TWI706685B - 新無線電/非授權新無線電(nr/nr-u)初步存取及頻道存取 - Google Patents
新無線電/非授權新無線電(nr/nr-u)初步存取及頻道存取 Download PDFInfo
- Publication number
- TWI706685B TWI706685B TW107142204A TW107142204A TWI706685B TW I706685 B TWI706685 B TW I706685B TW 107142204 A TW107142204 A TW 107142204A TW 107142204 A TW107142204 A TW 107142204A TW I706685 B TWI706685 B TW I706685B
- Authority
- TW
- Taiwan
- Prior art keywords
- wtru
- block
- rach
- prach
- gnb
- Prior art date
Links
- 238000000034 method Methods 0.000 claims abstract description 41
- 230000005540 biological transmission Effects 0.000 claims description 76
- 238000004891 communication Methods 0.000 description 44
- 238000010586 diagram Methods 0.000 description 26
- 238000005516 engineering process Methods 0.000 description 24
- 230000006870 function Effects 0.000 description 23
- 238000013507 mapping Methods 0.000 description 21
- 101150054327 RAR1 gene Proteins 0.000 description 16
- 101100011885 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) ERG12 gene Proteins 0.000 description 16
- 230000015654 memory Effects 0.000 description 15
- 101001100204 Homo sapiens Ras-related protein Rab-40A-like Proteins 0.000 description 14
- 102100038416 Ras-related protein Rab-40A-like Human genes 0.000 description 14
- 238000007726 management method Methods 0.000 description 11
- 238000012545 processing Methods 0.000 description 10
- 238000004088 simulation Methods 0.000 description 10
- 238000012360 testing method Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 8
- 238000001228 spectrum Methods 0.000 description 8
- 102100022887 GTP-binding nuclear protein Ran Human genes 0.000 description 7
- 230000002093 peripheral effect Effects 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 239000000969 carrier Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 101100533725 Mus musculus Smr3a gene Proteins 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 241000760358 Enodes Species 0.000 description 2
- 101100172132 Mus musculus Eif3a gene Proteins 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- QELJHCBNGDEXLD-UHFFFAOYSA-N nickel zinc Chemical compound [Ni].[Zn] QELJHCBNGDEXLD-UHFFFAOYSA-N 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000005355 Hall effect Effects 0.000 description 1
- 101001061911 Homo sapiens Ras-related protein Rab-40A Proteins 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 102100029553 Ras-related protein Rab-40A Human genes 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000005055 memory storage Effects 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- -1 nickel metal hydride Chemical class 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 235000019527 sweetened beverage Nutrition 0.000 description 1
- 238000000411 transmission spectrum Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/002—Transmission of channel access control information
- H04W74/006—Transmission of channel access control information in the downlink, i.e. towards the terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
- H04W56/001—Synchronization between nodes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/30—Resource management for broadcast services
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/002—Transmission of channel access control information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
- H04W74/0833—Random access procedures, e.g. with 4-step access
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
- H04W74/0833—Random access procedures, e.g. with 4-step access
- H04W74/0838—Random access procedures, e.g. with 4-step access using contention-free random access [CFRA]
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
用於解決可能的隨機存取頻道(RACH)時機的衝突的方法、系統和裝置。無線傳輸/接收單元(WTRU)可以接收剩餘最小系統資訊(RMSI)中的包括RACH時機配置的半靜態UL/DL資訊的指示以及一個或多個實際傳輸的同步信號(SS)塊的指示。然後,WTRU可以基於配置資訊評估是否存在RACH時機,並且確定該RACH時機中的任何一個是否有效,其中該RACH時機可以基於該RACH時機是在被指示之所有實際傳輸的SS塊之後和/或是否禁用或啟用SS塊廢棄而有效。WTRU可以在已被確定為有效的一個或多個該RACH時機中傳輸RACH。
Description
相關申請的交叉引用
本申請要求2017年11月27日提交的美國臨時申請No. 62/590,936和2018年2月14日提交的美國臨時申請No. 62/630,692的權益,其內容藉由引用結合到本文中。
第五代(5G)無線系統是超越第四代(4G)標準的下一電信標準。5G通常旨在提供比4G更高的容量,允許更高密度的行動寬頻使用者、更高的可靠性、以及支援裝置到裝置和大規模機器通信。根據國際電信聯盟無線電通信(ITU-R)、下一代行動網路(NGMN)和第三代合作夥伴計畫(3GPP)提出的一般要求,5G系統用例的廣泛分類可能包括增強型行動寬頻(eMBB)、大規模機器類型通信(mMTC)、以及超可靠和低潛伏期通信(URLLC)。這些用例可能關注不同的要求,例如高資料速率、高頻譜效率、低功率和高能效、低潛伏期和高可靠性。對於各種這樣的部署方案,可以考慮範圍從700 MHz到80 GHz的頻帶廣範圍。
隨著載波頻率的增加,嚴重的路徑損耗可能成為保證無線裝置的充分覆蓋的關鍵限制。例如,毫米波系統中的傳輸可能遭受非視線損耗,例如繞射損耗、穿透損耗、氧吸收損失、葉子(foliage)損失等。在初步存取期間,基地台(BS)和無線傳輸/接收單元(WTRU)可能需要克服這些高路徑損耗並相互發現。利用數十個甚至數百個天線元件在5G無線系統中產生波束形成信號是藉由提供顯著波束形成增益來補償嚴重路徑損耗的有效方法。然而,這些波束形成的信號在初步存取或隨機存取程序期間可能彼此衝突。例如,同步信號(SS)塊、隨機存取頻道(RACH)資源、控制頻道(DL/UL)和/或資料頻道(DL/UL)可能在5G場景中彼此衝突。
用於解決可能的隨機存取頻道(RACH)時機的衝突的方法、系統和裝置。無線傳輸/接收單元(WTRU)可以在經由PBCH的剩餘最小系統資訊(RMSI)中接收關於包含RACH時機配置的半靜態UL/DL資訊的指示以及關於一個或多個實際傳輸的同步信號(SS)塊的指示。然後,WTRU可以基於該配置資訊評估是否存在RACH時機,並且確定RACH時機中的任何一個是否有效,其中RACH時機可以基於以下而有效:RACH時機是在所有實際傳輸的SS塊指示之後和/或是否禁用或啟用SS塊廢棄(override)。WTRU可以在已被確定為有效的一個或多個RACH時機中傳輸RACH。
第1A圖是示出了可以實施所揭露的一個或多個實施例的範例通信系統100的圖式。該通信系統100可以是為多個無線使用者提供語音、資料、視訊、消息傳遞、廣播等內容的多重存取系統。該通信系統100可以藉由共用包括無線頻寬在內的系統資源而使多個無線使用者能夠存取此類內容。舉例來說,通信系統100可以使用一種或多種頻道存取方法,例如分碼多重存取(CDMA)、分時多重存取(TDMA)、分頻多重存取(FDMA)、正交FDMA(OFDMA)、單載波FDMA(SC-FDMA)、零尾唯一字DFT擴展OFDM(ZT UW DTS-s OFDM)、唯一字OFDM(UW-OFDM)、資源塊過濾OFDM以及濾波器組多載波(FBMC)等等。
如第1A圖所示,通信系統100可以包括無線傳輸/接收單元(WTRU)102a、102b、102c、102d、RAN 104/113、CN 106/115、公共交換電話網路(PSTN)108、網際網路110以及其他網路112,然而應該瞭解,所揭露的實施例設想了任意數量的WTRU、基地台、網路和/或網路元件。每一個WTRU 102a、102b、102c、102d可以是被配置成在無線環境中操作和/或通信的任何類型的裝置。舉例來說,任一WTRU 102a、102b、102c、102d都可被稱為“站”和/或“STA”,其可以被配置成傳輸和/或接收無線信號,並且可以包括使用者設備(UE)、行動站、固定或行動用戶單元、基於訂閱的單元、呼叫器、行動電話、個人數位助理(PDA)、智慧型電話、膝上型電腦、小筆電、個人電腦、無線感測器、熱點或Mi-Fi裝置、物聯網(IoT)裝置、手錶或其他可穿戴裝置、頭戴顯示器(HMD)、車輛、無人機、醫療裝置和應用(例如遠端手術)、工業裝置和應用(例如機器人和/或在工業和/或自動處理鏈環境中操作的其他無線裝置)、消費類電子裝置、以及在商業和/或工業無線網路上操作的裝置等等。WTRU 102a、102b、102c及102d中的任意者可被可交換地稱為UE。
通信系統100還可以包括基地台114a和/或基地台114b。每一個基地台114a、114b可以是被配置成藉由以無線方式與WTRU 102a、102b、102c、102d中的至少一個有無線介面來促進存取一個或多個通信網路(例如CN 106/115、網際網路110、和/或其他網路112)的任何類型的裝置。舉例來說,基地台114a、114b可以是基地收發台(BTS)、節點B、e節點B、本地節點B、本地e節點 B、gNB、NR節點B、網站控制器、存取點(AP)、以及無線路由器等等。雖然每一個基地台114a、114b都被描述成了單個元件,然而應該瞭解,基地台114a、114b可以包括任何數量的互連基地台和/或網路元件。
基地台114a可以是RAN 104/113的一部分,其還可以包括其他基地台和/或網路元件(未顯示),例如基地台控制器(BSC)、無線電網路控制器(RNC)、中繼節點等等。基地台114a和/或基地台114b可被配置成在名為胞元(未顯示)的一個或多個載波頻率上傳輸和/或接收無線信號。這些頻率可以處於授權頻譜、無授權頻譜或是授權與無授權頻譜的結合之中。胞元可以為相對固定或者有可能隨時間變化的特定地理區域提供無線服務覆蓋。胞元可被進一步分成胞元扇區。例如,與基地台114a相關聯的胞元可被分為三個扇區。由此,在一個實施例中,基地台114a可以包括三個收發器,也就是說,胞元的每個有一個扇區。在一個實施例中,基地台114a可以使用多輸入多輸出(MIMO)技術,並且可以為胞元的每一個扇區使用多個收發器。舉例來說,藉由使用波束成形,可以在期望的空間方向上傳輸和/或接收信號。
基地台114a、114b可以藉由空中介面116來與WTRU 102a、102b、102c、102d中的一個或多個進行通信,其中該空中介面可以是任何適當的無線通信鏈路(例如射頻(RF)、微波、釐米波、微米波、紅外線(IR)、紫外線(UV)、可見光等等)。空中介面116可以使用任何適當的無線電存取技術(RAT)來建立。
更具體地說,如上所述,通信系統100可以是多重存取系統,並且可以使用一種或多種頻道存取方案,例如CDMA、TDMA、FDMA、OFDMA以及SC-FDMA等等。例如,RAN 104/113中的基地台114a與WTRU 102a、102b、102c可以實施無線電技術,例如通用行動電信系統(UMTS)陸地無線電存取(UTRA),其可以使用寬頻CDMA(WCDMA)來建立空中介面115/116/117。WCDMA可以包括如高速封包存取(HSPA)和/或演進型HSPA(HSPA+)之類的通信協定。HSPA可以包括高速下鏈(DL)封包存取(HSDPA)和/或高速上鏈(UL)封包存取(HSUPA)。
在一個實施例中,基地台114a和WTRU 102a、102b、102c可以實施無線電技術,例如演進型UMTS陸地無線電存取(E-UTRA),其可以使用長期演進(LTE)和/或先進LTE(LTE-A)和/或先進LTA Pro(LTE-A Pro)來建立空中介面116。
在一個實施例中,基地台114a和WTRU 102a、102b、102c可以實施無線電技術,例如NR無線電存取,其可以使用新型無線電(NR)來建立空中介面116。
在一個實施例中,基地台114a和WTRU 102a、102b、102c可以實施多個無線電存取技術。舉例來說,基地台114a和WTRU 102a、102b、102c可以共同實施LTE無線電存取和NR無線電存取(例如使用雙連接(DC)原理)。由此,WTRU 102a、102b、102c使用的空中介面可以多種類型的無線電存取技術和/或向/從多種類型的基地台(例如eNB和gNB)傳輸的傳輸為特徵。
在其他實施例中,基地台114a和WTRU 102a、102b、102c可以實施無線電技術,例如IEEE 802.11(即無線保真度(WiFi))、IEEE 802.16(全球互通微波存取(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000 EV-DO、臨時標準2000(IS-2000)、臨時標準95(IS-95)、臨時標準856(IS-856)、全球行動通信系統(GSM)、用於GSM演進的增強資料速率(EDGE)、GSM EDGE(GERAN)、及等等。
第1A圖中的基地台114b可以是無線路由器、本地節點B、本地e節點B或存取點,並且可以使用任何適當的RAT來促成局部區域中的無線連接,例如營業場所、住宅、車輛、校園、工業設施、空中走廊(例如供無人機使用)、道路及等等。在一個實施例中,基地台114b與WTRU 102c、102d可以藉由實施IEEE 802.11之類的無線電技術來建立無線區域網路(WLAN)。在一個實施例中,基地台114b與WTRU 102c、102d可以藉由實施IEEE 802.15之類的無線電技術來建立無線個人區域網路(WPAN)。在再一個實施例中,基地台114b和WTRU 102c、102d可藉由使用基於蜂巢的RAT(例如WCDMA、CDMA2000、GSM、LTE、LTE-A、LTE-A Pro、NR等等)來建立微微胞元或毫微微胞元。如第1A圖所示,基地台114b可以直連到網際網路110。由此,基地台114b不需要經由CN 106/115來存取網際網路110。
RAN 104/113可以與CN 106/115進行通信,其可以是被配置成向一個或多個WTRU 102a、102b、102c、102d提供語音、資料、應用和/或網際網路協定語音(VoIP)服務的任何類型的網路。該資料可以具有不同的服務品質(QoS)需求,例如不同的輸送量需求、潛伏期需求、容錯需求、可靠性需求、資料輸送量需求、以及行動性需求等等。CN 106/115可以提供呼叫控制、記帳服務、基於行動位置的服務、預付費呼叫、網際網路連接、視訊分發等等,和/或可以執行使用者驗證之類的高級安全功能。雖然在第1A圖中沒有顯示,然而應該瞭解,RAN 104/113和/或CN 106/115可以直接或間接地和其他那些與RAN 104/113使用相同RAT或不同RAT的RAN進行通信。例如,除了與使用NR無線電技術的RAN 104/113相連之外,CN 106/115還可以與使用GSM、UMTS、CDMA 2000、WiMAX、E-UTRA或WiFi無線電技術的別的RAN(未顯示)通信。
CN 106/115還可以充當供WTRU 102a、102b、102c、102d存取PSTN 108、網際網路110和/或其他網路112的閘道。PSTN 108可以包括提供簡易老式電話服務(POTS)的電路交換電話網路。網際網路110可以包括使用了共同通信協定(例如TCP/IP網際網路協定族中的傳輸控制協定(TCP)、使用者資料包協定(UDP)和/或網際網路協定(IP))的全球性互聯電腦網路及裝置之系統。網路112可以包括由其他服務操作者擁有和/或操作的有線和/或無線通信網路。例如,網路112可以包括與一個或多個RAN相連的另一個CN,其可以與RAN 104/113使用相同RAT或不同RAT。
通信系統100中一些或所有WTRU 102a、102b、102c、102d可以包括多模式能力(例如,WTRU 102a、102b、102c、102d可以包括在不同無線鏈路上與不同無線網路通信的多個收發器)。例如,第1A圖所示的WTRU 102c可被配置成與可以使用基於蜂巢的無線電技術的基地台114a通信,以及與可以使用IEEE 802無線電技術的基地台114b通信。
第1B圖是示出了範例WTRU 102的系統圖式。如第1B圖所示,WTRU 102可以包括處理器118、收發器120、傳輸/接收元件122、揚聲器/麥克風124、小鍵盤126、顯示器/觸控板128、非可移記憶體130、可移記憶體132、電源134、全球定位系統(GPS)晶片組136、以及/或其他週邊設備138。應該瞭解的是,在保持符合實施例的同時,WTRU 102還可以包括前述元件的任何子結合。
處理器118可以是通用處理器、專用處理器、常規處理器、數位訊號處理器(DSP)、多個微處理器、與DSP核心關聯的一個或多個微處理器、控制器、微控制器、專用積體電路(ASIC)、現場可程式設計閘陣列(FPGA)電路、其他任何類型的積體電路(IC)以及狀態機等等。處理器118可以執行信號編碼、資料處理、功率控制、輸入/輸出處理、和/或其他任何能使WTRU 102在無線環境中操作的功能。處理器118可以耦合至收發器120,收發器120可以耦合至傳輸/接收元件122。雖然第1B圖將處理器118和收發器120描述成各別組件,然而應該瞭解,處理器118和收發器120也可以整合在一個電子元件或晶片中。
傳輸/接收元件122可被配置成經由空中介面116來傳輸或接收往或來自基地台(例如基地台114a)的信號。舉個例子,在一個實施例中,傳輸/接收元件122可以是被配置成傳輸和/或接收RF信號的天線。作為範例,在一個實施例中,傳輸/接收元件122可以是被配置成傳輸和/或接收IR、UV或可見光信號的發射器/偵測器。在再一個實施例中,傳輸/接收元件122可被配置成傳輸和/或接收RF和光信號兩者。應該瞭解的是,傳輸/接收元件122可以被配置成傳輸和/或接收無線信號的任何結合。
雖然在第1B圖中將傳輸/接收元件122描述成是單個元件,但是WTRU 102可以包括任何數量的傳輸/接收元件122。更具體地說,WTRU 102可以使用MIMO技術。由此,在一個實施例中,WTRU 102可以包括兩個或多個藉由空中介面116來傳輸和接收無線電信號的傳輸/接收元件122(例如多個天線)。
收發器120可被配置成對傳輸/接收元件122所要傳輸的信號進行調變,以及對傳輸/接收元件122接收的信號進行解調。如上所述,WTRU 102可以具有多模式能力。因此,收發器120可以包括使WTRU 102能經由多個RAT(例如NR和IEEE 802.11)來進行通信的多個收發器。
WTRU 102的處理器118可以耦合到揚聲器/麥克風124、小鍵盤126和/或顯示器/觸控板128(例如液晶顯示器(LCD)顯示單元或有機發光二極體(OLED)顯示單元),並且可以接收來自揚聲器/麥克風124、小鍵盤126和/或顯示器/觸控板128(例如液晶顯示器(LCD)顯示單元或有機發光二極體(OLED)顯示單元)的使用者輸入資料。處理器118還可以向揚聲器/麥克風124、小鍵盤126和/或顯示器/觸控板128輸出使用者資料。此外,處理器118可以從諸如非可移記憶體130和/或可移記憶體132之類的任何適當的記憶體存取資訊,以及將資訊存入這些記憶體。非可移記憶體130可以包括隨機存取記憶體(RAM)、唯讀記憶體(ROM)、硬碟或是其他任何類型的記憶儲存裝置。可移記憶體132可以包括用戶身份模組(SIM)卡、記憶條、安全數位(SD)記憶卡等等。在其他實施例中,處理器118可以從那些並非實體位於WTRU 102的記憶體存取資訊,以及將資料存入這些記憶體,作為範例,其可以位於伺服器或家用電腦(未顯示)。
處理器118可以接收來自電源134的電力,並且可被配置分發和/或控制用於WTRU 102中的其他組件的電力。電源134可以是為WTRU 102供電的任何適當裝置。例如,電源134可以包括一個或多個乾電池組(如鎳鎘(Ni-Cd)、鎳鋅(Ni-Zn)、鎳氫(NiMH)、鋰離子(Li-ion)等等)、太陽能電池以及燃料電池等等。
處理器118還可以耦合到GPS晶片組136,該晶片組可被配置成提供與WTRU 102的當前位置相關的位置資訊(例如經度和緯度)。WTRU 102可以經由空中介面116接收來自基地台(例如基地台114a、114b)的加上或取代GPS晶片組136資訊之位置資訊,和/或根據從兩個或更多個附近基地台接收的信號定時來確定其位置。應該瞭解的是,在保持符合實施例的同時,WTRU 102可以經由任何適當的定位方法來獲取位置資訊。
處理器118還可以耦合到其他週邊設備138,其中該週邊設備可以包括提供附加特徵、功能和/或有線或無線連接的一個或多個軟體和/或硬體模組。例如,週邊設備138可以包括加速度計、電子指南針、衛星收發器、數位相機(用於照片和/或視訊)、通用序列匯流排(USB)埠、振動裝置、電視收發器、免持耳機、Bluetooth®模組、調頻(FM)無線電單元、數位音樂播放器、媒體播放器、視訊遊戲機模組、網際網路瀏覽器、虛擬實境和/或增強實境(VR/AR)裝置、以及活動跟蹤器等等。週邊設備138可以包括一個或多個感測器,該感測器可以是以下的一個或多個個:陀螺儀、加速度計、霍爾效應感測器、計磁器、方位感測器、鄰近感測器、溫度感測器、時間感測器、地理位置感測器、高度計、光感測器、觸摸感測器、計磁器、氣壓計、手勢感測器、生物測定感測器和/或濕度感測器。
WTRU 102可以包括全雙工無線電裝置,對其來說,一些或所有信號(例如與用於上鏈(UL)(例如對傳輸而言)和下鏈(DL)(例如對接收而言)的特定子訊框相關聯)的接收或傳輸可以是並行和/或同時的。全雙工無線電裝置可以包括經由硬體(例如扼流圈(choke))或是憑藉處理器(例如各別的處理器(未顯示)或是憑藉處理器118)的信號處理來減小和/或基本消除自干擾的介面管理單元139。在一個實施例中,WTRU 102可以包括傳輸和接收一些或所有信號(例如與用於UL(例如對傳輸而言)或DL(例如對接收而言)的特別子訊框相關聯)的半雙工無線電裝置。
第1C圖是示出了根據一個實施例的RAN 104和CN 106的系統圖式。如上所述,RAN 104可以在空中介面116上使用E-UTRA無線電技術來與WTRU 102a、102b、102c進行通信。該RAN 104還可以與CN 106進行通信。
RAN 104可以包括e節點B 160a、160b、160c,然而應該瞭解,在保持符合實施例的同時,RAN 104可以包括任何數量的e節點B。每一個e節點B 160a、160b、160c都可以包括在空中介面116上與WTRU 102a、102b、102c通信的一個或多個收發器。在一個實施例中,e節點B 160a、160b、160c可以實施MIMO技術。由此,舉例來說,e節點B 160a可以使用多個天線來向WTRU 102a傳輸無線信號,和/或以及接收來自WTRU 102a的無線信號。
每一個e節點B 160a、160b、160c都可以關聯於一個特別胞元(未顯示),並且可被配置成處理無線電資源管理決定、交接決定、UL和/或DL中的使用者排程等等。如第1C圖所示,e節點B 160a、160b、160c彼此可以藉由X2介面進行通信。
第1C圖所示的CN 106可以包括行動性管理閘道(MME)162、服務閘道(SGW)164以及封包資料網路(PDN)閘道(或PGW)166。雖然前述的每一個元件都被描述成是CN 106的一部分,然而應該瞭解,這其中的任一元件都可以由CN操作者之外的實體擁有和/或操作。
MME 162可以經由S1介面連接到RAN 104中的每一個e節點B 160a、160b、160c,並且可以充當控制節點。例如,MME 142可以負責驗證WTRU 102a、102b、102c的使用者,執行承載啟動/去啟動,以及在WTRU 102a、102b、102c的初步附著過程中選擇特別的服務閘道等等。MME 162還可以提供一個用於在RAN 104與使用其他無線電技術(例如GSM和/或WCDMA)的其他RAN(未顯示)之間進行切換的控制平面功能。
SGW 164可以經由S1介面連接到RAN 104中的每一個e節點B 160a、160b、160c。SGW 164通常可以路由和轉發往/來自WTRU 102a、102b、102c的使用者資料封包。並且,SGW 164還可以執行其他功能,例如在eNB間的交接期間錨定使用者平面,在DL資料可供WTRU 102a、102b、102c使用時觸發傳呼,以及管理並儲存WTRU 102a、102b、102c的上下文等等。
SGW 164可以連接到PGW 166,該PGW可以為WTRU 102a、102b、102c提供封包交換網路(例如網際網路110)存取,以便促成WTRU 102a、102b、102c與賦能IP的裝置之間的通信。
CN 106可以促成與其他網路的通信。例如,CN 106可以為WTRU 102a、102b、102c提供電路切換式網路(例如PSTN 108)存取,以便促成WTRU 102a、102b、102c與傳統的陸線通信裝置之間的通信。例如,CN 106可以包括一個IP閘道(例如IP多媒體子系統(IMS)伺服器)或與之進行通信,並且該IP閘道可以充當CN 106與PSTN 108之間的介面。此外,CN 106可以為WTRU 102a、102b、102c提供針對其他網路112的存取,其中該網路可以包括其他服務操作者擁有和/或操作的其他有線和/或無線網路。
雖然在第1A圖至第1D圖中將WTRU描述成了無線終端,然而應該想到的是,在某些代表實施例中,此類終端與通信網路可以使用(例如臨時或永久性)有線通信介面。
在典型的實施例中,該其他網路112可以是WLAN。
基礎架構基本服務集(BSS)模式中的WLAN可以具有用於該BSS的存取點(AP)以及與該AP相關聯的一個或多個站(STA)。該AP可以存取或是有介面於分散式系統(DS)或是將訊務送入和/或送出BSS的別的類型的有線/無線網路。源於BSS外部且往STA的訊務可以藉由AP到達並被遞送至STA。源自STA且往BSS外部的目的地的訊務可被傳輸至AP,以便遞送到分別的目的地。處於BSS內部的STA之間的訊務可以藉由AP來傳輸,例如源STA可以向AP傳輸訊務並且AP可以將訊務遞送至目的地STA。處於BSS內部的STA之間的訊務可被認為和/或稱為點對點訊務。該點對點訊務可以在源與目的地STA之間(例如在其間直接)用直接鏈路建立(DLS)來傳輸。在某些代表實施例中,DLS可以使用802.11e DLS或802.11z隧道化DLS(TDLS)。使用獨立BSS(IBSS)模式的WLAN可不具有AP,並且處於該IBSS內部或是使用該IBSS的STA(例如所有STA)彼此可以直接通信。在這裡,IBSS通信模式有時可被稱為“專設(ad-hoc)”通信模式。
在使用802.11ac基礎設施操作模式或類似的操作模式時,AP可以在固定頻道(例如主頻道)上傳輸信標。該主頻道可以具有固定寬度(例如20 MHz的頻寬)或是經由傳訊動態設置的寬度。主頻道可以是BSS的操作頻道,並且可被STA用來與AP建立連接。在某些代表實施例中,所實施的可以是具有衝突避免的載波感測多重存取(CSMA/CA)(例如在802.11系統中)。對於CSMA/CA來說,包括AP在內的STA(例如每一個STA)可以感測主頻道。如果特別STA感測到/偵測到和/或確定主頻道繁忙,那麼該特定STA可以回退(back off)。在給定的BSS中,在任何指定時間可有一個STA(例如只有一個站)進行傳輸。
高輸送量(HT)STA可以使用寬度為40 MHz的頻道來進行通信(例如經由將20 MHz的主頻道與20 MHz的相鄰或不相鄰頻道相結合來形成寬度為40 MHz的頻道)。
超高輸送量(VHT)STA可以支援寬度為20MHz、40 MHz、80 MHz和/或160 MHz的頻道。40 MHz和/或80 MHz頻道可以藉由結合連續的20 MHz頻道來形成。160 MHz頻道可以藉由結合8個連續的20 MHz頻道或者藉由結合兩個不連續的80 MHz頻道(這種結合可被稱為80+80配置)來形成。對於80+80配置來說,在頻道編碼之後,資料可被傳遞並經過一個分段解析器,該分段解析器可以將資料分成兩個串流。在每一個串流上可以各別執行反向快速傅立葉變換(IFFT)處理以及時域處理。該串流可被映射在兩個80 MHz頻道上,並且資料可以由執行傳輸的STA來傳輸。在執行接收的STA的接收器上,用於80+80配置的上述操作可以是相反的,並且結合資料可被傳輸至媒體存取控制(MAC)。
802.11af和802.11ah支援次1 GHz操作模式。相對於802.11n和802.11ac中使用的那些,在802.11af和802.11ah中頻道操作頻寬和載波有所縮減。802.11af在TV白空間(TVWS)頻譜中支援5MHz、10MHz和20MHz頻寬,並且802.11ah支援使用非TVWS頻譜的1MHz、2MHz、4MHz、8MHz和16MHz頻寬。依照代表實施例,802.11ah可以支援儀錶類型控制/機器類型通信(例如巨集覆蓋區域中的MTC裝置)。MTC可以具有某種能力,例如包含了支援(例如只支援)某些和/或有限頻寬在內的受限能力。MTC裝置可以包括電池,並且該電池的電池壽命高於臨界值(例如用於保持很長的電池壽命)。
對於可以支援多個頻道和頻道頻寬的WLAN系統(例如,802.11n、802.11ac、802.11af以及802.11ah)來說,該WLAN系統包括一個可被指定成主頻道的頻道。該主頻道的頻寬可以等於BSS中的所有STA所支援的最大共同操作頻寬。主頻道的頻寬可以由STA設置和/或限制,其中該STA源自在支援最小頻寬操作模式的BSS中操作的所有STA。在關於802.11ah的範例中,即使BSS中的AP和其他STA支援2 MHz、4 MHz、8 MHz、16 MHz和/或其他頻道頻寬操作模式,但對支援(例如只支援)1 MHz模式的STA(例如MTC類型的裝置)來說,主頻道的寬度可以是1 MHz。載波感測和/或網路分配向量(NAV)設置可以取決於主頻道的狀態。如果主頻道繁忙(例如因為STA(其只支援1 MHz操作模式)對AP進行傳輸),那麼即使大多數的頻帶保持空間並且可供使用,也可以認為整個可用頻帶繁忙。
在美國,可供802.11ah使用的可用頻帶是902 MHz到928 MHz。在韓國,可用頻帶是917.5 MHz到923.5 MHz。在日本,可用頻帶是916.5 MHz到927.5MHz。依照國家碼,可用於802.11ah的總頻寬是6 MHz到26 MHz。
第1D圖是示出了根據一個實施例的RAN 113和CN 115的系統圖式。如上所述,RAN 113可以在空中介面116上使用NR無線電技術來與WTRU 102a、102b、102c進行通信。RAN 113還可以與CN 115進行通信。
RAN 113可以包括gNB 180a、180b、180c,但是應該瞭解,在保持符合實施例的同時,RAN 113可以包括任何數量的gNB。每一個gNB 180a、180b、180c都可以包括一個或多個收發器,以便藉由空中介面116來與WTRU 102a、102b、102c通信。在一個實施例中,gNB 180a、180b、180c可以實施MIMO技術。例如,gNB 180a、180b可以使用波束成形處理來向和/或從gNB 180a、180b、180c傳輸和/或接收信號。由此,舉例來說,gNB 180a可以使用多個天線來向WTRU 102a傳輸無線信號,和/或接收來自WTRU 102a的無線信號。在一個實施例中,gNB 180a、180b、180c可以實施載波聚合技術。例如,gNB 180a可以向WTRU 102a傳輸多個分量載波(未顯示)。這些分量載波的一個子集可以處於無授權頻譜上,而剩餘分量載波則可以處於授權頻譜上。在一個實施例中,gNB 180a、180b、180c可以實施協作多點(CoMP)技術。例如,WTRU 102a可以接收來自gNB 180a和gNB 180b(和/或gNB 180c)的協作傳輸。
WTRU 102a、102b、102c可以使用與可縮放參數配置相關聯的傳輸來與gNB 180a、180b、180c進行通信。例如,對於不同的傳輸、不同的胞元和/或不同的無線傳輸頻譜部分來說,OFDM符號間隔和/或OFDM子載波間隔可以是不同的。WTRU 102a、102b、102c可以使用不同或可縮放長度的子訊框或傳輸時間間隔(TTI)(例如包含了不同數量的OFDM符號和/或持續變化的絕對時間長度)來與gNB 180a、180b、180c進行通信。
gNB 180a、180b、180c可被配置成與採用分立配置和/或非分立配置的WTRU 102a、102b、102c進行通信。在分立配置中,WTRU 102a、102b、102c可以在不存取其他RAN(例如e節點B 160a、160b、160c)的情況下與gNB 180a、180b、180c進行通信。在分立配置中,WTRU 102a、102b、102c可以使用gNB 180a、180b、180c中的一個或多個作為行動錨點。在分立配置中,WTRU 102a、102b、102c可以使用無授權頻帶中的信號來與gNB 180a、180b、180c進行通信。在非分立配置中,WTRU 102a、102b、102c會在與別的RAN(例如e節點B 160a、160b、160c)進行通信/相連的同時與gNB 180a、180b、180c進行通信/相連。舉例來說,WTRU 102a、102b、102c可以藉由實施DC原理而以實質同時的方式與一個或多個gNB 180a、180b、180c以及一個或多個e節點B 160a、160b、160c進行通信。在非分立配置中,e節點B 160a、160b、160c可以充當WTRU 102a、102b、102c的行動錨點,並且gNB 180a、180b、180c可以提供附加的覆蓋和/或輸送量,以便為WTRU 102a、102b、102c提供服務。
每一個gNB 180a、180b、180c都可以關聯於特別胞元(未顯示),並且可以被配置成處理無線電資源管理決定、交接決定、UL和/或DL中的使用者排程、支援網路截割、雙連線性、NR與E-UTRA之間的交互工作、路由往使用者平面功能(UPF)184a、184b的使用者平面資料、以及路由往存取和行動性管理功能(AMF)182a、182b的控制平面資訊等等。如第1D圖所示,gNB 180a、180b、180c彼此可以藉由Xn介面通信。
第1D圖所示的CN 115可以包括至少一個AMF 182a、182b,至少一個UPF 184a、184b,至少一個會話管理功能(SMF)183a、183b,並且有可能包括資料網路(DN)185a、185b。雖然每一個前述元件都被描述成CN 115的一部分,但是應該瞭解,這些元件其中的任一者都可以被CN操作者之外的其他實體擁有和/或操作。
AMF 182a、182b可以經由N2介面連接到RAN 113中的一個或多個gNB 180a、180b、180c,並且可以充當控制節點。例如,AMF 182a、182b可以負責驗證WTRU 102a、102b、102c的使用者,支援網路截割(例如處理具有不同需求的不同PDU會話),選擇特別的SMF 183a、183b,管理註冊區域,終止NAS傳訊,以及行動性管理等等。AMF 182a、1823b可以使用網路截割處理,以便基於WTRU 102a、102b、102c使用的服務類型來定制為WTRU 102a、102b、102c提供的CN支援。舉例來說,針對不同的用例,可以建立不同的網路截割,該用例例如為依賴於超可靠低潛伏期(URLLC)存取的服務、依賴於增強型大規模行動寬頻(eMBB)存取的服務、用於機器類型通信(MTC)存取的服務及/或等等。AMF 162可以提供用於在RAN 113與使用其他無線電技術(例如LTE、LTE-A、LTE-A Pro和/或諸如WiFi之類的非3GPP存取技術)的其他RAN(未顯示)之間切換的控制平面功能。
SMF 183a、183b可以經由N11介面連接到CN 115中的AMF 182a、182b。SMF 183a、183b還可以經由N4介面連接到CN 115中的UPF 184a、184b。SMF 183a、183b可以選擇和控制UPF 184a、184b,並且可以藉由UPF 184a、184b來配置訊務路由。SMF 183a、183b可以執行其他功能,例如管理和分配UE IP位址、管理PDU會話、控制策略實施和QoS、提供DL資料通知及等等。PDU會話類型可以是基於IP的、不基於IP的,以及基於乙太網的等等。
UPF 184a、184b可以經由N3介面連接到RAN 113中的一個或多個gNB 180a、180b、180c,這樣可以為WTRU 102a、102b、102c提供對封包交換網路(例如網際網路110)的存取,以便促成WTRU 102a、102b、102c與賦能IP的裝置之間的通信。UPF 184、184b可以執行其他功能,例如路由和轉發封包、實施使用者平面策略、支援多連接(multi-homed)PDU會話、處理使用者平面QoS、緩衝DL封包、提供行動性錨定等等。
CN 115可以促成與其他網路的通信。例如,CN 115可以包括或者可以與充當CN 115與PSTN 108之間的介面的IP閘道(例如IP多媒體子系統(IMS)伺服器)進行通信。此外,CN 115可以為WTRU 102a、102b、102c提供針對其他網路112的存取,其可以包括其他服務操作者擁有和/或操作的其他有線和/或無線網路。在一個實施例中,WTRU 102a、102b、102c可以經由到UPF 184a、184b的N3介面以及介於UPF 184a、184b與DN 185a、185b之間的N6介面並藉由UPF 184a、184b連接到本地資料網路(DN)185a、185b。
有鑒於第1A圖至第1D圖以及關於第1A圖至第1D圖的相應描述,在這裡對照以下的一項或多項描述的一個或多個或所有功能可以由一個或多個模擬裝置(未顯示)來執行:WTRU 102a-d、基地台114a-b、e節點B 160a-c、MME 162、SGW 164、PGW 166、gNB 180a-c、AMF 182a-ab、UPF 184a-b、SMF 183a-b、DN 185 a-b和/或這裡描述的其他任何裝置(一個或多個)。這些模擬裝置可以是被配置成模擬這裡一個或多個或所有功能的一個或多個裝置。舉例來說,這些模擬裝置可用於測試其他裝置和/或模擬網路和/或WTRU功能。
模擬裝置可被設計成在實驗室環境和/或操作者網路環境中實施關於其他裝置的一項或多項測試。例如,該一個或多個模擬裝置可以在被完全或部分作為有線和/或無線通信網路一部分實施和/或部署的同時執行一個或多個或所有功能,以便測試通信網路內部的其他裝置。該一個或多個模擬裝置可以在被臨時作為有線和/或無線通信網路的一部分實施/部署的同時執行一個或多個或所有功能。該模擬裝置可以直接耦合到別的裝置以執行測試,和/或可以使用空中無線通信來執行測試。
該一個或多個模擬裝置可以在未被作為有線和/或無線通信網路一部分實施/部署的同時執行包括所有功能在內的一個或多個功能。例如,該模擬裝置可以在測試實驗室和/或未被部署(例如測試)的有線和/或無線通信網路的測試場景中使用,以便實施關於一個或多個組件的測試。該一個或多個模擬裝置可以是測試裝置。該模擬裝置可以使用直接的RF耦合和/或經由RF電路(作為範例,該電路可以包括一個或多個天線)的無線通信來傳輸和/或接收資料。
無線電存取網路(RAN)可以是向無線傳輸/接收單元(WTRU)提供與其核心網路(CN)連接的的行動電信系統的一部分。在第五代(5G)或下一代(NG)無線系統中,RAN可以被稱為新無線電(NR)RAN或下一代RAN。根據ITU-R、NGMN和3GPP規定的一般要求,NR的用例的廣泛分類可以是增強型行動寬頻(eMBB)、大規模機器類型通信(mMTC)以及超可靠和低潛伏期通信(URLLC)。不同的用例可能關注不同的要求,例如更高的資料速率、更高的頻譜效率、低功率和更高的能效、更低的潛伏期和更高的可靠性。對於各種部署方案,可以考慮範圍從700 MHz到80 GHz的廣範圍頻帶。
隨著載波頻率的增加,嚴重的路徑損耗可能成為保證足夠覆蓋的關鍵限制。毫米波系統中的傳輸還可能遭受非視線損耗,例如繞射損耗、穿透損耗、氧吸收損失、葉子損失等。在初步存取期間,基地台和WTRU可能需要克服這些高路徑損耗並相互發現,或者WTRU可能需要發現另一個WTRU。利用數十個甚至數百個天線元件來產生波束形成信號可能是藉由提供顯著波束形成增益來補償嚴重路徑損耗的有效方式。波束成形技術可以包括數位、類比和混合波束成形。
長期演進(LTE)和其他無線系統可以使用初步同步和廣播頻道。WTRU可以使用胞元搜索來獲取與胞元的時間和頻率同步,並偵測該胞元的胞元ID。諸如LTE的同步信號可以在每個無線電訊框的第0和第5子訊框中傳輸,並且可以在初步化期間用於時間和頻率同步。作為系統獲取過程的一部分,WTRU可以基於同步信號順序地同步到OFDM符號、時槽、子訊框、半訊框和/或無線電訊框。可能存在兩個同步信號:主同步信號(PSS)和輔同步信號(SSS)。PSS可用於獲得時槽、子訊框和半訊框邊界。它還可以在胞元身份組內提供實體層胞元身份(PCI)。SSS可用於獲得無線電訊框邊界。它還可以使WTRU能夠確定胞元身份組,其範圍可以從0到167。
在成功同步和PCI獲取之後,WTRU可以經由胞元特定參考信號(CRS)對諸如實體廣播頻道(PBCH)的頻道進行解碼,並獲取主資訊區塊(MIB)資訊,該主資訊區塊資訊有關系統頻寬、系統訊框號(SFN)和PHICH配置。可以根據標準化週期連續傳輸LTE同步信號和PBCH。
LTE和其他無線系統可以使用隨機存取(RA)程序。基地台(例如,eNodeB、eNB、gNB)和/或WTRU可以對以下中的至少一個使用隨機存取程序:WTRU初步存取(例如,到胞元或eNB);重置UL定時(例如,相對於某個胞元來重置或對準WTRU UL定時);和/或在交接期間重置定時(例如,相對於交接目標胞元重置或對準WTRU定時)。WTRU可以在某個功率PRACH(其可以基於配置的參數和/或測量)傳輸某個實體隨機存取頻道(PRACH)前言序列,並且WTRU可以使用某個時頻資源或多個資源來傳輸前言。可以由eNB提供或配置的配置參數可以包括以下中的一者或多者:初步前言功率(例如, preambleInitialReceivedTargetPower)、基於前言格式的偏移(例如,deltaPreamble)、隨機存取回應視窗(例如,ra-ResponseWindowSize)、功率斜坡因數(例如,powerRampingStep)和/或最大重傳次數(例如,preambleTransMax)。可以包括前言或前言組和/或可以用於前言傳輸的時間/頻率資源的PRACH資源可以由eNB提供或配置。該測量可包括路徑損耗。該時頻資源(一個或多個)可以由WTRU從允許的集合中選擇,或者可以由eNB選擇並用信號通知給WTRU。在WTRU傳輸前言之後,如果eNB偵測到該前言,則它可以用隨機存取回應(RAR)進行回應。如果WTRU沒有在所分配的時間(例如,ra-ResponseWindowSize)內接收到所傳輸的前言的RAR(例如,其可以對應於某個前言索引和/或時間/頻率資源),則WTRU可以在稍後的時間以更高的功率(例如,比先前的前言傳輸高出powerRampingStep)傳輸另一個前言,其中傳輸功率可能受到最大功率的限制,該最大功率例如可以是整體針對WTRU的WTRU配置最大功率(例如,PCMAX)或針對WTRU的某個服務胞元的最大功率(例如,PCMAX,c)。WTRU可以再次等待從eNB接收RAR。該傳輸和等待序列可以繼續,直到eNB可以用RAR進行回應或者直到可能已經達到隨機存取前言傳輸最大數量(例如,preambleTransMax)。eNB可以傳輸回應於單個前言傳輸的RAR,並且WTRU可以接收該RAR。
隨機存取程序可以是基於爭用的或無爭用的。可以藉由例如來自eNB的請求來發起無爭用程序。該請求可以經由諸如PDCCH命令的實體層傳訊或者由諸如RRC重新配置消息(例如,RRC連接重新配置消息)之類的更高層傳訊來接收,其可以包括行動性控制資訊並且可以例如指示或對應於交接請求。對於由子訊框n中的PDCCH命令發起的無爭用程序,PRACH前言可以在第一子訊框或者可用於PRACH的第一子訊框n + k2中傳輸,其中k2可以大於或等於6(即,k2> = 6)。當由RRC命令發起時,可能存在可以指定的其他延遲(例如,可能存在最小和/或最大所需或允許的延遲)。作為範例,WTRU可以出於包括初步存取、UL同步的恢復和/或從無線電鏈路故障恢復的原因自主地發起基於爭用的程序。對於某些事件,例如除了從無線電鏈路故障中恢復之外的事件,可以不定義或指定在這種事件之後多久WTRU可以發送PRACH前言。
對於無爭用隨機存取(RA)程序,可以例如由WTRU使用網路用信號通知的PRACH前言。對於基於爭用的隨機存取程序,WTRU可以自主地選擇前言,其中可用於前言傳輸的前言格式和/或時間/頻率資源(一個或多個)可以基於可以由eNB提供或發信號通知的指示或索引(例如,PRACH配置索引)。
可以由eNB偵測以逐漸更高的傳輸功率傳輸的前言其中之一。eNB可以回應於一個偵測到的前言來傳輸RAR。PRACH前言可以被認為是PRACH資源。例如,PRACH資源可以包括PRACH前言、時間和/或頻率資源。術語RACH資源和PRACH資源在本文中可以互換使用。此外,術語RA、RACH和PRACH在本文中可互換使用。
在路徑損耗的一些情況下,例如在NR中,同步信號(SS)塊(SSB)、RACH資源、控制頻道(DL/UL)和/或資料頻道(DL/UL)可能彼此衝突。為了使WTRU執行初步存取、頻道存取、維護系統操作和/或最大化系統效率,可能需要規則來避免、減輕或處理這些情況或者其他發生衝突時的情況。而且,在其他情況下,WTRU傳輸可能在隨機存取期間與另一WTRU傳輸衝突。例如,PRACH前言可能彼此衝突,例如在使用多波束系統的情況下。可能需要增強基於波束的系統中的衝突減少以解決這些和其他路徑損耗情況。此外,為了支援用於波束掃描的大量波束,由於符號的數量有限,PRACH前同步碼格式可能是不夠的。因此,可能希望具有支援大量波束的方法。在一個或多個實施例中,可以處理PRACH資源、DL/UL控制和/或SS/PBCH塊以解決本文所討論的問題情況。
第2A圖示出了RACH/PRACH傳輸的範例。通常,第一DL 203可以是第一SS塊,第二DL 205可以是第二SS塊。時槽可以具有DL(203和205)和UL部分206。此外,靈活或未知部分X 204可以在時槽中使用並且可以被配置為DL或UL。DL信號/頻道203可以佔用時槽202的前K1
個OFDM符號,其中K是某個非負整數。未知/靈活部分X 204可以佔用K2
個OFDM符號。第二DL信號/頻道205可以佔用K3
個OFDM符號,其可以與第一DL信號/頻道203相同或不同(例如,DL信號/頻道203可以是第一SS/PBCH塊,DL信號/頻道205可以是第二SS/PBCH塊)。UL信號/頻道206可以佔用時槽202的最後K4
個OFDM符號。如本文所討論的,SS塊和SS/PBCH塊可以是可互換的。可以配置時槽202,使得每個或一些符號位置可以包含特定類型的內容;對於第2A圖中所示的範例,對於DL信號/頻道203,K1
可以是前4個符號,對於UL信號/頻道206,K4
可以是最後2個符號。週期性也可以由gNB配置以避免衝突,然而,當/如果PRACH與SS塊衝突時,可以使用諸如塊、信號和/或頻道丟棄規則的一些預定或預定義規則。SS塊、DL/UL控制和PRACH在它們彼此衝突時可以具有預定義的規則,以使WTRU可以實現這些規則來處理這些問題。
當SS/PBCH塊和RACH資源衝突時,WTRU可以採取一個或多個動作來解決該問題,例如WTRU丟棄PRACH並接收SS塊,或者WTRU丟棄SS塊並傳輸PRACH。WTRU還可以部分地傳輸PRACH或部分地接收SS塊。用於衝突處理的這些選項可以基於以下中的至少一個:實際傳輸的SS塊或最大SS塊;潛伏期要求;服務類型(例如,URLLC、eMBB、mMTC等);預定義的或預定的規則(例如,總是傳輸SS塊或總是傳輸PRACH並丟棄另一個頻道);頻道優先順序,其中可以預先定義或配置優先順序;搶佔指示;從gNB接收的關於哪個傳輸和哪個丟棄的指示;發生衝突時使用速率匹配或打孔傳輸部分或全部頻道;和/或上述方法的結合。
如果WTRU接收到實際傳輸的SS塊指示,則WTRU可以使用實際傳輸的SS塊位置來處理衝突。例如,對於長序列(例如,PRACH的長前言序列),WTRU可以在存在衝突時丟棄RACH。否則,WTRU可以傳輸RACH。對於短序列(例如,對於PRACH的短前言序列),WTRU可以在符號未被SS塊佔用的非時槽(例如,2個符號、4個符號)中傳輸RACH。如本文所討論的,非時槽可以是任何非常規長度時槽(例如,微型時槽)。而且,對於短序列,WTRU可以在該符號被SS塊部分佔用的非時槽(例如,2個符號、4個符號)中傳輸部分RACH。SS塊可以是實際傳輸的SS塊,或者SS塊可以是候選SS塊位置。
如果WTRU沒有接收到實際傳輸的SS塊指示,則WTRU可以使用SS塊位置最大數量L來處理衝突。例如,WTRU可以使用L = 4個SS塊用於低於3 GHz,L = 8個SS塊用於低於6 GHz和高於3 GHz,以及L = 64用於高於6 GHz。
如本文所討論的,可能存在RACH資源或RACH時機與SS塊(一個或多個)之間存在或可能存在衝突的情況。如其中所討論的,對RACH時機的引用可以與RACH資源互換;RACH時機可以是時槽中可以傳輸RACH/PRACH的一個或多個符號。可以根據RACH配置表將具有SS塊的時槽、非時槽或微型時槽配置為RACH時機。如果在RACH時機和SS塊之間發生衝突,則WTRU仍然可以藉由跳過由SS塊(一個或多個)佔用的符號來傳輸PRACH前言或RACH消息3。gNB可以針對PRACH前言執行部分相關、或者針對RACH消息3 PUSCH執行速率匹配。SS塊的數量可能會改變。例如,SS塊的數量可以從4變為2。2個SS塊可以佔用第一SS塊時槽。可替換地,2個SS塊的位置可能仍然與存在4個SS塊時相同。
如本文所討論的,可能存在UL控制頻道和RACH資源衝突或者可能衝突的情況。為了解決這種情況,WTRU可以丟棄PRACH並傳輸UL控制頻道。可替換地/另外地,WTRU可以丟棄UL控制頻道並傳輸PRACH。可替換地/另外地,WTRU可以部分地傳輸PRACH或部分地傳輸UL控制。針對這些和類似情況的衝突處理可以基於以下中的至少一個:UL控制頻道(例如,它是週期性的還是非週期性UL控制頻道);潛伏期要求;服務類型(例如,URLLC、eMBB、mMTC等);預定義或預定規則(例如,始終傳輸UL控制頻道或始終傳輸PRACH並丟棄另一頻道);頻道優先順序,其中可以預先定義或配置優先順序;搶佔指示;從gNB接收的關於哪個傳輸和哪個丟棄的指示;發生衝突時傳輸兩個或所有頻道;和/或上述方法的任何結合。
gNB可以配置PRACH以避免UL控制頻道和PRACH之間的衝突。如果PRACH與上鏈控制衝突,則WTRU可以丟棄RACH或丟棄UL控制。
如本文所討論的,可以使用預定義規則來處理衝突。例如,當PRACH和UL控制頻道衝突時,WTRU可以丟棄UL控制並且僅傳輸PRACH,或反過來。
在一個或多個情況下,可以使用指示來處理衝突。WTRU可以接收關於要丟棄哪個衝突元素以及要傳輸哪個的指示。例如,可以指示WTRU丟棄PRACH並傳輸UL控制頻道,或者可以指示WTRU丟棄UL控制頻道並傳輸PRACH。
在一個或多個情況下,可以使用隱式指示來處理衝突。WTRU可以基於服務類型確定要丟棄哪個衝突元素以及要傳輸哪個。例如,如果提供給WTRU的服務是URLLC,則WTRU可以丟棄上鏈控制頻道並傳輸PRACH,或反過來。
在一個或多個情況下,gNB可以同時傳輸和接收。當gNB正在傳輸SS塊時,gNB也可以在相同或不同的載波使用特定的Rx波束進行接收。然後,即使gNB正在傳輸SS塊,也可以傳輸PRACH。
在RACH時機和半靜態排程和/或動態時槽格式指示符(一個或多個)(SFI)之間可能存在衝突。半靜態DL/UL指派中的下鏈和/或上鏈信號和/或頻道可以不被重寫到另一個方向。動態SFI中的DL和/或UL信號和/或頻道可以不被WTRU特定控制或資料頻道重寫。可以丟棄可能與動態SFI衝突的RACH時機。可以丟棄可能與半靜態DL/UL指派衝突的RACH時機。
gNB和WTRU可以基於以下中的至少一個來導出有效的RACH時機(一個或多個)(VRO):到具有SS塊的時槽的RACH時機映射;半靜態DL和UL;動態SFI;和/或UL和/或DL排程。有效的RACH時機可以是以已經預定或確定不會發生衝突的時間增量(即,時槽的一個或多個符號)進行傳輸的時機。
在一些情況下,DL控制頻道和RACH資源之間可能存在衝突。在這些情況下,WTRU可以丟棄PRACH並接收DL控制頻道。另外/可替換地,WTRU可以丟棄DL控制頻道並傳輸PRACH。另外/可替換地,WTRU可以部分地傳輸PRACH或部分地接收DL控制。衝突處理可以基於以下中的至少一個:潛伏期要求;服務類型(例如,URLLC、eMBB、mMTC等);預定義或預定規則(例如,總是接收DL控制頻道或總是傳輸PRACH並丟棄另一個頻道);頻道優先順序,其中可以預先定義或配置優先順序;搶佔指示;從gNB接收的關於哪個傳輸和哪個丟棄的指示;發生衝突時傳輸部分或全部頻道;和/或前述方法的某種結合。
gNB可以配置PRACH以避免DL控制頻道和PRACH之間的衝突。如果PRACH與DL控制頻道衝突,則WTRU可以丟棄PRACH或丟棄DL控制頻道。
可以使用預定義規則來處理衝突。例如,當PRACH和DL控制頻道衝突時,WTRU可以丟棄DL控制並且僅傳輸PRACH,或反過來。
在一個或多個情況下,可以使用指示來處理衝突。WTRU可以指示要丟棄衝突中的哪個元素以及要傳輸哪個元素。例如,WTRU可以接收丟棄PRACH並接收DL控制頻道的指示,或者WTRU可以接收丟棄DL控制頻道並傳輸PRACH的指示。
在一個或多個情況下,可以使用隱式指示來處理衝突。WTRU可以基於服務類型確定衝突中要丟棄的哪個元素以及要傳輸的元素。例如,如果WTRU提供的服務是URLLC,則WTRU可以丟棄DL控制頻道並傳輸PRACH,或反過來。
WTRU可以接收關於是否存在可能與RACH資源衝突的NR-PDCCH、所配置的搜索空間或者所配置的控制資源集(CORESET)的指示。
gNB和WTRU可以基於以下中的至少一個來確定或導出DL控制頻道的有效RACH時機:半靜態DL和UL;動態SFI;和/或UL和/或DL排程。
在具有衝突的一個或多個情況下,可以使用規則和RACH資源來解決衝突。如本文所述,RACH資源或RACH時機可能與DL部分或UL部分衝突。RACH資源或RACH時機也可能與可能被配置為DL部分或UL部分的未知部分衝突。DL部分可以是SS塊、DL控制頻道、其他DL控制頻道、信號、傳輸或等等。UL部分可以是UL控制頻道、其他UL控制頻道、信號、傳輸或等等。WTRU可以同時接收關於半靜態UL/DL配置和RACH配置的指示。WTRU還可以在RACH配置之前接收對半靜態UL/DL配置的指示。如果WTRU在RACH配置的同時或在RACH配置之前接收到關於半靜態UL/DL配置的指示,並且如果RACH時機與DL部分衝突,則與DL部分衝突的RACH時機可以不被傳輸,但可以傳輸UL部分內的RACH時機。如果在RACH配置之後指示WTRU用於半靜態UL/DL配置,並且當傳輸RACH時機時WTRU不知道半靜態UL/DL配置,則WTRU可以假設RACH時機不會與DL部分衝突,且因此RACH時機可以用於傳輸並且是有效的。如果未知部分未被配置或者如果該未知部分被配置為用於RACH傳輸的UL,則可以在該未知部分(即,部分X)中使用或傳輸RACH資源或RACH時機。
為了避免可能的衝突,WTRU可以檢查DL/UL配置。WTRU可以在UL部分中傳輸RACH。如果DL部分未被使用,則WTRU可以在DL部分中傳輸RACH。可以在WTRU處接收關於DL部分是否被使用的指示。如果DL部分被指示為“已使用”(例如,用於被指示為實際傳輸的SS塊的SS塊),則WTRU可以不在那些DL部分中傳輸RACH。可替換地或另外地,WTRU可以不在任何DL部分中傳輸RACH,無論該DL部分是否被使用。可以配置這種替換或不同的替換方案。
在一個實施例中,WTRU可以根據SS塊或SS塊傳輸的位置來決定在何處和/或是否傳輸RACH資源。例如,如果WTRU從指示知道在特定位置(例如,時槽、子訊框等的特定位置)傳輸SS塊,則一個或多個RACH時機(例如,一些或全部RACH時機)可以被傳輸或不被傳輸。另外/可替換地,對於給定的增量,可以不在SS塊之前傳輸RACH,而是可以在SS塊之後傳輸RACH。在SS塊之前可能沒有RACH時機或RACH資源,並且RACH時機或RACH資源可能在SS塊之後。另外/可替換地,如果SS塊位於時槽的較早部分中或在該時槽的較早部分中被傳輸,則可以傳輸時槽的後面部分中的RACH時機/資源,並且可以不傳輸SS塊之前的RACH。如果SS塊位於時槽的較後部分中或在該時槽的較後部分中被傳輸,則可以不傳輸時槽的較早部分中的RACH。
WTRU可以不傳輸將或可能與時槽中的SS塊衝突的RACH,但是WTRU仍然可以傳輸不或將不與時槽中的SS塊衝突的RACH。可替換地/另外地,如果時槽中的一個或多個RACH時機可能與SS塊衝突,則WTRU可以不在時槽中傳輸所有RACH時機。WTRU可以基於與SS塊的衝突條件來傳輸RACH或使用RACH時機。另外/可替換地,WTRU可以基於SS塊被配置、指示或排程為被傳輸的位置(例如,在時間或頻率中),傳輸或不傳輸RACH,或者使用或不使用RACH時機。在一種情況下,該特定時間、頻率、或位置中的RACH時機可被使用(即使其與SS塊衝突時)。在另一種情況下,可以不使用特定時間、頻率、或位置中的RACH時機(如果其與SS塊衝突)。
關於半靜態UL/DL配置的指示可以處於新的無線電實體廣播頻道(NR-PBCH)、剩餘最小系統資訊(RMSI)、其他系統資訊(OSI)、傳呼、或等等中。另外,如果指示WTRU用於動態UL/DL配置,則動態UL/DL配置可以廢棄半靜態UL/DL配置。如果在RACH配置的同時或RACH配置之前動態UL/DL配置被指示且動態UL/DL配置廢棄半靜態UL/DL配置,WTRU可以遵循動態UL/DL配置中的DL部分和UL部分。然後,WTRU可以遵循如本文所述的RACH時機傳輸的規則。
第2B圖示出了基於本文描述的一個或多個實施例的用於沒有SS塊衝突的RACH傳輸的範例過程。在260處,WTRU可以例如在RMSI中接收半靜態UL/DL時槽配置。在262中,WTRU可以基於該配置資訊,確定時槽的不同部分(即,DL/X/DL/UL)的RO。在264中,WTRU可以接收關於實際傳輸的(Txed)SS塊的DL指示。在一些情況下,WTRU還可以接收關於SS塊啟用/禁用廢棄的指示(其可以允許/禁止WTRU在指示SS塊的位置處具有RO)。基於所接收的一些或全部或一些資訊,在266,WTRU可以評估給定符號是否是可以傳輸RACH的時機(即,RO)。在268中,WTRU可以估量時槽的RO並確定它們是否是有效RO,其中沒有預期衝突並且任何規則或指示均被考慮,從而使得RACH可以實際上被傳輸/排程。在270處,WTRU可以在先前確定的有效RO中傳輸RACH。
第2C圖示出了基於本文描述的一個或多個實施例的沒有SS塊衝突的PRACH傳輸的範例。每個示圖(200、220、240)可以是如第2B圖中描述的過程的任何順序的一個或多個階段以及用於處理如本文所述的衝突的任何規則或條件的結果。對於該範例,如果DL控制部分中存在SS塊,則WTRU可以不在這些符號中的任一者中傳輸RACH。此外,如果時機在指示的SS塊之後而不是之前,則RO可能是有效的。通常,傳輸範例僅示出一個時槽,該一個時槽被分解成具有可變數量的符號(即,OFDM)的部分,其可被分配給DL 213、X 214、DL 215和UL 216。每個符號可具有特別的陰影,其對應於佔據了或被指示佔用該資源者;例如,每個可能的RO具有從左上角到右下角的線,例如RO 208。沒有陰影可能意味著該資源未被使用或沒有使用該資源的計畫。
在示圖200中,WTRU可能已經完成了260、262和264。WTRU可能已經確定SS塊(SS塊)207佔用了時槽202的DL控制213部分的一部分,因此,DL控制部分213可能不包含任何RO。此外,時槽的其餘部分可以具有例如藉由RMSI配置的若干RO(208、209、210、211)。可能有RO表(未顯示)。指向表的條目的索引可以指示RO。WTRU可以由RMSI中的索引指示,並且基於所接收的索引和WTRU已知的表來確定RO。
示圖220示出了過程266(評估RO是否是有效的傳輸機會(即,VRO)),並且可以類似於示圖200,例外是可以向WTRU指示SS塊229,其結果會導致僅UL部分226具有有效RO,因為作為潛在RO的X部分224可能不是有效的,因為對於該範例,WTRU可能僅在指示的SS塊之後具有有效RO。
示圖240示出了過程266,並且可以類似於示圖200,例外是可能沒有為DL 245指示的SS塊,這可以導致DL控制部分243之後的每個RO都是有效RO。
在一個或多個實施例中,可以使用重疊的前言子集。SS塊索引可以嵌入在RA-RNTI中。RA-RNTI可以是SS塊索引的函數。可替換地或另外地,SS塊索引可以包括在隨機存取回應(RAR)中。此外,重疊前言的SS塊索引可以嵌入在RA-RNTI中並包括在RAR中。例如,SS塊索引(例如,對於重疊的前言)可以嵌入在RA-RNTI中(例如,針對不同的SS塊索引使用不同的RNTI,或者針對不同的SS塊索引使用不同的CRC遮罩),並且同時,相同的SS塊索引(例如,對於重疊的前言)可以包括在RAR中。
第3圖示出了根據本文描述的一個或多個實施例的前言和同步信號(SS)塊的範例重疊。在一些情況下,SS塊和RACH資源之間的關聯可能重疊。也就是說,多個SS塊可以與相同的RACH資源和/或PRACH前言相關聯,或者一個SS塊可以與多個RACH資源和/或PRACH前言相關聯。用於重疊前言的SS塊索引可以嵌入在RA-RNTI中。RA-RNTI可以是SS塊索引的函數。可替換地或另外地,用於重疊前言的SS塊索引可以包括在隨機存取回應(RAR)中。藉由這樣做,可以避免因為重疊而在WTRU之間產生衝突。此外,重疊前言的SS塊索引可以嵌入在RA-RNTI中並包括在RAR中。WTRU可以獲取在RA-RNTI中獲得的SS塊索引和在RAR中獲得的SS塊索引。WTRU可以將在RAR中獲得的SS塊索引與在RA-RNTI中獲得的SS塊索引進行比較,並確定最終的SS塊索引。
對於具有gNB Rx/Tx波束對應的情況,可以重疊與一個RACH時槽中的不同SS塊對應的前言子集,以增加初步存取和隨機存取的容量。
對於沒有gNB Rx/Tx對應的情況,如果對應於一個RACH時槽中的不同SS塊的前言子集重疊,則利用不同SS塊傳輸相同重疊前言的多個WTRU可能發生衝突,因為gNB可能不能正確地分開與不同的SS塊相關聯的TA。
對於具有gNB Rx/Tx對應及在gNB Tx波束之間存在重疊的情況,如果對應於一個RACH時槽中的不同SS塊的前言子集重疊,則利用不同SS塊傳輸相同重疊前言的多個WTRU可以由在RAR內傳輸SS塊索引的gNB分開,這可以避免這些WTRU之間的衝突。
對於具有gNB Rx/Tx對應且gNB Tx/Rx波束之間沒有重疊的情況,如果對應於一個RACH時槽中的不同SS塊的前言子集重疊,則利用不同SS塊傳輸相同重疊前言的多個WTRU可以在地理上由gNB Rx/Tx波束分開,並且gNB可能不需要在RAR內傳輸SS塊索引。
基於天線配置、波束配置和/或波束對應,gNB可以配置是否在RAR或RA-RNTI中包括SS塊索引。
如第3圖所示,可以存在PRACH前言301的集合或池{1,2,3},其可以被劃分為稱為前言子集的一個或多個子集。諸如304 SS塊1或306 SS塊2的SS塊可以與一個或多個前言子集相關聯。前言子集可以相互重疊,也可以不相互重疊。前言子集可以共用或不共用相同的前言(一個或多個)。在一個實例中,RACH配置可以允許在一個RACH時機(RO)內,前言1和2可以與304 SS塊1相關聯或映射到304 SS塊1,從而創建{1, 2}的子集,並且前言2和3可以是與306 SS塊2相關聯或映射到306 SS塊2,從而創建子集{2, 3}。第一前言子集{1, 2}可以與304 SS塊1相關聯或映射到304 SS塊1,而第二前言子集{2, 3}可以與306 SS塊2相關聯或映射到306 SS塊2。正如在該範例中,前言子集可以彼此重疊。前言2可以由304 SS塊2和306 SS塊2共用。
在gNB處,305 Tx波束1可以與304 SS塊1相關聯,並且307 Tx波束2可以與306 SS塊2相關聯。
在情況1中,305 Tx波束1和307 Tx波束2可以重疊,這意味著WTRU可以從305 Tx波束1和307 Tx波束2接收兩個信號。在情況2中,305 Tx波束1和307 Tx波束2不重疊,這意味著WTRU可以僅接收來自Tx波束1或Tx波束2的信號,而不是兩者。給定這些情況1和情況2,可以考慮以下四種情況:場景1,情況1-沒有gNB Tx/Rx波束對應;場景2,情況2 -沒有gNB Tx/Rx波束對應;場景3,情況1-具有gNB Tx/Rx波束對應;和情景4,情況2-具有gNB Tx/Rx波束對應。
在一個實施例中,WTRU A可以測量SS塊並選擇304 SS塊1,並且可以在與304 SS塊1相關聯的前言子集中隨機選擇前言。WTRU A可以選擇前言2。WTRU B可以測量SS塊並選擇306 SS塊2,並且可以隨機選擇前言。WTRU B也可以選擇前言2。
gNB可以從兩個WTRU(WTRU A和WTRU B)接收單個前言(即,前言2)。當gNB接收到前言2時,gNB可以確定SS塊(304 SS塊1和306 SS塊2)與偵測到的前言(前言2)相關聯。gNB可以傳輸兩個RAR,即,305 Tx波束1中的RAR1和307 Tx波束2中的RAR2。RAR1可以利用RA-RNTI攜帶SS塊索引1,並且RAR2可以利用相同RA-RNTI攜帶SS塊索引2。兩個WTRU可以解碼該相同RA-RNTI並相應地解碼RAR。WTRU A可以獲得RAR1中的SS塊索引(在305 Tx波束1中傳輸),並且WTRU B可以獲得RAR2中的SS塊索引(在307 Tx波束2中傳輸),並且每個WTRU可以比較接收的SS塊索引和它自己選擇的SS塊(WTRU A為304 SS塊1以及WTRU B為306 SS塊2)。如果它們匹配,則每個WTRU可以假設RAR是針對自己的並且基於在其自己的RAR中接收的許可來傳輸消息3。否則,每個WTRU可以丟棄所接收的RAR。如果WTRU A和WTRU B都選擇304 SS塊1(或306 SS塊2),則WTRU A和B可以獲得RAR1(或RAR2)中的SS塊索引,並且可能發生衝突。冗餘版本前言方法可用於減少或消除潛在的衝突。
當gNB具有Tx/Rx波束對應時,定時提前(TA)可以包括在用於傳輸RAR的波束的RAR中。在這種情況下,可以使用SS塊特定TA和/或波束特定TA。由於gNB可以針對不同的SS塊從不同的Rx波束接收前言,所以即使兩個WTRU傳輸相同的前言,gNB也可以估計每個Rx波束的TA。在RAR1中,WTRU A的TA1可以包括在與304 SS塊1相關聯的305 Tx波束1中傳輸的RAR1中。WTRU B的TA2也可以包括在與306 SS塊2相關聯的307 Tx波束2中傳輸的RAR2中。
在一些情況下,gNB可能沒有Tx/Rx波束對應。例如,WTRU A的前言2和WTRU B的前言2可以或可以不從相同的Rx波束接收。如果它們是從相同的Rx波束接收的,則gNB可能無法知告知是相同的前言但是由兩個不同的WTRU傳輸的。如果它們來自不同的Rx波束,則gNB知道該前言是從兩個不同的WTRU在兩個不同的Rx波束中傳輸的,並且可以估計對應於兩個WTRU的TA。gNB可能不知道哪個TA是針對304 SS塊1的,及哪個是針對306 SS塊2,因為沒有Tx/Rx對應。因此,TA可以是波束對應的函數。
對於具有Tx/Rx對應的場景3,gNB可以知道304 SS塊1的前言2的TA,並且它可以包括在RAR 1中。gNB也可以知道前言2的TA並且它可以包括在RAR 2中。
對於場景1或2,在範例中可能無法針對WTRU正確地估計TA。
對於場景3,可以正確估計TA。WTRU A可以RA-RNTI藉由CORESET接收RAR1,並檢查前言索引(前言2)和SS塊索引(304 SS塊1)是針對其自身的。類似地,WTRU B可以RA-RNTI藉由CORESET接收RAR2,並檢查前言索引(前言2)和SS塊索引(SS塊2)是針對其自身的。
對於場景1或3,WTRU A也可以接收RAR2,但是RAR2中的SS塊索引(306 SS塊2)可能與它為SS塊(304 SS塊1)選擇的不匹配,並且因此,WTRU A可以丟棄RAR2。類似地,WTRU B也可以接收RAR1,但是RAR1中的SS塊索引(304 SS塊1)可能與它為SS塊(306 SS塊2)選擇的不匹配,因此WTRU B可以丟棄RAR1。
對於場景4,WTRU A可以僅接收其自己的RAR,並且WTRU B可以僅接收其自己的RAR。gNB可能不需要在RAR中包括SS塊索引。
gNB可以被配置為在RAR中包括SS塊索引或者不在RAR中包括SS塊索引。此外,gNB可以被配置為在RAR和/或RA-RNTI中包括或嵌入SS塊索引。gNB可以被配置為不在RAR和RA-RNTI中的任何一個中包括或嵌入SS塊索引。可以在NR-PBCH、RMSI、OSI或傳呼等中指示針對RAR和/或RA-RNTI中SS塊索引包括的配置。
WTRU可以從gNB接收關於gNB的波束對應(BC)的BC指示。如果BC指示指示“BC”並且配置了PRACH前言子集重疊,則WTRU可以假設在RAR或RA-RNTI中存在SS塊索引。否則,WTRU可以假設在RAR或RA-RNTI中不存在SS塊索引。標誌或1位元指示符可用於指示RAR、NR-PBCH、剩餘最小系統資訊(RMSI)或等等中存在/不存在SS塊索引。
對於場景3的RACH配置,WTRU可以選擇304 SS塊1並傳輸前言2;gNB可以利用Rx波束1接收前言2並相應地估計TA。由於波束對應,對於304 SS塊1,TA可以是已知的。gNB可以發送有RA-RNTI之RAR及有隨機存取前言ID(RAPID)之RAR(其用於對應於304 SS塊1的前言2以及對應的TA和RACH 消息3(Msg3)許可)。WTRU可以成功接收RAR並獲得RACH Msg3許可。
在一個實施例中,WTRU A可以選擇304 SS塊1並傳輸前言2。同時,WTRU B可以選擇306 SS塊2並傳輸前言2。gNB可以利用Rx波束1接收前言2,並且估計TA1;gNB可以利用Rx波束2接收前言2,並獲得TA2。根據波束對應,TA1可以用於304 SS塊1,TA2可以用於306 SS塊2。gNB可以利用RA-RNTI在gNB 305 Tx波束1中傳輸RAR1,該RA-RNTI具有用於前言2、304 SS塊1、TA1和Msg3許可的資訊。gNB還可以利用RA-RNTI在gNB 307 Tx波束2中傳輸RAR2,該RA-RNTI具有用於前言2、304 SS塊2、TA2和另一個Msg3許可的資訊。WTRU A可以接收RAR1,因為RAR1中的SS塊索引是針對WTRU A的。WTRU B可以接收RAR2,因為RAR2中的SS塊索引是針對WTRU B的。
在用於三個WTRU(未示出)的實施例中,WTRU A、B和C可以同時傳輸前言2。WTRU A和C可以選擇SS塊1,並且WTRU B可以選擇SS塊2。gNB可以藉由Rx波束1和2接收前言,並且可以分別傳輸RAR1和RAR2。WTRU A和WTRU C可以接收RAR1,因為RAR1中的SS塊索引是1,並且兩個WTRU可以藉由使用相同的UL許可並應用TA1來傳輸RACH Msg3。WTRU B可以接收RAR2並藉由應用TA2傳輸RACH Msg3。WTRU A和WTRU C的RACH Msg3可能會彼此衝突,並且gNB可以成功地從自己的TA是正確的WTRU之一接收僅一個RACH Msg3,並且可能無法解碼另一個RACH Msg3(即,gNB可能無法接收到該兩個RACH Msg3)。
在一個或多個實施例中,前言類型可以基於SS塊和RACH的分層關聯。SS塊可以與RACH時機相關聯。例如,一個SS塊可以與一個RACH時機相關聯。用於RACH時機的所有前言索引可以與相同的SS塊相關聯。WTRU可以隨機選擇任何一個前言,並在與WTRU可能想要傳遞給gNB的所選SS塊相關聯的RACH時機中傳輸所選擇的前言。
在替換方案中,SS塊可以與RACH時機和前言這兩者相關聯。多個SS塊也可以與一個RACH傳輸時機相關聯,並且可以使用分層關聯。SS塊(例如,實際傳輸的SS塊)可以被分成多個組,例如,K組,其中K是一些非負整數。SS塊組可以與RACH時機相關聯。在每個RACH時機內,SS塊組內的SS塊可以與屬於相應RACH時機的前言相關聯。SS塊可以與RACH時機和前言索引的結合相關聯。RACH時機的前言索引可以與SS塊相關聯。RACH時機內的一個或多個前言索引可以與SS塊相關聯。可以連續地或非連續地映射每個SS塊的前言索引。對於非連續映射,可以以交織方式或分散式方式映射每個SS塊的前言索引。WTRU可以選擇與所選擇的將被傳輸到gNB的SS塊相關聯的前言,並且在與這些多個SS塊相關聯的RACH時機中傳輸所選擇的前言。
在一個或多個情況下,SS塊可以是實際傳輸的SS塊。可替換地或另外地,SS塊可以是候選SS塊、標稱SS塊、或包括傳輸或未傳輸的SS塊的所有SS塊。如果WTRU針對實際傳輸的SS塊被指示,則WTRU可以使用實際傳輸的SS塊來與RACH時機或資源相關聯。如果WTRU沒有針對實際傳輸的SS塊被指示,則WTRU可以使用候選SS塊、標稱SS塊或包括傳輸或未傳輸的SS塊的所有SS塊來與RACH時機或資源相關聯。如果WTRU被指示或配置為使用候選SS塊、標稱SS塊或所有SS塊而與RACH時機或資源相關聯,則這可以廢棄使用實際傳輸的SS塊的情況,即使WTRU可能針對實際傳輸SS塊被指示。例如,這種廢棄指示或關聯配置可以處於RRC傳訊或NR-PBCH中。實際傳輸的SS塊可以在RMSI或OSI內被指示。
本文描述的技術可以應用於基於爭用的隨機存取或無爭用隨機存取,和/或也可以應用於基於爭用的隨機存取和無爭用隨機存取這兩者。
第4圖示出了前言和SS塊關聯的範例。如圖所示,前言被劃分401為具有兩種或更多種類型的多個子集A、B和C。第一類型的前言子集可以與一個SS塊相關聯。第二類型的前言子集可以與多於一個SS塊相關聯。例如,前言子集A和B每個可以是第一類型的前言子集,其可以分別與一個SS塊相關聯,例如,SS塊402和SS塊404。前言子集C可以是第二類型的前言子集,其可以與多於SS塊相關聯,例如,SS塊402和404。
在一種情況下,SS塊402和SS塊404可以在它們關聯的傳輸波束方面彼此相鄰。SS塊402可以具有索引m並且SS塊404可以具有索引n。在這種情況下,m可以是n + 1或n-1。
第5圖示出了RACH資源和SS塊關聯的範例方法。出於說明的目的,RACH資源和RACH時機在適當時可以是可互換的。如圖所示,可以將RACH資源劃分501為具有兩種或更多種類型的多個子集A、B和C。第一類型的RACH資源子集可以與一個SS塊相關聯。第二類型的RACH資源子集可以與多於一個SS塊相關聯。例如,RACH資源子集A和B每個可以是第一類型的前言子集,其可以分別與一個SS塊相關聯,例如,SS塊502和SS塊504。RACH資源子集C可以是第二類型的前言子集,其可以與多於一個SS塊相關聯,例如,SS塊503和SS塊504。
在一種情況下,SS塊502和SS塊504可以在它們關聯的傳輸波束方面彼此相鄰。SS塊402可以具有索引m並且SS塊404可以具有索引n。在這種情況下,m可以是n + 1或n-1。
第6圖示出了到RACH的SS塊關聯和映射範例過程。WTRU可以執行所揭露的一個或多個階段。在602處,可以向WTRU指示實際傳輸的SS塊(SS塊)。在604,可以將實際傳輸的SS塊劃分為SS塊組。在606處,SS塊或SS塊組被映射到RO或RACH資源。在608處,如果每個RO或RACH資源存在多於一個SS塊,則可以在612中將SS塊映射到每個RO或RACH資源的前言,之後可以存在基於前言類型或基於非前言類型的前言子集劃分和映射614。如果根據608每個RO或RACH資源不存在多於一個SS塊,則該過程可以在610處停止。
第7圖是示出到RACH的SS塊關聯和映射的另一範例方法的圖式。WTRU可以執行該範例的一個或多個階段。在702處,可以向WTRU指示實際傳輸的SS塊的數量。在704,可以向WTRU指示每個RO每個SS塊的前言數量。在706,可以向WTRU指示每個RO的SS塊數量。在708處,可以向WTRU指示頻域中的RO(FDM RO)數量。在710處,可以向WTRU指示時槽中的RO(TDM RO)數量。在712處,可以向WTRU指示用於RACH的時槽數量。在714處,可能存在將SS塊映射到前言的前言優先映射。在716處,可能存在將SS塊映射到頻域RO(FDM RO)的頻率次之映射。在718處,可能存在將SS塊映射到時域RO(TDM RO)的時間再次之映射。在717處,可能存在將SS塊映射到時槽內的時域RO的相同時槽優先映射。在719處,可能存在跨時槽次之映射,其將SS塊映射到跨時槽的時域RO。如果相同時槽映射就足夠了,則可能不需要跨時槽映射。如果相同時槽映射不足夠(例如,需要將許多SSB映射到RO),則可以執行跨時槽映射。在720處,如果針對所有RO完成映射迴圈,則進行到724並停止。同樣在720處,如果RO的映射迴圈沒有完成,則在722處丟棄剩餘的RO。
在一個或多個實施例中,可以存在基於PRACH資源包的波束掃描。PRACH前言格式中的OFDM符號的數量或PRACH前言格式的重複次數可以小於gNB Rx波束的數量。gNB可以使用多個RACH時機掃描用於PRACH的Rx波束。該多個RACH時機可以由一個或多個RACH資源組成(例如,一個或多個時槽、非時槽、微型時槽或OFDM符號)。該多個RACH時機可以是連續的,或可以不是連續的。可以將多個RACH時機配置到一個WTRU。在一種情況下,WTRU可以假設可能存在多個RACH時機作為包(package)。WTRU可以使用第一RACH時機、第二RACH時機、第三RACH時機等等開始PRACH前言傳輸,直到所有波束都被掃描為止。取決於實際傳輸的SS塊的數量或gNB處的波束數量,可以將具有K個OFDM符號的多個RACH時機(作為包)配置給WTRU,以用於實際傳輸的K個SS塊或在gNB處的波束。為了進一步支援除了gNB Rx波束掃描之外的WTRU Tx波束掃描,如果WTRU具有M個Tx波束,則可以將具有K乘以M個OFDM符號的多個RACH時機(作為一個包)配置給WTRU。可以使用不同的PRACH前導格式,例如前導格式A、B和/或C。例如,PRACH前導格式A可以是A0、A1、A2、A3,前導格式B可以是B1、B2、B3和B4。前言格式C可以是C0和C1。SS塊的數量可以標記為L
。gNB Rx波束的數量可以標記為Nrx 。配置的前言格式的重複次數可以標記為Nrp
。
如果不存在波束對應,則為了確保gNB可以掃描所有Rx波束以從WTRU接收多個RACH試驗,gNB可以配置ceiling{}個類型的RACH時機。所有gNB Rx波束可以藉由“RACH時機包”掃描。這可以針對每個SS塊或針對所有SS塊進行配置。不同類型的RACH時機可以對應於不同的Nrp
個gNB Rx波束。ceiling{}個類型RACH時機可以被定義為“RACH時機包”。
對於RACH Msg1的重傳,WTRU可以拾取在先前的RACH Msg1(重新)傳輸中尚未使用的不同RACH時機類型,以便完成gNB Rx波束掃描。
對於RACH Msg1重傳,可以由WTRU配置或確定以決定是否改變WTRU UL Tx波束、斜升功率或改變RACH時機的類型。
第8圖示出了每個隨機存取頻道(RACH)時機類型的視窗長度的範例配置,其中RACH時機的視窗長度(例如806和808)可以與RACH配置週期(例如804)相同。可以配置每個RACH時機類型的視窗長度,使得所有RACH時機類型的視窗長度相同。例如,視窗長度806可以與RACH配置週期804相同。可替換地或另外地,所有RACH時機類型的視窗長度可以是RACH配置週期的N倍(未示出),其中N可以配置在剩餘最低系統資訊(RMSI)中。在一個範例中,N可以是大於1的整數。
第9圖示出了每個隨機存取頻道(RACH)時機類型的視窗長度的範例配置,其中RACH時機的視窗長度是RACH配置週期的兩倍。如圖所示,RACH時機類型的視窗長度906被配置為RACH配置週期904的兩倍。
第10圖示出了每個隨機存取頻道(RACH)時機類型的視窗長度的範例配置,其中RACH時機的視窗長度小於RACH配置週期。如圖所示,每個RACH時機類型的視窗長度1006可以小於RACH配置週期1004。所有RACH時機類型均可以在RACH配置週期內。在一些實施例中,不同RACH時機類型的視窗長度可以不同。可以使用預定義的視窗長度模式。WTRU可以配置有RMSI中的一個模式。
可以在NR-PBCH或RMSI中向WTRU指示RACH時機類型的數量Q。根據波束對應,Q可能具有不同的值。例如,對於沒有波束對應的gNB,Y = ceiling {}。對於具有波束對應關係的gNB,Y = 1。對於具有部分波束對應的gNB,Y = ceiling {},其中是與對應於SS塊的gNB Tx波束重疊的gNB Rx波束的數量。例如,Nrx
= 4;Nrp
= 2; L = 4。每個SS塊可能有兩種類型的RACH時機。類型1 RACH時機可以由gNB Rx波束0和1接收。類型2 RACH時機可以由gNB Rx波束2和3接收。
在一個實施例中,Nrx
可以設置為64,Nrp
可以設置為12,並且L可以設置為64(即,Nrx
= 64;Nrp
= 12; L = 64)。每個SS塊可能有6種類型的RACH時機。每種類型的RACH時機可以由12個gNB Rx波束接收,並且gNB Rx波束的子集對於不同類型的RACH時機可以是不同的。
在另一個實施例中,Nrx
可以設置為2並且Nrp
可以設置為2(即,Nrx
=2;Nrp
=2)。在該實施例中可能只有一種類型的RACH時機。
第11圖示出了基於SS波束報告的前言的範例冗餘版本。WTRU 1106可以執行先聽後說(LBT)並傳輸RACH前言。gNB 1101可以執行LBT並傳輸RAR。如果gNB 1101在1104波束1中未能LBT,則它可能不在1104波束1中傳輸RAR。如果WTRU 1106僅報告一個波束(例如,1104波束1),則由於gNB 1101的LBT故障,WTRU 1106可能不能接收RAR。
在一個實施例中,WTRU 1106可以報告多於一個波束(尤其是在波束的重疊區域),例如1104波束1和1105波束2。WTRU 1106可以報告針對最強波束的SS塊以及針對其他波束的SS塊。WTRU 1106可以執行LBT並傳輸RACH前言,該RACH前言可以與SS塊#1(例如,1104波束1)和SS塊#2(例如,1106波束2)相關聯。gNB 1101可以在多於一個波束(例如,1104波束1和1106波束2)上執行LBT,並且可以相應地傳輸RAR。如果gNB 1101在1104波束1中未能LBT,則它可以在其他波束(例如,1106波束2)中傳輸RAR。另一方面,如果gNB 1101在1106波束2中未能LBT,則它可以在其他波束(例如,1104波束1)中傳輸RAR。除非gNB 1101在兩個或所有波束中都未能LBT,否則gNB 1101可能需要繼續執行LBT,直到在傳輸RAR之前頻道是清空的。這可能會導致顯著延遲和高潛符期。藉由從WTRU 1106報告多於一個SS塊,gNB 1101可以能夠無延遲地傳輸RAR。前言和SS塊的關聯可以是一個前言對多個SS塊。例如,前言#1可以與SS塊#1和#2相關聯,前言#2可以與SS塊#3和#4相關聯,依此類推。
然而,當多於一個WTRU處於相同的波束重疊區域時,多個WTRU可能會報告導致衝突的相同前言(未示出)。在NR或未授權NR中,相同重疊的波束區域中的WTRU可能會報告相同的前言,其可能導致前言衝突,如果WTRU選擇了相同的RACH時機。
在一個實施例中,可以使用基於冗餘版本的SS塊報告,並且gNB可以能夠無延遲地傳輸RAR。前言和SS塊的關聯可以基於前言的冗餘。
在一個實施例中,可以使用前言關聯的冗餘版本,其中前言和SS塊的關聯可以是一個前言對多個SS塊,並且可以使用關於前言和SS塊的相同關聯的冗餘版本。例如,在前言#1與SS塊#1和#2相關聯的情況下,前言#2可以是前言#1的冗餘版本,並且也可以與相同的SS塊相關聯(例如,SS塊#1和#2)。這可以消除或減少WTRU衝突,因為相同重疊的波束區域中的WTRU可能不報告相同的前言。
在一種情況下,WTRU可以使用前言或RACH Msg3來報告多於一個SS塊。在使用基於前言的SS塊報告的情況下,可以將一個前言映射到多個SS塊(例如,將前言#1映射到SS塊#1和SS塊#2)。為了進一步減少衝突,可以針對另一個前言重複相同的映射。例如,可以為前言#3產生前言#1的冗餘版本。在另一範例中,前言#1的冗餘版本可以是以下之一:前言#2,其可以被映射到相同的SS塊(例如,SS塊#1和SS塊#2);或前同步碼#3,其可以映射到相同的SS塊(例如,SS塊#1和SS塊#2)。gNB可以執行定向LBT並傳輸RAR。如果SS塊1中未能LBT,則gNB可以靈活地在SS塊2中傳輸RAR。
在使用基於RACH Msg3的SS塊報告的情況下,RACH Msg3可以包括用於在其有效載荷中進行如下映射的冗餘版本:前言#1可以被映射到SS塊#1和SS塊#2;前言#2可以映射到SS塊#1和SS塊#2;和/或,前言#3可以映射到SS塊#1和SS塊#2。
基於前言的SS塊報告之冗餘版本可以應用於初步存取和頻道存取,其包括隨機存取、資料的波束管理和/或控制、行動性和/或其他用例和場景。基於前言的SS塊報告之冗餘版本可以應用於NR授權頻帶或未授權頻帶以及分立或非分立系統。
雖然本發明的特徵和元件是在較佳實施例中以特定結合進行描述的,但是每個特徵或元件可以在沒有較佳實施例的其他特徵和元件的情況下單獨使用,或者與本發明的其他特徵和元件進行各種結合而使用,或者在沒有本發明的其他特徵和元件的情況下被使用。
雖然在此所述的實施例考慮了LTE、LTE-A、新無線電(NR)或5G特定協定,應該理解的是,在此所述的實施例並不限於這些場景,且還可適用於其他無線系統。
雖然上述按照特定的結合描述了特徵及元件,但本領域技術人員可以理解,每一特徵或元件均可被單獨使用或與其他特徵及元件進行任意結合。另外在此所述的方法可以在被引入電腦可讀媒體以供電腦和/或處理器運行的電腦程式、軟體或韌體中實施。關於電腦可讀媒體的範例包括電信號(經由有線或無線連接傳輸)和電腦可讀儲存媒體。關於電腦可讀儲存媒體的範例包括但不侷限於唯讀記憶體(ROM)、隨機存取記憶體(RAM)、暫存器、快取記憶體、半導體記憶裝置、磁媒體(例如內部硬碟和可移除磁片)、磁光媒體、和光媒體(例如CD-ROM碟片和數位多用途碟片(DVD))。與軟體關聯的處理器可以用於實施在WTRU、UE、終端、基地台、RNC或任何電腦主機使用的射頻收發器。
100‧‧‧通信系統
102、102a、102b、102c、102d、1106‧‧‧無線傳輸/接收單元(WTRU)
104、113‧‧‧無線電存取網路(RAN)
106、115‧‧‧核心網路(CN)
108‧‧‧公共交換電話網路(PSTN)
110‧‧‧網際網路
112‧‧‧其他網路
114a、114b‧‧‧基地台
116‧‧‧空中介面
118‧‧‧處理器
120‧‧‧收發器
122‧‧‧傳輸/接收元件
124‧‧‧揚聲器/麥克風
126‧‧‧小鍵盤
128‧‧‧顯示器/觸控板
130‧‧‧非可移記憶體
132‧‧‧可移記憶體
134‧‧‧電源
136‧‧‧全球定位系統(GPS)晶片組
138‧‧‧週邊設備
160a、160b、160c‧‧‧e節點B
162‧‧‧行動性管理閘道(MME)
164‧‧‧服務閘道
166‧‧‧封包資料網路(PDN)閘道
180a、180b、180c、1101‧‧‧gNB
182a、182b‧‧‧存取和行動性管理功能(AMF)
183a、183b‧‧‧會話管理功能(SMF)
185a、185b‧‧‧資料網路(DN)
202‧‧‧時槽
203、205‧‧‧DL信號/頻道
204‧‧‧未知/靈活部分X
206‧‧‧UL信號/頻道
207、227、247‧‧‧SSB
208-211、228‧‧‧RO
213、215、223、243‧‧‧DL
214、224、244‧‧‧X
216、226、246‧‧‧UL
229、304、306、402、404、502、504‧‧‧同步信號(SS)塊
231、241、248-251‧‧‧VRO
305、307‧‧‧Tx波束
1104、1105‧‧‧波束
DL‧‧‧下鏈
FDM RO‧‧‧頻域中的RO
RACH‧‧‧隨機存取頻道
RMSI‧‧‧剩餘最低系統資訊
RO‧‧‧RACH時機
SSB‧‧‧同步信號(SS)塊
TDM RO‧‧‧時槽中的RO
UL‧‧‧上鏈
VRO‧‧‧有效的RACH時機
可以從以下結合附圖的範例給出的描述中獲得更詳細的理解,其中附圖中相同的附圖標記表示相同的元件,並且其中:
第1A圖是示出了可以實施所揭露的一個或多個實施例的範例通信系統的系統圖式;
第1B圖是示出了根據一個實施例的可以在第1A圖所示的通信系統內部使用的範例無線傳輸/接收單元(WTRU)的系統圖式;
第1C圖是示出了根據一個實施例的可以在第1A圖所示的通信系統內部使用的範例無線電存取網路(RAN)和範例核心網路(CN)的系統圖式;
第1D圖是示出了根據一個實施例的可以在第1A圖所示的通信系統內部使用的另一個範例RAN和另一個範例CN的系統圖式;
第2A圖是示出了RACH/PRACH傳輸的範例的圖式;
第2B圖是示出了基於本文描述的一個或多個實施例的用於沒有SS塊衝突的RACH傳輸的範例過程的流程圖;
第2C圖是示出了基於本文描述的一個或多個實施例的沒有SS塊衝突的PRACH傳輸的範例的圖式;
第3圖是示出了前言和同步信號(SS)塊的範例重疊的圖式;
第4圖是示出了前言和SS塊關聯的範例方法的圖式;
第5圖是示出了RACH時機(或RACH資源)和SS塊關聯的範例方法的圖式;
第6圖是示出了到RACH的SS塊關聯和映射範例方法的圖式;
第7圖是示出了到RACH的SS塊關聯和映射另一範例方法的圖式;
第8圖是示出了每個隨機存取頻道(RACH)時機類型的視窗長度的範例配置的圖式,其中RACH時機類型的視窗長度與RACH配置週期相同;
第9圖是示出了每個隨機存取頻道(RACH)時機類型的視窗長度的範例配置的圖式,其中RACH時機類型的視窗長度是RACH配置週期的兩倍;
第10圖是示出了每個隨機存取頻道(RACH)時機類型的視窗長度的範例配置的圖式,其中RACH時機類型的視窗長度小於RACH配置週期;以及
第11圖是示出了基於SS波束報告的前言的範例冗餘版本的圖式。
502、504‧‧‧同步信號(SS)塊
RACH‧‧‧隨機存取頻道
Claims (8)
- 一種由一無線傳輸/接收單元(WTRU)實施的方法,該方法包括:接收一組的實體隨機存取頻道(PRACH)時機的配置資訊,以用於一PRACH;以及在被確定為有效之該組的PRACH時機之一或更多PRACH時機中的該PRACH上進行傳輸,其中在一時槽中該一或更多PRACH時機是接著一或更多指示傳輸同步信號(SS)塊之後,或該一或更多PRACH時機是在基於一指示半靜態上鏈/下鏈(UL/UL)配置的一上鏈(UL)符號中的一情況中,該一或更多PRACH時機被確定為有效。
- 如申請專利範圍第1項所述的方法,還包括接收該一或更多傳輸SS塊的該指示。
- 如申請專利範圍第2項所述的方法,其中該傳輸SS塊的該指示是在一DL符號中。
- 如申請專利範圍第1項所述的方法,還包括經由一實體廣播頻道(PBCH)在一剩餘最小系統資訊(RMSI)中接收半靜態UL/DL配置的該指示。
- 一種無線傳輸/接收單元(WTRU),該WTRU包括:一接收器,配置以接收一組的實體隨機存取頻道(PRACH)時機的配置資訊,以用於一PRACH;以及一傳輸器,被配置以在被確定為有效之該組的PRACH時機之一或更多PRACH時機中的該PRACH上進行傳輸,其中在一時槽中該一或更多PRACH時機是接著一或更多指示傳輸同步信號(SS)塊之後,或該一或更多PRACH時機是在基於一指示半靜態上鏈/下鏈(UL/UL)配置的一上鏈(UL)符號中的一情況下,該一或更多PRACH時機被確定為有效。
- 如申請專利範圍第5項所述的WTRU,其中該接收器還被配置以接收該一或更多傳輸SS塊的該指示。
- 如申請專利範圍第6項所述的WTRU,其中該傳輸SS塊的該指示是在一DL符號之中。
- 如申請專利範圍第5項所述的WTRU,該接收器還被配置以經由一實體廣播頻道(PBCH)在一剩餘最小系統資訊(RMSI)中接收半靜態UL/DL配置的該指示。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762590936P | 2017-11-27 | 2017-11-27 | |
US62/590936 | 2017-11-27 | ||
US201862630692P | 2018-02-14 | 2018-02-14 | |
US62/630692 | 2018-02-14 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201933927A TW201933927A (zh) | 2019-08-16 |
TWI706685B true TWI706685B (zh) | 2020-10-01 |
Family
ID=64899409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107142204A TWI706685B (zh) | 2017-11-27 | 2018-11-27 | 新無線電/非授權新無線電(nr/nr-u)初步存取及頻道存取 |
Country Status (7)
Country | Link |
---|---|
US (3) | US11405950B2 (zh) |
EP (2) | EP3718369B1 (zh) |
JP (3) | JP2021505036A (zh) |
CN (3) | CN117715225A (zh) |
RU (1) | RU2745022C1 (zh) |
TW (1) | TWI706685B (zh) |
WO (1) | WO2019104299A1 (zh) |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11395344B2 (en) * | 2018-01-24 | 2022-07-19 | Lg Electronics Inc. | Method for transmitting and receiving random access channel and uplink channel in non-licensed band and apparatus therefor |
EP3534651A1 (en) * | 2018-02-15 | 2019-09-04 | Comcast Cable Communications, LLC | Wireless communications using wireless device information |
CN110536419B (zh) * | 2018-05-23 | 2023-04-18 | 中兴通讯股份有限公司 | 一种波束恢复方法和装置 |
US11259293B2 (en) * | 2019-01-10 | 2022-02-22 | Ofinno, Llc | Two-stage preamble transmission |
US20220086897A1 (en) * | 2019-01-11 | 2022-03-17 | Apple Inc. | Rach resource coordination mechanisms for adjacent hops in iab |
CN111263465B (zh) * | 2019-02-01 | 2021-12-07 | 维沃移动通信有限公司 | 随机接入消息的传输方法和设备 |
WO2020227011A1 (en) * | 2019-05-03 | 2020-11-12 | Apple Inc. | Random access channel configuration in time domain for nr in unlicensed spectrum |
WO2021012137A1 (en) * | 2019-07-22 | 2021-01-28 | Qualcomm Incorporated | Repeating transmission of random access sequences |
US11864234B2 (en) | 2019-08-08 | 2024-01-02 | Qualcomm Incorporated | Beam-based channel access procedures |
US11363641B2 (en) * | 2019-08-09 | 2022-06-14 | Qualcomm Incorporated | Validation rules for random access message transmission occasions |
EP3783952A1 (en) * | 2019-08-20 | 2021-02-24 | Mitsubishi Electric R&D Centre Europe B.V. | Method for providing network orchestration for industrial communication system |
WO2021056170A1 (en) * | 2019-09-24 | 2021-04-01 | Qualcomm Incorporated | Cross carrier random access configuration |
CN111010742B (zh) * | 2019-12-09 | 2022-07-15 | Oppo广东移动通信有限公司 | 用于确定随机接入资源的方法和终端设备 |
WO2021127958A1 (en) * | 2019-12-24 | 2021-07-01 | Qualcomm Incorporated | Random access message repetition techniques in beamformed communications |
CN113645699B (zh) * | 2020-05-11 | 2024-05-28 | 大唐移动通信设备有限公司 | 一种时域资源配置方法及终端 |
CN113677012B (zh) | 2020-05-15 | 2024-09-24 | 维沃移动通信有限公司 | 随机接入信号的传输方法和终端 |
US11818770B2 (en) * | 2020-06-12 | 2023-11-14 | Qualcomm Incorporated | Random access channel beam management |
US20220039033A1 (en) * | 2020-07-29 | 2022-02-03 | Qualcomm Incorporated | User equipment timing misalignment reporting in non-terrestrial networks |
US11606821B2 (en) | 2021-03-03 | 2023-03-14 | Qualcomm Incorporated | Downlink transmission indication for RACH occasions |
CN115087118A (zh) * | 2021-03-12 | 2022-09-20 | 维沃移动通信有限公司 | 上行传输方法、装置及终端 |
CN115333704A (zh) * | 2021-05-10 | 2022-11-11 | 维沃移动通信有限公司 | 传输控制方法、装置、终端及可读存储介质 |
US11832197B2 (en) | 2021-06-29 | 2023-11-28 | Cisco Technology, Inc. | Neighborhood management between WiFi and unlicensed spectrum radios |
US20230037998A1 (en) * | 2021-08-04 | 2023-02-09 | Sharp Kabushiki Kaisha | Terminal devices and base station devices |
US20230224977A1 (en) * | 2022-01-13 | 2023-07-13 | Qualcomm Incorporated | Facilitating the use of random access channel occasions for full-duplex communication |
WO2023191372A1 (ko) * | 2022-03-31 | 2023-10-05 | 엘지전자 주식회사 | 무선 통신 시스템에서 상향링크 송수신을 수행하는 방법 및 장치 |
CN117676910A (zh) * | 2022-08-12 | 2024-03-08 | 展讯通信(上海)有限公司 | 数据传输方法、装置以及设备 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170238362A1 (en) * | 2017-03-07 | 2017-08-17 | Indian Institute Of Technology Bombay | Methods and systems for controlling a SDN-based multi-RAT communication network |
US20170325260A1 (en) * | 2016-05-06 | 2017-11-09 | Samsung Electronics Co., Ltd | Method and apparatus for initial access in wireless communication systems |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8014359B2 (en) * | 2006-10-27 | 2011-09-06 | Interdigital Technology Corporation | Method and apparatus for assigning radio resources and controlling transmission parameters on a random access channel |
EP3709755A1 (en) * | 2008-07-01 | 2020-09-16 | Telefonaktiebolaget LM Ericsson (publ) | Methods and apparatuses for performing preamble assignment for random access in a telecommunications system |
CN101686544A (zh) | 2008-09-22 | 2010-03-31 | 中兴通讯股份有限公司 | 专用随机接入资源的分配方法和基站 |
CN101841922B (zh) | 2009-03-16 | 2015-01-28 | 中兴通讯股份有限公司 | 选择随机接入资源的方法及终端 |
WO2013112021A1 (ko) * | 2012-01-27 | 2013-08-01 | 삼성전자 주식회사 | 이동통신 시스템에서 복수의 캐리어를 이용해서 데이터를 송수신하는 방법 및 장치 |
US9414409B2 (en) * | 2012-02-06 | 2016-08-09 | Samsung Electronics Co., Ltd. | Method and apparatus for transmitting/receiving data on multiple carriers in mobile communication system |
US9603048B2 (en) | 2012-03-16 | 2017-03-21 | Interdigital Patent Holdings, Inc. | Random access procedures in wireless systems |
US20150181546A1 (en) * | 2012-07-23 | 2015-06-25 | Interdigital Patent Holdings, Inc. | Methods and apparatus for frequency synchronization, power control, and cell configuration for ul-only operation in dss bands |
WO2014115960A1 (ko) | 2013-01-28 | 2014-07-31 | 엘지전자 주식회사 | 초고주파 대역을 지원하는 무선 접속 시스템에서 고속 초기 접속 과정 수행 방법 및 이를 지원하는 장치 |
JP6285647B2 (ja) * | 2013-06-14 | 2018-02-28 | 株式会社Nttドコモ | 無線基地局、無線通信システムおよび無線通信方法 |
CN106165329A (zh) * | 2013-08-09 | 2016-11-23 | 联发科技股份有限公司 | 自适应tdd系统中ul控制信道的物理资源分配 |
WO2015117283A1 (zh) | 2014-02-10 | 2015-08-13 | 华为技术有限公司 | Prach资源配置方法及资源配置的获取方法、基站及用户设备 |
GB2530566A (en) * | 2014-09-26 | 2016-03-30 | Nec Corp | Communication system |
US20190053381A1 (en) * | 2014-11-28 | 2019-02-14 | Industrial Technology Research Institute | Structure of conductive lines and method of manufacturing the same |
WO2017022870A1 (en) * | 2015-08-03 | 2017-02-09 | Samsung Electronics Co., Ltd. | Method and apparatus for initial access in wireless communication system |
US10575338B2 (en) * | 2016-02-04 | 2020-02-25 | Samsung Electronics Co., Ltd. | Method and apparatus for UE signal transmission in 5G cellular communications |
US11291055B2 (en) | 2016-03-11 | 2022-03-29 | Lg Electronics Inc. | Random access channel signal transmission method and user equipment, and random access channel signal reception method and base station |
CN110999424B (zh) * | 2017-06-16 | 2023-04-11 | 苹果公司 | 新无线电(nr)设备中的功率斜变和控制 |
EP4336903A1 (en) * | 2017-07-27 | 2024-03-13 | Samsung Electronics Co., Ltd. | Method and apparatus for performing random access procedure |
WO2019054824A1 (en) * | 2017-09-15 | 2019-03-21 | Samsung Electronics Co., Ltd. | APPARATUS AND METHOD FOR IDENTIFYING DOWNLINK TRANSMISSION BEAM IN A CELLULAR NETWORK |
US11533750B2 (en) * | 2017-10-09 | 2022-12-20 | Qualcomm Incorporated | Random access response techniques based on synchronization signal block transmissions |
US10887903B2 (en) * | 2017-10-26 | 2021-01-05 | Ofinno, Llc | Wireless device processes with bandwidth part switching |
WO2019082152A1 (en) * | 2017-10-27 | 2019-05-02 | Telefonaktiebolaget Lm Ericsson (Publ) | RANDOM ACCESS WITHOUT CONFLICT WITH MULTIPLE SSB |
WO2019099463A1 (en) * | 2017-11-14 | 2019-05-23 | Idac Holdings, Inc. | Supplementary uplink in wireless systems |
PL3713362T3 (pl) | 2017-11-16 | 2024-07-08 | Ntt Docomo, Inc. | Urządzenie użytkownika i urządzenie stacji bazowej |
WO2019096679A1 (en) * | 2017-11-16 | 2019-05-23 | Telefonaktiebolaget Lm Ericsson (Publ) | Random access procedure |
JP6843252B2 (ja) * | 2017-11-17 | 2021-03-17 | エルジー エレクトロニクス インコーポレイティド | 物理任意接続チャネルを送受信する方法及びそのための装置 |
US11324053B2 (en) * | 2017-11-22 | 2022-05-03 | Zte Corporation | Co-existence of different random access resources and associations |
-
2018
- 2018-11-27 WO PCT/US2018/062544 patent/WO2019104299A1/en active Search and Examination
- 2018-11-27 RU RU2020120295A patent/RU2745022C1/ru active
- 2018-11-27 CN CN202311558184.9A patent/CN117715225A/zh active Pending
- 2018-11-27 CN CN202311560639.0A patent/CN117750532A/zh active Pending
- 2018-11-27 JP JP2020528422A patent/JP2021505036A/ja active Pending
- 2018-11-27 EP EP18826466.7A patent/EP3718369B1/en active Active
- 2018-11-27 CN CN201880076687.3A patent/CN111406436B/zh active Active
- 2018-11-27 EP EP22194871.4A patent/EP4132196A1/en active Pending
- 2018-11-27 TW TW107142204A patent/TWI706685B/zh active
- 2018-11-27 US US16/767,322 patent/US11405950B2/en active Active
-
2022
- 2022-06-21 US US17/845,617 patent/US11844105B2/en active Active
- 2022-10-21 JP JP2022169006A patent/JP7538383B2/ja active Active
-
2023
- 2023-10-25 US US18/494,118 patent/US20240057149A1/en active Pending
-
2024
- 2024-06-20 JP JP2024099792A patent/JP2024123150A/ja active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170325260A1 (en) * | 2016-05-06 | 2017-11-09 | Samsung Electronics Co., Ltd | Method and apparatus for initial access in wireless communication systems |
US20170238362A1 (en) * | 2017-03-07 | 2017-08-17 | Indian Institute Of Technology Bombay | Methods and systems for controlling a SDN-based multi-RAT communication network |
Non-Patent Citations (1)
Title |
---|
Qualcomm, "Remaining details on PRACH formats," 3GPP DRAFT: R1-1720652, vol. RAN WG1, no. Reno nevada, USA, 2017/11/18 * |
Also Published As
Publication number | Publication date |
---|---|
US20210029737A1 (en) | 2021-01-28 |
JP2022188297A (ja) | 2022-12-20 |
WO2019104299A1 (en) | 2019-05-31 |
US11405950B2 (en) | 2022-08-02 |
CN111406436B (zh) | 2023-12-08 |
JP2021505036A (ja) | 2021-02-15 |
US11844105B2 (en) | 2023-12-12 |
TW201933927A (zh) | 2019-08-16 |
RU2745022C1 (ru) | 2021-03-18 |
EP3718369A1 (en) | 2020-10-07 |
US20220330325A1 (en) | 2022-10-13 |
EP3718369B1 (en) | 2022-10-19 |
CN117715225A (zh) | 2024-03-15 |
US20240057149A1 (en) | 2024-02-15 |
CN117750532A (zh) | 2024-03-22 |
EP4132196A1 (en) | 2023-02-08 |
JP2024123150A (ja) | 2024-09-10 |
JP7538383B2 (ja) | 2024-08-22 |
CN111406436A (zh) | 2020-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI706685B (zh) | 新無線電/非授權新無線電(nr/nr-u)初步存取及頻道存取 | |
US11553526B2 (en) | Receiver assisted transmissions in NRU | |
CN113508540B (zh) | 两步rach中用于msg-b的方法 | |
TWI776409B (zh) | Nr-u實體隨機存取 | |
TW201937973A (zh) | 實體隨機存取 | |
TW201939913A (zh) | 未許可新無線電(nr-u)頻寬通訊同步訊號及傳呼 | |
CN117377123A (zh) | 用于无线系统中的辅助上行链路接入的方法 | |
CN112954815A (zh) | 波束成形系统中的新型无线电随机接入 | |
US11706794B2 (en) | Physical random access for NR-U | |
TW201937971A (zh) | 非正交多重存取方法及裝置 | |
CN112753194A (zh) | Nr-u中的csi反馈 | |
TW202027552A (zh) | Nr—u簡化實體隨機存取方法及程序 | |
TW202033011A (zh) | Iab及v2x方法及程序 | |
US20230363006A1 (en) | Rach Enhancements for Radar Coexistence | |
US20240349346A1 (en) | Methods for prach in higher frequencies | |
CN117917172A (zh) | 多前导码物理随机接入信道指示 |