WO2017153895A1 - Robot motorisé autonome pour le transport de charges - Google Patents

Robot motorisé autonome pour le transport de charges Download PDF

Info

Publication number
WO2017153895A1
WO2017153895A1 PCT/IB2017/051300 IB2017051300W WO2017153895A1 WO 2017153895 A1 WO2017153895 A1 WO 2017153895A1 IB 2017051300 W IB2017051300 W IB 2017051300W WO 2017153895 A1 WO2017153895 A1 WO 2017153895A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
robot according
zone
spacers
viewing
Prior art date
Application number
PCT/IB2017/051300
Other languages
English (en)
Inventor
Cédric TESSIER
Original Assignee
Effidence
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Effidence filed Critical Effidence
Priority to EP17710622.6A priority Critical patent/EP3427117A1/fr
Priority to JP2018548026A priority patent/JP2019519013A/ja
Publication of WO2017153895A1 publication Critical patent/WO2017153895A1/fr

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • G05D1/024Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors in combination with a laser

Definitions

  • the present invention relates to a motorized autonomous robot. It relates more particularly to an autonomous robot with tracking means.
  • Powered autonomous robots are now well known and used in many fields such as logistics, agriculture, industrial production, etc.
  • a large part of the robots used is intended to transport loads over short distances.
  • the robots must include locating and guiding means.
  • One of the most used solutions to date is to provide a mast or other arm system for positioning one or more sensors in height. The elevated position relative to the robot and the load handling area protects the sensors.
  • Other examples of solutions are presented below.
  • CN204173040 describes a forklift with a laser navigation system.
  • the laser navigation system is installed on the navigation column.
  • CN204440168 describes a high security automatic guided vehicle (AGV) comprising a vehicle body, driving wheels, a control device, a navigation laser sensor, an air pump and a transport platform. goods installed on the body of the vehicle.
  • the laser device is installed at the height of the vehicle.
  • US2005246065 discloses a volumetric sensor for the navigation of a robot to avoid obstacles in its path.
  • the sensor is installed on a platform with a laser and a detector directed to a rotating mirror in a cylinder that can rotate 360 ° by a motor.
  • a rotating cam tilts the mirror to provide laser scanning and obstacle distance measurements.
  • the Youtube video "Finish the boots with Effibot? Describes a robot with a laser sensor adapted to detect only what is in front of the robot, for example the legs of an operator.
  • the Youtube video «Discover the follower robot of IRSTEA! “Describes the same robot as in the video” Finish the boots with Effibot? ".
  • the invention provides different technical means.
  • Another object of the invention is to provide a motorized robot inexpensive construction.
  • the tracking device is protected against the risks associated with the conditions of use, such as glare of the sun or rain that may affect the operation of the device.
  • the sensor is particularly well protected against rain runoff, which could disrupt the laser beam.
  • the preferential position substantially in the center of the robot body or load plate limits dust deposits which also affect laser performance.
  • the device is also protected from any direct shocks including with branches and or any other obstacle likely to put it out of use. Separating spacers help provide this protection and also protect against shocks that could damage the sensor glass.
  • the position of the sensor in the lower zone, under load, near the ground allows to maintain good reliability even on uneven ground.
  • such an architecture is simple and inexpensive to implement.
  • the tracking device is disposed in a central portion of the viewing zone. This arrangement allows an ideal viewing position to allow optimal performance over a wider angular range, for example 360 degrees.
  • the PV viewing plane extends angularly at least 15 degrees and more preferably at least 30 degrees relative to the PV axis so as to form a CV vision cone.
  • the tracking device comprises at least one of the following: a laser, a Lidar, a sonar, a radar, a camera, a thermal camera, an infrared distance measuring device , a radio measurement device (for example UWB: Ultra Wide Band).
  • the tracking device allows use in very varied conditions, often extreme.
  • the laser for example, can be used both in a room plunged in darkness and outside in the presence of intense sun.
  • the separation struts consist of substantially thin wafers, for example metal alloy or composite material.
  • the separation spacers are oriented so that the main plane of each of them is substantially parallel to the axis of a beam emitted by the tracking device.
  • This architecture maximizes the area of vision by avoiding interruptions in the beam of the tracking device.
  • the separation spacers consist of longitudinal plates disposed on each side of the tracking device on the side edges of the robot.
  • the tracking device comprises a single sensor.
  • This technical feature provides a simple layout with limited wiring and high reliability. Such an arrangement makes it possible to limit the costs and to simplify the construction of the robot.
  • the robot comprises legs instead of wheels or caterpillars.
  • FIG. 1 is an elevational view of an example of a robot according to the invention.
  • FIG. 2 is a view from above, without the loading platform, of the robot of FIG. 1;
  • FIG. 3 is an elevational view of an exemplary robot according to the invention with a variant of the shape of the spacers;
  • FIG. 4 is a view from above, without the loading platform, of the robot of FIG. 3.
  • Figures 1 and 2 illustrate an embodiment of a robot 1 comprising a body 2 mounted on wheels 3 defining a running plane PR.
  • the body 2 is rectangular in shape, and substantially flat, to maintain the center of gravity close to the ground and facilitate the loading and unloading operations by the operator.
  • the body can be designed according to a wide range of shapes and profiles, depending on the intended uses, and aesthetic qualities required.
  • the robot comprises at least one motor, electric or thermal, and means for managing the movements autonomously.
  • the robot comprises a loading plate 4 arranged above the body 2. This position allows great ease to handle the loads to be transported by the robot.
  • Figures 1 and 3 also show that the plate 4 is spaced from the body 2.
  • the elevation of the plate is ensured by separating struts 5, which can be arranged in different ways as can be seen for example in the figure 1 on the one hand, and Figure 2 on the other hand, between the top of the body 2 and the underside of the tray.
  • the robot of this embodiment comprises six spacers distributed so as to support the entire surface of the plate, two spacers at each end and two spacers to the middle zone of the body .
  • the separation struts 5 consist of substantially thin wafers oriented so that the main plane of each of them is substantially parallel to the axis of a wide-angle beam emitted from the central zone of the robot. .
  • the robot comprises two longitudinal spacers arranged on each side of the locating device on the lateral edges of the robot. They are sufficiently long and rigid to support the entire weight of the plate, even when the plate is loaded to full capacity.
  • the robot is designed to move forward and / or rotate and / or translate laterally.
  • the change of angular direction is ensured either by pivoting the wheels (two or four directional wheels) or by relative angular velocity variation between the wheels on each side of the robot.
  • the robot is advantageously equipped with four electric motors, located in the axes of the wheels.
  • it comprises only two motors.
  • Other configurations are also possible, for example with a single motor and two or four drive wheels.
  • the body 2 can accommodate one or more batteries and the electronic elements required for the management and guidance of the robot.
  • the elevation of the plate 4 relative to the top of the body makes it possible to form a zone 7 of vision in a plane of vision PV substantially parallel to the rolling plane PR, the zone of vision being substantially free over a range of at least 300 °, and more preferably at least 330 ° and even more preferably substantially 360 ° with respect to a central zone of the robot.
  • the viewing zone makes it possible on the one hand to provide an available location for positioning a tracking device 6, and on the other hand enables this tracking device to have a catchment area, or very wide field of view.
  • This capture zone is as wide as possible, for example greater than 300 °, and more preferably at least 330 ° and even more preferably substantially 360 °.
  • the marking device is arranged in a central portion 8 of the vision area.
  • the PV viewing plane can extend angularly by at least 15 degrees and more preferably by at least 30 degrees with respect to the PV axis so as to form a cone. CV vision.
  • the tracking device 6 comprises at least one of the following: a laser, a Lidar, a sonar, a radar, a camera, a thermal camera, a device of distance measurement by infrared, a radio measurement device (for example UWB: Ultra Wide Band).
  • the spacers are sufficiently thin and spaced apart so as not to hinder the operation of the tracking device.
  • the locating device 6 is disposed in a central portion of the viewing zone 7.
  • hybrid solutions with several types of sensors can also be implemented. Still alternatively, to scan the range of 360 °, there are two or more sensors arranged in a complementary manner.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Handcart (AREA)

Abstract

Robot (1) motorisé comprenant un corps (2) monté sur roues (3) ou chenilles ou pattes, un plateau de chargement (4) agencé au dessus dudit corps, le plateau étant espacé du corps au moyen d'entretoises (5) de séparation, de façon à former une zone de vision (7) sensiblement libre sur une plage d'au moins 300°, et plus préférentiellement d'au moins 330° et encore plus préférentiellement de sensiblement 360° par rapport à une zone centrale (8) du robot, au moins un dispositif de repérage (6) adapté pour émettre un faisceau panoramique sur une plage angulaire correspondante étant agencé dans ladite zone de vision.

Description

ROBOT MOTORISE AUTONOME POUR LE TRANSPORT DE CHARGES
DOMAINE TECHNIQUE DE L'INVENTION
[0001] La présente invention concerne un robot autonome motorisé. Elle concerne plus particulièrement un robot autonome doté de moyens de repérage.
ETAT DE LA TECHNIQUE ANTERIEURE
[0002] Les robots autonomes motorisés sont aujourd'hui bien connus et utilisés dans de nombreux domaines tels que la logistique, l'agriculture, la production industrielle, etc. Une part importante des robots utilisés est destinée à transporter des charges sur de courtes distances. Pour assurer leur déplacement de façon autonome, les robots doivent comporter des moyens de repérage et de guidage. De nombreuses formes de mises en œuvre existent aujourd'hui, avec des capteurs et/ou caméras agencés à des endroits permettant de mettre en œuvre les fonctions de repérage, tout en permettant au robot de réaliser sa mission de base, le transport de charge. On observe plusieurs exigences contradictoires entre le fait de doter le robot des équipements lui permettant d'être autonome, le fait de conserver des espaces de chargement facilement accessibles et la protection des moyens de repérage contre les chocs et autres aléas liés à une utilisation intensive. Une des solutions les plus utilisées à ce jour consiste à prévoir un mât ou autre système de bras permettant de positionner en hauteur un ou plusieurs capteurs. La position surélevée par rapport au robot et à la zone de manipulation des charges permet de protéger les capteurs. D'autres exemples de solutions sont présentés ci-après.
[0003] Le document FR2994057 décrit un robot de taille de vignes comprenant des moyens de captation d'images comprenant des moyens de projection d'au moins un faisceau laser sur lesdits pieds de vigne et leurs branches, des moyens de relevé et d'enregistrement d'une série d'images relatives à la forme dudit faisceau laser sur lesdits pieds de vigne et leurs branches. Pour fonctionner de façon fiable et efficace, un tel agencement doit comporter une pluralité de capteurs d'images. [0004] Le document CN204733244 décrit une caméra pour robot à lentille étanche. La caméra dispose d'un angle de vision à 360°. L'utilisation de cette caméra ne permet pas une détection fiable des obstacles. En outre, la caméra est sensible aux variations de lumière et ne permet donc pas une utilisation multimodale.
[0005] Le document CN204173040 décrit un chariot élévateur disposant d'un système de navigation laser. Le système de navigation laser est installé sur la colonne de navigation.
[0006] Le document CN204440168 décrit un véhicule guidé automatique de haute sécurité (AGV) comprenant un corps de véhicule, des roues motrices, un dispositif de commande, un capteur laser de navigation, une pompe à air et une plate-forme de transport de marchandise installés sur la carrosserie du véhicule. Le dispositif de laser est installé en hauteur du véhicule.
[0007] Le document US2005246065 décrit un capteur volumétrique pour la navigation d'un robot afin d'éviter les obstacles présent dans sa trajectoire. Le capteur est installé sur une plate-forme avec un laser et un détecteur dirigé vers un miroir pivotant dans un cylindre qui peut tourner à 360° par un moteur. Une came rotative incline le miroir afin de fournir un balayage laser et des mesures de distances d'obstacles.
[0008] Dans ces dernières solutions, la présence d'un capteur disposé en hauteur ne permet pas de garantir l'obtention d'une information fiable pour le robot, notamment lors d'une utilisation en terrain accidenté. En effet, dans ces conditions, l'inclinaison du détecteur laser installé en hauteur fausse les résultats qui sont présenté dans un repère sur sol plat alors que les lectures sont effectuées à partir d'un autre repère, non connu, et qui change sans cesse en fonction des conditions du sol. Les informations erronées obtenues sont susceptibles de causer des collisions ou des situations de blocage du robot.
[0009] La vidéo Youtube « Fini les bottes avec Effibot ? » décrit un robot avec un capteur laser adapté pour détecter uniquement ce qui se trouve devant le robot, par exemple les jambes d'un opérateur. [0010] La vidéo Youtube « Découvrez le robot suiveur de l'IRSTEA ! » décrit le même robot que dans la vidéo « Fini les bottes avec Effibot ? ».
[0011] Dans ces deux vidéos, la zone située derrière le capteur est occupée par du hardware. Le robot ne peut donc pas effectuer de reconnaissance sur une zone plus large que celle située devant le robot. La réduction du champ de détection du capteur laser diminue les informations obtenues et des collisions ou des situations de blocage du robot sont très probables.
[0012] Pour pallier ces différents inconvénients, l'invention prévoit différents moyens techniques.
EXPOSE DE L'INVENTION
[0013] Tout d'abord, un premier objet de l'invention consiste à prévoir un robot motorisé autonome permettant le transport de marchandises dont le déplacement est assuré de manière fiable et simple.
[0014] Un autre objet de l'invention consiste à prévoir un robot motorisé de construction peu coûteuse.
[0015] Un autre objet de l'invention consiste à prévoir un robot motorisé dont la mise en œuvre est simple.
[0016] Pour ce faire, l'invention prévoit un robot motorisé comprenant un corps monté sur roues ou chenilles définissant un plan de roulement PR, un plateau de chargement agencé au dessus dudit corps, le plateau étant espacé du corps au moyen d'entretoises de séparation, de façon à former une zone de vision dans un plan de vision PV sensiblement parallèle au plan de roulement PR, la zone de vision étant sensiblement libre sur une plage d'au moins 300°, et plus préférentiellement d'au moins 330° et encore plus préférentiellement de sensiblement 360° par rapport à une zone centrale du robot, au moins un dispositif de repérage adapté pour émettre un faisceau panoramique sur une plage angulaire correspondante étant agencé dans ladite zone de vision. [0015] Selon une telle architecture, le dispositif de repérage est protégé contre les risques liés aux conditions d'utilisations, tels l'éblouissement du soleil ou encore la pluie qui sont susceptibles de nuire au fonctionnement du dispositif. Le capteur est notamment bien protégé contre le ruissellement de la pluie, qui pourrait perturber le faisceau laser. La position préférentielle sensiblement au centre du corps du robot ou du plateau porte-charge limite les dépôts de poussière qui affectent aussi les performances du laser.
[0016] Le dispositif se retrouve également protégé d'éventuels chocs directs notamment avec des branches et ou tout autre obstacle susceptibles de le mettre hors d'usage. Les entretoises de séparation contribuent à assurer cette protection et protègent également contre les chocs qui pourraient endommager la vitre du capteur.
[0017] Le dispositif de repérage, grâce à la zone de vision, dispose d'une plage d'au moins 300°, et plus préférentiellement d'au moins 330° et encore plus préférentiellement de sensiblement 360° par rapport à une zone centrale du robot. Cette caractéristique présente l'avantage d'offrir une visibilité quasi totale voire totale pour le robot, simplifiant considérablement l'architecture et la mise en œuvre du système, et permettant de mettre en place de multiples fonctionnalités de guidage et de sécurité.
[0018] Enfin, la position du capteur en zone basse, sous la charge, près du sol, permet de conserver une bonne fiabilité même sur sol irrégulier. En outre, une telle architecture est simple et peu coûteuse à mettre en œuvre.
[0019] Selon un mode de réalisation avantageux, le dispositif de repérage est disposé dans une portion centrale de la zone de vision. Cet agencement permet une position de vision idéale pour permettre des performances optimales sur une plage angulaire la plus vaste, par exemple sur 360 degrés.
[0020] De manière avantageuse, le plan de vision PV se prolonge angulairement d'au moins 15 degrés et plus préférentiellement d'au moins 30 degrés par rapport à l'axe PV de façon à former un cône de vision CV. Ce mode de réalisation permet d'augmenter la zone de vision vers le haut et/ou vers le bas. [0021] Selon un mode de réalisation avantageux, le dispositif de repérage comprend au moins un élément parmi les suivants : un laser, un Lidar, un sonar, un radar, une caméra, une caméra thermique, un dispositif de mesure de distance par infrarouge, un dispositif de mesure par radio (par exemple UWB : Ultra Wide Band).
[0022] Selon une telle architecture, le dispositif de repérage permet un usage dans des conditions très variées, souvent extrêmes. En effet, le laser, par exemple, peut être utilisé tant dans une pièce plongée dans l'obscurité, qu'en extérieur en présence d'un soleil intense.
[0023] De manière avantageuse, les entretoises de séparation sont constituées de plaquettes sensiblement minces, par exemple en alliage métallique ou en matériau composite.
[0024] Egalement de manière avantageuse, les entretoises de séparation sont orientées de sorte que le plan principal de chacune d'entre elles soit sensiblement parallèle à l'axe d'un faisceau émis par le dispositif de repérage.
[0025] Cette architecture permet de maximiser la zone de vision en évitant les interruptions du faisceau du dispositif de repérage.
[0026] En variante, les entretoises de séparation sont constituées de plaques longitudinales disposées de chaque côté du dispositif de repérage sur les bords latéraux du robot.
[0027]Selon encore un autre mode de réalisation, le dispositif de repérage comporte un seul capteur. Cette caractéristique technique permet d'obtenir un agencement simple, avec un câblage limité, et une grande fiabilité. Un tel agencement permet de limiter les coûts et de simplifier la construction du robot.
[0028] En variante, le robot comprend des pattes à la place des roues ou des chenilles. DESCRIPTION DES FIGURES
[0029]Tous les détails de réalisation sont donnés dans la description qui suit, complétée par les figures 1 à 4, présentées uniquement à des fins d'exemples non limitatifs, et dans lesquelles :
- la figure 1 est une vue en élévation d'un exemple de robot selon l'invention ;
- la figure 2 est une vue de dessus, sans le plateau de chargement, du robot de la figure 1 ;
- la figure 3 est une vue en élévation d'un exemple de robot selon l'invention avec une variante de forme des entretoises ;
- la figure 4 est une vue de dessus, sans le plateau de chargement, du robot de la figure 3.
DESCRIPTION DETAILLEE DE L'INVENTION
[0030] Les figures 1 et 2 illustrent un exemple de réalisation d'un robot 1 comprenant un corps 2 monté sur roues 3 définissant un plan de roulement PR. Dans cet exemple, le corps 2 est de forme rectangulaire, et sensiblement plat, pour maintenir le centre de gravité près du sol et faciliter les opérations de chargement et de déchargement par l'opérateur. En variante, le corps peut être conçu selon une vaste panoplie de formes et de profils, en fonction des utilisations prévues, et des qualités esthétiques requises. De façon classique, le robot comporte au moins un moteur, électrique ou thermique, et des moyens permettant de gérer les déplacements de façon autonome.
[0031] Comme on le voit aux figures 1 et 3, le robot comprend un plateau de chargement 4 agencé au dessus du corps 2. Cette position permet une grande aisance pour manipuler les charges à transporter par le robot. Les figures 1 et 3 montrent également que le plateau 4 est espacé du corps 2. Dans ces exemples, la surélévation du plateau est assurée par des entretoises 5 de séparation, qui peuvent être agencées de différentes façons comme on le voit par exemple sur la figure 1 d'une part, et la figure 2 d'autre part, entre le dessus du corps 2 et le dessous du plateau. [0032]Tel que montré à la figure 2, le robot de cet exemple de réalisation comprend six entretoises réparties de façon à bien supporter la totalité de la surface du plateau, soit deux entretoises à chaque extrémité et deux entretoises vers la zone médiane du corps. Dans les exemples illustrés, les entretoises 5 de séparation sont constituées de plaquettes sensiblement minces orientées de sorte que le plan principal de chacune d'entre elles soit sensiblement parallèle à l'axe d'un faisceau à grand angle émis depuis la zone centrale du robot.
[0033] Dans la variante de réalisation de la figure 3, le robot comprend deux entretoises longitudinales disposées de chaque côté du dispositif de repérage sur les bords latéraux du robot. Elles sont suffisamment longues et rigides de façon à supporter la totalité du poids du plateau, même lorsque ce dernier est chargé à pleine capacité.
[0034] Le robot est conçu pour avancer et/ou tourner et/ou translater latéralement. Le changement de direction angulaire est assuré soit par pivotement des roues (deux ou quatre roues directionnelles) ou par variation de vitesse angulaire relative entre les roues de chaque côté du robot.
[0035]A cet effet, le robot est avantageusement équipé de quatre moteurs électriques, implantés dans les axes des roues. En variante, il comprend seulement deux moteurs. D'autres configurations sont aussi possibles, par exemple avec un moteur unique et deux ou quatre roues motrices. Le corps 2 permet de loger une ou plusieurs batteries et les éléments électroniques requis pour assurer la gestion et le guidage du robot.
[0036] La surélévation du plateau 4 par rapport au dessus du corps permet de former une zone 7 de vision dans un plan de vision PV sensiblement parallèle au plan de roulement PR, la zone de vision étant sensiblement libre sur une plage d'au moins 300°, et plus préférentiellement d'au moins 330° et encore plus préférentiellement de sensiblement 360° par rapport à une zone centrale du robot. La zone de vision permet d'une part de prévoir un emplacement disponible pour positionner un dispositif de repérage 6, et permet d'autre part à ce dispositif de repérage d'avoir une zone de captation, ou champ de visibilité très large. Cette zone de captation est la plus large possible, par exemple supérieure à 300°, et plus préférentiellement d'au moins 330° et encore plus préférentiellement de sensiblement 360° Dans les exemples illustrés, le dispositif de repérage est agencé dans une portion centrale 8 de la zone de vision. Tel qu'illustré dans l'exemple de la figure 3, le plan de vision PV peut se prolonger angulairement d'au moins 15 degrés et plus préférentiellement d'au moins 30 degrés par rapport à l'axe PV de façon à former un cône de vision CV.
[0037]Toujours dans l'exemple des figures 1 à 4, le dispositif de repérage 6 comprend au moins un élément parmi les suivants : un laser, un Lidar, un sonar, un radar, une caméra, une caméra thermique, un dispositif de mesure de distance par infrarouge, un dispositif de mesure par radio (par exemple UWB : Ultra Wide Band). Les entretoises sont suffisamment minces et espacées pour ne pas entraver le fonctionnement du dispositif de repérage. Dans un mode de réalisation avantageux, le dispositif de repérage 6 est disposé dans une portion centrale de la zone de vision 7.
[0038] En variante, des solutions hybrides, avec plusieurs types de capteurs, peuvent aussi être mises en œuvre. Encore en variante, pour balayer la plage de 360°, on prévoit deux ou plusieurs capteurs disposés de façon complémentaire.
[0039] Les Figures et leurs descriptions faites ci-dessus illustrent l'invention plutôt qu'elles ne la limitent. En particulier, l'invention et ses différentes variantes viennent d'être décrites en relation avec un exemple particulier comportant un capteur laser agencé centralement entre le dessus du corps du robot et le dessous du plateau de chargement.
[0040] Néanmoins, il est évident pour un homme du métier que l'invention peut être étendue à d'autres modes de réalisation dans lesquels en variantes, on prévoit un emplacement différent pour le dispositif de repérage, comme par exemple sous le plateau de chargement, ou encore à une position différente dans la zone de vision. Numéros de référence employés sur les figures Robot
Corps du robot
Roues
Plaque de chargement ou plaque porte-charge
Entretoises de séparation
Dispositif de repérage
Zone de vision
Portion centrale de la zone de vision

Claims

REVENDICATIONS
1 . Robot (1 ) motorisé comprenant un corps (2) monté sur roues (3) ou chenilles définissant un plan de roulement PR, un plateau de chargement (4) agencé au dessus dudit corps, le plateau étant espacé du corps au moyen d'entretoises (5) de séparation, de façon à former une zone de vision (7) dans un plan de vision PV sensiblement parallèle au plan de roulement PR, la zone de vision étant sensiblement libre sur une plage d'au moins 300°, et plus préférentiellement d'au moins 330° et encore plus préférentiellement de sensiblement 360° par rapport à une zone centrale (8) du robot, au moins un dispositif de repérage (6) adapté pour émettre un faisceau panoramique sur une plage angulaire correspondante étant agencé dans ladite zone de vision.
2. Robot selon la revendication 1 , dans lequel le dispositif de repérage (6) est disposé dans une portion centrale de la zone de vision (7).
3. Robot selon l'une quelconque des revendication 1 ou 2, dans lequel le plan de vision PV se prolonge angulairement d'au moins 15 degrés et plus préférentiellement d'au moins 30 degrés par rapport à l'axe PV de façon à former un cône de vision CV.
4. Robot selon l'une quelconque des revendication 1 à 3, dans lequel le dispositif de repérage (6) comprend au moins un élément parmi les suivants : un laser, un Lidar, un sonar, un radar, une caméra, une caméra thermique, un dispositif de mesure de distance par infrarouge, un dispositif de mesure par radio.
5. Robot selon l'une quelconque des revendications 1 à 4, dans lequel les entretoises (5) de séparation sont constituées de plaquettes sensiblement minces.
6. Robot selon la revendication 5, dans lequel les entretoises (5) de séparation sont orientées de sorte que le plan principal de chacune d'entre elles soit sensiblement parallèle à l'axe d'un faisceau émis par le dispositif de repérage.
5. Robot selon l'une quelconque des revendications 1 à 4, dans lequel les entretoises (5) de séparation sont constituées de plaques longitudinales disposées de chaque côté du dispositif de repérage (6) sur les bords latéraux du robot.
6. Robot selon l'une quelconque des revendications précédentes, dans lequel le dispositif de repérage (6) comporte un seul capteur.
7. Robot selon l'une quelconque des revendications précédentes, comprenant des pattes à la place des roues ou des chenilles.
PCT/IB2017/051300 2016-03-07 2017-03-06 Robot motorisé autonome pour le transport de charges WO2017153895A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17710622.6A EP3427117A1 (fr) 2016-03-07 2017-03-06 Robot motorisé autonome pour le transport de charges
JP2018548026A JP2019519013A (ja) 2016-03-07 2017-03-06 積荷輸送用の動力式自律ロボット

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR16/00388 2016-03-07
FR1600388A FR3048405B1 (fr) 2016-03-07 2016-03-07 Robot motorise autonome pour le transport de charges

Publications (1)

Publication Number Publication Date
WO2017153895A1 true WO2017153895A1 (fr) 2017-09-14

Family

ID=56101530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2017/051300 WO2017153895A1 (fr) 2016-03-07 2017-03-06 Robot motorisé autonome pour le transport de charges

Country Status (4)

Country Link
EP (1) EP3427117A1 (fr)
JP (1) JP2019519013A (fr)
FR (1) FR3048405B1 (fr)
WO (1) WO2017153895A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3133804A1 (fr) * 2022-03-25 2023-09-29 Psa Automobiles Sa Dispositif de transport autonome comportant une capsule transportée par une plateforme autonome.

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110861563A (zh) * 2019-11-27 2020-03-06 浙江东腾智能装备有限公司 一种无轨道运行使用的电动平车

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050246065A1 (en) 2004-05-03 2005-11-03 Benoit Ricard Volumetric sensor for mobile robotics
FR2994057A1 (fr) 2012-07-31 2014-02-07 Tiam Robot de taille de vignes comprenant des moyens de captation d'images mettant en oeuvre des moyens de projection d'un faisceau laser
CN204173040U (zh) 2014-09-04 2015-02-25 苏州工业园区艾吉威自动化设备有限公司 激光导航叉车型agv小车
CN204440168U (zh) 2015-03-14 2015-07-01 周正龙 一种高安全性的agv小车
CN204733244U (zh) 2015-06-05 2015-10-28 天津昊野科技有限公司 一种新型机器人摄像机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3319194B2 (ja) * 1994-12-08 2002-08-26 村田機械株式会社 無人搬送車
JP2014164315A (ja) * 2013-02-21 2014-09-08 Nikon Corp 自走式運搬装置およびシステム
US20150202770A1 (en) * 2014-01-17 2015-07-23 Anthony Patron Sidewalk messaging of an autonomous robot

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050246065A1 (en) 2004-05-03 2005-11-03 Benoit Ricard Volumetric sensor for mobile robotics
FR2994057A1 (fr) 2012-07-31 2014-02-07 Tiam Robot de taille de vignes comprenant des moyens de captation d'images mettant en oeuvre des moyens de projection d'un faisceau laser
CN204173040U (zh) 2014-09-04 2015-02-25 苏州工业园区艾吉威自动化设备有限公司 激光导航叉车型agv小车
CN204440168U (zh) 2015-03-14 2015-07-01 周正龙 一种高安全性的agv小车
CN204733244U (zh) 2015-06-05 2015-10-28 天津昊野科技有限公司 一种新型机器人摄像机

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Découvrez le robot suiveur de l'IRSTEA !", YOUTUBE, 9 March 2015 (2015-03-09), pages 1 pp., XP054976935, Retrieved from the Internet <URL:https://www.youtube.com/watch?v=efHmdC_aJs4> [retrieved on 20161124] *
"Fini les bottes, avec Effibot?", YOUTUBE, 1 March 2016 (2016-03-01), pages 1 pp., XP054976934, Retrieved from the Internet <URL:https://www.youtube.com/watch?v=VIArepejHJI> [retrieved on 20161124] *
"Oct 2016: Bouygues Construction, Effidence et robot EffiBOT", YOUTUBE, 20 September 2016 (2016-09-20), pages 1 pp., XP054977319, Retrieved from the Internet <URL:https://www.youtube.com/watch?v=aQ3a4lFqj-M> [retrieved on 20170508] *
"Une chenillette électrique robotisée", YOUTUBE, 15 January 2017 (2017-01-15), pages 1pp., XP054977316, Retrieved from the Internet <URL:https://www.youtube.com/watch?v=zAK4M3AXrEQ> [retrieved on 20170508] *
ABAVALA !!!: "Le robot suiveur d'Effidence", YOUTUBE, 27 July 2015 (2015-07-27), XP054981767, Retrieved from the Internet <URL:https://www.youtube.com/watch?v=lRUTKwUcM3k>
POWERBOOST: "Découvrez le robot suiveur de l'IRSTEA !", YOUTUBE, 9 March 2015 (2015-03-09), XP054981768, Retrieved from the Internet <URL:https://www.youtube.com/watch?v=efHmdC_aJs4>

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3133804A1 (fr) * 2022-03-25 2023-09-29 Psa Automobiles Sa Dispositif de transport autonome comportant une capsule transportée par une plateforme autonome.

Also Published As

Publication number Publication date
JP2019519013A (ja) 2019-07-04
FR3048405A1 (fr) 2017-09-08
EP3427117A1 (fr) 2019-01-16
FR3048405B1 (fr) 2019-03-22

Similar Documents

Publication Publication Date Title
US9989970B1 (en) Systems and methods for robots having an adjustable multi-wheel
US11561108B2 (en) Methods and systems for sun-aware vehicle routing
US9995827B2 (en) Mobile vehicle
US10491823B2 (en) Mobile vehicle
Krüsi et al. Lighting‐invariant adaptive route following using iterative closest point matching
EP3058431B1 (fr) Dispositif et procédé de repérage de terrain en vol pour microdrone
FR3087134A1 (fr) Ensemble de detection d&#39;obstacle pour drone, drone equipe d&#39;un tel ensemble de detection d&#39;obstacle et procede de detection d&#39;obstacle
EP3854685B1 (fr) Drone multirotor equipe d&#39;une protection peripherique et procede de commande d&#39;un tel drone multirotor
EP3495316B1 (fr) Vehicule comprenant un dispositif d&#39;assistance a la manutention de charge et procede correspondant
WO2017153895A1 (fr) Robot motorisé autonome pour le transport de charges
FR3039104A1 (fr) Vehicule automatique guide pour le deplacement multidirectionnel de charges
EP2655172B1 (fr) Plateforme mobile robotisée collabaratrice
FR3056550B1 (fr) Robot autonome motorise pourvu d’un dispositif de franchissement d’obstacles
EP3060456B1 (fr) Véhicule de manutention et usine d&#39;électrolyse comprenant ce véhicule
WO2014146884A1 (fr) Procede d&#39;observation d&#39;une zone au moyen d&#39;un drone
FR3103128A1 (fr) Robot autonome
WO2020141288A1 (fr) Équipement de manutention autoguidé comportant un moyen de détection
FR3098835A1 (fr) Dispositif transporteur pour le déplacement de véhicules, et système robotisé comprenant un tel dispositif
EP3837568B1 (fr) Procédé de détermination d&#39;un indice de confiance associé à un objet détecté par un capteur dans l&#39;environnement d&#39;un véhicule automobile
WO2021014071A1 (fr) Système d&#39;inventaire en entrepôt
FR3055155A1 (fr) Systeme de mesure
FR3049730A1 (fr) Dispositif robotise d&#39;aide a la collecte d&#39;objets et/ou de drones et procede associe
FR3106402A1 (fr) Procédé de calibration d’un support rotatif de dispositif d’imagerie de véhicule automobile
CN116193238A (zh) 用于相机方向控制的方法和系统
WO2023161588A1 (fr) Véhicule à capteur extéroceptif déporté

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018548026

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017710622

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017710622

Country of ref document: EP

Effective date: 20181008

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17710622

Country of ref document: EP

Kind code of ref document: A1