WO2022021316A1 - Data transmission in an inactive state - Google Patents

Data transmission in an inactive state Download PDF

Info

Publication number
WO2022021316A1
WO2022021316A1 PCT/CN2020/106179 CN2020106179W WO2022021316A1 WO 2022021316 A1 WO2022021316 A1 WO 2022021316A1 CN 2020106179 W CN2020106179 W CN 2020106179W WO 2022021316 A1 WO2022021316 A1 WO 2022021316A1
Authority
WO
WIPO (PCT)
Prior art keywords
data transmission
terminal
failure
network node
information
Prior art date
Application number
PCT/CN2020/106179
Other languages
French (fr)
Inventor
Jianmin Fang
He Huang
Zhihong Qiu
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to PCT/CN2020/106179 priority Critical patent/WO2022021316A1/en
Priority to JP2023505926A priority patent/JP2023535487A/en
Priority to EP20946932.9A priority patent/EP4190003A4/en
Priority to CN202080104606.3A priority patent/CN116210259A/en
Publication of WO2022021316A1 publication Critical patent/WO2022021316A1/en
Priority to US18/161,306 priority patent/US20230171835A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This patent document is directed generally to wireless communications.
  • This document discloses methods, systems, and devices related to digital wireless communication, and more specifically, to techniques related to data transmission in an inactive state.
  • a method for data communication includes identifying, by a terminal, that a data transmission with a network node has failed while the terminal is in an inactive state.
  • the method also includes transmitting, by the terminal, a set of information relating to the failure of the data transmission to a network node responsive to the terminal transitioning to a connected state in which the terminal is connected to the network node.
  • a wireless communications apparatus comprising a processor.
  • the processor is configured to implement a method described herein.
  • the various techniques described herein may be embodied as processor-executable code and stored on a computer-readable program medium.
  • FIG. 1 is an illustration of an example 5G network architecture.
  • FIG. 2 illustrates a signaling process of an example inactive data transmission failure information reporting process.
  • FIG. 3 is a signaling process of an example IDTF reporting process.
  • FIG. 4 is a signaling process for an example statistic reporting process.
  • FIG. 5 is a signaling process of an example process for reporting a nID.
  • FIG. 6 illustrates a block diagram of an example method for data transmission in an inactive state.
  • FIG. 7 shows an example of a wireless communication system where techniques in accordance with one or more embodiments of the present technology can be applied.
  • FIG. 8 is a block diagram representation of a portion of a hardware platform.
  • NR New Radio
  • the present embodiments can relate to optimization of data transmission in an inactive state.
  • the method of optimizing for data transmission in inactive state can be, for example, to avoid unnecessary signaling overhead and power consumption when performing the data transmission in the inactive state.
  • FIG. 1 is an illustration of an example 5G network architecture 100.
  • a fifth generation (5G) network architecture may include a 5G core network (5GC) and a next generation radio access network (NG-RAN) .
  • the 5GC may include any of an Access Mobility Function (AMF) , a Session Management Function (SMF) , and a User Plane Function (UPF) .
  • the NG-RAN may include base stations with different radio access technologies (RATs) , such as an evolved 4G base station (ng-eNB) , a 5G base station (gNB) .
  • ng-eNB evolved 4G base station
  • gNB 5G base station
  • the NG-RAN base station may be connected to the 5GC through the NG interface, and the NG-RAN base stations may be connected through the Xn interface.
  • RATs radio access technologies
  • RRC_INACTIVE state has been introduced to provide an efficient state.
  • a UE in such state can provide lower power consumption than in RRC_CONNECTED state, and can transfer to RRC_CONNECTED state with lower control plane latency than in RRC_IDLE state.
  • the UE may have to enter RRC_CONNECTED state first and then initiate the data transmission. This may be a problem in case the data packet is small and infrequent, the UE may not be in RRC_CONNECTED state since the data packet is not so frequent, however the UE may need to be resumed to RRC_CONNECTED state and subsequently to be released to INACTIVE state for each data transmission, no matter the size of the data . This may result in unnecessary signaling overhead and power consumption, and also may be particularly severe in the case the data frequency is not sparse, but not so frequent to be considered to transfer to RRC_CONNECTED state.
  • the enablers for small data transmission in INACTIVE state in NR may include the Random Access Channel (RACH) based and configured grant type-1 (CG) based methods.
  • RACH Random Access Channel
  • CG configured grant type-1
  • the present embodiments relate to optimizing for data transmission in an inactive state.
  • various information types can be stored by the UE and reported to a network node after the UE goes to a CONNECTED state.
  • the INACTIVE state may be, for example, the RRC_INACTIVE state described with respect to the 5G example herein.
  • the information can include a failure cause for the INACTIVE data transmission, including at least one of : rlc-MaxNumRetx (max number of RLC re-transmission) , t310-Expiry, beamFailureRecoveryFailure, randomAccessProblem with raPurpose of INACTIVE data transmission, CG based transmission failure, failure due to in OOC (out of coverage) , expiration of T319 timer, expiration of INACTIVE data transmission timer (start upon initiating the INACTIVE data transmission, stop upon receiving a release message from the network or expired) , expiration of CG response check timer (start upon initiating the CG based INACTIVE data transmission, stop upon receiving a feedback to a UL data, a DL data, or a DL signaling from the network, or expired) .
  • rlc-MaxNumRetx maximum number of RLC re-transmission
  • t310-Expiry beamFailureRecover
  • the information can also include an indication to indicate who triggers the INACTIVE data transmission (the UE or the network) .
  • the information can also include a current buffered data size, the current buffered data size can be per UE, per DRB, per logical channel or per logical channel group.
  • the information can also include information of supported solution (e.g. whether INACTIVE data transmission is supported, whether CG based solution is supported, whether CFRA (contention-free random access) based solution is supported, whether RACH based solution is supported, whether with RRC involved solution is supported, whether without RRC involved solution is supported) , the information of supported solution can be per UE, per DRB, per logical channel, per logical channel group, per QoS flow, or per PDU session.
  • supported solution e.g. whether INACTIVE data transmission is supported, whether CG based solution is supported, whether CFRA (contention-free random access) based solution is supported, whether RACH based solution is supported, whether with RRC involved solution is supported, whether without RRC involved solution is supported
  • the information of supported solution can be per UE, per DRB, per logical channel, per logical channel group, per QoS flow, or per PDU session.
  • the information can also include information of selected solution (e.g. CG based solution is selected, CFRA based solution is selected, RACH based solution is selected, with RRC involved solution is selected, without RRC involved solution is selected) .
  • selected solution e.g. CG based solution is selected, CFRA based solution is selected, RACH based solution is selected, with RRC involved solution is selected, without RRC involved solution is selected
  • the information can also include a status of radio resource (e.g. whether CG resource is valid, whether CFRA resource is valid, whether RACH resource with larger TB (Transport Block) size is valid, whether TA (Timing Advance) is valid) .
  • a status of radio resource e.g. whether CG resource is valid, whether CFRA resource is valid, whether RACH resource with larger TB (Transport Block) size is valid, whether TA (Timing Advance) is valid.
  • the information can also include information of configured radio resource for INACTIVE data transmission (i.e. valid radio resource) :
  • the configured PUSCH CG resource configuration for DL transmission, configuration for beam management, configured resource for PUCCH (Physical Uplink Control Channel) /SRS (Sounding Reference Signal) , configured TA validity check timer, the configured multiple sets of CG configuration.
  • the information can also include information of selected radio resource for INACTIVE data transmission: the selected set of CG configuration.
  • the information can also include information of ongoing data service type (e.g. 5QI, DRB ID, logical channel ID, logical channel group ID, QoS flow ID, PDU session ID) .
  • ongoing data service type e.g. 5QI, DRB ID, logical channel ID, logical channel group ID, QoS flow ID, PDU session ID
  • the information can also include a status of RLC, i.e. whether the RLC is released or not (when in INACTIVE state, the RLC may be suspended or released) .
  • the information can also include a configured area scope (in which the INACTIVE data transmission is allowed) , the area scope can be for all UEs, or for a specific UE.
  • the information can also include an indication to indicate that the UE has buffered data when the UE receives a release message from the NW (network) .
  • the information can also include an indication to indicate whether the information (e.g. BSR or INACTIVE data transmission request indication) has been sent to the NW.
  • an indication to indicate whether the information (e.g. BSR or INACTIVE data transmission request indication) has been sent to the NW.
  • the information can also include an indication to indicate whether the data is included in the Msg3/MsgA when the UE is not the trigger (i.e. the NW is the trigger) for initial transmission type selection (e.g. initiate INACTIVE data transmission or resume to CONNECTED state, which type of INACTIVE data transmission to be performed: CG based or RACH based, with or without RRC involved) .
  • initial transmission type selection e.g. initiate INACTIVE data transmission or resume to CONNECTED state, which type of INACTIVE data transmission to be performed: CG based or RACH based, with or without RRC involved
  • the information can also include an information of fallback action (e.g. fallback from CG based to RACH based, from CFRA based to CBRA based, from without RRC involved to with RRC involved, fallback to normal resume: i.e. resume to CONNECTED state) ,
  • fallback action e.g. fallback from CG based to RACH based, from CFRA based to CBRA based, from without RRC involved to with RRC involved, fallback to normal resume: i.e. resume to CONNECTED state
  • the information can also include information of configured fallback trigger: e.g. the N of N times failure (the fallback is triggered when N times failure is reached) .
  • the information can also include information of beam management: For RACH based INACTIVE data transmission, the time duration (with which the beam information derived based on the last RACH procedure is assumed valid) , the beam information of the last RACH procedure, the beam information of the selected beam for INACTIVE data transmission, the time duration can be per cell, or per UE.
  • the pre-configured threshold if any beam with CG resource above it, UE can initiate CG based, otherwise, UE initiates RACH based
  • the information of maintained SRS resource to address the issue of beam change during INACTIVE data transmission
  • the information can also include an indication to indicate whether it is allowed to use the RACH resource or the CG resource according to which one comes first.
  • the information can also include a configured value of CG response check timer.
  • the above INACTIVE data transmission failure information can be stored in the existing CEF (Connection Establishment Failure) report, RLF (Radio Link Failure) report, RA (Random Access) report or other specified report, or a new specified report (e.g. INACTIVE data transmission failure report, IDTF report) .
  • an IDTF report available indication may be included in the RRCResumeComplete message, RRCReestablishmentComplete message, RRCReconfigurationComplete message, or RRCSetupComplete message to indicate the NW that the UE has IDTF report stored.
  • the NW may send an IDTF report request to the UE after received the IDTF report available indication from the UE, the UE sends an IDTF report response to the NW carrying the IDTF report after received the IDTF report request from the NW.
  • the IDTF report request may be included in the UEInformationRequest message
  • the IDTF report response may be included in the UEInformationResponse message.
  • the UE can derive a statistic.
  • the statistic can include at least one of: UL data throughput per UE, DL data throughput per UE, UL Uu interface delay per UE, DL Uu interface delay per UE, UL data throughput per 5QI, DL data throughput per 5QI, UL Uu interface delay per 5QI, DL Uu interface delay per 5QI.
  • the statistic result may be reported to the network node (or NW) .
  • the NW can derive a statistic including at least one of the following: UL data throughput per cell, DL data throughput per cell, UL Uu interface delay per cell, DL Uu interface delay per cell.
  • the NW may configure to the UE whether the INACTIVE data transmission is allowed for a UE according to the per UE statistic result.
  • the NW may configure to the UE whether the INACTIVE data transmission is allowed for a data service type or a QoS flow according to the per 5QI statistic result.
  • the NW may configure to the UE whether the INACTIVE data transmission is allowed in a cell according to the per cell statistic result.
  • the UE when the UE initiates an INACTIVE data transmission, uses the RACH resource or the CG resource according to which one comes first, i.e., if the RACH resource comes first, to initiate a RACH based INACTIVE data transmission, if the CG resource comes first, to initiate a CG based INACTIVE data transmission.
  • the UE when the UE initiates a CG based INACTIVE data transmission, the UE starts a CG response check timer. If the UE does not receive any of a feedback to a UL data, a DL data, or a DL signaling from the network before the CG response check timer is expired, the UE can consider the CG based INACTIVE data transmission is failed.
  • the CG response check timer can be started upon initiating the CG based INACTIVE data transmission and stopped upon receiving a feedback to a UL data, a DL data, or a DL signaling from the network, or expired.
  • UE may not initiate the INACTIVE data transmission, UE may maintain in RRC_INACTIVE state and starts a timer O, UE may wait until the timer O expires or when back to normal coverage. If UE is back to normal coverage before the timer O expires, UE can initiate the INACTIVE data transmission. If UE is still in OOC when the timer O expires, UE can perform at least one of the following: goes to RRC_IDLE state, informs the upper layer that the data transmission is failed due to UE being in OOC.
  • UE can reset the INACTIVE data transmission timer to the value of timer O when the remaining time of INACTIVE data transmission timer is less than the value of timer O.
  • timer O can be configured per cell, per data service type (e.g., per 5G Quality of Service Indicator (5QI) ) , per UE, per PDU session, per QoS flow, per DRB, per logical channel, or per logical channel group.
  • data service type e.g., per 5G Quality of Service Indicator (5QI)
  • per UE per PDU session, per QoS flow, per DRB, per logical channel, or per logical channel group.
  • the value of timer O can be configured by the network to the UE via system information or dedicated signaling.
  • MsgA PUSCH information used to specify the PUSCH allocation for MsgA in 2-step RACH procedure is exchanged between RAN nodes, or is sent from DU to CU.
  • the MsgA PUSCH information may carried in the XN SETUP REQUEST, NG-RAN NODE CONFIGURATION UPDATE, XN SETUP RESPONSE, or NG-RAN NODE CONFIGURATION UPDATE ACKNOWLEDGE message, or carried in a new message, when exchanged between RAN nodes.
  • the MsgA PUSCH information may carried in the GNB-DU CONFIGURATION UPDATE, or F1 SETUP REQUEST message, or carried in a new message, when sent from DU to CU.
  • FIG. 2 illustrates a signaling process 200 of an example inactive data transmission failure information reporting process.
  • the UE 202 can store inactive data transmission failure information responsive to detecting a failure of a data transmission.
  • the INACTIVE data transmission failure information can include a failure cause for the INACTIVE data transmission, including at least one of : rlc-MaxNumRetx (max number of RLC re-transmission) , t310-Expiry, beamFailureRecoveryFailure, randomAccessProblem with raPurpose of INACTIVE data transmission, CG based transmission failure, failure due to in OOC (out of coverage) , expiration of T319 timer, expiration of INACTIVE data transmission timer (start upon initiating the INACTIVE data transmission, stop upon receiving a release message from the network or expired) , expiration of CG response check timer (start upon initiating the CG based INACTIVE data transmission, stop upon receiving a feedback to a UL data, a DL data, or a DL signaling from the network, or expired) .
  • rlc-MaxNumRetx maximum number of RLC re-transmission
  • t310-Expiry beam
  • the INACTIVE data transmission failure information can include an indication to indicate who triggers the INACTIVE data transmission (the UE or the network) .
  • the INACTIVE data transmission failure information can include a current buffered data size, the current buffered data size can be per UE, per DRB, per logical channel or per logical channel group.
  • the INACTIVE data transmission failure information can include information of supported solution (e.g. whether INACTIVE data transmission is supported, whether CG based solution is supported, whether CFRA (contention-free random access) based solution is supported, whether RACH based solution is supported, whether with RRC involved solution is supported, whether without RRC involved solution is supported) , the information of supported solution can be per UE, per DRB, per logical channel, per logical channel group, per QoS flow, or per PDU session.
  • supported solution e.g. whether INACTIVE data transmission is supported, whether CG based solution is supported, whether CFRA (contention-free random access) based solution is supported, whether RACH based solution is supported, whether with RRC involved solution is supported, whether without RRC involved solution is supported
  • the information of supported solution can be per UE, per DRB, per logical channel, per logical channel group, per QoS flow, or per PDU session.
  • the INACTIVE data transmission failure information can include information of selected solution (e.g. CG based solution is selected, CFRA based solution is selected, RACH based solution is selected, with RRC involved solution is selected, without RRC involved solution is selected) .
  • selected solution e.g. CG based solution is selected, CFRA based solution is selected, RACH based solution is selected, with RRC involved solution is selected, without RRC involved solution is selected
  • the INACTIVE data transmission failure information can include a status of radio resource (e.g. whether CG resource is valid, whether CFRA resource is valid, whether RACH resource with larger TB (Transport Block) size is valid, whether TA (Timing Advance) is valid) .
  • a status of radio resource e.g. whether CG resource is valid, whether CFRA resource is valid, whether RACH resource with larger TB (Transport Block) size is valid, whether TA (Timing Advance) is valid.
  • the INACTIVE data transmission failure information can include information of configured radio resource for INACTIVE data transmission (i.e. valid radio resource) :
  • the configured PUSCH CG resource configuration for DL transmission, configuration for beam management, configured resource for PUCCH (Physical Uplink Control Channel) /SRS (Sounding Reference Signal) , configured TA validity check timer, the configured multiple sets of CG configuration.
  • the INACTIVE data transmission failure information can include information of selected radio resource for INACTIVE data transmission: the selected set of CG configuration.
  • the INACTIVE data transmission failure information can include information of ongoing data service type (e.g. 5QI, DRB ID, logical channel ID, logical channel group ID, QoS flow ID, PDU session ID) .
  • ongoing data service type e.g. 5QI, DRB ID, logical channel ID, logical channel group ID, QoS flow ID, PDU session ID
  • the INACTIVE data transmission failure information can include a status of RLC, i.e. whether the RLC is released or not (when in INACTIVE state, the RLC may be suspended or released) .
  • the INACTIVE data transmission failure information can include a configured area scope (in which the INACTIVE data transmission is allowed) , the area scope can be for all UEs, or for a specific UE.
  • the INACTIVE data transmission failure information can include an indication to indicate that the UE has buffered data when the UE receives a release message from the NW (network) .
  • the INACTIVE data transmission failure information can include an indication to indicate whether the information (e.g. BSR or INACTIVE data transmission request indication) has been sent to the NW.
  • the INACTIVE data transmission failure information can include an indication to indicate whether the data is included in the Msg3/MsgA when the UE is not the trigger (i.e. the NW is the trigger) for initial transmission type selection (e.g. initiate INACTIVE data transmission or resume to CONNECTED state, which type of INACTIVE data transmission to be performed: CG based or RACH based, with or without RRC involved) .
  • initial transmission type selection e.g. initiate INACTIVE data transmission or resume to CONNECTED state, which type of INACTIVE data transmission to be performed: CG based or RACH based, with or without RRC involved
  • the INACTIVE data transmission failure information can include information of fallback action (e.g. fallback from CG based to RACH based, from CFRA based to CBRA based, from without RRC involved to with RRC involved, fallback to normal resume: i.e. resume to CONNECTED state) ,
  • fallback action e.g. fallback from CG based to RACH based, from CFRA based to CBRA based, from without RRC involved to with RRC involved, fallback to normal resume: i.e. resume to CONNECTED state
  • the INACTIVE data transmission failure information can include information of configured fallback trigger: e.g. the N of N times failure (the fallback is triggered when N times failure is reached) .
  • the INACTIVE data transmission failure information can include information of beam management: For RACH based INACTIVE data transmission, the time duration (with which the beam information derived based on the last RACH procedure is assumed valid) , the beam information of the last RACH procedure, the beam information of the selected beam for INACTIVE data transmission, the time duration can be per cell, or per UE.
  • the pre-configured threshold if any beam with CG resource above it, UE can initiate CG based, otherwise, UE initiates RACH based
  • the information of maintained SRS resource to address the issue of beam change during INACTIVE data transmission
  • the INACTIVE data transmission failure information can include an indication to indicate whether it is allowed to use the RACH resource or the CG resource according to which one comes first.
  • the INACTIVE data transmission failure information can include a configured value of CG response check timer.
  • the above INACTIVE data transmission failure information can be stored in the existing CEF (Connection Establishment Failure) report, RLF (Radio Link Failure) report, RA (Random Access) report or other specified report, or in a new specified report (e.g. INACTIVE data transmission failure report, IDTF report) .
  • CEF Connection Establishment Failure
  • RLF Radio Link Failure
  • RA Random Access
  • the UE 202 can send the INACTIVE data transmission failure information to the network node 204 after the UE goes to CONNECTED state.
  • the NW 204 may send to the UE 202 with updated configuration according to the received INACTIVE data transmission failure information.
  • the configured radio resource for INACTIVE data transmission (the configured separate PRACH resource pool, separate MsgA PUSCH resource pool, separate CORESET/Search Space for Msg2/MsgB reception, configured CFRA resource, the configured PUSCH CG resource, configuration for DL transmission, configuration for beam management, configured resource for PUCCH/SRS, configured TA validity check timer, the configured multiple sets of CG configuration) , whether the RLC is allowed to be released when in INACTIVE state, the configured area scope (in which the INACTIVE data transmission is allowed) , the time duration (with which the beam information derived based on the last RACH procedure is assumed valid) , the pre-configured threshold (if any beam with CG resource above it, UE can initiate CG based, otherwise, UE initiates RACH based)
  • FIG. 3 is a signaling process 300 of an example IDTF reporting process.
  • the UE 302 can send an IDTF report available indication to the NW 304. This can be included in the RRCResumeComplete message, RRCReestablishmentComplete message, RRCReconfigurationComplete message, or RRCSetupComplete message to indicate the NW that the UE has IDTF report stored.
  • the NW 304 may send an IDTF report request to the UE after received the IDTF report available indication from the UE.
  • the UE 302 can send an IDTF report response to the NW carrying the IDTF report after received the IDTF report request from the NW.
  • the IDTF report request may be included in the UEInformationRequest message
  • the IDTF report response may be included in the UEInformationResponse message.
  • FIG. 4 is a signaling process 400 for an example statistic reporting process.
  • the UE 402 can derive at least one of the following statistics: UL data throughput per UE, DL data throughput per UE, UL Uu interface delay per UE, DL Uu interface delay per UE, UL data throughput per 5QI, DL data throughput per 5QI, UL Uu interface delay per 5QI, DL Uu interface delay per 5QI.
  • step 408 the UE 402 can send the statistic result to the NW 404.
  • the NW node can derive a statistic.
  • the NW can derive at least one of the following statistics: UL data throughput per cell, DL data throughput per cell, UL Uu interface delay per cell, DL Uu interface delay per cell.
  • the NW may configure to the UE whether the INACTIVE data transmission is allowed in a cell according to the per cell statistic result.
  • the NW can configure to the UE to allow the UE to use the RACH resource or the CG resource according to which one comes first.
  • the UE can use the RACH resource or the CG resource according to which one comes first, i.e. if the RACH resource comes first, to initiate a RACH based INACTIVE data transmission, if the CG resource comes first, to initiate a CG based INACTIVE data transmission.
  • the UE when the UE initiates a CG based INACTIVE data transmission, the UE starts a CG response check timer.
  • the CG response check timer can be started upon initiating the CG based INACTIVE data transmission and stopped upon receiving a feedback to a UL data, a DL data, or a DL signaling from the network, or expired.
  • UE if UE is in RRC_INACTIVE state and in out of coverage (OOC) , when UE has UL data for transmission, the UE may not initiate the INACTIVE data transmission, UE keeps in RRC_INACTIVE state and starts a timer O, UE waits until the timer O expires or when back to normal coverage.
  • OOC out of coverage
  • UE may initiate the INACTIVE data transmission. If UE is still in OOC when the timer O expires, UE may perform at least one of the following: goes to RRC_IDLE state, informs the upper layer that the data transmission is failed due to UE being in OOC.
  • timer O can be configured per cell, per data service type (e.g. per 5QI) , per UE, per PDU session, per QoS flow, per DRB, per logical channel, or per logical channel group.
  • the value of timer O can be configured by the network to the UE via system information or dedicated signaling.
  • UE can reset the INACTIVE data transmission timer to the value of timer O when the remaining time of INACTIVE data transmission timer is less than the value of timer O.
  • UE can initiate the INACTIVE data transmission. If UE is still in OOC when the timer O expires, UE can perform at least one of the following: goes to RRC_IDLE state, informs the upper layer that the data transmission is failed due to UE being in OOC.
  • FIG. 5 is a signaling process 500 of an example process for reporting a nID.
  • RAN node 1 504 can send the MsgA PUSCH information to RAN node 2 506.
  • the MsgA PUSCH information may carried in the XN SETUP REQUEST, NG-RAN NODE CONFIGURATION UPDATE message, or a new message.
  • RAN node 2 506 can send the MsgA PUSCH information to RAN node 1 504.
  • the MsgA PUSCH information may carried in the XN SETUP RESPONSE, NG-RAN NODE CONFIGURATION UPDATE ACKNOWLEDGE message, or a new message.
  • RAN node 1 504 and/or RAN node 2 506 may send the updated MsgA PUSCH information to the UE to avoid collision when the UE performs 2-step RACH.
  • the MsgA PUSCH information may be used to specify the PUSCH allocation for MsgA in 2-step RACH procedure, including at least one of: an nID, frequencyStartMsgA-PUSCH (Offset of lowest PUSCH occasion in frequency domain with respect to PRB 0) , msgA-HoppingBits (Value of hopping bits to indicate which frequency offset to be used for second hop) , msgA-IntraSlotFrequencyHopping (Intra-slot frequency hopping per PUSCH occasion) , msgA-PUSCH-TimeDomainAllocation (Indicates a combination of start symbol and length and PUSCH mapping type from the TDRA table) , msgA-PUSCH-TimeDomainOffset (Asingle time offset with respect to the start of each PRACH slot, counted as the number of slots) , nrofMsgA-PO-FDM (Number of msgA PUSCH occasions FDMed
  • the nID may include an identifier used to initiate data scrambling (i.e. the C_init) for MsgA on PUSCH.
  • the nID may include a cell-specific parameter if configured (i.e. the msgA-dataScramblingIndex) , otherwise the PCI (Physical cell ID) of the cell.
  • the 2-step RACH relative collision may also can be avoided even when the other resource configurations for 2-step RACH are same, therefore the flexibility is improved.
  • a DU can send the MsgA PUSCH information to CU.
  • the MsgA PUSCH information may be carried in the GNB-DU CONFIGURATION UPDATE, or F1 SETUP REQUEST message.
  • the CU can send the MsgA PUSCH information to other RAN node (e.g. gNB, gNB-CU) .
  • the MsgA PUSCH information may be carried in the XN SETUP REQUEST, NG-RAN NODE CONFIGURATION UPDATE, XN SETUP RESPONSE, or NG-RAN NODE CONFIGURATION UPDATE ACKNOWLEDGE message.
  • the MsgA PUSCH information may be used to specify the PUSCH allocation for MsgA in 2-step RACH procedure, including at least one of: an nID, frequencyStartMsgA-PUSCH (Offset of lowest PUSCH occasion in frequency domain with respect to PRB 0) , msgA-HoppingBits (Value of hopping bits to indicate which frequency offset to be used for second hop) , msgA-IntraSlotFrequencyHopping (Intra-slot frequency hopping per PUSCH occasion) , msgA-PUSCH-TimeDomainAllocation (Indicates a combination of start symbol and length and PUSCH mapping type from the TDRA table) , msgA-PUSCH-TimeDomainOffset (Asingle time offset with respect to the start of each PRACH slot, counted as the number of slots) , nrofMsgA-PO-FDM (Number of msgA PUSCH occasions FDMed
  • the nID may be an identifier used to initiate data scrambling (i.e. the C_init) for MsgA on PUSCH.
  • the nID is a cell-specific parameter if configured (i.e. the msgA-dataScramblingIndex) , otherwise the PCI (Physical cell ID) of the cell.
  • FIG. 6 illustrates a block diagram 600 of an example method for data transmission in an inactive state.
  • the method can include identifying that a data transmission with a network node has failed while the terminal is in an inactive state (block 602) .
  • the terminal (or UE) can identify specific information relating to an inactive data transmission while being in an inactive state.
  • the failure of the data transmission identified by the terminal can occur either in an initiation of an inactive data transmission or during an inactive transmission.
  • the data transmission can include an inactive data transmission as described herein.
  • the method can also include transmitting a set of information relating to the failure of the data transmission to a network node responsive to the terminal transitioning to a connected state in which the terminal is connected to the network node (block 604) .
  • the set of information relating to the failure of the data transmission can include inactive data transmission failure information (e.g., inactive data transmission failure information message 208 sent from UE 202 to NW 204 as described in FIG. 2) as described herein.
  • the set of information relating to the failure of the data transmission includes a failure cause for the failure of the data transmission.
  • the failure cause includes any of: a maximum number of radio link control (RLC) re-transmissions, an expiration of a t310 timer, a beam failure recovery failure, a random access failure with a random access purpose of the data transmission in the radio resource control (RRC) inactive state, a configured grant (CG) based failure, an out of coverage failure, an expiration of a t319 timer, an expiration of an inactive data transmission timer, and an expiration of a CG response check timer.
  • RLC radio link control
  • RRC radio resource control
  • CG configured grant
  • in the set of information relating to the failure of the data transmission includes an indication of whether the terminal or the network node triggered the data transmission.
  • the set of information relating to the failure of the data transmission includes any of a threshold for a buffered data size, and a current buffered data size, wherein the threshold is per terminal, per data radio bearer (DRB) , per logical channel, or per logical channel group, wherein the buffered data size is per terminal, per DRB, per logical channel, or per logical channel group.
  • DRB data radio bearer
  • the set of information relating to the failure of the data transmission includes any of a threshold for a tolerant time, information relating to support solution (s) , and information relating to a selected solution.
  • the set of information relating to the failure of the data transmission includes any of a status of radio resource (s) , information of configured radio resource (s) for the data transmission, information of a selected radio resource for the data transmission, information of an ongoing data service type, and a status of RLC.
  • the set of information relating to the failure of the data transmission includes any of a configured area scope, an indication that the terminal has buffered data responsive to the terminal receiving a release message from the network node, an indication whether a buffer status report (BSR) or a data transmission request in inactive state has been sent to the network node, an indication whether a data has been sent to the network node included in a Msg3 or a MsgA, information of fallback action (s) , information of a configured fallback trigger condition, and information for beam management.
  • BSR buffer status report
  • s fallback action
  • the set of information relating to the failure of the data transmission includes any of an indication of whether using a random-access channel resource or a CG resource according to which one comes first is allowed, and a configured value for a CG response check timer.
  • the set of information relating to the failure of the data transmission is stored by the terminal in any of a Connection Establishment Failure (CEF) report, a Radio Link Failure (RLF) report, and a random-access report.
  • CEF Connection Establishment Failure
  • RLF Radio Link Failure
  • the method includes receiving, by the terminal, an updated data transmission configuration from the network node responsive to transmitting the set of information relating to the failure of the data transmission to the network node.
  • the set of information relating to the failure of the data transmission is included in an inactive data transmission failure (IDTF) report sent to the network node in an IDTF report response message.
  • IDTF inactive data transmission failure
  • the method includes transmitting, by the terminal, an IDTF report available indication to the network node, wherein the IDTF report available indication is included in any of a RRCResumeComplete message, a RRCReestablishmentComplete message, aRRCReconfigurationComplete message, or a RRCSetupComplete message.
  • the method includes receiving, by the terminal, an IDTF report request from the network node responsive to transmission of the IDTF report available indication, wherein the IDTF report request is included in a UEInformationRequest message; and transmitting, by the terminal, an IDTF report response to the network node responsive to receiving of the IDTF report request, wherein the IDTF report response is included in a UEInformationResponse message.
  • the method includes deriving, by the terminal, a first statistic relating to the data transmission, the statistic including any of: an uplink data throughput for the terminal, a downlink data throughput for the terminal, an uplink Uu interface delay for the terminal, a downlink Uu interface delay for the terminal, an uplink data throughput for a 5G QoS Identifier (5QI) , a downlink data throughput for the 5QI, an uplink Uu interface delay for the 5QI, and a downlink Uu interface delay for the 5QI.
  • a first statistic relating to the data transmission the statistic including any of: an uplink data throughput for the terminal, a downlink data throughput for the terminal, an uplink Uu interface delay for the terminal, a downlink Uu interface delay for the terminal, an uplink data throughput for a 5G QoS Identifier (5QI) , a downlink data throughput for the 5QI, an uplink Uu interface delay for the 5QI, and a downlink Uu
  • the network node is configured to derive a second statistic that includes any of an uplink data throughput for a cell, a downlink data throughput for the cell, an uplink Uu interface delay for the cell, and a downlink Uu interface delay for the cell.
  • the network node is configured to determine any of: whether the data transmission is allowed for the terminal based on the first statistic and/or the second statistic, whether the data transmission in the RRC inactive state is allowed for a data service type or a quality of service (QoS) flow based on the first statistic relating to the 5QI, and whether the data transmission in the RRC inactive state is allowed for a cell based on the second statistic.
  • QoS quality of service
  • the data transmission to the network node includes using a random-access channel (RACH) resource or a configured grant (CG) resource that is first detected by the terminal.
  • RACH random-access channel
  • CG configured grant
  • the method includes initiating, by the terminal, a CG response check timer responsive to the data transmission to the network node, wherein the CG response check timer is stopped upon receiving a feedback from the network node, and wherein the terminal is configured to determine the data transmission to the network node as a failed transmission responsive to the expiry of the CG response check timer.
  • the method includes initiating, by the terminal, an out of coverage timer when the terminal is in an inactive state and out of coverage of the network node, and the terminal is to initiate the data transmission, the terminal initiates the data transmission responsive to determining that the terminal is in coverage of the network node prior to the out of coverage timer expiring.
  • the method includes resetting, by the terminal, an inactive data transmission timer to a value of an out of coverage timer responsive to determining that the terminal is out of coverage of the network node and the data transmission is ongoing and a remaining time of the inactive data transmission timer is less than the value of the out of coverage timer.
  • the updated data transmission configuration from the network node includes any of a threshold for a buffered data size, a threshold for a tolerant time, information relating to support solution (s) , information of configured radio resource (s) for the data transmission, an indication whether RLC is allowed to be released when in INACTIVE state, a configured area scope, a time duration within which a beam information derived based on a last RACH procedure is assumed valid, a threshold for determining to use CG based or RACH based solution, a configured sounding reference signal (SRS) resource to address beam change issue during the data transmission in the RRC inactive state, a value of CG response check timer, an indication whether the data transmission in the RRC inactive state is allowed, an indication whether it is allowed to use a RACH resource or a CG resource according to which one comes first.
  • SRS sounding reference signal
  • FIG. 11 shows an example of a wireless communication system where techniques in accordance with one or more embodiments of the present technology can be applied.
  • a wireless communication system 1100 can include one or more base stations (BSs) 1105a, 1105b, one or more wireless devices or terminals 1110a, 1110b, 1110c, 1110d, and a core network 1125.
  • a base station 1105a, 1105b can provide wireless service to wireless devices 1110a, 1110b, 1110c and 1110d in one or more wireless sectors.
  • a base station 1105a, 1105b includes directional antennas to produce two or more directional beams to provide wireless coverage in different sectors.
  • the base station may implement functionalities of a scheduling cell or a candidate cell, as described in the present document.
  • the core network 1125 can communicate with one or more base stations 1105a, 1105b.
  • the core network 1125 provides connectivity with other wireless communication systems and wired communication systems.
  • the core network may include one or more service subscription databases to store information related to the subscribed wireless devices 1110a, 1110b, 1110c, and 1110d.
  • a first base station 1105a can provide wireless service based on a first radio access technology
  • a second base station 1105b can provide wireless service based on a second radio access technology.
  • the base stations 1105a and 1105b may be co-located or may be separately installed in the field according to the deployment scenario.
  • the wireless devices 1110a, 1110b, 1110c, and 1110d can support multiple different radio access technologies.
  • a wireless communication system can include multiple networks using different wireless technologies.
  • a dual-mode or multi-mode wireless device includes two or more wireless technologies that could be used to connect to different wireless networks.
  • FIG. 12 is a block diagram representation of a portion of a hardware platform.
  • a hardware platform 1205 such as a network node or a base station or a terminal or a wireless device (or UE) can include processor electronics 1210 such as a microprocessor that implements one or more of the techniques presented in this document.
  • the hardware platform 1205 can include transceiver electronics 1215 to send and/or receive wired or wireless signals over one or more communication interfaces such as antenna 1220 or a wireline interface.
  • the hardware platform 1205 can implement other communication interfaces with defined protocols for transmitting and receiving data.
  • the hardware platform 1205 can include one or more memories (not explicitly shown) configured to store information such as data and/or instructions.
  • the processor electronics 1210 can include at least a portion of the transceiver electronics 1215. In some embodiments, at least some of the disclosed techniques, modules or functions are implemented using the hardware platform 1205.
  • the disclosed and other embodiments, modules and the functional operations described in this document can be implemented in digital electronic circuitry, or in computer software, firmware, or hardware, including the structures disclosed in this document and their structural equivalents, or in combinations of one or more of them.
  • the disclosed and other embodiments can be implemented as one or more computer program products, i.e., one or more modules of computer program instructions encoded on a computer readable medium for execution by, or to control the operation of, data processing apparatus.
  • the computer readable medium can be a machine-readable storage device, a machine-readable storage substrate, a memory device, a composition of matter effecting a machine-readable propagated signal, or a combination of one or more them.
  • data processing apparatus encompasses all apparatus, devices, and machines for processing data, including by way of example a programmable processor, a computer, or multiple processors or computers.
  • the apparatus can include, in addition to hardware, code that creates an execution environment for the computer program in question, e.g., code that constitutes processor firmware, a protocol stack, a database management system, an operating system, or a combination of one or more of them.
  • a propagated signal is an artificially generated signal, e.g., a machine-generated electrical, optical, or electromagnetic signal, that is generated to encode information for transmission to suitable receiver apparatus.
  • a computer program (also known as a program, software, software application, script, or code) can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment.
  • a computer program does not necessarily correspond to a file in a file system.
  • a program can be stored in a portion of a file that holds other programs or data (e.g., one or more scripts stored in a markup language document) , in a single file dedicated to the program in question, or in multiple coordinated files (e.g., files that store one or more modules, sub programs, or portions of code) .
  • a computer program can be deployed to be executed on one computer or on multiple computers that are located at one site or distributed across multiple sites and interconnected by a communication network.
  • the processes and logic flows described in this document can be performed by one or more programmable processors executing one or more computer programs to perform functions by operating on input data and generating output.
  • the processes and logic flows can also be performed by, and apparatus can also be implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application specific integrated circuit) .
  • processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer.
  • a processor will receive instructions and data from a read only memory or a random-access memory or both.
  • the essential elements of a computer are a processor for performing instructions and one or more memory devices for storing instructions and data.
  • a computer will also include, or be operatively coupled to receive data from or transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic, magneto optical disks, or optical disks.
  • mass storage devices for storing data, e.g., magnetic, magneto optical disks, or optical disks.
  • a computer need not have such devices.
  • Computer readable media suitable for storing computer program instructions and data include all forms of non-volatile memory, media and memory devices, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto optical disks; and CD ROM and DVD-ROM disks.
  • semiconductor memory devices e.g., EPROM, EEPROM, and flash memory devices
  • magnetic disks e.g., internal hard disks or removable disks
  • magneto optical disks e.g., CD ROM and DVD-ROM disks.
  • the processor and the memory can be supplemented by, or incorporated in, special purpose logic circuitry.

Abstract

The present application relates to methods, systems, and devices related to digital wireless communication, and more specifically, to techniques related to data transmission in an inactive state. In one exemplary aspect, a method for data communication is disclosed. The method includes identifying, by a terminal, that a data transmission with a network node has failed while the terminal is in an inactive state. The method also includes transmitting, by the terminal, a set of information relating to the failure of the data transmission to a network node responsive to the terminal transitioning to a connected state in which the terminal is connected to the network node.

Description

DATA TRANSMISSION IN AN INACTIVE STATE TECHNICAL FIELD
This patent document is directed generally to wireless communications.
BACKGROUND
Mobile communication technologies are moving the world toward an increasingly connected and networked society. The rapid growth of mobile communications and advances in technology have led to greater demand for capacity and connectivity. Other aspects, such as energy consumption, device cost, spectral efficiency, and latency are also important to meeting the needs of various communication scenarios. Various techniques, including new ways to provide higher quality of service, are being discussed.
SUMMARY
This document discloses methods, systems, and devices related to digital wireless communication, and more specifically, to techniques related to data transmission in an inactive state.
In one exemplary aspect, a method for data communication is disclosed. The method includes identifying, by a terminal, that a data transmission with a network node has failed while the terminal is in an inactive state. The method also includes transmitting, by the terminal, a set of information relating to the failure of the data transmission to a network node responsive to the terminal transitioning to a connected state in which the terminal is connected to the network node.
In another exemplary aspect, a wireless communications apparatus comprising a processor is disclosed. The processor is configured to implement a method described herein.
In yet another exemplary aspect, the various techniques described herein may be embodied as processor-executable code and stored on a computer-readable program medium.
The details of one or more implementations are set forth in the accompanying attachments, the drawings, and the description below. Other features will be apparent from the description and drawings, and from the clauses.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is an illustration of an example 5G network architecture.
FIG. 2 illustrates a signaling process of an example inactive data transmission failure information reporting process.
FIG. 3 is a signaling process of an example IDTF reporting process.
FIG. 4 is a signaling process for an example statistic reporting process.
FIG. 5 is a signaling process of an example process for reporting a nID.
FIG. 6 illustrates a block diagram of an example method for data transmission in an inactive state.
FIG. 7 shows an example of a wireless communication system where techniques in accordance with one or more embodiments of the present technology can be applied.
FIG. 8 is a block diagram representation of a portion of a hardware platform.
DETAILED DESCRIPTION
The development of the new generation of wireless communication –5G New Radio (NR) communication –is a part of a continuous mobile broadband evolution process to meet the requirements of increasing network demand. NR will provide greater throughput to allow more users connected at the same time. Other aspects, such as energy consumption, device cost, spectral efficiency, and latency are also important to meeting the needs of various communication scenarios.
The present embodiments can relate to optimization of data transmission in an inactive state. The method of optimizing for data transmission in inactive state can be, for example, to avoid unnecessary signaling overhead and power consumption when performing the data transmission in the inactive state.
FIG. 1 is an illustration of an example 5G network architecture 100. As shown in FIG. 1, a fifth generation (5G) network architecture may include a 5G core network (5GC) and a next generation radio access network (NG-RAN) . The 5GC may include any of an Access Mobility Function (AMF) , a Session Management Function (SMF) , and a User Plane Function (UPF) . The NG-RAN may include base stations with different radio access technologies (RATs) , such as an evolved 4G base station (ng-eNB) , a 5G base station (gNB) . The NG-RAN base station may be connected to the 5GC through the NG interface, and the NG-RAN base stations may be connected through the Xn interface.
An RRC_INACTIVE state has been introduced to provide an efficient state. A UE in such state can provide lower power consumption than in RRC_CONNECTED state, and can transfer to RRC_CONNECTED state with lower control plane latency than in RRC_IDLE state.
However, for the UE in RRC_INACTIVE state, since the data transmission without state transition may not be supported in the current standard, whenever the UE has data to transmit, the UE may have to enter RRC_CONNECTED state first and then initiate the data transmission. This may be a problem in case the data packet is small and infrequent, the UE may not be in RRC_CONNECTED state since the data packet is not so frequent, however the UE may need to be resumed to RRC_CONNECTED state and subsequently to be released to INACTIVE state for each data transmission, no matter the size of the data . This may result in unnecessary signaling overhead and power consumption, and also may be particularly severe in the case the data frequency is not sparse, but not so frequent to be considered to transfer to RRC_CONNECTED state.
The enablers for small data transmission in INACTIVE state in NR may include the Random Access Channel (RACH) based and configured grant type-1 (CG) based methods.
System Overview
The present embodiments relate to optimizing for data transmission in an inactive state. When a failure is detected by a UE upon initiating an INACTIVE data transmission or during an INACTIVE data transmission, various information types can be stored by the UE and reported to a network node after the UE goes to a CONNECTED state. The INACTIVE state may be, for example, the RRC_INACTIVE state described with respect to the 5G example herein.
The information can include a failure cause for the INACTIVE data transmission, including at least one of : rlc-MaxNumRetx (max number of RLC re-transmission) , t310-Expiry, beamFailureRecoveryFailure, randomAccessProblem with raPurpose of INACTIVE data transmission, CG based transmission failure, failure due to in OOC (out of coverage) , expiration of T319 timer, expiration of INACTIVE data transmission timer (start upon initiating the INACTIVE data transmission, stop upon receiving a release message from the network or expired) , expiration of CG response check timer (start upon initiating the CG based INACTIVE data transmission, stop upon receiving a feedback to a UL data, a DL data, or a DL signaling from the network, or expired) .
The information can also include an indication to indicate who triggers the  INACTIVE data transmission (the UE or the network) .
The information can also include a threshold for buffered data size (the INACTIVE data transmission is allowed when the buffered data size is < or <= the threshold) , the threshold can be per UE, per DRB, per logical channel or per logical channel group.
The information can also include a threshold for tolerant time (the INACTIVE data transmission is allowed when the tolerant time of the ongoing data service type is > or >= the threshold) .
The information can also include a current buffered data size, the current buffered data size can be per UE, per DRB, per logical channel or per logical channel group.
The information can also include information of supported solution (e.g. whether INACTIVE data transmission is supported, whether CG based solution is supported, whether CFRA (contention-free random access) based solution is supported, whether RACH based solution is supported, whether with RRC involved solution is supported, whether without RRC involved solution is supported) , the information of supported solution can be per UE, per DRB, per logical channel, per logical channel group, per QoS flow, or per PDU session.
The information can also include information of selected solution (e.g. CG based solution is selected, CFRA based solution is selected, RACH based solution is selected, with RRC involved solution is selected, without RRC involved solution is selected) .
The information can also include a status of radio resource (e.g. whether CG resource is valid, whether CFRA resource is valid, whether RACH resource with larger TB (Transport Block) size is valid, whether TA (Timing Advance) is valid) .
The information can also include information of configured radio resource for INACTIVE data transmission (i.e. valid radio resource) : For RACH based solution, the configured separate PRACH (Physical Random Access Channel) resource pool, separate MsgA PUSCH (Physical Uplink Shared Channel) resource pool, separate CORESET (control resource set) /Search Space for Msg2/MsgB reception, the configured CFRA resource. For CG based solution, the configured PUSCH CG resource, configuration for DL transmission, configuration for beam management, configured resource for PUCCH (Physical Uplink Control Channel) /SRS (Sounding Reference Signal) , configured TA validity check timer, the configured multiple sets of CG configuration.
The information can also include information of selected radio resource for  INACTIVE data transmission: the selected set of CG configuration.
The information can also include information of ongoing data service type (e.g. 5QI, DRB ID, logical channel ID, logical channel group ID, QoS flow ID, PDU session ID) .
The information can also include a status of RLC, i.e. whether the RLC is released or not (when in INACTIVE state, the RLC may be suspended or released) .
The information can also include a configured area scope (in which the INACTIVE data transmission is allowed) , the area scope can be for all UEs, or for a specific UE.
The information can also include an indication to indicate that the UE has buffered data when the UE receives a release message from the NW (network) .
The information can also include an indication to indicate whether the information (e.g. BSR or INACTIVE data transmission request indication) has been sent to the NW.
The information can also include an indication to indicate whether the data is included in the Msg3/MsgA when the UE is not the trigger (i.e. the NW is the trigger) for initial transmission type selection (e.g. initiate INACTIVE data transmission or resume to CONNECTED state, which type of INACTIVE data transmission to be performed: CG based or RACH based, with or without RRC involved) .
The information can also include an information of fallback action (e.g. fallback from CG based to RACH based, from CFRA based to CBRA based, from without RRC involved to with RRC involved, fallback to normal resume: i.e. resume to CONNECTED state) ,
The information can also include information of configured fallback trigger: e.g. the N of N times failure (the fallback is triggered when N times failure is reached) .
The information can also include information of beam management: For RACH based INACTIVE data transmission, the time duration (with which the beam information derived based on the last RACH procedure is assumed valid) , the beam information of the last RACH procedure, the beam information of the selected beam for INACTIVE data transmission, the time duration can be per cell, or per UE. For CG based INACTIVE data transmission, the pre-configured threshold (if any beam with CG resource above it, UE can initiate CG based, otherwise, UE initiates RACH based) , the information of maintained SRS resource (to address the issue of beam change during INACTIVE data transmission) .
The information can also include an indication to indicate whether it is allowed to use the RACH resource or the CG resource according to which one comes first.
The information can also include a configured value of CG response check timer.
The above INACTIVE data transmission failure information can be stored in the existing CEF (Connection Establishment Failure) report, RLF (Radio Link Failure) report, RA (Random Access) report or other specified report, or a new specified report (e.g. INACTIVE data transmission failure report, IDTF report) .
When the IDTF report is adopted, an IDTF report available indication may be included in the RRCResumeComplete message, RRCReestablishmentComplete message, RRCReconfigurationComplete message, or RRCSetupComplete message to indicate the NW that the UE has IDTF report stored.
The NW may send an IDTF report request to the UE after received the IDTF report available indication from the UE, the UE sends an IDTF report response to the NW carrying the IDTF report after received the IDTF report request from the NW. The IDTF report request may be included in the UEInformationRequest message, the IDTF report response may be included in the UEInformationResponse message.
During the INACTIVE data transmission, the UE can derive a statistic. The statistic can include at least one of: UL data throughput per UE, DL data throughput per UE, UL Uu interface delay per UE, DL Uu interface delay per UE, UL data throughput per 5QI, DL data throughput per 5QI, UL Uu interface delay per 5QI, DL Uu interface delay per 5QI. The statistic result may be reported to the network node (or NW) .
During the INACTIVE data transmission, the NW can derive a statistic including at least one of the following: UL data throughput per cell, DL data throughput per cell, UL Uu interface delay per cell, DL Uu interface delay per cell.
The NW may configure to the UE whether the INACTIVE data transmission is allowed for a UE according to the per UE statistic result.
The NW may configure to the UE whether the INACTIVE data transmission is allowed for a data service type or a QoS flow according to the per 5QI statistic result.
The NW may configure to the UE whether the INACTIVE data transmission is allowed in a cell according to the per cell statistic result.
In some embodiments, when the UE initiates an INACTIVE data transmission, the UE uses the RACH resource or the CG resource according to which one comes first, i.e., if the RACH resource comes first, to initiate a RACH based INACTIVE data transmission, if the CG  resource comes first, to initiate a CG based INACTIVE data transmission.
In some embodiments, when the UE initiates a CG based INACTIVE data transmission, the UE starts a CG response check timer. If the UE does not receive any of a feedback to a UL data, a DL data, or a DL signaling from the network before the CG response check timer is expired, the UE can consider the CG based INACTIVE data transmission is failed. The CG response check timer can be started upon initiating the CG based INACTIVE data transmission and stopped upon receiving a feedback to a UL data, a DL data, or a DL signaling from the network, or expired.
In some embodiments, if UE is in RRC_INACTIVE state and in OOC, when UE has UL data for transmission, UE may not initiate the INACTIVE data transmission, UE may maintain in RRC_INACTIVE state and starts a timer O, UE may wait until the timer O expires or when back to normal coverage. If UE is back to normal coverage before the timer O expires, UE can initiate the INACTIVE data transmission. If UE is still in OOC when the timer O expires, UE can perform at least one of the following: goes to RRC_IDLE state, informs the upper layer that the data transmission is failed due to UE being in OOC.
If the INACTIVE data transmission is ongoing (e.g., the INACTIVE data transmission timer is running) and UE encounters OOC, UE can reset the INACTIVE data transmission timer to the value of timer O when the remaining time of INACTIVE data transmission timer is less than the value of timer O.
The value of timer O can be configured per cell, per data service type (e.g., per 5G Quality of Service Indicator (5QI) ) , per UE, per PDU session, per QoS flow, per DRB, per logical channel, or per logical channel group.
The value of timer O can be configured by the network to the UE via system information or dedicated signaling.
In some embodiments, MsgA PUSCH information used to specify the PUSCH allocation for MsgA in 2-step RACH procedure is exchanged between RAN nodes, or is sent from DU to CU. The MsgA PUSCH information may carried in the XN SETUP REQUEST, NG-RAN NODE CONFIGURATION UPDATE, XN SETUP RESPONSE, or NG-RAN NODE CONFIGURATION UPDATE ACKNOWLEDGE message, or carried in a new message, when exchanged between RAN nodes. The MsgA PUSCH information may carried in the GNB-DU CONFIGURATION UPDATE, or F1 SETUP REQUEST message, or carried in a new message,  when sent from DU to CU.
Example Embodiment 1
FIG. 2 illustrates a signaling process 200 of an example inactive data transmission failure information reporting process. In step 206, the UE 202 can store inactive data transmission failure information responsive to detecting a failure of a data transmission.
The INACTIVE data transmission failure information can include a failure cause for the INACTIVE data transmission, including at least one of : rlc-MaxNumRetx (max number of RLC re-transmission) , t310-Expiry, beamFailureRecoveryFailure, randomAccessProblem with raPurpose of INACTIVE data transmission, CG based transmission failure, failure due to in OOC (out of coverage) , expiration of T319 timer, expiration of INACTIVE data transmission timer (start upon initiating the INACTIVE data transmission, stop upon receiving a release message from the network or expired) , expiration of CG response check timer (start upon initiating the CG based INACTIVE data transmission, stop upon receiving a feedback to a UL data, a DL data, or a DL signaling from the network, or expired) .
The INACTIVE data transmission failure information can include an indication to indicate who triggers the INACTIVE data transmission (the UE or the network) .
The INACTIVE data transmission failure information can include a threshold for buffered data size (the INACTIVE data transmission is allowed when the buffered data size is <or <= the threshold) , the threshold can be per UE, per DRB, per logical channel or per logical channel group.
The INACTIVE data transmission failure information can include a threshold for tolerant time (the INACTIVE data transmission is allowed when the tolerant time of the ongoing data service type is > or >= the threshold) .
The INACTIVE data transmission failure information can include a current buffered data size, the current buffered data size can be per UE, per DRB, per logical channel or per logical channel group.
The INACTIVE data transmission failure information can include information of supported solution (e.g. whether INACTIVE data transmission is supported, whether CG based solution is supported, whether CFRA (contention-free random access) based solution is supported, whether RACH based solution is supported, whether with RRC involved solution is supported, whether without RRC involved solution is supported) , the information of supported  solution can be per UE, per DRB, per logical channel, per logical channel group, per QoS flow, or per PDU session.
The INACTIVE data transmission failure information can include information of selected solution (e.g. CG based solution is selected, CFRA based solution is selected, RACH based solution is selected, with RRC involved solution is selected, without RRC involved solution is selected) .
The INACTIVE data transmission failure information can include a status of radio resource (e.g. whether CG resource is valid, whether CFRA resource is valid, whether RACH resource with larger TB (Transport Block) size is valid, whether TA (Timing Advance) is valid) .
The INACTIVE data transmission failure information can include information of configured radio resource for INACTIVE data transmission (i.e. valid radio resource) : For RACH based solution, the configured separate PRACH (Physical Random Access Channel) resource pool, separate MsgA PUSCH (Physical Uplink Shared Channel) resource pool, separate CORESET (control resource set) /Search Space for Msg2/MsgB reception, the configured CFRA resource. For CG based solution, the configured PUSCH CG resource, configuration for DL transmission, configuration for beam management, configured resource for PUCCH (Physical Uplink Control Channel) /SRS (Sounding Reference Signal) , configured TA validity check timer, the configured multiple sets of CG configuration.
The INACTIVE data transmission failure information can include information of selected radio resource for INACTIVE data transmission: the selected set of CG configuration.
The INACTIVE data transmission failure information can include information of ongoing data service type (e.g. 5QI, DRB ID, logical channel ID, logical channel group ID, QoS flow ID, PDU session ID) .
The INACTIVE data transmission failure information can include a status of RLC, i.e. whether the RLC is released or not (when in INACTIVE state, the RLC may be suspended or released) .
The INACTIVE data transmission failure information can include a configured area scope (in which the INACTIVE data transmission is allowed) , the area scope can be for all UEs, or for a specific UE.
The INACTIVE data transmission failure information can include an indication to indicate that the UE has buffered data when the UE receives a release message from the NW  (network) .
The INACTIVE data transmission failure information can include an indication to indicate whether the information (e.g. BSR or INACTIVE data transmission request indication) has been sent to the NW.
The INACTIVE data transmission failure information can include an indication to indicate whether the data is included in the Msg3/MsgA when the UE is not the trigger (i.e. the NW is the trigger) for initial transmission type selection (e.g. initiate INACTIVE data transmission or resume to CONNECTED state, which type of INACTIVE data transmission to be performed: CG based or RACH based, with or without RRC involved) .
The INACTIVE data transmission failure information can include information of fallback action (e.g. fallback from CG based to RACH based, from CFRA based to CBRA based, from without RRC involved to with RRC involved, fallback to normal resume: i.e. resume to CONNECTED state) ,
The INACTIVE data transmission failure information can include information of configured fallback trigger: e.g. the N of N times failure (the fallback is triggered when N times failure is reached) .
The INACTIVE data transmission failure information can include information of beam management: For RACH based INACTIVE data transmission, the time duration (with which the beam information derived based on the last RACH procedure is assumed valid) , the beam information of the last RACH procedure, the beam information of the selected beam for INACTIVE data transmission, the time duration can be per cell, or per UE. For CG based INACTIVE data transmission, the pre-configured threshold (if any beam with CG resource above it, UE can initiate CG based, otherwise, UE initiates RACH based) , the information of maintained SRS resource (to address the issue of beam change during INACTIVE data transmission) .
The INACTIVE data transmission failure information can include an indication to indicate whether it is allowed to use the RACH resource or the CG resource according to which one comes first.
The INACTIVE data transmission failure information can include a configured value of CG response check timer.
The above INACTIVE data transmission failure information can be stored in the  existing CEF (Connection Establishment Failure) report, RLF (Radio Link Failure) report, RA (Random Access) report or other specified report, or in a new specified report (e.g. INACTIVE data transmission failure report, IDTF report) .
In step 208, the UE 202 can send the INACTIVE data transmission failure information to the network node 204 after the UE goes to CONNECTED state.
In step 210, the NW 204 may send to the UE 202 with updated configuration according to the received INACTIVE data transmission failure information. The updated configuration may include e.g. the threshold for buffered data size (the INACTIVE data transmission is allowed when the buffered data size is < or <= the threshold) , the threshold for tolerant time (the INACTIVE data transmission is allowed when the tolerant time of the ongoing data service type is > or >= the threshold) , the supported solution (e.g. whether INACTIVE data transmission is supported, whether CG based solution is supported, whether CFRA based solution is supported, whether RACH based solution is supported, whether with RRC involved solution is supported, whether without RRC involved solution is supported) , the configured radio resource for INACTIVE data transmission (the configured separate PRACH resource pool, separate MsgA PUSCH resource pool, separate CORESET/Search Space for Msg2/MsgB reception, configured CFRA resource, the configured PUSCH CG resource, configuration for DL transmission, configuration for beam management, configured resource for PUCCH/SRS, configured TA validity check timer, the configured multiple sets of CG configuration) , whether the RLC is allowed to be released when in INACTIVE state, the configured area scope (in which the INACTIVE data transmission is allowed) , the time duration (with which the beam information derived based on the last RACH procedure is assumed valid) , the pre-configured threshold (if any beam with CG resource above it, UE can initiate CG based, otherwise, UE initiates RACH based) , the maintained SRS resource (to address the issue of beam change during INACTIVE data transmission) , the value of CG response check timer, whether the INACTIVE data transmission is allowed, whether it is allowed to use the RACH resource or the CG resource according to which one comes first.
Example Embodiment 2
FIG. 3 is a signaling process 300 of an example IDTF reporting process. In step 306, when the IDTF report is adopted, the UE 302 can send an IDTF report available indication to the NW 304. This can be included in the RRCResumeComplete message,  RRCReestablishmentComplete message, RRCReconfigurationComplete message, or RRCSetupComplete message to indicate the NW that the UE has IDTF report stored.
In step 308, the NW 304 may send an IDTF report request to the UE after received the IDTF report available indication from the UE.
In step 310, the UE 302 can send an IDTF report response to the NW carrying the IDTF report after received the IDTF report request from the NW.
The IDTF report request may be included in the UEInformationRequest message, the IDTF report response may be included in the UEInformationResponse message.
Example Embodiment 3
FIG. 4 is a signaling process 400 for an example statistic reporting process. In step 406, during the INACTIVE data transmission, the UE 402 can derive at least one of the following statistics: UL data throughput per UE, DL data throughput per UE, UL Uu interface delay per UE, DL Uu interface delay per UE, UL data throughput per 5QI, DL data throughput per 5QI, UL Uu interface delay per 5QI, DL Uu interface delay per 5QI.
In step 408, the UE 402 can send the statistic result to the NW 404.
In step 410, The NW 404 may configure to the UE whether the INACTIVE data transmission is allowed for the UE according to the per UE statistic result, e.g. if the UL data throughput per UE is > or >= a threshold or the UL Uu interface delay per UE is > or >= a threshold, the data transmission is not allowed for the UE. Or the NW may configure to the UE whether the INACTIVE data transmission is allowed for a data service type or a QoS flow according to the per 5QI statistic result.
Example Embodiment 4
In some embodiments, the NW node can derive a statistic. During the INACTIVE data transmission, the NW can derive at least one of the following statistics: UL data throughput per cell, DL data throughput per cell, UL Uu interface delay per cell, DL Uu interface delay per cell.
The NW may configure to the UE whether the INACTIVE data transmission is allowed in a cell according to the per cell statistic result.
Example Embodiment 5
In some embodiments, the NW can configure to the UE to allow the UE to use the RACH resource or the CG resource according to which one comes first.
When the UE initiates an INACTIVE data transmission, the UE can use the RACH resource or the CG resource according to which one comes first, i.e. if the RACH resource comes first, to initiate a RACH based INACTIVE data transmission, if the CG resource comes first, to initiate a CG based INACTIVE data transmission.
Example Embodiment 6
In some instances, when the UE initiates a CG based INACTIVE data transmission, the UE starts a CG response check timer.
If the UE does not receive any of a feedback to a UL data, a DL data, or a DL signaling from the network before the CG response check timer is expired, the UE can consider the CG based INACTIVE data transmission is failed. The CG response check timer can be started upon initiating the CG based INACTIVE data transmission and stopped upon receiving a feedback to a UL data, a DL data, or a DL signaling from the network, or expired.
Example Embodiment 7
In some embodiments, if UE is in RRC_INACTIVE state and in out of coverage (OOC) , when UE has UL data for transmission, the UE may not initiate the INACTIVE data transmission, UE keeps in RRC_INACTIVE state and starts a timer O, UE waits until the timer O expires or when back to normal coverage.
If UE is back to normal coverage before the timer O expires, UE may initiate the INACTIVE data transmission. If UE is still in OOC when the timer O expires, UE may perform at least one of the following: goes to RRC_IDLE state, informs the upper layer that the data transmission is failed due to UE being in OOC.
The value of timer O can be configured per cell, per data service type (e.g. per 5QI) , per UE, per PDU session, per QoS flow, per DRB, per logical channel, or per logical channel group. The value of timer O can be configured by the network to the UE via system information or dedicated signaling.
Example Embodiment 8
If the INACTIVE data transmission is ongoing (e.g. the INACTIVE data transmission timer is running) and UE encounters OOC, UE can reset the INACTIVE data transmission timer to the value of timer O when the remaining time of INACTIVE data transmission timer is less than the value of timer O.
If UE is back to normal coverage before the timer O expires, UE can initiate the  INACTIVE data transmission. If UE is still in OOC when the timer O expires, UE can perform at least one of the following: goes to RRC_IDLE state, informs the upper layer that the data transmission is failed due to UE being in OOC.
Example Embodiment 9
FIG. 5 is a signaling process 500 of an example process for reporting a nID. In step 508, RAN node 1 504 can send the MsgA PUSCH information to RAN node 2 506. The MsgA PUSCH information may carried in the XN SETUP REQUEST, NG-RAN NODE CONFIGURATION UPDATE message, or a new message.
In step 510, RAN node 2 506 can send the MsgA PUSCH information to RAN node 1 504. The MsgA PUSCH information may carried in the XN SETUP RESPONSE, NG-RAN NODE CONFIGURATION UPDATE ACKNOWLEDGE message, or a new message.
In step 512 and/or step 514, RAN node 1 504 and/or RAN node 2 506 may send the updated MsgA PUSCH information to the UE to avoid collision when the UE performs 2-step RACH.
The MsgA PUSCH information may be used to specify the PUSCH allocation for MsgA in 2-step RACH procedure, including at least one of: an nID, frequencyStartMsgA-PUSCH (Offset of lowest PUSCH occasion in frequency domain with respect to PRB 0) , msgA-HoppingBits (Value of hopping bits to indicate which frequency offset to be used for second hop) , msgA-IntraSlotFrequencyHopping (Intra-slot frequency hopping per PUSCH occasion) , msgA-PUSCH-TimeDomainAllocation (Indicates a combination of start symbol and length and PUSCH mapping type from the TDRA table) , msgA-PUSCH-TimeDomainOffset (Asingle time offset with respect to the start of each PRACH slot, counted as the number of slots) , nrofMsgA-PO-FDM (Number of msgA PUSCH occasions FDMed in one time instance) , nrofMsgA-PO-PerSlot (Number of time domain PUSCH occasions in each slot) , nrofPRBs-PerMsgA-PO (Number of PRBs per PUSCH occasion) , nrofSlotsMsgA-PUSCH (Number of slots containing one or multiple PUSCH occasions) , startSymbolAndLengthMsgA-PO (An index giving valid combinations of start symbol, length and mapping type as start and length indicator for the first msgA PUSCH occasion) .
The nID may include an identifier used to initiate data scrambling (i.e. the C_init) for MsgA on PUSCH. The nID may include a cell-specific parameter if configured (i.e. the msgA-dataScramblingIndex) , otherwise the PCI (Physical cell ID) of the cell. When the nID of two  neighbour cells (e.g. one belongs to RAN node 1, another belongs to RAN node 2) are different, the 2-step RACH relative collision may also can be avoided even when the other resource configurations for 2-step RACH are same, therefore the flexibility is improved.
Example Embodiment 10
In some embodiments, a DU can send the MsgA PUSCH information to CU. The MsgA PUSCH information may be carried in the GNB-DU CONFIGURATION UPDATE, or F1 SETUP REQUEST message.
The CU can send the MsgA PUSCH information to other RAN node (e.g. gNB, gNB-CU) . The MsgA PUSCH information may be carried in the XN SETUP REQUEST, NG-RAN NODE CONFIGURATION UPDATE, XN SETUP RESPONSE, or NG-RAN NODE CONFIGURATION UPDATE ACKNOWLEDGE message.
The MsgA PUSCH information may be used to specify the PUSCH allocation for MsgA in 2-step RACH procedure, including at least one of: an nID, frequencyStartMsgA-PUSCH (Offset of lowest PUSCH occasion in frequency domain with respect to PRB 0) , msgA-HoppingBits (Value of hopping bits to indicate which frequency offset to be used for second hop) , msgA-IntraSlotFrequencyHopping (Intra-slot frequency hopping per PUSCH occasion) , msgA-PUSCH-TimeDomainAllocation (Indicates a combination of start symbol and length and PUSCH mapping type from the TDRA table) , msgA-PUSCH-TimeDomainOffset (Asingle time offset with respect to the start of each PRACH slot, counted as the number of slots) , nrofMsgA-PO-FDM (Number of msgA PUSCH occasions FDMed in one time instance) , nrofMsgA-PO-PerSlot (Number of time domain PUSCH occasions in each slot) , nrofPRBs-PerMsgA-PO (Number of PRBs per PUSCH occasion) , nrofSlotsMsgA-PUSCH (Number of slots containing one or multiple PUSCH occasions) , startSymbolAndLengthMsgA-PO (An index giving valid combinations of start symbol, length and mapping type as start and length indicator for the first msgA PUSCH occasion) .
The nID may be an identifier used to initiate data scrambling (i.e. the C_init) for MsgA on PUSCH. The nID is a cell-specific parameter if configured (i.e. the msgA-dataScramblingIndex) , otherwise the PCI (Physical cell ID) of the cell.
FIG. 6 illustrates a block diagram 600 of an example method for data transmission in an inactive state. The method can include identifying that a data transmission with a network node has failed while the terminal is in an inactive state (block 602) . The terminal (or UE) can  identify specific information relating to an inactive data transmission while being in an inactive state. The failure of the data transmission identified by the terminal can occur either in an initiation of an inactive data transmission or during an inactive transmission. The data transmission can include an inactive data transmission as described herein.
The method can also include transmitting a set of information relating to the failure of the data transmission to a network node responsive to the terminal transitioning to a connected state in which the terminal is connected to the network node (block 604) . The set of information relating to the failure of the data transmission can include inactive data transmission failure information (e.g., inactive data transmission failure information message 208 sent from UE 202 to NW 204 as described in FIG. 2) as described herein.
In some embodiments, the set of information relating to the failure of the data transmission includes a failure cause for the failure of the data transmission.
In some embodiments, the failure cause includes any of: a maximum number of radio link control (RLC) re-transmissions, an expiration of a t310 timer, a beam failure recovery failure, a random access failure with a random access purpose of the data transmission in the radio resource control (RRC) inactive state, a configured grant (CG) based failure, an out of coverage failure, an expiration of a t319 timer, an expiration of an inactive data transmission timer, and an expiration of a CG response check timer.
In some embodiments, in the set of information relating to the failure of the data transmission includes an indication of whether the terminal or the network node triggered the data transmission.
In some embodiments, the set of information relating to the failure of the data transmission includes any of a threshold for a buffered data size, and a current buffered data size, wherein the threshold is per terminal, per data radio bearer (DRB) , per logical channel, or per logical channel group, wherein the buffered data size is per terminal, per DRB, per logical channel, or per logical channel group.
In some embodiments, the set of information relating to the failure of the data transmission includes any of a threshold for a tolerant time, information relating to support solution (s) , and information relating to a selected solution.
In some embodiments, the set of information relating to the failure of the data transmission includes any of a status of radio resource (s) , information of configured radio  resource (s) for the data transmission, information of a selected radio resource for the data transmission, information of an ongoing data service type, and a status of RLC.
In some embodiments, the set of information relating to the failure of the data transmission includes any of a configured area scope, an indication that the terminal has buffered data responsive to the terminal receiving a release message from the network node, an indication whether a buffer status report (BSR) or a data transmission request in inactive state has been sent to the network node, an indication whether a data has been sent to the network node included in a Msg3 or a MsgA, information of fallback action (s) , information of a configured fallback trigger condition, and information for beam management.
In some embodiments, the set of information relating to the failure of the data transmission includes any of an indication of whether using a random-access channel resource or a CG resource according to which one comes first is allowed, and a configured value for a CG response check timer.
In some embodiments, the set of information relating to the failure of the data transmission is stored by the terminal in any of a Connection Establishment Failure (CEF) report, a Radio Link Failure (RLF) report, and a random-access report.
In some embodiments, the method includes receiving, by the terminal, an updated data transmission configuration from the network node responsive to transmitting the set of information relating to the failure of the data transmission to the network node.
In some embodiments, the set of information relating to the failure of the data transmission is included in an inactive data transmission failure (IDTF) report sent to the network node in an IDTF report response message.
In some embodiments, the method includes transmitting, by the terminal, an IDTF report available indication to the network node, wherein the IDTF report available indication is included in any of a RRCResumeComplete message, a RRCReestablishmentComplete message, aRRCReconfigurationComplete message, or a RRCSetupComplete message.
In some embodiments, the method includes receiving, by the terminal, an IDTF report request from the network node responsive to transmission of the IDTF report available indication, wherein the IDTF report request is included in a UEInformationRequest message; and transmitting, by the terminal, an IDTF report response to the network node responsive to receiving of the IDTF report request, wherein the IDTF report response is included in a  UEInformationResponse message.
In some embodiments, the method includes deriving, by the terminal, a first statistic relating to the data transmission, the statistic including any of: an uplink data throughput for the terminal, a downlink data throughput for the terminal, an uplink Uu interface delay for the terminal, a downlink Uu interface delay for the terminal, an uplink data throughput for a 5G QoS Identifier (5QI) , a downlink data throughput for the 5QI, an uplink Uu interface delay for the 5QI, and a downlink Uu interface delay for the 5QI.
In some embodiments, the network node is configured to derive a second statistic that includes any of an uplink data throughput for a cell, a downlink data throughput for the cell, an uplink Uu interface delay for the cell, and a downlink Uu interface delay for the cell.
In some embodiments, the network node is configured to determine any of: whether the data transmission is allowed for the terminal based on the first statistic and/or the second statistic, whether the data transmission in the RRC inactive state is allowed for a data service type or a quality of service (QoS) flow based on the first statistic relating to the 5QI, and whether the data transmission in the RRC inactive state is allowed for a cell based on the second statistic.
In some embodiments, the data transmission to the network node includes using a random-access channel (RACH) resource or a configured grant (CG) resource that is first detected by the terminal.
In some embodiments, the method includes initiating, by the terminal, a CG response check timer responsive to the data transmission to the network node, wherein the CG response check timer is stopped upon receiving a feedback from the network node, and wherein the terminal is configured to determine the data transmission to the network node as a failed transmission responsive to the expiry of the CG response check timer.
In some embodiments, the method includes initiating, by the terminal, an out of coverage timer when the terminal is in an inactive state and out of coverage of the network node, and the terminal is to initiate the data transmission, the terminal initiates the data transmission responsive to determining that the terminal is in coverage of the network node prior to the out of coverage timer expiring.
In some embodiments, the method includes resetting, by the terminal, an inactive data transmission timer to a value of an out of coverage timer responsive to determining that the terminal is out of coverage of the network node and the data transmission is ongoing and a  remaining time of the inactive data transmission timer is less than the value of the out of coverage timer.
In some embodiments, the updated data transmission configuration from the network node includes any of a threshold for a buffered data size, a threshold for a tolerant time, information relating to support solution (s) , information of configured radio resource (s) for the data transmission, an indication whether RLC is allowed to be released when in INACTIVE state, a configured area scope, a time duration within which a beam information derived based on a last RACH procedure is assumed valid, a threshold for determining to use CG based or RACH based solution, a configured sounding reference signal (SRS) resource to address beam change issue during the data transmission in the RRC inactive state, a value of CG response check timer, an indication whether the data transmission in the RRC inactive state is allowed, an indication whether it is allowed to use a RACH resource or a CG resource according to which one comes first.
Example Wireless System
FIG. 11 shows an example of a wireless communication system where techniques in accordance with one or more embodiments of the present technology can be applied. A wireless communication system 1100 can include one or more base stations (BSs) 1105a, 1105b, one or more wireless devices or terminals 1110a, 1110b, 1110c, 1110d, and a core network 1125. A base station 1105a, 1105b can provide wireless service to wireless devices 1110a, 1110b, 1110c and 1110d in one or more wireless sectors. In some implementations, a base station 1105a, 1105b includes directional antennas to produce two or more directional beams to provide wireless coverage in different sectors. The base station may implement functionalities of a scheduling cell or a candidate cell, as described in the present document.
The core network 1125 can communicate with one or more base stations 1105a, 1105b. The core network 1125 provides connectivity with other wireless communication systems and wired communication systems. The core network may include one or more service subscription databases to store information related to the subscribed wireless devices 1110a, 1110b, 1110c, and 1110d. A first base station 1105a can provide wireless service based on a first radio access technology, whereas a second base station 1105b can provide wireless service based on a second radio access technology. The base stations 1105a and 1105b may be co-located or may be separately installed in the field according to the deployment scenario. The wireless  devices 1110a, 1110b, 1110c, and 1110d can support multiple different radio access technologies.
In some implementations, a wireless communication system can include multiple networks using different wireless technologies. A dual-mode or multi-mode wireless device includes two or more wireless technologies that could be used to connect to different wireless networks.
FIG. 12 is a block diagram representation of a portion of a hardware platform. A hardware platform 1205 such as a network node or a base station or a terminal or a wireless device (or UE) can include processor electronics 1210 such as a microprocessor that implements one or more of the techniques presented in this document. The hardware platform 1205 can include transceiver electronics 1215 to send and/or receive wired or wireless signals over one or more communication interfaces such as antenna 1220 or a wireline interface. The hardware platform 1205 can implement other communication interfaces with defined protocols for transmitting and receiving data. The hardware platform 1205 can include one or more memories (not explicitly shown) configured to store information such as data and/or instructions. In some implementations, the processor electronics 1210 can include at least a portion of the transceiver electronics 1215. In some embodiments, at least some of the disclosed techniques, modules or functions are implemented using the hardware platform 1205.
Conclusion
The disclosed and other embodiments, modules and the functional operations described in this document can be implemented in digital electronic circuitry, or in computer software, firmware, or hardware, including the structures disclosed in this document and their structural equivalents, or in combinations of one or more of them. The disclosed and other embodiments can be implemented as one or more computer program products, i.e., one or more modules of computer program instructions encoded on a computer readable medium for execution by, or to control the operation of, data processing apparatus. The computer readable medium can be a machine-readable storage device, a machine-readable storage substrate, a memory device, a composition of matter effecting a machine-readable propagated signal, or a combination of one or more them. The term “data processing apparatus” encompasses all apparatus, devices, and machines for processing data, including by way of example a programmable processor, a computer, or multiple processors or computers. The apparatus can include, in addition to hardware, code that creates an execution environment for the computer  program in question, e.g., code that constitutes processor firmware, a protocol stack, a database management system, an operating system, or a combination of one or more of them. A propagated signal is an artificially generated signal, e.g., a machine-generated electrical, optical, or electromagnetic signal, that is generated to encode information for transmission to suitable receiver apparatus.
A computer program (also known as a program, software, software application, script, or code) can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment. A computer program does not necessarily correspond to a file in a file system. A program can be stored in a portion of a file that holds other programs or data (e.g., one or more scripts stored in a markup language document) , in a single file dedicated to the program in question, or in multiple coordinated files (e.g., files that store one or more modules, sub programs, or portions of code) . A computer program can be deployed to be executed on one computer or on multiple computers that are located at one site or distributed across multiple sites and interconnected by a communication network.
The processes and logic flows described in this document can be performed by one or more programmable processors executing one or more computer programs to perform functions by operating on input data and generating output. The processes and logic flows can also be performed by, and apparatus can also be implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application specific integrated circuit) .
Processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer. Generally, a processor will receive instructions and data from a read only memory or a random-access memory or both. The essential elements of a computer are a processor for performing instructions and one or more memory devices for storing instructions and data. Generally, a computer will also include, or be operatively coupled to receive data from or transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic, magneto optical disks, or optical disks. However, a computer need not have such devices. Computer readable media suitable for storing computer program instructions and data include all forms of non-volatile memory, media and memory devices, including by way of  example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto optical disks; and CD ROM and DVD-ROM disks. The processor and the memory can be supplemented by, or incorporated in, special purpose logic circuitry.
While this patent document contains many specifics, these should not be construed as limitations on the scope of any invention or of what may be claimed, but rather as descriptions of features that may be specific to particular embodiments of particular inventions. Certain features that are described in this patent document in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable sub combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a sub combination or variation of a sub combination.
Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. Moreover, the separation of various system components in the embodiments described in this patent document should not be understood as requiring such separation in all embodiments.
Only a few implementations and examples are described, and other implementations, enhancements and variations can be made based on what is described and illustrated in this patent document.

Claims (24)

  1. A method for wireless communication, comprising:
    identifying, by a terminal, that a data transmission with a network node has failed while the terminal is in an inactive state; and
    transmitting, by the terminal, a set of information relating to the failure of the data transmission to a network node responsive to the terminal transitioning to a connected state in which the terminal is connected to the network node.
  2. The method of claim 1, wherein the set of information relating to the failure of the data transmission includes a failure cause for the failure of the data transmission.
  3. The method of claim 2, wherein the failure cause includes any of: a maximum number of radio link control (RLC) re-transmissions, an expiration of a t310 timer, a beam failure recovery failure, a random access failure with a random access purpose of the data transmission in the radio resource control (RRC) inactive state, a configured grant (CG) based failure, an out of coverage failure, an expiration of a t319 timer, an expiration of an inactive data transmission timer, and an expiration of a CG response check timer.
  4. The method of claim 1, wherein the set of information relating to the failure of the data transmission includes an indication of whether the terminal or the network node triggered the data transmission.
  5. The method of claim 1, wherein the set of information relating to the failure of the data transmission includes any of a threshold for a buffered data size, and a current buffered data size, wherein the threshold is per terminal, per data radio bearer (DRB) , per logical channel, or per logical channel group, wherein the buffered data size is per terminal, per DRB, per logical channel, or per logical channel group.
  6. The method of claim 1, wherein the set of information relating to the failure of the data transmission includes any of a threshold for a tolerant time, information relating to support solution (s) , and information relating to a selected solution.
  7. The method of claim 1, wherein the set of information relating to the failure of the data transmission includes any of a status of radio resource (s) , information of configured radio resource (s) for the data transmission, information of a selected radio resource for the data transmission, information of an ongoing data service type, and a status of RLC.
  8. The method of claim 1, wherein the set of information relating to the failure of the data transmission includes any of a configured area scope, an indication that the terminal has buffered data responsive to the terminal receiving a release message from the network node, an indication whether a buffer status report (BSR) or a data transmission request in inactive state has been sent to the network node, an indication whether a data has been sent to the network node included in a Msg3 or a MsgA, information of fallback action (s) , information of a configured fallback trigger condition, and information for beam management.
  9. The method of claim 1, wherein the set of information relating to the failure of the data transmission includes any of an indication of whether using a random-access channel resource or a CG resource according to which one comes first is allowed, and a configured value for a CG response check timer.
  10. The method of claim 1, wherein the set of information relating to the failure of the data transmission is stored by the terminal in any of a Connection Establishment Failure (CEF) report, a Radio Link Failure (RLF) report, and a random-access report.
  11. The method of claim 1, further comprising:
    receiving, by the terminal, an updated data transmission configuration from the network node responsive to transmitting the set of information relating to the failure of the data transmission to the network node.
  12. The method of claim 1, wherein the set of information relating to the failure of the data transmission is included in an inactive data transmission failure (IDTF) report sent to the network node in an IDTF report response message.
  13. The method of any of claims 1 and 12, further comprising:
    transmitting, by the terminal, an IDTF report available indication to the network node, wherein the IDTF report available indication is included in any of a RRCResumeComplete message, a RRCReestablishmentComplete message, a RRCReconfigurationComplete message, or a RRCSetupComplete message.
  14. The method of any of claims 1, 12, and 13, further comprising:
    receiving, by the terminal, an IDTF report request from the network node responsive to transmission of the IDTF report available indication, wherein the IDTF report request is included in a UEInformationRequest message; and
    transmitting, by the terminal, an IDTF report response to the network node responsive to receiving of the IDTF report request, wherein the IDTF report response is included in a UEInformationResponse message.
  15. The method of claim 1, further comprising:
    deriving, by the terminal, a first statistic relating to the data transmission, the statistic including any of: an uplink data throughput for the terminal, a downlink data throughput for the terminal, an uplink Uu interface delay for the terminal, a downlink Uu interface delay for the terminal, an uplink data throughput for a 5G QoS Identifier (5QI) , a downlink data throughput for the 5QI, an uplink Uu interface delay for the 5QI, and a downlink Uu interface delay for the 5QI.
  16. The method of any of claims 1 and 15, wherein the network node is configured to derive a second statistic that includes any of an uplink data throughput for a cell, a downlink data throughput for the cell, an uplink Uu interface delay for the cell, and a downlink Uu interface delay for the cell.
  17. The method of any of claims 1, 15, and 16, wherein the network node is configured to determine any of: whether the data transmission is allowed for the terminal based on the first statistic and/or the second statistic, whether the data transmission in the RRC inactive state is allowed for a data service type or a quality of service (QoS) flow based on the first statistic relating to the 5QI, and whether the data transmission in the RRC inactive state is allowed for a cell based on the second statistic.
  18. The method of claim 1, wherein the data transmission to the network node includes using a random-access channel (RACH) resource or a configured grant (CG) resource that is first detected by the terminal.
  19. The method of claim 1, further comprising:
    initiating, by the terminal, a CG response check timer responsive to the data transmission to the network node, wherein the CG response check timer is stopped upon receiving a feedback from the network node, and wherein the terminal is configured to determine the data  transmission to the network node as a failed transmission responsive to the expiry of the CG response check timer.
  20. The method of claim 1, further comprising:
    initiating, by the terminal, an out of coverage timer when the terminal is in an inactive state and out of coverage of the network node, and the terminal is to initiate the data transmission, the terminal initiates the data transmission responsive to determining that the terminal is in coverage of the network node prior to the out of coverage timer expiring.
  21. The method of claim 1, further comprising:
    resetting, by the terminal, an inactive data transmission timer to a value of an out of coverage timer responsive to determining that the terminal is out of coverage of the network node and the data transmission is ongoing and a remaining time of the inactive data transmission timer is less than the value of the out of coverage timer.
  22. The method of claim 11, wherein the updated data transmission configuration from the network node includes any of a threshold for a buffered data size, a threshold for a tolerant time, information relating to support solution (s) , information of configured radio resource (s) for the data transmission, an indication whether RLC is allowed to be released when in INACTIVE state, a configured area scope, a time duration within which a beam information derived based on a last RACH procedure is assumed valid, a threshold for determining to use CG based or RACH based solution, a configured sounding reference signal (SRS) resource to address beam change issue during the data transmission in the RRC inactive state, a value of CG response check timer, an indication whether the data transmission in the RRC inactive state is allowed, an indication whether it is allowed to use a RACH resource or a CG resource according to which one comes first.
  23. An apparatus for wireless communication comprising a processor that is configured to carry out the method of any of claims 1 to 22.
  24. A non-transitory computer readable medium having code stored thereon, the code when executed by a processor, causing the processor to implement a method recited in any of claims 1 to 22.
PCT/CN2020/106179 2020-07-31 2020-07-31 Data transmission in an inactive state WO2022021316A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2020/106179 WO2022021316A1 (en) 2020-07-31 2020-07-31 Data transmission in an inactive state
JP2023505926A JP2023535487A (en) 2020-07-31 2020-07-31 Data transmission in inactive state
EP20946932.9A EP4190003A4 (en) 2020-07-31 2020-07-31 Data transmission in an inactive state
CN202080104606.3A CN116210259A (en) 2020-07-31 2020-07-31 Data transmission in the inactive state
US18/161,306 US20230171835A1 (en) 2020-07-31 2023-01-30 Data transmission in an inactive state

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/106179 WO2022021316A1 (en) 2020-07-31 2020-07-31 Data transmission in an inactive state

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/161,306 Continuation US20230171835A1 (en) 2020-07-31 2023-01-30 Data transmission in an inactive state

Publications (1)

Publication Number Publication Date
WO2022021316A1 true WO2022021316A1 (en) 2022-02-03

Family

ID=80037355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106179 WO2022021316A1 (en) 2020-07-31 2020-07-31 Data transmission in an inactive state

Country Status (5)

Country Link
US (1) US20230171835A1 (en)
EP (1) EP4190003A4 (en)
JP (1) JP2023535487A (en)
CN (1) CN116210259A (en)
WO (1) WO2022021316A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023159384A1 (en) * 2022-02-23 2023-08-31 Qualcomm Incorporated Multiple physical random access channel transmissions using frequency hopping
WO2024032798A1 (en) * 2022-08-12 2024-02-15 展讯通信(上海)有限公司 Data transmission method and apparatus, and device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108924853A (en) * 2017-03-23 2018-11-30 中兴通讯股份有限公司 wireless link monitoring method and user equipment
WO2019134644A1 (en) 2018-01-08 2019-07-11 维沃移动通信有限公司 Data transmission method and user terminal
KR20200016151A (en) 2018-08-06 2020-02-14 삼성전자주식회사 A method and apparatus for transmitting and receiving signals in a wireless communication
US20200128443A1 (en) * 2017-06-28 2020-04-23 Sk Telecom Co., Ltd. Terminal device and uplink data transmission method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108924853A (en) * 2017-03-23 2018-11-30 中兴通讯股份有限公司 wireless link monitoring method and user equipment
US20200128443A1 (en) * 2017-06-28 2020-04-23 Sk Telecom Co., Ltd. Terminal device and uplink data transmission method
WO2019134644A1 (en) 2018-01-08 2019-07-11 维沃移动通信有限公司 Data transmission method and user terminal
CN110022567A (en) * 2018-01-08 2019-07-16 维沃移动通信有限公司 A kind of data transmission method and user terminal
KR20200016151A (en) 2018-08-06 2020-02-14 삼성전자주식회사 A method and apparatus for transmitting and receiving signals in a wireless communication

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "Discussion on early measurement configuration upon state transition", 3GPP DRAFT; R2-1913835 EARLY MEASUREMENT CONFIGURATION UPON STATE TRANSITION, vol. RAN WG2, 4 October 2019 (2019-10-04), Prague, Czech Republic, pages 1 - 2, XP051791826 *
See also references of EP4190003A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023159384A1 (en) * 2022-02-23 2023-08-31 Qualcomm Incorporated Multiple physical random access channel transmissions using frequency hopping
WO2024032798A1 (en) * 2022-08-12 2024-02-15 展讯通信(上海)有限公司 Data transmission method and apparatus, and device

Also Published As

Publication number Publication date
CN116210259A (en) 2023-06-02
EP4190003A4 (en) 2023-08-23
EP4190003A1 (en) 2023-06-07
US20230171835A1 (en) 2023-06-01
JP2023535487A (en) 2023-08-17

Similar Documents

Publication Publication Date Title
US11864212B2 (en) Information transmission for pre-configuring dedicated resources in idle mode
US20230171835A1 (en) Data transmission in an inactive state
US20210352654A1 (en) Serving cell state management
CN113316923A (en) Pre-configuring dedicated resource information in idle mode
CN111566945A (en) Contention-based random access for beam failure recovery
US20220264466A1 (en) Reference signaling design and configuration
US20240080699A1 (en) Sdt failure reporting method, terminal device, and network device
WO2020164066A1 (en) Listen before talk wireless communication enhancements
CN111466128B (en) Configuration method, device and communication system for beam failure recovery
WO2022027449A1 (en) Valuation for ue assistance information
US20230284231A1 (en) Data transmission method and apparatus, communication device, and storage medium
US20220286935A1 (en) Wireless network performance analysis
US11937310B2 (en) Handling timing conflicts involving random access procedure messages
US20220182974A1 (en) Paging mechanism for wireless communication networks
US20220132466A1 (en) Reducing unsuccessful paging
US11490422B2 (en) Methods, terminal device and base station for channel sensing in unlicensed spectrum
CN114071783A (en) Method performed by user equipment and user equipment
WO2019183911A1 (en) Secondary communication node change
US20220264454A1 (en) Reference signaling design and configuration
US20230189214A1 (en) Wireless multi-carrier configuration and selection
US20210204327A1 (en) Method for controlling power ramp counter, and terminal device
JP7412460B2 (en) Wireless communication method, terminal device and network device
CN111132360A (en) Message sending method, message configuration method, message sending device, message configuration device and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20946932

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023505926

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2020946932

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020946932

Country of ref document: EP

Effective date: 20230228

NENP Non-entry into the national phase

Ref country code: DE