WO2017152455A1 - 液晶显示面板及其制作方法 - Google Patents

液晶显示面板及其制作方法 Download PDF

Info

Publication number
WO2017152455A1
WO2017152455A1 PCT/CN2016/078881 CN2016078881W WO2017152455A1 WO 2017152455 A1 WO2017152455 A1 WO 2017152455A1 CN 2016078881 W CN2016078881 W CN 2016078881W WO 2017152455 A1 WO2017152455 A1 WO 2017152455A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
liquid crystal
display panel
crystal display
carbon nanotubes
Prior art date
Application number
PCT/CN2016/078881
Other languages
English (en)
French (fr)
Inventor
甘启明
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/031,748 priority Critical patent/US20180088384A1/en
Publication of WO2017152455A1 publication Critical patent/WO2017152455A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133354Arrangements for aligning or assembling substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13398Spacer materials; Spacer properties
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • G02F1/13415Drop filling process
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134318Electrodes characterised by their geometrical arrangement having a patterned common electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136222Colour filters incorporated in the active matrix substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a liquid crystal display panel and a method of fabricating the same.
  • LCDs liquid crystal displays
  • Various consumer electronic products such as digital assistants, digital cameras, notebook computers, and desktop computers have become mainstream in display devices.
  • liquid crystal display devices which include a liquid crystal display panel and a backlight module.
  • the working principle of the liquid crystal display panel is to place liquid crystal molecules in two parallel glass substrates. There are many vertical and horizontal small wires between the two glass substrates, and the liquid crystal molecules are controlled to change direction by energizing or not, and the light of the backlight module is changed. Refracted to produce a picture.
  • the liquid crystal display panel includes an upper substrate 100 and a lower substrate 200 disposed opposite to each other, and a liquid crystal layer 400 disposed between the upper substrate 100 and the lower substrate 200. And a plurality of photoresist spacers 300 disposed between the upper substrate 100 and the lower substrate 200; wherein the photoresist spacers 300 are made of a photoresist material, and the properties of the photoresist material are not stable enough to be easily combined with other substances. The reaction occurs and the mechanical properties are poor. Therefore, when the photoresist spacer 300 reacts with other substances in the liquid crystal display panel or deforms, the performance and display effect of the liquid crystal display panel are easily affected.
  • Carbon nanotubes are formed by crimping single or multi-layer graphite sheets.
  • the diameter of carbon nanotubes is generally several tens of nanometers and the length is several tens of micrometers.
  • the performance of carbon nanotubes is extremely stable and high temperature resistant.
  • the substance reacts with good mechanical properties and has excellent compression and recoverable elastic properties.
  • aligned carbon nanotubes ACNTs
  • aligned carbon nanotubes have the same growth direction and are easy to form carbon nanotube arrays. Therefore, the spacers on one side of the liquid crystal display panel are used.
  • Oriented carbon nanotubes are grown at the position to form an aligned carbon nanotube array to replace the traditional photoresist spacer.
  • the good mechanical properties and excellent stability of the aligned carbon nanotubes can effectively improve the performance and service life of the liquid crystal display panel. .
  • Another object of the present invention is to provide a method for fabricating a liquid crystal display panel by using a carbon nanotube array at a position of a spacer on one side of a liquid crystal display panel to obtain a spacer formed by an aligned carbon nanotube array.
  • the excellent mechanical properties and strong stability of the aligned carbon nanotubes significantly improve the performance and service life of the liquid crystal display panel.
  • the present invention provides a liquid crystal display panel including an upper substrate and a lower substrate disposed opposite to each other, a liquid crystal layer disposed between the upper substrate and the lower substrate, and the upper substrate and the lower substrate. a plurality of spacers; wherein the spacer is an aligned carbon nanotube array composed of a plurality of aligned carbon nanotubes arranged in parallel with each other.
  • the aligned carbon nanotubes are single-walled carbon nanotubes or multi-walled carbon nanotubes.
  • the upper substrate includes a first substrate, a black matrix disposed on the first substrate, and a color photoresist layer disposed on the black matrix and the first substrate, wherein the surface of the color photoresist layer is a flat surface
  • the lower substrate is a thin film transistor array substrate.
  • the upper substrate includes a first substrate and a patterned common electrode disposed on the first substrate, and the plurality of spacers are in contact with a region of the first substrate that is not covered by the common electrode, One side surface of the first substrate that is in contact with the plurality of gaps is a flat surface;
  • the lower substrate includes a second substrate, a gate electrode and a gate insulating layer which are sequentially disposed on the second substrate from bottom to top. , an active layer, a source/drain, a passivation layer, a color photoresist layer, and a pixel electrode.
  • the invention also provides a method for manufacturing a liquid crystal display panel, comprising the following steps:
  • Step 1 providing an upper substrate, the upper substrate includes a first substrate, a black matrix disposed on the first substrate, and a color photoresist layer disposed on the black matrix and the first substrate, the color The surface of the photoresist layer is a flat surface; a position of a plurality of spacers is disposed on a surface of the color photoresist layer;
  • Step 2 growing aligned carbon nanotubes at positions corresponding to the plurality of spacers on the color photoresist layer, and forming an aligned carbon nanotube array composed of a plurality of aligned carbon nanotubes arranged in parallel with each other at a position of each spacer , thereby forming a plurality of gaps;
  • Step 3 providing a substrate, wherein the lower substrate is a thin film transistor array substrate; and a liquid crystal layer is formed on a side surface of the upper substrate on which a plurality of spacers are provided or a surface of one side of the lower substrate is formed to form a liquid crystal layer And aligning the upper substrate and the lower substrate to obtain a liquid crystal display panel.
  • the aligned carbon nanotubes are single-walled carbon nanotubes or multi-walled carbon nanotubes.
  • the plurality of spacers correspond to a positional setting of a black matrix of the upper substrate.
  • the present invention also provides another method for fabricating a liquid crystal display panel, comprising the following steps:
  • Step 1 providing an upper substrate, the upper substrate includes a first substrate, and a patterned common electrode disposed on the first substrate, wherein a surface of the first substrate that is in contact with the common electrode is flat a surface on the first substrate that is not covered by the common electrode to form a position of a plurality of spacers;
  • Step 2 growing aligned carbon nanotubes at positions corresponding to the plurality of spacers on the first substrate, and forming an aligned carbon nanotube array composed of a plurality of aligned carbon nanotubes arranged in parallel with each other at a position of each spacer. Thereby forming a plurality of gaps;
  • Step 3 providing a substrate, the lower substrate includes a second substrate, a gate, a gate insulating layer, an active layer, a source/drain, and a passivation layer disposed on the second substrate from bottom to top , a color photoresist layer, and a pixel electrode;
  • Liquid crystal molecules are dripped on a side surface of the upper substrate on which a plurality of spacers are provided or a surface on which the pixel electrode is disposed on the lower substrate to form a liquid crystal layer, and the upper substrate and the lower substrate are aligned Stand up and get a liquid crystal display panel.
  • the aligned carbon nanotubes are single-walled carbon nanotubes or multi-walled carbon nanotubes.
  • the material of the common electrode is metal, and the lower substrate is further provided with a black matrix located above or below the color photoresist layer, and the plurality of spacers correspond to the position of the black matrix.
  • the invention provides a liquid crystal display panel, which adopts an aligned carbon nanotube array to replace the photoresist spacer in the prior art, and utilizes the excellent mechanical properties and strong stability of the aligned carbon nanotubes. Significantly improve the performance and service life of the liquid crystal display panel.
  • the present invention provides a method for fabricating a liquid crystal display panel by using a carbon nanotube array at a position of a spacer on one side of a liquid crystal display panel to obtain a spacer composed of an aligned carbon nanotube array, using oriented carbon nanometers.
  • the excellent mechanical properties and strong stability of the tube significantly improve the performance and service life of the liquid crystal display panel.
  • FIG. 1 is a schematic structural view of a conventional liquid crystal display panel
  • FIG. 2 is a schematic structural view of a first embodiment of a liquid crystal display panel of the present invention
  • FIG. 3 is a schematic structural view of a second embodiment of a liquid crystal display panel of the present invention.
  • step 1 of a second embodiment of a method for fabricating a liquid crystal display panel of the present invention is a schematic diagram of step 1 of a second embodiment of a method for fabricating a liquid crystal display panel of the present invention
  • FIG. 7 is a schematic diagram of step 2 of the second embodiment of the method for fabricating a liquid crystal display panel of the present invention.
  • the present invention provides a liquid crystal display panel including an upper substrate 10 and a lower substrate 20 disposed opposite to each other, a liquid crystal layer 40 disposed between the upper substrate 10 and the lower substrate 20, and a substrate
  • the plurality of spacers 30 between the substrate 10 and the lower substrate 20 are described; wherein the spacers 30 are aligned carbon nanotube arrays composed of a plurality of aligned carbon nanotubes arranged in parallel with each other.
  • the aligned carbon nanotubes are single-walled carbon nanotubes (SWNT, Single-Walled CNT) or multi-walled carbon nanotubes (MWNT).
  • SWNT single-walled carbon nanotubes
  • MWNT multi-walled carbon nanotubes
  • aligned carbon nanotubes are extremely stable, resistant to high temperatures and difficult to react with other substances, have good mechanical properties, and have excellent compression and recoverable elastic properties, they can be effectively supported by aligned carbon nanotube arrays.
  • the upper and lower substrates 10, 20 are maintained and the thickness and uniformity of the gap between the upper and lower substrates 10, 20 are maintained.
  • the upper substrate 10 includes a first substrate 11, a black matrix 13 disposed on the first substrate 11, and The black matrix 13 and the color photoresist layer 12 on the first substrate 11, the surface of the color photoresist layer 12 is a flat surface; and the lower substrate 20 is a thin film transistor array substrate.
  • the first substrate 11 is a transparent substrate, preferably a glass substrate.
  • the plurality of spacers 30 are disposed corresponding to the position of the black matrix 13 of the upper substrate 10.
  • the color photoresist layer 12 includes a plurality of red photoresist blocks 121, a plurality of blue photoresist blocks 122, and a plurality of green photoresist blocks 123.
  • the upper substrate 10 includes a first substrate 11 and a patterned common electrode 15 disposed on the first substrate 11.
  • the plurality of spacers 30 and the first substrate 11 are not covered by the common electrode 15
  • the surface of the first substrate 11 that is in contact with the plurality of spacers 30 is a flat surface;
  • the lower substrate 20 includes a second substrate 21, which is sequentially disposed from the bottom to the top on the second substrate.
  • the first substrate 11 is a transparent substrate, preferably a glass substrate.
  • the lower substrate 20 is further provided with a black matrix located above or below the color photoresist layer 27, and the plurality of spacers 30 are disposed corresponding to the position of the black matrix.
  • the color photoresist layer 27 includes a plurality of red photoresist blocks, a plurality of blue photoresist blocks, and a plurality of green photoresist blocks.
  • the black matrix corresponds to the intersection of adjacent color block blocks.
  • the present invention further provides a method for fabricating a liquid crystal display panel, comprising the following steps:
  • the upper substrate 10 includes a first substrate 11, a black matrix 13 disposed on the first substrate 11, and a black matrix 13 and a first A color photoresist layer 12 on a substrate 11, a surface of the color photoresist layer 12 is a flat surface; and a plurality of spacers are disposed on a surface of the color photoresist layer 12.
  • the first substrate 11 is a transparent substrate, preferably a glass substrate.
  • the color photoresist layer 12 includes a plurality of red photoresist blocks 121, a plurality of blue photoresist blocks 122, and a plurality of green photoresist blocks 123.
  • Step 2 As shown in FIG. 5, the aligned carbon nanotubes are grown on the color photoresist layer 12 at a position corresponding to the plurality of spacers, and a plurality of aligned carbon nanotubes arranged in parallel with each other are formed at the position of each spacer.
  • the aligned array of carbon nanotubes is constructed to form a plurality of spacers 30.
  • the aligned carbon nanotubes are single-walled carbon nanotubes (SWNT, Single-Walled CNT) or multi-walled carbon nanotubes (MWNT).
  • SWNT single-walled carbon nanotubes
  • MWNT multi-walled carbon nanotubes
  • the plurality of spacers 30 are disposed corresponding to the position of the black matrix 13 of the upper substrate 10.
  • the aligned carbon nanotubes are grown on the substrate 10 by conventional techniques and methods in the art, such as a laser etching substrate method, a plasma enhanced hot wire CVD method, or a metal organic pyrolysis method.
  • Step 3 as shown in FIG. 2, a substrate 20 is provided, the lower substrate 20 is a thin film transistor array substrate; one side surface of the plurality of spacers 30 or one of the lower substrate 20 is disposed on the upper substrate 10. Liquid crystal molecules are dropped on the side surface to form a liquid crystal layer 40, and the upper substrate 10 and the lower substrate 20 are aligned to form a liquid crystal display panel.
  • the present invention also provides another liquid crystal display panel system.
  • the method includes the following steps:
  • the upper substrate 10 includes a first substrate 11 and a patterned common electrode 15 disposed on the first substrate 11.
  • the first substrate 11 The side surface on which the upper electrode is in contact with the common electrode 15 is a flat surface, and the region of the first substrate 11 not covered by the common electrode 15 forms a position of a plurality of spacers.
  • the first substrate 11 is a transparent substrate, preferably a glass substrate.
  • the material of the common electrode 15 is metal, preferably a metal having a good contact surface, such as gold (Au), etc., in order to prevent the common electrode 15 of the metal material from affecting the light transmittance of the liquid crystal panel, the common electrode 15 may be The thickness is made thinner, such as 10-20 nm.
  • the step 1 uses the patterned common electrode 15 to define a plurality of spacers on the first substrate 11 while growing the oriented carbon at the positions of the plurality of spacers by using the principle that the carbon nanotubes cannot grow on the metal surface. Nanotubes to obtain spacers composed of aligned carbon nanotube arrays.
  • Step 2 As shown in FIG. 7, the aligned carbon nanotubes are grown on the first substrate 11 at a position corresponding to a plurality of spacers, and at each position of the spacers, a plurality of aligned carbon nanotubes arranged in parallel with each other are formed. The aligned carbon nanotube arrays are thereby formed into a plurality of spacers 30.
  • the aligned carbon nanotubes are single-walled carbon nanotubes (SWNT, Single-Walled CNT) or multi-walled carbon nanotubes (MWNT).
  • SWNT single-walled carbon nanotubes
  • MWNT multi-walled carbon nanotubes
  • the aligned carbon nanotubes are grown on the substrate 10 by using a laser etching substrate method, a plasma enhanced hot wire CVD (chemical vapor deposition) method, or a metal organic pyrolysis method. .
  • a substrate 20 is provided.
  • the lower substrate 20 includes a second substrate 21, a gate electrode 22 disposed on the second substrate 21 in order from bottom to top, and a gate insulating layer 23.
  • the hole 271 is in contact with the source/drain 25.
  • Liquid crystal molecules are dropped on one side surface of the upper substrate 10 on which one of the plurality of spacers 30 is provided or on the side of the lower substrate 20 on which the pixel electrode 28 is provided to form a liquid crystal layer 40, and the upper substrate 10 is formed. Formed in alignment with the lower substrate 20 to obtain a liquid crystal display panel.
  • the lower substrate 20 is further provided with a black matrix located above or below the color photoresist layer 27, and the plurality of spacers 30 are disposed corresponding to the position of the black matrix.
  • the color photoresist layer 27 includes a plurality of red photoresist blocks, a plurality of blue photoresist blocks, and a plurality of green photoresist blocks.
  • the black matrix corresponds to the intersection of adjacent color block blocks.
  • the present invention provides a liquid crystal display panel that uses an aligned carbon nanotube array to replace the photoresist spacer in the prior art, and utilizes the excellent mechanical properties and extremes of the aligned carbon nanotubes. Strong stability, significantly improve the performance and service life of the LCD panel.
  • the present invention provides a method for fabricating a liquid crystal display panel by using a carbon nanotube array at a position of a spacer on one side of a liquid crystal display panel to obtain a spacer composed of an aligned carbon nanotube array, using oriented carbon nanometers.
  • the excellent mechanical properties and strong stability of the tube significantly improve the performance and service life of the liquid crystal display panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)

Abstract

一种液晶显示面板,采用定向碳纳米管阵列来取代现有技术中的光阻间隙物;液晶显示面板的制作方法,通过在液晶显示面板的一侧基板的间隙子(30)的位置上生长定向碳纳米管,得到由定向碳纳米管阵列构成的间隙子(30)。利用定向碳纳米管优异的力学性能和极强的稳定性,显著提高液晶显示面板的性能和使用寿命。

Description

液晶显示面板及其制作方法 技术领域
本发明涉及显示技术领域,尤其涉及一种液晶显示面板及其制作方法。
背景技术
随着显示技术的发展,液晶显示器(Liquid Crystal Display,LCD)等平面显示装置因具有高画质、省电、机身薄及应用范围广等优点,而被广泛的应用于手机、电视、个人数字助理、数字相机、笔记本电脑、台式计算机等各种消费性电子产品,成为显示装置中的主流。
现有市场上的液晶显示装置大部分为背光型液晶显示器,其包括液晶显示面板及背光模组(backlight module)。液晶显示面板的工作原理是在两片平行的玻璃基板当中放置液晶分子,两片玻璃基板中间有许多垂直和水平的细小电线,通过通电与否来控制液晶分子改变方向,将背光模组的光线折射出来产生画面。
图1为现有的一种液晶显示面板的结构示意图,所述液晶显示面板包括相对设置的上基板100与下基板200、设于所述上基板100与下基板200之间的液晶层400、以及设于上基板100与下基板200之间的数个光阻间隙物300;其中,所述光阻间隙物300由光阻材料制成,由于光阻材料的性能不够稳定,容易与其它物质发生反应,且力学性能差,因此,当光阻间隙物300与液晶显示面板中的其它物质发生反应或者产生形变时,极易影响液晶显示面板的性能和显示效果。
碳纳米管(Carbon Nanotube,CNT)由单层或多层石墨片卷曲而形成,其直径一般为几十纳米,长度几到几十微米,碳纳米管性能极其稳定,耐高温,很难与其他物质进行反应,并且力学性能好,具有极好的压缩及可恢复的弹性性能。与无序堆积的聚团状碳纳米管相比,定向碳纳米管(Aligned Carbon Nanotube,ACNT)生长方向一致,容易形成碳纳米管阵列,因此,通过在液晶显示面板的一侧基板的间隙子的位置上生长定向碳纳米管,形成定向碳纳米管阵列来取代传统的光阻间隙物,利用定向碳纳米管良好的力学性能和优异的稳定性,可有效提高液晶显示面板的性能和使用寿命。
发明内容
本发明的目的在于提供一种液晶显示面板,采用定向碳纳米管阵列来 取代现有的光阻间隙物,利用定向碳纳米管优异的力学性能和极强的稳定性,显著提高液晶显示面板的性能和使用寿命。
本发明的目的还在于提供一种液晶显示面板的制作方法,通过在液晶显示面板的一侧基板的间隙子的位置上生长定向碳纳米管,得到由定向碳纳米管阵列构成的间隙子,利用定向碳纳米管优异的力学性能和极强的稳定性,显著提高液晶显示面板的性能和使用寿命。
为实现上述目的,本发明提供一种液晶显示面板,包括相对设置的上基板与下基板、设于所述上基板与下基板之间的液晶层、以及设于所述上基板与下基板之间的数个间隙子;其中,所述间隙子为由多根相互平行排列的定向碳纳米管构成的定向碳纳米管阵列。
所述定向碳纳米管为单壁碳纳米管或者多壁碳纳米管。
所述上基板包括第一基板、设于所述第一基板上的黑色矩阵、及设于所述黑色矩阵与第一基板上的彩色光阻层,所述彩色光阻层的表面为平整表面;所述下基板为薄膜晶体管阵列基板。
所述上基板包括第一基板、及设于所述第一基板上的图形化的公共电极,所述数个间隙子与所述第一基板上未被所述公共电极覆盖的区域相接触,所述第一基板上与数个间隙子接触的一侧表面为平整表面;所述下基板包括第二基板、从下到上依次设于所述第二基板上的栅极、栅极绝缘层、有源层、源/漏极、钝化层、彩色光阻层、及像素电极。
本发明还提供一种液晶显示面板的制作方法,包括如下步骤:
步骤1、提供一上基板,所述上基板包括第一基板、设于所述第一基板上的黑色矩阵、及设于所述黑色矩阵与第一基板上的彩色光阻层,所述彩色光阻层的表面为平整表面;在所述彩色光阻层的表面上设置数个间隙子的位置;
步骤2、在所述彩色光阻层上对应数个间隙子的位置生长定向碳纳米管,在每个间隙子的位置形成由多根相互平行排列的定向碳纳米管构成的定向碳纳米管阵列,从而形成数个间隙子;
步骤3、提供一下基板,所述下基板为薄膜晶体管阵列基板;在所述上基板上设有数个间隙子的一侧表面或者所述下基板的一侧表面上滴注液晶分子,形成液晶层,将所述上基板与下基板对位组立,得到一液晶显示面板。
所述定向碳纳米管为单壁碳纳米管或者多壁碳纳米管。
所述数个间隙子对应于所述上基板的黑色矩阵的位置设置。
本发明还提供另一种液晶显示面板的制作方法,包括如下步骤:
步骤1、提供一上基板,所述上基板包括第一基板、及设于所述第一基板上的图形化的公共电极,所述第一基板上与公共电极相接触的一侧表面为平整表面,所述第一基板上未被所述公共电极覆盖的区域形成数个间隙子的位置;
步骤2、在所述第一基板上对应数个间隙子的位置生长定向碳纳米管,在每个间隙子的位置形成由多根相互平行排列的定向碳纳米管构成的定向碳纳米管阵列,从而形成数个间隙子;
步骤3、提供一下基板,所述下基板包括第二基板、从下到上依次设于所述第二基板上的栅极、栅极绝缘层、有源层、源/漏极、钝化层、彩色光阻层、及像素电极;
在所述上基板上设有数个间隙子的一侧表面或者所述下基板上设有像素电极的一侧表面上滴注液晶分子,形成液晶层,将所述上基板与下基板对位组立,得到一液晶显示面板。
所述定向碳纳米管为单壁碳纳米管或者多壁碳纳米管。
所述公共电极的材料为金属,所述下基板中还设有位于所述彩色光阻层的上方或下方的黑色矩阵,所述数个间隙子对应于黑色矩阵的位置设置。
本发明的有益效果:本发明提供的一种液晶显示面板,采用定向碳纳米管阵列来取代现有技术中的光阻间隙物,利用定向碳纳米管优异的力学性能和极强的稳定性,显著提高液晶显示面板的性能和使用寿命。本发明提供的一种液晶显示面板的制作方法,通过在液晶显示面板的一侧基板的间隙子的位置上生长定向碳纳米管,得到由定向碳纳米管阵列构成的间隙子,利用定向碳纳米管优异的力学性能和极强的稳定性,显著提高液晶显示面板的性能和使用寿命。
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其它有益效果显而易见。
附图中,
图1为现有的液晶显示面板的结构示意图;
图2为本发明的液晶显示面板的第一实施例的结构示意图;
图3为本发明的液晶显示面板的第二实施例的结构示意图;
图4为本发明的液晶显示面板的制作方法第一实施例的步骤1的示意图;
图5为本发明的液晶显示面板的制作方法第一实施例的步骤2的示意图;
图6为本发明的液晶显示面板的制作方法第二实施例的步骤1的示意图;
图7为本发明的液晶显示面板的制作方法第二实施例的步骤2的示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图2-3,本发明提供一种液晶显示面板,包括相对设置的上基板10与下基板20、设于所述上基板10与下基板20之间的液晶层40、以及设于所述上基板10与下基板20之间的数个间隙子30;其中,所述间隙子30为由多根相互平行排列的定向碳纳米管构成的定向碳纳米管阵列。
具体的,所述定向碳纳米管为单壁碳纳米管(SWNT,Single-Walled CNT)或者多壁碳纳米管(MWNT,Multi-Walled CNT)。
由于定向碳纳米管性能极其稳定,耐高温并且很难与其他物质进行反应,同时具有良好的力学性能,具有极好的压缩及可恢复的弹性性能,因此利用定向碳纳米管阵列能够有效地支撑上、下基板10、20,并且维持上、下基板10、20间的间隙的厚度和均匀性。
图2为本发明的液晶显示面板的第一实施例,该第一实施例中,所述上基板10包括第一基板11、设于所述第一基板11上的黑色矩阵13、及设于所述黑色矩阵13与第一基板11上的彩色光阻层12,所述彩色光阻层12的表面为平整表面;所述下基板20为薄膜晶体管阵列基板。
具体的,所述第一基板11为透明基板,优选为玻璃基板。
具体的,所述数个间隙子30对应于所述上基板10的黑色矩阵13的位置设置。
具体的,所述彩色光阻层12包括数个红色光阻块121、数个蓝色光阻块122、及数个绿色光阻块123。
图3为本发明的液晶显示面板的第二实施例,该第二实施例中,所述上基板10包括第一基板11、及设于所述第一基板11上的图形化的公共电极15,所述数个间隙子30与所述第一基板11上未被所述公共电极15覆盖 的区域相接触,所述第一基板11上与数个间隙子30接触的一侧表面为平整表面;所述下基板20包括第二基板21、从下到上依次设于所述第二基板21上的栅极22、栅极绝缘层23、有源层24、源/漏极25、钝化层26、彩色光阻层27、及像素电极28;其中,所述彩色光阻层27上设有过孔271,所述像素电极28通过过孔271与源/漏极25相接触。
具体的,所述第一基板11为透明基板,优选为玻璃基板。
具体的,所述下基板20中还设有位于所述彩色光阻层27的上方或下方的黑色矩阵,所述数个间隙子30对应于黑色矩阵的位置设置。
具体的,所述彩色光阻层27包括数个红色光阻块、数个蓝色光阻块、及数个绿色光阻块。所述黑色矩阵对应于相邻的色阻块的交界处设置。
请参阅图4-5,同时参阅图2,本发明还提供一种液晶显示面板的制作方法,包括如下步骤:
步骤1、如图4所示,提供一上基板10,所述上基板10包括第一基板11、设于所述第一基板11上的黑色矩阵13、及设于所述黑色矩阵13与第一基板11上的彩色光阻层12,所述彩色光阻层12的表面为平整表面;在所述彩色光阻层12的表面上设置数个间隙子的位置。
具体的,所述第一基板11为透明基板,优选为玻璃基板。
具体的,所述彩色光阻层12包括数个红色光阻块121、数个蓝色光阻块122、及数个绿色光阻块123。
步骤2、如图5所示,在所述彩色光阻层12上对应数个间隙子的位置生长定向碳纳米管,在每个间隙子的位置形成由多根相互平行排列的定向碳纳米管构成的定向碳纳米管阵列,从而形成数个间隙子30。
具体的,所述定向碳纳米管为单壁碳纳米管(SWNT,Single-Walled CNT)或者多壁碳纳米管(MWNT,Multi-Walled CNT)。
具体的,所述数个间隙子30对应于所述上基板10的黑色矩阵13的位置设置。
具体的,所述步骤2中,采用激光刻蚀基底法、等离子增强热丝CVD法、或金属有机物热解法等本领域的常规技术手段和方法在基板10上生长定向碳纳米管。
步骤3、如图2所示,提供一下基板20,所述下基板20为薄膜晶体管阵列基板;在所述上基板10上设有数个间隙子30的一侧表面或者所述下基板20的一侧表面上滴注液晶分子,形成液晶层40,将所述上基板10与下基板20对位组立,得到一液晶显示面板。
请参阅图6-7,同时参阅图3,本发明还提供另一种液晶显示面板的制 作方法,包括如下步骤:
步骤1、如图6所示,提供一上基板10,所述上基板10包括第一基板11、及设于所述第一基板11上的图形化的公共电极15,所述第一基板11上与公共电极15相接触的一侧表面为平整表面,所述第一基板11上未被所述公共电极15覆盖的区域形成数个间隙子的位置。
具体的,所述第一基板11为透明基板,优选为玻璃基板。
具体的,所述公共电极15的材料为金属,优选为接触面良好的金属,如金(Au)等,为避免金属材质的公共电极15影响液晶面板的透光率,可以将公共电极15的厚度做的较薄,如10-20nm。
所述步骤1利用图形化的公共电极15在第一基板11上限定出数个间隙子的位置,同时利用碳纳米管不能在金属表面生长的原理,在该数个间隙子的位置生长定向碳纳米管,以得到由定向碳纳米管阵列构成的间隙子。
步骤2、如图7所示,在所述第一基板11上对应数个间隙子的位置生长定向碳纳米管,在每个间隙子的位置形成由多根相互平行排列的定向碳纳米管构成的定向碳纳米管阵列,从而形成数个间隙子30。
具体的,所述定向碳纳米管为单壁碳纳米管(SWNT,Single-Walled CNT)或者多壁碳纳米管(MWNT,Multi-Walled CNT)。
具体的,所述步骤2中采用激光刻蚀基底法、等离子增强热丝CVD(化学气相沉积)法、或金属有机物热解法等本领域的现有技术手段在基板10上生长定向碳纳米管。
步骤3、如图3所示,提供一下基板20,所述下基板20包括第二基板21、从下到上依次设于所述第二基板21上的栅极22、栅极绝缘层23、有源层24、源/漏极25、钝化层26、彩色光阻层27、及像素电极28;其中,所述彩色光阻层27上设有过孔271,所述像素电极28通过过孔271与源/漏极25相接触。
在所述上基板10上设有数个间隙子30的一侧表面或者所述下基板20上设有像素电极28的一侧表面上滴注液晶分子,形成液晶层40,将所述上基板10与下基板20对位组立,得到一液晶显示面板。
具体的,所述下基板20中还设有位于所述彩色光阻层27的上方或下方的黑色矩阵,所述数个间隙子30对应于黑色矩阵的位置设置。
具体的,所述彩色光阻层27包括数个红色光阻块、数个蓝色光阻块、及数个绿色光阻块。所述黑色矩阵对应于相邻的色阻块的交界处设置。
综上所述,本发明提供的一种液晶显示面板,采用定向碳纳米管阵列来取代现有技术中的光阻间隙物,利用定向碳纳米管优异的力学性能和极 强的稳定性,显著提高液晶显示面板的性能和使用寿命。本发明提供的一种液晶显示面板的制作方法,通过在液晶显示面板的一侧基板的间隙子的位置上生长定向碳纳米管,得到由定向碳纳米管阵列构成的间隙子,利用定向碳纳米管优异的力学性能和极强的稳定性,显著提高液晶显示面板的性能和使用寿命。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (10)

  1. 一种液晶显示面板,包括相对设置的上基板与下基板、设于所述上基板与下基板之间的液晶层、以及设于所述上基板与下基板之间的数个间隙子;其中,所述间隙子为由多根相互平行排列的定向碳纳米管构成的定向碳纳米管阵列。
  2. 如权利要求1所述的液晶显示面板,其中,所述定向碳纳米管为单壁碳纳米管或者多壁碳纳米管。
  3. 如权利要求1所述的液晶显示面板,其中,所述上基板包括第一基板、设于所述第一基板上的黑色矩阵、及设于所述黑色矩阵与第一基板上的彩色光阻层,所述彩色光阻层的表面为平整表面;所述下基板为薄膜晶体管阵列基板。
  4. 如权利要求1所述的液晶显示面板,其中,所述上基板包括第一基板、及设于所述第一基板上的图形化的公共电极,所述数个间隙子与所述第一基板上未被所述公共电极覆盖的区域相接触,所述第一基板上与数个间隙子接触的一侧表面为平整表面;所述下基板包括第二基板、从下到上依次设于所述第二基板上的栅极、栅极绝缘层、有源层、源/漏极、钝化层、彩色光阻层、及像素电极。
  5. 一种液晶显示面板的制作方法,包括如下步骤:
    步骤1、提供一上基板,所述上基板包括第一基板、设于所述第一基板上的黑色矩阵、及设于所述黑色矩阵与第一基板上的彩色光阻层,所述彩色光阻层的表面为平整表面;在所述彩色光阻层的表面上设置数个间隙子的位置;
    步骤2、在所述彩色光阻层上对应数个间隙子的位置生长定向碳纳米管,在每个间隙子的位置形成由多根相互平行排列的定向碳纳米管构成的定向碳纳米管阵列,从而形成数个间隙子;
    步骤3、提供一下基板,所述下基板为薄膜晶体管阵列基板;在所述上基板上设有数个间隙子的一侧表面或者所述下基板的一侧表面上滴注液晶分子,形成液晶层,将所述上基板与下基板对位组立,得到一液晶显示面板。
  6. 如权利要求5所述的液晶显示面板的制作方法,其中,所述定向碳纳米管为单壁碳纳米管或者多壁碳纳米管。
  7. 如权利要求5所述的液晶显示面板的制作方法,其中,所述数个间 隙子对应于所述上基板的黑色矩阵的位置设置。
  8. 一种液晶显示面板的制作方法,包括如下步骤:
    步骤1、提供一上基板,所述上基板包括第一基板、及设于所述第一基板上的图形化的公共电极,所述第一基板上与公共电极相接触的一侧表面为平整表面,所述第一基板上未被所述公共电极覆盖的区域形成数个间隙子的位置;
    步骤2、在所述第一基板上对应数个间隙子的位置生长定向碳纳米管,在每个间隙子的位置形成由多根相互平行排列的定向碳纳米管构成的定向碳纳米管阵列,从而形成数个间隙子;
    步骤3、提供一下基板,所述下基板包括第二基板、从下到上依次设于所述第二基板上的栅极、栅极绝缘层、有源层、源/漏极、钝化层、彩色光阻层、及像素电极;
    在所述上基板上设有数个间隙子的一侧表面或者所述下基板上设有像素电极的一侧表面上滴注液晶分子,形成液晶层,将所述上基板与下基板对位组立,得到一液晶显示面板。
  9. 如权利要求8所述的液晶显示面板的制作方法,其中,所述定向碳纳米管为单壁碳纳米管或者多壁碳纳米管。
  10. 如权利要求8所述的液晶显示面板的制作方法,其中,所述公共电极的材料为金属,所述下基板中还设有位于所述彩色光阻层的上方或下方的黑色矩阵,所述数个间隙子对应于黑色矩阵的位置设置。
PCT/CN2016/078881 2016-03-10 2016-04-08 液晶显示面板及其制作方法 WO2017152455A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/031,748 US20180088384A1 (en) 2016-03-10 2016-04-08 Liquid crystal display panel and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610136203.2A CN105607354A (zh) 2016-03-10 2016-03-10 液晶显示面板及其制作方法
CN201610136203.2 2016-03-10

Publications (1)

Publication Number Publication Date
WO2017152455A1 true WO2017152455A1 (zh) 2017-09-14

Family

ID=55987390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078881 WO2017152455A1 (zh) 2016-03-10 2016-04-08 液晶显示面板及其制作方法

Country Status (3)

Country Link
US (1) US20180088384A1 (zh)
CN (1) CN105607354A (zh)
WO (1) WO2017152455A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240077727A1 (en) * 2022-09-07 2024-03-07 Meta Platforms Technologies, Llc Grin lc lens with carbon nanotube spacers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020033927A1 (en) * 2000-08-14 2002-03-21 Joong-Hyun Mun Liquid crystal display and a method for fabricating the same
JP2009176568A (ja) * 2008-01-24 2009-08-06 Nippon Hoso Kyokai <Nhk> 表示装置
TW201039037A (en) * 2009-04-20 2010-11-01 Prime View Int Co Ltd Display device
WO2011004521A1 (ja) * 2009-07-09 2011-01-13 シャープ株式会社 表示パネル
CN102243397A (zh) * 2011-07-05 2011-11-16 深圳市华星光电技术有限公司 液晶面板及其间隙子构造

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060007204A1 (en) * 2004-06-29 2006-01-12 Damoder Reddy System and method for a long-life luminance feedback stabilized display panel
US7483112B2 (en) * 2004-10-05 2009-01-27 Sysview Technology, Inc. Carbon nano tube technology in liquid crystal on silicon micro-display
US20060274253A1 (en) * 2005-06-03 2006-12-07 Wintek Corporation Conductive spacers for liquid crystal displays
KR20070074891A (ko) * 2006-01-11 2007-07-18 삼성전자주식회사 컬러 필터 기판 및 이를 포함한 액정 표시 패널
CN101566753B (zh) * 2008-04-23 2011-03-30 鸿富锦精密工业(深圳)有限公司 液晶显示屏的制备方法
US8456073B2 (en) * 2009-05-29 2013-06-04 Massachusetts Institute Of Technology Field emission devices including nanotubes or other nanoscale articles
KR101866447B1 (ko) * 2011-12-22 2018-07-24 주식회사 탑 엔지니어링 Cnt 전계방출광원 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020033927A1 (en) * 2000-08-14 2002-03-21 Joong-Hyun Mun Liquid crystal display and a method for fabricating the same
JP2009176568A (ja) * 2008-01-24 2009-08-06 Nippon Hoso Kyokai <Nhk> 表示装置
TW201039037A (en) * 2009-04-20 2010-11-01 Prime View Int Co Ltd Display device
WO2011004521A1 (ja) * 2009-07-09 2011-01-13 シャープ株式会社 表示パネル
CN102243397A (zh) * 2011-07-05 2011-11-16 深圳市华星光电技术有限公司 液晶面板及其间隙子构造

Also Published As

Publication number Publication date
US20180088384A1 (en) 2018-03-29
CN105607354A (zh) 2016-05-25

Similar Documents

Publication Publication Date Title
US8803153B2 (en) Fringe field switching liquid crystal display device and method of fabricating the same
WO2017084175A1 (zh) 液晶显示装置及其制作方法
Cong et al. Carbon nanotube macroelectronics for active matrix polymer-dispersed liquid crystal displays
US8773631B2 (en) Method of fabricating a liquid crystal display device comprising aligning a soft mold and forming a contact hole, a first passivation film, and a first column spacer by contacting the soft mold with a pattern material layer
US20070296897A1 (en) Liquid crystal cell assembly for liquid crystal display
US9519182B2 (en) Display panel and method of manufacturing the same
WO2013149483A1 (zh) 液晶面板、液晶显示器及其制造方法
WO2017080036A1 (zh) Pdlc显示装置的制作方法及pdlc显示装置
TW200825586A (en) Liquid crystal display
WO2013010482A1 (zh) 液晶面板及其制备方法、液晶显示装置
US10175536B2 (en) Liquid crystal display device, quantum rods alignment plate and method for making the same
WO2015010416A1 (zh) 阵列基板及其制作方法和显示面板
WO2017152455A1 (zh) 液晶显示面板及其制作方法
WO2017206523A1 (zh) 阵列基板及其制备方法、显示面板和显示装置
WO2018157423A1 (zh) Coa阵列基板以及液晶显示面板
CN104793418A (zh) 一种阵列基板及其制作方法和显示装置
KR20070071297A (ko) 액정표시소자용 배향재료 및 그것을 사용한 액정표시소자
US9798175B2 (en) Composite substrate and methods for manufacturing the same, and liquid crystal display panel
US20210327909A1 (en) Array substrate, manufacturing method thereof, and display device
US20200409209A1 (en) Liquid crystal panel and method of manufacturing same
US20140124244A1 (en) Conductive plate and film exhibiting electric anisotropy
US20060285056A1 (en) Wide viewing angle liquid crystal display and the method for achieving wide viewing angle effect
US11137636B2 (en) Curved display panel and manufacturing method thereof
WO2017206423A1 (zh) 一种垂直取向液晶显示面板和液晶显示器
WO2019085062A1 (zh) 液晶面板及其制作方法、液晶显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15031748

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16893103

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16893103

Country of ref document: EP

Kind code of ref document: A1