WO2017154900A1 - ガスタービン燃焼器及びガスタービン - Google Patents

ガスタービン燃焼器及びガスタービン Download PDF

Info

Publication number
WO2017154900A1
WO2017154900A1 PCT/JP2017/008996 JP2017008996W WO2017154900A1 WO 2017154900 A1 WO2017154900 A1 WO 2017154900A1 JP 2017008996 W JP2017008996 W JP 2017008996W WO 2017154900 A1 WO2017154900 A1 WO 2017154900A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustor
gas turbine
outer cylinder
inner cylinder
flow path
Prior art date
Application number
PCT/JP2017/008996
Other languages
English (en)
French (fr)
Inventor
信一 福場
宮本 健司
斉藤 圭司郎
智志 瀧口
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP17763240.3A priority Critical patent/EP3428536A4/en
Priority to US16/082,466 priority patent/US20190086093A1/en
Priority to KR1020187025757A priority patent/KR20180110070A/ko
Priority to CN201780015643.5A priority patent/CN108700300A/zh
Publication of WO2017154900A1 publication Critical patent/WO2017154900A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • F23R3/12Air inlet arrangements for primary air inducing a vortex
    • F23R3/14Air inlet arrangements for primary air inducing a vortex by using swirl vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/16Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration with devices inside the flame tube or the combustion chamber to influence the air or gas flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/16Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration with devices inside the flame tube or the combustion chamber to influence the air or gas flow
    • F23R3/18Flame stabilising means, e.g. flame holders for after-burners of jet-propulsion plants
    • F23R3/20Flame stabilising means, e.g. flame holders for after-burners of jet-propulsion plants incorporating fuel injection means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/283Attaching or cooling of fuel injecting means including supports for fuel injectors, stems, or lances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/343Pilot flames, i.e. fuel nozzles or injectors using only a very small proportion of the total fuel to insure continuous combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/44Combustion chambers comprising a single tubular flame tube within a tubular casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/35Combustors or associated equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/14Special features of gas burners
    • F23D2900/14004Special features of gas burners with radially extending gas distribution spokes

Definitions

  • the present invention relates to a gas turbine combustor used in a gas turbine in which fuel is supplied to a compressed high-temperature and high-pressure air and burned, and the generated combustion gas is supplied to a turbine to obtain rotational power.
  • the present invention relates to a gas turbine provided with the gas turbine combustor.
  • General gas turbine is composed of a compressor, a combustor, and a turbine.
  • the air taken in from the air intake port is compressed by the compressor to become high-temperature and high-pressure compressed air.
  • the combustor the fuel is supplied to the compressed air and burned, so that the high-temperature and high-pressure is burned.
  • the combustion gas (working fluid) is obtained, the turbine is driven by the combustion gas, and the generator connected to the turbine is driven.
  • the inner cylinder is supported inside the outer cylinder, the tail cylinder is connected to the tip of the inner cylinder, and the casing is configured.
  • a plurality of main fuel nozzles are provided.
  • the outer cylinder is provided with a plurality of top hat nozzles on the inner peripheral surface. Therefore, when the air flow of compressed air flows into the inner cylinder through the air flow path, the fuel is injected from the top hat nozzle, and the air-fuel mixture is injected from the main fuel nozzle in the inner cylinder. It is mixed and flows into the tail cylinder as a swirling flow of premixed gas.
  • the fuel mixture is mixed with the fuel injected from the pilot nozzle, ignited by the seed fire, burned, and then burned as a combustion gas.
  • a part of the combustion gas is ejected so as to diffuse into the periphery of the tail cylinder with a flame, so that the premixed gas flowing into the tail cylinder from each main fuel nozzle is ignited and combusted.
  • Patent Document 1 As such a gas turbine combustor, for example, there is one described in Patent Document 1 below.
  • the fuel from the top hat nozzle is mixed in advance with the compressed air flowing through the air flow path, thereby mixing in the inner cylinder. It is possible to mix the fuel and the combustion air more uniformly. However, since the top hat nozzle protrudes perpendicularly to the flow of compressed air, separation of the flow around the top hat nozzle occurs, and a region where the flow of compressed air is slow occurs downstream. Then, the flame generated by the inner cylinder and the tail cylinder may flash back and damage the top hat nozzle.
  • the present invention solves the above-described problems, and an object thereof is to provide a gas turbine combustor and a gas turbine that suppress a flashback of a flame.
  • a gas turbine combustor comprises a combustor outer cylinder having a cylindrical shape, a combustor inner cylinder disposed inside the combustor outer cylinder, and a combustor inner cylinder.
  • a first fuel injection section disposed inside, an air flow path provided between the combustor outer cylinder and the combustor inner cylinder, and allowing compressed air to flow into the combustor inner cylinder; and the air flow path
  • a second fuel injection unit disposed in the gas turbine combustor, wherein the second fuel injection unit is disposed in a curved portion communicating with the combustor inner cylinder on the downstream side of the air flow path.
  • An end portion is supported by the curved inner surface of the combustor outer cylinder, a distal end portion extends toward the combustor inner cylinder side, and a center line in the longitudinal direction is orthogonal to a tangent line of the curved inner surface of the combustor outer cylinder. It is a predetermined angle on the downstream or upstream side of the flow direction of the compressed air flowing through the air flow path with respect to the perpendicular Inclined to be disposed, it is characterized in.
  • the second fuel injection unit has a longitudinal center line in the range of 10 degrees to 30 degrees on the downstream side in the flow direction of the compressed air flowing through the air flow path with respect to the perpendicular line. It is characterized by being arranged at an angle.
  • the second fuel injection part is inclined in the range of 10 degrees to 30 degrees downstream in the flow direction of the compressed air, the second fuel injection part is unlikely to become a resistance to the flow of the compressed air, and the second fuel injection part The area
  • the inner surface portion of the combustor outer cylinder constituting the air flow path includes a first straight portion along the axial direction of the combustor outer cylinder, and the axial direction of the combustor outer cylinder.
  • a second straight portion along a direction orthogonal to the first straight portion, and a curved portion connecting the first straight portion and the second straight portion, and the second fuel injection portion has a base end portion of the first straight portion.
  • the second linear portion is supported on the downstream side in the flow direction of the compressed air flowing through the air flow path from the extended intersection.
  • the second fuel injection part has a cylindrical shape and a tip part has a spherical shape.
  • the second fuel injection part cylindrical and the tip part spherical, it is possible to suppress the separation of compressed air by the second fuel injection part and reduce the low speed region of the wake of the second fuel injection part. it can.
  • a compressor that compresses air a combustor that mixes and burns compressed air and fuel compressed by the compressor, and a combustion gas generated by the combustor rotate.
  • a turbine for obtaining power, and the gas turbine combustor is used as the combustor.
  • the second fuel injection portion disposed in the air flow path between the combustor outer cylinder and the combustor inner cylinder is inclined by a predetermined angle toward the downstream side or the upstream side in the flow direction of the compressed air.
  • the separation of the flow around the second fuel injection part can be suppressed. Therefore, the region where the flow of compressed air is slow on the downstream side of the second fuel injection unit is reduced, and the flashback of the flame can be suppressed.
  • the second fuel injection portion disposed in the air flow path between the combustor outer cylinder and the combustor inner cylinder is disposed downstream or upstream in the flow direction of the compressed air. Since it is inclined to the side by a predetermined angle, the area where the flow of compressed air is slow on the downstream side of the second fuel injection section is reduced, and the flashback of the flame can be suppressed.
  • FIG. 1 is a cross-sectional view taken along the line II of FIG. 7 showing a state where a peg is attached in the gas turbine combustor of the present embodiment.
  • FIG. 2 is a schematic view for explaining the mounting angle of the peg.
  • FIG. 3 is a cross-sectional view showing a modified embodiment of the peg of this embodiment.
  • FIG. 4 is a schematic configuration diagram illustrating the gas turbine of the present embodiment.
  • FIG. 5 is a schematic diagram illustrating a gas turbine combustor.
  • FIG. 6 is a schematic diagram showing the main part of the gas turbine combustor.
  • 7 is a sectional view taken along line VII-VII in FIG.
  • FIG. 4 is a schematic configuration diagram showing the gas turbine of the present embodiment.
  • the gas turbine 10 includes a compressor 11, a combustor 12, and a turbine 13.
  • the gas turbine 10 is connected to a generator (not shown) on the same axis and can generate power.
  • the compressor 11 has an air intake 20 for taking in air, an inlet guide vane (IGV: Inlet Guide Vane) 22 is disposed in the compressor casing 21, and a plurality of stationary vanes 23 and moving blades 24 are provided. Arranged alternately in the front-rear direction (the axial direction of the rotor 32 to be described later), the bleed chamber 25 is provided on the outside thereof.
  • the combustor 12 is combustible by supplying fuel to the compressed air compressed by the compressor 11 and igniting it.
  • a plurality of stationary blades 27 and moving blades 28 are alternately disposed in a turbine casing 26 in the front-rear direction (the axial direction of a rotor 32 described later).
  • An exhaust chamber 30 is disposed downstream of the turbine casing 26 via an exhaust casing 29, and the exhaust chamber 30 has an exhaust diffuser 31 that is continuous with the turbine 13.
  • a rotor (rotary shaft) 32 is positioned so as to penetrate through the center of the compressor 11, the combustor 12, the turbine 13, and the exhaust chamber 30.
  • the end of the rotor 32 on the compressor 11 side is rotatably supported by the bearing portion 33, while the end of the exhaust chamber 30 side is rotatably supported by the bearing portion 34.
  • the rotor 32 is fixed by stacking a plurality of disks with each blade 24 mounted thereon by the compressor 11 and fixed by a plurality of disks having each blade 28 mounted by the turbine 13.
  • a generator drive shaft (not shown) is connected to the end on the exhaust chamber 30 side.
  • the compressor casing 21 of the compressor 11 is supported by the legs 35
  • the turbine casing 26 of the turbine 13 is supported by the legs 36
  • the exhaust chamber 30 is supported by the legs 37. Yes.
  • the air taken in from the air intake 20 of the compressor 11 passes through the inlet guide vane 22, the plurality of stationary vanes 23 and the moving blade 24 and is compressed to become high-temperature / high-pressure compressed air.
  • a predetermined fuel is supplied to the compressed air in the combustor 12 and burned.
  • the high-temperature and high-pressure combustion gas that is the working fluid generated in the combustor 12 passes through the plurality of stationary blades 27 and the moving blades 28 constituting the turbine 13 to drive and rotate the rotor 32.
  • the generator connected to 32 is driven.
  • the combustion gas that has driven the turbine 13 is released into the atmosphere as exhaust gas.
  • FIG. 5 is a schematic view showing a gas turbine combustor
  • FIG. 6 is a schematic view showing a main part of the gas turbine combustor
  • FIG. 7 is a sectional view taken along line VII-VII in FIG.
  • a combustor outer cylinder 41 is supported by a combustor inner cylinder 42 at a predetermined interval, and a combustor tail cylinder 43 is disposed at a tip portion of the combustor inner cylinder 42.
  • the combustor inner cylinder 42 is located at the center of the interior, the pilot combustion burner 44 is disposed, and a plurality of main combustion chamber inner cylinders 42 are surrounded on the inner peripheral surface of the combustor inner cylinder 42 along the circumferential direction.
  • a combustion burner 45 is arranged.
  • the combustor tail cylinder 43 is connected to a bypass pipe 46, and a bypass valve 47 is provided in the bypass pipe 46.
  • the combustor outer cylinder 41 is provided with the base end portion of the combustor inner cylinder 42 at the base end portion, so that an air flow path 51 is formed therebetween. ing. And the combustor inner cylinder 42 is located in the center of the inside, the pilot combustion burner 44 is arrange
  • the pilot combustion burner 44 is provided on a pilot cone 52 supported by the combustor inner cylinder 42, a pilot nozzle (first fuel injection portion) 53 disposed inside the pilot cone 52, and an outer peripheral portion of the pilot nozzle 53. It comprises a swirl vane (swirler vane) 54.
  • Each main combustion burner 45 includes a burner cylinder 55, a main nozzle (first fuel injection part) 56 disposed inside the burner cylinder 55, and swirl vanes (swirler vanes) 57 provided on the outer periphery of the main nozzle 56. It consists of and.
  • a ring-shaped air flow path 51 is provided between the combustor outer cylinder 41 and the combustor inner cylinder 42, and a plurality of pegs (fuel injection portions) 58 are provided in the air flow path 51.
  • the plurality of pegs 58 have base ends fixed to the combustor outer cylinder 41, and distal ends extended toward the combustor inner cylinder 42.
  • the plurality of pegs 58 are arranged at predetermined intervals in the circumferential direction of the combustor outer cylinder 41.
  • the combustor outer cylinder 41 is provided with a pilot fuel port 61, a main fuel port 62, and a top hat fuel port 63, and the pilot fuel port 61, the main fuel port 62, and the top hat fuel port 63.
  • a pilot fuel line (not shown) is connected to the pilot fuel port 61
  • a main combustion line (not shown) is connected to each main fuel port 62
  • a top hat combustion line (not shown) is connected to each top hat fuel port 63.
  • a part of the combustion gas is injected into the combustor inner cylinder 42 so as to diffuse to the surroundings with a flame, so that the premixed gas that has flowed into the combustor inner cylinder 42 from each main combustion burner 45. Is ignited and burns. That is, flame holding for stable combustion of the lean premixed fuel F from the main combustion burner 45 can be performed by the diffusion flame by the pilot fuel F injected from the pilot combustion burner 44.
  • FIG. 1 is a cross-sectional view taken along the line II of FIG. 7 showing the state of attachment of the peg in the gas turbine combustor of the present embodiment
  • FIG. 2 is a schematic diagram for explaining the attachment angle of the peg.
  • the peg 58 is disposed on the curved portion communicating with the combustor inner cylinder 42 on the downstream side of the air flow path 51, and the base end portion is supported on the curved inner surface of the combustor outer cylinder 41.
  • the tip portion extends to the combustor inner cylinder 42 side.
  • the peg 58 has a cylindrical shape, and a fuel passage (not shown) is formed inside.
  • the fuel passage has one end communicating with the supply hole 63a from the top hat fuel port 63 and the other end outside the peg 58.
  • the plurality of injection holes 58a that are opened communicate with each other.
  • the combustor outer cylinder 41 constituting the air flow path 51 has an inner surface portion of the first straight portion 41 a along the axial direction of the combustor outer cylinder 41 and the axial direction of the combustor outer cylinder 41. And a curved portion 41b connecting the first straight portion 41a and the second straight portion 41c.
  • the second straight portion 41c extends in the direction perpendicular to the radial direction (the radial direction of the combustor outer cylinder 41). That is, the extension line of the first straight part 41a and the extension line of the second straight part 41c intersect at right angles (90 degrees) at the positions of the lengths L1 and L2.
  • the base end of the peg 58 is fixed to a curved portion 41b, that is, a range of a length L1 along the first straight portion 41a and a length L2 along the second straight portion 41c.
  • the peg 58 is on the downstream side in the flow direction of the compressed air A flowing through the air flow path 51 with respect to a perpendicular line P whose longitudinal center line O is perpendicular to the tangent line T of the inner surface of the curved portion 41b of the combustor outer cylinder 41. It is arranged to be inclined by a predetermined angle ⁇ .
  • the inclination angle ⁇ is preferably in the range of 10 degrees to 40 degrees, and most preferably around 30 degrees.
  • the peg 58 is supported on the downstream side in the flow direction of the compressed air A flowing through the air flow path 51 from the intersection where the first straight portion 41a and the second straight portion 41c are extended at the base end.
  • FIG. 3 is a cross-sectional view showing a modified embodiment of the peg of this embodiment.
  • the peg 71 is disposed in the curved portion 41 b of the combustor outer cylinder 41 constituting the air flow path 51 and extends toward the combustor inner cylinder 42.
  • the peg 71 has a cylindrical shape, and a fuel passage (not shown) is formed inside.
  • the fuel passage has one end communicating with the supply hole 63a from the top hat fuel port 63 and the other end outside the peg 71. It communicates with a plurality of opening injection holes 71a.
  • the peg 71 has a spherical portion 71b having a spherical shape at the tip.
  • the pegs 58 and 71 are not limited to the above-described shapes, and may have a polygonal column shape, an elliptical column shape, a tapered shape, a tapered shape, a stepped shape, or the like. May be. Further, the pegs 58 and 71 are arranged such that the longitudinal center line O is inclined to the downstream side in the flow direction of the compressed air A with respect to the perpendicular P, but the longitudinal center line O is compressed with respect to the perpendicular P. You may incline and arrange
  • the line O is inclined by a predetermined angle ⁇ to the downstream side (or upstream side) of the flow direction of the compressed air A flowing through the air flow path 51 with respect to the perpendicular line P perpendicular to the tangent line T of the curved surface of the combustor outer cylinder 41.
  • is inclined by a predetermined angle ⁇ to the downstream side (or upstream side) of the flow direction of the compressed air A flowing through the air flow path 51 with respect to the perpendicular line P perpendicular to the tangent line T of the curved surface of the combustor outer cylinder 41.
  • the separation of the flow around the pegs 58 and 71 can be suppressed, the region where the flow of the compressed air A on the downstream side of the pegs 58 and 71 is slow is reduced, and the flashback of the flame can be suppressed.
  • the pegs 58 and 71 are disposed at an inclination in the range of 10 degrees to 30 degrees on the downstream side in the flow direction of the compressed air A. Therefore, the pegs 58 and 71 are less likely to become resistance to the flow of the compressed air A, and the region where the flow of the compressed air A is slow on the downstream side of the pegs 58 and 71 can be reduced.
  • the inner surface portion of the combustor outer cylinder 41 that constitutes the air flow path 51 includes the first straight portion 41 a along the axial direction of the combustor outer cylinder 41 and the combustor outer cylinder 41. It has the 2nd straight line part 41c along the direction orthogonal to an axial direction, and the curved part 41b which connects the 1st straight line part 41a and the 2nd straight line part 41c, and the base end part of pegs 58 and 71 is the 1st straight line part. 41a and the 2nd linear part 41c are supporting to the downstream of the flow direction of the compressed air A which flows through the air flow path 51 from the extended intersection. Therefore, flame flashback can be further suppressed. Moreover, combustibility can also be improved by changing the fuel injection position.
  • the peg 71 has a cylindrical shape, and a spherical portion 71b is provided at the tip. Therefore, the peg 71 is less likely to become a resistance to the flow of the compressed air A, and the separation of the compressed air A by the peg 71 can be suppressed to reduce the low speed region of the second fuel injection portion wake.
  • a compressor 11 that compresses air
  • a combustor 12 that mixes and burns compressed air A and fuel F compressed by the compressor 11, and a combustor 12 is generated.
  • the turbine 13 that obtains rotational power by the combustion gas thus produced.
  • the pegs 58 and 71 are provided in the curved portion 41 b of the air flow path 51, and the downstream of the compressed air A flowing in the air flow path 51 in the flow direction. Tilt to the side (or upstream side) by a predetermined angle ⁇ .
  • the pegs 58 and 71 are disposed on the curved portion 41b communicating with the combustor inner cylinder 42 on the downstream side of the air flow path 51.
  • the curved portion 41b communicating with the combustor inner cylinder 42 on the downstream side of the air flow path 51.
  • each linear portion 41a. , 41b are disposed on the curved portion 41b communicating with the combustor inner cylinder 42 on the downstream side of the air flow path 51.

Abstract

ガスタービン燃焼器及びガスタービンにおいて、燃焼器外筒(41)と、燃焼器内筒(42)と、燃焼器内筒(42)の内部に配置されるパイロットノズル(53)及びメインノズル(56)と、燃焼器外筒(41)と燃焼器内筒(42)との間に設けられる空気流路(51)と、空気流路(51)に配置される第2燃料噴射部としてのペグ(58,71)とを設け、ペグ(58,71)は、空気流路(51)の下流側で燃焼器内筒(42)に連通する湾曲部(41b)に配置され、基端部がこの湾曲部(41b)の内面に支持されて先端部が燃焼器内筒(42)側に延出され、長手方向の中心線(O)が燃焼器外筒(41)の湾曲面の接線(T)に直交する垂線(P)に対して空気流路(51)を流れる圧縮空気(A)の流れ方向の下流側(または、上流側)に所定角度(θ)だけ傾斜して配置される。

Description

ガスタービン燃焼器及びガスタービン
 本発明は、圧縮した高温・高圧の空気に対して燃料を供給して燃焼し、発生した燃焼ガスをタービンに供給して回転動力を得るガスタービンにおいて、このガスタービンに用いられるガスタービン燃焼器、このガスタービン燃焼器を備えたガスタービンに関するものである。
 一般的なガスタービンは、圧縮機と燃焼器とタービンにより構成されている。そして、空気取入口から取り込まれた空気が圧縮機によって圧縮されることで高温・高圧の圧縮空気となり、燃焼器にて、この圧縮空気に対して燃料を供給して燃焼させることで高温・高圧の燃焼ガス(作動流体)を得て、この燃焼ガスによりタービンを駆動し、このタービンに連結された発電機を駆動する。
 このように構成されたガスタービンの燃焼器は、外筒の内側に内筒が支持され、この内筒の先端部に尾筒が連結されてケーシングが構成されており、内筒にパイロットノズルと複数のメイン燃料ノズルが設けられて構成されている。また、外筒は、内周面に複数のトップハットノズルが設けられている。そのため、圧縮空気の空気流が空気流路を通して内筒内に流入するとき、トップハットノズルから燃料が噴射され、空気と燃料との混合気が内筒内でメイン燃料ノズルから噴射された燃料と混合され、予混合気の旋回流となって尾筒に流れ込む。また、燃料混合気は、パイロットノズルから噴射された燃料と混合され、種火により着火されて燃焼し、燃焼ガスとなって尾筒内に噴出される。このとき、燃焼ガスの一部が尾筒内に火炎を伴って周囲に拡散するように噴出することで、各メイン燃料ノズルから尾筒に流れ込んだ予混合気に着火されて燃焼する。
 このようなガスタービン燃焼器としては、例えば、下記特許文献1に記載されたものがある。
特開2005-233574号公報
 上述したガスタービン燃焼器にて、圧縮空気が内筒に流入する前に、空気流路を流れる圧縮空気に対してトップハットノズルからの燃料を事前に混合させることで、内筒内での混合気の燃料と燃焼用空気とをより均一に混合することが可能となっている。ところが、トップハットノズルは、圧縮空気の流れに対して垂直に突出していることから、トップハットノズルまわりの流れの剥離が生じ、下流側で圧縮空気の流れが遅い領域が発生する。すると、内筒や尾筒で生成された火炎がフラッシュバックしてトップハットノズルを損傷させてしまうおそれがある。
 本発明は上述した課題を解決するものであり、火炎のフラッシュバックを抑制するガスタービン燃焼器及びガスタービンを提供することを目的とする。
 上記の目的を達成するための本発明のガスタービン燃焼器は、筒形状をなす燃焼器外筒と、前記燃焼器外筒の内側に配置される燃焼器内筒と、前記燃焼器内筒の内部に配置される第1燃料噴射部と、前記燃焼器外筒と燃焼器内筒との間に設けられて圧縮空気を前記燃焼器内筒内に流入させる空気流路と、前記空気流路に配置される第2燃料噴射部と、を備えるガスタービン燃焼器において、前記第2燃料噴射部は、前記空気流路の下流側で前記燃焼器内筒に連通する湾曲部に配置され、基端部が前記燃焼器外筒の湾曲する内面に支持されて先端部が前記燃焼器内筒側に延出され、長手方向の中心線が前記燃焼器外筒の湾曲する内面の接線に直交する垂線に対して前記空気流路を流れる圧縮空気の流れ方向の下流側または上流側に所定角度だけ傾斜して配置される、ことを特徴とするものである。
 従って、圧縮空気が空気流路に流れ込むと、この圧縮空気に対して第2燃料噴射部から燃料が噴射されて混合気が形成され、この混合気が燃焼器内筒内に流れ込み、この混合気に対して第1燃料噴射部から燃料が噴射されて予混合気となる。このとき、第2燃料噴射部は、空気流路における圧縮空気の流れ方向の下流側または上流側に所定角度だけ傾斜していることから、第2燃料噴射部まわりの流れの剥離を抑制することができる。そのため、第2燃料噴射部の下流側における圧縮空気の流れが遅い領域が減少し、火炎のフラッシュバックを抑制することができる。
 本発明のガスタービン燃焼器では、前記第2燃料噴射部は、長手方向の中心線が前記垂線に対して前記空気流路を流れる圧縮空気の流れ方向の下流側に10度から30度の範囲で傾斜して配置されることを特徴としている。
 従って、第2燃料噴射部が圧縮空気の流れ方向の下流側に10度から30度の範囲で傾斜することで、第2燃料噴射部が圧縮空気の流れの抵抗となりにくく、第2燃料噴射部の下流側における圧縮空気の流れが遅い領域を減少させることができる。
 本発明のガスタービン燃焼器では、前記空気流路を構成する前記燃焼器外筒の内面部は、前記燃焼器外筒の軸方向に沿う第1直線部と、前記燃焼器外筒の軸方向に直交する方向に沿う第2直線部と、前記第1直線部と前記第2直線部を接続する湾曲部とを有し、前記第2燃料噴射部は、基端部が前記第1直線部及び前記第2直線部が延長された交点より前記空気流路を流れる圧縮空気の流れ方向の下流側に支持されることを特徴としている。
 従って、火炎のフラッシュバックをより一層抑制することができると共に、燃料噴射位置が変化することで、燃焼性を改善することができる。
 本発明のガスタービン燃焼器では、前記第2燃料噴射部は、円柱形状をなすと共に、先端部が球面形状をなすことを特徴としている。
 従って、第2燃料噴射部を円柱形状として先端部を球面形状とすることで、第2燃料噴射部による圧縮空気の剥離を抑制して第2燃料噴射部後流の低速領域を減少させることができる。
 また、本発明のガスタービンにあっては、空気を圧縮する圧縮機と、前記圧縮機が圧縮した圧縮空気と燃料を混合して燃焼する燃焼器と、前記燃焼器が生成した燃焼ガスにより回転動力を得るタービンと、を備え、前記燃焼器として前記ガスタービン燃焼器が用いられる、ことを特徴とするものである。
 従って、燃焼器にて、燃焼器外筒と燃焼器内筒との間の空気流路に配置される第2燃料噴射部を圧縮空気の流れ方向の下流側または上流側に所定角度だけ傾斜して配置しており、第2燃料噴射部まわりの流れの剥離を抑制することができる。そのため、第2燃料噴射部の下流側における圧縮空気の流れが遅い領域が減少し、火炎のフラッシュバックを抑制することができる。
 本発明のガスタービン燃焼器及びガスタービンによれば、燃焼器外筒と燃焼器内筒との間の空気流路に配置される第2燃料噴射部を圧縮空気の流れ方向の下流側または上流側に所定角度だけ傾斜して配置するので、第2燃料噴射部の下流側における圧縮空気の流れが遅い領域が減少し、火炎のフラッシュバックを抑制することができる。
図1は、本実施形態のガスタービン燃焼器におけるペグの取付状態を表す図7のI-I断面図である。 図2は、ペグの取付角度を説明するための概略図である。 図3は、本実施形態のペグにおける変形実施形態を表す断面図である。 図4は、本実施形態のガスタービンを表す概略構成図である。 図5は、ガスタービン燃焼器を表す概略図である。 図6は、ガスタービン燃焼器の要部を表す概略図である。 図7は、図6のVII-VII断面図である。
 以下に添付図面を参照して、本発明に係るガスタービン燃焼器及びガスタービンの好適な実施形態を詳細に説明する。なお、この実施形態により本発明が限定されるものではなく、また、実施形態が複数ある場合には、各実施形態を組み合わせて構成するものも含むものである。
 図4は、本実施形態のガスタービンを表す概略構成図である。
 本実施形態において、図4に示すように、ガスタービン10は、圧縮機11と燃焼器12とタービン13により構成されている。このガスタービン10は、同軸上に図示しない発電機が連結されており、発電可能となっている。
 圧縮機11は、空気を取り込む空気取入口20を有し、圧縮機車室21内に入口案内翼(IGV:Inlet Guide Vane)22が配設されると共に、複数の静翼23と動翼24が前後方向(後述するロータ32の軸方向)に交互に配設されてなり、その外側に抽気室25が設けられている。燃焼器12は、圧縮機11で圧縮された圧縮空気に対して燃料を供給し、点火することで燃焼可能となっている。タービン13は、タービン車室26内に複数の静翼27と動翼28が前後方向(後述するロータ32の軸方向)に交互に配設されている。このタービン車室26の下流側には、排気車室29を介して排気室30が配設されており、排気室30は、タービン13に連続する排気ディフューザ31を有している。
 また、圧縮機11、燃焼器12、タービン13、排気室30の中心部を貫通するようにロータ(回転軸)32が位置している。ロータ32は、圧縮機11側の端部が軸受部33により回転自在に支持される一方、排気室30側の端部が軸受部34により回転自在に支持されている。そして、このロータ32は、圧縮機11にて、各動翼24が装着されたディスクが複数重ねられて固定され、タービン13にて、各動翼28が装着されたディスクが複数重ねられて固定されており、排気室30側の端部に図示しない発電機の駆動軸が連結されている。
 そして、このガスタービン10は、圧縮機11の圧縮機車室21が脚部35に支持され、タービン13のタービン車室26が脚部36により支持され、排気室30が脚部37により支持されている。
 従って、圧縮機11の空気取入口20から取り込まれた空気が、入口案内翼22、複数の静翼23と動翼24を通過して圧縮されることで高温・高圧の圧縮空気となる。燃焼器12にて、この圧縮空気に対して所定の燃料が供給され、燃焼する。そして、この燃焼器12で生成された作動流体である高温・高圧の燃焼ガスが、タービン13を構成する複数の静翼27と動翼28を通過することでロータ32を駆動回転し、このロータ32に連結された発電機を駆動する。一方、タービン13を駆動した燃焼ガスは、排気ガスとして大気に放出される。
 ここで、本実施形態の燃焼器(ガスタービン燃焼器)について詳細に説明する。図5は、ガスタービン燃焼器を表す概略図、図6は、ガスタービン燃焼器の要部を表す概略図、図7は、図6のVII-VII断面図である。
 燃焼器12において、図5に示すように、燃焼器外筒41は、内部に所定間隔をあけて燃焼器内筒42が支持され、この燃焼器内筒42の先端部に燃焼器尾筒43が連結されて燃焼器ケーシングが構成されている。燃焼器内筒42は、内部の中心に位置してパイロット燃焼バーナ44が配置されると共に、燃焼器内筒42の内周面に周方向に沿ってパイロット燃焼バーナ44を取り囲むように複数のメイン燃焼バーナ45が配置されている。また、燃焼器尾筒43はバイパス管46が連結されており、このバイパス管46にバイパス弁47が設けられている。
 詳細に説明すると、図6に示すように、燃焼器外筒41は、基端部に燃焼器内筒42の基端部が装着されることで、両者の間に空気流路51が形成されている。そして、燃焼器内筒42は、内部の中心に位置してパイロット燃焼バーナ44が配置され、その周囲に複数のメイン燃焼バーナ45が配置されている。パイロット燃焼バーナ44は、燃焼器内筒42に支持されたパイロットコーン52と、パイロットコーン52の内部に配置されたパイロットノズル(第1燃料噴射部)53と、パイロットノズル53の外周部に設けられる旋回翼(スワラーベーン)54とから構成されている。また、各メイン燃焼バーナ45は、バーナ筒55と、バーナ筒55の内部に配置されたメインノズル(第1燃料噴射部)56と、メインノズル56の外周部に設けられる旋回翼(スワラーベーン)57とから構成されている。
 燃焼器外筒41と燃焼器内筒42との間にリング形状をなす空気流路51が設けられており、この空気流路51に複数のペグ(燃料噴射部)58が設けられている。この複数のペグ58は、図7に示すように、基端部が燃焼器外筒41に固定され、先端部が燃焼器内筒42側に向かって延出されている。そして、複数のペグ58は、燃焼器外筒41の周方向に所定間隔で配置されている。
 また、図6に示すように、燃焼器外筒41は、パイロット燃料ポート61とメイン燃料ポート62とトップハット燃料ポート63が設けられ、パイロット燃料ポート61とメイン燃料ポート62とトップハット燃料ポート63は、それぞれパイロットノズル53と各メインノズル56と各ペグ58に接続されている。そして、図示しないパイロット燃料ラインがパイロット燃料ポート61に連結され、図示しないメイン燃焼ラインが各メイン燃料ポート62に連結され、図示しないトップハット燃焼ラインが各トップハット燃料ポート63に連結されている。
 従って、高温・高圧の圧縮空気の空気流が空気流路51に流れ込むと、この圧縮空気に対して各ペグ58から燃料Fが噴射されて混合気が形成され、この混合気が燃焼器内筒42内に流れ込む。燃焼器内筒42に流れ込んだ混合気は、メイン燃焼バーナ45から噴射された燃料Fと混合され、予混合気の旋回流となる。また、混合気は、パイロット燃焼バーナ44から噴射された燃料Fと混合され、図示しない種火により着火されて燃焼し、燃焼ガスとなって燃焼器内筒42内に噴出される。このとき、燃焼ガスの一部が燃焼器内筒42内に火炎を伴って周囲に拡散するように噴出されることで、各メイン燃焼バーナ45から燃焼器内筒42内に流れ込んだ予混合気に着火されて燃焼する。即ち、パイロット燃焼バーナ44から噴射されたパイロット燃料Fによる拡散火炎により、メイン燃焼バーナ45からの希薄予混合燃料Fの安定燃焼を行うための保炎を行うことができる。
 以下、ペグ58について詳細に説明する。図1は、本実施形態のガスタービン燃焼器におけるペグの取付状態を表す図7のI-I断面図、図2は、ペグの取付角度を説明するための概略図である。
 図1に示すように、ペグ58は、空気流路51の下流側で燃焼器内筒42に連通する湾曲部に配置され、基端部が燃焼器外筒41の湾曲する内面に支持されて先端部が燃焼器内筒42側に延出されている。ペグ58は、円柱形状をなし、内部に図示しない燃料通路が形成され、この燃料通路は、一端部がトップハット燃料ポート63からの供給孔63aに連通され、他端部がペグ58の外部に開口する複数の噴射孔58aに連通されている。
 図2に示すように、空気流路51を構成する燃焼器外筒41は、内面部が、燃焼器外筒41の軸方向に沿う第1直線部41aと、燃焼器外筒41の軸方向に直交する方向(燃焼器外筒41の径方向)に沿う第2直線部41cと、第1直線部41aと第2直線部41cを接続する湾曲部41bとを有している。即ち、第1直線部41aの延長線と第2直線部41cの延長線は、それぞれの長さL1,L2の位置で直角(90度)に交差する。ペグ58は、基端部が湾曲部41b、つまり、第1直線部41aに沿う長さL1と第2直線部41cに沿う長さL2の範囲に固定されている。
 ペグ58は、長手方向の中心線Oが燃焼器外筒41の湾曲部41bの内面の接線Tに直交する垂線Pに対して、空気流路51を流れる圧縮空気Aの流れ方向の下流側に所定角度θだけ傾斜して配置されている。この傾斜角度θは、10度から40度の範囲が望ましく、30度前後が最適である。
 また、ペグ58は、基端部が第1直線部41a及び第2直線部41cが延長された交点より空気流路51を流れる圧縮空気Aの流れ方向の下流側に支持されている。
 なお、ペグ58は、上述した形状に限定されるものではない。図3は、本実施形態のペグにおける変形実施形態を表す断面図である。
 図3に示すように、ペグ71は、空気流路51を構成する燃焼器外筒41における湾曲部41bに配置され、燃焼器内筒42側に延出されている。ペグ71は、円柱形状をなし、内部に図示しない燃料通路が形成され、この燃料通路は、一端部がトップハット燃料ポート63からの供給孔63aに連通され、他端部がペグ71の外部に開口する複数の噴射孔71aに連通されている。また、ペグ71は、先端部に球面形状をなす球面部71bが形成されている。
 また、ペグ58,71は、上述した形状に限定されるものではなく、多角柱形状であったり、楕円柱形状であったり、または、先細としたり、先太としたり、段付きなどとしたりしてもよい。また、ペグ58,71は、長手方向の中心線Oが垂線Pに対して圧縮空気Aの流れ方向の下流側に傾斜して配置したが、長手方向の中心線Oが垂線Pに対して圧縮空気Aの流れ方向の上流側に傾斜して配置してもよい。
 そのため、圧縮空気Aが空気流路51に流れ込むと、この圧縮空気Aに対してペグ58,71から燃料Fが噴射されて混合気が形成され、この混合気が燃焼器内筒42内に流れ込み、この混合気に対してパイロットノズル53やメインノズル56から燃料Fが噴射されて混合する。このとき、ペグ58,71は、空気流路51における圧縮空気Aの流れ方向の下流側に傾斜していることから、第2燃料噴射部まわりの流れの剥離を抑制することができる。すると、ペグ58,71の下流側における圧縮空気Aの流れが遅い領域が減少し、燃焼器内筒42からの火炎のフラッシュバックが抑制される。
 このように本実施形態のガスタービン燃焼器にあっては、燃焼器外筒41と、燃焼器内筒42と、燃焼器内筒42の内部に配置されるパイロットノズル53及びメインノズル56と、燃焼器外筒41と燃焼器内筒42との間に設けられる空気流路51と、空気流路51に配置されるペグ58,71とを設け、ペグ58,71は、空気流路51の下流側で燃焼器内筒42に連通する湾曲部41bに配置され、基端部がこの湾曲部41bの内面に支持されて先端部が燃焼器内筒42側に延出され、長手方向の中心線Oが燃焼器外筒41の湾曲面の接線Tに直交する垂線Pに対して空気流路51を流れる圧縮空気Aの流れ方向の下流側(または、上流側)に所定角度θだけ傾斜して配置されている。
 従って、ペグ58,71まわりの流れの剥離を抑制することができ、このペグ58,71の下流側における圧縮空気Aの流れが遅い領域が減少し、火炎のフラッシュバックを抑制することができる。
 本実施形態のガスタービン燃焼器では、ペグ58,71を圧縮空気Aの流れ方向の下流側に10度から30度の範囲で傾斜して配置している。従って、ペグ58,71が圧縮空気Aの流れの抵抗となりにくく、ペグ58,71の下流側における圧縮空気Aの流れが遅い領域を減少させることができる。
 本実施形態のガスタービン燃焼器では、空気流路51を構成する燃焼器外筒41の内面部は、燃焼器外筒41の軸方向に沿う第1直線部41aと、燃焼器外筒41の軸方向に直交する方向に沿う第2直線部41cと、第1直線部41aと第2直線部41cを接続する湾曲部41bとを有し、ペグ58,71の基端部を第1直線部41a及び第2直線部41cが延長された交点より空気流路51を流れる圧縮空気Aの流れ方向の下流側に支持している。従って、火炎のフラッシュバックをより一層抑制することができる。また、燃料噴射位置が変化することで、燃焼性を改善することもできる。
 本実施形態のガスタービン燃焼器では、ペグ71を円柱形状として先端部に球面部71bを設けている。従って、ペグ71が圧縮空気Aの流れの抵抗となりにくく、また、ペグ71による圧縮空気Aの剥離を抑制して第2燃料噴射部後流の低速領域を減少させることができる。
 また、本実施形態のガスタービンにあっては、空気を圧縮する圧縮機11と、圧縮機11が圧縮した圧縮空気Aと燃料Fを混合して燃焼する燃焼器12と、燃焼器12が生成した燃焼ガスにより回転動力を得るタービン13とを備え、燃焼器12にて、空気流路51の湾曲部41bにペグ58,71を設け、空気流路51を流れる圧縮空気Aの流れ方向の下流側(または、上流側)に所定角度θだけ傾斜させる。
 従って、燃焼器12にて、ペグ58,71まわりの流れの剥離を抑制することができ、このペグ58,71を回り込む圧縮空気量が減少することとなり、ペグ58,71の下流側における圧縮空気Aの流れが遅い領域が減少する。そのため、火炎のフラッシュバックを抑制することができる。
 なお、上述した本実施形態では、ペグ58,71を空気流路51の下流側で燃焼器内筒42に連通する湾曲部41bに配置したが、この湾曲部41bだけでなく、各直線部41a,41bにも配置してよい。
 10 ガスタービン
 11 圧縮機
 12 燃焼器
 13 タービン
 41 燃焼器外筒
 41a 第1直線部
 41b 湾曲部
 41c 第2直線部
 42 燃焼器内筒
 43 燃焼器尾筒
 44 パイロット燃焼バーナ
 45 メイン燃焼バーナ
 51 空気流路
 53 パイロットノズル(第1燃料噴射部)
 56 メインノズル(第1燃料噴射部)
 58,71 ペグ(第2燃料噴射部)
 58a,71a 噴射孔
 71b 球面部
 A 圧縮空気
 F 燃料
 L1,L2 長さ
 O 中心線
 P 垂線
 T 接線
 θ 傾斜角度

Claims (5)

  1.  筒形状をなす燃焼器外筒と、
     前記燃焼器外筒の内側に配置される燃焼器内筒と、
     前記燃焼器内筒の内部に配置される第1燃料噴射部と、
     前記燃焼器外筒と燃焼器内筒との間に設けられて圧縮空気を前記燃焼器内筒内に流入させる空気流路と、
     前記空気流路に配置される第2燃料噴射部と、
     を備えるガスタービン燃焼器において、
     前記第2燃料噴射部は、前記空気流路の下流側で前記燃焼器内筒に連通する湾曲部に配置され、基端部が前記燃焼器外筒の湾曲する内面に支持されて先端部が前記燃焼器内筒側に延出され、
     長手方向の中心線が前記燃焼器外筒の湾曲する内面の接線に直交する垂線に対して前記空気流路を流れる圧縮空気の流れ方向の下流側または上流側に所定角度だけ傾斜して配置される、
     ことを特徴とするガスタービン燃焼器。
  2.  前記第2燃料噴射部は、長手方向の中心線が前記垂線に対して前記空気流路を流れる圧縮空気の流れ方向の下流側に10度から30度の範囲で傾斜して配置されることを特徴とする請求項1に記載のガスタービン燃焼器。
  3.  前記空気流路を構成する前記燃焼器外筒の内面部は、前記燃焼器外筒の軸方向に沿う第1直線部と、前記燃焼器外筒の軸方向に直交する方向に沿う第2直線部と、前記第1直線部と前記第2直線部を接続する湾曲部とを有し、前記第2燃料噴射部は、基端部が前記第1直線部及び前記第2直線部が延長された交点より前記空気流路を流れる圧縮空気の流れ方向の下流側に支持されることを特徴とする請求項1または請求項2に記載のガスタービン燃焼器。
  4.  前記第2燃料噴射部は、円柱形状をなすと共に、先端部が球面形状をなすことを特徴とする請求項1から請求項3のいずれか一項に記載のガスタービン燃焼器。
  5.  空気を圧縮する圧縮機と、
     前記圧縮機が圧縮した圧縮空気と燃料を混合して燃焼する燃焼器と、
     前記燃焼器が生成した燃焼ガスにより回転動力を得るタービンと、
     を備え、
     前記燃焼器として請求項1から請求項4のいずれか一項に記載のガスタービン燃焼器が用いられる、
     ことを特徴とするガスタービン。
PCT/JP2017/008996 2016-03-07 2017-03-07 ガスタービン燃焼器及びガスタービン WO2017154900A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17763240.3A EP3428536A4 (en) 2016-03-07 2017-03-07 GUESTURBINE BURNER AND GAS TURBINE WITH IT
US16/082,466 US20190086093A1 (en) 2016-03-07 2017-03-07 Gas turbine combustor and gas turbine
KR1020187025757A KR20180110070A (ko) 2016-03-07 2017-03-07 가스 터빈 연소기 및 가스 터빈
CN201780015643.5A CN108700300A (zh) 2016-03-07 2017-03-07 燃气轮机燃烧器以及燃气轮机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-043589 2016-03-07
JP2016043589A JP6647924B2 (ja) 2016-03-07 2016-03-07 ガスタービン燃焼器及びガスタービン

Publications (1)

Publication Number Publication Date
WO2017154900A1 true WO2017154900A1 (ja) 2017-09-14

Family

ID=59790312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008996 WO2017154900A1 (ja) 2016-03-07 2017-03-07 ガスタービン燃焼器及びガスタービン

Country Status (7)

Country Link
US (1) US20190086093A1 (ja)
EP (1) EP3428536A4 (ja)
JP (1) JP6647924B2 (ja)
KR (1) KR20180110070A (ja)
CN (1) CN108700300A (ja)
TW (1) TWI622735B (ja)
WO (1) WO2017154900A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101889542B1 (ko) * 2017-04-18 2018-08-17 두산중공업 주식회사 연소기 노즐 조립체 및 이를 포함하는 가스터빈
JP6546334B1 (ja) * 2018-12-03 2019-07-17 三菱日立パワーシステムズ株式会社 ガスタービンの燃焼器及びこれを備えたガスタービン
JP7191723B2 (ja) * 2019-02-27 2022-12-19 三菱重工業株式会社 ガスタービン燃焼器及びガスタービン
JP7096182B2 (ja) * 2019-02-27 2022-07-05 三菱重工業株式会社 ガスタービン燃焼器及びガスタービン
JP7446077B2 (ja) * 2019-10-04 2024-03-08 三菱重工業株式会社 ガスタービン用燃焼器、ガスタービン及び油燃料の燃焼方法
JP7379265B2 (ja) * 2020-04-22 2023-11-14 三菱重工業株式会社 バーナー集合体、ガスタービン燃焼器及びガスタービン

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08135970A (ja) * 1994-11-08 1996-05-31 Hitachi Ltd ガスタービン燃焼器
JPH09184629A (ja) * 1996-01-04 1997-07-15 Hitachi Ltd ガスタービン燃焼器の予混合器
JPH1047679A (ja) * 1996-05-02 1998-02-20 General Electric Co <Ge> ガス燃料の希薄直接噴射を有する予混合乾式ガスタービン燃焼器
JP2009192175A (ja) * 2008-02-15 2009-08-27 Mitsubishi Heavy Ind Ltd 燃焼器
JP2013139967A (ja) * 2012-01-05 2013-07-18 Mitsubishi Heavy Ind Ltd 燃焼器
JP5524407B2 (ja) * 2011-03-16 2014-06-18 三菱重工業株式会社 ガスタービン燃焼器およびガスタービン

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06272862A (ja) * 1993-03-18 1994-09-27 Hitachi Ltd 燃料空気混合方法およびその混合装置
US5647215A (en) * 1995-11-07 1997-07-15 Westinghouse Electric Corporation Gas turbine combustor with turbulence enhanced mixing fuel injectors
JP3709671B2 (ja) * 1997-09-29 2005-10-26 株式会社日立製作所 ガスタービン燃焼器
JP4508474B2 (ja) * 2001-06-07 2010-07-21 三菱重工業株式会社 燃焼器
US6786047B2 (en) * 2002-09-17 2004-09-07 Siemens Westinghouse Power Corporation Flashback resistant pre-mix burner for a gas turbine combustor
JP2005233574A (ja) * 2004-02-23 2005-09-02 Mitsubishi Heavy Ind Ltd 燃焼器
JP2008025910A (ja) * 2006-07-20 2008-02-07 Mitsubishi Heavy Ind Ltd ガスタービン燃焼器
KR101318553B1 (ko) * 2009-08-13 2013-10-16 미츠비시 쥬고교 가부시키가이샤 연소기
US20110083440A1 (en) * 2009-10-14 2011-04-14 General Electric Company High strength crossover manifold and method of joining
JP2011111964A (ja) * 2009-11-26 2011-06-09 Mitsubishi Heavy Ind Ltd ガスタービン燃焼器
JP5546432B2 (ja) * 2010-11-30 2014-07-09 株式会社日立製作所 ガスタービン燃焼器及び燃料供給方法
JP5721447B2 (ja) * 2011-01-17 2015-05-20 三菱日立パワーシステムズ株式会社 ガスタービン燃焼器、これを備えたガスタービン、これを備えたガスタービンプラントおよびこの制御方法
JP6004976B2 (ja) * 2013-03-21 2016-10-12 三菱重工業株式会社 燃焼器及びガスタービン

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08135970A (ja) * 1994-11-08 1996-05-31 Hitachi Ltd ガスタービン燃焼器
JPH09184629A (ja) * 1996-01-04 1997-07-15 Hitachi Ltd ガスタービン燃焼器の予混合器
JPH1047679A (ja) * 1996-05-02 1998-02-20 General Electric Co <Ge> ガス燃料の希薄直接噴射を有する予混合乾式ガスタービン燃焼器
JP2009192175A (ja) * 2008-02-15 2009-08-27 Mitsubishi Heavy Ind Ltd 燃焼器
JP5524407B2 (ja) * 2011-03-16 2014-06-18 三菱重工業株式会社 ガスタービン燃焼器およびガスタービン
JP2013139967A (ja) * 2012-01-05 2013-07-18 Mitsubishi Heavy Ind Ltd 燃焼器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3428536A4 *

Also Published As

Publication number Publication date
EP3428536A1 (en) 2019-01-16
US20190086093A1 (en) 2019-03-21
TWI622735B (zh) 2018-05-01
CN108700300A (zh) 2018-10-23
TW201809550A (zh) 2018-03-16
EP3428536A4 (en) 2019-07-31
KR20180110070A (ko) 2018-10-08
JP2017161109A (ja) 2017-09-14
JP6647924B2 (ja) 2020-02-14

Similar Documents

Publication Publication Date Title
WO2017154900A1 (ja) ガスタービン燃焼器及びガスタービン
JP5611450B2 (ja) ノズル及びガスタービン燃焼器、ガスタービン
JP6177187B2 (ja) ガスタービン燃焼器、ガスタービン、制御装置及び制御方法
CN103438480B (zh) 燃气涡轮发动机的喷嘴、燃烧室及相应的方法
KR102056044B1 (ko) 연소기 노즐, 가스 터빈 연소기, 가스 터빈, 커버 링, 및 연소기 노즐의 제조 방법
JP2013231582A (ja) タービンエンジン用の燃料/空気予混合システム
EP3102877B1 (en) Combustor
US10570820B2 (en) Nozzle, combustion apparatus, and gas turbine
JP6012407B2 (ja) ガスタービン燃焼器及びガスタービン
JP6236149B2 (ja) ガスタービン燃焼器及びガスタービン
WO2017154821A1 (ja) バーナアセンブリ、燃焼器、及びガスタービン
JP2014092286A5 (ja)
JP2007147125A (ja) ガスタービン燃焼器
JP3878980B2 (ja) 燃焼装置用の燃料噴射装置
JP5502651B2 (ja) 燃焼バーナ
WO2021251325A1 (ja) ガスタービンの予混合管構造
JP6037812B2 (ja) 燃料ノズル、燃焼バーナ、ガスタービン燃焼器及びガスタービン
EP4220013A1 (en) Turbine engine fuel mixer

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187025757

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187025757

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017763240

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017763240

Country of ref document: EP

Effective date: 20181008

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763240

Country of ref document: EP

Kind code of ref document: A1