해, 주문형 SIB 혹은 PBCH 전송의 요청을 위한 별도의 PRACH 자원 혹은 시퀀스가 (eNB에 의해 특정 UE 혹은 빔 방향을 위해) 예약(reserve)될 수 있다(S1110). 이러한 지시는 RACH 과정의 msg1 혹은 msg3를 통해서 수행될 수도 있다. 예를 들어, UE는 UL 타이밍 동기가 맞지 않는 경우 PRACH 전송을 시도하고, msg3를 통해 SI 요청을 전송할 수 있다.
* 빔 인덱스 획득(acquisition) 및 RACH 자원 선택 기준(criteria)
도 12는 셀 혹은 반송파 상에서 빔 방향별로 SS 전송하는 예를 나타낸 것이다. 도 12에서는 SS 블록들, 즉, 복수의 빔들에 대한 해당 복수의 SS 블록들이 연속하여 전송되는 것으로 도시되어 있으나, 도 10(a)에 도시된 바와 같이 해당 셀/반송파 상의 한 세트의 빔들을 위한 SS블록들이 연속적으로 전송되지 않을 수도 있다.
eNB가 N개의 빔 방향을 가질 수 있고, N개의 빔 방향 각각으로 PSS/SSS를 전송한다면, UE가 PSS/SSS를 검출할 때 각 방향별로 신호의 세기가 다르게 관측될 수 있다. UE는 PSS/SSS가 전송되는 서브프레임(이하, PSS/SSS 서브프레임)에서 심볼별로 각각 다른 방향으로 전송되는 PSS/SSS에 대한 PSS/SSS 검출을 수행한다. PSS/SSS 뿐 아니라, ESS나 PBCH, 그리고 PBCH를 복호하기 위한 RS(이하, PBCH DM-RS) 역시 PSS/SSS와 마찬가지로 빔포밍되어 전송될 것이다. 따라서, UE는 이러한 신호들을 통해서 자신에게 가장 적합한, 즉 가장 좋은 채널 품질로 신호가 수신되는 빔 방향을 알아낼 수 있다. 그리고 최적의 빔 방향에 대해 혹은 가장 좋은 채널 품질을 갖는 PSS/SSS/PBCH가 있는 자원에 대해 eNB에게 보고함으로써, 이후에 최적 빔으로 전송된 PDCCH/PDSCH를 수신할 수 있다. 마찬가지로 UE가 보내는 PUSCH/PUCCH에 대해서도 eNB로 하여금 적합하게 수신(reception, RX) 빔포밍을 수행하도록 할 수 있다.
빔 방향을 식별(identify)하기 위해서 빔별(즉, 빔 방향별로) 혹은 빔 그룹별로 인덱스 혹은 ID가 부여될 수 있다. 빔 인덱스가 PSS/SSS/PBCH 및 BRS가 전송되는 심볼 인덱스에 타이(tie)되어 암묵적(implicit)으로 eNB와 UE 간에 약속될/정의될 수도 있다. 혹은 빔 인덱스가 PSS/SSS/PBCH 및 BRS가 전송되는 심볼 인덱스 및 해당 심볼에서 가장 좋은 품질로 수신되는 BRS 포트 번호와 타이되어 eNB와 UE 간에 약속될/정의될 수 있다.
동일 빔 방향으로 전송되는 PSS/SSS/PBCH 등의 신호가 전송되는 단위가 하나의 SS 블록(block)으로 정의될 수 있다. 복수의 SS 블록들이 존재하는 경우, SS 블록들끼리의 구분을 위해 SS 블록 인덱스가 별도로 있을 수 있다. 특정 SS 블록은 PSS/SSS/PBCH 등의 DL 신호/채널의 전송 방향을 지시할 수 있다. 예를 들여, 한 시스템에서 10개의 빔 방향으로 PSS/SSS/PBCH가 전송되는 경우, 동일 방향으로의 PSS/SSS/PBCH가 하나의 SS 블록으로 구성될 수 있으며, 해당 시스템에서는 10개의 SS 블록이 존재하는 것으로 이해할 수 있다. SS 블록과 빔 방향이 일대일로 대응하므로, 빔 인덱스는 SS 블록 인덱스인 것으로 해석될 수 있다.
셀 ID와 서브프레임 타이밍 및 심볼 타이밍을 검출한 후, 해당 셀 ID에 해당하는 PSS/SSS가 전송되는 심볼 인덱스 및 해당 심볼에서 가장 좋은 품질로 수신되는 BRS 포트 인덱스에 의해 특정 빔에 대한 인덱스가 암묵적으로 식별될 수 있다. 혹은 PSS/SSS가 전송되는 주기가 P(예, P개 서브프레임)이고 한 eNB가 자신의 빔들을 모두 전송하는 데까지 B개의 서브프레임이 필요하다면, 단순 셀 ID 및 심볼 인덱스만으로는 빔 인덱스가 식별될 수 없다. 따라서, 이 경우, 셀 ID, 심볼 인덱스와 해당 PSS/SSS를 검출한 서브프레임(예, PSS/SSS가 있는 서브프레임들 중 몇 번째 서브프레임)인지에 관한 정보까지 조합해서 빔 인덱스가 식별될 수 있다. 이와 달리, 빔 인덱스가 SSS, ESS, BRS(beam RS), 혹은 PBCH에 의해 eNB와 UE 간에 명시적으로 시그널링될 수도 있다. BRS는 각 심볼마다 전송되는 빔 방향에 대한 추정(estimation)을 위해서 전 대역으로 전송되는 RS를 의미한다.
본 발명에서 빔 인덱스라 함은, 빔 방향에 대해 명시적 번호 혹은 순서(order)가 있는 인덱스일 수 있다. 혹은, 본 발명에서 빔 인덱스가 특정 빔 방향에 대한 명시적 번호 혹은 인덱스가 아니라, PSS/SSS가 전송되는 심볼에서의 특정 빔 방향을 의미하는 것일 수 있다. 혹은, 본 발명에서 빔 인덱스는 PSS/SSS가 전송되는 심볼에서의 eNB가 전송하는 특정 빔 방향 중에서 가장 최적으로 수신되는 BRS 포트에 의해 전송되는 빔 방향을 의미할 수 있다. 또는 본 발명에서 빔 인덱스는 복수 개의 빔 방향을 포함하는 빔 그룹의 인덱스일 수 있으며, 복수의 빔 방향을 갖는 그룹화된 빔 방향을 나타낼 수 있다. 혹은 본 발명에서 빔 인덱스는, 앞서 언급한 바와 같이, SS 블록의 인덱스일 수 있다. UE에게 가장 최적으로 수신되는 빔 인덱스를 결정함에 있어서, 앞서 언급한 바와 같이 명시적으로 빔 인덱스를 보고하지 않더라도, UE가 eNB로 하여금 어떤 빔 방향이 해당 UE에게 최적으로 수신되었는지를 알릴 수 있다. 다시 말하면, 별도의 빔 인덱스에 대한 시그널링없이 PSS/SSS/PBCH 등 브로드캐스트되는 신호들이 전송되는 방향별로 각각의 RACH 자원을 연결하여 설정함으로써, UE가 이를 알릴 수 있게 할 수 있다. 다시 말해, UE가 특정 RACH 자원을 이용하여 PRACH 프리앰블을 전송했다면, 상기 UE에 의해 가장 최적으로 수신되는 빔 방향은 상기 특정 RACH 자원과 연결되어 있는 PSS/SSS/PBCH 등의 빔 방향인 것으로 eNB에게 알려질 수 있다. UE가 PRACH 프리앰블 전송에 사용한 RACH 자원을 통해서, eNB는 상기 eNB의 빔 인덱스들 중에서 해당 UE에 의해 최적으로 수신된 빔 인덱스, 즉, SS 블록 인덱스를 유추할 수 있게 되는 것이다.
UE가 자신에게 적합한 혹은 선호하는 빔 인덱스 혹은 SS 블록 인덱스를 결정하는 방식은 다음과 같은 대안(alternative)들이 있을 수 있다. 이 중 하나 혹은 복수 개의 조합을 통해서 UE는 자신이 선호하는 빔들의 세트를 선택할 수 있으며, 해당 빔들과 연관되어 있는 복수의 RACH 자원 후보들을 리스트 업할 수 있다.
> Alt1. UE는 PSS/SSS 혹은 ESS를 성공적으로 검출할 수 있고, PSS/SSS의 수신 SINR이 특정 임계치(threshold) 이상인 빔 인덱스 혹은 SS 블록 인덱스를 선택한다.
> Alt2. PBCH 복조를 위해서 사용되는 PBCH DM-RS를 활용하는 방식으로, UE는 PBCH 복조 이전에 PBCH DM-RS의 수신 참조 신호 수신 전력(reference signal received power, RSRP)가 일정 임계치 이상인 빔 방향(예, 빔 인덱스) 혹은 SS 블록 인덱스를 선택한다.
> Alt3. UE는 상기 UE가 PSS/SSS 검출 및 PBCH 복호에 성공한 빔들 중에서 전체 대역 혹은 일부 대역으로 전송되는 BRS의 수신 RSRP가 특정 임계치 이상인 빔 인덱스 혹은 SS 블록 인덱스 선택한다.
> Alt4: Alt1, Alt2 혹은 Alt3와 더불어 ESS 혹은 PBCH를 통해 부하(load) 혹은 우선순위(priority) 정보들이 전송된다고 가정할 때, 이러한 정보들을 활용하여 UE는 수신 신호의 임계치를 넘는 빔들 중 부하가 낮거나 우선순위가 높은 빔 혹은 SS 블록 인덱스를 선택하거나, 수신 신호 품질(quality)와 부하/우선순위 정보를 조합하여 빔 혹은 SS 블록 인덱스를 선택할 수 있다. Alt4는, 예를 들어, 하향링크/상향링크 및 RACH 자원이 일정한 빔 방향에 과도하게 밀집되는 것을 방지하고, 빔 방향들에 하향링크/상향링크 부하를 분산시키는 용도로 사용될 수 있다.
> Alt5: UE는 여러 개의 선택 혹은 검출된 빔들(예, SS 블록들)에 관한 정보(예, 빔 인덱스들 혹은 SS 블록 인덱스들)을 PRACH msg3에 해당하는 첫 번째 상향링크 전송을 통해 전송하여, 네트워크로 하여금 상기 UE를 위한 빔을 선택하도록 할 수도 있다.
Alt1, Alt2, Alt3, Alt4 및 Alt5 각각에 대해, UE가 최적 빔 인덱스 혹은 SS 블록 인덱스를 선택하여 해당 정보를 eNB에 보고함에 있어서, 해당 빔 인덱스 혹은 SS 블록 인덱스 정보와 함께 이를 선택하게 된 가정/근거를 전송할 수 있다. 예를 들어, UE는 수신 신호 품질 등을 빔 인덱스 혹은 SS 블록 인덱스와 함께 보고할 수 있다. Alt1인 경우에는 PSS/SSS의 수신 SINR 정보와 해당 빔 인덱스가, Alt2의 경우에는 PBCH DM-RS 수신 RSRP 정보와 해당 빔 인덱스가, Alt3 혹은 Alt4에서 BRS를 근거로 빔 혹은 SS 블록을 선택된 경우에는 BRS RSRP와 같은 정보와 해당 빔 인덱스가 함께 전송될 수 있다. 별도의 빔 인덱스를 보고하지 않고, 최적의 빔 방향과 연결되어 있는 RACH 자원을 선택하여 RACH 프리앰블을 전송하는 경우, UE는 RACH 메시지 3(msg3) 이후의 UL 전송 시에 해당 빔 방향으로의 DL 수신 신호의 품질을 보고할 수 있다.
UE는 수신 신호 품질이 일정 임계치가 넘는 복수 개의 최적 빔 인덱스 혹은 SS 블록 인덱스를 선택할 수 있으며, 선택된 DL 빔 방향과 각 빔 방향에 대한 DL 수신 신호 품질에 대한 정보를 네트워크에 보고할 수 있으며, RACH msg3 혹은 그 이후 UL 데이터 전송 시에 해당 정보를 포함하여 전송할 수 있다.
다수의 빔 방향으로 SS 블록을 전송하고 SS 블록과 RACH 자원과의 맵핑을 설명한 상기의 내용은, UE와 전송 및 수신 포인트(transmission and reception point, TRP) 사이의 전송/수신 빔 방향을 정확히 결정할 수 있는 상호관계(reciprocity)가 성립한다는 전제 하에 기술되었다. 그런데, 다중-빔 환경에서 TRP(예, eNB) 혹은 UE의 TX/RX 상호(reciprocal) 능력(capability)에 따라서 PRACH 프리앰블의 반복 혹은 빔 스위핑이 고려될 수 있다. TX/RX 상호 능력은 TRP 및 UE에서의 TX/RX 빔 대응성(correspondence)라고도 한다. 다중-빔 환경에서 TRP 및 UE에서 TX/RX 상호 능력이 유지되지 않으면 UE는 자신이 하향링크 신호를 수신한 빔 방향으로 상향링크 신호를 쏘지 못할 수 있다. UL의 최적 경로와 DL의 최적 경로가 다를 수 있기 때문이다. TRP에서의 TX/RX 빔 대응성은 TRP가 TRP의 하나 이상의 TX 빔들에 관한 UE의 하향링크 측정을 기초로 해당 상향링크 수신을 위한 TRP RX 빔을 결정할 수 있으면 및/또는 TRP가 TRP의 하나 이상의 RX 빔들에 관한 TRP'의 상향링크 측정을 기초로 해당 하향링크 전송에 대한 TRP TX 빔을 결정할 수 있으면, 유지된다(hold). UE에서의 TX/RX 빔 대응성은 UE가 UE의 하나 이상의 RX 빔들에 관한 UE의 하향링크 측정을 기초로 해당 상향링크 전송을 위한 UE RX 빔을 결정할 수 있으면 및/또는 UE가 UE의 하나 이상의 TX 빔들에 관한 상향링크 측정을 기반으로 한 TRP의 지시(indication)를 기초로 해당 하향링크 수신에 대한 UE TX 빔을 결정할 수 있으면, 유지된다(hold).
* PRACH 자원 설정
본 발명에서 PSS/SSS는 빔포밍되어 전송되므로 UE가 상향링크로 임의 접속을 하고자 할 때 사용되는 PRACH 자원 역시 eNB에서 PSS/SSS가 전송되는 방향에 맞추어 RX 빔포밍을 해야만 PRACH를 성공적으로 수신할 수 있는 경우가 있을 수 있다. 이러한 경우를 위하여 PSS/SSS 방향별로, 즉, 빔 인덱스(혹은 SS 블록 인덱스)별로 PRACH 자원도 할당될 수 있다. 앞서 기술한 바와 같이, PSS/SSS 및 PBCH 가 전송되는 SS 블록 인덱스 별로 RACH 자원이 연결되어 있을 수 있다. 기본적으로 RACH 자원은 RACH 프리앰블을 전송할 수 있는 시간-주파수 자원을 의미할 수 있다.
PSS/SSS를 성공적으로 검출하고 최선(best) N개의 빔을 선택한 UE는 해당 빔 인덱스별 혹은 SS 블록 인덱스 별 PRACH 자원에 대한 정보를 획득해야 한다. PRACH 자원은 기본적으로 UE가 PRACH를 전송할 때 사용하는 시간-주파수 자원을 의미하며, PRACH 시퀀스, 루트 시퀀스, PRACH 전송 전력, 최대(maximum) 재전송 횟수, 반복 횟수 등의 정보를 포함할 수 있다. 예를 들어, UE가 PRACH 프리앰블의 전송을 위해 사용하는 시간-주파수 자원, 그리고 상기 UE가 사용하는 PRACH 프리앰블 인덱스를 이용하여, 상기 UE는 특정 SS 블록 인덱스에 대한 선호도를 네트워크로 알려줄 수 있다. PRACH 시간-주파수 자원으로는 해당 빔 인덱스에 해당하는 방향으로 PRACH를 전송할 때 사용할 수 있는 서브프레임 번호(혹은 서브프레임을 지칭할 수 있는 그에 상응하는 값), 해당 서브프레임 내에서의 심볼 번호와 심볼의 개수, 주파수 축에서의 PRB 인덱스(혹은 주파수 위치를 지시할 수 있는 그에 상응하는 값), 및/또는 주파수 축 대역폭(bandwidth) 등의 정보가 있을 수 있다. 서로 다른 빔 인덱스 혹은 SS 블록 인덱스에 대한 PRACH 자원은 시간 분할 다중화(time division multiplexing, TDM)될 수 있다. 하나의 빔에 대한 eNB의 RACH 수신을 위한 RX 빔 스캐닝을 가정하면, 해당 심볼 혹은 빔 스캐닝 지속기간(duration) 동안은 RACH 전송의 유무와 관계없이 해당 빔 방향으로의 예약(reservation)이 가정된다. 다시 말해, UE는 임의로 RACH 자원에서 RACH 프리앰블을 전송할 수 있으므로, 해당 RACH 자원은 항상 예약되어 있다고 가정된다. 이러한 구간을 줄이기 위해서는 가능한 시스템 대역폭을 최대한 사용하여 많은 수의 UE를 하나의 구간에 다중화할 수 있어야 한다. 따라서 여러 개의 PRACH 자원이 주파수 축으로도 설정될 수 있으며, 코드 분할 다중화(code division multiplexing, CDM)이 지원되거나, CDM 대신에 주파수 분할 다중화(frequency division multiplexing, FDM)을 통한 혹은 CDM 및 FDM 둘을 이용하여 UE들이 구분될 수 있다. 즉, UE들이 동일 시간-주파수 RACH 자원을 사용하더라도, 상기 UE들이 서로 다른 코드(예, 프리앰블 시퀀스)를 사용함으로써, 특정 SS 블록 인덱스를 해당 UE가 선호함을, 혹은 해당 SS 블록 인덱스에 대한 수신 신호 품질이 좋다는 정보를 시그널링할 수 있다.
다른 방식으로, PRACH 자원은 모든 빔 인덱스에 대해서 공통적으로 설정될 수 있다. 즉, UE가 PRACH를 전송할 수 있는, 그리고 eNB는 임의의 UE로부터의 PRACH가 전송될 것이라고 기대할 수 있는 시간-주파수 자원은 모든 빔 방향에 대해서 공통적으로 혹은 특정 빔 인덱스 그룹당 하나의 시간-주파수 자원을 할당할 수 있다. PRACH 자원이 복수의 빔들에 대해 공통적으로 설정되면 지연이 줄어드는 장점이 있다. PRACH 자원이 복수 혹은 모든 빔들에 대해 공통적으로 설정되는 경우, 하나의 시간-주파수 자원 내에서 복수 개의 빔 인덱스에 해당하는 PRACH가 전송될 수 있다. 다시 말해 서로 다른 최적 빔 방향을 갖는 UE들의 PRACH 전송 시간-주파수 자원이 복수의 UE간, 복수의 빔 인덱스 간에 공유될 수 있다. 혹은 셀-공통적으로 PRACH 시간-주파수 자원이 설정될 수 있다. 이러한 공통 PRACH 자원의 경우, UE가 특정한 빔을 사용하지 않고 PRACH를 전송하는 것을 가정하며, eNB가 RX 빔포밍을 사용하지 못함으로써 발생할 성능 열화는 PRACH의 반복 전송 등을 통해 극복될 수 있다. 혹은 공통 PRACH 자원을 선택할지 RX 빔을 가정한 PRACH 자원을 선택할 지가 UE의 지연 요건(latency requirement), 전력 제한(power constraint), RSRP 등에 의해 결정될 수 있으며, 각 RACH 자원 선택에 따른 UE의 PRACH 전송 방식은 서로 조금 다를 수 있다. 예를 들어, RX 빔을 가정하지 않은 전송의 경우, 네트워크가 UE에게 최적화된 빔 방향을 알지 못할 수 있다. 이 경우 RAR 등 이어지는(subsequent) 전송 채널이 TX 빔을 이용하지 못하고 전송될 수 있는 단점이 있다. 이러한 공통 RACH 자원의 장점은 빔 방향에 따라 RACH 자원이 고정되어 예약되는 경우, 해당 무선 자원이 다른 빔 방향의 UE에 의해 사용되지 못하는 단점을 보완할 수 있다. 네트워크는 동적으로 이러한 공통 RACH 자원과 빔 방향에 따른 RACH 자원의 양을 조정할 수 있다. 좀 더 일반적으로, TX 빔/RX 빔을 통한 전송 자원과, 커버리지는 낮을 수 있으나 와이드 빔 혹은 전-방위적 전송을 위한 자원을 나눌 수 있다. eNB는 전-방위적 전송 자원인지 혹은 RX 빔 자원인지에 따라 UE의 전력을 다르게 설정하거나 반복 정도를 다르게 설정하여 운영할 수 있도록, 동적으로 자원(예, PUSCH 자원)의 타입을 UE에게 알려줄 수 있다. 즉, eNB는 수신기(receiver) 이득에 대한 정보를 준-정적 혹은 동적으로 알려주어, UE로 하여금 UE 전력 결정 및 반복 결정을 할 수 있도록 한다. 혹은, UE와 eNB 사이의 전송/수신 빔 방향이 상대적으로 잘 맞추어지도록 상호 약속된 RACH 전송 자원과, eNB가 수신 빔 방향을 돌려가면서 PRACH 프리앱블의 수신에 사용하는 RACH 전송 자원이 구분될 수 있다. 다른 예로, UE와 eNB 사이의 전송/수신 빔 방향이 상대적으로 잘 맞추어지도록 상호 약속된 RACH 전송 자원과, eNB는 수신 방향을 고정하지만 UE가 전송 방향을 돌려가면서 PRACH 프래앰블의 전송에 사용하는 RACH 전송 자원이 구분될 수도 있다.
이러한 방식의 PRACH 자원 사용시 RAR 전송의 단점을 보완하기 위하여, eNB는 RAR이 전송되는 빔 방향을 RACH 자원과 함께 설정해 줄 수 있으며, 설정된 RAR 빔 방향이 지원되지 않는 UE의 경우, 해당 RACH 자원을 선택하지 않을 수 있다. 즉, PRACH 자원은 모든 방향의 UE들에 의해 공유(share)될 수 있으나, RAR 전송의 TX 빔 방향에 따라 PRACH 자원이 세분될 수 있고, 각 UE는 RAR 전송 빔 방향에 따라 세분화된 PRACH 자원들 중 자신의 PRACH 자원을 선택할 수도 있다. 이러한 방식으로 네트워크는 eNB로 하여금 TX 빔을 사용하지만, RX 빔 스캐닝을 하지 않고 RACH 수신을 할 수 있도록 허용할 수 있다. 혹은, RACH 자원이, 특정 수신 빔 방향으로 고정되어 있는 것이 아니고, eNB가 수신 빔 스캐닝을 하도록 하는 자원으로 설정될 수도 있다.
상기와 같이 RACH 자원이 복수의 SS 블록 인덱스에 의해 공유되는 방식은 eNB 혹은 TRP의 빔 대응성이 맞지 않는 경우, 더욱 효율적으로 적용될 수 있다. TRP의 빔 대응성이 맞지 않는 경우, UE는 PRACH 프리앰블을 반복 전송할 수 있으며, TRP는 PRACH 프리앰블의 수신을 위해서 수신 빔 스캐닝 동작을 수행할 수 있다. 이 경우, 해당 UE가 사용하는 프리앰블 인덱스는 특정 SS 블록 인덱스에 연결되어 있는 인덱스 집합의 일부일 수 있다. 즉, 복수의 SS 블록 인덱스가 공유하는 시간-주파수 RACH 자원에서 UE가 PRACH 프리앰블을 전송하되, 상기 UE는 SS 블록 인덱스 특정적인 PRACH 프리앰블을 전송함으로써 자신이 선호하는 특정 SS 블록 인덱스를 네트워크에 알릴 수 있다. PRACH 자원 설정 정보에는 UE가 PRACH를 전송할 때 사용할 수 있는 시간-주파수 자원 영역, PRACH 전송 프리앰블 인덱스, 프리앰블 전송 전력, PRACH 전송 시에 사용되는 RA-RNTI 정보 등이 포함된다. 빔 인덱스 혹은 SS 블록 인덱스별로 PRACH 자원이 별도로 설정될 수 있으며, PRACH 설정에 포함되는 정보들도 빔 인덱스 혹은 SS 블록 인덱스에 따라서 독립적으로 설정될 수 있다. 즉, 빔 인덱스 혹은 SS 블록 인덱스별로 프리앰블 인덱스, 프리앰블 전송 전력, RA-RNTI가 다르게 설정될 수 있다. PRACH 설정에 포함되는 정보 모두 빔 인덱스-특정적일 수 있고, 혹은 일부 정보만이 빔 인덱스-특정적일 수도 있다. 예를 들어, PRACH를 전송할 수 있는 시간-주파수 자원은 복수의 빔 인덱스 혹은 모든 빔 인덱스에 의해 공유될 수 있으며, 이 경우 PRACH 설정에서 PRACH 시간-주파수 자원은 특정 빔 인덱스 그룹에 속한 빔 인덱스들에 대해 혹은 모든 빔 인덱스들에 대해 공통일 수 있다. 그러나 빔 인덱스별로 각각의 정보가 전송되기는 해야 한다. PRACH 설정에 추가적으로 RAR 윈도우 크기 및 RAR이 전송되는 시간-주파수 자원이 빔 인덱스(예, SS 블록 인덱스)별로 각각 설정/시그널링될 수 있다. 혹은 RAR 윈도우 및/또는 RAR이 전송되는 시간-주파수 자원도 복수의 빔 인덱스 간에 공통일 수 있다.
PRACH 전송이 성공적이었을 경우 이에 대한 RAR을 eNB가 전송하게 된다. RACH 설정 정보에 RAR에 대한 설정 정보도 포함되어 UE(들)에게 제공될 수 있다. RAR 설정 정보에는, 대표적으로, RAR이 전송되는 시간-주파수 영역에 대한 정보가 포함된다. 상세한 사항은 추후 기술한다. 이러한 빔 인덱스에 해당하는 PRACH 자원 설정에 대한 정보가 해당 PRACH 자원과 동일 빔 인덱스의 PSS/SSS가 있는 심볼에서 전송되는 다른 채널에 전송될 수 있다. PRACH 설정을 전송할 수 있는 채널들의 옵션은 다음과 같다.
> 옵션 1. PBCH가 PRACH 설정을 나른다: PSS/SSS와 동일한 심볼에 동일한 방향으로(즉, 동일한 빔 인덱스를 가지면서) 전송되는 PBCH를 통해 PRACH 설정이 전송될 수 있다. 그러나 PBCH에서는 시스템의 셀-가장자리(cell-edge) UE까지 성공적으로 복호해야 하는 필수적(essential) 정보가 전송되어야 하므로, PBCH가 PRACH 설정을 나르면 PBCH에서 전송해야 하는 정보량이 많아지게 되므로 PRACH 설정을 PBCH에 전송하는 것이 적합하지 않을 수 있다. 다만, PBCH를 전송할 수 있는 자원의 양이 넉넉한 경우라면, PBCH에서 PRACH 정보가 전송될 수 있을 것이다.
> 옵션 2. SIB가 PRACH 설정을 나른다: PSS/SSS와 동일한 심볼에 동일한 방향으로(동일한 빔 인덱스를 가지면서) PRACH 설정을 주된 정보로 가지는 SIB가 전송될 수 있다. 혹은 PBCH에서 SIB의 전송 자원 위치가 지시될 수 있으며, 해당 전송 자원 위치에서 SIB를 수신함으로써 UE는 해당 빔 인덱스의 PRACH 설정에 대한 정보를 획득할 수 있다.
* PRACH 전송 및 최선(best) N개 빔 인덱스 보고
UE가 선호하는(prefer) 혹은 가장 좋은 품질로 수신되는 빔 방향에 대해서 복수 개의 빔 인덱스/방향을 선택할 수 있으며, UE는 각 빔 인덱스별 혹은 빔 방향별 PRACH 설정 정보를 획득할 수 있다. 즉, eNB가 각 빔 인덱스별로 PRACH 설정 정보를 전송할 수 있다. 다중-빔(multi-beam) 환경에서는 복수 개의 SS 블록이 정의될 수 있다. 상기 복수 개의 SS 블록 각각은 자신의 고유한 DL 전송 빔 방향으로 전송될 있다. 또한, 각 SS 방향별로 RACH 자원이 설정될 수 있다. UE는 SS 블록 내의 신호/채널을 수신하고 수신 품질이 가장 좋은 SS 블록 인덱스를 선택할 수 있으며, 해당 SS 블록 인덱스와 연결되어 있는 RACH 자원을 선택하여 PRACH 프리앰블을 전송할 수 있다. 이 경우, UE가 선택할 수 있는 SS 블록 인덱스는 하나 이상일 수 있으며, 각 SS 블록별로 연결되어 있는 RACH 자원에서 PRACH 프리앰블 전송을 시도할 수 있다. UE가 PRACH 프리앰블을 전송하는 방식이 다음과 같이 제안된다.
> 옵션 1. 순차적(sequential) PRACH 전송: UE는 선호하는 최선 N개의 빔 인덱스(예, SS 블록 인덱스) 중에서 가장 선호하는 빔 인덱스(즉, SS 블록 인덱스)에 대해서 우선적으로 PRACH 전송을 시도한다. 최선 빔 인덱스에 해당하는 PRACH 자원에서 PRACH를 전송한다. 특정 PRACH 자원으로부터 PRACH 메시지1(msg1)을 수신한 eNB는 해당 UE가 해당 PRACH 자원에 해당하는 빔을 선호하는 것으로 이해할 수 있다. 그리고 해당 PRACH에 대한 RAR을 전송함으로써 해당 빔 인덱스(즉, 해당 빔 방향을)를 UE가 사용하는 것을 승인(confirm)해 줄 수 있다. RAR은 사전에 정의된 RAR 자원에서 전송된다. 해당 빔 인덱스(예, SS 블록 인덱스)에 해당하는 PRACH 자원에서 전송한 PRACH에 대한 RAR을 수신하지 못한 UE는 그 다음 품질이 좋은 빔 인덱스(예, SS 블록 인덱스)에 대한 PRACH 자원에서 PRACH를 전송하고 RAR을 기다린다. 단순히 특정 빔 인덱스(예, SS 블록 인덱스)에 해당하는 PRACH를 전송하는 그 자체로 UE는 자신의 선호(preferred) 빔 인덱스를 보고할 수 있으며, 이에 대해서 eNB가 해당 PRACH에 대한 RAR을 보냄으로써 해당 빔 인덱스의 사용을 승인할 수도 있고 RAR을 보내지 않음으로써 해당 빔 인덱스의 사용을 승인하지 않을 있다. 기전송한 PRACH에 대한 RAR을 수신하지 못한 UE는 다른 빔 인덱스(예, SS 블록 인덱스)에 대한 PRACH 자원을 이용해서 PRACH 전송을 시도하고 RAR을 기다린다.
> 옵션 2. 다중(multiple) PRACH 전송: UE가 선호하는 최선 N개의 빔 인덱스(예, SS 블록 인덱스)에 해당하는 PRACH 설정 정보를 다 획득했다면, 상기 UE는 자신이 선호하는 복수 개의 PRACH 설정들에 대해서 각각 PRACH를 전송할 수 있다. 그리고 eNB는 각각의 빔 인덱스에 대해서 RAR을 전송할 수 있다. 다시 말해, UE는 빔 인덱스(예, SS 블록 인덱스)별로 별도의 RACH 과정을 수행할 수 있다. 다만 옵션2는 하나의 UE가 복수 개의 PRACH 자원을 점유하여 PRACH를 전송하는 동작이므로 PRACH 자원에서 UE들간 충돌이 일어날 확률이 높아지는 단점이 있다. 이 옵션에 의하면, 서로 다른 빔 인덱스에 대해서 UE는 기전송한 PRACH에 대한 RAR을 수신하지 않은 상태에서도 복수 개의 PRACH를 전송할 수 있다. eNB는 특정 UE가 전송한 복수의 PRACH들에 대해, 주어진 RAR 윈도우 내에 하나의 RAR로 응답할 수 있고, 이 때 특정 빔 인덱스(예, SS 블록 인덱스)에 대한 RAR을 보내면서 해당 빔 인덱스의 사용을 승인해 줄 수 있다. 상기 eNB는 특정 빔 인덱스에 해당하는 RAR 자원에서 RAR을 전송함으로써, 혹은 특정 RAR 자원에서 상기 특정 빔 인덱스에 해당하는 RA-RNTI 혹은 시퀀스를 사용하여 RAR을 전송함으로써 상기 특정 빔 인덱스에 대한 사용을 승인(confirm)할 수 있다.
> 옵션 3. 선호(preferred) 프리앰블 시퀀스 전송: UE가 선호하는 최선 N개의 빔 인덱스(예, SS 블록 인덱스)를 선택하고 특정 빔에 대한 PRACH를 전송하면서 가장 선호하는 빔 인덱스(예, SS 블록 인덱스)를 eNB로 보고할 수 있다. UE는 선택적으로 가장 빠른 시간 위치 혹은 가정 선호하는 PRACH 자원을 선택하여 PRACH를 전송하는데, 이 때 사용하는 프리앰블 인덱스는 자신이 가장 선호하는 빔 인덱스에 해당하는 PRACH 설정에서 선택하여 전송할 수 있다. 즉 UE가 전송하는 PRACH 프리앰블은 사실상 해당 PRACH가 전송되는 PRACH 자원의 빔 인덱스(예, SS 블록 인덱스)와는 관계가 없을 수 있다. 다시 말해, UE는 eNB가 PRACH 수신을 위해서 어떤 방향으로 RX 빔포밍을 하는 지 알고 있는 특정 PRACH 자원에서 PRACH를 해당 방향으로 전송하되, PRACH 전송 시 사용하는 프리앰블 인덱스는, 해당 자원과 연결된 빔 인덱스(예, SS 블록 인덱스)와 관계없는, 다른 빔 인덱스(예, SS 블록 인덱스)와 연결된 프리앰블 인덱스를 사용할 수 있다. 이로써, eNB는 해당 UE가 해당 프리앰블 인덱스에 해당하는 빔 인덱스(예, SS 블록 인덱스)에 대한 방향을 선호하는 것을 알 수 있다. 더불어 PRACH 프리앰블의 전송에 사용된 자원에 해당하는 빔 인덱스(즉, 빔 방향)에 대해서도 해당 UE 로부터의/로의 전송/수신이 가능한 것을 알 수 있게 된다.
> 옵션 4. 선호 RA-RNTI로 PRACH 전송(PRACH transmission with preferred RA-RNTI): 앞서 설명한 옵션 3과 유사하게 UE가 자신에게 적합한 최선 N 개의 빔 방향 중에서, 임의의 빔 인덱스(예, SS 블록 인덱스)에 해당하는 PRACH 자원에 PRACH를 전송하되 RA-RNTI는 다른 빔 인덱스에 해당하는 것을 사용하여 전송할 수 있다. 옵션 3과 유사하게, UE는 PRACH를 전송하는 자원에 대해서도 선호하며, RN-RNTI를 다른 빔 인덱스(예, SS 블록 인덱스)에서 선택함으로써 해당 빔 인덱스(예, SS 블록 인덱스)에 대해서도 채널 환경이 좋음을 eNB에게 시그널링할 수 있다. RA-RNTI는 PRACH 전송 시간 자원 인덱스(예, 서브프레임 번호 혹은 심볼 인덱스), 주파수 자원 인덱스(예, PRB 인덱스 혹은 절대(absolute) 주파수) 및 빔 인덱스의 함수이다.
> 옵션 5. 공통(common) PRACH 자원 상에서 PRACH 전송: 상기 나열한 옵션들은 PRACH 자원이 각 빔 인덱스(예, SS 블록 인덱스)별로 할당/시그널링된 경우를 기준으로 기술하였으나, PRACH 전송 시간-주파수 자원이 모든 빔 인덱스(예, SS 블록 인덱스)에 대해 공통적으로 할당된 경우, 혹은 복수 개의 빔 인덱스 그룹이 공유하도록 할당된 경우에도 적용할 수 있다. 예를 들어, eNB가 빔별(즉, SS 블록 인덱스별)로 혹은 빔 그룹별로 PRACH 설정을 전송하는데, 각 빔 인덱스(예, SS 블록 인덱스)혹은 빔 그룹별 PRACH 설정 중 일부 정보는 빔 인덱스(예, SS 블록 인덱스) 공통 정보일 수 있으며, 일부 정보는 빔 인덱스(예, SS 블록 인덱스)-특정적 정보일 수 있다. 특별히 PRACH 시간-주파수 자원이 빔 인덱스(예, SS 블록 인덱스) 공통 정보일 수 있다. UE는 시그널링된 PRACH 시간-주파수 자원에서 PRACH를 전송하되 특정 빔 인덱스(예, SS 블록 인덱스)에 해당하는 프리앰블 시퀀스/인덱스를 사용함으로써 자신이 선호하는 빔 인덱스(예, SS 블록 인덱스)에 대한 정보를 eNB에 알릴 수 있다. 즉, PRACH 시간-주파수 자원에 대해서 복수의 UE가 PRACH를 전송할 수 있으며, 이 경우 각각의 UE가 선호하는 수신 빔 방향(즉, eNB의 전송 빔 방향)은 각각 다를 수 있다. UE는 PRACH를 전송하면서 선호하는 빔 방향을 시그널링할 수 있다. 예를 들어, 특정 빔 인덱스(예, SS 블록 인덱스)에 해당하는 PRACH 설정 내의 프리앰블 인덱스 혹은 RA-RNTI를 사용하여 선호하는 빔 방향을 eNB에게 전송할 수 있다.
> 옵션 6. 가장 빠른 타이밍 우선(earliest timing first): UE는 후보 빔들에 대한 PRACH 자원들 중 혹은 이용 가능한 PRACH 자원들 중 가장 빠른 PRACH 자원을 사용하는 것일 수 있다. RAR, Msg3, msg4 등의 타이밍이 PRACH 설정과 더불어 사용된다면, UE는 전체 프로세스 시간이 가장 줄어들 수 있는 자원을 선택할 수 있다.
옵션 1 내지 옵션 6 외에 다른 방식으로는 UE가 가장 자원의 양이 많은 빔 혹은 SS 블록에 해당하는 PRACH 자원을 선택하거나, 앞에서 언급된 대로 부하 등을 고려하여 PRACH 자원을 선택하는 방식이 있을 수 있다. 다시 말해, SS 블록 인덱스별 RACH 설정(configuration) 정보로 부하(load) 정보가 시그널링될 수 있다. 상기 부하 정보는 특정 SS 블록 인덱스에 대한 RACH 시도, 즉, 특정 RACH 자원에서의 임의 접속 시도를 제한하는 데 사용될 수 있다. 유사한 방식으로, SS 블록 인덱스별 RACH 설정 정보로 전송 전력 오프셋이 시그널링될 수 있다. 예를 들어, UE가 각 빔별(즉, SS 블록별) 수신 신호 레벨을 측정할 때, 시그널링된 전력 오프셋만큼을 더하거나 감하여 실제 수신 신호 레벨을 도출하도록 할 수 있다. 상기 전력 오프셋은 UE가 특정 SS 블록 인덱스를 선택하고 해당 SS블록과 연관된 RACH 자원을 통해 RACH 과정을 시도하도록, 혹은 특정 SS 블록 인덱스를 선택하지 못하도록 강제하는 역할을 할 수 있다.
* RAR 설정(configuration) 및 RAR 전송
LTE 시스템에서 RAR로 전송되는 메시지에는 eNB가 검출한 RACH 프리앰블 시퀀스 인덱스와 UE의 상향링크 전송 타이밍을 보정하기 위한 타이밍 어드밴스(timing advance, TA) 명령(command), 상향링크 전송 전력 정보, 전력 램핑(ramping) 정보, 메시지3(msg3) 전송을 위한 UL 그랜트, 임시(temporary) ID 등이 포함된다. 기존 LTE/LTE-A 시스템에서 통상 RAR의 전송은 UE에 의한 RACH 전송이 성공적임을 나타낸다. 따라서 특정 셀/반송파 상에서 전송한 RACH 프리앰블에 대한 RAR을 수신한 UE는 해당 셀/반송파 상의 무선 링크가 끊어지거나 PDCCH 오더 등에 의해 RACH 과정이 다시 트리거되지 않는 한, 다시 RACH 프리앰블을 전송하는 것이 아니라, 해당 RAR에 따라 상향링크 전송을 수행한다.
본 발명에서 RAR에는 해당 빔 방향에서의 네트워크의 부하 정보가 포함될 수 있다. 부하가 높은지 낮은지의 여부를 시그널링함으로써, eNB는 해당 프리앰블을 보낸 UE로 하여금 다른 빔에 대해 RACH 시도를 하도록 할 수 있다. PRACH를 전송한 빔 방향에 대해 부하가 높다는 RAR을 수신한 UE는 해당 빔 방향에 대응하는 PRACH 전송에 대한 RAR을 수신했음에도 불구하고, 해당 셀/반송파 상에서 다른 빔 방향에 대해 다시 RACH 과정을 수행하게 된다. RAR 내 부하 정보는 빔 스위칭 커맨드와 같은 의미로 사용될 수 있다. 네트워크는 빔 스위칭을 위한 별도의 프리앰블을 RAR 메시지에서 지정해줄 수도 있다. 이 경우, RAR을 통해 빔 스위칭을 지시하는 경우, eNB는 다른 빔 방향에 대한 프리앰블을 위한 전송 전력을 지정해 줄 수 있다. 빔 스위칭을 지시하는 RAR에서 전송 전력에 대한 별도의 시그널링이 없는 경우 UE는 다른 빔 방향에 대한 PRACH 전송을 PRACH 재전송으로 간주하여 같이 전력을 램핑 업해서 전송할 수 있다. 이 경우, UE는 부하 지시가 시그널링된 빔 방향을 제외한 다른 빔 방향들 중에서 수신 신호 품질이 가장 좋은 빔 방향에 대해 PRACH 프리앰블을 전송할 수 있다.
특정 빔 인덱스에 해당하는 PRACH 설정에 대한 RAR 전송/수신 시, 각 PRACH 설정별 RAR 설정이 독립적으로 혹은 통합적으로 설정될 수 있다. PRACH를 전송한 UE는 전송 시점 이후 k번째 서브프레임부터 혹은 특정 시간 이후부터 특정 윈도우 내에 RAR이 전송될 것으로 기대할 수 있다. 즉, UE는 PRACH 전송 이후 k번째 서브프레임(혹은 특정 시간)부터 일정 시간 구간(즉, 시간 윈도우)내에 RAR이 전송될 것으로 기대하는 것이다. 예를 들어, 서브프레임 n에서 PRACH를 전송한 UE는 서브프레임 k부터 특정 시간 구간(즉, RAR 도달 윈도우) 내에 상기 PRACH에 대한 RAR을 수신할 것을 기대한다. 여기서 k값 및 RAR 도달 윈도우는 PRACH 설정별로 시그널링/정의될 수 있다. 다시 말하며 이 두 값이 빔 인덱스별로 시그널링/정의될 수 있다. 혹은 k값 및 RAR 도달 윈도우는 모든 PRACH 설정에 대해서 공통인 값으로 시그널링 혹은 정의될 수 있다. 빔 방향에 따른 PRACH 자원은 달라도 동일 빔-그룹에 속한 여러 RACH들이 동일한 RAR 윈도우를 공유할 수도 있다. 이 경우, eNB가 모든 빔 방향에 대해 SS/PBCH를 전송하는 데 필요한 하향링크 시간 구간에 대응하는 상향링크 시간 구간 내에서 복수의 빔 방향들에 대한 PRACH 프리앰블들이 서로 다른 시간 자원에서 전송되더라도 UE는 동일 시간 자원 내에서 상기 PRACH 프리앰블들에 대한 RAR(들)을 수신할 것을 기대할 수 있다.
도 13은 본 발명에 따른 임의 접속 응답 메시지의 포맷을 예시한 것이다.
UE가 빔 인덱스 A에 대한 RACH 자원에서 프리앰블1을 전송하고, (동일/다른) UE가 빔 인덱스 B에 대한 RACH 자원에서 프리앰블2를 전송한다고 하자. 상기 프리앰블1에 대한 RAR과 상기 프리앰블2에 대한 RAR이 동일 윈도우 내에서 전송될 수 있다.
특별히 복수 개의 PRACH에 대한 응답들이 하나의 RAR 메시지로 전송될 수 있다. 다시 말해 다양한 빔 인덱스들 혹은 SS 블록들에 대한 PRACH 전송에 대한 응답들이 하나의 RAR 메시지에 포함될 수 있다. RAR 메시지 내의 각 PRACH 응답에 대해서 어떤 빔 인덱스에 대한 응답인지가 함께 시그널링된다. 특히 eNB의 빔 대응성이 잘 맞지 않아서 복수의 빔 인덱스 혹은 SS 블록 인덱스가 하나의 RACH 자원을 공유하는 경우, 하나의 RAR 메시지에 복수의 빔 인덱스에 연관된 RACH 프리앰블 전송에 대한 응답이 전송될 수 있다. 이 경우, 도 13(a)를 참조하면, 하나의 RAR 메시지 내에서 각각의 PRACH 응답에 대한 빔 인덱스가 시그널링된다.
혹은 각각의 빔 인덱스별로 RAR이 전송될 수 있다. 이 경우, RAR 메시지당 해당하는 빔 인덱스가 시그널링된다. 해당 RAR 메시지 내서는 해당 빔 인덱스에 해당하는 PRACH 응답들이 전송될 수 있다. 예를 들어, 도 13(b)를 참조하면, 빔 방향 A에 대해 전송된 프리앰블1에 대한 RAR1과 프리앰블2에 대한 RAR2가 빔 인덱스 A와 함께 하나의 RAR 메시지로 전송되고, 빔 방향 B에 대해 전송된 프리앰블1에 대한 RAR1과 프리앰블2에 대한 RAR2가 빔 인덱스 B와 함께 다른 RAR 메시지로 전송될 수 있다.
K개의 빔 인덱스에 대응되는 PRACH 전송 시간 유닛이 N개가 연속적 혹은 등간격으로 설정된 상태에서, 해당 N개의 PRACH 신호에 대응되는 RAR 메시지 수신 시간 유닛 M개가 연속적 혹은 등간격으로 설정될 수 있다. 여기서, M은 N과 같거나 작을 수 있다. N은 K와 같거나 작을 수 있다. 이 방법에 의하면, RAR이 PRACH 전송 순서에 따라 순차적으로 정렬되므로 RAR이 어떤 빔에 대한 것인지 자동적으로 식별된다. 이러한 M개의 RAR 시간 유닛들의 집합을 편의상 RAR 윈도우라고 하면, UE는 먼저 자신이 선호하는 빔 인덱스에 대응되는 PRACH 시간 유닛을 통해 PRACH 신호 전송을 수행한 뒤, RAR 윈도우의 최초 RAR 시간 유닛부터 순차적으로, 예를 들어, 수신된 RAR 내에 포함된 빔 인덱스를 확인하면서, RAR 검출/수신 동작을 수행할 수 있다.
UE는 수신된 RAR 내에 포함된 빔 인덱스가 자신의 선호 빔 인덱스 혹은 자신이 전송한 PRACH 시간 유닛에 대응되는 빔 인덱스와 일치하는 경우, 및/또는 RAR 내에 포함된 PRACH 프리앰블 ID가 자신이 전송한 PRACH 신호의 것과 일치하는 경우, 해당 RAR에 따른 후속 동작(예, Msg3 전송)을 수행할 있으며, 해당 RAR 윈도우 내에서 추가적인 RAR 검출/수신 동작을 중단할 수 있다.
만약, RAR 윈도우 내의 M개 RAR 시간 유닛 모두에서 수신된 RAR(들)에 포함된 빔 인덱스 (및/또는 PRACH 프리앰블 ID)가 자신이 전송한 PRACH 신호에 대응되지 않았을 경우, UE는 RAR 수신에 실패하였다고 간주하고 후속 동작(예, PRACH 신호 재전송, PRACH 전력 램핑 및/또는 PRACH 전송 카운트 증가)를 수행할 수 있다.
본 발명에 의하면, eNB는 실제 수신한 PRACH에 대한 RAR만을 RAR 윈도우 내에서 컴팩트하게 구성/전송함으로써, 효율적으로 자원을 활용할 수 있다. 예를 들어, eNB는 RAR 윈도우 내의 최초 일부 심볼/구간만을 RAR 전송에 사용하고 나머지 심볼에는 DL/UL 데이터/제어 채널을 전송할 수 있다.
* PRACH 재전송, RACH 자원 선택 및/또는 전력 제어 (방법 1)
3GPP LTE 시스템에서 임의 접속 과정 관련 부분을 설명하면 다음과 같다.
물리 비-동기 임의 접속 과정(physical non-synchronized random access procedure)의 경우, 물리 계층 관점에서, L1 임의 접속 과정은 임의 접속 프리앰블의 전송과 임의 접속 응답을 아우른다(encompass). 남은 메시지들은 공유 데이터 채널 상의 상위 계층에 의한 전송을 위해 스케줄된다. 임의 접속 채널은 일 서브프레임 혹은 임의 접속 프리앰블 전송을 위해 예약된(reserved) 연속(consecutive)한 서브프레임들의 세트 내에서 6개의 자원 블록들을 점유한다. eNB는 임의 접속 응답을 위해 예약된 상기 자원 블록들 내에 데이터를 스케줄링하는 것이 금지(prohibit)되지는 않는다. 다음 단계들이 L1 임의 접속 과정을 위해 요구된다.
- 계층 1 과정이 상위 계층에 의한 프리앰블 전송의 요청 시에(upon) 트리거된다.
- 프리앰블 인덱스, 타겟 프리앰블 수신 전력(target preamble received power)(PREAMBLE_RECEIVED_TARGET_POWER), 해당 RA-RNTI 및 PRACH 자원이 상기 요청의 일부로서 상위 계층에 의해 지시된다.
- 프리앰블 전송 전력 PPRACH는 PPRACH = min{PCMAX,c(i), PREAMBLE_RECEIVED_TARGET_POWER + PLc}_[dBm]로서 결정된다. 여기서, PCMAX,c(i)는 서빙 셀 c의 서브프레임 i를 위한, 3GPP TS 36.101에서 정의된, 설정된 UE 전송 전력이고, PLc는 서빙 셀 c를 위해 상기 UE 내에서 계산된 하향링크 경로 손실 추정치(downlink path loss estimate)이다.
- 프리앰블 시퀀스는 상기 프리앰블 인덱스를 사용하여 프리앰블 시퀀스 세트로부터 선택된다.
- 단일 프리앰블이 지시된 PRACH 자원 상에서 전송 전력 PPRACH로 선택된 프리앰블 시퀀스를 사용하여 전송된다.
- 상기 지시된 RA-RNTI로 PDCCH의 검출이 상위 계층에 의해 제어되는 윈도우 동안 시도된다(3GPP TS 36.321의 섹션 5.1.4 참조). 검출되면, 해당 DL-SCH 전송 블록(transport block)은 상위 계층으로 패스(pass)된다. 상기 상위 계층은 상기 전송 블록을 파스(parse)하고 20-비트 상향링크 그랜트를 물리 계층에 지시한다.
한편, 매체 접속 제어(medium access control, MAC) 계층에서 임의 접속 과정은 다음과 같이 수행된다:
- PREAMBLE_RECEIVED_TARGET_POWER를 'preambleInitialReceivedTargetPower + DELTA_PREAMBLE + (PREAMBLE_TRANSMISSION_COUNTER - 1) * powerRampingStep'에 세팅;
- 상기 UE가 BL(bandwidth limited) UE 혹은 강화된 커버리지 내 UE이면:
- 선택된 커버리지 강화 레벨에 해당하는 선택된 PRACH 자원, 해당 RA-RANTI, 프리앰블 인덱스, 및 PREAMBLE_RECEIVED_TARGET_POWER을 상기 사용하여 선택된 프리앰블 그룹에 해당하는 프리앰블 전송을 위해 요구되는 반복의 횟수(즉, numRepetitionPerPreambleAttempt)로 프리앰블을 전송하도록 물리 계층에게 지시(instruct)한다.
- 그 밖에는(else):
- 선택된 PRACH, 해당 RA-RNTI, 프리앰블 인덱스 및 PREAMBLE_RECEIVED_TARGET_POWER를 사용하여 프리앰블을 전송하도록 상기 물리 계층에게 지시한다.
LTE/LTE-A 시스템에서 PRACH 프리앰블 전송을 위한 UL 전송 전력에 관한 정보도 RACH 설정에 포함되어 UE에게 전달된다. 예를 들어, preambleInitialReceivedTargetPower, powerRampingStep , preambleTransMax 등이 UE 공통한 임의 접속 파라미터들로서 RRC 신호에 의해 UE에게 전달된다(3GPP TS 36.331의 PRACH - Config 참조). PREAMBLE_TRANSMISSION_COUNTER는 1부터 시작하여 프리앰블 전송이 시도될 때마다 1만큼씩 증가된다. 프리앰블 전송은 프리앰블 전송의 최대 횟수 preambleTransMax 한도 내에서 수행될 수 있다. 예를 들어, PREAMBLE_TRANSMISSION_COUNTER = preambleTransMax + 1이면, MAC 계층은 상위 계층에 임의 접속 문제(problem)을 지시하거나, 임의 접속 과정이 비성공적으로(unsuccessfully) 완료(complete)된 것으로 간주한다(consider). DELTA_PREAMBLE은 다음과 같이 프리앰블 포맷에 따라 기정의된 값이다(3GPP TS 36.321의 Table 7.6-1 참조).
Preamble Format DELTA_PREAMBLE value
0 0 dB
1 0 dB
2 -3 dB
3 -3 dB
4 8 dB
표 2에서 프리앰블 포맷은 prach - ConfigIndex에 의해 주어진다(3GPP TS 36.331의 PRACH-Config 참조).
앞서 설명된 바와 같이 LTE/LTE-A 시스템에서 PRACH 프리앰블 전송 전력은 아래와 같은 수학식에 의해서 결정된다.
수학식 (1): PPRACH = min{PCMAX,c(i), PREAMBLE_RECEIVED_TARGET_POWER + PLc}_[dBm].
다중-빔(multi-beam) 환경에서는 복수 개의 SS 블록들이 정의될 수 있다. 즉, 복수 개의 SS 블록들이 정의되고, SS 블록은 각각 고유의 DL 전송 빔 방향으로 전송될 수 있다. 또한, 각 SS 블록별로 RACH 자원이 설정될 수 있다. UE는 SS 블록 내의 신호/채널을 수신하고 수신 품질이 가장 좋은 SS 블록 인덱스를 선택할 수 있으며, 해당 SS 블록 인덱스와 연결되어 있는 RACH 자원을 선택하여 PRACH 프리앰블을 전송할 수 있다. 이 경우, UE가 선택할 수 있는 SS 블록 인덱스는 하나 이상일 수 있으며, 각 SS 블록별로 연결되어 있는 RACH 자원에 PRACH 프리앰블 전송을 시도할 수 있다.
만약 UE가 해당 RAR 윈도우 내에서 RAR을 수신하지 못하면 또다시 PRACH 전송을 시도하고, 상기 UE는 이러한 과정을 반복한다. 이를 PRACH 재전송이라 한다. UE는 PRACH를 재전송할 때마다 PRACH 전송 전력을 일정 정도 램핑 업한다. UE는 허용된 PRACH 재전송 횟수 만큼을 재전송하고, 재전송할 때마다 전력을 램핑 업하되, 랩핑 업된 전력은 최대 전송 전력을 초과할 수 없다. PRACH 재전송 횟수는 아래 수학식(2)의 PREAMBLE_TRANSMISSION_COUNTER 변수에 반영되고, 전력 램핑 업을 하는 양은 powerRampingStep에서 반영된다. 결국 수학식 (1)과 아래의 수학식(2)에 의해서 LTE 시스템에서의 PRACH 프리앰블 전송 전력이 결정된다.
수학식 (2): PREAMBLE_RECEIVED_TARGET_POWER = preambleInitialReceivedTargetPower + DELTA_PREAMBLE + (PREAMBLE_TRANSMISSION_COUNTER - 1) * powerRampingStep.
새로운 RAT에서는 PRACH 프리앰블의 재전송 시의 전송 전력에 논의하기 전에 PRACH 재전송이 정의될 필요가 있다. 특히 다중-빔 환경에서 TRP(Transmission and Reception Point) 혹은 UE의 TX/RX 상호(reciprocal) 능력(capability)에 따라서 PRACH 프리앰블의 반복 혹은 빔 스위핑이 고려될 수 있다. TX/RX 상호 능력은 TRP 및 UE에서의 TX/RX 빔 대응성(correspondence)라고도 한다. 다중-빔 환경에서 TRP 및 UE에서 TX/RX 상호 능력이 유지되지 않으면 UE는 자신이 하향링크 신호를 수신한 빔 방향으로 상향링크 신호를 쏘지 못할 수 있다. UL의 최적 경로와 DL의 최적 경로가 다를 수 있기 때문이다. TRP에서의 TX/RX 빔 대응성은 TRP가 TRP의 하나 이상의 TX 빔들에 관한 UE의 하향링크 측정을 기초로 해당 상향링크 수신을 위한 TRP RX 빔을 결정할 수 있으면 및/또는 TRP가 TRP의 하나 이상의 RX 빔들에 관한 TRP'의 상향링크 측정을 기초로 해당 하향링크 전송에 대한 TRP TX 빔을 결정할 수 있으면, 유지된다(hold). UE에서의 TX/RX 빔 대응성은 UE가 UE의 하나 이상의 RX 빔들에 관한 UE의 하향링크 측정을 기초로 해당 상향링크 전송을 위한 UE RX 빔을 결정할 수 있으면 및/또는 UE가 UE의 하나 이상의 TX 빔들에 관한 상향링크 측정을 기반으로 한 TRP의 지시(indication)를 기초로 해당 하향링크 수신에 대한 UE TX 빔을 결정할 수 있으면, 유지된다(hold).
도 14는 본 발명에 따른 PRACH 전송 예를 나타낸 것이다. 도 14에서는 셀/반송파에 적용되는 한 세트의 빔 방향들에 대한 PRACH 자원들이 시간 도메인에서 연속한 것으로 도시되어 있으나, 불연속적으로 설정될 수도 있다. 아울러, 도 14에서는 셀/반송파에서 이용 가능한 상기 한 세트의 빔 방향들에 대한 PRACH 자원들이 주파수 도메인에서 서로 동일한 것으로 도시되어 있으나, 주파수 자원이 서로 다르게 설정될 수도 있다.
SS가 전송되는 빔 방향 혹은 SS 블록별로 RACH 자원이 정의될 수 있다. 이 때 해당 RACH 자원은 좀더 미세한 레벨의 RACH 기본(basic) 유닛으로 세분될 수 있다. 여기서 RACH 기본 유닛이라 함은 하나의 PRACH 프리앰블이 전송되는 데 사용되는 시간-주파수 자원인 것으로 정의될 있다. 예를 들어, 도 14를 참조하면, 하나의 빔 방향 혹은 하나의 SS 블록에 대해 설정된 하나의 PRACH 자원이 2개의 RACH 기본 유닛으로 세분될 수 있다. 도 14에서는 하나의 PRACH 자원이 2개의 RACH 기본 유닛으로 나뉘는 것으로 도시되어 있으나, 2개보다 많은 수의 RACH 기본 유닛으로 나뉠 수도 있다.
한 번의 PRACH 시도라 함은 SS 블록별로 정의된 RACH 자원에서 PRACH 프리앰블을 전송하는 것을 의미할 수 있으며, 해당 RACH 자원 내에서 프리앰블의 반복 혹은 빔 스위핑이 수행되더라도 한 번의 PRACH 시도인 것으로 간주될 수 있다. 예를 들어, UE가 동일 RACH 자원에서 RACH 기본 유닛에 따라 빔 방향을 다르게 하여 RACH 프리앰블을 전송하더라 한 번의 PRACH 시도인 것으로 간주될 수 있다. 다시 말해, 동일 RACH 자원 내의 다른 RACH 기본 유닛들을 이용한 복수 개의 PRACH 프리앰블 전송은 재전송으로 간주되지 않는다. 예를 들어, 도 14를 참조하면 UE가 RACH 프리앰블을 SS 블록 1에 대한 PRACH 프리앰블 자원의 RACH 기본 유닛들에서 (서로 다른 빔 방향으로) 각각 전송하는 경우, 이는 한 번의 RACH 전송 시도로 간주된다. 따라서, 동일 RACH 자원 내에서 프리앰블을 반복 전송 혹은 빔 방향을 바꾸어가면서 전송하는 빔 스위핑 시에는 각각의 프리앰블 전송에 대해서 전송 전력을 증가시키지 않는다.
다만, 동일 빔 혹은 SS 블록에 연결되어 있는 RACH 자원이라 하더라도 다음 번 RACH 자원에서 RACH 프리앰블을 전송하는 경우(즉, RAR을 수신하기 위해서 RAR 윈도우만큼 기다린 후, RAR 윈도우 후의 RACH 자원에서 RACH 프리앰블을 전송하는 경우), 혹은 다른 빔/SS 블록에 연결되어 있는 PRACH 자원을 이용한 PRACH 프리앰블 전송인 경우는 재전송으로 간주한다. 예를 들어, 도 14를 참조하면, UE가 SS 블록 1에 연관된 PRACH 프리앰블 자원에서 전송한 RACH 프리앰블에 대한 RAR을 수신하지 못하거나 혹은 빔 스위칭을 지시하는 RAR을 수신하는 경우, 상기 UE는 SS 블록 1을 위한 다음 번 PRACH 프리앰블 자원 혹은 다른 SS 블록과 연관된 PRACH 프리앰블에서 RACH 프리앰블을 전송할 수 있고, 이 RACH 프리앰블 전송은 이전 RACH 프리앰블 전송과 다른 시도인 것으로 간주된다. 이 경우, 수학식 (2)에서 PRACH 프리앰블 재전송 횟수를 나타내는 "PREAMBLE_TRANSMISSION_COUNTER"는 증가하게 된다. 다시 말해 동일 빔 혹은 SS 블록에 대한 RACH 자원을 이용한 RACH 프리앰블 전송이 서로 다른 PRACH 기회(opportunity)에서 일어나면, 혹은 서로 다른 빔 혹은 SS 블록에 연관된 RACH 자원을 이용한 RACH 프리앰블 전송에 대해서, UE는 "PREAMBLE_TRANSMISSION_COUNTER"를 증가시킨다.
램핑 업하는 전력의 양은 빔 인덱스별로 상이할 수 있다. UE가 램핑 업하는 전력의 양은 빔 인덱스간 독립적으로 설정/시그널링될 수 있으며, 재전송 시 전력 증가를 위한 계산은 각 빔 인덱스별로 이루어진다. 다만, 재전송 횟수(PREAMBLE_TRANSMISSION_COUNTER)에 대한 계산은 빔 방향, 즉 RACH 자원이 다르더라도 모든 RACH 자원들에 대해서 통합해서 계산한다. 예를 들어, RACH 자원별 PRACH 프리앰블 전송 횟수를 계산하지 않고 UE별 PRACH 프리앰블 전송 횟수를 계산하여 PRACH 전송 전력이 계산된다. 상태가 좋은 빔들에 대해 RACH 전송을 시도하여 전력을 램핑 업했음에도 불구하고 RACH 전송이 실패한 것이므로, 다음 번 RACH 자원에서 전력을 초기 값으로 설정하면 RACH 전송의 딜레이가 증가하기 때문이다. 다만, 빔 방향별로, 즉 SS 블록별로 RS 수신 레벨이 다름으로 인해서 경로 손실(loss) 값이 달라질 수 있다. 따라서, UE가 PRACH 프리앰블 재전송 시 PRACH 프리앰블 전송 전력은 PRACH 프리앰블 전송을 위해서 사용하는 RACH 자원 별로 경로 손실을 보상한다. 예를 들어, RACH 자원 j가 빔 방향 혹은 SS 블록 인덱스 j에 연관되어 있다고 하자. RACH 자원 j에서의 PRACH 전송 전력 PPRACH , j는 수학식 (3)과 (4)에 의해서 정의될 수 있다.
수학식 (3): PPRACH,j = min{PCMAX,c(i), PREAMBLE_RECEIVED_TARGET_POWER + PLc,beam(j)}_[dBm].
여기서, PCMAX,c(i)는 서빙 셀 c의 서브프레임 i를 위한 설정된 UE 전송 전력이고, PLc,beam(j)는 서빙 셀 c의 빔 방향 j(혹은 SS 블록 인덱스 j)를 위해 상기 UE 내에서 계산된 하향링크 경로 손실 추정치(downlink path loss estimate)이다.
수학식 (4): PREAMBLE_RECEIVED_TARGET_POWER = preambleInitialReceivedTargetPower + DELTA_PREAMBLE + (PREAMBLE_TRANSMISSION_COUNTER - 1) * powerRampingStep(j).
여기서, powerRampingStep이 RACH 자원 공통으로 설정되면, powerRampingStep(j)powerRampingStep이다.
preambleInitialReceivedTargetPower와 프리앰블 포맷이 RACH 자원별(즉, 빔 방향별 혹은 SS 블록 인덱스별)로 설정되면 수학식 (4)에서 preambleInitialReceivedTargetPowerpreambleInitialReceivedTargetPower(j)로, DELTA_PREAMBLE은 DELTA_PREAMBLE(j)가 될 수 있다.
만약 하나의 UE가 복수 개의 RACH 자원을 이용하여 PRACH 프리앰블 전송을 시도하는 경우, 네트워크는 한 UE가 사용할 수 있는 RACH 자원의 개수를 설정하여 시그널링 할 수 있다. 그리고, 예를 들어, 2개의 RACH 자원에서의 PRACH 프리앰블이 허용되는 경우, 네트워크는 최선(best) 빔과 차선(second best) 빔의 수신 신호 레벨의 오프셋을 설정하고 상기 오프셋을 RACH 설정에 포함하여 전송할 수 있다. 2개 이상인 경우에도, 최선 빔, 차선 빔, 차차선(third best) 빔의 수신 신호 레벨의 오프셋이이 시그널링된다. 이는 UE가 최선(best) 빔 이외에 해당 오프셋 내로 들어오는 빔에 대해서만 PRACH 프리앰블 전송을 시도할 수 있음을 의미한다.
* PRACH 재전송, RACH 자원 선택 방식, 및/또는 전력 제어
복수 개의 SS 블록이 전송되는 경우, UE에게 복수 개의 RACH 자원이 설정될 수 있다. 이하에서는 복수 개의 RACH 자원 중, UE가 임의 접속 과정을 위해서 RACH 자원을 선택하는 방식을 기술한다. 특히, 임의 접속 과정, 즉, RACH 과정을 위한 RACH 자원 선택 방식이 PRACH 재전송 방식과 연관되어 기술된다.
> Alt a. 최선 빔 우선(best beam first)- SS 블록 수신 신호 레벨 기준
Alt a는 PRACH를 UE가 전송할 때, 일정 레벨 이상으로 수신되는 SS 블록이 복수 개 존재할 때, 다시 말해, 자신이 선호하는 선호(preferred) 빔 인덱스가 복수 개인 경우, UE는 우선적으로 수신 신호 세기 레벨이 가장 좋은 SS 블록 (가장 좋은 빔 인덱스)에 대한 PRACH를 먼저 전송한다. 주어진 RAR 윈도우 내에 해당 PRACH에 대해서 RAR을 수신하지 못한 경우, 상기 UE는 해당 빔 인덱스에 대해서 PRACH를 재전송한다. 다시 말해, UE는 수신 신호 세기 레벨이 가장 좋은 SS 블록 인덱스에 연관된 RACH 자원을 이용하여 PRACH 프리앰블을 우선적으로 전송하고, 재전송을 하는 경우에도 수신 신호 세기가 가장 좋은 SS 블록 인덱스에 PRACH 프리앰블을 우선적으로 시도한다. 설명의 편의를 위해서 UE의 선호 빔 인덱스가 세 개 있고, 각각의 빔 인덱스를 a, b, c라 한다. 빔 인덱스 a가 가장 좋은 빔에 해당하고, 빔 인덱스 c가 선호 빔들 중 가장 품질이 낮은 빔에 해당한다고 하자. 그리고 각 빔 인덱스 a, b, c에 대한 재전송 횟수는 Ra, Rb, Rc라 한다. 최선 빔 인덱스에 대해서 Ra번(Ra≥1) 의 재전송 이후에도 상기 최선 빔 인덱스에 대한 PRACH에 대한 RAR을 수신하지 못한 경우, UE는 다음 번 채널 품질이 좋은 빔 인덱스에 대해서 Rb번(Rb≥1)의 재전송을 시도할 수 있다. 그리고 Rb번의 PRACH 재전송 시도에도 불구하고 RAR을 수신하지 못했다면, 다음 번 품질이 좋은 빔 인덱스에 대해서 Rc번(Rc≥1)의 재전송을 시도할 수 있다. 다시 설명하면, 각 SS 블록 인덱스에 대한 PRACH 프리앰블 재전송 횟수가 각각 정의 혹은 설정될 있으며 UE는 수신 신호 세기가 가장 좋은 SS 블록 인덱스에 대한 PRACH 프리앰블을 전송을 우선적으로 시도하고, 재전송 역시 수신 신호 세기가 가장 좋은 SS 블록 인덱스에 대해서 지정된 최대 재전송 횟수만큼 재전송한다. 해당 횟수만큼 재전송을 시도했는데도, 네트워크로부터 RAR을 성공적으로 수신하지 못한 경우, 혹은 RAR을 수신하였다 하더라도 경쟁 해결(contention resolution)에 실패하여 RACH 과정을 다 마치지 못한 경우, 상기 UE는 그 다음 번 수신 품질이 좋은 SS 블록에 대한 PRACH 전송을 시도할 수 있다.
UE는 PRACH를 재전송할 때마다, 상기 UE에게 시그널링된 값(delta) 만큼의 전력을 램핑 업하여 PRACH를 전송한다. 빔 인덱스 a에 대한 PRACH를 전송할 때마다, 전력을 램핑 업하여 전송한다. 빔 인덱스 a에 대한 PRACH는 Ra회 재전송하며, 최대 전력에 도달할 때까지 매 재전송마다 전력을 램핑업하고, 최대 전력에 도달 한 경우에는 해당 빔 인덱스 a에 대한 재전송 시에는 최대 전력으로 전송한다. 빔 인덱스 a에 대한 PRACH를 Ra회 재전송했음에도 RAR을 수신하지 못했다면, UE는 빔 인덱스 b에 대한 PRACH를 상기 빔 인덱스 b와 연관된 PRACH 자원에서 전송한다. 이 때, 해당 빔 인덱스 b에 대한 PRACH 전송 시 전송 전력은 리셋 혹은 초기화되어야 한다. 즉, 빔 인덱스 a에 대한 PRACH 전송 시 사용되었던 최대 전력으로 전송하지 않는 것이다. 처음 PRACH를 보내는 것처럼, 초기(initial) 전송 시 사용하는 전력으로 빔 인덱스 b에 대한 PRACH를 전송하고, RAR을 수신하지 못해서 재전송을 할 때는 전력을 램핑 업하여 전송한다. 마찬가지로 빔 인덱스 b에 PRACH를 Rb회 재전송했음에도 이에 대한 RAR을 수신하지 못한 경우, UE는 그 다음 번 품질이 좋은 빔 인덱스 c에 대한 PRACH를 전송한다. RACH 자원을 변경하여 PRACH 프리앰블을 전송을 시도하는 경우, 방법 1에서 기술된 전력 제어 방식과 같이, UE는 해당 RACH 자원과 연관되어 있는 SS 블록에 대한 수신 신호 세기(예, RSRP)를 기준으로 초기 전송 전력 값을 계산할 수 있다. 즉, UE가 PRACH 프리앰블 재전송 시 PRACH 프리앰블 전송 전력은 PRACH 프리앰블 전송을 위해서 사용하는 RACH 자원별로 혹은 SS 블록 인덱스별로 경로 손실을 보상한다.
UE는 앞서 기술한 동일한 과정으로 PRACH를 전송하고, 이에 대한 RAR을 수신하지 못한 경우, 즉, 자신이 선호하는 모든 선호 빔에 대한 RAR을 수신하지 못한 경우, 이러한 사실을 상위 계층에 보고하고 셀을 재선택(reselection)하는 동작을 수행할 수 있다. 예를 들어, 전술한 방법 1에서 기술된 전력 제어 방법과 달리, UE는 서로 다름 빔 인덱스에 대한 RACH 재전송에 대해서는 빔 인덱스별 전력 램핑 카운터를 별도로 사용하여, 각 빔 인덱스별 전력 램핑을 시도할 수 있다. 즉, UE가 다른 빔 인덱스(즉, SS 블록 인덱스)에 대해서 RACH 프리앰블 재전송을 하는 경우, 빔 인덱스들(즉, SS 블록 인덱스들)에 관계없이 재전송 횟수를 카운트하는 방법 1과 달리, 본 방법에서는 재전송 횟수가 승계되지 않는다.
> Alt b. 빔 인덱스 라운드 로빈
Alt b는 PRACH를 UE가 전송할 때, 일정 신호 세기 레벨 이상으로 수신되는 SS 블록이 복수 개 존재할 때, 다시 말해, 자신이 선호하는 선호(preferred) 빔 인덱스가 복수 개인 경우, UE는 우선적으로 수신 신호 세기 레벨이 가장 좋은 SS 블록(즉, 가장 좋은 빔 인덱스)에 대한 PRACH를 먼저 전송한다. 예를 들어, 자신이 선호하는 선호 빔 인덱스가 복수 개인 경우, 가장 좋은 빔 인덱스에 대한 PRACH를 먼저 전송하고, 주어진 RAR 윈도우 내에 해당 PRACH에 대해서 RAR을 수신하지 못한 경우, 바로 다음 번 수신 품질이 좋은 빔 인덱스에 대한 PRACH를 전송한다. 이 경우에도 RAR 윈도우 내에 해당 PRACH에 대해서 RAR을 수신하지 못한 경우 바로 다음 번 수신 품질이 좋은 빔 인덱스에 대한 PRACH를 전송하는 방식이다. 즉, UE가 수신 신호 품질이 일정 수준 이상인 SS 블록 인덱스가 복수 개이면, 상기 UE는 복수 개의 SS 블록 인덱스에 대한 RACH 프리앰블 전송을 SS 블록 수신 품질에 따라서 순차적으로 선택하여 PRACH 프리앰블 재전송을 수행할 수 있다. 다만, UE가 너무 많은 RACH 자원에 대한 PRACH 프리앰블 전송을 하는 것은 핑퐁효과로 인하여 오히려 시스템의 성능을 불안정하게 할 수 있으므로 UE가 PRACH 프리앰블 전송을 시도할 수 있는 PRACH 자원의 개수 및 연관되어 있는 SS 블록 수신 품질의 범위(range)가 한정될 수 있다. 예를 들어, UE가 RACH 를 시도할 수 있는 최대 SS 블록 개수 혹은 RACH 자원의 개수, 그리고 가장 좋은 SS 블록 수신 신호 세기로부터의 오프셋 값 등을 네트워크가 PRACH 설정(configuration)에 포함시켜 시그널링할 수 있다. 상기 오프셋은 가장 좋은 SS 블록 수신 신호 세기로부터 일정 범위 내의 SS 블록 인덱스에 대해서만 RACH 프리앰블 전송이 가능하도록 하기 위해 사용될 수 있다.
이 때, UE가 특정 빔 인덱스에 대한 PRACH를 전송하고 RAR을 수신하지 못하여 이후 다음 번 품질이 좋은 PRACH를 전송할 때 UE가 이를 PRACH 재전송으로 생각하고 전력을 램핑 업할 수 있다. 그러나 UE 관점에서는 PRACH를 재전송하는 것이지만, 다른 빔 인덱스에 대한 PRACH 전송을 하는 것이므로, 전력이 램핑 업하지 않는 것이 바람직할 수도 있다. 이 경우, UE가 자신이 선호하는 빔 인덱스 세트 내에서 각각의 PRACH를 전송할 때, 특정 빔 인덱스에 대해서 PRACH를 처음 전송하는 경우라면 전력을 램핑 업하지 않는다. 그리고 UE가 선호하는 모든 빔 인덱스에 대해서 PRACH를 한 번씩 시도하였음에도 RAR을 수신하지 못했다면, 또 다시 최선 빔 인덱스에 대해서 PRACH를 전송하되, 전력을 램핑 업하여 전송한다. 전력 램핑 업을 수행함에 있어서 UE는, 앞서 설명된 Alt a과 마찬가지로, SS 블록 인덱스(혹은 빔 인덱스)별 전력 램핑 카운터를 별도로 두고, 각 빔 인덱스별 전력 램핑을 시도할 수 있다. 다만, 빔 방향별로, 즉, SS 블록별로 수신 레벨이 다름으로 인해서 경로 손실(loss) 값이 달라질 수 있다. 따라서, UE가 PRACH 프리앰블 재전송하는 경우, 상기 UE는 해당 PRACH 프리앰블 전송 전력은 해당 PRACH 프리앰블 전송을 위해서 사용하는 RACH 자원별로 혹은 SS 블록 인덱스별로 경로 손실을 보상한다.설명의 편의를 위해서 UE의 선호 빔 인덱스가 세 개 있고, 각각의 빔 인덱스를 a, b, c라 한다. 빔 인덱스 a가 가장 좋은 빔에 해당하고, 빔 인덱스 c가 선호 빔들 중 가장 품질이 낮은 빔에 해당한다고 하자. 그리고 각 빔 인덱스 a, b, c에 대한 재전송 횟수는 Ra, Rb, Rc라 하자. UE는 빔 인덱스 a에 대해서 PRACH를 전송하고, 이에 대한 RAR을 수신하지 못했다면 빔 인덱스 b에 대해서 PRACH를 전송하고, 이에 대한 RAR을 수신하지 못한 경우에 빔 인덱스 c에 대한 PRACH를 전송한다. UE가 가진 모든 빔 인덱스에 대해서 RAR을 수신하지 못하면 상기 UE는 다시 빔 인덱스 a에 대해서 PRACH를 전송하되 PRACH 전송 전력을 램핑 업하여 전송한다. 그리고 이에 대한 RAR을 수신하지 못한 경우, 다음 번 빔 인덱스인 빔 인덱스 b에 대해서 PRACH를 이미 한 단계 램핑 업된 전력으로, 즉 직전 빔 인덱스 a에 대한 PRACH 전송에 사용했던 전송 전력으로 전송한다. 마찬가지로 이에 대한 RAR을 수신하지 못한 경우, 동일한 전력으로 빔 인덱스 c에 대한 PRACH를 전송한다. 이와 같은 방식으로 전력을 램핑하면서 UE는 PRACH를 각 빔 인덱스별로 돌아가면서 재전송 할 수 있다. PRACH 프리앰블 전송 전력을 세팅하는 다른 방식으로는, 동일 RACH 자원, 즉, 동일 빔 혹은 동일 SS 블록에 연관된 RACH 자원에서의 재전송에 대해서는 전력을 램핑 업하고, 다른 RACH 자원으로 이동하여 재전송하는 경우에는 PRACH 전송 전력을 리셋 혹은 초기화시키지 않고 이전 재전송의 전력 값을 그대로 승계할 수 있다. 즉, 동일 RACH 자원에서의 재전송에 대해서만 전력을 램핑 업하고, RACH 자원을 변경하여 재전송하는 경우에 대해서는 직전의 PRACH 프리앰블 전송 전력을 승계할 수 있다.
> Alt c. 다중 PRACH 프리앰블 전송 방식
Alt c에 따른 UE는 상기 UE에게 일정 신호 세기 레벨 이상으로 수신되는 SS 블록이 복수 개 존재할 때, 다시 말해, UE 자신이 선호하는 선호(preferred) 빔 인덱스가 복수 개인 경우, 상기 복수 개의 SS 블록에 대하여 PRACH 프리앰블을 전송할 수 있다. 즉, UE는 복수의 빔 인덱스에 대해서 PRACH를 각각 전송하고 이중 어느 빔 인덱스에 대한 RAR도 수신되지 않은 경우 PRACH를 재시도 할 수 있다. 예를 들면, UE는 빔 인덱스 a, b, c에 대한 PRACH를 각각 전송하고, 이에 대한 RAR을 동일 윈도우 내에서 혹은 오버랩되는 윈도우 내에서 기다릴 수 있다. 즉, UE는 특정 빔 인덱스에 대한 RAR을 수신하지 않은 상태에서도 다른 빔 인덱스에 대한 PRACH를 전송하는 것이다. 빔 인덱스 a, b, c에 대한 PRACH 전송에 대해 RAR을 수신하지 못한 경우, UE는 또다시 빔 인덱스 a, b, c에 대해서 PRACH를 재전송할 수 있다. 이 경우, UE는 각각의 빔 인덱스에 대한 PRACH를 램핑 업해서 전송한다.
UE는 RAR을 수신을 기다리지 않은 상태에서 복수 개의 PRACH를 전송할 수 있다. 그러나 동일한 빔 인덱스에 대한 PRACH에 대해서는 RAR 수신을 기다리지 않은 상태에서, 즉 RAR 전송 윈도우가 도달하기 전에 PRACH를 전송할 수 없다. 다시 말하며, UE가 자신이 전송한 PRACH에 대한 RAR 수신을 기다리지 않은 시점에 PRACH를 전송할 수 있는 것은 서로 다른 빔 인덱스에 대한 PRACH인 경우로 한정될 수 있다.
앞선 설명에서, UE가 빔 인덱스를 라운드 로빈의 방식으로 돌아가면서 PRACH를 전송을 시도하는 방법을 설명하였으나, UE가 빔 인덱스에 대한 라운드 로빈을 수행할 때 상기 UE가 PRACH를 전송하는 순서 및 횟수를 결정할 수 있다. 바람직하게는 가장 좋은 빔 인덱스를 먼저 시작하는 것이고, UE의 선택에 의해서 특정 빔 인덱스가 일정 품질 이상으로 수신되는 채널이라도 다른 빔 인덱스에 비해서 수신 품질 차이가 큰 경우 UE는 품질이 좋은 빔 인덱스에 대한 PRACH전송을 더 자주 시도할 수 있다. 예를 들면, [a, b, c, a, b, c,..]가 아닌 [a, b, a, b, c, a, b, a, b, c,..]와 같이 RACH 전송을 시도할 수 있다. 이 경우, 전력 램핑에 대한 원칙은 동일 빔 인덱스에 대한 재전송 시에는 전력을 램핑 업하고 다른 빔 인덱스에 대해서는 해당 빔 인덱스에 대한 재전송 횟수에 해당하는 만큼의 전력을 램핑 업 한다.
전력 램핑을 갖는 후보 자원들 중에서 첫 번째 이용 가능한 PRACH 자원은 이용 가능한 RACH 자원 중 가장 처음 이용 가능한 자원 혹은 전체 딜레이가 가장 줄어드는 자원일 수 있다. 또 다른 방식으로, 가장 자원의 양이 많은 빔에 해당하는 RACH 자원이 상기 첫 번째 이용 가능한 PRACH 자원으로 선택되거나 앞에서 언급된 대로 부하 등을 고려하여 RACH 자원이 상기 첫 번째 이용 가능한 PRACH 자원으로 선택될 수도 있다.
* 최대 PRACH 전송 횟수
UE가 전송할 수 있는 최대 PRACH (재)전송 횟수가 지정되어야 한다. UE가 복수의 빔 인덱스에 대한 PRACH를 전송하는 경우 최대 재전송 횟수는 크게 두 가지 방식으로 정의될 수 있다.
> 방식 1. 최대 (재)전송 횟수 R이 UE별로 지정될 수 있다. 이 경우, 앞서 언급한 예에서, R=Ra+Rb+Rc일 수 있다. 즉, UE별 PRACH 최대 재전송 횟수 R이 정의되어 시그널링되고, 이 값은 각각의 빔 인덱스별 최대 재전송 횟수의 합이 될 수 있는 것이다. 각 빔 인덱스별로 최대 재전송 횟수는 같거나 다르게 설정될 수 있다. eNB 혹은 UE는 가장 좋은 빔 인덱스에 대한 PRACH 재전송 횟수를 많게 설정할 수 있다. 예를 들어, 앞선 예시에서 Ra>Rb>Rc와 같이 설정될 수 있다. 다른 방식으로는 Ra=Rb=Rc일 수 있다. 두 가지 경우, 모두 Ra+Rb+Rc=R을 만족해야 한다.
> 방식 2. 최대 재전송 횟수 R이 빔 인덱스별로 지정될 수 있다. 이 경우, 앞서 언급한 예에서 R=Ra=Rb=Rc 일수 있다. 즉, 빔 인덱스별로 UE가 PRACH를 재전송할 수 있는 횟수가 정의되어 시그널링되고, 빔 인덱스별로 PRACH 재전송 횟수가 같게 설정되는 경우에는 단일 값으로 그 횟수가 시그널링될 수 있다. 그러나 PRACH 설정이 빔 인덱스별로 된다는 점을 고려했을 때, 빔 인덱스별로 최대 재전송 횟수가 각각 설정되면, 해당 값이 각각 시그널링되는 것이 바람직하다. 이 경우, Ra≠Rb≠Rc일 수 있으며, Ra, Rb, Rc가 각각 시그널링된다. UE는 빔 인덱스별로 최대 횟수만큼 PRACH를 재전송하고 다른 빔 인덱스에 대한 PRACH를 시도한다. 각 빔 인덱스별로 최대 재전송 횟수가 정의되었다 하더라도 UE가 빔 인덱스별로 최대 재전송 횟수를 결정할 수 있다. 즉, 빔 인덱스 a에 대해서 최대 재전송 횟수가 Ra회라 하더라도 UE는 해당 빔 인덱스 a에 대해서 RX(Rx <Ra )회 만큼의 PRACH를 재전송할 수 있다.
한 UE가 너무 복수의 빔 인덱스에 대해서 PRACH를 전송하게 되면, 원하는 빔 인덱스가 많은 경우 해당 UE가 너무 많은 PRACH전송을 해서 자원을 낭비할 소지가 있으므로, UE당 최대 PRACH 재전송 횟수(Rmax)가 시그널링될 수 있다. 이 때, Rmax =<Ra+Rb+Rc 일수 있다.
* UE 커버리지에 의존하는 PRACH 자원 설정
PRACH 자원을 빔별로 설정하는 것이 자원의 낭비를 초래할 수 있다. eNB로부터의 거리가 어느 정도 있어서 빔 포밍이 필요한 UE를 위해서는 빔 인덱스별로 PRACH 자원이 설정되는 것이 바람직하지만, 셀 중심(center)에 있는 UE들의 경우에는 굳이 eNB에서 RX 빔포밍을 해서 수신하지 않아도 된다. 따라서 UE의 커버리지 클래스에 따라서 PRACH 자원이 별도로 설정될 수도 있다. 공통(common) PRACH 자원을 통해서 UE가 PRACH를 전송할 수 있으며 해당 자원에서 eNB는 굳이 RX 빔포밍을 하지 않도록 할 수 있다. 해당 자원 영역은 특정 빔 방향에 한정되지 않으므로 자원의 낭비를 막을 수 있다. PRACH를 전-방위적으로 수신하도록 설정된 자원에서 PRACH를 전송하는 UE는 주로 셀 중심에 위치한 상대적으로 전파(propagation) 손실이나 블로키지(blockage)가 거의 없는, 혹은 채널 상태가 매우 좋은 UE들이다. 해당 UE들을 위해서 별도의 공통 PRACH 자원이 할당될 수 있다. 공통 PRACH 자원에서 UE는 빔 인덱스와 관계없이 반복적으로 PRACH를 전송할 수 있다.
eNB로부터의 거리가 상대적으로 멀거나 빔포밍이 필요한 UE의 경우, 상기 UE는 빔 인덱스 특정적 PRACH 자원을 활용하여 앞서 기술한 방식으로 빔 인덱스 별 PRACH를 전송할 수 있다.
앞서 기술한 순차(sequential) PRACH 전송 방식을 기준으로 기술하면, UE는 최선 빔 인덱스에 대해서 PRACH를 전송하고 이에 대해서 주어진 윈도우 내에서 RAR이 전송되지 않으면, 해당 빔 인덱스에 대한 PRACH 전송을 재시도 한다. 이러한 재시도를 x(x≥1)회 시도할 수 있으며, x회 시도 후에도 RAR 수신에 성공하지 못하면 그 다음 번 품질이 좋은 빔 인덱스에 대해서 PRACH를 전송하고 주어진 윈도우 내에서 RAR을 수신하기 위해 기다린다. 마찬가지로 해당 PRACH에 대한 RAR을 수신하지 못하면 해당 빔 인덱스에 대한 PRACH를 y(y≥1)회 시도할 수 있으며, y회 시도 이후에도 RAR을 수신하지 못하면 다음 번 품질이 좋은 빔 인덱스에 대한 PRACH 전송을 시도할 수 있다. UE가 PRACH 전송을 시도하는 횟수는 빔 인덱스마다 공통일 수 있다(즉, x=y). 혹은 빔 인덱스별로 별도의 횟수 만큼 시도할 수 있으며 이 경우 특정 빔 인덱스에 대한 수신 채널 품질이 좋을수록 PRACH 시도 횟수를 더 크게 설정될 수 있다.
* RACH 메시지 3 전송
UE가 특정 빔 인덱스에 대한 PRACH 전송 이후 해당 PRACH에 대한 RAR을 수신하였다면, UE는 가능하다면 자신의 C-RNTI와 더불어 선호하는 빔 인덱스(예, SS 블록 인덱스) 세트를 PUSCH를 통해서 전송할 수 있다. 빔 인덱스에 대한 이러한 보고를 기반으로 하여 eNB는 해당 UE에게 스케줄링할 때, 해당 빔 인덱스 세트 내에서 특정 빔 인덱스를 선택하여 전송할 수 있다.
예를 들어, PRACH 메시지 3에 UE가 하향링크 빔 RS 측정을 통해서 파악한 선호하는 하나의 빔 인덱스 또는 하나 이상의 임의의 N개의 빔 인덱스와 해당 빔 인덱스에 대한 수신 신호 강도(예, RSRP)를 포함하여 전송할 수 있다.
* RACH 메시지 4 전송
UE로부터 RACH 메시지 3를 수신한 eNB는 해당 UE로 RACH 메시지 4를 전송하는데, 일반적으로 RACH 메시지 4는 충돌 해결(contention resolution)을 위한 목적을 갖는다. 본 발명에서는 UE가 보고한 최선 N개의 빔 인덱스(빔 정보)를 기반으로 해서 eNB가 해당 UE로의 데이터 전송을 위해 사용할 빔 인덱스기 RACH 메시지 4에서 시그널링한다. eNB는 하나 이상의 복수 개의 빔 인덱스를 시그널링할 수 있다. 이로써 UE는 시그널링된 빔 인덱스에 해당하는 방향으로 자신의 PDCCH/PDSCH가 전송될 것으로 기대하고 해당 방향으로의 RX 빔포밍을 수행할 수 있다. 마찬가지로 UE가 PUSCH를 전송할 때, 시그널링된 빔 인덱스에 해당하는 방향으로 PUSCH/PUCCH등의 상향링크 전송을 수행한다.
* 빔 인덱스 갱신(update)
UE가 자신의 선호 빔 인덱스를 보고하는 방식은 다음과 같다. 아래의 방식은 UE가 선호하는 빔 방향이 변경/추가 되는 경우에도 사용될 수 있다.
> 방식 1: 빔 인덱스별 PRACH 자원 정보를 획득한 UE는 각 빔 인덱스별 PRACH 자원에 각각 PRACH를 전송함으로써, eNB에 해당 UE가 해당 빔 인덱스의 채널 품질이 좋은 것을 알릴 수 있다.
> 방식 2: UE는 각 빔 인덱스별로 RS를 측정해서 RSRP 측정을 수행할 수 있다. 이 때, RSRP 측정을 수행하는 기준 RS는 광대역으로 전송되는 BRS(Beam RS)혹은 PBCH의 복조에 사용되는 PBCH-RS일 수 있다. 혹은 PSS/SSS의 수신 신호 세기를 기준으로 하여 RSRQ 측정이 수행될 수 있다.
도 15는 본 발명을 수행하는 전송장치(10) 및 수신장치(20)의 구성요소를 나타내는 블록도이다.
전송장치(10) 및 수신장치(20)는 정보 및/또는 데이터, 신호, 메시지 등을 나르는 무선 신호를 전송 또는 수신할 수 있는 RF(Radio Frequency) 유닛(13, 23)과, 무선통신 시스템 내 통신과 관련된 각종 정보를 저장하는 메모리(12, 22), 상기 RF 유닛(13, 23) 및 메모리(12, 22) 등의 구성요소와 동작적으로 연결되어, 상기 구성요소를 제어하여 해당 장치가 전술한 본 발명의 실시예들 중 적어도 하나를 수행하도록 메모리(12, 22) 및/또는 RF 유닛(13, 23)을 제어하도록 구성된(configured) 프로세서(11, 21)를 각각 포함한다.
메모리(12, 22)는 프로세서(11, 21)의 처리 및 제어를 위한 프로그램을 저장할 수 있고, 입/출력되는 정보를 임시 저장할 수 있다. 메모리(12, 22)가 버퍼로서 활용될 수 있다.
프로세서(11, 21)는 통상적으로 전송장치 또는 수신장치 내 각종 모듈의 전반적인 동작을 제어한다. 특히, 프로세서(11, 21)는 본 발명을 수행하기 위한 각종 제어 기능을 수행할 수 있다. 프로세서(11, 21)는 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor), 마이크로 컴퓨터(microcomputer) 등으로도 불릴 수 있다. 프로세서(11, 21)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다. 하드웨어를 이용하여 본 발명을 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICs(application specific integrated circuits) 또는 DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 등이 프로세서(400a, 400b)에 구비될 수 있다. 한편, 펌웨어나 소프트웨어를 이용하여 본 발명을 구현하는 경우에는 본 발명의 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등을 포함하도록 펌웨어나 소프트웨어가 구성될 수 있으며, 본 발명을 수행할 수 있도록 구성된 펌웨어 또는 소프트웨어는 프로세서(11, 21) 내에 구비되거나 메모리(12, 22)에 저장되어 프로세서(11, 21)에 의해 구동될 수 있다.
전송장치(10)의 프로세서(11)는 상기 프로세서(11) 또는 상기 프로세서(11)와 연결된 스케줄러로부터 스케줄링되어 외부로 전송될 신호 및/또는 데이터에 대하여 소정의 부호화(coding) 및 변조(modulation)를 수행한 후 RF 유닛(13)에 전송한다. 예를 들어, 프로세서(11)는 전송하고자 하는 데이터 열을 역다중화 및 채널 부호화, 스크램블링, 변조과정 등을 거쳐 K 개의 레이어로 변환한다. 부호화된 데이터 열은 코드워드로 지칭되기도 하며, MAC 계층이 제공하는 데이터 블록인 전송 블록과 등가이다. 일 전송블록(transport block, TB)은 일 코드워드로 부호화되며, 각 코드워드는 하나 이상의 레이어의 형태로 수신장치에 전송되게 된다. 주파수 상향 변환을 위해 RF 유닛(13)은 오실레이터(oscillator)를 포함할 수 있다. RF 유닛(13)은 N t 개(N t 는 1 보다 이상의 양의 정수)의 전송 안테나를 포함할 수 있다.
수신장치(20)의 신호 처리 과정은 전송장치(10)의 신호 처리 과정의 역으로 구성된다. 프로세서(21)의 제어 하에, 수신장치(20)의 RF 유닛(23)은 전송장치(10)에 의해 전송된 무선 신호를 수신한다. 상기 RF 유닛(23)은 N r 개의 수신 안테나를 포함할 수 있으며, 상기 RF 유닛(23)은 수신 안테나를 통해 수신된 신호 각각을 주파수 하향 변환하여(frequency down-convert) 기저대역 신호로 복원한다. RF 유닛(23)은 주파수 하향 변환을 위해 오실레이터를 포함할 수 있다. 상기 프로세서(21)는 수신 안테나를 통하여 수신된 무선 신호에 대한 복호(decoding) 및 복조(demodulation)를 수행하여, 전송장치(10)가 본래 전송하고자 했던 데이터를 복원할 수 있다.
RF 유닛(13, 23)은 하나 이상의 안테나를 구비한다. 안테나는, 프로세서(11, 21)의 제어 하에 본 발명의 일 실시예에 따라, RF 유닛(13, 23)에 의해 처리된 신호를 외부로 전송하거나, 외부로부터 무선 신호를 수신하여 RF 유닛(13, 23)으로 전달하는 기능을 수행한다. 안테나는 안테나 포트로 불리기도 한다. 각 안테나는 하나의 물리 안테나에 해당하거나 하나보다 많은 물리 안테나 요소(element)의 조합에 의해 구성될(configured) 수 있다. 각 안테나로부터 전송된 신호는 수신장치(20)에 의해 더는 분해될 수 없다. 해당 안테나에 대응하여 전송된 참조신호(reference signal, RS)는 수신장치(20)의 관점에서 본 안테나를 정의하며, 채널이 일 물리 안테나로부터의 단일(single) 무선 채널인지 혹은 상기 안테나를 포함하는 복수의 물리 안테나 요소(element)들로부터의 합성(composite) 채널인지에 관계없이, 상기 수신장치(20)로 하여금 상기 안테나에 대한 채널 추정을 가능하게 한다. 즉, 안테나는 상기 안테나 상의 심볼을 전달하는 채널이 상기 동일 안테나 상의 다른 심볼이 전달되는 상기 채널로부터 도출될 수 있도록 정의된다. 복수의 안테나를 이용하여 데이터를 송수신하는 다중 입출력(Multi-Input Multi-Output, MIMO) 기능을 지원하는 RF 유닛의 경우에는 2개 이상의 안테나와 연결될 수 있다.
본 발명의 실시예들에 있어서, UE 는 상향링크에서는 전송장치(10)로 동작하고, 하향링크에서는 수신장치(20)로 동작한다. 본 발명의 실시예들에 있어서, eNB 는 상향링크에서는 수신장치(20)로 동작하고, 하향링크에서는 전송장치(10)로 동작한다. 이하, UE 에 구비된 프로세서, RF 유닛 및 메모리를 UE 프로세서, UE RF 유닛 및 UE 메모리라 각각 칭하고, eNB 에 구비된 프로세서, RF 유닛 및 메모리를 eNB 프로세서, eNB RF 유닛 및 eNB 메모리라 각각 칭한다.
본 발명의 eNB 프로세서는 본 발명의 제안들 중 어느 하나에 따라 동기 신호 및 방송 신호, 시스템 정보를 전송하도록 eNB RF 유닛을 제어할 수 있다. 상기 eNB 프로세서는 본 발명의 제안들 중 어느 하나에 따라 UE로부터 RACH를 수신하도록 상기 eNB RF 유닛을 제어할 수 있다. 상기 eNB 프로세서는 본 발명의 제안에 따라 PDCCH/PDSCH를 전송하도록 상기 eNB RF 유닛을 제어할 수 있다. 상기 eNB 프로세서는 본 발명의 제안에 따라 PUSCH/PUCCH를 수신하도록 상기 eNB RF 유닛을 제어할 수 있다.
본 발명의 UE 프로세서는 본 발명의 제안들 중 어느 하나에 따라 동기 신호 및 방송 신호, 시스템 정보를 수신하도록 UE RF 유닛을 제어할 수 있다. 상기 UE 프로세서는 본 발명의 제안들 중 어느 하나에 따라 RACH를 전송하도록 상기 UE RF 유닛을 제어할 수 있다. 상기 UE 프로세서는 본 발명의 제안에 따라 PDCCH/PDSCH를 수신하도록 상기 UE RF 유닛을 제어할 수 있다. 상기 UE 프로세서는 본 발명의 제안에 따라 PUSCH/PUCCH를 전송하도록 상기 UE RF 유닛을 제어할 수 있다.
상술한 바와 같이 개시된 본 발명의 바람직한 실시예들에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
본 발명의 실시예들은 무선 통신 시스템에서, 기지국 또는 사용자기기, 기타 다른 장비에 사용될 수 있다.

Claims (20)

  1. 사용자기기가 시스템 정보 신호를 수신함에 있어서,
    시스템 정보 요청을 위한 임의 접속 채널 자원을 나타내는 제1정보를 수신;
    상기 임의 접속 채널 자원을 이용하여 상기 시스템 정보 요청을 위한 임의 접속 채널을 전송; 및
    상기 임의 접속 채널을 전송한 후에 시스템 정보의 수신을 시도하는 것을 포함하는,
    시스템 정보 신호 수신 방법.
  2. 제1항에 있어서,
    시스템 정보 갱신을 나타내는 제2정보를 수신하는 것을 더 포함하고,
    상기 임의 접속 채널은 상기 제2정보의 수신 후에 전송되는,
    시스템 정보 신호 수신 방법.
  3. 제1항에 있어서,
    상기 제1정보는 동기 신호 혹은 방송 신호를 통해 수신되는,
    시스템 정보 신호 수신 방법.
  4. 제1항에 있어서,
    상기 임의 접속 채널 자원은 상기 시스템 정보 요청을 위해 예약된 시간-주파수 자원 혹은 임의 접속 시퀀스인,
    시스템 정보 신호 수신 방법.
  5. 제1항에 있어서,
    상기 임의 접속 채널은 상기 임의 전송 채널이 상기 시스템 정보 요청을 위한 것임을 나타내는 지시 정보를 갖는 임의 접속 메시지를 나르는,
    시스템 정보 신호 수신 방법.
  6. 기지국이 시스템 정보 신호를 전송함에 있어서,
    시스템 정보 요청을 위한 임의 접속 채널 자원을 나타내는 제1정보를 전송; 및
    상기 임의 접속 채널 자원을 이용하여 상기 시스템 정보 요청을 위한 임의 접속 채널을 수신하면 시스템 정보를 전송하는 것을 포함하는,
    시스템 정보 신호 전송 방법.
  7. 제6항에 있어서,
    시스템 정보 갱신을 나타내는 제2정보를 전송하는 것을 더 포함하고,
    상기 임의 접속 채널은 상기 제2정보의 전송 후에 수신되는,
    시스템 정보 신호 전송 방법.
  8. 제6항에 있어서,
    상기 제1정보는 동기 신호 혹은 방송 신호를 통해 전송되는,
    시스템 정보 신호 전송 방법.
  9. 제6항에 있어서,
    상기 임의 접속 채널 자원은 상기 시스템 정보 요청을 위해 예약된(reserved) 시간-주파수 자원 혹은 임의 접속 시퀀스인,
    시스템 정보 신호 전송 방법.
  10. 제6항에 있어서,
    상기 임의 접속 채널은 상기 임의 전송 채널이 상기 시스템 정보 요청을 위한 것임을 나타내는 지시 정보를 갖는 임의 접속 메시지를 나르는,
    시스템 정보 신호 전송 방법.
  11. 사용자기기가 시스템 정보 신호를 수신함에 있어서,
    무선 주파수(radio frequency, RF) 유닛, 및
    상기 RF 유닛을 제어하도록 구성된 프로세서를 포함하며, 상기 프로세서는:
    시스템 정보 요청을 위한 임의 접속 채널 자원을 나타내는 제1정보를 수신하도록 상기 RF 유닛을 제어;
    상기 임의 접속 채널 자원을 이용하여 상기 시스템 정보 요청을 위한 임의 접속 채널을 전송하도록 상기 RF 유닛을 제어; 및
    상기 임의 접속 채널을 전송한 후에 시스템 정보의 수신하도록 상기 RF 유닛을 제어하도록 구성된,
    사용자기기.
  12. 제11항에 있어서,
    상기 RF 유닛은 시스템 정보 갱신을 나타내는 제2정보를 수신하도록 구성되고,
    상기 프로세서는 상기 제2정보의 수신 후에 상기 임의 접속 채널을 전송하도록 상기 RF 유닛을 제어하도록 구성된,
    사용자기기.
  13. 제11항에 있어서,
    상기 제1정보는 동기 신호 혹은 방송 신호를 통해 수신되는,
    사용자기기.
  14. 제11항에 있어서,
    상기 임의 접속 채널 자원은 상기 시스템 정보 요청을 위해 예약된 시간-주파수 자원 혹은 임의 접속 시퀀스인,
    사용자기기.
  15. 제11항에 있어서,
    상기 임의 접속 채널은 상기 임의 전송 채널이 상기 시스템 정보 요청을 위한 것임을 나타내는 지시 정보를 갖는 임의 접속 메시지를 나르는,
    사용자기기.
  16. 기지국이 시스템 정보 신호를 전송함에 있어서,
    무선 주파수(radio frequency, RF) 유닛, 및
    상기 RF 유닛을 제어하도록 구성된 프로세서를 포함하며, 상기 프로세서는:
    시스템 정보 요청을 위한 임의 접속 채널 자원을 나타내는 제1정보를 전송하도록 상기 RF 유닛을 제어; 및
    상기 임의 접속 채널 자원을 이용하여 상기 시스템 정보 요청을 위한 임의 접속 채널을 수신하면 시스템 정보를 전송하도록 상기 RF 유닛을 제어하도록 구성된,
    기지국.
  17. 제16항에 있어서,
    상기 프로세서는 시스템 정보 갱신을 나타내는 제2정보를 전송하도록 상기 RF 유닛을 제어하도록 구성되며,
    상기 임의 접속 채널은 상기 제2정보의 전송 후에 수신되는,
    기지국.
  18. 제16항에 있어서,
    상기 제1정보는 동기 신호 혹은 방송 신호를 통해 전송되는,
    기지국.
  19. 제16항에 있어서,
    상기 임의 접속 채널 자원은 상기 시스템 정보 요청을 위해 예약된(reserved) 시간-주파수 자원 혹은 임의 접속 시퀀스인,
    기지국.
  20. 제16항에 있어서,
    상기 임의 접속 채널은 상기 임의 전송 채널이 상기 시스템 정보 요청을 위한 것임을 나타내는 지시 정보를 갖는 임의 접속 메시지를 나르는,
    기지국.
PCT/KR2017/002243 2016-03-11 2017-03-02 시스템 정보 신호 수신 방법 및 사용자기기와, 시스템 정보 신호 전송 방법 및 기지국 WO2017155238A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/084,078 US20200305197A1 (en) 2016-03-11 2017-03-02 System information signal reception method, user equipment, system information signal transmitting method and base station
EP17763500.0A EP3419340B1 (en) 2016-03-11 2017-03-02 System information signal reception method, user equipment, system information signal transmitting method and base station
KR1020187026304A KR102145743B1 (ko) 2016-03-11 2017-03-02 시스템 정보 신호 수신 방법 및 사용자기기와, 시스템 정보 신호 전송 방법 및 기지국

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US201662307319P 2016-03-11 2016-03-11
US62/307,319 2016-03-11
US201662310795P 2016-03-20 2016-03-20
US62/310,795 2016-03-20
US201662333290P 2016-05-09 2016-05-09
US62/333,290 2016-05-09
US201662349078P 2016-06-12 2016-06-12
US62/349,078 2016-06-12
US201762441573P 2017-01-03 2017-01-03
US62/441,573 2017-01-03

Publications (1)

Publication Number Publication Date
WO2017155238A1 true WO2017155238A1 (ko) 2017-09-14

Family

ID=59789535

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2017/002243 WO2017155238A1 (ko) 2016-03-11 2017-03-02 시스템 정보 신호 수신 방법 및 사용자기기와, 시스템 정보 신호 전송 방법 및 기지국
PCT/KR2017/002250 WO2017155239A2 (ko) 2016-03-11 2017-03-02 임의 접속 채널 신호 전송 방법 및 사용자기기와, 임의 접속 채널 신호 수신 방법 및 기지국

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/002250 WO2017155239A2 (ko) 2016-03-11 2017-03-02 임의 접속 채널 신호 전송 방법 및 사용자기기와, 임의 접속 채널 신호 수신 방법 및 기지국

Country Status (4)

Country Link
US (3) US11291055B2 (ko)
EP (1) EP3419340B1 (ko)
KR (1) KR102145743B1 (ko)
WO (2) WO2017155238A1 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019059675A1 (en) * 2017-09-22 2019-03-28 Samsung Electronics Co., Ltd. METHOD AND APPARATUS FOR CONFIGURING A SET OF CONTROL RESOURCES IN A WIRELESS COMMUNICATION SYSTEM
CN109561499A (zh) * 2017-09-26 2019-04-02 捷开通讯(深圳)有限公司 寻呼方法、装置及可读存储介质
WO2020081719A1 (en) * 2018-10-18 2020-04-23 Intel Corporation Dynamic radio frequency switching in new radio for radio resource management in radio resource control idle state
TWI696369B (zh) * 2018-01-11 2020-06-11 聯發科技股份有限公司 系統資訊請求之使用者設備及其方法
CN111406436A (zh) * 2017-11-27 2020-07-10 Idac控股公司 新无线电/新无线电-未许可(nr/nr-u)中的初始接入和信道接入
RU2762809C1 (ru) * 2018-02-15 2021-12-24 Нтт Докомо, Инк. Пользовательское устройство и аппарат базовой станции
EP3854001A4 (en) * 2018-10-24 2022-04-06 Samsung Electronics Co., Ltd. METHOD AND DEVICE FOR PERFORMING RADIATION SEARCH IN A MOBILE COMMUNICATION SYSTEM

Families Citing this family (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11291055B2 (en) * 2016-03-11 2022-03-29 Lg Electronics Inc. Random access channel signal transmission method and user equipment, and random access channel signal reception method and base station
US11563505B2 (en) * 2016-06-01 2023-01-24 Qualcomm Incorporated Time division multiplexing of synchronization channels
WO2017206187A1 (zh) 2016-06-03 2017-12-07 广东欧珀移动通信有限公司 传输数据的方法和装置
EP3481107B1 (en) * 2016-06-30 2022-11-02 Koninklijke Philips N.V. System information transmission method and device
US11711792B2 (en) * 2016-07-07 2023-07-25 Intel Corporation Two-tier sector RF beamforming adaptation
CN109479330B (zh) * 2016-07-15 2023-05-30 株式会社Ntt都科摩 用户终端和无线通信方法
US11678258B2 (en) * 2016-07-20 2023-06-13 Lg Electronics Inc. Method and device for receiving system information on basis of beam information
JP6959238B2 (ja) * 2016-08-09 2021-11-02 三菱電機株式会社 通信システム
CN118215144A (zh) * 2016-08-11 2024-06-18 华为技术有限公司 系统信息传输方法及装置
CN107734596B (zh) * 2016-08-12 2023-06-16 华为技术有限公司 一种物理广播信道发送和接收方法及装置
CN116782393A (zh) 2016-08-12 2023-09-19 华为技术有限公司 一种系统信息发送方法及装置
EP3522582B1 (en) * 2016-09-27 2021-03-03 Mitsubishi Electric Corporation Base station, terminal and transmission/reception method
US11202318B2 (en) * 2016-09-29 2021-12-14 Huawei Technologies Co., Ltd. Initial access method and apparatus
WO2018062456A1 (ja) * 2016-09-29 2018-04-05 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
CN107889190B (zh) * 2016-09-30 2023-02-03 华为技术有限公司 一种系统消息的获取、发送方法及相关装置
KR102645317B1 (ko) * 2016-11-03 2024-03-11 삼성전자 주식회사 mmWave 시스템을 위한 beamforming 기반 송수신 동작 방식 및 장치
CN112087814B (zh) * 2016-12-26 2022-10-28 Oppo广东移动通信有限公司 随机接入方法和装置
CN117062096A (zh) 2017-01-06 2023-11-14 株式会社Ntt都科摩 终端、前导码发送方法、基站以及无线通信系统
US11284440B2 (en) * 2017-01-16 2022-03-22 Samsung Electronics Co., Ltd. Method and apparatus for performing random access
JP2020065094A (ja) * 2017-02-03 2020-04-23 株式会社Nttドコモ 基地局及びユーザ装置
DE112018000358T5 (de) * 2017-03-07 2019-09-26 Intel IP Corporation Techniken für verbessertes strahlmanagement
EP3373659A1 (en) * 2017-03-10 2018-09-12 Fujitsu Limited Synchronization and broadcast signal design for 5g
WO2018169278A1 (ko) * 2017-03-14 2018-09-20 엘지전자 주식회사 무선 통신 시스템에서 단말과 기지국 간 임의 접속 절차 수행 방법 및 이를 지원하는 장치
US10505799B2 (en) * 2017-03-20 2019-12-10 Motorola Mobility Llc System information for changing a configuration
WO2018173229A1 (ja) * 2017-03-23 2018-09-27 株式会社Nttドコモ ユーザ装置、及びランダムアクセスプリアンブル送信方法
US10257835B2 (en) * 2017-03-24 2019-04-09 At&T Intellectual Property I, L.P. Facilitating enhanced beam management in a wireless communication system
JP2020109886A (ja) * 2017-04-28 2020-07-16 シャープ株式会社 端末装置および方法
CN110612760B (zh) * 2017-05-02 2023-12-05 株式会社Ntt都科摩 基站装置
CN114698020A (zh) * 2017-05-02 2022-07-01 株式会社Ntt都科摩 终端、终端的无线通信方法、基站及系统
DK3609227T3 (da) * 2017-05-04 2021-05-03 Guangdong Oppo Mobile Telecommunications Corp Ltd Fremgangsmåde, netværksanordning og terminalanordning til transmission af signal
EP3527009B1 (en) * 2017-05-04 2020-04-29 Ofinno, LLC Rach power offset
US11102733B2 (en) * 2017-05-05 2021-08-24 Apple Inc. Absolute power control tolerance for NB-IoT/MTC
CN108882259B (zh) * 2017-05-16 2020-10-27 维沃移动通信有限公司 一种随机接入的方法、终端、源基站和目标基站
WO2018222931A1 (en) 2017-06-02 2018-12-06 Intel IP Corporation Beamformed measurement for new radio (nr)
KR102362403B1 (ko) * 2017-06-05 2022-02-14 삼성전자 주식회사 차세대 이동통신 시스템에서 프리엠블을 이용하여 시스템 정보를 요청하는 방법 및 장치
US12075370B2 (en) * 2017-06-13 2024-08-27 Qualcomm Incorporated Signaling for detected synchronization signal blocks
CN112399607B (zh) * 2017-06-14 2024-03-29 维沃移动通信有限公司 一种系统信息传输方法、终端及网络设备
WO2018227451A1 (en) * 2017-06-15 2018-12-20 Nec Corporation Methods and devices for physical random access channel power control
CN109151902B (zh) * 2017-06-16 2021-09-03 维沃移动通信有限公司 一种随机接入过程前导码重传计数的方法及终端
US10980064B2 (en) * 2017-06-16 2021-04-13 Futurewei Technologies, Inc. Radio communications using random access in wireless networks
CN109121198A (zh) * 2017-06-23 2019-01-01 维沃移动通信有限公司 一种非授权频段下的信息传输方法及网络设备
US10425901B2 (en) 2017-06-26 2019-09-24 Qualcomm Incorporated Uplink transmit power control during random access procedures
US11259320B2 (en) * 2017-07-21 2022-02-22 Qualcomm Incorporated Multiple-beam uplink random access channel messages
WO2019030874A1 (ja) 2017-08-09 2019-02-14 株式会社Nttドコモ ユーザ装置
CN111034143B (zh) * 2017-08-10 2023-07-07 三星电子株式会社 用于确定上行链路发送定时的方法和装置
CN109392186B (zh) * 2017-08-10 2021-01-08 维沃移动通信有限公司 随机接入方法、终端、网络设备及计算机可读存储介质
CN109039978B (zh) * 2017-08-11 2020-03-20 华为技术有限公司 基于序列的信号处理方法、通信设备及通信系统
CN109392156B (zh) * 2017-08-11 2023-10-24 华为技术有限公司 信号传输方法、相关装置及系统
WO2019054824A1 (en) 2017-09-15 2019-03-21 Samsung Electronics Co., Ltd. APPARATUS AND METHOD FOR IDENTIFYING DOWNLINK TRANSMISSION BEAM IN A CELLULAR NETWORK
CN109600820B (zh) * 2017-09-30 2023-12-08 华为技术有限公司 一种数据传输方法、网络设备及终端设备
US11533750B2 (en) 2017-10-09 2022-12-20 Qualcomm Incorporated Random access response techniques based on synchronization signal block transmissions
WO2019082152A1 (en) * 2017-10-27 2019-05-02 Telefonaktiebolaget Lm Ericsson (Publ) RANDOM ACCESS WITHOUT CONFLICT WITH MULTIPLE SSB
WO2019097653A1 (ja) * 2017-11-16 2019-05-23 株式会社Nttドコモ ユーザ装置及びプリアンブル送信方法
WO2019097441A1 (en) * 2017-11-16 2019-05-23 Telefonaktiebolaget Lm Ericsson (Publ) Response beam aggregation for paging on higher carrier frequencies in nr
US10785080B2 (en) 2018-01-11 2020-09-22 Qualcomm Incorporated Determining a number of RACH preamble messages for transmission
CN110149642B (zh) * 2018-02-12 2021-12-10 华为技术有限公司 一种中继节点同步信号的发送方法及装置
EP3534651A1 (en) * 2018-02-15 2019-09-04 Comcast Cable Communications, LLC Wireless communications using wireless device information
JP7059395B2 (ja) * 2018-04-04 2022-04-25 中興通訊股▲ふん▼有限公司 情報要求に対するランダムアクセスチャネルリソースの割り当て
CN110446271B (zh) * 2018-05-02 2022-11-01 中国移动通信有限公司研究院 一种随机接入的方法、用户设备及网络侧设备
KR102444420B1 (ko) * 2018-05-10 2022-09-19 삼성전자 주식회사 광대역 무선 통신 시스템에서 상향링크 시간정렬을 제어하는 방법 및 장치
CN110691418B (zh) * 2018-07-05 2021-06-22 华硕电脑股份有限公司 在未授权小区中执行随机接入资源选择的方法和设备
EP3824690A4 (en) * 2018-07-17 2022-03-02 ZTE Corporation METHOD, DEVICE AND SYSTEMS FOR TRANSMISSION OF SIGNAL AND CHANNEL INFORMATION
KR20210030338A (ko) * 2018-08-07 2021-03-17 삼성전자주식회사 시스템 정보 요청을 위한 rach 오케이전들을 선택하는 시스템 및 방법
CN110831226B (zh) * 2018-08-08 2023-11-21 夏普株式会社 由用户设备执行的方法以及用户设备
US11950290B2 (en) 2018-08-09 2024-04-02 Lg Electronics Inc. Method for transmitting RACH by terminal in wireless communication system and terminal using same method
WO2020037257A1 (en) * 2018-08-17 2020-02-20 Intel Corporation Long transmission duration for wireless systems
US10686585B2 (en) * 2018-08-31 2020-06-16 Apple Inc. Methods and devices for broadcast channel decoding
US12089201B2 (en) 2018-09-28 2024-09-10 Samsung Electronics Co., Ltd Method and device for transmitting control information for distinguishing user in wireless communication system
WO2020091191A1 (ko) * 2018-11-01 2020-05-07 엘지전자 주식회사 차세대 통신 시스템에서 릴레이 노드를 위한 디스커버리 신호 송수신 방법 및 이를 위한 장치
US11095356B2 (en) * 2018-11-02 2021-08-17 Qualcomm Incorporated Secondary cell recovery for secondary cell groups
EP3903537A4 (en) 2018-12-28 2022-01-12 ZTE Corporation METHODS, APPARATUS AND SYSTEMS FOR REDUCING ACCESS TIME IN WIRELESS COMMUNICATION
US20200245157A1 (en) * 2019-01-24 2020-07-30 Qualcomm Incorporated Techniques for indicating a preferred beam in wireless communication random access
US11974325B2 (en) 2019-02-01 2024-04-30 Lg Electronics Inc. Method for transmitting and receiving physical random access channel preamble in wireless communication system and apparatus therefor
WO2020167202A2 (en) * 2019-02-14 2020-08-20 Telefonaktiebolaget Lm Ericsson (Publ) Random access procedure
CN111436138A (zh) * 2019-02-14 2020-07-21 维沃移动通信有限公司 信号传输方法、设备及系统
WO2020167048A1 (ko) * 2019-02-15 2020-08-20 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치
US10492130B1 (en) * 2019-03-20 2019-11-26 Qualcomm Incorporated Search scheduling for wireless communications
WO2020204681A1 (ko) * 2019-03-29 2020-10-08 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
US12016021B2 (en) * 2019-04-05 2024-06-18 Qualcomm Incorporated Reporting uplink control information in a random access procedure
JP7520883B2 (ja) * 2019-04-30 2024-07-23 富士通株式会社 ランダムアクセス方法、装置及び通信システム
AU2019443820B2 (en) 2019-04-30 2023-05-11 Zte Corporation Wireless communication with conflict avoidance
US11751249B2 (en) 2019-06-05 2023-09-05 Qualcomm Incorporated Random access diversity
US11234259B2 (en) 2020-07-15 2022-01-25 Qualcomm Incorporated Managing wireless device communication with a base station
WO2021021448A1 (en) * 2019-07-31 2021-02-04 Qualcomm Incorporated Managing wireless device communication to obtain system information from a base station while reducing collisions
CN112787785B (zh) * 2019-11-08 2022-08-26 华为技术有限公司 一种波束建立方法及装置
CN111901081A (zh) * 2020-01-16 2020-11-06 中兴通讯股份有限公司 数据传输方法、装置、第一通信节点和第二通信节点
KR20210105772A (ko) * 2020-02-19 2021-08-27 삼성전자주식회사 무선 통신 시스템에서 단말이 기지국의 부하에 기초하여 기지국으로의 접속을 제어하는 방법 및 그 단말
EP4070581B1 (en) * 2020-02-21 2024-07-10 Nokia Technologies Oy Determination of contention resolution timer
US11570808B2 (en) * 2020-04-08 2023-01-31 Qualcomm Incorporated Two-step random access procedure in wireless communication
US11546908B2 (en) * 2020-06-10 2023-01-03 Qualcomm Incorporated History augmented synchronization signal based antenna beam selection
EP4243548A4 (en) * 2020-11-13 2023-12-20 Guangdong Oppo Mobile Telecommunications Corp., Ltd. WIRELESS COMMUNICATION METHOD, TERMINAL DEVICE AND NETWORK DEVICE
KR20220084704A (ko) * 2020-12-14 2022-06-21 삼성전자주식회사 무선 통신 시스템에서 ssb 송수신 방법 및 장치
US11876871B2 (en) * 2021-02-18 2024-01-16 Verizon Patent And Licensing Inc. Systems and methods for providing firmware over-the-air updates
US11856609B2 (en) * 2021-03-30 2023-12-26 Qualcomm Incorporated Random access channel preamble transmission parameters based on coverage enhancement level
CN115002875B (zh) * 2022-05-31 2024-03-01 山东闻远通信技术有限公司 一种搜索次强小区的方法、装置、电子设备及存储介质
WO2024092805A1 (en) * 2022-11-04 2024-05-10 Zte Corporation Systems, methods, and non-transitory processor-readable media for transmission power determination
US20240163928A1 (en) * 2022-11-15 2024-05-16 Nokia Technologies Oy Random access

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110011389A (ko) * 2009-07-28 2011-02-08 엘지전자 주식회사 냉장고
KR20110083547A (ko) * 2010-01-12 2011-07-20 삼성전자주식회사 무선통신시스템에서 랜덤접근채널 액세스 장치 및 방법
WO2012150809A2 (ko) * 2011-05-02 2012-11-08 주식회사 팬택 랜덤 액세스 수행 장치 및 방법
KR20140003633A (ko) * 2011-06-15 2014-01-09 엘지전자 주식회사 랜덤 액세스 수행 방법 및 장치
WO2014042468A2 (ko) * 2012-09-13 2014-03-20 엘지전자 주식회사 무선 통신 시스템에서 시스템 정보의 획득을 위한 운영 방법 및 이를 지원하는 장치

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2447878A (en) 2006-10-04 2008-10-01 Nec Corp Signalling system information in mobile telecommunications
EA025361B1 (ru) * 2006-10-31 2016-12-30 Шарп Кабусики Кайся Способ обработки в базовой станции и способ обработки в мобильной станции
EP2015478B1 (en) * 2007-06-18 2013-07-31 LG Electronics Inc. Method of performing uplink synchronization in wireless communication system
EP2312874B1 (en) * 2008-08-04 2017-12-27 Sun Patent Trust Base station, terminal, band allocation method, and downlink data communication method
EA201170951A1 (ru) * 2009-01-20 2012-02-28 Шарп Кабусики Кайся Устройство мобильной станции, устройство базовой станции и способ определения синхронизации радиолинии
WO2011005011A2 (ko) * 2009-07-06 2011-01-13 엘지전자 주식회사 무선 통신 시스템에서 임의 접속 방법 및 장치
US8644277B2 (en) * 2009-08-06 2014-02-04 Qualcomm Incorporated Dynamic selection of random access channel configurations
JP2011035861A (ja) * 2009-08-06 2011-02-17 Sharp Corp 移動局装置、無線通信方法および移動局装置の制御プログラム
KR20110113897A (ko) 2010-04-12 2011-10-19 주식회사 팬택 다수의 요소 반송파를 운영하는 무선 통신 시스템에서 업링크 타이밍 그룹에 대한 정보를 송수신하는 방법 및 장치
US8861452B2 (en) * 2010-08-16 2014-10-14 Qualcomm Incorporated Method and apparatus for use of licensed spectrum for control channels in cognitive radio communications
KR20120044198A (ko) 2010-10-27 2012-05-07 한국전자통신연구원 임의접속 방법
JP5809284B2 (ja) * 2010-11-05 2015-11-10 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるハンドオーバ実行方法
US8437303B2 (en) * 2011-07-04 2013-05-07 Ofinno Technologies, Llc System frame number in multicarrier systems
EP2750311B1 (en) * 2011-08-23 2018-08-08 LG Electronics Inc. Method for transmitting and receiving synchronization signals in wireless access system and corresponding apparatus
US9185669B2 (en) * 2011-09-08 2015-11-10 Lg Electronics Inc. Synchronization method for distributed antenna system and apparatus using the same
CN104081862B (zh) * 2011-12-20 2018-01-02 Lg 电子株式会社 在无线通信系统中执行随机接入过程的方法及其设备
US8964780B2 (en) * 2012-01-25 2015-02-24 Ofinno Technologies, Llc Sounding in multicarrier wireless communications
EP3242414B1 (en) * 2012-03-27 2018-06-06 Fujitsu Limited Presence indication in a wireless communication system
US9967805B2 (en) 2013-02-25 2018-05-08 Telefonaktiebolaget Lm Ericsson (Publ) Extended system information distribution mechanisms
US10200139B2 (en) 2013-03-22 2019-02-05 Lg Electronics Inc. Method and apparatus for performing interference coordination in wireless communication system
WO2014165712A1 (en) * 2013-04-03 2014-10-09 Interdigital Patent Holdings, Inc. Cell detection, identification, and measurements for small cell deployments
JP6283110B2 (ja) * 2013-07-22 2018-02-21 ゼットティーイー ウィストロン テレコム エービー セル同期および同期セルインジケーション
JP2015041818A (ja) 2013-08-20 2015-03-02 株式会社Nttドコモ 同期信号受信方法及び移動局装置
EP3075089B1 (en) * 2013-11-27 2021-09-08 Telefonaktiebolaget LM Ericsson (publ) Sending and detecting synchronization signals and an associated information message
WO2015081993A1 (en) * 2013-12-04 2015-06-11 Telefonaktiebolaget L M Ericsson (Publ) Backhaul beam searching
EP2887561B1 (en) * 2013-12-18 2019-07-03 Alcatel Lucent Beamforming apparatuses, methods and computer programs for a base station transceiver and a mobile transceiver
CN106105070B (zh) 2014-02-13 2018-09-21 Lg电子株式会社 在无线通信系统中用于发送/接收供d2d通信的同步信号的方法及其装置
US9871568B2 (en) * 2014-08-11 2018-01-16 Intel Corporation System detection in a high frequency band radio access technology architecture
US9374796B2 (en) * 2014-10-10 2016-06-21 Qualcomm Incorporated Channel structure for a cellular internet of things system
JP6553202B2 (ja) * 2015-03-17 2019-07-31 テレフオンアクチーボラゲット エルエム エリクソン(パブル) ワイヤレス通信ネットワークにおける同期
US11382081B2 (en) * 2015-10-16 2022-07-05 Samsung Electronics Co., Ltd. Method and apparatus for system information acquisition in wireless communication system
JP6608530B2 (ja) * 2015-10-21 2019-11-20 テレフオンアクチーボラゲット エルエム エリクソン(パブル) アクセス情報を扱うための方法、ネットワークノード及びワイヤレスデバイス
PT3383081T (pt) 2015-12-31 2020-09-04 Huawei Tech Co Ltd Método de transmissão de informações do sistema, estação de base e equipamento de utilizador
KR102674427B1 (ko) 2016-02-26 2024-06-13 삼성전자 주식회사 빔포밍이 적용된 시스템에서의 랜덤 액세스를 수행하는 장치 및 방법
CN113115405B (zh) 2016-02-29 2022-02-01 三星电子株式会社 用于发信号通知系统信息的设备和方法
US11291055B2 (en) * 2016-03-11 2022-03-29 Lg Electronics Inc. Random access channel signal transmission method and user equipment, and random access channel signal reception method and base station
US10531384B2 (en) * 2016-04-05 2020-01-07 Qualcomm Incorporated Scheduling request collection after a discontinuous reception period

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110011389A (ko) * 2009-07-28 2011-02-08 엘지전자 주식회사 냉장고
KR20110083547A (ko) * 2010-01-12 2011-07-20 삼성전자주식회사 무선통신시스템에서 랜덤접근채널 액세스 장치 및 방법
WO2012150809A2 (ko) * 2011-05-02 2012-11-08 주식회사 팬택 랜덤 액세스 수행 장치 및 방법
KR20140003633A (ko) * 2011-06-15 2014-01-09 엘지전자 주식회사 랜덤 액세스 수행 방법 및 장치
WO2014042468A2 (ko) * 2012-09-13 2014-03-20 엘지전자 주식회사 무선 통신 시스템에서 시스템 정보의 획득을 위한 운영 방법 및 이를 지원하는 장치

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10582486B2 (en) 2017-09-22 2020-03-03 Samsung Electronics Co., Ltd. Method and apparatus for control resource set configuration for common control
WO2019059675A1 (en) * 2017-09-22 2019-03-28 Samsung Electronics Co., Ltd. METHOD AND APPARATUS FOR CONFIGURING A SET OF CONTROL RESOURCES IN A WIRELESS COMMUNICATION SYSTEM
CN111149402A (zh) * 2017-09-22 2020-05-12 三星电子株式会社 用于无线通信系统中的控制资源集配置的方法和装置
CN111149402B (zh) * 2017-09-22 2023-08-25 三星电子株式会社 用于无线通信系统中的控制资源集配置的方法和装置
CN109561499A (zh) * 2017-09-26 2019-04-02 捷开通讯(深圳)有限公司 寻呼方法、装置及可读存储介质
CN109561499B (zh) * 2017-09-26 2021-09-07 捷开通讯(深圳)有限公司 寻呼方法、装置及可读存储介质
CN111406436B (zh) * 2017-11-27 2023-12-08 交互数字专利控股公司 新无线电/新无线电-未许可中的初始接入和信道接入
CN111406436A (zh) * 2017-11-27 2020-07-10 Idac控股公司 新无线电/新无线电-未许可(nr/nr-u)中的初始接入和信道接入
US11844105B2 (en) 2017-11-27 2023-12-12 Interdigital Patent Holdings, Inc. Initial access and channel access in new radio/new radio-unlicensed (NR/NR-U)
TWI696369B (zh) * 2018-01-11 2020-06-11 聯發科技股份有限公司 系統資訊請求之使用者設備及其方法
RU2762809C1 (ru) * 2018-02-15 2021-12-24 Нтт Докомо, Инк. Пользовательское устройство и аппарат базовой станции
WO2020081719A1 (en) * 2018-10-18 2020-04-23 Intel Corporation Dynamic radio frequency switching in new radio for radio resource management in radio resource control idle state
EP3854001A4 (en) * 2018-10-24 2022-04-06 Samsung Electronics Co., Ltd. METHOD AND DEVICE FOR PERFORMING RADIATION SEARCH IN A MOBILE COMMUNICATION SYSTEM

Also Published As

Publication number Publication date
KR102145743B9 (ko) 2021-10-15
EP3419340A4 (en) 2019-08-14
EP3419340A1 (en) 2018-12-26
US11729839B2 (en) 2023-08-15
EP3419340B1 (en) 2024-05-01
US20220159719A1 (en) 2022-05-19
US20200305197A1 (en) 2020-09-24
KR102145743B1 (ko) 2020-08-19
WO2017155239A2 (ko) 2017-09-14
WO2017155239A3 (ko) 2018-08-02
KR20180116313A (ko) 2018-10-24
US11291055B2 (en) 2022-03-29
US20200296765A1 (en) 2020-09-17

Similar Documents

Publication Publication Date Title
WO2017155238A1 (ko) 시스템 정보 신호 수신 방법 및 사용자기기와, 시스템 정보 신호 전송 방법 및 기지국
WO2018128218A1 (ko) 임의 접속 과정 수행 방법 및 사용자기기
WO2018084663A1 (en) Method and user equipment for transmitting random access signals, and method and base station for receiving random access signals
WO2018084662A1 (en) Method and user equipment for transmitting random access signals, and method and base station for receiving random access signals
WO2018008916A2 (ko) 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국
WO2021034084A1 (en) Repetition of prach preamble transmission for ues
WO2018030756A1 (ko) 채널 상태 정보 전송 방법 및 사용자기기와, 채널 상태 정보 수신 방법 및 기지국
WO2018164478A1 (ko) 임의 접속 프리앰블을 전송하는 방법과 사용자기기
WO2018203674A1 (ko) 임의 접속 채널을 송수신하는 방법 및 이를 위한 장치
WO2017099526A1 (ko) 하향링크 채널 수신 방법 및 사용자기기와, 하향링크 채널 전송 방법 및 기지국
WO2018203628A1 (ko) 임의 접속 채널 신호를 전송하는 방법과 사용자기기, 및 임의 접속 채널 신호를 수신하는 방법 및 기지국
WO2017209547A1 (ko) 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국
WO2017217829A1 (ko) 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국
WO2018182283A1 (ko) 임의 접속 채널을 전송하는 방법과 사용자기기, 및 임의 접속 채널을 수신하는 방법 및 기지국
WO2018174586A1 (ko) 빔 회복 과정 수행 방법과 사용자기기, 및 빔 회복 과정 지원 방법 및 기지국
WO2017018758A1 (ko) 하향링크 제어 정보 수신 방법 및 사용자기기와, 하향링크 제어 정보 전송 방법 및 기지국
WO2018230984A1 (ko) 동기 신호 블록을 측정하는 방법 및 이를 위한 장치
WO2017018759A1 (ko) 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국
WO2018174494A1 (ko) 임의 접속 프리앰블을 전송하는 방법과 사용자기기, 및 임의 접속 프리앰블을 수신하는 방법 및 기지국
WO2018016923A1 (ko) 하향링크 채널 수신 방법 및 사용자기기와, 하향링크 채널 전송 방법 및 기지국
WO2018143760A1 (ko) 측정 수행 방법 및 사용자기기
WO2016122258A1 (ko) 신호 수신 방법 및 사용자기기와, 신호 수신 방법 및 기지국
WO2017018761A1 (ko) 제어 정보 수신 방법 및 사용자기기와, 제어 정보 수신 방법 및 기지국
WO2016108673A1 (ko) 상향링크 제어 정보 전송 방법 및 사용자기기와, 상향링크 제어 정보 수신 방법 및 기지국
WO2018021825A1 (ko) 상향링크 신호 전송 방법 및 사용자기기와, 상향링크 신호 수신 방법 및 기지국

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187026304

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017763500

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017763500

Country of ref document: EP

Effective date: 20180919

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763500

Country of ref document: EP

Kind code of ref document: A1