WO2024032798A1 - 数据传输方法、装置以及设备 - Google Patents

数据传输方法、装置以及设备 Download PDF

Info

Publication number
WO2024032798A1
WO2024032798A1 PCT/CN2023/112734 CN2023112734W WO2024032798A1 WO 2024032798 A1 WO2024032798 A1 WO 2024032798A1 CN 2023112734 W CN2023112734 W CN 2023112734W WO 2024032798 A1 WO2024032798 A1 WO 2024032798A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization signal
indication information
signal block
valid
bit
Prior art date
Application number
PCT/CN2023/112734
Other languages
English (en)
French (fr)
Inventor
周化雨
潘振岗
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Publication of WO2024032798A1 publication Critical patent/WO2024032798A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present application relates to the field of communications, and in particular, to a data transmission method, device and equipment.
  • Network energy saving has gradually become a concern of operators and equipment manufacturers.
  • Network energy saving can reduce operating costs and achieve green environmental protection.
  • 5G fifth generation mobile communication technology
  • the carriers or cells corresponding to some frequency bands can be turned off as much as possible and turned on as needed to realize the network energy saving purpose.
  • cells that can be shut down when the network load is low can be called non-anchor cells, and cells that cannot be shut down can be called anchor cells.
  • the terminal device needs to establish a connection with the non-anchor cell through random access (Random Access, RA) resources.
  • Random Access Random Access
  • Upstream synchronization due to different base stations, there is a certain time deviation between the signals of different base stations, resulting in a high delay in the conversion process of the terminal equipment and a low efficiency of data transmission synchronization during network switching.
  • This application provides a data transmission method, device and equipment to reduce the delay of terminal equipment switching from an anchor cell to a non-anchor cell and improve the efficiency of data transmission synchronization during network switching.
  • embodiments of the present application provide a data transmission method, including:
  • the first indication information, the second indication information and/or the third indication information it is determined whether the synchronization signal block is valid and/or whether the CFRA resource corresponding to the synchronization signal block is valid.
  • the first indication information indicates a synchronization signal block index or number or identification.
  • the synchronization signal block index, number or identification is represented by 6 bits.
  • the synchronization signal block index, number or identification is represented by 3 bits.
  • the synchronization signal block index, number or identification is represented by 6 bits.
  • the first indication information is a bitmap, wherein one bit in the bitmap corresponds to one synchronization signal block or multiple synchronization signal blocks.
  • the bit being a first preset value indicates that the synchronization signal block corresponding to the bit is valid
  • the bit being a second preset value indicating that the synchronization signal block corresponding to the bit is Invalid.
  • the random access preamble corresponding to the synchronization signal block is valid if the synchronization signal block is valid.
  • the random access preamble corresponding to the synchronization signal block is configured by higher layer parameters.
  • the PRACH opportunity corresponding to the synchronization signal block is valid if the synchronization signal block is valid.
  • the PRACH timing corresponding to the synchronization signal block is configured by higher layer parameters.
  • the bitmap is 8 bits.
  • bit for frequency range 1, if the bit is a first preset value, it indicates that the synchronization signal block corresponding to the bit is valid, and if the bit is a second preset value, it indicates that the bit corresponds to The sync signal block is invalid.
  • the bitmap is 16 bits.
  • bit for frequency range 2, if the bit is a first preset value, it indicates that a group of synchronization signal blocks corresponding to the bit is valid, and if the bit is a second preset value, it indicates that the The set of synchronization signal blocks corresponding to the bits is invalid.
  • the second indication information is a random access preamble index
  • the random access preamble index represents an index of a random access preamble corresponding to the synchronization signal block.
  • the third indication information is a PRACH mask index
  • the PRACH mask index represents an index of a PRACH opportunity corresponding to the synchronization signal block.
  • the first indication information, the second indication information and/or the third indication information are carried by a PDCCH order or MAC-CE.
  • embodiments of the present application provide another data transmission method, including:
  • the first indication information it is determined whether one or more CFRA resources are valid.
  • the first indication information is X bits, where X is a positive integer; or,
  • the first indication information is X bits, where X and Y are positive integers.
  • the first indication information represents an index, number, or identification, where a CFRA resource corresponding to the index, number, or identification is valid.
  • the first indication information represents a bitmap, where one bit in the bitmap corresponds to one CFRA resource.
  • the bit having a first preset value indicates that the bit corresponds to a CFRA resource is valid
  • the bit having a second preset value indicates that the bit corresponding to a CFRA resource is invalid
  • the first indication information is carried by a PDCCH order.
  • the X bits are reserved bits in the PDCCH order.
  • the X bits are bits in existing fields in the PDCCH order.
  • the Y bits are reserved bits in the PDCCH order.
  • the first indication information is carried by MAC-CE.
  • embodiments of the present application provide a data transmission method, including:
  • embodiments of the present application provide a data transmission method, including:
  • embodiments of the present application provide a data transmission device, including:
  • a determining module configured to determine whether the synchronization signal block is valid and/or whether the CFRA resource corresponding to the synchronization signal block is valid according to the first indication information, the second indication information and/or the third indication information.
  • the first indication information indicates a synchronization signal block index or number or identification.
  • the synchronization signal block index, number or identification is represented by 6 bits.
  • the synchronization signal block index, number or identification is represented by 3 bits.
  • the synchronization signal block index, number or identification is represented by 6 bits.
  • the first indication information is a bitmap, wherein one bit in the bitmap corresponds to one synchronization signal block or multiple synchronization signal blocks.
  • the bit being a first preset value indicates that the synchronization signal block corresponding to the bit is valid
  • the bit being a second preset value indicating that the synchronization signal block corresponding to the bit is Invalid.
  • the random access preamble corresponding to the synchronization signal block is valid if the synchronization signal block is valid.
  • the random access preamble corresponding to the synchronization signal block is configured by higher layer parameters.
  • the PRACH opportunity corresponding to the synchronization signal block is valid if the synchronization signal block is valid.
  • the PRACH timing corresponding to the synchronization signal block is configured by higher layer parameters.
  • the bitmap is 8 bits.
  • bit for frequency range 1, if the bit is a first preset value, it indicates that the synchronization signal block corresponding to the bit is valid, and if the bit is a second preset value, it indicates that the bit corresponds to The sync signal block is invalid.
  • the bitmap is 16 bits.
  • bit for frequency range 2, if the bit is a first preset value, it indicates that a group of synchronization signal blocks corresponding to the bit is valid, and if the bit is a second preset value, it indicates that the The set of synchronization signal blocks corresponding to the bits is invalid.
  • the second indication information is a random access preamble index
  • the random access preamble index represents an index of a random access preamble corresponding to the synchronization signal block.
  • the third indication information is a PRACH mask index
  • the PRACH mask index represents an index of a PRACH opportunity corresponding to the synchronization signal block.
  • the first indication information, the second indication information and/or the third indication information are carried by a PDCCH order or MAC-CE.
  • embodiments of the present application provide a data transmission device, including:
  • a determining module configured to determine whether one or more CFRA resources are valid according to the first indication information.
  • the first indication information is X bits, where X is a positive integer; or,
  • the first indication information is X bits, where X and Y are positive integers.
  • the first indication information represents an index, number, or identification, where a CFRA resource corresponding to the index, number, or identification is valid.
  • the first indication information represents a bitmap, where one bit in the bitmap corresponds to one CFRA resource.
  • the bit having a first preset value indicates that the bit corresponds to a CFRA resource is valid
  • the bit having a second preset value indicates that the bit corresponding to a CFRA resource is invalid
  • the first indication information is carried by a PDCCH order.
  • the X bits are reserved bits in the PDCCH order.
  • the X bits are bits in existing fields in the PDCCH order.
  • the Y bits are reserved bits in the PDCCH order.
  • the first indication information is carried by MAC-CE.
  • embodiments of the present application provide a data transmission device, including:
  • a sending module configured to send first indication information, second indication information and/or third indication information; the first indication information, second indication information and/or third indication information is used to determine whether the synchronization signal block is valid. and/or whether the CFRA resource corresponding to the synchronization signal block is valid.
  • the first indication information indicates a synchronization signal block index or number or identification.
  • the synchronization signal block index, number or identification is represented by 6 bits.
  • the synchronization signal block index, number or identification is represented by 3 bits.
  • the synchronization signal block index, number or identification is represented by 6 bits.
  • the first indication information is a bitmap, wherein one bit in the bitmap corresponds to one synchronization signal block or multiple synchronization signal blocks.
  • the bit being a first preset value indicates that the synchronization signal block corresponding to the bit is valid
  • the bit being a second preset value indicating that the synchronization signal block corresponding to the bit is Invalid.
  • the random access preamble corresponding to the synchronization signal block is valid if the synchronization signal block is valid.
  • the random access preamble corresponding to the synchronization signal block is configured by higher layer parameters.
  • the PRACH opportunity corresponding to the synchronization signal block is valid if the synchronization signal block is valid.
  • the PRACH timing corresponding to the synchronization signal block is configured by higher layer parameters.
  • the bitmap is 8 bits.
  • bit for frequency range 1, if the bit is a first preset value, it indicates that the synchronization signal block corresponding to the bit is valid, and if the bit is a second preset value, it indicates that the bit corresponds to The sync signal block is invalid.
  • the bitmap is 16 bits.
  • bit for frequency range 2, if the bit is a first preset value, it indicates that a group of synchronization signal blocks corresponding to the bit is valid, and if the bit is a second preset value, it indicates that the A set of synchronization signals corresponding to bits The block is invalid.
  • the second indication information is a random access preamble index
  • the random access preamble index represents an index of a random access preamble corresponding to the synchronization signal block.
  • the third indication information is a PRACH mask index
  • the PRACH mask index represents an index of a PRACH opportunity corresponding to the synchronization signal block.
  • the first indication information, the second indication information and/or the third indication information are carried by a PDCCH order or MAC-CE.
  • embodiments of the present application provide a data transmission device, including:
  • a sending module configured to send first indication information, where the first indication information is used to determine whether one or more CFRA resources are valid.
  • the first indication information is X bits, where X is a positive integer; or,
  • the first indication information is X bits, where X and Y are positive integers.
  • the first indication information represents an index, number, or identification, where a CFRA resource corresponding to the index, number, or identification is valid.
  • the first indication information represents a bitmap, where one bit in the bitmap corresponds to one CFRA resource.
  • the bit having a first preset value indicates that the bit corresponds to a CFRA resource is valid
  • the bit having a second preset value indicates that the bit corresponding to a CFRA resource is invalid
  • the first indication information is carried by a PDCCH order.
  • the X bits are reserved bits in the PDCCH order.
  • the X bits are bits in existing fields in the PDCCH order.
  • the Y bits are reserved bits in the PDCCH order.
  • the first indication information is carried by MAC-CE.
  • embodiments of the present application provide a data transmission device, including: a processor and a memory;
  • the memory stores computer execution instructions
  • the processor executes computer execution instructions stored in the memory to implement the method described in any one of the first to fourth aspects.
  • embodiments of the present application provide a computer-readable storage medium in which computer-executable instructions are stored, and when executed, the computer-executable instructions are used to implement the first to fourth aspects. any of the methods described.
  • embodiments of the present application provide a computer program product, including a computer program.
  • the computer program When the program is executed, the method described in any one of the first to fourth aspects is implemented.
  • embodiments of the present application provide a chip.
  • a computer program is stored on the chip.
  • the computer program is executed by the chip, the method described in any one of the first to fourth aspects is implemented.
  • embodiments of the present application provide a chip module.
  • a computer program is stored on the chip module.
  • the computer program is executed by the chip module, any one of the first to fourth aspects is implemented. method described in the item.
  • the terminal device determines whether the synchronization signal block is valid or determines the CFRA resource corresponding to the synchronization signal block based on the first indication information, the second indication information and/or the third indication information. is it effective.
  • the terminal device switches from the anchor cell, that is, the current cell, to a non-anchor cell (switching target cell)
  • it can quickly determine whether the synchronization signal block is valid, or quickly determine whether the CFRA resource corresponding to the synchronization signal block is valid, improving It improves the efficiency of data transmission and meets the low-latency requirements of terminal equipment data transmission.
  • Figure 1 is a schematic diagram of an application scenario provided by an embodiment of this application.
  • Figure 2 is a schematic flow chart of a data transmission method provided by an embodiment of the present application.
  • Figure 3 is a schematic flow chart of another data transmission method provided by an embodiment of the present application.
  • Figure 4 is a schematic flow chart of another data transmission method provided by an embodiment of the present application.
  • Figure 5 is a schematic flow chart of another data transmission method provided by an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of a data transmission device provided by an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of another data transmission device provided by an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of another data transmission device provided by an embodiment of the present application.
  • Figure 9 is a schematic structural diagram of another data transmission device provided by an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a data transmission device provided by an embodiment of the present application.
  • Figure 1 is a schematic diagram of an application scenario provided by an embodiment of the present application. Please refer to Figure 1, including a terminal device 101 and a network device 102.
  • the terminal equipment 101 may also be called user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user device, etc.
  • the terminal device 101 may specifically be a device that provides voice/data connectivity to users, for example, a handheld device, a vehicle-mounted device, etc. with a wireless connection function.
  • mobile phone Mobile Phone
  • tablet computer Tablet computer
  • wireless transceiver function such as notebook computer, handheld computer, etc.
  • mobile Internet device Mobile Internet Device, MID
  • virtual reality Virtual Reality, VR
  • AR augmented reality
  • wireless terminals in industrial control Industrial Control
  • wireless terminals in self-driving Self Driving
  • wireless terminals in remote medical Remote Medical
  • smart grids Wireless terminals in Smart Grid, wireless terminals in Transportation Safety, wireless terminals in Smart City, wireless terminals in Smart Home, cellular phones, cordless phones, session initiation protocols (Session Initiation Protocol, SIP) telephone, Wireless Local Loop (WLL) station, Personal Digital Assistant (Personal Digital Assistant, PDA), handheld device with wireless communication capabilities, computing device or other device connected to a wireless modem Processing equipment, vehicle-mounted equipment, wearable devices, terminal equipment in the fifth-generation mobile communication technology 5G network or terminal equipment in the future evolved public land mobile communication network (Public Land Mobile Network, PLM
  • wearable devices can also be called wearable smart devices. It is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not just hardware devices, but also achieve powerful functions through software support, data interaction, and cloud interaction. Broadly defined wearable smart devices include full-featured, large-sized devices that can achieve complete or partial functions without relying on smartphones, such as smart watches or smart glasses, and those that only focus on a certain type of application function and need to cooperate with other devices such as smartphones. Use, such as various types of smart bracelets, smart jewelry, etc. for physical sign monitoring.
  • the terminal device 101 may also be a terminal device in an Internet of Things (IoT) system.
  • IoT Internet of Things
  • Its main technical feature is to connect objects to the network through communication technology, thereby realizing an intelligent network of human-computer interconnection and object interconnection.
  • IoT technology can achieve massive connections, deep coverage, and terminal power saving through narrowband (NB) technology, for example.
  • NB narrowband
  • the terminal device 101 can also include sensors such as smart printers, train detectors, and gas stations. Its main functions include collecting data (some terminal devices), receiving control information and downlink data from network devices, and sending electromagnetic waves. Transmit uplink data to network equipment.
  • sensors such as smart printers, train detectors, and gas stations. Its main functions include collecting data (some terminal devices), receiving control information and downlink data from network devices, and sending electromagnetic waves. Transmit uplink data to network equipment.
  • the embodiment of this application does not limit the specific type or name of the terminal device 101.
  • the network device 102 may be any device with wireless transceiver functions.
  • the equipment includes but is not limited to: evolved Node B (eNB), Radio Network Controller (RNC), Node B (Node B, NB), Base Station Controller (BSC) , Base Transceiver Station (BTS), Home Base Station (for example, Home Evolved NodeB, or Home Node B, HNB), Baseband Unit (Baseband Unit, BBU), Wireless Fidelity (Wireless Fidelity, WiFi) system Access Point (AP), wireless relay node, wireless backhaul node, transmission point (Transmission Point, TP) or transmission and reception point (Transmission and Reception Point, TRP), etc.
  • eNB evolved Node B
  • RNC Radio Network Controller
  • Node B Node B
  • BSC Base Station Controller
  • BTS Base Transceiver Station
  • HNB Base Station
  • Baseband Unit Baseband Unit
  • BBU Wireless Fidelity (Wireless Fidelity, WiFi) system Access Point (AP), wireless
  • It can also be 5G, such as the gNB in the New Radio (NR) system, or the transmission point (TRP or TP), one or a group (including multiple antenna panels) of the base station in the 5G system.
  • a network node that constitutes a gNB or transmission point, such as a baseband unit (BBU), or a distributed unit (Distributed Unit, DU), etc.
  • gNB may include Centralized Units (CUs) and DUs. gNB can also include active antenna units (Active Antenna Unit, AAU). CU implements some functions of gNB, and DU implements some functions of gNB. For example, CU is responsible for processing non-real-time protocols and services, implementing Radio Resource Control (RRC), and Packet Data Convergence Protocol (PDCP) layer functions. DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of the Radio Link Control (RLC) layer, the Medium Access Control (Medium Access Control, MAC) layer and the Physical (Physical, PHY) layer.
  • RLC Radio Link Control
  • MAC Medium Access Control
  • PHY Physical
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network equipment in the access network (Radio Access Network, RAN), or the CU can be divided into network equipment in the core network (Core Network, CN).
  • the embodiment of the present application does not limit the specific type or name of the network device 102.
  • the base station described below is a common type of network device 102. Those skilled in the art can also replace the base station with other network devices based on actual needs.
  • Network energy saving is an issue that operators and equipment vendors are more concerned about.
  • Network energy saving can reduce operating costs and achieve green, low-carbon and environmental protection.
  • spectrum resources such as 1GHz, 2GHz, 4GHz, 6GHz and 26GHz frequency bands (Band). Therefore, when the network load is low, the carriers or cells corresponding to some frequency bands (such as 4GHz, 6GHz or 26GHz, etc.) can be turned off as much as possible and turned on as needed to achieve the purpose of network energy saving.
  • some carriers or cells do not need to carry data.
  • the network can be reached through the switch of certain carriers The purpose of energy saving, but this generally needs to be achieved when the network load is low.
  • Non-anchor Carrier Non-anchor Carrier
  • Non-anchor Cell Non-anchor Cell
  • a carrier or cell that is not closed may be called an anchor carrier (Anchor Carrier) or an anchor cell (Non-anchor Cell), or it may be called a first-type carrier or first-type cell.
  • the anchor cell can be represented by serving cell (Serving Cell) or source cell (Source Cell) or current cell (Current Cell), and the anchor cell can be represented by non-serving cell (Non-serving Cell) or target cell.
  • Cell (Target Cell) or candidate cell (Candidate Cell) represents a non-anchor cell.
  • the serving cell, source cell, or current cell before the terminal device switches may be the above-mentioned unclosed cell or carrier
  • the anchor cell may be the serving cell, source cell, or current cell.
  • the non-serving cell, target cell or candidate cell used as the conversion target may be the above-mentioned cell or carrier opened on demand, so the non-anchor cell may be a non-serving cell, target cell or candidate cell.
  • the anchor cell and the non-anchor cell may belong to the same base station or different base stations.
  • a base station can be configured with non-anchor cells and anchor cells at the same time.
  • terminal equipment can complete the transmission of service data on the anchor cell, and the base station can shut down non-anchor cells to save network energy.
  • non-anchor cells can be opened, that is, terminal devices can access the network through non-anchor cells to achieve the purpose of supporting data load balancing.
  • the anchor cell and the non-anchor cell can also be configured on different base stations respectively.
  • CA Carrier Aggregation
  • DC Dual Connection
  • the anchor cell is the primary carrier (Primary Carrier) or primary carrier component (Primary Carrier Component) or primary cell (Primary Cell, PCell) or primary secondary cell (Primary Secondary Cell, PSCell), that is, it mainly carries control signaling. carrier or cell.
  • Non-anchor cells are usually secondary carriers (Secondary Carrier) or secondary carrier components (Secondary Carrier Component) or secondary cells (Secondary Cell, SCell), that is, carriers or cells that mainly carry data.
  • the switch of the non-anchor cell can be understood as the addition, deletion or modification of the secondary cell. In this way, the requirements for the backhaul network (Backhaul) between the anchor cell and the non-anchor cell are higher, but the switching of the non-anchor cell, that is, the addition, deletion or modification of the auxiliary cell is easier to implement.
  • the anchor cell and the non-anchor cell are both primary carriers or primary carrier components or primary cells or primary and secondary cells, that is, carriers or cells that mainly carry control signaling.
  • the opening of the non-anchor cell can be understood as a switch from the anchor cell to the non-anchor cell
  • the closing of the non-anchor cell can be understood as a switch from the non-anchor cell to the anchor cell.
  • the requirements for the backhaul network (Backhaul) between the anchor cell and the non-anchor cell are low, but the switch of the non-anchor cell is The complexity is higher.
  • non-CA/DC similar to the second method in CA/DC, the opening of a non-anchor cell can be understood as the conversion from the anchor cell to the non-anchor cell, and the closing of the non-anchor cell can be understood as the conversion from the non-anchor cell to the anchor cell. Point cell conversion.
  • the requirements for the backhaul network between the anchor cell and the non-anchor cell are low, but the switching implementation complexity of the non-anchor cell is high.
  • the synchronization signal block can be used for user equipment to perform time-frequency synchronization and obtain the Master Information Block (Master Information Block, MIB) and System Information Block (System Information Block, SIB).
  • MIB Master Information Block
  • SIB System Information Block
  • the anchor carrier or cell needs to carry MIB and SIB to support cell search and system information transmission.
  • Non-anchor carriers or cells may still need to support paging, random access and radio resource management (RRM) measurements, etc., so they still need to carry synchronization signal blocks to support time-frequency synchronization (time-frequency tracking, etc.) of user equipment. Time/Frequency Tracking) and RRM measurements.
  • RRM radio resource management
  • non-anchor cells are controlled by the network and are turned on or off on demand.
  • the base station can turn on or off the non-anchor cell as needed; when the non-anchor cell and the anchor cell do not belong to the same base station, the anchor cell
  • the cell base station can allow the non-anchor cell base station to turn on or off the non-anchor cell on demand through inter-base station signaling.
  • the non-anchor cell base station can turn on or off the non-anchor cell on demand based on core network commands or signal/load requirements. .
  • Scenario 1 The timing of opening the non-anchor cell can be before the terminal device completes random access. This allows the terminal equipment to use the resources of the non-anchor cell as quickly as possible (making the non-anchor cell provide more load balancing), and reduces the signaling overhead when the connection state is switched (Handover, HO).
  • the random access process is generally divided into four steps, corresponding to the four channels or messages of the random access channel.
  • Random access channels include physical random access channel (Physical Random Access Channel, PRACH), also known as Message 1 (Message 1, Msg1), and random access response (Random Access Response, RAR), also known as Message 2 (Message 2, Msg2) , Message 3 (Message 3, Msg3), Message 4 (Message 4, Msg4), and so on.
  • PRACH Physical Random Access Channel
  • RAR random access response
  • the timing for opening the non-anchor cell may be before the terminal device initiates random access, that is, before sending the PRACH. In this way, the terminal device can initiate random access or initiate a random access channel (Random Access Channel, RACH) process on the non-anchor cell, using the physical random access channel PRACH resources on the non-anchor cell.
  • RACH Random Access Channel
  • the timing for opening the non-anchor cell may also be after the terminal device initiates random access but before completing random access, such as before sending message 3. In this way, the terminal device can transfer to the non-anchor cell as soon as possible after initiating random access on the anchor cell.
  • Scenario 2 The timing of opening the non-anchor cell can be after the terminal device completes random access, that is, after completing the initial access or after entering the connected state. This allows non-anchor cells to only serve connected terminal devices and increases the number of non-anchor cells. The closing time of the cell increases the energy saving gain of non-anchor cells.
  • synchronization signals and broadcast channels are sent in the form of synchronization signal blocks, and the beam sweeping function is introduced.
  • the primary synchronization signal Primary Synchronization Signal, PSS
  • the secondary synchronization signal Secondary Synchronization Signal, SSS
  • the physical broadcast channel Physical Broadcast Channel, PBCH
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • Each synchronization signal block can be regarded as a beam (analog domain) resource in the beam sweeping process.
  • Multiple synchronization signal blocks form a synchronization signal burst (SS-Burst).
  • a synchronization signal burst can be regarded as a relatively concentrated resource containing multiple beams.
  • synchronization signal bursts form a synchronization signal burst set (SS-Burst-Set).
  • the synchronization signal block is repeatedly sent on different beams, which is a beam scanning process. Through beam scanning training, the user equipment can sense which beam receives the strongest signal.
  • the time domain positions of L synchronization signal blocks within a 5ms window are fixed.
  • the indexes of L synchronization signal blocks are continuously arranged in the time domain position, from 0 to L-1. Therefore, the transmission time of a synchronization signal block within this 5ms window is fixed, and the index is also fixed.
  • the remaining minimum system information (Remaining Minimum System Information, RMSI or SIB1) in Rel-15 NR is equivalent to SIB1 in the Long-Term Evolution system (Long-Term Evolution, LTE), which includes main system information except MIB.
  • RMSI may also be called SIB1.
  • RMSI is carried in the Physical Downlink Shared Channel (PDSCH), and the PDSCH is scheduled through the Physical Downlink Control Channel (Physical Downlink Control Channel, PDCCH).
  • the PDSCH that carries RMSI is generally called RMSI PDSCH, and the PDCCH that schedules RMSI PDSCH is generally called RMSI PDCCH.
  • the search space set (Search Space Set) includes properties such as PDCCH monitoring timing and search space type.
  • the search space set is generally bound to a control resource set (CORESET), and the control resource set includes the frequency domain resources and duration of PDCCH and other properties.
  • CORESET control resource set
  • the Search Space Set where the RMSI PDCCH is located is generally called Type0-PDCCH Search Space Set.
  • Type0-PDCCH Search Space Set configured by the MIB or configured by the RRC in situations such as handover is called Search Space 0 (or Search Space Set 0), and the bound CORESET is called CORESET 0.
  • other public search spaces or public search space sets such as OSI PDCCH's Search Space Set (Type0A-PDCCH Search space set), RAR PDCCH's Search Space Set (Type1-PDCCH Search Space Set), Paging PDCCH Search Space Set (Type2- PDCCH Search Space Set), etc., may be the same as Search Space Set 0 by default.
  • the above-mentioned public search space or set of public search spaces can be reconfigured.
  • the RMSI PDCCH monitoring timing has a corresponding relationship with the synchronization signal block.
  • the terminal equipment obtains this corresponding relationship according to the RMSI PDCCH monitoring timing table.
  • the terminal equipment searches for a certain synchronization signal block.
  • the terminal equipment determines the time domain position (starting symbol index or first symbol index) of the RMSI PDCCH corresponding to the synchronization signal block based on the row index of the table indicated by PBCH. symbol index), the RMSI PDCCH can be detected, and the RMSI PDSCH can be received and decoded according to the RMSI PDCCH scheduling.
  • the terminal device obtains timing information through the synchronization signal block
  • Timing information can also be called frame timing (Frame Timing) information or half-frame timing (Half-frame Timing) information, which is generally used to indicate the timing of the frame or half-frame corresponding to the detected synchronization signal.
  • frame timing Frae Timing
  • Half-frame Timing Half-frame timing
  • SFN System Frame Number
  • the terminal device obtains the half-frame timing information, it then obtains the complete timing information of the cell corresponding to the synchronization signal block through the half-frame indication (first half frame or second half frame) and SFN.
  • the terminal device obtains the timing information within 10 milliseconds by obtaining the synchronization signal block index.
  • the synchronization signal block index is related to the L candidate positions of the synchronization signal block.
  • the terminal equipment decodes the RMSI PDCCH, obtains multiple bits of the time domain resource allocation, and searches a predefined table based on these bits to obtain the starting symbol index (or number) and symbol length (or duration) of the RMSI PDSCH. Time, Duration).
  • the terminal equipment assumes that the RMSI PDSCH does not rate match the synchronization signal block.
  • the RMSI can indicate whether to send the synchronization signal block. After the terminal device obtains the RMSI, it can perform rate matching on the synchronization signal block indicated by the RMSI.
  • Paging Occasion PO
  • Paging PDCCH monitoring opportunities within a PO, Paging PDCCH can be sent by scanning the beam like the synchronization signal block.
  • Paging PDCCH monitoring timing and synchronization signal blocks one by one
  • the Kth Paging PDCCH monitoring opportunity corresponds to the Kth synchronization signal block.
  • the enhanced machine type communication (LTE Machine to Machine or LTE enhanced MTC, eMTC) terminal equipment is a narrowband (Narrowband) terminal equipment.
  • the bandwidth of eMTC terminal equipment is about 1MHz and can cover 6 physical resource blocks PRBs (Physical Resource Block, PRB). Therefore, the eMTC terminal device can detect the PSS/SSS/PBCH of LTE during initial access. Since the main information block MIB is carried in the PBCH, the eMTC terminal device can decode the LTE MIB.
  • the LTE MIB has 10 reserved bits (Spare Bits), and part of these reserved bits can be used to carry the information of scheduling eMTC's SIB1 (SIB1-BR, different from LTE SIB1).
  • SIB1-BR scheduling eMTC's SIB1
  • the frequency domain resources of the PDSCH carrying eMTC SIB1 are also within 6 PRBs, so the eMTC terminal equipment can also receive the PDSCH carrying eMTC SIB1.
  • the eMTC terminal device decodes the LTE MIB, it obtains the eMTC SIB1 information and then accesses the network.
  • a terminal device is a terminal device supporting a 100MHz bandwidth.
  • the terminal equipment blindly detects the PSS/SSS/PBCH in the synchronization signal block and obtains the MIB and time index information carried in the PBCH.
  • the terminal equipment obtains the configuration of the CORESET (can be called CORESET0) and its Search Space Set (can be called Search Space Set 0) for scheduling SIB1 through the information in the MIB.
  • the terminal equipment can monitor the Type0-PDCCH that schedules the PDSCH carrying SIB1. , and decode SIB1. Since the bandwidth of CORESET0 is set through a table in PBCH, the maximum bandwidth of CORESET0 is implicitly defined in the protocol.
  • the protocol stipulates that the frequency domain resources of the PDSCH carrying SIB1 are within the bandwidth (PRBs) of CORESET0, so the maximum bandwidth of the PDSCH carrying SIB1 is also implicitly defined in the protocol.
  • the terminal equipment works within the Initial Active DL BWP.
  • the frequency domain position of the initial active downlink BWP is the same as the frequency domain position of CORESET0 by default (non-default, the initial active downlink BWP
  • the frequency domain position of can be modified through signaling to cover the frequency domain position of CORESET0), so the maximum bandwidth of the initial activation of downlink BWP is implicitly defined in the protocol.
  • the terminal The device needs to establish uplink synchronization with non-anchor cells through random access to RA resources.
  • This time deviation mainly includes the propagation caused by the different center frequencies of the anchor cell and non-anchor cell ( Propagation) time is different, there is a time deviation between the two base stations, and/or the propagation time is different due to different distances from the terminal equipment to the two base stations.
  • the terminal device can use Contention Free Random Access (CFRA) resources to improve the efficiency of establishing uplink synchronization with non-anchor cells. Therefore, the terminal equipment needs to know which beams in the non-anchor cell are valid and also needs to It is necessary to know which beams correspond to valid CFRA resources. Generally speaking, CFRA resources correspond to beams. The terminal equipment needs to determine the CFRA resources to use based on the beam, and use the CFRA resources on the uplink beam corresponding to the downlink beam for uplink synchronization.
  • CFRA Contention Free Random Access
  • the terminal device determines whether the synchronization signal block is valid or whether the CFRA resource corresponding to the synchronization signal block is valid according to the first indication information, the second indication information and/or the third indication information. In this way, when the terminal device switches from the anchor cell, that is, the current cell, to a non-anchor cell (switching target cell), it can quickly determine whether the synchronization signal block is valid, or quickly determine whether the CFRA resource corresponding to the synchronization signal block is valid, improving It improves the efficiency of data transmission and meets the low-latency requirements of terminal equipment data transmission.
  • Figure 2 is a schematic flowchart of a data transmission method provided by an embodiment of the present application. See Figure 2, the method can include:
  • S201 Determine whether the synchronization signal block is valid and/or determine whether the CFRA resource corresponding to the synchronization signal block is valid according to the first indication information, the second indication information and/or the third indication information.
  • the network device may instruct the terminal device to determine whether the synchronization signal block is valid by sending indication information or indication signaling. and / or,
  • the network device can configure the corresponding relationship between the CFRA resource and the synchronization signal block (beam), and send indication information or indication signaling to instruct the terminal device to determine whether the CFRA resource corresponding to the synchronization signal block is valid.
  • the indication information may include first indication information, second indication information and/or third indication information.
  • the specific combination may be first indication information, second indication information and third indication information, or may be first indication information and third indication information.
  • the second indication information may also be first indication information and third indication information.
  • the synchronization signal block may refer to a beam, and the synchronization signal block corresponds to the CFRA resource. If there is no special indication of "a synchronization signal block", “multiple synchronization signal blocks”, “a group of synchronization signal blocks” or "a synchronization signal block group", the synchronization signal block in this application can generally refer to a synchronization signal block. Or a set of sync signal blocks.
  • the CFRA resource may have a corresponding relationship with one synchronization signal block (beam).
  • the synchronization signal block is multiple synchronization signal blocks
  • the CFRA resource may have a corresponding relationship with multiple synchronization signal blocks (beams).
  • the network device can dynamically indicate the synchronization signal block through indication signaling, so that the terminal device determines the synchronization signal block is it effective.
  • the terminal device determines whether the synchronization signal block is valid based on the indication information.
  • the network device can configure the corresponding relationship between CFRA resources and synchronization signal blocks (beams), and dynamically indicate the synchronization signal blocks through indication signaling, so that the terminal equipment determines whether the CFRA resources corresponding to the synchronization signal blocks are valid.
  • the terminal equipment determines whether the CFRA resource corresponding to the synchronization signal block is valid according to the corresponding relationship between the CFRA resource and the synchronization signal block (beam) and the indication information.
  • the terminal device when the terminal device switches from the anchor cell, that is, the current cell, to a non-anchor cell (switching target cell), it can quickly indicate the synchronization signal block and its corresponding CFRA resource (including the correspondence between CFRA resources and synchronization signal block). , improves the efficiency of data transmission and meets the low-latency requirements of terminal equipment data transmission.
  • handover is equivalent to conversion, which is a handover process in which a terminal device switches from an anchor cell to a non-anchor cell.
  • a CFRA resource includes a set of synchronization signal blocks, a set of PRACH opportunities (Occasion) and a set of random access preambles (Preamble).
  • one CFRA resource includes a set of PRACH opportunities and a set of random access preambles, and the set of PRACHs and a set of random access preambles correspond to a set of synchronization signal blocks.
  • the PRACH opportunity is the time-frequency resource of PRACH.
  • the PRACH mask can indicate one of the PRACH opportunities. PRACH timing may also be called PRACH mask.
  • the PRACH timing can be represented by the PRACH Mask Index (PRACH Mask Index)
  • the preamble can be represented by the Random Access Preamble Index (Random Access Preamble Index)
  • the synchronization signal block can be represented by the synchronization signal block index.
  • PRACH Mask Index PRACH Mask Index
  • Random Access Preamble Index Random Access Preamble Index
  • synchronization signal block index a group here includes both “one” and “multiple”.
  • a CFRA resource can represent one CFRA resource or multiple CFRA resources.
  • a random access preamble within a CFRA resource corresponds to a synchronization signal block.
  • One PRACH opportunity in one CFRA resource corresponds to a group of synchronization signal blocks.
  • the synchronization signal block is also included in the configuration signaling of the CFRA resource, so "corresponding" in the synchronization signal block corresponding to the CFRA resource can also be expressed as “includes”, which is not limited in this embodiment of the present application.
  • the terminal device determines whether the synchronization signal block is valid according to the indication information. and / or,
  • the terminal equipment determines whether the CFRA resource corresponding to the synchronization signal block is valid according to the corresponding relationship between the CFRA resource and the synchronization signal block (beam) and the indication information.
  • the terminal device when the terminal device switches from the anchor cell, that is, the current cell, to the non-anchor cell (switching target cell), it can quickly determine the synchronization signal block and/or quickly determine the CFRA resource corresponding to the synchronization signal group, which improves The efficiency of data transmission meets the low latency requirements of terminal equipment data transmission.
  • the first indication information indicates the synchronization signal block index (Index) or number (Number) Or identification (Identity, ID).
  • the first indication information may indicate the index, number, or identification of the synchronization signal block.
  • a synchronization signal block index, code, or identification can directly represent a synchronization signal block.
  • the signaling design is simple and the setting is convenient.
  • the synchronization signal block index or number or identification is represented by 6 bits.
  • the synchronization signal block index or number or identification is represented by 3 bits.
  • the synchronization signal block index or number or identification is represented by 6 bits.
  • the synchronization signal block index or number or identification can be represented by 6 bits. Specific to different frequency ranges, for frequency range 1, the synchronization signal block index or number or identification can be represented by 3 bits.
  • a cell supports up to 8 synchronization signal blocks (ie, 8 synchronization signal block beams). In this way, 3 bits are used to represent the index, number or identification of up to 8 synchronization signal blocks, which can save bit overhead.
  • the synchronization signal block index or number or identification can be represented by 6 bits, which can represent up to 64 synchronization signal blocks.
  • a cell supports up to 64 synchronization signal blocks (i.e. 64 synchronization signal block beams). ).
  • the first indication information is a bitmap, where one bit in the bitmap corresponds to one synchronization signal block or multiple synchronization signal blocks.
  • the synchronization signal block in addition to being represented by a synchronization signal block index, number or identifier, can also be represented by a bitmap.
  • One bit in the bitmap corresponds to one synchronization signal block or multiple synchronization signal blocks.
  • the bitmap method saves bit overhead compared to the index, number, or identification method.
  • a bit having a first preset value indicates that the synchronization signal block corresponding to the bit is valid, and a bit having a second preset value indicates that the synchronization signal block corresponding to the bit is invalid.
  • the first preset value can be 1 and the second preset value can be 0. Of course, they can also be interchanged, that is, the first preset value is 0 and the second preset value is 1.
  • the implementation of this application This example does not limit this.
  • “Available” is equivalent to “Valid”, “Effective”, and “Applicable”.
  • Valid may mean that the synchronization signal block corresponds to the CFRA resource.
  • a bit in the bitmap is the first preset value, it means that the synchronization signal block corresponding to the bit belongs to the CFRA resource; when a bit in the bitmap is the second preset value, it means that the synchronization signal block corresponding to the bit does not belong to the CFRA resource.
  • CFRA resources The synchronization signal block corresponding to one bit may be one synchronization signal block or multiple synchronization signal blocks, which is not limited in the embodiment of the present application.
  • the random access preamble corresponding to the synchronization signal block is valid.
  • one synchronization signal block can correspond to one random access preamble.
  • the random access preamble corresponding to the synchronization signal block is configured by higher layer parameters.
  • the random access preamble may be referred to as a preamble for short. If the synchronization signal block is valid, the random access preamble corresponding to the corresponding synchronization signal block is also valid, and the random access preamble is configured by high-layer parameters. In this way, the network device can configure the corresponding relationship between the random access preamble and the synchronization signal block, and dynamically indicate whether the random access preamble corresponding to the synchronization signal block is valid through the first indication information, so that the terminal device can determine the synchronization signal block corresponding to the corresponding relationship. Whether the random access preamble is valid.
  • the terminal device determines whether the random access preamble corresponding to the synchronization signal block is valid based on the corresponding relationship between the random access preamble and the synchronization signal block and the first indication information. In this way, when the terminal device switches from the anchor cell, that is, the current cell, to a non-anchor cell (switching target cell), it can quickly determine whether the random access preamble corresponding to the synchronization signal block is valid, which improves the efficiency of data transmission and satisfies the needs of the terminal. Low latency requirements for device data transmission.
  • the PRACH opportunity corresponding to the synchronization signal block is valid.
  • a group (multiple or one) of synchronization signal blocks can correspond to a PRACH opportunity, so that the base station can configure a group of synchronization signal blocks to correspond to a PRACH opportunity to reduce signaling overhead.
  • the introduction of the synchronization signal block corresponding to PRACH timing is to solve the problem that when a synchronization signal block corresponds to multiple PRACH timings (up to 8), the base station can indicate which PRACH timing to reduce the base station's blind detection of multiple PRACH timings. complexity.
  • the PRACH timing corresponding to the synchronization signal block is configured by high-layer parameters.
  • the network device can configure the corresponding relationship between the PRACH timing and the synchronization signal block, and dynamically indicate whether the PRACH timing corresponding to the synchronization signal block is valid through the first indication information, so that the terminal device determines whether the PRACH timing corresponding to the synchronization signal block is valid. .
  • the terminal equipment determines whether the PRACH opportunity corresponding to the synchronization signal block is valid according to the corresponding relationship between the PRACH opportunity and the synchronization signal block and the first indication information.
  • the terminal device when the terminal device switches from the anchor cell, that is, the current cell, to the non-anchor cell (switching target cell), it can quickly determine whether the PRACH timing corresponding to the synchronization signal block is valid, which improves the efficiency of data transmission and meets the needs of the terminal device data Low transmission latency requirements.
  • the bitmap is 8 bits.
  • a bit having a first preset value indicates that the synchronization signal block corresponding to the bit is valid
  • a bit having a second preset value indicates that the synchronization signal block corresponding to the bit is invalid
  • the bitmap is 16 bits.
  • a bit is a first preset value, it indicates that a group of synchronization signal blocks corresponding to the bit is valid, and if a bit is a second preset value, it indicates that a group of synchronization signal blocks corresponding to the bit is valid. it is invalid.
  • the bitmap can be 8 bits. Since a cell in FR1 supports up to 8 synchronization signal blocks (ie, 8 synchronization signal block beams), using 8 bits can save bit overhead.
  • a bit having a first preset value indicates that the synchronization signal block corresponding to the bit is valid
  • a bit having a second preset value indicates that the synchronization signal block corresponding to the bit is invalid.
  • the bitmap can be 16 bits.
  • a cell supports up to 64 synchronization signal blocks (i.e., 64 synchronization signal block beams), in order to save signaling, these 64 synchronization signal blocks can be expressed in groups, that is, divided into 8 groups of synchronization signal blocks. There are 8 possible sync blocks within each group of sync blocks.
  • 8 bits represent the bitmap of a group of synchronization signal blocks, and 1 bit indicates whether the group of synchronization signal blocks belongs to CFRA resources.
  • the bit When the bit is the first preset value, it indicates that the bitmap The corresponding group of synchronization signal blocks is valid, and the second preset value of the bit indicates that the corresponding group of synchronization signal blocks is invalid; the other 8 bits represent the bitmap in each group of synchronization signal blocks, of which 1 bit Indicates whether the synchronization signal block in each group of synchronization signal blocks belongs to CFRA resources.
  • the second indication information is a random access preamble index
  • the random access preamble index represents an index of a random access preamble corresponding to the synchronization signal block.
  • CFRA resources correspond to a group of synchronization signal blocks
  • the second indication information (random access preamble index) indicates the random access preamble corresponding to this group of synchronization signal blocks, that is, CFRA resources share a random access preamble.
  • the third indication information is a PRACH mask index (PRACH Mask Index), and the PRACH mask index represents the index of the PRACH opportunity corresponding to the synchronization signal block.
  • PRACH Mask Index PRACH Mask Index
  • the third indication information (PRACH mask index) identifies the index of the PRACH opportunity corresponding to this group of synchronization signal blocks, that is, the CFRA resource shares one PRACH opportunity.
  • PRACH mask index identifies the index of the PRACH opportunity corresponding to this group of synchronization signal blocks, that is, the CFRA resource shares one PRACH opportunity.
  • the terminal device When a synchronization signal block corresponds to a PRACH opportunity or multiple synchronization signal blocks correspond to a PRACH opportunity, the terminal device does not need the information "the synchronization signal block corresponds to the PRACH opportunity". Even if the base station indicates it, the terminal device can ignore it and can further Improve synchronization efficiency.
  • the first indication information, the second indication information or the third indication information is carried by a PDCCH order (Order).
  • the PDCCH is mainly responsible for the transmission of various downlink control information (Downlink Control Information, DCI).
  • DCI Downlink Control Information
  • the PDCCH command is a signaling in which the DCI field is escaped to carry other information when the resource allocation field in DCI format 1_0 is invalid (all 0s or all 1s). It can be used to carry information about CFRA resources and their corresponding synchronization signal blocks. , which can reduce signaling overhead.
  • the first indication information, the second indication information or the third indication information is carried by a Media Access Control-Control Entity (MAC-CE).
  • MAC-CE Media Access Control-Control Entity
  • MAC-CE is layer 2 control signaling, which can be carried by PDSCH, and has HARQ feedback to ensure reliability.
  • FIG 3 is a schematic flowchart of another data transmission method provided by an embodiment of the present application. As shown in Figure 3, the method may include:
  • the first method is that in the embodiment shown in Figure 2, the network device uses indication information to dynamically indicate the corresponding relationship between CFRA and beams.
  • the indication information is physical layer signaling, the speed is faster, but the indication information carries a smaller number of bits, and the number of CFRA resources and beams that can be indicated is smaller.
  • the network device uses RRC-based CFRA resource configuration in combination with the first indication information.
  • Information requiring more bit overhead is carried using RRC-based CFRA resource configuration, and the first indication information dynamically "selects" a part of the RRC-based CFRA resource configuration.
  • This method not only keeps the network conversion speed fast, but also ensures that the number of CFRA resources and beams is sufficient.
  • the signaling in this method is more complex than the first method.
  • the network device can configure one or more CFRA resources (a group of CFRA resources) through high-level parameters (such as RRC signaling).
  • high-level parameters such as RRC signaling.
  • the terminal device determines whether one or more CFRA resources are valid according to the first indication information.
  • network equipment can configure one or more CFRA resources through high-level parameters, avoiding excessive physical layer signaling overhead. It can also improve the data transmission efficiency of terminal equipment and meet the delay requirements of terminal equipment data transmission.
  • the first indication information is X bits, where X is a positive integer; or,
  • the first indication information is X bits, where X and Y are positive integers.
  • the terminal device can determine whether one or more CFRA resources are valid based on X bits in the first indication information.
  • the first indication information can indicate the synchronization signal corresponding to the CFRA resource. piece.
  • Y bits can be introduced as functional switches.
  • the terminal device can first determine Y ratios Whether the special value is the first preset value, if so, determine whether it is valid to obtain one or more CFRA resources based on the X bits in the first indication information. Otherwise, do not proceed to the next step.
  • Y bits have the switching function of this function, making the control of network equipment flexible. Since Y bits function as switches, there can be only 1 bit.
  • the first preset value can be 0 or 1. In this way, the flexibility of network device control can be improved.
  • configuring CFRA resources based on high-level parameters is a method in which the network device combines the CFRA resource configuration configured with high-level parameters and the first indication information.
  • a set of CFRA resources can be configured based on high-level parameters. (large overhead), and the first indication information dynamically indicates that one or more of the configured CFRA resources are valid. In this way, the conversion speed is fast, the data transmission efficiency is high, and the CFRA resources and The number of beams is sufficient.
  • the first indication information represents an index, number, or identification, where a CFRA resource corresponding to the index, number, or identification is valid.
  • the first indication information may represent an index, number or identification, so that the X bits in the first indication information may represent at most 2 to the power of When only indicating one CFRA resource, using an index, number or identification method saves bits. For example, when a group of CFRA resources has 4 CFRA resources, 2 bits can be used to indicate one CFRA resource.
  • the first indication information represents a bitmap, where one bit in the bitmap corresponds to one CFRA resource.
  • the first indication information may represent a bitmap.
  • X bits in the first information may represent at most X CFRA resources (a group of CFRA resources).
  • one indication may indicate multiple CFRA resources
  • using bitmaps saves bits. For example, when a group of CFRA resources has 4 CFRA resources, 4 bits can be used to indicate multiple CFRA resources.
  • the bit having a first preset value indicates that the bit corresponding to a CFRA resource is valid
  • the bit having a second preset value indicates that the bit corresponding to a CFRA resource is invalid
  • a bit in the bitmap when a bit in the bitmap is a first preset value, it can indicate that a CFRA resource is valid; when a bit is a second preset value, it indicates that the bit corresponding to a CFRA resource is invalid.
  • all CFRA resources configured with high-level parameters can be represented in the bitmap, and whether a certain CFRA resource is valid is dynamically controlled by using the bit value as the first preset value or the second preset value.
  • the first indication information is carried by a PDCCH order.
  • the PDCCH command is used to carry information about whether the CFRA resource is valid, that is, the first indication information, which can reduce signaling overhead.
  • X bits are reserved bits in the PDCCH order.
  • PDCCH order has 12 reserved bits, and X bits among these 12 bits can be used for indication, which reduces signaling overhead.
  • the X bits are bits in existing fields in the PDCCH order.
  • the X bits may also be bits of existing fields in the PDCCH command. That is, by escaping the existing fields, the reserved bits may not be used, and the reserved bits may be reserved for future system upgrades.
  • Y bits are reserved bits in the PDCCH order.
  • PDCCH order has 12 reserved bits. Y bits among these 12 bits can be used to indicate, which reduces signaling overhead, and the reserved bits are used as function switches. When it indicates that this function is turned off, PDCCH The original function of order can be activated.
  • the first indication information is carried by MAC-CE.
  • the first indication information can also be carried by MAC-CE.
  • MAC-CE is layer 2 control signaling, which can be carried by PDSCH, and has HARQ feedback to ensure reliability.
  • Figure 4 shows a schematic flowchart of another data transmission method according to an embodiment of the present application. As shown in Figure 4, the method includes:
  • the network device sends the first instruction information, the second instruction information and/or the third instruction information to the terminal device, and the terminal device determines based on the first instruction information, the second instruction information and/or the third instruction information.
  • the terminal device switches from the anchor cell, that is, the current cell, to a non-anchor cell (switching target cell)
  • it can quickly determine whether the synchronization signal block is valid, or quickly determine whether the CFRA resource corresponding to the synchronization signal block is valid, improving It improves the efficiency of data transmission and meets the low-latency requirements of terminal equipment data transmission.
  • the first indication information indicates a synchronization signal block index or number or identification.
  • the synchronization signal block index or number or identification is represented by 6 bits.
  • the synchronization signal block index or number or identification is represented by 3 bits.
  • the synchronization signal block index or number or identification is represented by 6 bits.
  • the first indication information is a bitmap, where one bit in the bitmap corresponds to a same step signal block or multiple synchronization signal blocks.
  • a bit having a first preset value indicates that the synchronization signal block corresponding to the bit is valid, and a bit having a second preset value indicates that the synchronization signal block corresponding to the bit is invalid.
  • the random access preamble corresponding to the synchronization signal block is valid if the synchronization signal block is valid.
  • the random access preamble corresponding to the synchronization signal block is configured by high-layer parameters.
  • the PRACH opportunity corresponding to the synchronization signal block is valid if the synchronization signal block is valid.
  • the PRACH timing corresponding to the synchronization signal block is configured by high-layer parameters.
  • the bitmap is 8 bits.
  • a bit having a first preset value indicates that the synchronization signal block corresponding to the bit is valid
  • a bit having a second preset value indicates that the synchronization signal block corresponding to the bit is invalid
  • the bitmap is 16 bits.
  • a bit is a first preset value, it indicates that a group of synchronization signal blocks corresponding to the bit is valid, and if a bit is a second preset value, it indicates that a group of synchronization signal blocks corresponding to the bit is valid. it is invalid.
  • the second indication information is a random access preamble index
  • the random access preamble index represents an index of a random access preamble corresponding to the synchronization signal block.
  • the third indication information is a PRACH mask index
  • the PRACH mask index represents an index of a PRACH opportunity corresponding to the synchronization signal block.
  • the first indication information, the second indication information and/or the third indication information are carried by a PDCCH order or MAC-CE.
  • network device side corresponds to the terminal device side, and the implementation principles and beneficial effects are similar to those on the terminal device side, and will not be described again here.
  • Figure 5 shows a schematic flowchart of another data transmission method according to an embodiment of the present application. As shown in Figure 5, the method includes:
  • S501 Send first indication information.
  • the first indication information is used to determine whether one or more CFRA resources are valid.
  • the network device sends first indication information to the terminal device, and the terminal device can determine whether one or more CFRA resources are valid based on the first indication information.
  • the network device can configure one or more CFRA resources through high-level parameters, avoiding excessive physical layer signaling overhead.
  • the terminal device can quickly and efficiently establish and use the corresponding relationship between CFRA resources and beams based on the first indication information. Improved the efficiency of data transmission of terminal equipment, It meets the low-latency requirements of terminal equipment data transmission.
  • the first indication information is X bits, where X is a positive integer; or,
  • the first indication information is X bits, where X and Y are positive integers.
  • the first indication information represents an index, number, or identification, where a CFRA resource corresponding to the index, number, or identification is valid.
  • the first indication information represents a bitmap, where one bit in the bitmap corresponds to one CFRA resource.
  • the bit having a first preset value indicates that the bit corresponding to a CFRA resource is valid
  • the bit having a second preset value indicates that the bit corresponding to a CFRA resource is invalid
  • the first indication information is carried by a PDCCH order.
  • X bits are reserved bits in the PDCCH order.
  • the X bits are bits in existing fields in the PDCCH order.
  • Y bits are reserved bits in the PDCCH order.
  • the first indication information is carried by MAC-CE.
  • network device side corresponds to the terminal device side, and the implementation principles and beneficial effects are similar to those on the terminal device side, and will not be described again here.
  • FIG. 6 is a schematic structural diagram of a data transmission device provided by an embodiment of the present application.
  • the data transmission device 60 may include:
  • Determining module 601 is configured to determine whether the synchronization signal block is valid and/or whether the CFRA resource corresponding to the synchronization signal block is valid according to the first indication information, the second indication information and/or the third indication information.
  • the data transmission device 60 provided in the embodiment of the present application can execute the technical solution shown in the above method embodiment. Its implementation principles and beneficial effects are similar and will not be described again here.
  • the first indication information indicates a synchronization signal block index or number or identification.
  • the synchronization signal block index or number or identification is represented by 6 bits.
  • the synchronization signal block index or number or identification is represented by 3 bits.
  • the synchronization signal block index or number or identification is represented by 6 bits.
  • the first indication information is a bitmap, where one bit in the bitmap corresponds to one synchronization signal block or multiple synchronization signal blocks.
  • the bit being the first preset value indicates that the synchronization signal block corresponding to the bit is valid
  • the bit being the second preset value indicates that the synchronization signal block corresponding to the bit is invalid.
  • the random access preamble corresponding to the synchronization signal block is valid if the synchronization signal block is valid.
  • the random access preamble corresponding to the synchronization signal block is configured by high-layer parameters.
  • the PRACH opportunity corresponding to the synchronization signal block is valid if the synchronization signal block is valid.
  • the PRACH timing corresponding to the synchronization signal block is configured by high-layer parameters.
  • the bitmap is 8 bits.
  • a bit having a first preset value indicates that the synchronization signal block corresponding to the bit is valid
  • a bit having a second preset value indicates that the synchronization signal block corresponding to the bit is invalid
  • the bitmap is 16 bits.
  • a bit is a first preset value, it indicates that a group of synchronization signal blocks corresponding to the bit is valid, and if a bit is a second preset value, it indicates that a group of synchronization signal blocks corresponding to the bit is valid. it is invalid.
  • the second indication information is a random access preamble index
  • the random access preamble index represents an index of a random access preamble corresponding to the synchronization signal block.
  • the third indication information is a PRACH mask index
  • the PRACH mask index represents an index of a PRACH opportunity corresponding to the synchronization signal block.
  • the first indication information, the second indication information and/or the third indication information are carried by a PDCCH order or MAC-CE.
  • the data transmission device 60 provided in the embodiment of the present application can execute the technical solution shown in the above method embodiment. Its implementation principles and beneficial effects are similar and will not be described again here.
  • the data transmission device 60 may specifically be a chip, a chip module, etc., which is not limited in the embodiments of the present application.
  • FIG. 7 is a schematic structural diagram of another data transmission device provided by an embodiment of the present application.
  • the data transmission device 70 may include:
  • Determining module 701 is configured to determine whether one or more CFRA resources are valid according to the first indication information.
  • the data transmission device 70 provided in the embodiment of the present application can execute the technical solution shown in the above method embodiment. Its implementation principles and beneficial effects are similar and will not be described again here.
  • the data transmission device 70 may specifically be a chip, a chip module, etc., which is not limited in the embodiments of the present application.
  • the first indication information is X bits, where X is a positive integer; or,
  • the first indication information is X bits, where X and Y are positive integers.
  • the first indication information represents an index or number or identification, where the index or number A CFRA resource corresponding to the number or identifier is valid.
  • the first indication information represents a bitmap, where one bit in the bitmap corresponds to one CFRA resource.
  • the bit having a first preset value indicates that the bit corresponding to a CFRA resource is valid
  • the bit having a second preset value indicates that the bit corresponding to a CFRA resource is invalid
  • the first indication information is carried by a PDCCH order.
  • X bits are reserved bits in the PDCCH order.
  • the X bits are bits in existing fields in the PDCCH order.
  • Y bits are reserved bits in the PDCCH order.
  • the first indication information is carried by MAC-CE.
  • FIG 8 is a schematic structural diagram of another data transmission device provided by an embodiment of the present application.
  • the data transmission device 80 may include:
  • the sending module 801 is used to send the first indication information, the second indication information and/or the third indication information; the first indication information, the second indication information and/or the third indication information is used to determine whether the synchronization signal block is valid and /Or whether the CFRA resource corresponding to the synchronization signal block is valid.
  • the data transmission device 80 provided in the embodiment of the present application can execute the technical solution shown in the above method embodiment. Its implementation principles and beneficial effects are similar and will not be described again here.
  • the data transmission device 80 may specifically be a chip, a chip module, etc., which is not limited in the embodiments of the present application.
  • the first indication information indicates a synchronization signal block index or number or identification.
  • the synchronization signal block index or number or identification is represented by 6 bits.
  • the synchronization signal block index or number or identification is represented by 3 bits.
  • the synchronization signal block index or number or identification is represented by 6 bits.
  • the first indication information is a bitmap, where one bit in the bitmap corresponds to one synchronization signal block or multiple synchronization signal blocks.
  • a bit having a first preset value indicates that the synchronization signal block corresponding to the bit is valid, and a bit having a second preset value indicates that the synchronization signal block corresponding to the bit is invalid.
  • the random access preamble corresponding to the synchronization signal block is valid if the synchronization signal block is valid.
  • the random access preamble corresponding to the synchronization signal block is configured by high-layer parameters.
  • the PRACH opportunity corresponding to the synchronization signal block is valid if the synchronization signal block is valid.
  • the PRACH timing corresponding to the synchronization signal block is configured by high-layer parameters.
  • the bitmap is 8 bits.
  • a bit having a first preset value indicates that the synchronization signal block corresponding to the bit is valid
  • a bit having a second preset value indicates that the synchronization signal block corresponding to the bit is invalid
  • the bitmap is 16 bits.
  • a bit is a first preset value, it indicates that a group of synchronization signal blocks corresponding to the bit is valid, and if a bit is a second preset value, it indicates that a group of synchronization signal blocks corresponding to the bit is valid. it is invalid.
  • the second indication information is a random access preamble index
  • the random access preamble index represents an index of a random access preamble corresponding to the synchronization signal block.
  • the third indication information is a PRACH mask index
  • the PRACH mask index represents an index of a PRACH opportunity corresponding to the synchronization signal block.
  • the first indication information, the second indication information and/or the third indication information are carried by a PDCCH order or MAC-CE.
  • FIG 9 is a schematic structural diagram of another data transmission device provided by an embodiment of the present application.
  • the data transmission device 90 may include:
  • Sending module 901 is configured to send first indication information, and the first indication information is used to determine whether one or more CFRA resources are valid.
  • the data transmission device 90 provided in the embodiment of the present application can execute the technical solution shown in the above method embodiment. Its implementation principles and beneficial effects are similar and will not be described again here.
  • the data transmission device 90 may specifically be a chip, a chip module, etc., which is not limited in the embodiments of the present application.
  • the first indication information is X bits, where X is a positive integer; or,
  • the first indication information is X bits, where X and Y are positive integers.
  • the first indication information represents an index, number, or identification, where a CFRA resource corresponding to the index, number, or identification is valid.
  • the first indication information represents a bitmap, where one bit in the bitmap corresponds to one CFRA resource.
  • the bit having a first preset value indicates that the bit corresponding to a CFRA resource is valid
  • the bit having a second preset value indicates that the bit corresponding to a CFRA resource is invalid
  • the first indication information is carried by a PDCCH order.
  • X bits are reserved bits in the PDCCH order.
  • the X bits are bits in existing fields in the PDCCH order.
  • Y bits are reserved bits in the PDCCH order.
  • the first indication information is carried by MAC-CE.
  • FIG 10 is a schematic structural diagram of a data transmission device provided by an embodiment of the present application.
  • the data transmission device 100 may include: a memory 1001 and a processor 1002.
  • the memory 1001 and the processor 1002 are connected to each other through a bus 1003.
  • Memory 1001 is used to store program instructions
  • the processor 1002 is used to execute program instructions stored in the memory to implement the data transmission method shown in the above embodiment.
  • the data transmission device shown in the embodiment of Figure 10 can implement the technical solution shown in the above method embodiment.
  • the implementation principles and beneficial effects are similar and will not be described again here.
  • Embodiments of the present application provide a computer-readable storage medium.
  • Computer-executable instructions are stored in the computer-readable storage medium. When the computer-executable instructions are executed by a processor, they are used to implement the above data transmission method.
  • Embodiments of the present application may also provide a computer program product, including a computer program.
  • a computer program When the computer program is executed by a processor, the above data transmission method can be implemented.
  • An embodiment of the present application provides a chip.
  • a computer program is stored on the chip.
  • the computer program is executed by the chip, the above data transmission method is implemented.
  • An embodiment of the present application also provides a chip module.
  • a computer program is stored on the chip module.
  • the computer program is executed by the chip module, the above data transmission method is implemented.
  • processors mentioned in the embodiments of this application may be a central processing unit (CPU), or other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), or dedicated integrated processors.
  • Circuit Application Specific Integrated Circuit, ASIC
  • off-the-shelf programmable gate array Field Programmable Gate Array, FPGA
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM static Random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • Synch Link DRAM SLDRAM
  • Direct Ram Bus RAM Direct Ram Bus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • the memories described herein are intended to include, but are not limited to, these and any other suitable types of memories.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • Embodiments of the present application are described with reference to flowcharts and/or block diagrams of methods, devices (systems), and computer program products according to embodiments of the present application. It will be understood that each process and/or block in the flowchart illustrations and/or block diagrams, and combinations of processes and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processing unit of a general purpose computer, special purpose computer, embedded processor or other programmable data processing device to produce a machine, such that the instructions executed by the processing unit of the computer or other programmable data processing device produce a A device for realizing the functions specified in one process or multiple processes of the flowchart and/or one block or multiple blocks of the block diagram.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.
  • each device and product described in the above embodiments may be software modules/units or hardware modules/units, or they may be partly software modules/units and partly hardware modules/units.
  • Various devices and products can be applied to or integrated into chips, chip modules or terminal equipment.
  • each module/chip contained therein can be implemented in the form of hardware such as circuits, or at least some of the modules/units can be implemented in the form of software programs. This software program runs on The processor is integrated inside the chip, and the remaining modules/units can be implemented using circuits and other hardware methods.
  • the term “including” and its variations may refer to non-limiting inclusion; the term “or” and its variations may refer to “and/or”.
  • the terms “first”, “second”, etc. in this application are used to distinguish similar objects and are not necessarily used to describe a specific order or sequence.
  • “plurality” means two or more.
  • “And/or” describes the relationship between related objects, indicating that there can be three relationships. For example, A and/or B can mean: A exists alone, A and B exist simultaneously, and B exists alone. The character “/" generally indicates that the related objects are in an "or” relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种数据传输方法、装置以及设备,该方法包括:终端设备根据第一指示信息、第二指示信息和/或第三指示信息,确定同步信号块是否有效,或者确定同步信号块对应的CFRA资源是否有效。这样,终端设备在从锚点小区即当前小区切换至非锚点小区(转换目标小区)时,能够快速地确定同步信号块是否有效,或者快速地确定同步信号块对应的CFRA资源是否有效,提高了数据传输的效率,满足了终端设备数据传输的低时延要求。

Description

数据传输方法、装置以及设备
本申请要求于2022年08月12日提交中国专利局、申请号为202210970235.8、申请名称为“数据传输方法、装置以及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种数据传输方法、装置以及设备。
背景技术
随着通信技术的不断发展,网络节能逐渐成为运营商和设备商比较关心的问题。网络节能能够降低运营成本,实现绿色环保。在第五代移动通信技术(5th Generation Mobile Communication Technology,5G)中,由于频谱资源较多,在网络负载较低时,部分频带对应的载波或者小区可以尽量关闭,并且按需打开,来实现网络节能的目的。其中,在网络负载较低时可以关闭的小区可以称为非锚点小区,不关闭的小区可以称为锚点小区。
当锚点小区和非锚点小区属于不同的基站时,在终端设备转换到非锚点小区上收发数据之前,终端设备需要通过随机接入(Random Access,RA)资源与非锚点小区建立起上行同步。但由于基站不同,不同基站的信号之间存在一定的时间偏差,造成终端设备的转换过程时延较高,网络切换时数据传输同步的效率较低。
发明内容
本申请提供一种数据传输方法、装置以及设备,以降低终端设备从锚点小区转换到非锚点小区的时延,提高网络切换时数据传输同步的效率。
第一方面,本申请实施例提供一种数据传输方法,包括:
根据第一指示信息、第二指示信息和/或第三指示信息,确定同步信号块是否有效和/或所述同步信号块对应的CFRA资源是否有效。
在一种可能的实施方式中,所述第一指示信息指示同步信号块索引或编号或标识。
在一种可能的实施方式中,所述同步信号块索引或编号或标识由6个比特表示。
在一种可能的实施方式中,对于频率范围1,所述同步信号块索引或编号或标识由3个比特表示。
在一种可能的实施方式中,对于频率范围2,所述同步信号块索引或编号或标识由6个比特表示。
在一种可能的实施方式中,所述第一指示信息为位图,其中所述位图中的一个比特对应一个同步信号块或多个同步信号块。
在一种可能的实施方式中,所述比特为第一预设值表示所述比特对应的同步信号块是有效的,所述比特为第二预设值表示所述比特对应的同步信号块是无效的。
在一种可能的实施方式中,若所述同步信号块是有效的,则所述同步信号块对应的随机接入前导是有效的。
在一种可能的实施方式中,所述同步信号块对应的随机接入前导由高层参数配置。
在一种可能的实施方式中,若所述同步信号块是有效的,则所述同步信号块对应的PRACH时机是有效的。
在一种可能的实施方式中,所述同步信号块对应的PRACH时机由高层参数配置。
在一种可能的实施方式中,对于频率范围1,所述位图为8比特。
在一种可能的实施方式中,对于频率范围1,所述比特为第一预设值表示所述比特对应的同步信号块是有效的,所述比特为第二预设值表示所述比特对应的同步信号块是无效的。
在一种可能的实施方式中,对于频率范围2,所述位图为16比特。
在一种可能的实施方式中,对于频率范围2,所述比特为第一预设值表示所述比特对应的一组同步信号块是有效的,所述比特为第二预设值表示所述比特对应的一组同步信号块是无效的。
在一种可能的实施方式中,所述第二指示信息为随机接入前导索引,所述随机接入前导索引表示所述同步信号块对应的随机接入前导的索引。
在一种可能的实施方式中,所述第三指示信息为PRACH掩码索引,所述PRACH掩码索引表示所述同步信号块对应的PRACH时机的索引。
在一种可能的实施方式中,所述第一指示信息、所述第二指示信息和/或所述第三指示信息由PDCCH命令或者MAC-CE携带。
第二方面,本申请实施例提供另一种数据传输方法,包括:
根据第一指示信息,确定一个或多个CFRA资源是否有效。
在一种可能的实施方式中,所述第一指示信息为X个比特,其中X为正整数;或者,
当Y个比特为第一预设值时,所述第一指示信息为X个比特,其中X、Y为正整数。
在一种可能的实施方式中,所述第一指示信息表示一个索引或编号或标识,其中所述索引或编号或标识对应的一个CFRA资源有效。
在一种可能的实施方式中,所述第一指示信息表示一个位图,其中位图中的一个比特对应一个CFRA资源。
在一种可能的实施方式中,所述比特为第一预设值表示所述比特对应一个CFRA资源有效,所述比特为第二预设值表示所述比特对应一个CFRA资源无效。
在一种可能的实施方式中,所述第一指示信息由PDCCH命令携带。
在一种可能的实施方式中,所述X个比特为PDCCH命令中的保留比特。
在一种可能的实施方式中,所述X个比特为PDCCH命令中的现有字段中的比特。
在一种可能的实施方式中,所述Y个比特为PDCCH命令中的保留比特。
在一种可能的实施方式中,所述第一指示信息由MAC-CE携带。
第三方面,本申请实施例提供一种数据传输方法,包括:
发送第一指示信息、第二指示信息和/或第三指示信息;所述第一指示信息、第二指示信息和/或第三指示信息,用于确定同步信号块是否有效和/或所述同步信号块对应的CFRA资源是否有效。
第四方面,本申请实施例提供一种数据传输方法,包括:
发送第一指示信息,所述第一指示信息用于确定一个或多个CFRA资源是否有效。
第五方面,本申请实施例提供一种数据传输装置,包括:
确定模块,用于根据第一指示信息、第二指示信息和/或第三指示信息,确定同步信号块是否有效和/或所述同步信号块对应的CFRA资源是否有效。
在一种可能的实施方式中,所述第一指示信息指示同步信号块索引或编号或标识。
在一种可能的实施方式中,所述同步信号块索引或编号或标识由6个比特表示。
在一种可能的实施方式中,对于频率范围1,所述同步信号块索引或编号或标识由3个比特表示。
在一种可能的实施方式中,对于频率范围2,所述同步信号块索引或编号或标识由6个比特表示。
在一种可能的实施方式中,所述第一指示信息为位图,其中所述位图中的一个比特对应一个同步信号块或多个同步信号块。
在一种可能的实施方式中,所述比特为第一预设值表示所述比特对应的同步信号块是有效的,所述比特为第二预设值表示所述比特对应的同步信号块是无效的。
在一种可能的实施方式中,若所述同步信号块是有效的,则所述同步信号块对应的随机接入前导是有效的。
在一种可能的实施方式中,所述同步信号块对应的随机接入前导由高层参数配置。
在一种可能的实施方式中,若所述同步信号块是有效的,则所述同步信号块对应的PRACH时机是有效的。
在一种可能的实施方式中,所述同步信号块对应的PRACH时机由高层参数配置。
在一种可能的实施方式中,对于频率范围1,所述位图为8比特。
在一种可能的实施方式中,对于频率范围1,所述比特为第一预设值表示所述比特对应的同步信号块是有效的,所述比特为第二预设值表示所述比特对应的同步信号块是无效的。
在一种可能的实施方式中,对于频率范围2,所述位图为16比特。
在一种可能的实施方式中,对于频率范围2,所述比特为第一预设值表示所述比特对应的一组同步信号块是有效的,所述比特为第二预设值表示所述比特对应的一组同步信号块是无效的。
在一种可能的实施方式中,所述第二指示信息为随机接入前导索引,所述随机接入前导索引表示所述同步信号块对应的随机接入前导的索引。
在一种可能的实施方式中,所述第三指示信息为PRACH掩码索引,所述PRACH掩码索引表示所述同步信号块对应的PRACH时机的索引。
在一种可能的实施方式中,所述第一指示信息、所述第二指示信息和/或所述第三指示信息由PDCCH命令或者MAC-CE携带。
第六方面,本申请实施例提供一种数据传输装置,包括:
确定模块,用于根据第一指示信息,确定一个或多个CFRA资源是否有效。
在一种可能的实施方式中,所述第一指示信息为X个比特,其中X为正整数;或者,
当Y个比特为第一预设值时,所述第一指示信息为X个比特,其中X、Y为正整数。
在一种可能的实施方式中,所述第一指示信息表示一个索引或编号或标识,其中所述索引或编号或标识对应的一个CFRA资源有效。
在一种可能的实施方式中,所述第一指示信息表示一个位图,其中位图中的一个比特对应一个CFRA资源。
在一种可能的实施方式中,所述比特为第一预设值表示所述比特对应一个CFRA资源有效,所述比特为第二预设值表示所述比特对应一个CFRA资源无效。
在一种可能的实施方式中,所述第一指示信息由PDCCH命令携带。
在一种可能的实施方式中,所述X个比特为PDCCH命令中的保留比特。
在一种可能的实施方式中,所述X个比特为PDCCH命令中的现有字段中的比特。
在一种可能的实施方式中,所述Y个比特为PDCCH命令中的保留比特。
在一种可能的实施方式中,所述第一指示信息由MAC-CE携带。
第七方面,本申请实施例提供一种数据传输装置,包括:
发送模块,用于发送第一指示信息、第二指示信息和/或第三指示信息;所述第一指示信息、第二指示信息和/或第三指示信息,用于确定同步信号块是否有效和/或所述同步信号块对应的CFRA资源是否有效。
在一种可能的实施方式中,所述第一指示信息指示同步信号块索引或编号或标识。
在一种可能的实施方式中,所述同步信号块索引或编号或标识由6个比特表示。
在一种可能的实施方式中,对于频率范围1,所述同步信号块索引或编号或标识由3个比特表示。
在一种可能的实施方式中,对于频率范围2,所述同步信号块索引或编号或标识由6个比特表示。
在一种可能的实施方式中,所述第一指示信息为位图,其中所述位图中的一个比特对应一个同步信号块或多个同步信号块。
在一种可能的实施方式中,所述比特为第一预设值表示所述比特对应的同步信号块是有效的,所述比特为第二预设值表示所述比特对应的同步信号块是无效的。
在一种可能的实施方式中,若所述同步信号块是有效的,则所述同步信号块对应的随机接入前导是有效的。
在一种可能的实施方式中,所述同步信号块对应的随机接入前导由高层参数配置。
在一种可能的实施方式中,若所述同步信号块是有效的,则所述同步信号块对应的PRACH时机是有效的。
在一种可能的实施方式中,所述同步信号块对应的PRACH时机由高层参数配置。
在一种可能的实施方式中,对于频率范围1,所述位图为8比特。
在一种可能的实施方式中,对于频率范围1,所述比特为第一预设值表示所述比特对应的同步信号块是有效的,所述比特为第二预设值表示所述比特对应的同步信号块是无效的。
在一种可能的实施方式中,对于频率范围2,所述位图为16比特。
在一种可能的实施方式中,对于频率范围2,所述比特为第一预设值表示所述比特对应的一组同步信号块是有效的,所述比特为第二预设值表示所述比特对应的一组同步信号 块是无效的。
在一种可能的实施方式中,所述第二指示信息为随机接入前导索引,所述随机接入前导索引表示所述同步信号块对应的随机接入前导的索引。
在一种可能的实施方式中,所述第三指示信息为PRACH掩码索引,所述PRACH掩码索引表示所述同步信号块对应的PRACH时机的索引。
在一种可能的实施方式中,所述第一指示信息、所述第二指示信息和/或所述第三指示信息由PDCCH命令或者MAC-CE携带。
第八方面,本申请实施例提供一种数据传输装置,包括:
发送模块,用于发送第一指示信息,所述第一指示信息用于确定一个或多个CFRA资源是否有效。
在一种可能的实施方式中,所述第一指示信息为X个比特,其中X为正整数;或者,
当Y个比特为第一预设值时,所述第一指示信息为X个比特,其中X、Y为正整数。
在一种可能的实施方式中,所述第一指示信息表示一个索引或编号或标识,其中所述索引或编号或标识对应的一个CFRA资源有效。
在一种可能的实施方式中,所述第一指示信息表示一个位图,其中位图中的一个比特对应一个CFRA资源。
在一种可能的实施方式中,所述比特为第一预设值表示所述比特对应一个CFRA资源有效,所述比特为第二预设值表示所述比特对应一个CFRA资源无效。
在一种可能的实施方式中,所述第一指示信息由PDCCH命令携带。
在一种可能的实施方式中,所述X个比特为PDCCH命令中的保留比特。
在一种可能的实施方式中,所述X个比特为PDCCH命令中的现有字段中的比特。
在一种可能的实施方式中,所述Y个比特为PDCCH命令中的保留比特。
在一种可能的实施方式中,所述第一指示信息由MAC-CE携带。
第九方面,本申请实施例提供一种数据传输设备,包括:处理器、存储器;
所述存储器存储计算机执行指令;
所述处理器执行所述存储器存储的计算机执行指令,实现如第一方面至第四方面任一项所述的方法。
第六方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被执行时用于实现第一方面至第四方面任一项所述的方法。
第七方面,本申请实施例提供一种计算机程序产品,包括计算机程序,所述计算机程 序被执行时实现第一方面至第四方面任一项所述的方法。
第八方面,本申请实施例提供一种芯片,所述芯片上存储有计算机程序,所述计算机程序被所述芯片执行时,实现如第一方面至第四方面任一项所述的方法。
第九方面,本申请实施例提供一种芯片模组,所述芯片模组上存储有计算机程序,所述计算机程序被所述芯片模组执行时,实现如第一方面至第四方面任一项所述的方法。
本申请实施例提供的数据传输方法、装置以及设备,终端设备根据第一指示信息、第二指示信息和/或第三指示信息,确定同步信号块是否有效,或者确定同步信号块对应的CFRA资源是否有效。这样,终端设备在从锚点小区即当前小区切换至非锚点小区(转换目标小区)时,能够快速地确定同步信号块是否有效,或者快速地确定同步信号块对应的CFRA资源是否有效,提高了数据传输的效率,满足了终端设备数据传输的低时延要求。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的实施例。
图1为本申请实施例提供的应用场景示意图;
图2为本申请实施例提供的一种数据传输方法的流程示意图;
图3为本申请实施例提供的另一种数据传输方法的流程示意图;
图4为本申请实施例提供的另一种数据传输方法的流程示意图;
图5为本申请实施例提供的另一种数据传输方法的流程示意图;
图6为本申请实施例提供的一种数据传输装置的结构示意图;
图7为本申请实施例提供的另一种数据传输装置的结构示意图;
图8为本申请实施例提供的另一种数据传输装置的结构示意图;
图9为本申请实施例提供的另一种数据传输装置的结构示意图;
图10为本申请实施例提供的一种数据传输设备的结构示意图。
具体实施方式
为使本领域技术人员更好地理解本申请的技术方案,下面结合附图和实施例对本申请作进一步详细描述。应当理解的是,此处描述的具体实施例和附图仅仅用于解释本申请, 而并非对本申请的限定。
图1为本申请实施例提供的应用场景示意图。请参见图1,包括终端设备101、网络设备102。
其中,终端设备101也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。终端设备101具体可以是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。具体可以为:手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑(如笔记本电脑、掌上电脑等)、移动互联网设备(Mobile Internet Device,MID)、虚拟现实(Virtual Reality,VR)设备、增强现实(Augmented Reality,AR)设备、工业控制(Industrial Control)中的无线终端、无人驾驶(Self Driving)中的无线终端、远程医疗(Remote Medical)中的无线终端、智能电网(Smart Grid)中的无线终端、运输安全(Transportation Safety)中的无线终端、智慧城市(Smart City)中的无线终端、智慧家庭(Smart Home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,第五代移动通信技术5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等。
其中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,终端设备101还可以是物联网(Internet of Things,IoT)系统中的终端设备。IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。IoT技术可以通过例如窄带(Narrow Band,NB)技术,做到海量连接,深度覆盖,终端省电。
此外,终端设备101还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据(部分终端设备)、接收网络设备的控制信息与下行数据,并发送电磁波, 向网络设备传输上行数据。本申请实施例对于终端设备101的具体种类或者名称不作限定。
网络设备102可以是任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(Radio Network Controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home Evolved NodeB,或Home Node B,HNB)、基带单元(Baseband Unit,BBU),无线保真(Wireless Fidelity,WiFi)系统中的接入点(Access Point,AP)、无线中继节点、无线回传节点、传输点(Transmission Point,TP)或者发送接收点(Transmission and Reception Point,TRP)等。还可以为5G,如,新空口(New Radio,NR)系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(Distributed Unit,DU)等。
在一些部署中,gNB可以包括集中式单元(Centralized Unit,CU)和DU。gNB还可以包括有源天线单元(Active Antenna Unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(Radio Resource Control,RRC),分组数据汇聚层协议(Packet Data Convergence Protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(Radio Link Control,RLC)层、介质接入控制(Medium Access Control,MAC)层和物理(Physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(Radio Access Network,RAN)中的网络设备,也可以将CU划分为核心网(Core Network,CN)中的网络设备。本申请实施例对于网络设备102的具体种类或者名称也不做限定,后文中所描述的基站是网络设备102常见的一种,本领域技术人员也可以基于实际需求将基站替换为其他网络设备。
在相关技术中,网络节能(Network Energy Savings,Network Power Saving)是运营商和设备商比较关心的问题。网络节能能够降低运营成本,实现绿色低碳环保。在5G网络中,由于频谱资源较多,如1GHz、2GHz、4GHz、6GHz和26GHz等频带(Band)。因而在网络负载较低的时候,一些频带(例如4GHz、6GHz或26GHz等)对应的载波(Carrier)或小区(Cell)可以尽量关闭,并按需打开,来达到网络节能的目的。也就是说,网络负载较低时,一些载波或小区不需要承载数据。一般来说,通过某些载波的开关可以达到网络 节能的目的,但这一般是需要在网络负载较低时才能实现。
但是,目前这些载波或小区仍然需要发送测量参考信号(同步信号块、跟踪参考信号等),以支持用户设备的接入和移动性。这样的载波或小区可以称为非锚点载波(Non-anchor Carrier)或非锚点小区(Non-anchor Cell),或者称为第二类载波或第二类小区。相对地,不关闭的载波或小区可以称为锚点载波(Anchor Carrier)或锚点小区(Non-anchor Cell),或者称为第一类载波或第一类小区。
应理解,在本申请实施例中,可以用服务小区(Serving Cell)或源小区(Source Cell)或当前小区(Current Cell)表示锚点小区,可以用非服务小区(Non-serving Cell)或目标小区(Target Cell)或候选小区(Candidate Cell)表示非锚点小区。因为对于给定的终端设备,终端设备转换前的服务小区或源小区或当前小区可以是上述不关闭的小区或载波,因此锚点小区可以是服务小区或源小区或当前小区。而作为转换目标的非服务小区或目标小区或候选小区可以是上述按需打开的小区或载波,因此非锚点小区可以是非服务小区或目标小区或候选小区。
需要说明,锚点小区和非锚点小区可以属于同一个基站,也可以属于不同基站。一个基站可以同时配置非锚点小区和锚点小区。在网络负载较低的情况下,终端设备可以在锚点小区上完成业务数据的传输,基站可以关闭非锚点小区达到网络节能的目的。在网络负载较高的情况下,非锚点小区可以打开,即终端设备可以通过非锚点小区接入网络,达到支持数据负载均衡的目的。当然,锚点小区和非锚点小区还可以分别配置在不同的基站上。
在载波聚合(Carrier Aggregation,CA)或者双连接(Dual Connection,DC)中,有以下两种方式理解锚点小区和非锚点小区:
方式一:锚点小区是主载波(Primary Carrier)或主载波成分(Primary Carrier Component)或主小区(Primary Cell,PCell)或主辅小区(Primary Secondary Cell,PSCell),即主要承载控制信令的载波或小区。非锚点小区通常是辅载波(Secondary Carrier)或辅载波成分(Secondary Carrier Component)或辅小区(Secondary Cell,SCell),即主要承载数据的载波或小区。此时,非锚点小区的开关可以理解为辅小区的添加、删除或修改。这种方式下,锚点小区和非锚点小区之间的回传网络(Backhaul)的要求较高,但非锚点小区的开关即辅小区的添加、删除或修改更容易实现。
方式二:锚点小区和非锚点小区都是主载波或主载波成分或主小区或主辅小区,即主要承载控制信令的载波或小区。此时非锚点小区的打开可以为锚点小区到非锚点小区的转换(Switch),非锚点小区的关闭可以理解为非锚点小区到锚点小区的转换。这种方式下,锚点小区和非锚点小区之间的回传网络(Backhaul)的要求较低,但非锚点小区的开关实 现复杂度较高。
在非CA/DC中,类似于CA/DC中方式二,非锚点小区的打开可以理解为锚点小区到非锚点小区的转换,非锚点小区的关闭可以为非锚点小区到锚点小区的转换。此时,锚点小区和非锚点小区之间的回传网络的要求较低,但非锚点小区的开关实现复杂度较高。
同步信号块可以用于用户设备进行时频同步、获取主信息块(Master Information Block,MIB)和系统信息块(System Information Block,SIB)。对于非锚点载波或小区,它们仅仅作为数据负载均衡的用途,不需要承载主信息块MIB,因此可以简化同步信号块(突发)。相反地,锚点载波或小区需要承载MIB和SIB,以支持小区搜索和系统信息传输。非锚点载波或小区可能仍然需要支持寻呼、随机接入和无线资源(Radio Resource Management,RRM)测量等,因此仍然需要承载同步信号块,以支持用户设备进行时频同步(时频跟踪,Time/Frequency Tracking)和RRM测量。
一般来说,非锚点小区是受网络控制的,并且是按需打开或关闭的。当非锚点小区和锚点小区属于同一个基站时(如CA),该基站可以按需打开或关闭非锚点小区;当非锚点小区和锚点小区不属于同一个基站时,锚点小区基站可以通过基站间信令让非锚点小区基站按需打开或关闭非锚点小区,或者,非锚点小区基站根据核心网命令或信号/负荷需求,按需打开或关闭非锚点小区。
一般来说,非锚点小区的按需打开流程可以分为以下两种情形:
情形一:非锚点小区打开的时机可以在终端设备完成随机接入之前。这样可以尽快让终端设备使用非锚点小区的资源(令非锚点小区提供更多的负载均衡),并且减小连接态进行切换(Handover,HO)时的信令开销。随机接入过程一般分为四个步骤,分别对应随机接入信道的四个信道或消息。随机接入信道包括物理随机接入信道(Physical Random Access Channel,PRACH)也称消息1(Message 1,Msg1),随机接入响应(Random Access Response,RAR)也称消息2(Message 2,Msg2),消息3(Message 3,Msg3),消息4(Message 4,Msg4),等等。非锚点小区打开的时机可以是终端设备发起随机接入之前,即发送PRACH前。这样,终端设备可以在非锚点小区上发起随机接入或发起随机接入信道(Random Access Channel,RACH)过程,使用非锚点小区上的物理随机接入信道PRACH资源。非锚点小区打开的时机也可以是终端设备发起随机接入之后完成随机接入之前,如发送消息3之前。这样,终端设备可以在锚点小区上发起随机接入后,尽快地转移到非锚点小区上。
情形二:非锚点小区打开的时机可以在终端设备完成随机接入之后,即完成初始接入之后或进入连接态之后。这样可以让非锚点小区仅仅服务于连接态终端设备,增加非锚点 小区的关闭时间,增加非锚点小区的节能增益。
以下介绍本申请所涉及的主要相关技术:
1、R15标准中的同步信号块
在Rel-15(Release 15)NR中同步信号、广播信道是以同步信号块的方式发送的,并且引入了扫波束的功能。主同步信号(Primary Synchronization Signal,PSS),辅同步信号(Secondary Synchronization Signal,SSS)和物理广播信道(Physical Broadcast Channel,PBCH)在SS/PBCH block(同步信号块)中。每个同步信号块可以看作是扫波束(Beam Sweeping)过程中的一个波束(模拟域)的资源。多个同步信号块组成一个同步信号突发(SS-Burst)。同步信号突发可以看作是包含了多个波束的相对集中的一块资源。多个同步信号突发组成一个同步信号突发集合(SS-Burst-Set)。同步信号块在不同波束上重复发送,是一个扫波束的过程,通过扫波束的训练,用户设备可以感知在哪个波束上收到的信号最强。
L个同步信号块在一个5ms窗口内的时域位置是固定的。L个同步信号块的索引在时域位置上是连续排列的,从0到L-1。因此一个同步信号块在这个5ms窗口内的发射时刻是固定的,索引也是固定的。
2、Rel-15 NR中的剩余最小系统信息
Rel-15 NR中的剩余最小系统信息((Remaining Minimum System Information,RMSI或者SIB1))相当于长期演进系统(Long-Term Evolution,LTE)中的SIB1,其包括除了MIB外的主要的系统信息。RMSI也可以称为SIB1。RMSI是在物理下行共享信道(Physical Downlink Shared Channel,PDSCH)里承载的,而PDSCH是通过物理下行控制信道(Physical Downlink Control Channel,PDCCH)调度的。承载RMSI的PDSCH一般被称为RMSI PDSCH,调度RMSI PDSCH的PDCCH一般被称为RMSI PDCCH。
一般地,搜索空间集合(Search Space Set)包含PDCCH的监测时机、搜索空间类型等性质。搜索空间集合一般会绑定控制资源集合(Control Resource Set,CORESET),并且,控制资源集合中包含PDCCH的频域资源和持续时间等性质。
RMSI PDCCH所在的Search Space Set一般被称为Type0-PDCCH Search Space Set。一般地,由MIB配置的,或者切换等情形下由RRC配置的Type0-PDCCH Search Space Set被称为Search Space 0(或Search Space Set 0),所绑定的CORESET被称为CORESET 0。除了RMSI PDCCH的Search Space Set,其他的公共搜索空间或公共搜索空间集合,如OSI PDCCH的Search Space Set(Type0A-PDCCH Search space set)、RAR PDCCH的Search Space Set(Type1-PDCCH Search Space Set)、Paging PDCCH的Search Space Set(Type2- PDCCH Search Space Set)等,可以默认地与Search Space Set 0相同。一般地,上述公共搜索空间或公共搜索空间集合都可以被重新配置。
RMSI PDCCH监测时机与同步信号块有对应关系。终端设备根据RMSI PDCCH监测时机表格获得此对应关系。在初始接入过程中,终端设备搜索到某个同步信号块,终端设备根据PBCH指示的表格的行索引,确定该同步信号块对应的RMSI PDCCH的时域位置(起始符号索引或第一个符号索引),就能够检测出RMSI PDCCH,并根据RMSI PDCCH调度来接收和解码RMSI PDSCH。
3、终端设备通过同步信号块获得定时信息
终端设备需要通过同步信号块获得定时信息。定时信息也可以称为帧定时(Frame Timing)信息,或半帧定时(Half-frame Timing)信息,一般用于指示所检测到的同步信号对应的帧或半帧的定时。终端设备获得帧定时信息后,再通过系统帧号(System Frame Number,SFN),来获得同步信号块对应小区的完整定时信息。终端设备获得半帧定时信息后,再通过半帧指示(前半帧还是后半帧)和SFN,来获得同步信号块对应小区的完整定时信息。
一般来说,终端设备通过获取同步信号块索引来获得10毫秒内定时信息。在授权频谱中,同步信号块索引跟同步信号块的L个候选位置有关。当L=4,同步信号块索引的低二比特(2 Least Significant Bit,2 LSBs)在物理广播信道解调参考信号(PBCH-DMRS)来承载;当L>4,同步信号块索引的低三比特(3 LSBs)在PBCH-DMRS来承载;当L=64,同步信号块索引的高三比特(3 Most Significant Bit,3 MSBs)在PBCH负荷(Payload)或MIB来承载。
4、RMSI PDSCH的时域资源分配和速率匹配
在Rel-15 NR中,终端设备解码RMSI PDCCH,获取时域资源分配的多个比特,根据这些比特查找预定义的表格来获得RMSI PDSCH的起始符号索引(或编号)和符号长度(或持续时间,Duration)。
在Rel-15 NR中,终端设备在初始接入阶段,终端设备假设RMSI PDSCH不对同步信号块进行速率匹配。RMSI可以指示同步信号块的是否发送的信息,当终端设备获得RMSI后,可以对RMSI指示的同步信号块进行速率匹配。
5、寻呼(Paging)PDCCH的监测时机
在Rel-15 NR中,对于给定的终端设备,其对应的寻呼时机(Paging Occasion,PO)PO由多个Paging PDCCH监测时机组成。在一个PO内,Paging PDCCH可以跟同步信号块一样通过扫波束的方式发送。在一个PO内,Paging PDCCH监测时机和同步信号块一一 对应,即在一个PO内,第K个Paging PDCCH监测时机对应第K个同步信号块。
6、LTE Rel-13 eMTC的初始接入
在LTE Rel-13的eMTC中,增强机器类通信(LTE Machine to Machine或者LTE enhanced MTC,eMTC)终端设备是窄带(Narrowband)终端设备。eMTC终端设备的带宽约为1MHz,可以覆盖6个物理资源块PRBs(Physical Resource Block,PRB)。因此,eMTC终端设备在初始接入时,可以检测出LTE的PSS/SSS/PBCH。由于PBCH内携带的主信息块MIB,因此eMTC终端设备可以解码出LTE的MIB。并且,LTE的MIB有10个保留的比特(Spare Bits),这些保留的比特的一部分可以用来承载调度eMTC的SIB1(SIB1-BR,不同于LTE SIB1)的信息。默认地,携带eMTC SIB1的PDSCH的频域资源也在6个PRBs内,因此eMTC终端设备也可以接收携带eMTC SIB1的PDSCH。这样的话,eMTC终端设备解码出LTE的MIB后,获取其中的eMTC SIB1信息,进而接入网络。
7、NR的初始接入
在NR中,一般地,终端设备是支持100MHz带宽的终端设备。终端设备在初始接入时,盲检同步信号块中的PSS/SSS/PBCH,获得PBCH内携带的MIB和时间索引信息。终端设备通过MIB中的信息获得调度SIB1的CORESET(可以称为CORESET0)及其Search Space Set(可以称为Search Space Set 0)的配置,进而,终端设备可以监测调度承载SIB1的PDSCH的Type0-PDCCH,并解码出SIB1。由于PBCH内通过表格来设置CORESET0的带宽,所以CORESET0的最大带宽在协议中被隐式地定义了。进一步来说,协议规定承载SIB1的PDSCH的频域资源在CORESET0的带宽(PRBs)内,因此承载SIB1的PDSCH的最大带宽在协议中也被隐式地定义了。实际上,在空闲态,终端设备工作在初始激活下行BWP(Initial Active DL BWP)内,该初始激活下行BWP的频域位置默认地与CORESET0的频域位置相同(非默认地,初始激活下行BWP的频域位置可以通过信令修改为覆盖CORESET0的频域位置),因此初始激活下行BWP的最大带宽在协议中被隐式地定义了。
在相关技术中,当锚点小区和非锚点小区属于不同的基站时(例如前述的CA/DC中的方式二或非CA/DC),在转换到非锚点小区上收发数据之前,终端设备需要通过随机接入RA资源与非锚点小区建立起上行同步。来自(下行)或者发送至(上行)锚点小区基站和非锚点小区的基站的信号之间具有时间偏差,该时间偏差主要包含锚点小区和非锚点小区中心频点不同导致的传播(Propagation)时间不同、两个基站之间本身具有时间偏差和/或终端设备到两个基站的距离不同导致的传播时间不同。在连接态中,终端设备可以使用免竞争的随机接入(Contention Free Random Access,CFRA)资源,以提高于非锚点小区建立起上行同步的效率。因此,终端设备需要知道非锚点小区的哪一些波束有效,也需 要知道哪一些波束对应的CFRA资源有效。一般来说,CFRA资源和波束有对应性,终端设备需要根据波束确定所使用CFRA资源,并且使用该下行波束对应的上行波束上的CFRA资源进行上行同步。因此,如何快速高效地确定同步信号块是否有效,或者同步信号块对应的CFRA资源对应是否有效,以满足从锚点小区转换到非锚点小区的低时延要求、提高数据传输效率,是一个亟待解决的问题。
在本申请实施例中,终端设备根据第一指示信息、第二指示信息和/或第三指示信息,确定同步信号块是否有效,或者确定同步信号块对应的CFRA资源是否有效。这样,终端设备在从锚点小区即当前小区切换至非锚点小区(转换目标小区)时,能够快速地确定同步信号块是否有效,或者快速地确定同步信号块对应的CFRA资源是否有效,提高了数据传输的效率,满足了终端设备数据传输的低时延要求。
下面,通过具体实施例对本申请所示的方案进行详细说明。需要说明的是,下面几个实施例可以独立存在,也可以相互结合,对于相同或相似的内容,在不同的实施例中不再重复说明。
下面,结合图2所示的实施例,对数据传输的过程进行说明。
图2为本申请实施例提供的一种数据传输方法的流程示意图。请参见图2,该方法可以包括:
S201、根据第一指示信息、第二指示信息和/或第三指示信息,确定同步信号块是否有效和/或确定同步信号块对应的CFRA资源是否有效。
本申请实施例中,网络设备可以通过发送指示信息或者指示信令,指示终端设备确定同步信号块是否有效。和/或,
网络设备可以通过配置CFRA资源和同步信号块(波束)的对应关系,发送指示信息或者指示信令,指示终端设备确定同步信号块对应的CFRA资源是否有效。
指示信息可以包括第一指示信息、第二指示信息和/或第三指示信息,具体组合方式可以为第一指示信息、第二指示信息和第三指示信息,也可以为第一指示信息和第二指示信息,还可以为第一指示信息和第三指示信息。
同步信号块可以是指波束,该同步信号块与CFRA资源相对应。没有特别注明“一个同步信号块”、“多个同步信号块”、“一组同步信号块”或“一个同步信号块组”的话,本申请中的同步信号块可以泛指一个同步信号块或一组同步信号块。同步信号块为一个同步信号块时,CFRA资源可以与一个同步信号块(波束)具有对应关系。同步信号块为多个同步信号块时,CFRA资源可以与多个同步信号块(波束)具有对应关系。
网络设备可以通过指示信令来动态地指示同步信号块,以令终端设备确定同步信号块 是否有效。终端设备根据指示信息,确定同步信号块是否有效。
网络设备可以配置CFRA资源和同步信号块(波束)的对应关系,并通过指示信令来动态地指示同步信号块,以令终端设备确定同步信号块对应的CFRA资源是否有效。终端设备根据CFRA资源和同步信号块(波束)的对应关系,根据指示信息,确定同步信号块对应的CFRA资源是否有效。
这样,终端设备在从锚点小区即当前小区切换至非锚点小区(转换目标小区)时,能够快速地指示同步信号块及其对应的CFRA资源(包括CFRA资源和同步信号块的对应关系),提高了数据传输的效率,满足终端设备数据传输的低时延要求。
应理解,本申请实施例中除特殊说明“切换(Handover)”之外,切换都等价于转换,针对终端设备从锚点小区切换至非锚点小区的切换过程。
具体的,一个CFRA资源包括一组同步信号块、一组PRACH时机(Occasion)和一组随机接入前导(Preamble)。或者,一个CFRA资源包括一组PRACH时机和一组随机接入前导,并且该一组PRACH和一组随机接入前导对应一组同步信号块。PRACH时机为PRACH的时频资源。当一个同步信号块对应多个PRACH时机,PRACH掩码可以指示其中一个PRACH时机。PRACH时机也可以称为PRACH掩码。一般来说,PRACH时机可以用PRACH掩码索引(PRACH Mask Index)来表示,前导可以用随机接入前导索引(Random Access Preamble Index)来表示,同步信号块可以用同步信号块索引来表示。应理解,这里的“一组”既包括“一个”又包括“多个”。若无特殊说明,CFRA资源可以表示一个CFRA资源或多个CFRA资源。
一般来说,一个CFRA资源内的一个随机接入前导对应一个同步信号块。一个CFRA资源内的一个PRACH时机对应一组同步信号块。
可选的,同步信号块也包含在CFRA资源的配置信令中,所以CFRA资源对应的同步信号块中的“对应”也可以表示为“包含”,本申请实施例对此不作限定。
本申请实施例提供的数据传输方法,终端设备根据指示信息,确定同步信号块是否有效。和/或,
终端设备根据CFRA资源和同步信号块(波束)的对应关系,根据指示信息,确定同步信号块对应的CFRA资源是否有效。
这样,终端设备在从锚点小区即当前小区切换至非锚点小区(转换目标小区)时,能够快速地确定同步信号块,和/或快速地确定同步信号组对应的CFRA资源对应,提高了数据传输的效率,满足终端设备数据传输的低时延要求。
在一种可能的实施方式中,第一指示信息指示同步信号块索引(Index)或编号(Number) 或标识(Identity,ID)。
本申请实施例中,第一指示信息可以指示同步信号块的索引或编号或标识,这样,一个同步信号块索引或编码或标识可以直接地表示一个同步信号块,信令设计简单,设置方便。
在一种可能的实施方式中,同步信号块索引或编号或标识由6个比特表示。
在一种可能的实施方式中,对于频率范围1(Frequency Range 1,FR1),同步信号块索引或编号或标识由3个比特表示。
在一种可能的实施方式中,对于频率范围2(Frequency Range 2,FR2),同步信号块索引或编号或标识由6个比特表示。
本申请实施例中,同步信号块索引或编号或标识可以由6个比特表示。具体到不同的频率范围时,对于频率范围1,同步信号块索引或编号或标识可以由3个比特表示。对于FR1,一个小区最多支持8个同步信号块(即8个同步信号块波束),这样用3个比特来表示最多8个同步信号块的索引或编号或标识,可以节省比特开销。对于频率范围2,同步信号块索引或编号或标识可以由6个比特表示,这样可以表示最多64个同步信号块,对于FR2,一个小区最多支持64个同步信号块(即64个同步信号块波束)。
在一种可能的实施方式中,第一指示信息为位图(Bitmap),其中位图中的一个比特对应一个同步信号块或多个同步信号块。
本申请实施例中,同步信号块除了用同步信号块索引或编号或标识来表示之外,还可以用位图来表示。位图中的一个比特对应一个同步信号块或多个同步信号块。当同步信号块个数较多时,位图的方式比索引或编号或标识方式要节省比特开销。
在一种可能的实施方式中,比特为第一预设值表示比特对应的同步信号块是有效的,比特为第二预设值表示比特对应的同步信号块是无效的。
本申请实施例中,第一预设值可以为1,第二预设值可以为0,当然也可以对换,即第一预设值为0,第二预设值为1,本申请实施例对此不作限定。“有效的”(Available)等价于“合法的”(Valid)、“生效的”(Effective)、“可用的”(Applicable)。有效的可以是指为同步信号块对应于CFRA资源。当位图中的一个比特为第一预设值,表示该比特对应的同步信号块属于CFRA资源;当位图中的一个比特为第二预设值,表示该比特对应的同步信号块不属于CFRA资源。一个比特对应的同步信号块可以为一个同步信号块,也可以为多个同步信号块,本申请实施例对此不作限定。
这样,所有可能的同步信号块可以被配置到该位图中,通过比特具体为第一预设值或第二预设值来动态控制同步信号块是否属于CFRA资源内的同步信号块(该CFRA资源可 能只对应一部分波束,即一部分同步信号块)。
在一种可能的实施方式中,若同步信号块是有效的,则同步信号块对应的随机接入前导是有效的。一般来说,一个同步信号块可以对应一个随机接入前导。
在一种可能的实施方式中,同步信号块对应的随机接入前导由高层参数配置。
本申请实施例中,随机接入前导可以简称为前导。若同步信号块是有效的,相应的同步信号块对应的随机接入前导也是有效的,并且该随机接入前导由高层参数配置。这样,网络设备可以配置随机接入前导和同步信号块的对应关系,并通过第一指示信息来动态地指示同步信号块对应的随机接入前导是否有效,以令终端设备确定同步信号块对应的随机接入前导是否有效。终端设备根据随机接入前导和同步信号块的对应关系,根据第一指示信息,确定同步信号块对应的随机接入前导是否有效。这样,终端设备在从锚点小区即当前小区切换至非锚点小区(转换目标小区)时,能够快速地确定同步信号块对应的随机接入前导是否有效,提高了数据传输的效率,满足终端设备数据传输的低时延要求。
在一种可能的实施方式中,若同步信号块是有效的,则同步信号块对应的PRACH时机是有效的。一般来说,一组(多个或一个)同步信号块可以对应一个PRACH时机,这样基站可以配置一组同步信号块对应一个PRACH时机,减少信令开销。需要说明的是,同步信号块对应PRACH时机的引入是为了解决当一个同步信号块对应多个PRACH时机(可以最多8个)时,基站可以指示哪一个PRACH时机从而降低基站盲检多个PRACH时机的复杂度。
在一种可能的实施方式中,同步信号块对应的PRACH时机由高层参数配置。
本申请实施例中,若同步信号块是有效的,相应的同步信号块对应的PRACH时机也是有效的,并且该PRACH时机由高层参数配置。这样,网络设备可以配置PRACH时机和同步信号块的对应关系,并通过第一指示信息来动态地指示同步信号块对应的PRACH时机是否有效,以令终端设备确定同步信号块对应的PRACH时机是否有效。终端设备根据PRACH时机和同步信号块的对应关系,根据第一指示信息,确定同步信号块对应的PRACH时机是否有效。这样,终端设备在从锚点小区即当前小区切换至非锚点小区(转换目标小区)时,能够快速地确定同步信号块对应的PRACH时机是否有效,提高了数据传输的效率,满足终端设备数据传输的低时延要求。
在一种可能的实施方式中,对于频率范围1,位图为8比特。
在一种可能的实施方式中,对于频率范围1,比特为第一预设值表示比特对应的同步信号块是有效的,比特为第二预设值表示比特对应的同步信号块是无效的。
在一种可能的实施方式中,对于频率范围2,位图为16比特。
在一种可能的实施方式中,对于频率范围2,比特为第一预设值表示比特对应的一组同步信号块是有效的,比特为第二预设值表示比特对应的一组同步信号块是无效的。
本申请实施例中,对于频率范围1即FR1,位图可以为8比特,由于在FR1中一个小区最多支持8个同步信号块(即8个同步信号块波束),这样用8个比特可以节省比特开销。在频率范围1中,比特为第一预设值表示比特对应的同步信号块是有效的,比特为第二预设值表示比特对应的同步信号块是无效的。
对于频率范围2即FR2,位图可以为16比特。对于FR2,一个小区虽然最多支持64个同步信号块(即64个同步信号块波束),但是为了节省信令可以通过分组的方式来表示这64个同步信号块,即分成8组同步信号块,在每组同步信号块内有8个可能的同步信号块。其中,在位图的16个比特中,8比特来表示一组同步信号块的位图,其中1个比特表示该一组同步信号块是否属于CFRA资源,当比特为第一预设值表示比特对应的一组同步信号块是有效的,比特为第二预设值表示比特对应的一组同步信号块是无效的;另外8比特来表示各组同步信号块内的位图,其中1个比特表示各组同步信号块内该同步信号块是否属于CFRA资源。
在一种可能的实施方式中,第二指示信息为随机接入前导索引,随机接入前导索引表示同步信号块对应的随机接入前导的索引。
本申请实施例中,CFRA资源对应一组同步信号块,第二指示信息(随机接入前导索引)表示这一组同步信号块对应的随机接入前导,即CFRA资源共享一个随机接入前导。
在一种可能的实施方式中,第三指示信息为PRACH掩码索引(PRACH Mask Index),PRACH掩码索引表示同步信号块对应的PRACH时机的索引。
本申请实施例中,虽然CFRA资源对应一组同步信号块,第三指示信息(PRACH掩码索引)标识这一组同步信号块对应PRACH时机的索引,即CFRA资源共享一个PRACH时机。同步信号块对应PRACH时机的引入是为了解决当一个同步信号块对应多个PRACH时机(可以最多8个)时,基站可以指示哪一个PRACH时机从而降低基站盲检多个PRACH时机的复杂度。当一个同步信号块对应一个PRACH时机或者多个同步信号块对应一个PRACH时机时,终端设备并不需要“同步信号块对应PRACH时机”这个信息,即使基站指示了,终端设备也可以忽略,能够进一步提高同步效率。
在一种可能的实施方式中,第一指示信息、第二指示信息或第三指示信息由PDCCH命令(Order)携带。
本申请实施例中,PDCCH主要是负责下行链路各种控制信息(Downlink Control Information,DCI)的传输。根据控制信息内容的不同,DCI会有不同的格式(format)。 PDCCH命令是DCI format 1_0中资源分配字段无效(全0或全1)时,DCI字段转义来承载其他信息的一种信令,可以用它来携带CFRA资源及其对应的同步信号块的信息,可以减少信令开销。
在一种可能的实施方式中,第一指示信息、第二指示信息或第三指示信息由媒体接入控制-控制实体(Media Access Control-Control Entity,MAC-CE)携带。
本申请实施例中,MAC-CE是层二的控制信令,它可以由PDSCH承载,并且有HARQ反馈保证可靠性。
以下结合图3所示的实施例,对数据传输的过程进行说明。
图3为本申请实施例提供的另一种数据传输方法的流程示意图。如图3所示出的,该方法可以包括:
S301、根据第一指示信息,确定一个或多个CFRA资源是否有效。
本申请实施例中提供了两种网络接入的方式,第一种方式是在上述图2所示的实施例中,网络设备使用指示信息来动态指示CFRA和波束的对应关系。这种方式下,由于指示信息是物理层信令,速度较快,但指示信息携带的比特数较少,能指示的CFRA资源和波束数量较少。
在第二种方式中,网络设备结合使用基于RRC的CFRA资源配置和第一指示信息。需要较多比特开销的信息采用基于RRC的CFRA资源配置来携带,而第一指示信息来动态“选择”一部分的基于RRC的CFRA资源配置。这种方式下,既保持了网络转换速度较快,又保证了CFRA资源和波束数量足够多,但这种方式信令较第一种方式更复杂。
本步骤中,网络设备可以通过高层参数(如RRC信令)配置一个或多个CFRA资源(一组CFRA资源),采用高层参数可以避免物理层信令开销过大。
本申请实施例提供的数据传输方法,终端设备根据第一指示信息,确定一个或多个CFRA资源是否有效。这样,网络设备可以通过高层参数配置一个或多个CFRA资源,避免了物理层信令开销过大,同时也能够提高终端设备数据传输效率,满足了终端设备数据传输的时延需求。
在一种可能的实施方式中,第一指示信息为X个比特,其中X为正整数;或者,
当Y个比特为第一预设值时,第一指示信息为X个比特,其中X、Y为正整数。
本申请实施例中,在一种方式中,终端设备根据第一指示信息中的X个比特,可以确定一个或者多个CFRA资源是否有效,这样,第一指示信息可以指示CFRA资源对应的同步信号块。
在另一种方式中,可以引入Y个比特作为功能开关。此时终端设备可以先判断Y个比 特是否为第一预设值,如果是的话,确定进入下一步“根据第一指示信息中的X个比特,获取一个或多个CFRA资源是否有效”,否则不进入下一步。Y个比特具有此功能的开关作用,使得网络设备控制灵活。由于Y个比特起开关作用,可以仅有1比特。第一预设值可以为0也可以为1。这样,能够提高网络设备控制的灵活度。
本申请实施例中,基于高层参数配置CFRA资源,是网络设备结合使用高层参数配置的CFRA资源配置和第一指示信息的方法,采用基于高层参数的方式可以配置一组CFRA资源(可以容忍的比特开销较大),而第一指示信息来动态指示配置的CFRA资源中的一个或多个有效,这种方式下,既保持了转换速度较快,数据传输效率较高,又保证了CFRA资源和波束数量足够多。
在一种可能的实施方式中,第一指示信息表示一个索引或编号或标识,其中索引或编号或标识对应的一个CFRA资源有效。
本申请实施例中,第一指示信息可以表示一个索引或编号或标识,这样第一指示信息中的X个比特可以表示最多2的X次方个CFRA资源(一组CFRA资源),当一次指示仅指示一个CFRA资源时,用索引或编号或标识的方式比较节省比特,例如一组CFRA资源有4个CFRA资源时,可以用2个比特来指示一个CFRA资源。
在一种可能的实施方式中,第一指示信息表示一个位图,其中位图中的一个比特对应一个CFRA资源。
本申请实施例中,第一指示信息可以表示一个位图,这样,第一信息中的X个比特可以表示最多X个CFRA资源(一组CFRA资源),当一次指示可以指示多个CFRA资源时,用位图的方式比较节省比特,例如一组CFRA资源有4个CFRA资源时,可以用4个比特来指示多个CFRA资源。
在一种可能的实施方式中,比特为第一预设值表示比特对应一个CFRA资源有效,比特为第二预设值表示比特对应一个CFRA资源无效。
本申请实施例中,在位图中的一个比特为第一预设值时,可以表示一个CFRA资源有效;一个比特为第二预设值时表示比特对应一个CFRA资源无效。这样,所有高层参数配置的CFRA资源可以表示在该位图中,通过比特值为第一预设值或者第二预设值来动态控制某个CFRA资源是否有效。
在一种可能的实施方式中,第一指示信息由PDCCH命令携带。
本申请实施例中,使用PDCCH命令来携带CFRA资源是否有效的信息即第一指示信息,可以减少信令开销。
在一种可能的实施方式中,X个比特为PDCCH命令中的保留比特。
本申请实施例中,PDCCH order有12个保留比特,可以使用这12个比特中的X个比特来指示,减少了信令开销。
在一种可能的实施方式中,X个比特为PDCCH命令中的现有字段中的比特。
本申请实施例中,X个比特也可以为PDCCH命令中现有字段的比特,即通过对现有字段进行转义,可以不使用保留比特,保留比特可以预留给未来系统升级。
在一种可能的实施方式中,Y个比特为PDCCH命令中的保留比特。
本申请实施例中,PDCCH order有12个保留比特,可以使用这12个比特中的Y个比特来指示,减少了信令开销,并且保留比特用作功能开关,当表示此功能关闭时,PDCCH order的原功能可以启动。
在一种可能的实施方式中,第一指示信息由MAC-CE携带。
本申请实施例中,第一指示信息也可以由MAC-CE携带,MAC-CE是层二的控制信令,它可以由PDSCH承载,并且有HARQ反馈保证可靠性。
下面,结合图4所示的实施例,从网络设备侧对数据传输的过程进行说明。
图4示出了本申请实施例的另一种数据传输方法的流程示意图。如图4所示出的,该方法包括:
S401、发送第一指示信息、第二指示信息和/或第三指示信息;第一指示信息、第二指示信息和/或第三指示信息,用于确定同步信号块是否有效和/或同步信号块对应的CFRA资源是否有效。
本申请实施例中,网络设备向终端设备发送第一指示信息、第二指示信息和/或第三指示信息,终端设备根据第一指示信息、第二指示信息和/或第三指示信息,确定同步信号块是否有效,或者确定同步信号块对应的CFRA资源是否有效。这样,终端设备在从锚点小区即当前小区切换至非锚点小区(转换目标小区)时,能够快速地确定同步信号块是否有效,或者快速地确定同步信号块对应的CFRA资源是否有效,提高了数据传输的效率,满足了终端设备数据传输的低时延要求。
在一种可能的实施方式中,第一指示信息指示同步信号块索引或编号或标识。
在一种可能的实施方式中,同步信号块索引或编号或标识由6个比特表示。
在一种可能的实施方式中,对于频率范围1,同步信号块索引或编号或标识由3个比特表示。
在一种可能的实施方式中,对于频率范围2,同步信号块索引或编号或标识由6个比特表示。
在一种可能的实施方式中,第一指示信息为位图,其中位图中的一个比特对应一个同 步信号块或多个同步信号块。
在一种可能的实施方式中,比特为第一预设值表示比特对应的同步信号块是有效的,比特为第二预设值表示比特对应的同步信号块是无效的。
在一种可能的实施方式中,若同步信号块是有效的,则同步信号块对应的随机接入前导是有效的。
在一种可能的实施方式中,同步信号块对应的随机接入前导由高层参数配置。
在一种可能的实施方式中,若同步信号块是有效的,则同步信号块对应的PRACH时机是有效的。
在一种可能的实施方式中,同步信号块对应的PRACH时机由高层参数配置。
在一种可能的实施方式中,对于频率范围1,位图为8比特。
在一种可能的实施方式中,对于频率范围1,比特为第一预设值表示比特对应的同步信号块是有效的,比特为第二预设值表示比特对应的同步信号块是无效的。
在一种可能的实施方式中,对于频率范围2,位图为16比特。
在一种可能的实施方式中,对于频率范围2,比特为第一预设值表示比特对应的一组同步信号块是有效的,比特为第二预设值表示比特对应的一组同步信号块是无效的。
在一种可能的实施方式中,第二指示信息为随机接入前导索引,随机接入前导索引表示同步信号块对应的随机接入前导的索引。
在一种可能的实施方式中,第三指示信息为PRACH掩码索引,PRACH掩码索引表示同步信号块对应的PRACH时机的索引。
在一种可能的实施方式中,第一指示信息、第二指示信息和/或第三指示信息由PDCCH命令或者MAC-CE携带。
应理解,网络设备侧与终端设备侧相对应,实现原理以及有益效果与终端设备侧相类似,此处不再进行赘述。
下面,结合图5所示的实施例,从网络设备侧对数据传输的过程进行说明。
图5示出了本申请实施例的另一种数据传输方法的流程示意图。如图5所示出的,该方法包括:
S501、发送第一指示信息,第一指示信息用于确定一个或多个CFRA资源是否有效。
本申请实施例中,网络设备向终端设备发送第一指示信息,终端设备根据该第一指示信息可以确定一个或多个CFRA资源是否有效。这样,网络设备可以通过高层参数配置一个或多个CFRA资源,避免了物理层信令开销过大,同时终端设备基于该第一指示信息能够快速高效地建立和使用CFRA资源和波束的对应关系,提高了终端设备数据传输的效率, 满足了终端设备数据传输的低时延要求。
在一种可能的实施方式中,第一指示信息为X个比特,其中X为正整数;或者,
当Y个比特为第一预设值时,第一指示信息为X个比特,其中X、Y为正整数。
在一种可能的实施方式中,第一指示信息表示一个索引或编号或标识,其中索引或编号或标识对应的一个CFRA资源有效。
在一种可能的实施方式中,第一指示信息表示一个位图,其中位图中的一个比特对应一个CFRA资源。
在一种可能的实施方式中,比特为第一预设值表示比特对应一个CFRA资源有效,比特为第二预设值表示比特对应一个CFRA资源无效。
在一种可能的实施方式中,第一指示信息由PDCCH命令携带。
在一种可能的实施方式中,X个比特为PDCCH命令中的保留比特。
在一种可能的实施方式中,X个比特为PDCCH命令中的现有字段中的比特。
在一种可能的实施方式中,Y个比特为PDCCH命令中的保留比特。
在一种可能的实施方式中,第一指示信息由MAC-CE携带。
应理解,网络设备侧与终端设备侧相对应,实现原理以及有益效果与终端设备侧相类似,此处不再进行赘述。
图6为本申请实施例提供的一种数据传输装置的结构示意图。请参见图6,该数据传输装置60可以包括:
确定模块601,用于根据第一指示信息、第二指示信息和/或第三指示信息,确定同步信号块是否有效和/或同步信号块对应的CFRA资源是否有效。
本申请实施例提供的数据传输装置60可以执行上述方法实施例所示的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
在一种可能的实施方式中,第一指示信息指示同步信号块索引或编号或标识。
在一种可能的实施方式中,同步信号块索引或编号或标识由6个比特表示。
在一种可能的实施方式中,对于频率范围1,同步信号块索引或编号或标识由3个比特表示。
在一种可能的实施方式中,对于频率范围2,同步信号块索引或编号或标识由6个比特表示。
在一种可能的实施方式中,第一指示信息为位图,其中位图中的一个比特对应一个同步信号块或多个同步信号块。
在一种可能的实施方式中,比特为第一预设值表示比特对应的同步信号块是有效的, 比特为第二预设值表示比特对应的同步信号块是无效的。
在一种可能的实施方式中,若同步信号块是有效的,则同步信号块对应的随机接入前导是有效的。
在一种可能的实施方式中,同步信号块对应的随机接入前导由高层参数配置。
在一种可能的实施方式中,若同步信号块是有效的,则同步信号块对应的PRACH时机是有效的。
在一种可能的实施方式中,同步信号块对应的PRACH时机由高层参数配置。
在一种可能的实施方式中,对于频率范围1,位图为8比特。
在一种可能的实施方式中,对于频率范围1,比特为第一预设值表示比特对应的同步信号块是有效的,比特为第二预设值表示比特对应的同步信号块是无效的。
在一种可能的实施方式中,对于频率范围2,位图为16比特。
在一种可能的实施方式中,对于频率范围2,比特为第一预设值表示比特对应的一组同步信号块是有效的,比特为第二预设值表示比特对应的一组同步信号块是无效的。
在一种可能的实施方式中,第二指示信息为随机接入前导索引,随机接入前导索引表示同步信号块对应的随机接入前导的索引。
在一种可能的实施方式中,第三指示信息为PRACH掩码索引,PRACH掩码索引表示同步信号块对应的PRACH时机的索引。
在一种可能的实施方式中,第一指示信息、第二指示信息和/或第三指示信息由PDCCH命令或者MAC-CE携带。
本申请实施例提供的数据传输装置60可以执行上述方法实施例所示的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。数据传输装置60具体可以为芯片、芯片模组等,本申请实施例对此不作限定。
图7为本申请实施例提供的另一种数据传输装置的结构示意图。请参见图7,该数据传输装置70可以包括:
确定模块701,用于根据第一指示信息,确定一个或多个CFRA资源是否有效。
本申请实施例提供的数据传输装置70可以执行上述方法实施例所示的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。数据传输装置70具体可以为芯片、芯片模组等,本申请实施例对此不作限定。
在一种可能的实施方式中,第一指示信息为X个比特,其中X为正整数;或者,
当Y个比特为第一预设值时,第一指示信息为X个比特,其中X、Y为正整数。
在一种可能的实施方式中,第一指示信息表示一个索引或编号或标识,其中索引或编 号或标识对应的一个CFRA资源有效。
在一种可能的实施方式中,第一指示信息表示一个位图,其中位图中的一个比特对应一个CFRA资源。
在一种可能的实施方式中,比特为第一预设值表示比特对应一个CFRA资源有效,比特为第二预设值表示比特对应一个CFRA资源无效。
在一种可能的实施方式中,第一指示信息由PDCCH命令携带。
在一种可能的实施方式中,X个比特为PDCCH命令中的保留比特。
在一种可能的实施方式中,X个比特为PDCCH命令中的现有字段中的比特。
在一种可能的实施方式中,Y个比特为PDCCH命令中的保留比特。
在一种可能的实施方式中,第一指示信息由MAC-CE携带。
图8为本申请实施例提供的另一种数据传输装置的结构示意图。请参见图8,该数据传输装置80可以包括:
发送模块801,用于发送第一指示信息、第二指示信息和/或第三指示信息;第一指示信息、第二指示信息和/或第三指示信息,用于确定同步信号块是否有效和/或同步信号块对应的CFRA资源是否有效。
本申请实施例提供的数据传输装置80可以执行上述方法实施例所示的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。数据传输装置80具体可以为芯片、芯片模组等,本申请实施例对此不作限定。
在一种可能的实施方式中,第一指示信息指示同步信号块索引或编号或标识。
在一种可能的实施方式中,同步信号块索引或编号或标识由6个比特表示。
在一种可能的实施方式中,对于频率范围1,同步信号块索引或编号或标识由3个比特表示。
在一种可能的实施方式中,对于频率范围2,同步信号块索引或编号或标识由6个比特表示。
在一种可能的实施方式中,第一指示信息为位图,其中位图中的一个比特对应一个同步信号块或多个同步信号块。
在一种可能的实施方式中,比特为第一预设值表示比特对应的同步信号块是有效的,比特为第二预设值表示比特对应的同步信号块是无效的。
在一种可能的实施方式中,若同步信号块是有效的,则同步信号块对应的随机接入前导是有效的。
在一种可能的实施方式中,同步信号块对应的随机接入前导由高层参数配置。
在一种可能的实施方式中,若同步信号块是有效的,则同步信号块对应的PRACH时机是有效的。
在一种可能的实施方式中,同步信号块对应的PRACH时机由高层参数配置。
在一种可能的实施方式中,对于频率范围1,位图为8比特。
在一种可能的实施方式中,对于频率范围1,比特为第一预设值表示比特对应的同步信号块是有效的,比特为第二预设值表示比特对应的同步信号块是无效的。
在一种可能的实施方式中,对于频率范围2,位图为16比特。
在一种可能的实施方式中,对于频率范围2,比特为第一预设值表示比特对应的一组同步信号块是有效的,比特为第二预设值表示比特对应的一组同步信号块是无效的。
在一种可能的实施方式中,第二指示信息为随机接入前导索引,随机接入前导索引表示同步信号块对应的随机接入前导的索引。
在一种可能的实施方式中,第三指示信息为PRACH掩码索引,PRACH掩码索引表示同步信号块对应的PRACH时机的索引。
在一种可能的实施方式中,第一指示信息、第二指示信息和/或第三指示信息由PDCCH命令或者MAC-CE携带。
图9为本申请实施例提供的另一种数据传输装置的结构示意图。请参见图9,该数据传输装置90可以包括:
发送模块901,用于发送第一指示信息,第一指示信息用于确定一个或多个CFRA资源是否有效。
本申请实施例提供的数据传输装置90可以执行上述方法实施例所示的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。数据传输装置90具体可以为芯片、芯片模组等,本申请实施例对此不作限定。
在一种可能的实施方式中,第一指示信息为X个比特,其中X为正整数;或者,
当Y个比特为第一预设值时,第一指示信息为X个比特,其中X、Y为正整数。
在一种可能的实施方式中,第一指示信息表示一个索引或编号或标识,其中索引或编号或标识对应的一个CFRA资源有效。
在一种可能的实施方式中,第一指示信息表示一个位图,其中位图中的一个比特对应一个CFRA资源。
在一种可能的实施方式中,比特为第一预设值表示比特对应一个CFRA资源有效,比特为第二预设值表示比特对应一个CFRA资源无效。
在一种可能的实施方式中,第一指示信息由PDCCH命令携带。
在一种可能的实施方式中,X个比特为PDCCH命令中的保留比特。
在一种可能的实施方式中,X个比特为PDCCH命令中的现有字段中的比特。
在一种可能的实施方式中,Y个比特为PDCCH命令中的保留比特。
在一种可能的实施方式中,第一指示信息由MAC-CE携带。
图10为本申请实施例提供的一种数据传输设备的结构示意图。请参见图10,数据传输设备100可以包括:存储器1001、处理器1002。示例性地,存储器1001、处理器1002,各部分之间通过总线1003相互连接。
存储器1001用于存储程序指令;
处理器1002用于执行该存储器所存储的程序指令,实现上述实施例所示的数据传输方法。
图10实施例所示的数据传输设备可以执行上述方法实施例所示的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
本申请实施例提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机执行指令,当计算机执行指令被处理器执行时用于实现上述数据传输方法。
本申请实施例还可提供一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时,可实现上述数据传输方法。
本申请实施例提供一种芯片,该芯片上存储有计算机程序,当计算机程序被该芯片执行时,实现上述数据传输方法。
本申请实施例还提供一种芯片模组,该芯片模组上存储有计算机程序,当计算机程序被该芯片模组执行时,实现上述数据传输方法。
需要说明的是,本申请实施例中提及的处理器可以是中央处理器(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态 随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch Link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Ram Bus RAM,DR RAM)。需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本申请实施例是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理单元以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理单元执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
关于上述实施例中描述的各个装置、产品包含的各个模块/单元,其可以是软件模块/单元,也可以是硬件模块/单元,或者也可以部分是软件模块/单元,部分是硬件模块/单元。各个装置、产品可以应用于或者集成于芯片、芯片模组或终端设备中。示例性地,对于应用于或者集成于芯片的各个装置、产品,其包含的各个模块/芯片可以是都采用电路等硬件的方式实现,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于 芯片内部集成的处理器,剩余的部分模块/单元可以采用电路等硬件方式实现。
在本申请中,术语“包括”及其变形可以指非限制性的包括;术语“或”及其变形可以指“和/或”。本申请中术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。本申请中,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
以上仅是本申请的部分实施例,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应当视为本申请的保护范围。

Claims (38)

  1. 一种数据传输方法,其特征在于,包括:
    根据第一指示信息、第二指示信息和/或第三指示信息,确定同步信号块是否有效和/或所述同步信号块对应的CFRA资源是否有效。
  2. 根据权利要求1所述的方法,其特征在于,所述第一指示信息指示同步信号块索引或编号或标识。
  3. 根据权利要求2所述的方法,其特征在于,所述同步信号块索引或编号或标识由6个比特表示。
  4. 根据权利要求2所述的方法,其特征在于,对于频率范围1,所述同步信号块索引或编号或标识由3个比特表示。
  5. 根据权利要求2所述的方法,其特征在于,对于频率范围2,所述同步信号块索引或编号或标识由6个比特表示。
  6. 根据权利要求1所述的方法,其特征在于,所述第一指示信息为位图,其中所述位图中的一个比特对应一个同步信号块或多个同步信号块。
  7. 根据权利要求6所述的方法,其特征在于,所述比特为第一预设值表示所述比特对应的同步信号块是有效的,所述比特为第二预设值表示所述比特对应的同步信号块是无效的。
  8. 根据权利要求7所述的方法,其特征在于,若所述同步信号块是有效的,则所述同步信号块对应的随机接入前导是有效的。
  9. 根据权利要求8所述的方法,其特征在于,所述同步信号块对应的随机接入前导由高层参数配置。
  10. 根据权利要求7所述的方法,其特征在于,若所述同步信号块是有效的,则所述同步信号块对应的PRACH时机是有效的。
  11. 根据权利要求10所述的方法,其特征在于,所述同步信号块对应的PRACH时机由高层参数配置。
  12. 根据权利要求6所述的方法,其特征在于,对于频率范围1,所述位图为8比特。
  13. 根据权利要求6所述的方法,其特征在于,对于频率范围1,所述比特为第一预设值表示所述比特对应的同步信号块是有效的,所述比特为第二预设值表示所述比特对应的同步信号块是无效的。
  14. 根据权利要求6所述的方法,其特征在于,对于频率范围2,所述位图为16比特。
  15. 根据权利要求6所述的方法,其特征在于,对于频率范围2,所述比特为第一预设值表示所述比特对应的一组同步信号块是有效的,所述比特为第二预设值表示所述比特对应的一组同步信号块是无效的。
  16. 根据权利要求1所述的方法,其特征在于,所述第二指示信息为随机接入前导索引,所述随机接入前导索引表示所述同步信号块对应的随机接入前导的索引。
  17. 根据权利要求1所述的方法,其特征在于,所述第三指示信息为PRACH掩码索引,所述PRACH掩码索引表示所述同步信号块对应的PRACH时机的索引。
  18. 根据权利要求1至17任一项所述的方法,其特征在于,所述第一指示信息、所述第二指示信息和/或所述第三指示信息由PDCCH命令或者MAC-CE携带。
  19. 一种数据传输方法,其特征在于,包括:
    根据第一指示信息,确定一个或多个CFRA资源是否有效。
  20. 根据权利要求19所述的方法,其特征在于,
    所述第一指示信息为X个比特,其中X为正整数;或者,
    当Y个比特为第一预设值时,所述第一指示信息为X个比特,其中X、Y为正整数。
  21. 根据权利要求19所述的方法,其特征在于,所述第一指示信息表示一个索引或编号或标识,其中所述索引或编号或标识对应的一个CFRA资源有效。
  22. 根据权利要求19所述的方法,其特征在于,所述第一指示信息表示一个位图,其中位图中的一个比特对应一个CFRA资源。
  23. 根据权利要求22所述的方法,其特征在于,所述比特为第一预设值表示所述比特对应一个CFRA资源有效,所述比特为第二预设值表示所述比特对应一个CFRA资源无效。
  24. 根据权利要求19至23任一项所述的方法,其特征在于,所述第一指示信息由PDCCH命令携带。
  25. 根据权利要求24所述的方法,其特征在于,X个比特为PDCCH命令中的保留比特。
  26. 根据权利要求24所述的方法,其特征在于,X个比特为PDCCH命令中的现有字段中的比特。
  27. 根据权利要求24所述的方法,其特征在于,Y个比特为PDCCH命令中的保留比特。
  28. 根据权利要求19至23任一项所述的方法,其特征在于,所述第一指示信息由MAC-CE携带。
  29. 一种数据传输方法,其特征在于,包括:
    发送第一指示信息、第二指示信息和/或第三指示信息;所述第一指示信息、第二指示信息和/或第三指示信息,用于确定同步信号块是否有效和/或所述同步信号块对应的CFRA资源是否有效。
  30. 一种数据传输方法,其特征在于,包括:
    发送第一指示信息,所述第一指示信息用于确定一个或多个CFRA资源是否有效。
  31. 一种数据传输装置,其特征在于,包括:
    确定模块,用于根据第一指示信息、第二指示信息和/或第三指示信息,确定同步信号块是否有效和/或所述同步信号块对应的CFRA资源是否有效。
  32. 一种数据传输装置,其特征在于,包括:
    确定模块,用于根据第一指示信息,确定一个或多个CFRA资源是否有效。
  33. 一种数据传输装置,其特征在于,包括:
    发送模块,用于发送第一指示信息、第二指示信息和/或第三指示信息;所述第一指示信息、第二指示信息和/或第三指示信息,用于确定同步信号块是否有效和/或所述同步信号块对应的CFRA资源是否有效。
  34. 一种数据传输装置,其特征在于,包括:
    发送模块,用于第一指示信息,所述第一指示信息用于确定一个或多个CFRA资源是否有效。
  35. 一种数据传输设备,其特征在于,包括:处理器、存储器;
    所述存储器存储计算机执行指令;
    所述处理器执行所述存储器存储的计算机执行指令,实现如权利要求1至30任一项所述的方法。
  36. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被执行时用于实现权利要求1至30任一项所述的方法。
  37. 一种计算机程序产品,其特征在于,包括计算机程序,所述计算机程序被执行时实现权利要求1至30任一项所述的方法。
  38. 一种芯片,其特征在于,所述芯片上存储有计算机程序,所述计算机程序被所述芯片执行时,实现如权利要求1至30任一项所述的方法。
PCT/CN2023/112734 2022-08-12 2023-08-11 数据传输方法、装置以及设备 WO2024032798A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210970235.8 2022-08-12
CN202210970235.8A CN117676910A (zh) 2022-08-12 2022-08-12 数据传输方法、装置以及设备

Publications (1)

Publication Number Publication Date
WO2024032798A1 true WO2024032798A1 (zh) 2024-02-15

Family

ID=89851050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/112734 WO2024032798A1 (zh) 2022-08-12 2023-08-11 数据传输方法、装置以及设备

Country Status (2)

Country Link
CN (1) CN117676910A (zh)
WO (1) WO2024032798A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111406436A (zh) * 2017-11-27 2020-07-10 Idac控股公司 新无线电/新无线电-未许可(nr/nr-u)中的初始接入和信道接入
US20220007434A1 (en) * 2020-07-01 2022-01-06 Qualcomm Incorporated Capability reporting for random access channel procedure
CN113923735A (zh) * 2020-07-09 2022-01-11 三星电子株式会社 用于提高无线通信系统中的切换性能的设备和方法
WO2022021316A1 (en) * 2020-07-31 2022-02-03 Zte Corporation Data transmission in an inactive state

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111406436A (zh) * 2017-11-27 2020-07-10 Idac控股公司 新无线电/新无线电-未许可(nr/nr-u)中的初始接入和信道接入
US20220007434A1 (en) * 2020-07-01 2022-01-06 Qualcomm Incorporated Capability reporting for random access channel procedure
CN113923735A (zh) * 2020-07-09 2022-01-11 三星电子株式会社 用于提高无线通信系统中的切换性能的设备和方法
WO2022021316A1 (en) * 2020-07-31 2022-02-03 Zte Corporation Data transmission in an inactive state

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VIVO: "Preamble Selection When CFRA Resource Available", 3GPP DRAFT; R2-1809894_PREAMBLE SELECTION WHEN CFRA RESOURCE AVAILABLE V1.0, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Montreal, Canada; 20180702 - 20180706, 22 June 2018 (2018-06-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051525719 *

Also Published As

Publication number Publication date
CN117676910A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
CN110291751B (zh) 用于在无线通信网络中关联载波的方法和装置
WO2020087524A1 (zh) 非授权频段上ssb的传输方法和设备
US20230179374A1 (en) Channel transmission method, terminal device, and network device
US20220417985A1 (en) Communication method and apparatus
WO2020186532A1 (zh) 无线通信方法、终端设备和网络设备
WO2022027488A1 (zh) 无线通信的方法、终端设备和网络设备
US20220338183A1 (en) Method and Apparatus for Transmitting Initial Access Configuration Information
US20200275495A1 (en) Random Access Method, Spectrum Reporting Method, Terminal Device, and Network Device
EP4080972A1 (en) Communication method and device
WO2021062775A1 (zh) 一种寻呼消息的检测方法、装置及通信设备
WO2020248143A1 (zh) 监听控制信道的方法、终端设备和网络设备
WO2024032798A1 (zh) 数据传输方法、装置以及设备
KR20200097467A (ko) 무선통신 시스템에서 2단계 랜덤 엑세스 절차를 지시하는 방법 및 장치
WO2022183341A1 (zh) 一种测量间隔的配置方法及装置、终端设备、网络设备
WO2021081918A1 (zh) 无线通信方法、终端设备和网络设备
WO2022082791A1 (zh) 通信方法和通信装置
CN114946265A (zh) 一种小区接入方法、电子设备及存储介质
WO2023207589A1 (zh) 信息传输的方法和通信装置
WO2024032790A1 (zh) 指示信息处理方法及设备
WO2023174423A1 (zh) 参考信号确定方法与装置、终端
WO2023207810A1 (zh) 小区测量和转换方法及装置
WO2023201489A1 (zh) 通信方法、终端设备和网络设备
WO2023206004A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022267858A1 (zh) 信息指示的方法和通信装置
WO2024011461A1 (zh) 一种基于多载波的通信方法及装置、终端设备、网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852018

Country of ref document: EP

Kind code of ref document: A1