CN111406436A - 新无线电/新无线电-未许可(nr/nr-u)中的初始接入和信道接入 - Google Patents

新无线电/新无线电-未许可(nr/nr-u)中的初始接入和信道接入 Download PDF

Info

Publication number
CN111406436A
CN111406436A CN201880076687.3A CN201880076687A CN111406436A CN 111406436 A CN111406436 A CN 111406436A CN 201880076687 A CN201880076687 A CN 201880076687A CN 111406436 A CN111406436 A CN 111406436A
Authority
CN
China
Prior art keywords
rach
block
wtru
blocks
preamble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880076687.3A
Other languages
English (en)
Other versions
CN111406436B (zh
Inventor
凯尔·正林·潘
郗风君
叶春宣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
InterDigital Patent Holdings Inc
Original Assignee
IDAC Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IDAC Holdings Inc filed Critical IDAC Holdings Inc
Priority to CN202311560639.0A priority Critical patent/CN117750532A/zh
Priority to CN202311558184.9A priority patent/CN117715225A/zh
Publication of CN111406436A publication Critical patent/CN111406436A/zh
Application granted granted Critical
Publication of CN111406436B publication Critical patent/CN111406436B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/008Transmission of channel access control information with additional processing of random access related information at receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

用于解决可能的随机接入信道(RACH)时机的冲突的方法、系统和设备。无线发射接收单元(WTRU)可以接收剩余最小系统信息(RMSI)中的关于包括RACH时机配置的半静态UL/DL信息的指示以及关于一个或多个实际发送的同步信号(SS)块的指示。然后,WTRU可以基于配置信息评估是否存在RACH时机,并且确定该RACH时机中的任何一个是否有效,其中该RACH时机可以基于该RACH时机是在所有实际发送的SS块指示之后和/或是否禁用或启用SS块覆盖而有效。WTRU可以在已被确定为有效的一个或多个所述RACH时机中发送RACH。

Description

新无线电/新无线电-未许可(NR/NR-U)中的初始接入和信道 接入
相关申请的交叉引用
本申请要求2017年11月27日提交的美国临时申请No.62/590,936和2018年2月14日提交的美国临时申请No.62/630,692的权益,其内容通过引用结合到本文中。
背景技术
第五代(5G)无线系统是超越第四代(4G)标准的下一电信标准。5G通常旨在提供比4G更高的容量,允许更高密度的移动宽带用户、更高的可靠性、以及支持设备到设备和大规模机器通信。根据国际电信联盟无线电通信(ITU-R)、下一代移动网络(NGMN)和第三代合作伙伴计划(3GPP)提出的一般要求,5G系统用例的广泛分类可能包括增强型移动宽带(eMBB)、大规模机器类型通信(mMTC)、以及超可靠和低延迟通信(URLLC)。这些用例可能关注不同的要求,例如高数据速率、高频谱效率、低功率和高能效、低延迟和高可靠性。对于各种这样的部署方案,可以考虑范围从700MHz到80GHz的各种频带。
随着载波频率的增加,严重的路径损耗可能成为保证无线设备的充分覆盖的关键限制。例如,毫米波系统中的传输可能遭受非视线损耗,例如衍射损耗、穿透损耗、氧吸收损失、叶子(foliage)损失等。在初始接入期间,基站(BS)和无线发射接收单元(WTRU)可能需要克服这些高路径损耗并相互发现。利用数十个甚至数百个天线元件在5G无线系统中产生波束形成信号是通过提供显著波束形成增益来补偿严重路径损耗的有效方法。然而,这些波束形成的信号在初始接入或随机接入过程期间可能彼此冲突。例如,同步信号(SS)块、随机接入信道(RACH)资源、控制信道(DL/UL)和/或数据信道(DL/UL)可能在5G场景中彼此冲突。
发明内容
用于解决可能的随机接入信道(RACH)时机的冲突的方法、系统和设备。无线发射接收单元(WTRU)可以在经由PBCH的剩余最小系统信息(RMSI)中接收关于包含RACH时机配置的半静态UL/DL信息的指示以及关于一个或多个实际发送的同步信号(SS)块的指示。然后,WTRU可以基于所述配置信息评估是否存在RACH时机,并且确定RACH时机中的任何一个是否有效,其中RACH时机可以基于以下而有效:RACH时机是在所有实际发送的SS块指示之后和/或是否禁用或启用SS块覆盖。WTRU可以在已被确定为有效的一个或多个RACH时机中发送RACH。
附图说明
可以从以下结合附图的示例给出的描述中获得更详细的理解,其中附图中相同的附图标记表示相同的元件,并且其中:
图1A是示出了可以实施所公开的一个或多个实施例的例示通信系统的系统图示。
图1B是示出了根据一个实施例的可以在图1A所示的通信系统内部使用的例示无线发射/接收单元(WTRU)的系统图示。
图1C是示出了根据一个实施例的可以在图1A所示的通信系统内部使用的例示无线电接入网络(RAN)和例示核心网络(CN)的系统图示。
图1D是示出了根据一个实施例的可以在图1A所示的通信系统内部使用的另一个例示RAN和另一个例示CN的系统图示。
图2A是示出了RACH/PRACH传输的示例的示图;
图2B是示出了基于本文描述的一个或多个实施例的用于没有SS块冲突的RACH传输的示例过程的流程图;
图2C是示出了基于本文描述的一个或多个实施例的没有SS块冲突的PRACH传输的示例的示图;
图3是示出了前导码和同步信号(SS)块的示例重叠的示图;
图4是示出了前导码和SS块关联的示例方法的示图;
图5是示出了RACH时机(或RACH资源)和SS块关联的示例方法的示图;
图6是示出了到RACH的SS块关联和映射示例方法的示图;
图7是示出了到RACH的SS块关联和映射另一示例方法的示图;
图8是示出了每个RACH时机类型的窗口长度的示例配置的示图,其中RACH时机类型的窗口长度与RACH配置周期相同;
图9是示出了每个随机接入信道(RACH)时机类型的窗口长度的示例配置的示图,其中RACH时机类型的窗口长度是RACH配置周期的两倍;
图10是示出了每个随机接入信道(RACH)时机类型的窗口长度的示例配置的示图,其中RACH时机类型的窗口长度小于RACH配置周期;以及
图11是示出了基于SS波束报告的前导码的示例冗余版本的示图。
具体实施方式
图1A是示出了可以实施所公开的一个或多个实施例的例示通信系统100的图示。该通信系统100可以是为多个无线用户提供语音、数据、视频、消息传递、广播等内容的多址接入系统。该通信系统100可以通过共享包括无线带宽在内的系统资源而使多个无线用户能够访问此类内容。举例来说,通信系统100可以使用一种或多种信道接入方法,例如码分多址(CDMA)、时分多址(TDMA)、频分多址(FDMA)、正交FDMA(OFDMA)、单载波FDMA(SC-FDMA)、零尾唯一字DFT扩展OFDM(ZT UW DTS-s OFDM)、唯一字OFDM(UW-OFDM)、资源块过滤OFDM以及滤波器组多载波(FBMC)等等。
如图1A所示,通信系统100可以包括无线发射/接收单元(WTRU)102a、102b、102c、102d、RAN 104/113、CN 106/115、公共交换电话网络(PSTN)108、因特网110以及其他网络112,然而应该了解,所公开的实施例设想了任意数量的WTRU、基站、网络和/或网络部件。每一个WTRU 102a、102b、102c、102d可以是被配置成在无线环境中工作和/或通信的任何类型的设备。举例来说,任一WTRU 102a、102b、102c、102d都可被称为“站”和/或“STA”,其可以被配置成发射和/或接收无线信号,并且可以包括用户设备(UE)、移动站、固定或移动订户单元、基于签约的单元、寻呼机、蜂窝电话、个人数字助理(PDA)、智能电话、膝上型计算机、上网本、个人计算机、无线传感器、热点或Mi-Fi设备、物联网(IoT)设备、手表或其他可穿戴设备、头戴显示器(HMD)、车辆、无人机、医疗设备和应用(例如远程手术)、工业设备和应用(例如机器人和/或在工业和/或自动处理链环境中工作的其他无线设备)、消费类电子设备、以及在商业和/或工业无线网络上工作的设备等等。WTRU 102a、102b、102c、102d中的任意者可被可交换地称为UE。
通信系统100还可以包括基站114a和/或基站114b。每一个基站114a、114b可以是被配置成通过以无线方式与WTRU 102a、102b、102c、102d中的至少一个无线对接来促使其接入一个或多个通信网络(例如CN106/115、因特网110、和/或其他网络112)的任何类型的设备。举例来说,基站114a、114b可以是基地收发信台(BTS)、节点B、e节点B、家庭节点B、家庭e节点B、gNB、NR节点B、站点控制器、接入点(AP)、以及无线路由器等等。虽然每一个基站114a、114b都被描述成了单个部件,然而应该了解。基站114a、114b可以包括任何数量的互连基站和/或网络部件。
基站114a可以是RAN 104/113的一部分,并且所述RAN还可以包括其他基站和/或网络部件(未显示),例如基站控制器(BSC)、无线电网络控制器(RNC)、中继节点等等。基站114a和/或基站114b可被配置成在名为小区(未显示)的一个或多个载波频率上发射和/或接收无线信号。这些频率可以处于授权频谱、无授权频谱或是授权与无授权频谱的组合之中。小区可以为相对固定或者有可能随时间变化的特定地理区域提供无线服务覆盖。小区可被进一步分成小区扇区。例如,与基站114a相关联的小区可被分为三个扇区。由此,在一个实施例中,基站114a可以包括三个收发信机,也就是说,每一个收发信机都对应于小区的一个扇区。在一个实施例中,基站114a可以使用多输入多输出(MIMO)技术,并且可以为小区的每一个扇区使用多个收发信机。举例来说,通过使用波束成形,可以在期望的空间方向上发射和/或接收信号。
基站114a、114b可以通过空中接口116来与WTRU 102a、102b、102c、102d中的一个或多个进行通信,其中所述空中接口可以是任何适当的无线通信链路(例如射频(RF)、微波、厘米波、微米波、红外线(IR)、紫外线(UV)、可见光等等)。空中接口116可以使用任何适当的无线电接入技术(RAT)来建立。
更具体地说,如上所述,通信系统100可以是多址接入系统,并且可以使用一种或多种信道接入方案,例如CDMA、TDMA、FDMA、OFDMA以及SC-FDMA等等。例如,RAN 104/113中的基站114a与WTRU 102a、102b、102c可以实施某种无线电技术,例如通用移动电信系统(UMTS)陆地无线电接入(UTRA),其中所述技术可以使用宽带CDMA(WCDMA)来建立空中接口115/116/117。WCDMA可以包括如高速分组接入(HSPA)和/或演进型HSPA(HSPA+)之类的通信协议。HSPA可以包括高速下行链路(DL)分组接入(HSDPA)和/或高速UL分组接入(HSUPA)。
在一个实施例中,基站114a和WTRU 102a、102b、102c可以实施某种无线电技术,例如演进型UMTS陆地无线电接入(E-UTRA),其中所述技术可以使用长期演进(LTE)和/或先进LTE(LTE-A)和/或先进LTA Pro(LTE-A Pro)来建立空中接口116。
在一个实施例中,基站114a和WTRU 102a、102b、102c可以实施某种无线电技术,例如NR无线电接入,其中所述无线电技术可以使用新型无线电(NR)来建立空中接口116。
在一个实施例中,基站114a和WTRU 102a、102b、102c可以实施多种无线电接入技术。举例来说,基站114a和WTRU 102a、102b、102c可以共同实施LTE无线电接入和NR无线电接入(例如使用双连接(DC)原理)。由此,WTRU 102a、102b、102c使用的空中接口可以通过多种类型的无线电接入技术和/或向/从多种类型的基站(例如eNB和gNB)发送的传输来表征。
在其他实施例中,基站114a和WTRU 102a、102b、102c可以实施以下的无线电技术,例如IEEE 802.11(即无线高保真(WiFi))、IEEE 802.16(全球微波接入互操作性(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000 EV-DO、临时标准2000(IS-2000)、临时标准95(IS-95)、临时标准856(IS-856)、全球移动通信系统(GSM)、用于GSM演进的增强数据速率(EDGE)以及GSM EDGE(GERAN)等等。
图1A中的基站114b可以是无线路由器、家庭节点B、家庭e节点B或接入点,并且可以使用任何适当的RAT来促成局部区域中的无线连接,例如营业场所、住宅、车辆、校园、工业设施、空中走廊(例如供无人机使用)以及道路等等。在一个实施例中,基站114b与WTRU102c、102d可以通过实施IEEE 802.11之类的无线电技术来建立无线局域网(WLAN)。在一个实施例中,基站114b与WTRU 102c、102d可以通过实施IEEE 802.15之类的无线电技术来建立无线个人局域网(WPAN)。在再一个实施例中,基站114b和WTRU 102c、102d可通过使用基于蜂窝的RAT(例如WCDMA、CDMA2000、GSM、LTE、LTE-A、LTE-A Pro、NR等等)来建立微微小区或毫微微小区。如图1A所示,基站114b可以直连到因特网110。由此,基站114b不需要经由CN106/115来接入因特网110。
RAN 104/113可以与CN 106/115进行通信,其中所述CN可以是被配置成向一个或多个WTRU 102a、102b、102c、102d提供语音、数据、应用和/或借助网际协议语音(VoIP)服务的任何类型的网络。该数据可以具有不同的服务质量(QoS)需求,例如不同的吞吐量需求、时延需求、容错需求、可靠性需求、数据吞吐量需求、以及移动性需求等等。CN 106/115可以提供呼叫控制、记账服务、基于移动位置的服务、预付费呼叫、因特网连接、视频分发等等,和/或可以执行用户验证之类的高级安全功能。虽然在图1A中没有显示,然而应该了解,RAN104/113和/或CN 106/115可以直接或间接地和其他那些与RAN 104/113使用相同RAT或不同RAT的RAN进行通信。例如,除了与使用NR无线电技术的RAN 104/113相连之外,CN 106/115还可以与使用GSM、UMTS、CDMA 2000、WiMAX、E-UTRA或WiFi无线电技术的别的RAN(未显示)通信。
CN 106/115还可以充当供WTRU 102a、102b、102c、102d接入PSTN 108、因特网110和/或其他网络112的网关。PSTN 108可以包括提供简易老式电话服务(POTS)的电路交换电话网络。因特网110可以包括使用了公共通信协议(例如TCP/IP网际协议族中的传输控制协议(TCP)、用户数据报协议(UDP)和/或网际协议(IP))的全球性互联计算机网络设备系统。网络112可以包括由其他服务供应商拥有和/或运营的有线和/或无线通信网络。例如,网络112可以包括与一个或多个RAN相连的另一个CN,其中所述一个或多个RAN可以与RAN 104/113使用相同RAT或不同RAT。
通信系统100中一些或所有WTRU 102a、102b、102c、102d可以包括多模能力(例如,WTRU 102a、102b、102c、102d可以包括在不同无线链路上与不同无线网络通信的多个收发信机)。例如,图1A所示的WTRU 102c可被配置成与可以使用基于蜂窝的无线电技术的基站114a通信,以及与可以使用IEEE 802无线电技术的基站114b通信。
图1B是示出了例示WTRU 102的系统图示。如图1B所示,WTRU 102可以包括处理器118、收发信机120、发射/接收部件122、扬声器/麦克风124、键盘126、显示器/触摸板128、不可移除存储器130、可移除存储器132、电源134、全球定位系统(GPS)芯片组136以及其他周边设备138。应该了解的是,在保持符合实施例的同时,WTRU 102还可以包括前述部件的任何子组合。
处理器118可以是通用处理器、专用处理器、常规处理器、数字信号处理器(DSP)、多个微处理器、与DSP核心关联的一个或多个微处理器、控制器、微控制器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)电路、其他任何类型的集成电路(IC)以及状态机等等。处理器118可以执行信号编码、数据处理、功率控制、输入/输出处理、和/或其他任何能使WTRU102在无线环境中工作的功能。处理器118可以耦合至收发信机120,收发信机120可以耦合至发射/接收部件122。虽然图1B将处理器118和收发信机120描述成单独组件,然而应该了解,处理器118和收发信机120也可以集成在一个电子组件或芯片中。
发射/接收部件122可被配置成经由空中接口116来发射或接收去往或来自基站(例如基站114a)的信号。举个例子,在一个实施例中,发射/接收部件122可以是被配置成发射和/或接收RF信号的天线。作为示例,在另一个实施例中,发射/接收部件122可以是被配置成发射和/或接收IR、UV或可见光信号的放射器/检测器。在再一个实施例中,发射/接收部件122可被配置成发射和/或接收RF和光信号。应该了解的是,发射/接收部件122可以被配置成发射和/或接收无线信号的任何组合。
虽然在图1B中将发射/接收部件122描述成是单个部件,但是WTRU 102可以包括任何数量的发射/接收部件122。更具体地说,WTRU 102可以使用MIMO技术。由此,在一个实施例中,WTRU 102可以包括两个或多个通过空中接口116来发射和接收无线电信号的发射/接收部件122(例如多个天线)。
收发信机120可被配置成对发射/接收部件122所要传送的信号进行调制,以及对发射/接收部件122接收的信号进行解调。如上所述,WTRU 102可以具有多模能力。因此,收发信机120可以包括允许WTRU 102借助多种RAT(例如NR和IEEE 802.11)来进行通信的多个收发信机。
WTRU 102的处理器118可以耦合到扬声器/麦克风124、键盘126和/或显示器/触摸板128(例如液晶显示器(LCD)显示单元或有机发光二极管(OLED)显示单元),并且可以接收来自这些部件的用户输入数据。处理器118还可以向扬声器/麦克风124、键盘126和/或显示器/触摸板128输出用户数据。此外,处理器118可以从诸如不可移除存储器130和/或可移除存储器132之类的任何适当的存储器中存取信息,以及将信息存入这些存储器。不可移除存储器130可以包括随机存取存储器(RAM)、只读存储器(ROM)、硬盘或是其他任何类型的记忆存储设备。可移除存储器132可以包括订户身份模块(SIM)卡、记忆棒、安全数字(SD)记忆卡等等。在其他实施例中,处理器118可以从那些并非实际位于WTRU 102的存储器存取信息,以及将数据存入这些存储器,作为示例,此类存储器可以位于服务器或家庭计算机(未显示)。
处理器118可以接收来自电源134的电力,并且可被配置分发和/或控制用于WTRU102中的其他组件的电力。电源134可以是为WTRU 102供电的任何适当设备。例如,电源134可以包括一个或多个干电池组(如镍镉(Ni-Cd)、镍锌(Ni-Zn)、镍氢(NiMH)、锂离子(Li-ion)等等)、太阳能电池以及燃料电池等等。
处理器118还可以耦合到GPS芯片组136,该芯片组可被配置成提供与WTRU 102的当前位置相关的位置信息(例如经度和纬度)。作为来自GPS芯片组136的信息的补充或替换,WTRU 102可以经由空中接口116接收来自基站(例如基站114a、114b)的位置信息,和/或根据从两个或更多个附近基站接收的信号定时来确定其位置。应该了解的是,在保持符合实施例的同时,WTRU 102可以借助任何适当的定位方法来获取位置信息。
处理器118还可以耦合到其他周边设备138,其中所述周边设备可以包括提供附加特征、功能和/或有线或无线连接的一个或多个软件和/或硬件模块。例如,周边设备138可以包括加速度计、电子指南针、卫星收发信机、数码相机(用于照片和/或视频)、通用串行总线(USB)端口、振动设备、电视收发信机、免提耳机、
Figure BDA0002510995880000101
模块、调频(FM)无线电单元、数字音乐播放器、媒体播放器、视频游戏机模块、因特网浏览器、虚拟现实和/或增强现实(VR/AR)设备、以及活动跟踪器等等。周边设备138可以包括一个或多个传感器,所述传感器可以是以下的一个或多个:陀螺仪、加速度计、霍尔效应传感器、磁强计、方位传感器、邻近传感器、温度传感器、时间传感器、地理位置传感器、高度计、光传感器、触摸传感器、磁力计、气压计、手势传感器、生物测定传感器和/或湿度传感器。
WTRU 102可以包括全双工无线电设备,其中对于该无线电设备来说,一些或所有信号(例如与用于UL(例如对传输而言)和下行链路(例如对接收而言)的特定子帧相关联)的接收或传输可以是并发和/或同时的。全双工无线电设备可以包括借助于硬件(例如扼流线圈)或是凭借处理器(例如单独的处理器(未显示)或是凭借处理器118)的信号处理来减小和/或基本消除自干扰的接口管理单元。在一个实施例中,WTRU 102可以包括传送和接收一些或所有信号(例如与用于UL(例如对传输而言)或下行链路(例如对接收而言)的特定子帧相关联)的半双工无线电设备。
图1C是示出了根据一个实施例的RAN 104和CN 106的系统图示。如上所述,RAN104可以在空中接口116上使用E-UTRA无线电技术来与WTRU 102a、102b、102c进行通信。所述RAN 104还可以与CN 106进行通信。
RAN 104可以包括e节点B160a、160b、160c,然而应该了解,在保持符合实施例的同时,RAN 104可以包括任何数量的e节点B。每一个e节点B160a、160b、160c都可以包括在空中接口116上与WTRU 102a、102b、102c通信的一个或多个收发信机。在一个实施例中,e节点B160a、160b、160c可以实施MIMO技术。由此,举例来说,e节点B160a可以使用多个天线来向WTRU 102a发射无线信号,和/或以及接收来自WTRU 102a的无线信号。
每一个e节点B160a、160b、160c都可以关联于一个特定小区(未显示),并且可被配置成处理无线电资源管理决策、切换决策、UL和/或DL中的用户调度等等。如图1C所示,e节点B160a、160b、160c彼此可以通过X2接口进行通信。
图1C所示的CN 106可以包括移动性管理网关(MME)162、服务网关(SGW)164以及分组数据网络(PDN)网关(或PGW)166。虽然前述的每一个部件都被描述成是CN 106的一部分,然而应该了解,这其中的任一部件都可以由CN运营商之外的实体拥有和/或运营。
MME 162可以经由S1接口连接到RAN 104中的每一个e节点B160a、160b、160c,并且可以充当控制节点。例如,MME 142可以负责验证WTRU 102a、102b、102c的用户,执行承载激活/去激活处理,以及在WTRU 102a、102b、102c的初始附着过程中选择特定的服务网关等等。MME 162还可以提供一个用于在RAN 104与使用其他无线电技术(例如GSM和/或或WCDMA)的其他RAN(未显示)之间进行切换的控制平面功能。
SGW 164可以经由S1接口连接到RAN 104中的每一个e节点B160a、160b、160c。SGW164通常可以路由和转发去往/来自WTRU 102a、102b、102c的用户数据分组。并且,SGW 164还可以执行其他功能,例如在eNB间的切换过程中锚定用户平面,在DL数据可供WTRU 102a、102b、102c使用时触发寻呼处理,以及管理并存储WTRU 102a、102b、102c的上下文等等。
SGW 164可以连接到PGW 166,所述PGW可以为WTRU 102a、102b、102c提供分组交换网络(例如因特网110)接入,以便促成WTRU 102a、102b、102c与启用IP的设备之间的通信。
CN 106可以促成与其他网络的通信。例如,CN 106可以为WTRU 102a、102b、102c提供电路交换网络(例如PSTN 108)接入,以便促成WTRU 102a、102b、102c与传统的陆线通信设备之间的通信。例如,CN 106可以包括一个IP网关(例如IP多媒体子系统(IMS)服务器)或与之进行通信,并且该IP网关可以充当CN 106与PSTN 108之间的接口。此外,CN 106可以为WTRU 102a、102b、102c提供针对其他网络112的接入,其中该网络可以包括其他服务供应商拥有和/或运营的其他有线和/或无线网络。
虽然在图1A-1D中将WTRU描述成了无线终端,然而应该想到的是,在某些典型实施例中,此类终端与通信网络可以使用(例如临时或永久性)有线通信接口。
在典型的实施例中,所述其他网络112可以是WLAN。
采用基础架构基本服务集(BSS)模式的WLAN可以具有用于所述BSS的接入点(AP)以及与所述AP相关联的一个或多个站(STA)。所述AP可以访问或是对接到分布式系统(DS)或是将业务量送入和/或送出BSS的别的类型的有线/无线网络。源于BSS外部且去往STA的业务量可以通过AP到达并被递送至STA。源自STA且去往BSS外部的目的地的业务量可被发送至AP,以便递送到相应的目的地。处于BSS内部的STA之间的业务量可以通过AP来发送,例如源STA可以向AP发送业务量并且AP可以将业务量递送至目的地STA。处于BSS内部的STA之间的业务量可被认为和/或称为点到点业务量。所述点到点业务量可以在源与目的地STA之间(例如在其间直接)用直接链路建立(DLS)来发送。在某些典型实施例中,DLS可以使用802.11e DLS或802.11z隧道化DLS(TDLS)。使用独立BSS(IBSS)模式的WLAN可不具有AP,并且处于所述IBSS内部或是使用所述IBSS的STA(例如所有STA)彼此可以直接通信。在这里,IBSS通信模式有时可被称为“自组织”通信模式。
在使用802.11ac基础设施工作模式或类似的工作模式时,AP可以在固定信道(例如主信道)上传送信标。所述主信道可以具有固定宽度(例如20MHz的带宽)或是借助信令动态设置的宽度。主信道可以是BSS的工作信道,并且可被STA用来与AP建立连接。在某些典型实施例中,所实施的可以是具有冲突避免的载波感测多址接入(CSMA/CA)(例如在802.11系统中)。对于CSMA/CA来说,包括AP在内的STA(例如每一个STA)可以感测主信道。如果特定STA感测到/检测到和/或确定主信道繁忙,那么所述特定STA可以回退。在指定的BSS中,在任何指定时间可有一个STA(例如只有一个站)进行传输。
高吞吐量(HT)STA可以使用宽度为40MHz的信道来进行通信(例如借助于将宽度为20MHz的主信道与宽度为20MHz的相邻或不相邻信道相结合来形成宽度为40MHz的信道)。
甚高吞吐量(VHT)STA可以支持宽度为20MHz、40MHz、80MHz和/或160MHz的信道。40MHz和/或80MHz信道可以通过组合连续的20MHz信道来形成。160MHz信道可以通过组合8个连续的20MHz信道或者通过组合两个不连续的80MHz信道(这种组合可被称为80+80配置)来形成。对于80+80配置来说,在信道编码之后,数据可被传递并经过一个分段解析器,所述分段解析器可以将数据非成两个流。在每一个流上可以单独执行反向快速傅里叶变换(IFFT)处理以及时域处理。所述流可被映射在两个80MHz信道上,并且数据可以由执行传输的STA来传送。在执行接收的STA的接收机上,用于80+80配置的上述操作可以是相反的,并且组合数据可被发送至介质访问控制(MAC)。
802.11af和802.11ah支持次1GHz工作模式。与802.11n和802.11ac相比,在802.11af和802.11ah中使用信道工作带宽和载波有所缩减。802.11af在TV白空间(TVWS)频谱中支持5MHz、10MHz和20MHz带宽,并且802.11ah支持使用非TVWS频谱的1MHz、2MHz、4MHz、8MHz和16MHz带宽。依照典型实施例,802.11ah可以支持仪表类型控制/机器类型通信(例如宏覆盖区域中的MTC设备)。MTC可以具有某种能力,例如包含了支持(例如只支持)某些和/或有限带宽在内的受限能力。MTC设备可以包括电池,并且该电池的电池寿命高于阈值(例如用于保持很长的电池寿命)。
对于可以支持多个信道和信道带宽的WLAN系统(例如,802.11n、802.11ac、802.11af以及802.11ah)来说,所述WLAN系统包括一个可被指定成主信道的信道。所述主信道的带宽可以等于BSS中的所有STA所支持的最大公共工作带宽。主信道的带宽可以由某一个STA设置和/或限制,其中所述STA源自在支持最小带宽工作模式的BSS中工作的所有STA。在关于802.11ah的示例中,即使BSS中的AP和其他STA支持2MHz、4MHz、8MHz、16MHz和/或其他信道带宽工作模式,但对支持(例如只支持)1MHz模式的STA(例如MTC类型的设备)来说,主信道的宽度可以是1MHz。载波感测和/或网络分配矢量(NAV)设置可以取决于主信道的状态。如果主信道繁忙(例如因为STA(其只支持1MHz工作模式)对AP进行传输),那么即使大多数的频带保持空间并且可供使用,也可以认为整个可用频带繁忙。
在美国,可供802.11ah使用的可用频带是902MHz到928MHz。在韩国,可用频带是917.5MHz到923.5MHz。在日本,可用频带是916.5MHz到927.5MHz。依照国家码,可用于802.11ah的总带宽是6MHz到26MHz。
图1D是示出了根据一个实施例的RAN 113和CN 115的系统图示。如上所述,RAN113可以在空中接口116上使用NR无线电技术来与WTRU 102a、102b、102c进行通信。RAN 113还可以与CN 115进行通信。
RAN 113可以包括gNB 180a、180b、180c,但是应该了解,在保持符合实施例的同时,RAN 113可以包括任何数量的gNB。每一个gNB 180a、180b、180c都可以包括一个或多个收发信机,以便通过空中接口116来与WTRU 102a、102b、102c通信。在一个实施例中,gNB180a、180b、180c可以实施MIMO技术。例如,gNB 180a、180b可以使用波束成形处理来向和/或从gNB 180a、180b、180c发射和/或接收信号。由此,举例来说,gNB 180a可以使用多个天线来向WTRU 102a发射无线信号,和/或接收来自WTRU 102a的无线信号。在一个实施例中,gNB 180a、180b、180c可以实施载波聚合技术。例如,gNB 180a可以向WTRU 102a传送多个分量载波(未显示)。这些分量载波的一个子集可以处于无授权频谱上,而剩余分量载波则可以处于授权频谱上。在一个实施例中,gNB 180a、180b、180c可以实施协作多点(CoMP)技术。例如,WTRU 102a可以接收来自gNB 180a和gNB 180b(和/或gNB 180c)的协作传输。
WTRU 102a、102b、102c可以使用与可扩缩参数配置相关联的传输来与gNB 180a、180b、180c进行通信。例如,对于不同的传输、不同的小区和/或不同的无线传输频谱部分来说,OFDM符号间隔和/或OFDM子载波间隔可以是不同的。WTRU 102a、102b、102c可以使用具有不同或可扩缩长度的子帧或传输时间间隔(TTI)(例如包含了不同数量的OFDM符号和/或持续变化的绝对时间长度)来与gNB 180a、180b、180c进行通信。
gNB 180a、180b、180c可被配置成与采用独立配置和/或非独立配置的WTRU 102a、102b、102c进行通信。在独立配置中,WTRU 102a、102b、102c可以在不接入其他RAN(例如e节点B160a、160b、160c)的情况下与gNB 180a、180b、180c进行通信。在独立配置中,WTRU102a、102b、102c可以使用gNB 180a、180b、180c中的一个或多个作为移动锚点。在独立配置中,WTRU 102a、102b、102c可以使用无授权频带中的信号来与gNB 180a、180b、180c进行通信。在非独立配置中,WTRU 102a、102b、102c会在与别的RAN(例如e节点B160a、160b、160c)进行通信/相连的同时与gNB 180a、180b、180c进行通信/相连。举例来说,WTRU 102a、102b、102c可以通过实施DC原理而以基本同时的方式与一个或多个gNB 180a、180b、180c以及一个或多个e节点B160a、160b、160c进行通信。在非独立配置中,e节点B160a、160b、160c可以充当WTRU 102a、102b、102c的移动锚点,并且gNB 180a、180b、180c可以提供附加的覆盖和/或吞吐量,以便为WTRU 102a、102b、102c提供服务。
每一个gNB 180a、180b、180c都可以关联于特定小区(未显示),并且可以被配置成处理无线电资源管理决策、切换决策、UL和/或DL中的用户调度、支持网络切片、实施双连接性、实施NR与E-UTRA之间的互通处理、路由去往用户平面功能(UPF)184a、184b的用户平面数据、以及路由去往接入和移动性管理功能(AMF)182a、182b的控制平面信息等等。如图1D所示,gNB 180a、180b、180c彼此可以通过X2接口通信。
图1D所示的CN 115可以包括至少一个AMF 182a、182b,至少一个UPF 184a、184b,至少一个会话管理功能(SMF)183a、183b,并且有可能包括数据网络(DN)185a、185b。虽然每一个前述部件都被描述了CN 115的一部分,但是应该了解,这其中的任一部件都可以被CN运营商之外的其他实体拥有和/或运营。
AMF 182a、182b可以经由N2接口连接到RAN 113中的一个或多个gNB 180a、180b、180c,并且可以充当控制节点。例如,AMF 182a、182b可以负责验证WTRU 102a、102b、102c的用户,支持网络切片(例如处理具有不同需求的不同PDU会话),选择特定的SMF 183a、183b,管理注册区域,终止NAS信令,以及移动性管理等等。AMF 182a、1823b可以使用网络切片处理,以便基于WTRU 102a、102b、102c使用的服务类型来定制为WTRU 102a、102b、102c提供的CN支持。举例来说,针对不同的用例,可以建立不同的网络切片,所述用例例如为依赖于超可靠低时延(URLLC)接入的服务、依赖于增强型大规模移动宽带(eMBB)接入的服务、和/或用于机器类型通信(MTC)接入的服务等等。AMF 162可以提供用于在RAN 113与使用其他无线电技术(例如LTE、LTE-A、LTE-APro和/或诸如WiFi之类的非3GPP接入技术)的其他RAN(未显示)之间切换的控制平面功能。
SMF 183a、183b可以经由N11接口连接到CN 115中的AMF 182a、182b。SMF 183a、183b还可以经由N4接口连接到CN 115中的UPF 184a、184b。SMF 183a、183b可以选择和控制UPF 184a、184b,并且可以通过UPF 184a、184b来配置业务量路由。SMF 183a、183b可以执行其他功能,例如管理和分配UE IP地址,管理PDU会话,控制策略实施和QoS,以及提供DL数据通知等等。PDU会话类型可以是基于IP的,不基于IP的,以及基于以太网的等等。
UPF 184a、184b可以经由N3接口连接到RAN 113中的一个或多个gNB 180a、180b、180c,这样可以为WTRU 102a、102b、102c提供对分组交换网络(例如因特网110)的接入,以便促成WTRU 102a、102b、102c与启用IP的设备之间的通信,UPF 184、184b可以执行其他功能,例如路由和转发分组、实施用户平面策略、支持多宿主PDU会话、处理用户平面QoS、缓冲DL分组、以及提供移动性锚定处理等等。
CN 115可以促成与其他网络的通信。例如,CN 115可以包括或者可以与充当CN115与PSTN 108之间的接口的IP网关(例如IP多媒体子系统(IMS)服务器)进行通信。此外,CN 115可以为WTRU 102a、102b、102c提供针对其他网络112的接入,这其中可以包括其他服务供应商拥有和/或运营的其他有线和/或无线网络。在一个实施例中,WTRU 102a、102b、102c可以经由对接到UPF 184a、184b的N3接口以及介于UPF 184a、184b与DN 185a、185b之间的N6接口并通过UPF 184a、184b连接到本地数据网络(DN)185a、185b。
有鉴于图1A-1D以及关于图1A-1D的相应描述,在这里对照以下的一项或多项描述的一个或多个或所有功能可以由一个或多个仿真设备(未显示)来执行:WTRU 102a-d、基站114a-b、e节点B160a-c、MME 162、SGW 164、PGW 166、gNB 180a-c、AMF 182a-ab、UPF 184a-b、SMF 183a-b、DN 185a-b和/或这里描述的其他任何设备(一个或多个)。这些仿真设备可以是被配置成模拟这里一个或多个或所有功能的一个或多个设备。举例来说,这些仿真设备可用于测试其他设备和/或模拟网络和/或WTRU功能。
仿真设备可被设计成在实验室环境和/或运营商网络环境中实施关于其他设备的一项或多项测试。例如,所述一个或多个仿真设备可以在被完全或部分作为有线和/或无线通信网络一部分实施和/或部署的同时执行一个或多个或所有功能,以便测试通信网络内部的其他设备。所述一个或多个仿真设备可以在被临时作为有线和/或无线通信网络的一部分实施/部署的同时执行一个或多个或所有功能。所述仿真设备可以直接耦合到别的设备以执行测试,和/或可以使用空中无线通信来执行测试。
所述一个或多个仿真设备可以在未被作为有线和/或无线通信网络一部分实施/部署的同时执行包括所有功能在内的一个或多个功能。例如,所述仿真设备可以在测试实验室和/或未被部署(例如测试)的有线和/或无线通信网络的测试场景中使用,以便实施关于一个或多个组件的测试。所述一个或多个仿真设备可以是测试设备。所述仿真设备可以使用直接的RF耦合和/或借助了RF电路(作为示例,该电路可以包括一个或多个天线)的无线通信来发射和/或接收数据。
无线电接入网络(RAN)可以是向无线发射接收单元(WTRU)提供与其核心网络(CN)连接的的移动电信系统的一部分。在第五代(5G)或下一代(NG)无线系统中,RAN可以被称为新无线电(NR)RAN或下一代RAN。根据ITU-R、NGMN和3GPP规定的一般要求,NR的用例的广泛分类可以是增强型移动宽带(eMBB)、大规模机器类型通信(mMTC)以及超可靠和低延迟通信(URLLC)。不同的用例可能关注不同的要求,例如更高的数据速率、更高的频谱效率、低功率和更高的能效、更低的延迟和更高的可靠性。对于各种部署方案,可以考虑范围从700MHz到80GHz的各种频带。
随着载波频率的增加,严重的路径损耗可能成为保证足够覆盖的关键限制。毫米波系统中的传输还可能遭受非视线损耗,例如衍射损耗、穿透损耗、氧吸收损失、叶子损失等。在初始接入期间,基站和WTRU可能需要克服这些高路径损耗并相互发现,或者WTRU可能需要发现另一个WTRU。利用数十个甚至数百个天线元件来产生波束形成信号可能是通过提供显着波束形成增益来补偿严重路径损耗的有效方式。波束成形技术可以包括数字、模拟和混合波束成形。
长期演进(LTE)和其他无线系统可以使用初始同步和广播信道。WTRU可以使用小区搜索来获取与小区的时间和频率同步,并检测该小区的小区ID。诸如LTE的同步信号可以在每个无线电帧的第0和第5子帧中发送,并且可以在初始化期间用于时间和频率同步。作为系统获取过程的一部分,WTRU可以基于同步信号顺序地同步到OFDM符号、时隙、子帧、半帧和/或无线电帧。可能存在两个同步信号:主同步信号(PSS)和辅同步信号(SSS)。PSS可用于获得时隙、子帧和半帧边界。它还可以在小区标识组内提供物理层小区标识(PCI)。SSS可用于获得无线电帧边界。它还可以使WTRU能够确定小区标识组,其范围可以从0到167。
在成功同步和PCI获取之后,WTRU可以借助于小区特定参考信号(CRS)对诸如物理广播信道(PBCH)的信道进行解码,并获取主信息块(MIB)信息,该信息有关系统带宽、系统帧号(SFN)和PHICH配置。可以根据标准化周期连续发送LTE同步信号和PBCH。
LTE和其他无线系统可以使用随机接入(RA)过程。基站(例如,eNodeB、eNB、gNB)和/或WTRU可以对以下中的至少一个使用随机接入过程:WTRU初始接入(例如,初始接入到小区或eNB);重置UL定时(例如,相对于某个小区来重置或对准的WTRU UL定时);和/或在切换期间重置定时(例如,相对于切换目标小区进行重置或对准WTRU定时)。WTRU可以在某个功率PRACH(其可以基于配置的参数和/或测量)上发送某个物理随机接入信道(PRACH)前导码序列,并且WTRU可以使用某个时频资源或多个资源来发送前导码。可以由eNB提供或配置的配置参数可以包括以下中的一者或多者:初始前导码功率(例如,preambleInitialReceivedTargetPower)、基于前导码格式的偏移(例如,deltaPreamble)、随机接入响应窗口(例如,ra-ResponseWindowSize)、功率斜坡因子(例如,powerRampingStep)和/或最大重传次数(例如,preambleTransMax)。可以包括前导码或前导码组和/或可以用于前导码传输的时间/频率资源的PRACH资源可以由eNB提供或配置。所述测量可包括路径损耗。所述时频资源(一个或多个)可以由WTRU从允许的集合中选择,或者可以由eNB选择并用信号通知给WTRU。在WTRU传输前导码之后,如果eNB检测到该前导码,则它可以用随机接入响应(RAR)进行响应。如果WTRU没有在所分配的时间(例如,ra-ResponseWindowSize)内接收到所发送的前导码的RAR(例如,其可以对应于某个前导码索引和/或时间/频率资源),则WTRU可以在稍后的时间以更高的功率(例如,比先前的前导码传输高出powerRampingStep)发送另一个前导码,其中传输功率可能受到最大功率的限制,该最大功率例如可以是针对整个WTRU的WTRU配置最大功率(例如,PCMAX)或针对WTRU的某个服务小区的最大功率(例如,PCMAX,c)。WTRU可以再次等待从eNB接收RAR。该发送和等待序列可以继续,直到eNB可以用RAR进行响应或者直到可能已经达到随机接入前导码传输最大数量(例如,preambleTransMax)。eNB可以发送响应于单个前导码传输的RAR,并且WTRU可以接收该RAR。
随机接入过程可以是基于争用的或无争用的。可以通过例如来自eNB的请求来发起无争用过程。该请求可以经由诸如PDCCH命令的物理层信令或者由诸如RRC重新配置消息(例如,RRC连接重新配置消息)之类的更高层信令来接收,该RRC重新配置消息可以包括移动性控制信息并且可以例如指示或对应于切换请求。对于由子帧n中的PDCCH命令发起的无争用过程,PRACH前导码可以在第一子帧或者可用于PRACH的第一子帧n+k2中发送,其中k2可以大于或等于6(即,k2>=6)。当由RRC命令发起时,可能存在可以指定的其他延迟(例如,可能存在最小和/或最大所需或允许的延迟)。作为示例,WTRU可以出于包括初始接入、UL同步的恢复和/或从无线电链路故障恢复的原因自主地发起基于争用的过程。对于某些事件,例如除了从无线电链路故障中恢复之外的事件,可以不定义或指定在这种事件之后多久WTRU可以发送PRACH前导码。
对于无争用随机接入(RA)过程,可以例如由WTRU使用网络用信号通知的PRACH前导码。对于基于争用的随机接入过程,WTRU可以自主地选择前导码,其中可用于前导码传输的前导码格式和/或时间/频率资源(一个或多个)可以基于可以由eNB提供或发信号通知的指示或索引(例如,PRACH配置索引)。
可以由eNB检测以逐渐更高的发射功率发射的前导码之一。eNB可以响应于一个检测到的前导码来发送RAR。PRACH前导码可以被认为是PRACH资源。例如,PRACH资源可以包括PRACH前导码、时间和/或频率资源。术语RACH资源和PRACH资源在本文中可以互换使用。此外,术语RA、RACH和PRACH在本文中可互换使用。
在路径损耗的一些情况下,例如在NR中,同步信号(SS)块(SSB)、RACH资源、控制信道(DL/UL)和/或数据信道(DL/UL)可能彼此冲突。为了使WTRU执行初始接入、信道接入、维护系统操作和/或最大化系统效率,可能需要规则来避免、减轻或处理这些情况或者其他发生冲突时的情况。而且,在其他情况下,WTRU传输可能在随机接入期间与另一WTRU传输冲突。例如,PRACH前导码可能彼此冲突,例如在使用多波束系统的情况下。可能需要增强基于波束的系统中的冲突减少以解决这些和其他路径损耗情况。此外,为了支持用于波束扫描的大量波束,由于符号的数量有限,PRACH前同步码格式可能是不够的。因此,可能希望具有支持大量波束的方法。在一个或多个实施例中,可以处理PRACH资源、DL/UL控制和/或SS/PBCH块以解决本文所讨论的问题情况。
图2A示出了RACH/PRACH传输的示例。通常,第一DL 203可以是第一SS块,第二DL205可以是第二SS块。时隙可以具有DL(203和205)和UL部分206。此外,灵活或未知部分X204可以在时隙中使用并且可以被配置为DL或UL。DL信号/信道203可以占用时隙202的前K1个OFDM符号,其中K是某个非负整数。未知/灵活部分X 204可以占用K2个OFDM符号。第二DL信号/信道205可以占用K3个OFDM符号,其可以与第一DL信号/信道203相同或不同(例如,DL信号/信道203可以是第一SS/PBCH块,DL信号/信道205可以是第二SS/PBCH块)。UL信号/信道206可以占用时隙202的最后K4个OFDM符号。如本文所讨论的,SS块和SS/PBCH块可以是可互换的。可以配置时隙202,使得每个或一些符号位置可以包含特定类型的内容;对于图2A中所示的示例,对于DL信号/信道203,K1可以是前4个符号,对于UL信号/信道206,K4可以是最后2个符号。周期性也可以由gNB配置以避免冲突,然而,当/如果PRACH与SS块冲突时,可以使用诸如块、信号和/或信道丢弃规则的一些预定或预定义规则。SS块、DL/UL控制和PRACH在它们彼此冲突时可以具有预定义的规则,WTRU可以实现这些规则来处理这些问题。
当SS/PBCH块和RACH资源冲突时,WTRU可以采取一个或多个动作来解决该问题,例如WTRU丢弃PRACH并接收SS块,或者WTRU丢弃SS块并发送PRACH。WTRU还可以部分地发送PRACH或部分地接收SS块。用于冲突处理的这些选项可以基于以下中的至少一个:实际发送的SS块或最大SS块;延迟要求;服务类型(例如,URLLC、eMBB、mMTC等);预定义的或预定的规则(例如,总是发送SS块或总是发送PRACH并丢弃另一个信道);信道优先级,其中可以预先定义或配置优先级;抢占指示;从gNB接收的关于哪个发送和哪个丢弃的指示;发生冲突时使用速率匹配或打孔发送部分或全部信道;和/或上述方法的组合。
如果WTRU接收到实际发送的SS块指示,则WTRU可以使用实际发送的SS块位置来处理冲突。例如,对于长序列(例如,PRACH的长前导码序列),WTRU可以在存在冲突时丢弃RACH。否则,WTRU可以发送RACH。对于短序列(例如,对于PRACH的短前导码序列),WTRU可以在符号未被SS块占用的非时隙(例如,2个符号、4个符号)中发送RACH。如本文所讨论的,非时隙可以是任何非常规长度时隙(例如,微型时隙)。而且,对于短序列,WTRU可以在所述符号被SS块部分占用的非时隙(例如,2个符号、4个符号)中发送部分RACH。SS块可以是实际发送的SS块,或者SS块可以是候选SS块位置。
如果WTRU没有接收到实际发送的SS块指示,则WTRU可以使用SS块位置最大数量L来处理冲突。例如,WTRU可以使用L=4个SS块用于低于3GHz,L=8个SS块用于低于6GHz和高于3GHz,以及L=64用于高于6GHz。
如本文所讨论的,可能存在RACH资源或RACH时机与SS块(一个或多个)之间存在或可能存在冲突的情况。如其中所讨论的,对RACH时机的引用可以与RACH资源互换;RACH时机可以是时隙中可以发送RACH/PRACH的一个或多个符号。可以根据RACH配置表将具有SS块的时隙、非时隙或微型时隙配置为RACH时机。如果在RACH时机和SS块之间发生冲突,则WTRU仍然可以通过跳过由SS块(一个或多个)占用的符号来发送PRACH前导码或RACH消息3。gNB可以针对PRACH前导码执行部分相关、或者针对RACH消息3PUSCH执行速率匹配。SS块的数量可能会改变。例如,SS块的数量可以从4变为2。2个SS块可以占用第一SS块时隙。可替换地,2个SS块的位置可能仍然与存在4个SS块时的位置相同。
如本文所讨论的,可能存在UL控制信道和RACH资源冲突或者可能冲突的情况。为了解决这种情况,WTRU可以丢弃PRACH并发送UL控制信道。可替换地/另外地,WTRU可以丢弃UL控制信道并发送PRACH。可替换地/另外地,WTRU可以部分地发送PRACH或部分地发送UL控制。针对这些和类似情况的冲突处理可以基于以下中的至少一个:UL控制信道(例如,它是周期性的还是非周期性UL控制信道);延迟要求;服务类型(例如,URLLC、eMBB、mMTC等);预定义或预定规则(例如,始终发送UL控制信道或始终发送PRACH并丢弃另一信道);信道优先级,其中可以预先定义或配置优先级;抢占指示;从gNB接收的关于哪个发送和哪个丢弃的指示;发生冲突时发送两个或所有信道;和/或上述方法的任何组合。
gNB可以配置PRACH以避免UL控制信道和PRACH之间的冲突。如果PRACH与上行链路控制冲突,则WTRU可以丢弃RACH或丢弃UL控制。
如本文所讨论的,可以使用预定义规则来处理冲突。例如,当PRACH和UL控制信道冲突时,WTRU可以丢弃UL控制并且仅发送PRACH,反之亦然。
在一个或多个情况下,可以使用指示来处理冲突。WTRU可以接收关于要丢弃哪个冲突元素以及要发送哪个元素的指示。例如,可以指示WTRU丢弃PRACH并发送UL控制信道,或者可以指示WTRU丢弃UL控制信道并发送PRACH。
在一个或多个情况下,可以使用隐式指示来处理冲突。WTRU可以基于服务类型确定要丢弃哪个冲突元素以及要发送哪个元素。例如,如果提供给WTRU的服务是URLLC,则WTRU可以丢弃上行链路控制信道并发送PRACH,反之亦然。
在一个或多个情况下,gNB可以同时发送和接收。当gNB正在发送SS块时,gNB也可以在相同或不同的载波上使用特定的接收(Rx)波束进行接收。然后,即使gNB正在发送SS块,也可以发送PRACH。
在RACH时机和半静态调度和/或动态时隙格式指示符(一个或多个)(SFI)之间可能存在冲突。半静态DL/UL指派中的下行链路和/或上行链路信号和/或信道可以不被重写到另一个方向。动态SFI中的DL和/或UL信号和/或信道可以不被WTRU特定控制或数据信道重写。可以会丢弃可能与动态SFI冲突的RACH时机。可以丢弃可能与半静态DL/UL指派冲突的RACH时机。
gNB和WTRU可以基于以下中的至少一个来导出有效的RACH时机(一个或多个)(VRO):到具有SS块的时隙的RACH时机映射;半静态DL和UL;动态SFI;和/或UL和/或DL调度。有效的RACH时机可以是以已经预定或确定不会发生冲突的时间增量(即,时隙的一个或多个符号)进行发送的时机。
在一些情况下,DL控制信道和RACH资源之间可能存在冲突。在这些情况下,WTRU可以丢弃PRACH并接收DL控制信道。另外/可替换地,WTRU可以丢弃DL控制信道并发送PRACH。另外/可替换地,WTRU可以部分地发送PRACH或部分地接收DL控制。冲突处理可以基于以下中的至少一个:延迟要求;服务类型(例如,URLLC、eMBB、mMTC等);预定义或预定规则(例如,总是接收DL控制信道或总是发送PRACH并丢弃另一个信道);信道优先级,其中可以预先定义或配置优先级;抢占指示;从gNB接收的关于哪个发送和哪个丢弃的指示;发生冲突时发送部分或全部信道;和/或前述方法的某种组合。
gNB可以配置PRACH以避免DL控制信道和PRACH之间的冲突。如果PRACH与DL控制信道冲突,则WTRU可以丢弃PRACH或丢弃DL控制信道。
可以使用预定义规则来处理冲突。例如,当PRACH和DL控制信道冲突时,WTRU可以丢弃DL控制并且仅发送PRACH,反之亦然。
在一个或多个情况下,可以使用指示来处理冲突。WTRU可以指示要丢弃冲突中的哪个元素以及要发送哪个元素。例如,WTRU可以接收丢弃PRACH并接收DL控制信道的指示,或者WTRU可以接收丢弃DL控制信道并发送PRACH的指示。
在一个或多个情况下,可以使用隐式指示来处理冲突。WTRU可以基于服务类型确定要丢弃的哪个元素以及要发送的元素。例如,如果WTRU提供的服务是URLLC,则WTRU可以丢弃DL控制信道并发送PRACH,反之亦然。
WTRU可以接收关于是否存在可能与RACH资源冲突的NR-PDCCH、所配置的搜索空间或者所配置的控制资源集(CORESET)的指示。
gNB和WTRU可以基于以下中的至少一个来确定或导出DL控制信道的有效RACH时机:半静态DL和UL;动态SFI;和/或UL和/或DL调度。
在具有冲突的一个或多个情况下,可以使用规则和RACH资源来解决冲突。如本文所述,RACH资源或RACH时机可能与DL部分或UL部分冲突。RACH资源或RACH时机也可能与可能被配置为DL部分或UL部分的未知部分冲突。DL部分可以是SS块、DL控制信道、其他DL控制信道、信号或传输等。UL部分可以是UL控制信道、其他UL控制信道、信号或传输等。WTRU可以同时接收关于半静态UL/DL配置和RACH配置的指示。WTRU还可以在RACH配置之前接收对半静态UL/DL配置的指示。如果WTRU在RACH配置的同时或在RACH配置之前接收到关于半静态UL/DL配置的指示,并且如果RACH时机与DL部分冲突,则与DL部分冲突的RACH时机可以不被发送,但可以发送UL部分内的RACH时机。如果在RACH配置之后指示WTRU用于半静态UL/DL配置,并且当发送RACH时机时WTRU不知道半静态UL/DL配置,则WTRU可以假设RACH时机不会与DL部分冲突,因此RACH时机可以用于传输并且是有效的。如果未知部分未被配置或者如果该未知部分被配置为用于RACH传输的UL,则可以在该未知部分(即,部分X)中使用或发送RACH资源或RACH时机。
为了避免可能的冲突,WTRU可以检查DL/UL配置。WTRU可以在UL部分中发送RACH。如果DL部分未被使用,则WTRU可以在DL部分中发送RACH。可以在WTRU处接收关于DL部分是否被使用的指示。如果DL部分被指示为“已使用”(例如,用于被指示为实际发送的SS块的SS块),则WTRU可以不在那些DL部分中发送RACH。可替换地或另外地,WTRU可以不在任何DL部分中发送RACH,无论该DL部分是否被使用。可以配置这种替换或不同的替换方案。
在一个实施例中,WTRU可以根据SS块或SS块传输的位置来决定在何处和/或是否发送RACH资源。例如,如果WTRU从指示知道在特定位置(例如,时隙、子帧等的特定位置)发送SS块,则一个或多个RACH时机(例如,一些或全部)可以被发送或不被发送。另外/可替换地,对于给定的增量,可以不在SS块之前发送RACH,而是可以在SS块之后发送RACH。在SS块之前可能没有RACH时机或RACH资源,并且RACH时机或RACH资源可能在SS块之后。另外/可替换地,如果SS块位于时隙的较早部分中或在该时隙的较早部分中被发送,则可以发送时隙的后面部分中的RACH时机/资源,并且可以不发送SS块之前的RACH。如果SS块位于时隙的较后部分中或在该时隙的较后部分中被发送,则可以不发送时隙的较早部分中的RACH。
WTRU可以不发送将或可能与时隙中的SS块冲突的RACH,但是WTRU仍然可以发送不与时隙中的SS块冲突的RACH。可替换地/另外地,如果时隙中的一个或多个RACH时机可能与SS块冲突,则WTRU可以不在时隙中发送所有RACH时机。WTRU可以基于与SS块的冲突条件来发送RACH或使用RACH时机。另外/可替换地,WTRU可以基于配置的、指示的或调度的发送SS块的位置(例如,在时间或频率上),发送或不发送RACH,或者使用或不使用RACH时机。在一种情况下,即使当特定时间或频率位置的RACH时机与SS块冲突时,也可以使用该特定时间或频率位置的RACH时机。在另一种情况下,如果特定时间或频率位置的RACH时机与SS块冲突,则可以不使用该特定时间或频率位置的RACH时机。
关于半静态UL/DL配置的指示可以处于新的无线电物理广播信道(NR-PBCH)、剩余最小系统信息(RMSI)、其他系统信息(OSI)或寻呼等中。另外,如果指示WTRU用于动态UL/DL配置,则动态UL/DL配置可以覆盖半静态UL/DL配置。如果在RACH配置的同时或之前被指示且动态UL/DL配置覆盖半静态UL/DL配置,WTRU可以遵循动态UL/DL中的DL部分和UL部分。组态。然后,WTRU可以遵循如本文所述的RACH时机传输的规则。
图2B示出了基于本文描述的一个或多个实施例的用于没有SS块冲突的RACH传输的示例过程。在260处,WTRU可以例如在RMSI中接收半静态UL/DL时隙配置。在262中,WTRU可以基于所述配置信息,确定时隙的不同部分(即,DL/X/DL/UL)的RO。在264中,WTRU可以接收关于实际发送的(Txed)SS块的DL指示。在一些情况下,WTRU还可以接收关于SS块启用/禁用覆盖的指示(其可以允许/禁止WTRU在指示SS块的位置处具有RO)。基于所接收的一些或全部或一些信息,在266,WTRU可以评估给定符号是否是可以发送RACH的时机(即,RO)。在268中,WTRU可以评估时隙的RO并确定它们是否是有效RO,对于该有效RO,没有预期冲突并且任何规则或指示均被考虑,从而使得RACH可以实际上被发送/调度。在270处,WTRU可以在先前确定的有效RO中发送RACH。
图2C示出了基于本文描述的一个或多个实施例的没有SS块冲突的PRACH传输的示例。每个示图(200、220、240)可以是如图2B中描述的过程的任何顺序的一个或多个阶段以及用于处理如本文所述的冲突的任何规则或条件的结果。对于该示例,如果DL控制部分中存在SS块,则WTRU可以不在这些符号中的任何符号中发送RACH。此外,如果时机在指示的SS块之后而不是之前,则RO可能是有效的。通常,传输示例仅示出一个时隙,该一个时隙被分解成具有可变数量的符号(即,OFDM)的部分,该部分可被分配给DL 213、X 214、DL 215和UL216。每个符号可具有对应的特定阴影,其对应于什么内容占据了或被指示占用该资源;例如,每个可能的RO具有从左上角到右下角的线,例如RO 208。没有阴影可能意味着该资源未被使用或没有使用该资源的计划。
在示图200中,WTRU可能已经完成了260、262和264。WTRU可能已经确定SS块(SS块)207占用了时隙202的DL控制213部分的一部分,因此,DL控制部分213可能不包含任何RO。此外,时隙的其余部分可以具有例如通过RMSI配置的若干RO(208、209、210、211)。可能有RO表(未显示)。指向表的条目的索引可以指示RO。WTRU可以由RMSI中的索引指示,并且基于所接收的索引和WTRU已知的表来确定RO。
示图220示出了过程266(评估RO是否是有效的发送机会(即,VRO)),并且可以类似于图200,除了可以向WTRU指示SS块229,其结果会导致仅UL部分226具有有效RO,因为作为潜在RO的X部分224可能不是有效的,因为对于该示例,WTRU可能仅在指示的SS块之后具有有效RO。
示图240示出了过程266,并且可以类似于图200,除了可能没有为DL 245指示的SS块,这可以导致DL控制部分243之后的每个RO都是有效RO。
在一个或多个实施例中,可以使用重叠的前导码子集。SS块索引可以嵌入在RA-RNTI中。RA-RNTI可以是SS块索引的函数。可替换地或另外地,SS块索引可以包括在随机接入响应(RAR)中。此外,重叠前导码的SS块索引可以嵌入在RA-RNTI中并包括在RAR中。例如,SS块索引(例如,对于重叠的前导码)可以嵌入在RA-RNTI中(例如,针对不同的SS块索引使用不同的RNTI,或者针对不同的SS块索引使用不同的CRC掩码),并且同时,相同的SS块索引(例如,对于重叠的前导码)可以包括在RAR中。
图3示出了根据本文描述的一个或多个实施例的前导码和同步信号(SS)块的示例重叠。在某些情况下,SS块和RACH资源之间的关联可能重叠。也就是说,多个SS块可以与相同的RACH资源和/或PRACH前导码相关联,或者一个SS块可以与多个RACH资源和/或PRACH前导码相关联。用于重叠前导码的SS块索引可以嵌入在RA-RNTI中。RA-RNTI可以是SS块索引的函数。可替换地或另外地,用于重叠前导码的SS块索引可以包括在随机接入响应(RAR)中。通过这样做,可以避免作为重叠结果而在WTRU之间产生冲突。此外,重叠前导码的SS块索引可以嵌入在RA-RNTI中并包括在RAR中。WTRU可以获取在RA-RNTI中获得的SS块索引和在RAR中获得的SS块索引。WTRU可以将在RAR中获得的SS块索引与在RA-RNTI中获得的SS块索引进行比较,并确定最终的SS块索引。
对于具有gNB接收/发射(Rx/Tx)波束对应的情况,可以重叠与一个RACH时隙中的不同SS块对应的前导码子集,以增加初始接入和随机接入的容量。
对于没有gNB Rx/Tx对应的情况,如果对应于一个RACH时隙中的不同SS块的前导码子集重叠,则利用不同SS块发送相同重叠前导码的多个WTRU可能发生冲突,因为gNB可能不能正确地分开与不同的SS块相关联的TA。
对于具有gNB Rx/Tx对应并且在gNB Tx波束之间存在重叠的情况,如果对应于一个RACH时隙中的不同SS块的前导码子集重叠,则利用不同SS块发送相同重叠前导码的多个WTRU可以由在RAR内发送SS块索引的gNB分开,这可以避免这些WTRU之间的冲突。
对于具有gNB Rx/Tx对应且gNB Tx/Rx波束之间没有重叠的情况,如果对应于一个RACH时隙中的不同SS块的前导码子集重叠,则利用不同SS块发送相同重叠前导码的多个WTRU可以在地理上由gNB Rx/Tx波束分开,并且gNB可能不需要在RAR内发送SS块索引。
基于天线配置、波束配置和/或波束对应,gNB可以配置是否在RAR或RA-RNTI中包括SS块索引。
如图3所示,可以存在PRACH前导码301的集合或池{1,2,3},其可以被划分为称为前导码子集的一个或多个子集。诸如304SS块1或306SS块2的SS块可以与一个或多个前导码子集相关联。前导码子集可以相互重叠,也可以不相互重叠。前导码子集可以共享或不共享相同的前导码(一个或多个)。在一个实例中,RACH配置可以允许在一个RACH时机(RO)内,前导码1和2可以与304SS块1相关联或映射到304SS块1,从而创建{1,2}的子集,并且前导码2和3可以是与306SS块2相关联或映射到306SS块2,从而创建子集{2,3}。第一前导码子集{1,2}可以与304SS块1相关联或映射到304SS块1,而第二前导码子集{2,3}可以与306SS块2相关联或映射到306SS块2。正如在该示例中,前导码子集可以彼此重叠。前导码2可以由304SS块2和306SS块2共享。
在gNB处,305Tx波束1可以与304SS块1相关联,并且307Tx波束2可以与306SS块2相关联。
在情况1中,305Tx波束1和307Tx波束2可以重叠,这意味着WTRU可以从305Tx波束1和307Tx波束2接收两个信号。在情况2中,305Tx波束1和307Tx波束2不重叠,这意味着WTRU可以仅接收来自Tx波束1或Tx波束2的信号,而不是两者。给定这些情况1和情况2,可以考虑以下四种情况:场景1,情况1-没有gNB Tx/Rx波束对应;场景2,情况2-没有gNB Tx/Rx波束对应;场景3,情况1-具有gNB Tx/Rx波束对应;和情景4,情况2-具有gNB Tx/Rx波束对应。
在一个实施例中,WTRU A可以测量SS块并选择304SS块1,并且可以在与304SS块1相关联的前导码子集中随机选择前导码。WTRU A可以选择前导码2。WTRU B可以测量SS块并选择306SS块2,并且可以随机选择前导码。WTRU B也可以选择前导码2。
gNB可以从两个WTRU(WTRU A和WTRU B)接收单个前导码(即,前导码2)。当gNB接收到前导码2时,gNB可以确定SS块(304SS块1和306SS块2)与检测到的前导码(前导码2)相关联。gNB可以发送两个RAR,即,305Tx波束1中的RAR1和307Tx波束2中的RAR2。RAR1可以利用RA-RNTI携带SS块索引1,并且RAR2可以利用相同RA-RNTI携带SS块索引2。两个WTRU可以解码该相同RA-RNTI并相应地解码RAR。WTRU A可以获得RAR1中的SS块索引(在305Tx波束1中发送),并且WTRU B可以获得RAR2中的SS块索引(在307Tx波束2中发送),并且每个WTRU可以比较接收的SS块索引和它自己选择的SS块(WTRU A为304SS块1以及WTRU B为306SS块2)。如果它们匹配,则每个WTRU可以假设RAR是针对自己的并且基于在其自己的RAR中接收的授权来发送消息3。否则,每个WTRU可以丢弃所接收的RAR。如果WTRU A和WTRU B都选择304SS块1(或306SS块2),则WTRU A和B可以获得RAR1(或RAR2)中的SS块索引,并且可能发生冲突。冗余版本前导码方法可用于减少或消除潜在的冲突。
当gNB具有Tx/Rx波束对应时,定时提前(TA)可以包括在用于发送RAR的波束的RAR中。在这种情况下,可以使用SS块特定TA和/或波束特定TA。由于gNB可以针对不同的SS块从不同的Rx波束接收前导码,所以即使两个WTRU发送相同的前导码,gNB也可以估计每个Rx波束的TA。在RAR1中,WTRU A的TA1可以包括在与304SS块1相关联的305Tx波束1中发送的RAR1中。WTRU B的TA2也可以包括在与306SS块2相关联的307Tx波束2中发送的RAR2中。
在一些情况下,gNB可能没有Tx/Rx波束对应。例如,WTRU A的前导码2和WTRU B的前导码2可以或可以不从相同的Rx波束接收。如果它们是从相同的Rx波束接收的,则gNB可能无法知晓它是相同的前导码但是由两个不同的WTRU发送的。如果它们来自不同的Rx波束,则gNB知道该前导码是从两个不同的WTRU在两个不同的Rx波束中发送的,并且可以估计对应于两个WTRU的TA。gNB可能不知道哪个TA是针对304SS块1的,哪个是针对306SS块2,因为没有Tx/Rx对应。因此,TA可以是波束对应的函数。
对于具有Tx/Rx对应的场景3,gNB可以知道304SS块1的前导码2的TA,并且它可以包括在RAR 1中。gNB也可以知道前导码2的TA并且它可以包括在RAR 2中。
对于场景1或2,在示例中可能无法针对WTRU正确地估计TA。
对于场景3,可以正确估计TA。WTRU A可以通过RA-RNTI通过CORESET接收RAR1,并检查前导码索引(前导码2)和SS块索引(304SS块1)是否是针对其自身的。类似地,WTRU B可以通过RA-RNTI通过CORESET接收RAR2,并检查前导码索引(前导码2)和SS块索引(SS块2)是否是针对其自身的。
对于场景1或3,WTRU A也可以接收RAR2,但是RAR2中的SS块索引(306SS块2)可能与它为SS块(304SS块1)选择的内容不匹配,并且因此,WTRU A可以丢弃RAR2。类似地,WTRUB也可以接收RAR1,但是RAR1中的SS块索引(304SS块1)可能与它为SS块(306SS块2)选择的内容不匹配,因此WTRU B可以丢弃RAR1。
对于场景4,WTRU A可以仅接收其自己的RAR,并且WTRU B可以仅接收其自己的RAR。gNB可能不需要在RAR中包括SS块索引。
gNB可以被配置为在RAR中包括SS块索引或者不在RAR中包括SS块索引。此外,gNB可以被配置为在RAR和/或RA-RNTI中包括或嵌入SS块索引。gNB可以被配置为不在RAR和RA-RNTI中的任何一个中包括或嵌入SS块索引。可以在NR-PBCH、RMSI、OSI或寻呼等中指示针对RAR和/或RA-RNTI中包括SS块索引的配置。
WTRU可以从gNB接收关于gNB的波束对应(BC)的BC指示。如果BC指示指示“BC”并且配置了PRACH前导码子集重叠,则WTRU可以假设在RAR或RA-RNTI中存在SS块索引。否则,WTRU可以假设在RAR或RA-RNTI中不存在SS块索引。标志或1比特指示符可用于指示RAR、NR-PBCH或剩余最小系统信息(RMSI)等中存在/不存在SS块索引。
对于场景3的RACH配置,WTRU可以选择304SS块1并发送前导码2;gNB可以利用Rx波束1接收前导码2并相应地估计TA。由于波束对应,304SS块1的TA可以是已知的。gNB可以利用RA-RNTI和RAR(其具有用于对应于304SS块1的前导码2的随机接入前导码ID(RAPID)以及对应的TA和RACH消息3(Msg3)授权)发送RAR。WTRU可以成功接收RAR并获得RACH Msg3授权。
在一个实施例中,WTRU A可以选择304SS块1并发送前导码2。同时,WTRU B可以选择306SS块2并发送前导码2。gNB可以利用Rx波束1接收前导码2,并且估计TA1;gNB可以利用Rx波束2接收前导码2,并获得TA2。根据波束对应,TA1可以用于304SS块1,TA2可以用于306SS块2。gNB可以利用RA-RNTI在gNB 305Tx波束1中发送RAR1,该RA-RNTI具有用于前导码2、304SS块1、TA1和Msg3授权的信息。gNB还可以利用RA-RNTI在gNB 307Tx波束2中发送RAR2,该RA-RNTI具有用于前导码2、304SS块2、TA2和另一个Msg3授权的信息。WTRU A可以接收RAR1,因为RAR1中的SS块索引是针对WTRU A的。WTRU B可以接收RAR2,因为RAR2中的SS块索引是针对WTRU B的。
在用于三个WTRU(未示出)的实施例中,WTRU A、B和C可以同时发送前导码2。WTRUA和C可以选择SS块1,并且WTRU B可以选择SS块2。gNB可以通过Rx波束1和2接收前导码,并且可以分别发送RAR1和RAR2。WTRU A和WTRU C可以接收RAR1,因为RAR1中的SS块索引是1,并且两个WTRU可以通过使用相同的UL授权并应用TA1来发送RACH Msg3。WTRU B可以接收RAR2并通过应用TA2发送RACH Msg3。WTRU A和WTRU C的RACH Msg3可能会彼此冲突,并且gNB可以成功地从其TA正确的WTRU之一接收仅一个RACH Msg3,并且可能无法解码另一个RACH Msg3(即,gNB可能无法接收到所述两个RACH Msg3)。
在一个或多个实施例中,前导码类型可以基于SS块和RACH的分层关联。SS块可以与RACH时机相关联。例如,一个SS块可以与一个RACH时机相关联。用于RACH时机的所有前导码索引可以与相同的SS块相关联。WTRU可以随机选择任何一个前导码,并在与WTRU可能想要传送给gNB的所选SS块相关联的RACH时机中发送所选择的前导码。
在替换方案中,SS块可以与RACH时机和前导码这两者相关联。多个SS块也可以与一个RACH传输时机相关联,并且可以使用分层关联。SS块(例如,实际发送的SS块)可以被分成多个组,例如,K组,其中K是一些非负整数。SS块组可以与RACH时机相关联。在每个RACH时机内,SS块组内的SS块可以与属于相应RACH时机的前导码相关联。SS块可以与RACH时机和前导码索引的组合相关联。RACH时机的前导码索引可以与SS块相关联。RACH时机内的一个或多个前导码索引可以与SS块相关联。可以连续地或非连续地映射每个SS块的前导码索引。对于非连续映射,可以以交织方式或分布式方式映射每个SS块的前导码索引。WTRU可以选择与所选择的将被发送到gNB的SS块相关联的前导码,并且在与这些多个SS块相关联的RACH时机中发送所选择的前导码。
在一个或多个情况下,SS块可以是实际发送的SS块。可替换地或另外地,SS块可以是候选SS块、标称SS块、或包括发送或未发送的SS块的所有SS块。如果WTRU被指示了实际发送的SS块,则WTRU可以使用实际发送的SS块来与RACH时机或资源相关联。如果WTRU没有被指示实际发送的SS块,则WTRU可以使用候选SS块、标称SS块或包括发送或未发送的SS块的所有SS块来与RACH时机或资源相关联。如果WTRU被指示或配置为使用候选SS块、标称SS块或所有SS块与RACH时机或资源相关联,则这可以覆盖使用实际发送的SS块的情况,即使WTRU可能被指示了实际发送SS块。例如,这种覆盖指示或关联配置可以处于RRC信令或NR-PBCH中。实际发送的SS块可以在RMSI或OSI内被指示。
本文描述的技术可以应用于基于争用的随机接入或无争用随机接入,和/或也可以应用于基于争用的随机接入和无争用随机接入这两者。
图4示出了前导码和SS块关联的示例。如图所示,前导码被划分401为具有两种或更多种类型的多个子集A、B和C。第一类型的前导码子集可以与一个SS块相关联。第二类型的前导码子集可以与多于一个SS块相关联。例如,前导码子集A和B每个可以是第一类型的前导码子集,其可以分别与一个SS块相关联,例如,SS块402和SS块404。前导码子集C可以是第二类型的前导码子集,其可以与多于SS块相关联,例如,SS块402和404。
在一种情况下,SS块402和SS块404可以在它们相关的发射波束方面彼此相邻。SS块402可以具有索引m并且SS块404可以具有索引n。在这种情况下,m可以是n+1或n-1。
图5示出了RACH资源和SS块关联的示例方法。出于说明的目的,RACH资源和RACH时机在适当时可以是可互换的。如图所示,可以将RACH资源划分501为具有两种或更多种类型的多个子集A、B和C。第一类型的RACH资源子集可以与一个SS块相关联。第二类型的RACH资源子集可以与多于一个SS块相关联。例如,RACH资源子集A和B每个可以是第一类型的前导码子集,其可以分别与一个SS块相关联,例如,SS块502和SS块504。RACH资源子集C可以是第二类型的前导码子集,其可以与多于一个SS块相关联,例如,SS块503和SS块504。
在一种情况下,SS块502和SS块504可以在它们相关的发射波束方面彼此相邻。SS块402可以具有索引m并且SS块404可以具有索引n。在这种情况下,m可以是n+1或n-1。
图6示出了了到RACH的SS块关联和映射示例过程。WTRU可以执行所公开的一个或多个阶段。在602处,可以向WTRU指示实际发送的SS块(SS块)。在604,可以将实际发送的SS块划分为SS块组。在606处,SS块或SS块组被映射到RO或RACH资源。在608处,如果每个RO或RACH资源存在多于一个SS块,则可以在612中将SS块映射到每个RO或RACH资源的前导码,之后可以存在基于前导码类型或基于非前导码类型的前导码子集划分和映射614。如果根据608每个RO或RACH资源不存在多于一个SS块,则该过程可以在610处停止。
图7是示出到RACH的SS块关联和映射的另一示例方法的示图。WTRU可以执行该示例的一个或多个阶段。在702处,可以向WTRU指示实际发送的SS块的数量。在704,可以向WTRU指示每个RO每个SS块的前导码数量。在706,可以向WTRU指示每个RO的SS块数量。在708处,可以向WTRU指示频域中的RO(FDM RO)数量。在710处,可以向WTRU指示时隙中的RO(TDMRO)数量。在712处,可以向WTRU指示用于RACH的时隙数量。在714处,可能存在将SS块映射到前导码的前导码优先映射。在716处,可能存在将SS块映射到频域RO(FDM RO)的频率次之映射。在718处,可能存在将SS块映射到时域RO(TDM RO)的时间再次之映射。在717处,可能存在将SS块映射到时隙内的时域RO的相同时隙优先映射。在719处,可能存在跨时隙次之映射,其将SS块映射到跨时隙的时域RO。如果相同时隙映射就足够了,则可能不需要跨时隙映射。如果相同时隙映射不足够(例如,需要将许多SSB映射到RO),则可以执行跨时隙映射。在720处,如果针对所有RO完成映射循环,则进行到724并停止。同样在720处,如果RO的映射循环没有完成,则在722处丢弃剩余的RO。
在一个或多个实施例中,可以存在基于PRACH资源包的波束扫描。PRACH前导码格式中的OFDM符号的数量或PRACH前导码格式的重复次数可以小于gNB Rx波束的数量。gNB可以使用多个RACH时机扫描用于PRACH的Rx波束。该多个RACH时机可以包括一个或多个RACH资源(例如,一个或多个时隙、非时隙、微型时隙或OFDM符号)。该多个RACH时机可以是连续的,也可以不是连续的。可以将多个RACH时机配置到一个WTRU。在一种情况下,WTRU可以假设可能存在多个RACH时机作为包。WTRU可以使用第一RACH时机、第二RACH时机、第三RACH时机等开始PRACH前导码传输,直到所有波束都被扫描为止。取决于实际发送的SS块的数量或gNB处的波束数量,可以将具有K个OFDM符号的多个RACH时机(作为包)配置给WTRU,以用于实际发送的K个SS块或在gNB处的波束。为了进一步支持除了gNB Rx波束扫描之外的WTRUTx波束扫描,如果WTRU具有M个Tx波束,则可以将具有K乘以M个OFDM符号的多个RACH时机(作为一个包)配置给WTRU。可以使用不同的PRACH前导格式,例如前导格式A、B和/或C。例如,PRACH前导格式A可以是A0、A1、A2、A3,前导格式B可以是B1、B2、B3和B4。前导码格式C可以是C0和C1。SS块的数量可以标记为L。gNB Rx波束的数量可以标记为Nrx。配置的前导码格式的重复次数可以标记为Nrp
如果不存在波束对应,则为了确保gNB可以扫描所有Rx波束以从WTRU接收多个RACH试验,gNB可以配置最高(ceiling)
Figure BDA0002510995880000401
个类型的RACH时机。所有gNB Rx波束可以通过“RACH时机包”扫描。这可以针对每个SS块或针对所有SS块进行配置。不同类型的RACH时机可以对应于不同的Nrp个gNB Rx波束。
Figure BDA0002510995880000402
个类型RACH时机可以被定义为“RACH时机包”。
对于RACH Msg1的重传,WTRU可以拾取在先前的RACH Msg1(重新)传输中尚未使用的不同RACH时机类型,以便完成gNB Rx波束扫描。
对于RACH Msg1重传,可以由WTRU配置或确定以决定是否改变WTRU UL Tx波束、斜升功率或改变RACH时机的类型。
图8示出了每个随机接入信道(RACH)时机类型的窗口长度的示例配置,其中RACH时机的窗口长度(例如806和808)可以与RACH配置周期(例如804)相同。可以配置每个RACH时机类型的长度,使得所有RACH时机类型的窗口长度相同。例如,窗口长度806可以与RACH配置周期804相同。可替换地或另外地,所有RACH时机类型的窗口长度可以是RACH配置周期的N倍(未示出),其中N可以配置在剩余最低系统信息(RMSI)中。在一个示例中,N可以是大于1的整数。
图9示出了每个随机接入信道(RACH)时机类型的窗口长度的示例配置,其中RACH时机的窗口长度是RACH配置周期的两倍。如图所示,RACH时机类型的窗口长度906被配置为RACH配置周期904的两倍。
图10示出了每个随机接入信道(RACH)时机类型的窗口长度的示例配置,其中RACH时机的窗口长度小于RACH配置周期。如图所示,每个RACH时机类型的窗口长度1006可以小于RACH配置周期1004。所有RACH时机类型均可以在RACH配置周期内。在一些实施例中,不同RACH时机类型的窗口长度可以不同。可以使用预定义的窗口长度模式。WTRU可以配置有RMSI中的一个模式。
可以在NR-PBCH或RMSI中向WTRU指示RACH时机类型的数量Q。根据波束对应,Q可能具有不同的值。例如,对于没有波束对应的gNB,
Figure BDA0002510995880000411
对于具有波束对应关系的gNB,Y=1。对于具有部分波束对应的gNB,
Figure BDA0002510995880000412
其中
Figure BDA0002510995880000413
是与对应于SS块的gNB Tx波束重叠的gNB Rx波束的数量。例如,Nrx=4;Nrp=2;L=4。每个SS块可能有两种类型的RACH时机。类型1RACH时机可以由gNB Rx波束0和1接收。类型2RACH时机可以由gNBRx波束2和3接收。
在一个实施例中,Nrx可以设置为64,Nrp可以设置为12,并且L可以设置为64(即,Nrx=64;Nrp=12;L=64)。每个SS块可能有6种类型的RACH时机。每种类型的RACH时机可以由12个gNB Rx波束接收,并且gNB Rx波束的子集对于不同类型的RACH时机可以是不同的。
在另一个实施例中,Nrx可以设置为2并且Nrp可以设置为2(即,Nrx=2;Nrp=2)。在该实施例中可能只有一种类型的RACH时机。
图11示出了基于SS波束报告的前导码的示例冗余版本。WTRU 1106可以执行先听后说(LBT)并发送RACH前导码。gNB 1101可以执行LBT并发送RAR。如果gNB 1101在1104波束1中未能LBT,则它可能不在1104波束1中发送RAR。如果WTRU 1106仅报告一个波束(例如,1104波束1),则由于gNB 1101的LBT故障,WTRU 1106可能不能接收RAR。
在一个实施例中,WTRU 1106可以报告多于一个波束(尤其是在波束的重叠区域),例如1104波束1和1105波束2。WTRU 1106可以报告针对最强波束的SS块以及针对其他波束的SS块。WTRU 1106可以执行LBT并发送RACH前导码,该RACH前导码可以与SS块#1(例如,1104波束1)和SS块#2(例如,1106波束2)相关联。gNB 1101可以在多于一个波束(例如,1104波束1和1106波束2)上执行LBT,并且可以相应地发送RAR。如果gNB 1101在1104波束1中未能LBT,则它可以在其他波束(例如,1106波束2)中发送RAR。另一方面,如果gNB 1101在1106波束2中未能LBT,则它可以在其他波束(例如,1104波束1)中发送RAR。除非gNB 1101在两个或所有波束中都未能LBT,否则gNB 1101可能需要继续执行LBT,直到在发送RAR之前信道是清空的。这可能会导致严重延迟和高延时。通过从WTRU 1106报告多于一个SS块,gNB 1101可以能够无延迟地发送RAR。前导码和SS块的关联可以是一个前导码对多个SS块。例如,前导码#1可以与SS块#1和#2相关联,前导码#2可以与SS块#3和#4相关联,依此类推。
然而,当多于一个WTRU处于相同的波束重叠区域时,多个WTRU可能会报告导致冲突的相同前导码(未示出)。在NR或未许可NR中,相同重叠的波束区域中的WTRU可能会报告相同的前导码,如果WTRU选择了相同的RACH时机,则可能导致前导码冲突。
在一个实施例中,可以使用基于冗余版本的SS块报告,并且gNB可以能够无延迟地发送RAR。前导码和SS块的关联可以基于前导码的冗余。
在一个实施例中,可以使用前导码关联的冗余版本,其中前导码和SS块的关联可以是一个前导码对多个SS块,并且可以使用关于前导码和SS块的相同关联的冗余版本。例如,在前导码#1与SS块#1和#2相关联的情况下,前导码#2可以是前导码#1的冗余版本,并且也可以与相同的SS块相关联(例如,SS块#1和#2)。这可以消除或减少WTRU冲突,因为相同重叠的波束区域中的WTRU可能不报告相同的前导码。
在一种情况下,WTRU可以使用前导码或RACH Msg3来报告多于一个SS块。在使用基于前导码的SS块报告的情况下,可以将一个前导码映射到多个SS块(例如,将前导码#1映射到SS块#1和SS块#2)。为了进一步减少冲突,可以针对另一个前导码重复相同的映射。例如,可以为前导码#3产生前导码#1的冗余版本。在另一示例中,前导码#1的冗余版本可以是以下之一:前导码#2,其可以被映射到相同的SS块(例如,SS块#1和SS块#2);或前同步码#3,其可以映射到相同的SS块(例如,SS块#1和SS块#2)。gNB可以执行定向LBT并发送RAR。如果SS块1中未能LBT,则gNB可以灵活地在SS块2中发送RAR。
在使用基于RACH Msg3的SS块报告的情况下,RACH Msg3可以包括用于在其有效载荷中进行如下映射的冗余版本:前导码#1可以被映射到SS块#1和SS块#2;前导码#2可以映射到SS块#1和SS块#2;和/或,前导码#3可以映射到SS块#1和SS块#2。
基于前导码的冗余版本的SS块报告可以应用于初始接入和信道接入,这其中包括随机接入、数据的波束管理和/或控制、移动性和/或其他用例和场景。基于前导码的冗余版本的SS块报告可以应用于NR许可频带或未许可频带以及独立或非独立系统。
虽然本发明的特征和部件是在优选实施例中以特定组合进行描述的,但是每个特征或部件可以在没有优选实施例的其他特征和部件的情况下单独使用,或者与本发明的其他特征和部件进行各种组合而使用,或者在没有本发明的其他特征和部件的情况下被使用。
虽然在此所述的实施例考虑了LTE、LTE-A、新无线电(NR)或5G特定协议,应该理解的是,在此所述的实施例并不限于这些场景,且还可适用于其他无线系统。
虽然上述按照特定的组合描述了特征及部件,但本领域技术人员可以理解,每一特征或部件均可被单独使用或与其他特征及部件进行任意组合。另外在此所述的方法可以在被引入计算机可读介质以供计算机和/或处理器运行的计算机程序、软件或固件中实施。关于计算机可读媒体的示例包括电信号(经由有线或无线连接传送)和计算机可读存储媒体。关于计算机可读存储媒体的示例包括但不局限于只读存储器(ROM)、随机存取存储器(RAM)、寄存器、缓冲存储器、半导体存储设备、磁介质(例如内部硬盘和可移除磁盘)、磁光介质、和光介质(例如CD-ROM碟片和数字多用途碟片(DVD))。与软件关联的处理器可以用于实施在WTRU、UE、终端、基站、RNC或任何计算机主机使用的射频收发信机。

Claims (10)

1.一种由无线发射接收单元(WTRU)执行的方法,该方法包括:
接收关于包括随机接入信道(RACH)时机配置的半静态UL/DL信息的指示;
接收关于一个或多个实际发送的同步信号(SS)块的指示;
接收关于一个或多个启用或禁用的SS块的指示;
确定所述RACH时机中的任何一个是否有效,其中所述RACH时机是基于以下而有效的:所述RACH时机是在所指示的所有实际发送的SS块之后还是所述RACH时机位于实际发送的SS块的位置但是该SS块已经被指示为禁用;和
在已被确定为有效的一个或多个所述RACH时机中发送物理RACH。
2.根据权利要求1所述的方法,其中所述关于半静态UL/DL信息的指示经由物理广播信道(PBCH)在剩余最小系统信息(RMSI)中被接收。
3.根据权利要求1所述的方法,其中所述关于实际发送的SS块的指示在DL部分中。
4.根据权利要求1所述的方法,还包括:接收关于是启用还是禁用SS块覆盖的动态指示。
5.根据权利要求4所述的方法,其中所述RACH时机有效还基于所述关于是否禁用SS块的动态指示。
6.一种无线发射接收单元(WTRU),包括:
处理器,可操作地耦合到收发器,该处理器和收发器被配置为接收关于包括随机接入信道(RACH)时机配置的半静态UL/DL信息的指示,接收关于一个或多个实际发送的同步信号(SS)块的指示,并接收关于所述一个或多个实际SS块的指示;和
所述处理器和收发器还被配置为确定所述RACH时机中的任何一个是否有效,其中该RACH时机基于以下而有效:所述RACH时机是在所指示的所有实际发送的SS块之后还是所述RACH时机位于实际发送的SS块的位置但是该SS块已经被指示为禁用;以及在已被确定为有效的一个或多个所述RACH时机中发送物理RACH。
7.根据权利要求6所述的WTRU,其中所述关于半静态UL/DL信息的指示经由物理广播信道(PBCH)在剩余最小系统信息(RMSI)中被接收。
8.根据权利要求6所述的WTRU,其中所述关于实际发送的SS块的指示在DL部分中。
9.根据权利要求6所述的WTRU,其中所述处理器和收发器还被配置为接收关于SS块覆盖是启用还是禁用的动态指示。
10.根据权利要求9所述的WTRU,其中所述RACH时机有效还基于所述关于是否禁用SS块的动态指示。
CN201880076687.3A 2017-11-27 2018-11-27 新无线电/新无线电-未许可中的初始接入和信道接入 Active CN111406436B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202311560639.0A CN117750532A (zh) 2017-11-27 2018-11-27 Nr/nr-u中的初始接入和信道接入
CN202311558184.9A CN117715225A (zh) 2017-11-27 2018-11-27 Nr/nr-u中的初始接入和信道接入

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201762590936P 2017-11-27 2017-11-27
US62/590,936 2017-11-27
US201862630692P 2018-02-14 2018-02-14
US62/630,692 2018-02-14
PCT/US2018/062544 WO2019104299A1 (en) 2017-11-27 2018-11-27 Initial access and channel access in new radio/new radio-unlicensed (nr/nr-u)

Related Child Applications (2)

Application Number Title Priority Date Filing Date
CN202311560639.0A Division CN117750532A (zh) 2017-11-27 2018-11-27 Nr/nr-u中的初始接入和信道接入
CN202311558184.9A Division CN117715225A (zh) 2017-11-27 2018-11-27 Nr/nr-u中的初始接入和信道接入

Publications (2)

Publication Number Publication Date
CN111406436A true CN111406436A (zh) 2020-07-10
CN111406436B CN111406436B (zh) 2023-12-08

Family

ID=64899409

Family Applications (3)

Application Number Title Priority Date Filing Date
CN202311558184.9A Pending CN117715225A (zh) 2017-11-27 2018-11-27 Nr/nr-u中的初始接入和信道接入
CN202311560639.0A Pending CN117750532A (zh) 2017-11-27 2018-11-27 Nr/nr-u中的初始接入和信道接入
CN201880076687.3A Active CN111406436B (zh) 2017-11-27 2018-11-27 新无线电/新无线电-未许可中的初始接入和信道接入

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN202311558184.9A Pending CN117715225A (zh) 2017-11-27 2018-11-27 Nr/nr-u中的初始接入和信道接入
CN202311560639.0A Pending CN117750532A (zh) 2017-11-27 2018-11-27 Nr/nr-u中的初始接入和信道接入

Country Status (7)

Country Link
US (3) US11405950B2 (zh)
EP (2) EP4132196A1 (zh)
JP (2) JP2021505036A (zh)
CN (3) CN117715225A (zh)
RU (1) RU2745022C1 (zh)
TW (1) TWI706685B (zh)
WO (1) WO2019104299A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115333704A (zh) * 2021-05-10 2022-11-11 维沃移动通信有限公司 传输控制方法、装置、终端及可读存储介质
WO2024032798A1 (zh) * 2022-08-12 2024-02-15 展讯通信(上海)有限公司 数据传输方法、装置以及设备

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11395344B2 (en) * 2018-01-24 2022-07-19 Lg Electronics Inc. Method for transmitting and receiving random access channel and uplink channel in non-licensed band and apparatus therefor
US11228974B2 (en) * 2018-02-15 2022-01-18 Comcast Cable Communications, Llc Wireless communications and power configurations
CN110536419B (zh) * 2018-05-23 2023-04-18 中兴通讯股份有限公司 一种波束恢复方法和装置
US11259293B2 (en) * 2019-01-10 2022-02-22 Ofinno, Llc Two-stage preamble transmission
WO2020146775A1 (en) * 2019-01-11 2020-07-16 Apple Inc. Rach resource coordination mechanisms for adjacent hops in iab
WO2020227011A1 (en) * 2019-05-03 2020-11-12 Apple Inc. Random access channel configuration in time domain for nr in unlicensed spectrum
WO2021012137A1 (en) * 2019-07-22 2021-01-28 Qualcomm Incorporated Repeating transmission of random access sequences
US11864234B2 (en) 2019-08-08 2024-01-02 Qualcomm Incorporated Beam-based channel access procedures
US11363641B2 (en) * 2019-08-09 2022-06-14 Qualcomm Incorporated Validation rules for random access message transmission occasions
EP3783952A1 (en) 2019-08-20 2021-02-24 Mitsubishi Electric R&D Centre Europe B.V. Method for providing network orchestration for industrial communication system
WO2021056170A1 (en) * 2019-09-24 2021-04-01 Qualcomm Incorporated Cross carrier random access configuration
CN111010742B (zh) * 2019-12-09 2022-07-15 Oppo广东移动通信有限公司 用于确定随机接入资源的方法和终端设备
WO2021127958A1 (en) * 2019-12-24 2021-07-01 Qualcomm Incorporated Random access message repetition techniques in beamformed communications
CN113645699B (zh) * 2020-05-11 2024-05-28 大唐移动通信设备有限公司 一种时域资源配置方法及终端
US11818770B2 (en) 2020-06-12 2023-11-14 Qualcomm Incorporated Random access channel beam management
US20220039033A1 (en) * 2020-07-29 2022-02-03 Qualcomm Incorporated User equipment timing misalignment reporting in non-terrestrial networks
US11606821B2 (en) * 2021-03-03 2023-03-14 Qualcomm Incorporated Downlink transmission indication for RACH occasions
CN115087118A (zh) * 2021-03-12 2022-09-20 维沃移动通信有限公司 上行传输方法、装置及终端
US11832197B2 (en) 2021-06-29 2023-11-28 Cisco Technology, Inc. Neighborhood management between WiFi and unlicensed spectrum radios
US20230224977A1 (en) * 2022-01-13 2023-07-13 Qualcomm Incorporated Facilitating the use of random access channel occasions for full-duplex communication
WO2023191372A1 (ko) * 2022-03-31 2023-10-05 엘지전자 주식회사 무선 통신 시스템에서 상향링크 송수신을 수행하는 방법 및 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150181546A1 (en) * 2012-07-23 2015-06-25 Interdigital Patent Holdings, Inc. Methods and apparatus for frequency synchronization, power control, and cell configuration for ul-only operation in dss bands
CN105009479A (zh) * 2013-01-28 2015-10-28 Lg电子株式会社 在支持超高频带的无线接入系统中执行高速初始接入过程的方法和支持该方法的装置
WO2017022870A1 (en) * 2015-08-03 2017-02-09 Samsung Electronics Co., Ltd. Method and apparatus for initial access in wireless communication system
WO2017155238A1 (ko) * 2016-03-11 2017-09-14 엘지전자 주식회사 시스템 정보 신호 수신 방법 및 사용자기기와, 시스템 정보 신호 전송 방법 및 기지국

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8014359B2 (en) * 2006-10-27 2011-09-06 Interdigital Technology Corporation Method and apparatus for assigning radio resources and controlling transmission parameters on a random access channel
EP3709755A1 (en) * 2008-07-01 2020-09-16 Telefonaktiebolaget LM Ericsson (publ) Methods and apparatuses for performing preamble assignment for random access in a telecommunications system
CN101686544A (zh) 2008-09-22 2010-03-31 中兴通讯股份有限公司 专用随机接入资源的分配方法和基站
CN101841922B (zh) * 2009-03-16 2015-01-28 中兴通讯股份有限公司 选择随机接入资源的方法及终端
US20140334371A1 (en) * 2012-01-27 2014-11-13 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data by using plurality of carriers in mobile communication systems
US9414409B2 (en) * 2012-02-06 2016-08-09 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving data on multiple carriers in mobile communication system
US9603048B2 (en) * 2012-03-16 2017-03-21 Interdigital Patent Holdings, Inc. Random access procedures in wireless systems
JP6285647B2 (ja) * 2013-06-14 2018-02-28 株式会社Nttドコモ 無線基地局、無線通信システムおよび無線通信方法
BR112015028156A2 (pt) * 2013-08-09 2017-07-25 Mediatek Inc alocação de recurso físico para canais de controle de ul em sistemas de tdd adaptativa
WO2015117283A1 (zh) * 2014-02-10 2015-08-13 华为技术有限公司 Prach资源配置方法及资源配置的获取方法、基站及用户设备
GB2530566A (en) * 2014-09-26 2016-03-30 Nec Corp Communication system
US20190053381A1 (en) * 2014-11-28 2019-02-14 Industrial Technology Research Institute Structure of conductive lines and method of manufacturing the same
US10575338B2 (en) * 2016-02-04 2020-02-25 Samsung Electronics Co., Ltd. Method and apparatus for UE signal transmission in 5G cellular communications
US10887143B2 (en) 2016-05-06 2021-01-05 Samsung Electronics Co., Ltd. Method and apparatus for initial access in wireless communication systems
US10187928B2 (en) * 2017-03-07 2019-01-22 Indian Institute Of Technology Bombay Methods and systems for controlling a SDN-based multi-RAT communication network
WO2018231553A2 (en) * 2017-06-16 2018-12-20 Intel IP Corporation Power ramping and control in new radio (nr) devices
WO2019022572A1 (en) * 2017-07-27 2019-01-31 Samsung Electronics Co., Ltd. METHOD AND APPARATUS FOR EXECUTING A RANDOM ACCESS PROCEDURE
US11388654B2 (en) * 2017-09-15 2022-07-12 Samsung Electronics Co., Ltd. Apparatus and method of identifying downlink transmission beam in a cellular network
US11533750B2 (en) * 2017-10-09 2022-12-20 Qualcomm Incorporated Random access response techniques based on synchronization signal block transmissions
US10887903B2 (en) * 2017-10-26 2021-01-05 Ofinno, Llc Wireless device processes with bandwidth part switching
US11272534B2 (en) * 2017-10-27 2022-03-08 Telefonaktiebolaget Lm Ericsson (Publ) Contention-free random access with multiple SSB
US11463923B2 (en) * 2017-11-14 2022-10-04 Idac Holdings, Inc. Supplementary uplink in wireless systems
WO2019097661A1 (ja) * 2017-11-16 2019-05-23 株式会社Nttドコモ ユーザ装置及び基地局装置
WO2019096679A1 (en) * 2017-11-16 2019-05-23 Telefonaktiebolaget Lm Ericsson (Publ) Random access procedure
US10609735B2 (en) * 2017-11-17 2020-03-31 Lg Electronics Inc. Method of transmitting and receiving physical random access channel and device therefor
WO2019100254A1 (en) * 2017-11-22 2019-05-31 Zte Corporation Co-existence of different random access resources and associations

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150181546A1 (en) * 2012-07-23 2015-06-25 Interdigital Patent Holdings, Inc. Methods and apparatus for frequency synchronization, power control, and cell configuration for ul-only operation in dss bands
CN105009479A (zh) * 2013-01-28 2015-10-28 Lg电子株式会社 在支持超高频带的无线接入系统中执行高速初始接入过程的方法和支持该方法的装置
WO2017022870A1 (en) * 2015-08-03 2017-02-09 Samsung Electronics Co., Ltd. Method and apparatus for initial access in wireless communication system
WO2017155238A1 (ko) * 2016-03-11 2017-09-14 엘지전자 주식회사 시스템 정보 신호 수신 방법 및 사용자기기와, 시스템 정보 신호 전송 방법 및 기지국

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
""R1-1720652"", 《3GPP TSG_RAN\WG1_RL1》 *
""R1-1720652"", 《3GPP TSG_RAN\WG1_RL1》, 18 November 2017 (2017-11-18) *
""R2-1703553 RACH in Multibeam System"", 3GPP TSG_RAN\\WG2_RL2 *
3GPP: ""R1-1720922 remaining details on RACH configuration"", 《3GPP TSG_RAN\WG1_RL1》 *
3GPP: ""R1-1720922 remaining details on RACH configuration"", 《3GPP TSG_RAN\WG1_RL1》, 18 November 2017 (2017-11-18), pages 1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115333704A (zh) * 2021-05-10 2022-11-11 维沃移动通信有限公司 传输控制方法、装置、终端及可读存储介质
WO2024032798A1 (zh) * 2022-08-12 2024-02-15 展讯通信(上海)有限公司 数据传输方法、装置以及设备

Also Published As

Publication number Publication date
RU2745022C1 (ru) 2021-03-18
JP2022188297A (ja) 2022-12-20
TWI706685B (zh) 2020-10-01
US20220330325A1 (en) 2022-10-13
TW201933927A (zh) 2019-08-16
EP3718369A1 (en) 2020-10-07
US11844105B2 (en) 2023-12-12
US20210029737A1 (en) 2021-01-28
EP4132196A1 (en) 2023-02-08
CN117715225A (zh) 2024-03-15
EP3718369B1 (en) 2022-10-19
WO2019104299A1 (en) 2019-05-31
US11405950B2 (en) 2022-08-02
CN117750532A (zh) 2024-03-22
JP2021505036A (ja) 2021-02-15
CN111406436B (zh) 2023-12-08
US20240057149A1 (en) 2024-02-15

Similar Documents

Publication Publication Date Title
CN111406436B (zh) 新无线电/新无线电-未许可中的初始接入和信道接入
CN110679186B (zh) 波束成形的寻呼传输
CN113678565B (zh) 针对非陆地网络的网络接入的方法、装置和系统
CN112740818B (zh) Nru中的接收机辅助的传输
CN113508540B (zh) 两步rach中用于msg-b的方法
CN111567128B (zh) 用于无线系统中的辅助上行链路接入的方法
CN112075122B (zh) 用于具有全双工无线电的无线局域网(wlan)的信道接入方案
CN112954815A (zh) 波束成形系统中的新型无线电随机接入
CN113728715A (zh) 用于两步RACH中的msg-A传输的方法和装置
CN111727657A (zh) Nr-u的物理随机接入
CN117354948A (zh) 传输适配和无授权接入
CN115085785A (zh) 用于波束成形的系统信息传输的方法和系统
CN111989888B (zh) 用于noma的缓解冲突及降低复杂度的方法和装置
WO2020033622A1 (en) Reliable sidelink data transmission
US11716746B2 (en) Scheduling and transmission for NOMA
CN112567836A (zh) 无线系统中的控制信息传输和感测
CN112753194A (zh) Nr-u中的csi反馈
WO2018204351A1 (en) Synchronization signal multiplexing and mappings in nr
CN111615803A (zh) 免许可上行链路传输
CN118251859A (zh) 用于获取在未许可带中运行的5g新无线电网络(nr u)中由于先听后说(lbt)故障而遗漏的ssb的系统和方法
CN117917172A (zh) 多前导码物理随机接入信道指示
CN118160384A (zh) 通过前导码重复扩大覆盖
CN118044321A (zh) 用于较高频率中的prach的方法
CN118301781A (zh) 用于具有全双工无线电的无线局域网(wlan)的信道接入方案

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20230418

Address after: Delaware

Applicant after: INTERDIGITAL PATENT HOLDINGS, Inc.

Address before: Wilmington, Delaware, USA

Applicant before: IDAC HOLDINGS, Inc.

GR01 Patent grant
GR01 Patent grant