WO2017080036A1 - Pdlc显示装置的制作方法及pdlc显示装置 - Google Patents

Pdlc显示装置的制作方法及pdlc显示装置 Download PDF

Info

Publication number
WO2017080036A1
WO2017080036A1 PCT/CN2015/098640 CN2015098640W WO2017080036A1 WO 2017080036 A1 WO2017080036 A1 WO 2017080036A1 CN 2015098640 W CN2015098640 W CN 2015098640W WO 2017080036 A1 WO2017080036 A1 WO 2017080036A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
pixel
liquid crystal
dispersed liquid
polymer dispersed
Prior art date
Application number
PCT/CN2015/098640
Other languages
English (en)
French (fr)
Inventor
马超
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/914,642 priority Critical patent/US9823504B2/en
Publication of WO2017080036A1 publication Critical patent/WO2017080036A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133621Illuminating devices providing coloured light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133377Cells with plural compartments or having plurality of liquid crystal microcells partitioned by walls, e.g. one microcell per pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133567Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements on the back side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • G02F1/13415Drop filling process
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/121Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode common or background
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a method for fabricating a PDLC display device and a PDLC display device.
  • a Thin Film Transistor-Liquid Crystal Display includes a Color Filter Substrate (CF Substrate) and a Thin Film Transistor Substrate (TFT Substrate). There is a transparent electrode. A layer of liquid crystal molecules (LC) is sandwiched between the two substrates. The liquid crystal display controls the orientation of the liquid crystal molecules by the electric field, changes the polarization state of the light, and realizes the purpose of display by the penetration and blocking of the optical path by the polarizing plate.
  • CF Substrate Color Filter Substrate
  • TFT Substrate Thin Film Transistor Substrate
  • a layer of liquid crystal molecules (LC) is sandwiched between the two substrates.
  • the liquid crystal display controls the orientation of the liquid crystal molecules by the electric field, changes the polarization state of the light, and realizes the purpose of display by the penetration and blocking of the optical path by the polarizing plate.
  • the current large, medium and small size display is occupied by the LCD in an absolute market.
  • terminal display devices that can be used in public places such as large shopping malls, supermarkets, hotel lobbies, theaters, education, medical care, and other crowds are getting more and more demand and application. More than 30% of the speed is growing.
  • PDLC Polymer Dispersed Liquid Crystal
  • the method comprises the steps of: mixing a low molecular liquid crystal with a prepolymer, and polymerizing under certain conditions to form a micron-sized liquid crystal droplet uniformly dispersed in a polymer network, and then using the dielectric anisotropy of the liquid crystal molecule to obtain electro-optic light.
  • the material of the response characteristic which mainly works between the scattering state and the transparent state and has a certain gray scale.
  • the polymer dispersed liquid crystal display has many advantages, such as no need for a polarizing plate and an alignment layer, a simple preparation process, and easy to manufacture a large-area flexible display, etc., and has been in optical modulators, thermal and pressure sensitive devices, electronically controlled glass, Light valves, projection displays, e-books and other aspects have been widely used.
  • the working principle is that in the absence of an applied voltage, a regular electric field cannot be formed between the films, and the optical axis of the liquid crystal particles is randomly oriented and appears disordered, and the effective refractive index n0 does not match the refractive index np of the polymer. The incident light is strongly scattered and the film is opaque or translucent.
  • the ordinary refractive index of the particles is basically matched with the refractive index of the polymer, and there is no obvious interface, which constitutes a substantially uniform medium, so the incident light does not scatter and the film is transparent. Therefore, under the driving of the applied electric field, the PDLC has optical switching characteristics, and the degree of transparency increases along a certain curve as the applied voltage increases.
  • quantum dots have received wide recognition and attention as emerging materials for displays.
  • a quantum dot is a quasi-zero-dimensional nanomaterial composed of a small number of atoms. Roughly speaking, the dimensions of the three dimensions of quantum dots are all below 100 nanometers (nm), and the appearance is just like a tiny dot. The movement of internal electrons in all directions is limited, so the quantum confinement effect (quantum) The confinement effect) is particularly remarkable. It has an excellent excitation spectrum and a continuous distribution, and the emission spectrum is narrow and symmetrical, the color is adjustable, the photochemical stability is high, and the fluorescence lifetime is long, which is an ideal luminescent material.
  • quantum dots have two main types depending on the way energy is obtained, one is photoluminescence, and the other is electroluminescence.
  • the quantum dot luminescence color is the size effect of the quantum dot, that is, by controlling the shape, structure and size of the quantum dot to adjust its electron gap state, the size of the exciton binding energy, and the electron blue shift of the exciton energy.
  • graphene is a two-dimensional atomic crystal composed of a single atomic layer in which carbon atoms are connected by sp hybridization.
  • the basic structural unit is the most stable benzene six-membered ring structure in organic materials.
  • An object of the present invention is to provide a method for fabricating a PDLC display device, which can enhance the reaction speed of polymer dispersed liquid crystal, reduce the driving voltage of the polymer dispersed liquid crystal, and overcome the occurrence of pixel light leakage and color mixing in the existing PDLC display device.
  • the object of the present invention is to provide a PDLC display device having at least four display effects of red, green, blue and blur.
  • the polymer dispersed liquid crystal has a fast reaction speed and a low driving voltage, and overcomes the pixel leakage of the conventional polymer dispersed PDLC display device. The phenomenon of color mixing.
  • the present invention provides a method for fabricating a PDLC display device, comprising the following steps:
  • Step 1 Providing polymer dispersed liquid crystal and graphene nanoparticles, stirring and mixing the graphene nanoparticles and the polymer dispersed liquid crystal according to a mass ratio of 0.1 to 20:100, and uniformly obtaining a polymer dispersed liquid crystal and graphite.
  • Step 2 providing a first substrate, coating a black matrix material on the first substrate, and patterning the black matrix material to obtain a black matrix; the first substrate and the black matrix enclosing a plurality of pixel concaves Slot
  • Step 3 forming a whole surface common electrode on the black matrix, the plurality of pixel recesses, and the first substrate; dropping the polymer dispersed liquid crystal and the graphene mixture into the plurality of pixel recesses, Obtaining a polymer dispersed liquid crystal substrate;
  • Step 4 providing a second substrate, sequentially forming a thin film transistor layer and a pixel electrode layer on the second substrate to obtain an array substrate;
  • the pixel electrode layer includes a plurality of pixel electrodes respectively corresponding to the plurality of pixel grooves;
  • Step 5 applying a first sealant on the periphery of the polymer dispersed liquid crystal substrate or the array substrate, and vacuum bonding the polymer dispersed liquid crystal substrate and the array substrate;
  • Step 6 providing a third substrate, and forming a plurality of pixel patterns respectively corresponding to the plurality of pixel grooves on the third substrate, the plurality of pixel patterns including a red pixel pattern, a green pixel pattern, and a transparent pixel pattern
  • the material of the red pixel pattern is a mixture of a red light quantum dot and a transparent photoresist material
  • the material of the green pixel pattern is a mixture of a green light quantum dot and a transparent photoresist material
  • the transparent pixel pattern is not provided with any material.
  • Step 7 coating a second frame seal on the periphery of the array substrate or the quantum dot substrate, and bonding the array substrate and the quantum dot substrate; the polymer dispersed liquid crystal substrate, the array substrate, and the quantum dot substrate Forming a PDLC display panel;
  • Step 8 providing a backlight module, combining the PDLC display panel and the backlight module to obtain a PDLC display device; and the backlight module emits blue light.
  • the polymer dispersed liquid crystal is mixed with the graphene nanoparticles by mechanical stirring in the step 1.
  • the graphene nanoparticles in the step 1 are obtained by a mechanical stripping method, a redox method, a silicon carbide epitaxial growth method, or a chemical vapor deposition method; and the graphene nanoparticles have a particle diameter ranging from 0 nm to 80 nm.
  • the graphene nanoparticles and the polymer dispersed liquid crystal are mixed at a mass ratio of 0.1 to 5:100.
  • the common electrode and the pixel electrode are both transparent electrodes; the first substrate, the second substrate, and the third substrate are both transparent substrates.
  • the first sealant and the second sealant contain a spacer that maintains the pitch between the upper and lower substrates.
  • the red pixel pattern and the green pixel pattern are formed by coating a transparent photoresist material mixed with quantum dots on a third substrate, and drying, exposing, developing, and etching processes.
  • the mixing ratio of the quantum dots to the transparent photoresist material is 5 to 10:100.
  • the present invention also provides a PDLC display device, including a PDLC display panel, and a The backlight module below the PDLC display panel;
  • the PDLC display panel includes a polymer dispersed liquid crystal substrate, an array substrate disposed under the polymer dispersed liquid crystal substrate, and a quantum dot substrate disposed under the array substrate;
  • the polymer dispersed liquid crystal substrate includes a first substrate, a black matrix disposed on the first substrate, a common electrode disposed on the black matrix and the first substrate, and a mixture of polymer dispersed liquid crystal and graphene;
  • the black matrix and the first substrate enclose a plurality of pixel recesses, wherein the plurality of pixel recesses are respectively filled with a polymer dispersed liquid crystal and a graphene mixture;
  • the array substrate includes a second substrate, a thin film transistor layer disposed on the second substrate, and a pixel electrode layer disposed on the thin film transistor layer; the pixel electrode layer includes a plurality of pixel recesses respectively Corresponding number of pixel electrodes;
  • the quantum dot substrate includes a third substrate, and a plurality of pixel patterns respectively corresponding to the plurality of pixel grooves respectively disposed on the third substrate, the plurality of pixel patterns including a red pixel pattern, a green pixel pattern, And a transparent pixel pattern, wherein the material of the red pixel pattern is a mixture of a red light quantum dot and a transparent photoresist material, wherein the material of the green pixel pattern is a mixture of a green light quantum dot and a transparent photoresist material, and the transparent pixel pattern is not Set any material;
  • the backlight module emits blue light, and the red pixel pattern and the green pixel pattern respectively emit red light and green light under excitation of blue light; the transparent pixel pattern may pass blue light to display blue.
  • the common electrode and the pixel electrode are both transparent electrodes.
  • the first substrate, the second substrate, and the third substrate are all transparent substrates.
  • the invention also provides a method for manufacturing a PDLC display device, comprising the following steps:
  • Step 1 Providing polymer dispersed liquid crystal and graphene nanoparticles, stirring and mixing the graphene nanoparticles and the polymer dispersed liquid crystal according to a mass ratio of 0.1 to 20:100, and uniformly obtaining a polymer dispersed liquid crystal and graphite.
  • Step 2 providing a first substrate, coating a black matrix material on the first substrate, and patterning the black matrix material to obtain a black matrix; the first substrate and the black matrix enclosing a plurality of pixel concaves groove;
  • Step 3 forming a whole surface common electrode on the black matrix, the plurality of pixel recesses, and the first substrate; dropping the polymer dispersed liquid crystal and the graphene mixture into the plurality of pixel recesses, Obtaining a polymer dispersed liquid crystal substrate;
  • Step 4 providing a second substrate, sequentially forming a thin film transistor layer and a pixel electrode layer on the second substrate to obtain an array substrate;
  • the pixel electrode layer includes a plurality of pixel electrodes respectively corresponding to the plurality of pixel grooves;
  • Step 5 applying a first sealant on the periphery of the polymer dispersed liquid crystal substrate or the array substrate, and The polymer dispersed liquid crystal substrate is vacuum-bonded to the array substrate;
  • Step 6 providing a third substrate, and forming a plurality of pixel patterns respectively corresponding to the plurality of pixel grooves on the third substrate, the plurality of pixel patterns including a red pixel pattern, a green pixel pattern, and a transparent pixel pattern
  • the material of the red pixel pattern is a mixture of a red light quantum dot and a transparent photoresist material
  • the material of the green pixel pattern is a mixture of a green light quantum dot and a transparent photoresist material
  • the transparent pixel pattern is not provided with any material.
  • Step 7 coating a second frame seal on the periphery of the array substrate or the quantum dot substrate, and bonding the array substrate and the quantum dot substrate; the polymer dispersed liquid crystal substrate, the array substrate, and the quantum dot substrate Forming a PDLC display panel;
  • Step 8 providing a backlight module, combining the PDLC display panel and the backlight module to obtain a PDLC display device; the backlight module emitting blue light;
  • the polymer dispersed liquid crystal is mixed with the graphene nanoparticles by mechanical stirring;
  • the graphene nanoparticles in the step 1 are obtained by a mechanical stripping method, a redox method, a silicon carbide epitaxial growth method, or a chemical vapor deposition method; the graphene nanoparticles have a particle diameter ranging from 0 nm to 80 nm;
  • the graphene nanoparticles and the polymer dispersed liquid crystal are mixed at a mass ratio of 0.1 to 5:100.
  • the method for fabricating the PDLC display device of the present invention enhances the reaction speed of the polymer dispersed liquid crystal by mixing the polymer dispersed liquid crystal and the graphene nanoparticles, and reduces the driving voltage of the polymer dispersed liquid crystal. Combined with quantum dots, it forms a new high-color saturated display device, eliminating the need for making alignment layer and polarizer.
  • the process is simple, the display effect is novel and special, and at least four display effects of red, green, blue and fuzzy are overcome, which overcomes the light leakage of the existing PDLC display device. The phenomenon of color mixing occurs.
  • the PDLC display device of the invention is composed of a polymer dispersed liquid crystal substrate, an array substrate, and a quantum dot substrate, has a simple structure, and has a novel and special display effect, and has at least four display effects of red, green, blue and blur, and overcomes the existing PDLC display device.
  • FIG. 2 are schematic diagrams showing the first step of the method for fabricating the PDLC display device of the present invention
  • FIG. 4 are schematic diagrams showing the second step of the method for fabricating the PDLC display device of the present invention.
  • FIG. 6 are schematic diagrams showing the third step of the method for fabricating the PDLC display device of the present invention.
  • step 4 is a schematic diagram of step 4 of a method for fabricating a PDLC display device of the present invention.
  • FIG. 8 to FIG. 9 are schematic diagrams showing the fifth step of the method for fabricating the PDLC display device of the present invention.
  • FIG. 10 to FIG. 11 are schematic diagrams showing the sixth step of the method for fabricating the PDLC display device of the present invention.
  • FIG. 12 to FIG. 13 are schematic diagrams showing the seventh step of the method for fabricating the PDLC display device of the present invention.
  • FIG. 14 is a schematic diagram of a step 8 of a method for fabricating a PDLC display device of the present invention and a schematic cross-sectional structure of the PDLC display device of the present invention.
  • the invention first provides a method for fabricating a PDLC display device, comprising the following steps:
  • Step 1 as shown in FIG. 1 to FIG. 2, a polymer dispersed liquid crystal 141 and graphene nanoparticles 142 are provided, and the graphene nanoparticles 142 and the polymer dispersed liquid crystal 141 are subjected to a mass ratio of 0.1 to 20:100. After mixing and stirring uniformly, a polymer dispersed liquid crystal and graphene mixture 14 was obtained.
  • the polymer dispersed liquid crystal 141 is mixed with the graphene nanoparticles 142 by mechanical stirring in the step 1.
  • the graphene nanoparticles 142 in the step 1 are obtained by a mechanical stripping method, a redox method, a silicon carbide epitaxial growth method, or a chemical vapor deposition method; and the graphene nanoparticles 142 have a particle diameter ranging from 0 nm to 80 nm. .
  • the graphene nanoparticles 142 and the polymer dispersed liquid crystal 141 are mixed at a mass ratio of 0.1 to 5:100.
  • Step 2 as shown in FIG. 3 to FIG. 4, a first substrate 10 is provided, a black matrix material 11' is coated on the first substrate 10, and the black matrix material 11' is patterned to obtain a black matrix. 11; the first substrate 10 and the black matrix 11 enclose a plurality of pixel recesses 12.
  • Step 3 as shown in FIG. 5, forming a whole surface common electrode 13 on the black matrix 11, the plurality of pixel grooves 12, and the first substrate 10; as shown in FIG. 6, the plurality of pixels are concave
  • the polymer dispersed liquid crystal and the graphene mixture 14 are dropped into the groove 12 to obtain a polymer dispersed liquid crystal substrate 1.
  • the common electrode 13 is a transparent electrode, and the step 3 forms the common electrode 13 by a sputtering method.
  • the material of the common electrode 13 is indium tin oxide (ITO) or oxygen. Indium zinc (IZO).
  • Step 4 as shown in FIG. 7, a second substrate 20 is provided, and a thin film transistor layer 21 and a pixel electrode layer 22 are sequentially formed on the second substrate 20 to obtain an array substrate 2; the pixel electrode layer 22 includes a plurality of A plurality of pixel electrodes 221 corresponding to the pixel grooves 12.
  • the pixel electrode 221 is a transparent electrode; preferably, the material of the pixel electrode 221 is indium tin oxide (ITO) or indium zinc oxide (IZO).
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • the thin film transistor layer 21 includes a plurality of thin film transistors (TFTs) 211 corresponding to the plurality of pixel electrodes 221, respectively.
  • TFTs thin film transistors
  • Step 5 as shown in FIG. 8 to FIG. 9, coating a first sealant 51 around the polymer dispersed liquid crystal substrate 1 or the array substrate 2, and dispersing the polymer dispersed liquid crystal substrate 1 and the array substrate 2 Vacuum fit.
  • a third substrate 30 is provided, and a plurality of pixel patterns 31 respectively corresponding to the plurality of pixel grooves 12 are formed on the third substrate 30, and the plurality of pixel patterns are formed.
  • 31 includes a red pixel pattern 311, a green pixel pattern 312, and a transparent pixel pattern 313.
  • the material of the red pixel pattern 311 is a mixture of a red light quantum dot and a transparent photoresist material, and the material of the green pixel pattern 312 is a green light quantum dot.
  • the transparent pixel pattern 313 is not provided with any material, to obtain a quantum dot substrate 3; the red pixel pattern 311 and the green pixel pattern 312 respectively emit red light and green light under the excitation of blue light;
  • the transparent pixel pattern 313 can pass blue light to display blue.
  • the red pixel pattern 311 and the green pixel pattern 312 are formed by applying a transparent photoresist material mixed with quantum dots to the third substrate 30, and drying, exposing, and developing. And the etching process is made. Specifically, the mixing ratio of the quantum dots to the transparent photoresist material is 5-10:100.
  • the plurality of pixel patterns 31 may further include a white pixel pattern, and the material of the white pixel pattern is a mixture of red light quantum dots, green light quantum dots, and transparent photoresist materials.
  • the plurality of pixel patterns 31 may further include a yellow pixel pattern, and the material of the yellow pixel pattern is a mixture of a yellow light quantum dot and a transparent photoresist material.
  • Step 7 as shown in FIG. 12 to FIG. 13, applying a second sealant 52 on the periphery of the array substrate 2 or the quantum dot substrate 3, and then laminating the array substrate 2 and the quantum dot substrate 3;
  • the polymer-dispersed liquid crystal substrate 1, the array substrate 2, and the quantum dot substrate 3 collectively constitute the PDLC display panel 100.
  • Step 8 as shown in FIG. 14 a backlight module 200 is provided, and the PDLC display panel 100 is combined with the backlight module 200 to obtain a PDLC display device; the backlight module 200 emits blue light.
  • first sealant 51 and the second sealant 52 include a spacer that maintains the pitch between the upper and lower substrates.
  • the first substrate 10, the second substrate 20, and the third substrate 30 are all transparent substrates; preferably, the first substrate 10, the second substrate 20, and the third substrate 30 are all glass substrates.
  • the method for fabricating a PDLC display device enhances the reaction speed of the polymer dispersed liquid crystal by mixing the polymer dispersed liquid crystal and the graphene nanoparticles, reduces the driving voltage of the polymer dispersed liquid crystal, and simultaneously combines the quantum dots. It forms a new high-color saturated display device, which does not need to make an alignment layer and a polarizer.
  • the process is simple, the display effect is novel and special, and at least has four display effects of red, green, blue and blur, which overcomes the phenomenon of pixel light leakage and color mixing in the existing PDLC display device. happened.
  • the present invention further provides a PDLC display device, including a PDLC display panel 100 and a backlight module 200 disposed under the PDLC display panel 100 .
  • the PDLC display panel 100 includes a polymer dispersed liquid crystal substrate 1 , an array substrate 2 disposed under the polymer dispersed liquid crystal substrate 1 , and a quantum dot substrate 3 disposed under the array substrate 2 .
  • the polymer-dispersed liquid crystal substrate 1 includes a first substrate 10, a black matrix 11 disposed on the first substrate 10, a common electrode 13 disposed on the black matrix 11 and the first substrate 10, and The polymer disperses the liquid crystal and the graphene mixture 14; the black matrix 11 and the first substrate 10 enclose a plurality of pixel recesses 12, and the plurality of pixel recesses 12 are respectively filled with a polymer dispersed liquid crystal and graphene mixture 14 .
  • the array substrate 2 includes a second substrate 20, a thin film transistor layer 21 disposed on the second substrate 20, and a pixel electrode layer 22 disposed on the thin film transistor layer 21; the pixel electrode layer 22 includes a plurality of pixel electrodes 221 respectively corresponding to the plurality of pixel grooves 12.
  • the quantum dot substrate 3 includes a third substrate 30 and a plurality of pixel patterns 31 respectively disposed on the third substrate 30 corresponding to the plurality of pixel grooves 12, and the plurality of pixel patterns 31
  • the red pixel pattern 311, the green pixel pattern 312, and the transparent pixel pattern 313 are made of a mixture of a red light quantum dot and a transparent photoresist material.
  • the material of the green pixel pattern 312 is a green light quantum dot and A mixture of transparent photoresist materials, and no material is disposed on the transparent pixel pattern 313.
  • the backlight module 200 emits blue light
  • the red pixel pattern 311 and the green pixel pattern 312 respectively emit red light and green light under excitation of blue light
  • the transparent pixel pattern 313 can pass blue light to display blue. color.
  • the plurality of pixel grooves 12 of the polymer dispersed liquid crystal substrate 1 are filled with a polymer dispersed liquid crystal and graphene mixture 14 to constitute a plurality of liquid crystal cells, and the liquid crystal cell is driven in a manner similar to that of a conventional TFT-LCD.
  • the polymer dispersed liquid crystal and the graphene mixture 14 in the liquid crystal cell have optical switching characteristics under the control of the voltage between the common electrode 13 and the pixel electrode layer 22, and the polymer dispersed liquid crystal in the absence of an applied voltage.
  • the graphene mixture 14 is opaque or translucent, and the degree of transparency of the polymer dispersed liquid crystal and the graphene mixture 14 is increased along a certain curve as the applied voltage is driven by the applied electric field.
  • the common electrode 13 and the pixel electrode 221 are both transparent electrodes; preferably, the material of the common electrode 13 and the pixel electrode 221 is indium tin oxide (ITO) or indium zinc oxide (IZO).
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • the thin film transistor layer 21 includes a plurality of thin film transistors (TFTs) 211 corresponding to the plurality of pixel electrodes 221, respectively.
  • TFTs thin film transistors
  • the first substrate 10, the second substrate 20, and the third substrate 30 are all transparent substrates; preferably, the first substrate 10, the second substrate 20, and the third substrate 30 are all glass substrates.
  • the plurality of pixel patterns 31 may further include a white pixel pattern, and the material of the white pixel pattern is a mixture of red light quantum dots, green light quantum dots, and transparent photoresist materials.
  • the plurality of pixel patterns 31 may further include a yellow pixel pattern, and the material of the yellow pixel pattern is a mixture of a yellow light quantum dot and a transparent photoresist material.
  • the PDLC display device of the invention is composed of a polymer dispersed liquid crystal substrate, an array substrate, and a quantum dot substrate, has a simple structure, and has a novel and special display effect, and has at least four display effects of red, green, blue and blur, and overcomes the existing PDLC display device.
  • the method for fabricating the PDLC display device of the present invention enhances the reaction speed of the polymer dispersed liquid crystal by mixing the polymer dispersed liquid crystal with the graphene nanoparticles, and reduces the driving voltage of the polymer dispersed liquid crystal, and simultaneously combines
  • the quantum dots form a new high-color saturated display device, which eliminates the need for the alignment layer and the polarizer.
  • the process is simple, the display effect is novel and special, and at least the display effects of red, green, blue and blur are at least overcome, and the pixel leakage in the existing PDLC display device is overcome.
  • the phenomenon of color mixing occurs.
  • the PDLC display device of the invention is composed of a polymer dispersed liquid crystal substrate, an array substrate, and a quantum dot substrate, has a simple structure, and has a novel and special display effect, and has at least four display effects of red, green, blue and blur, and overcomes the existing PDLC display device.

Abstract

一种PDLC显示装置的制作方法及PDLC显示装置。PDLC显示装置的制作方法,通过将聚合物分散液晶(141)与石墨烯纳米粒子(142)混和,增强了聚合物分散液晶(141)的反应速度,降低了聚合物分散液晶(141)的驱动电压,同时结合量子点,构成新型高色饱显示设备,无需制作配向层和偏光片,制程简单。PDLC显示装置,由聚合物分散液晶基板(1)、阵列基板(2)、及量子点基板(3)构成,结构简单,显示效果新颖特殊,至少具有红绿蓝及模糊四种显示效果,克服了现有PDLC显示装置的漏光和混色现象的发生。

Description

PDLC显示装置的制作方法及PDLC显示装置 技术领域
本发明涉及显示技术领域,尤其涉及一种PDLC显示装置的制作方法及PDLC显示装置。
背景技术
薄膜晶体管液晶显示器(Thin Film Transistor-Liquid Crystal Display,TFT-LCD)包含彩色滤光片基板(Color Filter Substrate,CF Substrate,)和薄膜晶体管阵列基板(Thin Film Transistor Substrate,TFT Substrate),基板相对内侧存在透明电极。两片基板之间夹一层液晶分子(Liquid Crystal,LC)。液晶显示器是通过电场对液晶分子取向的控制,改变光的偏振状态,并藉由偏光板实现光路的穿透与阻挡,实现显示的目的。
可以说,当前不论是大中小尺寸的显示器,均被LCD占据着绝对的市场。而在当前的LCD应用市场中,可用于大型商场、超市、酒店大堂、影院、教育、医疗以及其它人流汇集的公共场所的终端显示设备得到了越来越多的需求和应用,其正以每年30%以上的速度增长着。
另一方面,聚合物分散液晶(Polymer Dispersed Liquid Crystal,PDLC)作为液晶调光阀,近年已被广泛关注和使用。其是将低分子液晶与预聚物相混合,在一定条件下经聚合反应,形成微米级的液晶微滴均匀地分散在高分子网络中,再利用液晶分子的介电各向异性获得具有电光响应特性的材料,它主要工作在散射态和透明态之间并具有一定的灰度。聚合物分散型液晶显示器具有很多优点,例如不需偏振片和取向层,制备工艺简单,易于制成大面积柔性显示器等,目前已在光学调制器、热敏及压敏器件、电控玻璃、光阀、投影显示、电子书等方面获得广泛应用。其工作原理是在无外加电压的情形下,膜间不能形成有规律的电场,液晶微粒的光轴取向随机,呈现无序状态,其有效折射率n0不与聚合物的折射率np匹配。入射光线被强烈散射,薄膜呈不透明或半透明状。施加了外电压,液晶微粒的光轴垂直于薄膜表面排列,即与电场方向一致。微粒之寻常光折射率与聚合物的折射率基本匹配,无明显介面,构成了一基本均匀的介质,所以入射光不会发生散射,薄膜呈透明状。因此,在外加电场的驱动下,PDLC具备光开关特性,而且透明程度还会随着施加电压的增大而沿一定曲线式的提高。
同样,量子点作为新兴的显示器用材料,已经得到了广泛的认可和关注。量子点(quantum dot)是准零维(quasi-zero-dimensional)的纳米材料,由少量的原子所构成。粗略地说,量子点三个维度的尺寸都在100纳米(nm)以下,外观恰似一极小的点状物,其内部电子在各方向上的运动都受到局限,所以量子限域效应(quantum confinement effect)特别显著。其具有激发光谱宽且连续分布,而发射光谱窄而对称,颜色可调,光化学稳定性高,荧光寿命长等优越的特性,是一种理想的发光材料。当前量子点根据能量的获得方式不同而主要有两类,其一为光致发光,其二为电致发光。量子点发光颜色是通过量子点的尺寸效应,即通过控制量子点的形状、结构和尺寸,以调节其能隙宽度、激子束缚能的大小以及激子的能量蓝移等电子状态。
此外,在TFT-LCD也开始展露应用头角的石墨烯,是继富勒烯、碳纳米管之后纳米材料研究领域又一里程碑式的重大科学发现。石墨烯是碳原子以sp杂化连接的单原子层构成的二维原子晶体,其基本结构单元为有机材料中最稳定的苯六元环结构,石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。由于石墨烯片平面内π轨道的存在,电子可在晶体中自由移动,使得石墨烯具有十分优异的电子传输性能。其还具有很多特殊性质,比如零能隙,反常的量子霍耳效应,朗道量子性等,逐渐的吸引了越来越多的平板显示业内人士对其应用的研究。
发明内容
本发明的目的在于提供一种PDLC显示装置的制作方法,可增强聚合物分散液晶的反应速度,降低聚合物分散液晶的驱动电压,克服现有PDLC显示装置中像素漏光、混色现象的发生。
本发明的目的还在于提供一种PDLC显示装置,至少具有红绿蓝及模糊四种显示效果,聚合物分散液晶的反应速度快,驱动电压低,克服了传统聚合物分散PDLC显示装置的像素漏光、混色现象的发生。
为实现上述目的,本发明提供一种PDLC显示装置的制作方法,包括如下步骤:
步骤1、提供聚合物分散液晶、及石墨烯纳米粒子,将所述石墨烯纳米粒子与聚合物分散液晶按照0.1~20:100的质量比进行搅拌混合,搅拌均匀后得到聚合物分散液晶与石墨烯混合物;
步骤2、提供第一基板,在所述第一基板上涂布黑色矩阵材料,并对所述黑色矩阵材料进行图案化处理得到黑色矩阵;所述第一基板与黑色矩阵围成数个像素凹槽;
步骤3、在所述黑色矩阵、数个像素凹槽、及第一基板上形成整面的公共电极;向所述数个像素凹槽内定点滴入所述聚合物分散液晶与石墨烯混合物,得到聚合物分散液晶基板;
步骤4、提供第二基板,依次在所述第二基板上形成薄膜晶体管层及像素电极层,得到阵列基板;所述像素电极层包括分别与数个像素凹槽相对应的数个像素电极;
步骤5、在所述聚合物分散液晶基板或阵列基板周边涂布第一框胶,并将所述聚合物分散液晶基板与所述阵列基板真空贴合;
步骤6、提供第三基板,在所述第三基板上制作分别与数个像素凹槽相对应的数个像素图案,所述数个像素图案包括红色像素图案、绿色像素图案、及透明像素图案,所述红色像素图案的材料为红光量子点与透明光阻材料的混合物,所述绿色像素图案的材料为绿光量子点与透明光阻材料的混合物,所述透明像素图案上未设任何材料,得到量子点基板;所述红色像素图案与绿色像素图案在蓝光的激发下分别发出红光与绿光;所述透明像素图案可以使蓝光穿过从而显示蓝色;
步骤7、在所述阵列基板或量子点基板周边涂布第二框胶,并将所述阵列基板与量子点基板相对贴合;所述聚合物分散液晶基板、阵列基板、及量子点基板共同构成PDLC显示面板;
步骤8、提供背光模组,将所述PDLC显示面板与背光模组结合,得到PDLC显示装置;所述背光模组发出蓝光。
所述步骤1中通过机械搅拌使所述聚合物分散液晶与石墨烯纳米粒子混合。
所述步骤1中石墨烯纳米粒子采用机械剥离法、氧化还原法、碳化硅外延生长法、或化学气相沉积法获得;所述石墨烯纳米粒子的粒径范围为0nm~80nm。
所述步骤1中,将石墨烯纳米粒子与聚合物分散液晶按照0.1~5:100的质量比进行混合。
所述公共电极与像素电极均为透明电极;所述第一基板、第二基板、及第三基板均为透明基板。
所述第一框胶、第二框胶中含有维持上下基板间距的间隔材。
所述步骤6中,所述红色像素图案与绿色像素图案的制作方法为将混有量子点的透明光阻材料涂布于第三基板上,经过烘干、曝光、显影、及蚀刻制程制得,其中,所述量子点与透明光阻材料的混合比例为5~10:100。
本发明还提供一种PDLC显示装置,包括PDLC显示面板、及设于所 述PDLC显示面板下方的背光模组;
所述PDLC显示面板包括聚合物分散液晶基板、设于所述聚合物分散液晶基板下方的阵列基板、及设于所述阵列基板下方的量子点基板;
所述聚合物分散液晶基板包括第一基板、设于所述第一基板上的黑色矩阵、设于所述黑色矩阵与第一基板上的公共电极、及聚合物分散液晶与石墨烯混合物;所述黑色矩阵与第一基板围成数个像素凹槽,所述数个像素凹槽中分别填充有聚合物分散液晶与石墨烯混合物;
所述阵列基板包括第二基板、设于所述第二基板上的薄膜晶体管层、及设于所述薄膜晶体管层上的像素电极层;所述像素电极层包括分别与数个像素凹槽相对应的数个像素电极;
所述量子点基板包括第三基板、及设于所述第三基板上的分别与数个像素凹槽相对应的数个像素图案,所述数个像素图案包括红色像素图案、绿色像素图案、及透明像素图案,所述红色像素图案的材料为红光量子点与透明光阻材料的混合物,所述绿色像素图案的材料为绿光量子点与透明光阻材料的混合物,所述透明像素图案上未设任何材料;
所述背光模组发出蓝光,所述红色像素图案与绿色像素图案在蓝光的激发下分别发出红光与绿光;所述透明像素图案可以使蓝光穿过从而显示蓝色。
所述公共电极与像素电极均为透明电极。
所述第一基板、第二基板、及第三基板均为透明基板。
本发明还提供一种PDLC显示装置的制作方法,包括如下步骤:
步骤1、提供聚合物分散液晶、及石墨烯纳米粒子,将所述石墨烯纳米粒子与聚合物分散液晶按照0.1~20:100的质量比进行搅拌混合,搅拌均匀后得到聚合物分散液晶与石墨烯混合物;
步骤2、提供第一基板,在所述第一基板上涂布黑色矩阵材料,并对所述黑色矩阵材料进行图案化处理得到黑色矩阵;所述第一基板与黑色矩阵围成数个像素凹槽;
步骤3、在所述黑色矩阵、数个像素凹槽、及第一基板上形成整面的公共电极;向所述数个像素凹槽内定点滴入所述聚合物分散液晶与石墨烯混合物,得到聚合物分散液晶基板;
步骤4、提供第二基板,依次在所述第二基板上形成薄膜晶体管层及像素电极层,得到阵列基板;所述像素电极层包括分别与数个像素凹槽相对应的数个像素电极;
步骤5、在所述聚合物分散液晶基板或阵列基板周边涂布第一框胶,并 将所述聚合物分散液晶基板与所述阵列基板真空贴合;
步骤6、提供第三基板,在所述第三基板上制作分别与数个像素凹槽相对应的数个像素图案,所述数个像素图案包括红色像素图案、绿色像素图案、及透明像素图案,所述红色像素图案的材料为红光量子点与透明光阻材料的混合物,所述绿色像素图案的材料为绿光量子点与透明光阻材料的混合物,所述透明像素图案上未设任何材料,得到量子点基板;所述红色像素图案与绿色像素图案在蓝光的激发下分别发出红光与绿光;所述透明像素图案可以使蓝光穿过从而显示蓝色;
步骤7、在所述阵列基板或量子点基板周边涂布第二框胶,并将所述阵列基板与量子点基板相对贴合;所述聚合物分散液晶基板、阵列基板、及量子点基板共同构成PDLC显示面板;
步骤8、提供背光模组,将所述PDLC显示面板与背光模组结合,得到PDLC显示装置;所述背光模组发出蓝光;
其中,所述步骤1中通过机械搅拌使所述聚合物分散液晶与石墨烯纳米粒子混合;
其中,所述步骤1中石墨烯纳米粒子采用机械剥离法、氧化还原法、碳化硅外延生长法、或化学气相沉积法获得;所述石墨烯纳米粒子的粒径范围为0nm~80nm;
其中,所述步骤1中,将石墨烯纳米粒子与聚合物分散液晶按照0.1~5:100的质量比进行混合。
本发明的有益效果:本发明的PDLC显示装置的制作方法,通过将聚合物分散液晶与石墨烯纳米粒子混和,增强了聚合物分散液晶的反应速度,降低了聚合物分散液晶的驱动电压,同时结合量子点,构成新型高色饱显示设备,无需制作配向层和偏光片,制程简单,显示效果新颖特殊,至少具有红绿蓝及模糊四种显示效果,克服了现有PDLC显示装置的漏光和混色现象的发生。本发明的PDLC显示装置,由聚合物分散液晶基板、阵列基板、及量子点基板构成,结构简单,显示效果新颖特殊,至少具有红绿蓝及模糊四种显示效果,克服了现有PDLC显示装置的漏光和混色现象的发生。
附图说明
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图中,
图1-图2为本发明的PDLC显示装置的制作方法步骤1的示意图;
图3-图4为本发明的PDLC显示装置的制作方法步骤2的示意图;
图5-图6为本发明的PDLC显示装置的制作方法步骤3的示意图;
图7为本发明的PDLC显示装置的制作方法步骤4的示意图;
图8-图9为本发明的PDLC显示装置的制作方法步骤5的示意图;
图10-图11为本发明的PDLC显示装置的制作方法步骤6的示意图;
图12-图13为本发明的PDLC显示装置的制作方法步骤7的示意图;
图14为本发明的PDLC显示装置的制作方法步骤8的示意图暨本发明PDLC显示装置的剖面结构示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
本发明首先提供一种PDLC显示装置的制作方法,包括如下步骤:
步骤1、如图1-图2所示,提供聚合物分散液晶141、及石墨烯纳米粒子142,将所述石墨烯纳米粒子142与聚合物分散液晶141按照0.1~20:100的质量比进行混合,搅拌均匀后得到聚合物分散液晶与石墨烯混合物14。
具体的,所述步骤1中通过机械搅拌使所述聚合物分散液晶141与石墨烯纳米粒子142混合。
具体的,所述步骤1中石墨烯纳米粒子142采用机械剥离法、氧化还原法、碳化硅外延生长法、或化学气相沉积法获得;所述石墨烯纳米粒子142的粒径范围为0nm~80nm。
优选的,将所述石墨烯纳米粒子142与聚合物分散液晶141按照0.1~5:100的质量比进行混合。
步骤2、如图3-图4所示,提供第一基板10,在所述第一基板10上涂布黑色矩阵材料11’,并对所述黑色矩阵材料11’进行图案化处理得到黑色矩阵11;所述第一基板10与黑色矩阵11围成数个像素凹槽12。
步骤3、如图5所示,在所述黑色矩阵11、数个像素凹槽12、及第一基板10上形成整面的公共电极13;如图6所示,向所述数个像素凹槽12内定点滴入所述聚合物分散液晶与石墨烯混合物14,得到聚合物分散液晶基板1。
具体的,所述公共电极13为透明电极,所述步骤3通过溅射法形成所述公共电极13;优选的,所述公共电极13的材料为氧化铟锡(ITO)或氧 化铟锌(IZO)。
步骤4、如图7所示,提供第二基板20,依次在所述第二基板20上形成薄膜晶体管层21及像素电极层22,得到阵列基板2;所述像素电极层22包括分别与数个像素凹槽12相对应的数个像素电极221。
具体的,所述像素电极221为透明电极;优选的,所述像素电极221的材料为氧化铟锡(ITO)或氧化铟锌(IZO)。
具体的,所述薄膜晶体管层21包括分别与数个像素电极221相对应的数个薄膜晶体管(TFT)211。
步骤5、如图8-图9所示,在所述聚合物分散液晶基板1或阵列基板2周边涂布第一框胶51,并将所述聚合物分散液晶基板1与所述阵列基板2真空贴合。
步骤6、如图10-图11所示,提供第三基板30,在所述第三基板30上制作分别与数个像素凹槽12相对应的数个像素图案31,所述数个像素图案31包括红色像素图案311、绿色像素图案312、及透明像素图案313,所述红色像素图案311的材料为红光量子点与透明光阻材料的混合物,所述绿色像素图案312的材料为绿光量子点与透明光阻材料的混合物,所述透明像素图案313上未设任何材料,得到量子点基板3;所述红色像素图案311与绿色像素图案312在蓝光的激发下分别发出红光与绿光;所述透明像素图案313可以使蓝光穿过从而显示蓝色。
具体的,所述步骤6中,所述红色像素图案311与绿色像素图案312的制作方法为将混有量子点的透明光阻材料涂布于第三基板30上,经过烘干、曝光、显影、及蚀刻制程制得。具体的,所述量子点与透明光阻材料的混合比例为5~10:100。
进一步的,所述数个像素图案31还可以包括白色像素图案,所述白色像素图案的材料为红光量子点、绿光量子点、及透明光阻材料的混合物。
进一步的,所述数个像素图案31还可以包括黄色像素图案,所述黄色像素图案的材料为黄光量子点与透明光阻材料的混合物。
步骤7、如图12-图13所示,在所述阵列基板2或量子点基板3周边涂布第二框胶52,然后将所述阵列基板2与量子点基板3相对贴合;如图12所示,所述聚合物分散液晶基板1、阵列基板2、及量子点基板3共同构成PDLC显示面板100。
步骤8、如图14所示,提供背光模组200,将所述PDLC显示面板100与所述背光模组200结合,得到PDLC显示装置;所述背光模组200发出蓝光。
具体的,所述第一框胶51、第二框胶52中含有维持上下基板间距的间隔材。
具体的,所述第一基板10、第二基板20、及第三基板30均为透明基板;优选的,所述第一基板10、第二基板20、及第三基板30均为玻璃基板。
本发明提供的一种PDLC显示装置的制作方法,通过将聚合物分散液晶与石墨烯纳米粒子混和,增强了聚合物分散液晶的反应速度,降低了聚合物分散液晶的驱动电压,同时结合量子点,构成新型高色饱显示设备,无需制作配向层和偏光片,制程简单,显示效果新颖特殊,至少具有红绿蓝及模糊四种显示效果,克服了现有PDLC显示装置中像素漏光、混色现象的发生。
请参阅图14,并同时参阅图1-13,本发明还提供一种PDLC显示装置,包括PDLC显示面板100、及设于所述PDLC显示面板100下方的背光模组200。
具体的,所述PDLC显示面板100包括聚合物分散液晶基板1、设于所述聚合物分散液晶基板1下方的阵列基板2、及设于所述阵列基板2下方的量子点基板3。
具体的,所述聚合物分散液晶基板1包括第一基板10、设于所述第一基板10上的黑色矩阵11、设于所述黑色矩阵11与第一基板10上的公共电极13、及聚合物分散液晶与石墨烯混合物14;所述黑色矩阵11与第一基板10围成数个像素凹槽12,所述数个像素凹槽12中分别填充有聚合物分散液晶与石墨烯混合物14。
具体的,所述阵列基板2包括第二基板20、设于所述第二基板20上的薄膜晶体管层21、及设于所述薄膜晶体管层21上的像素电极层22;所述像素电极层22包括分别与数个像素凹槽12相对应的数个像素电极221。
具体的,所述量子点基板3包括第三基板30、及设于所述第三基板30上的分别与数个像素凹槽12相对应的数个像素图案31,所述数个像素图案31包括红色像素图案311、绿色像素图案312、及透明像素图案313,所述红色像素图案311的材料为红光量子点与透明光阻材料的混合物,所述绿色像素图案312的材料为绿光量子点与透明光阻材料的混合物,所述透明像素图案313上未设任何材料。
具体的,所述背光模组200发出蓝光,所述红色像素图案311与绿色像素图案312在蓝光的激发下分别发出红光与绿光;所述透明像素图案313可以使蓝光穿过从而显示蓝色。
所述聚合物分散液晶基板1的数个像素凹槽12中均填充有聚合物分散液晶与石墨烯混合物14,从而构成数个液晶盒,该液晶盒的驱动方式类似于传统TFT-LCD的驱动方式,所述液晶盒中的聚合物分散液晶与石墨烯混合物14在公共电极13与像素电极层22之间的电压的控制下具备光开关特性,在无外加电压的情形下,聚合物分散液晶与石墨烯混合物14呈不透明或半透明状,在外加电场的驱动下,聚合物分散液晶与石墨烯混合物14的透明程度随着施加电压的增大而呈现出沿一定曲线式的提高。
具体的,所述公共电极13与像素电极221均为透明电极;优选的,所述公共电极13与像素电极221的材料为氧化铟锡(ITO)或氧化铟锌(IZO)。
具体的,所述薄膜晶体管层21包括分别与数个像素电极221相对应的数个薄膜晶体管(TFT)211。
具体的,所述第一基板10、第二基板20、及第三基板30均为透明基板;优选的,所述第一基板10、第二基板20、及第三基板30均为玻璃基板。
进一步的,所述数个像素图案31还可以包括白色像素图案,所述白色像素图案的材料为红光量子点、绿光量子点、及透明光阻材料的混合物。
进一步的,所述数个像素图案31还可以包括黄色像素图案,所述黄色像素图案的材料为黄光量子点与透明光阻材料的混合物。
本发明的PDLC显示装置,由聚合物分散液晶基板、阵列基板、及量子点基板构成,结构简单,显示效果新颖特殊,至少具有红绿蓝及模糊四种显示效果,克服了现有PDLC显示装置中像素漏光、混色现象的发生。
综上所述,本发明的PDLC显示装置的制作方法,通过将聚合物分散液晶与石墨烯纳米粒子混和,增强了聚合物分散液晶的反应速度,降低了聚合物分散液晶的驱动电压,同时结合量子点,构成新型高色饱显示设备,无需制作配向层和偏光片,制程简单,显示效果新颖特殊,至少具有红绿蓝及模糊四种显示效果,克服了现有PDLC显示装置中像素漏光、混色现象的发生。本发明的PDLC显示装置,由聚合物分散液晶基板、阵列基板、及量子点基板构成,结构简单,显示效果新颖特殊,至少具有红绿蓝及模糊四种显示效果,克服了现有PDLC显示装置中像素漏光、混色现象的发生。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明后附的权利要求的保护范围。

Claims (14)

  1. 一种PDLC显示装置的制作方法,包括如下步骤:
    步骤1、提供聚合物分散液晶、及石墨烯纳米粒子,将所述石墨烯纳米粒子与聚合物分散液晶按照0.1~20:100的质量比进行搅拌混合,搅拌均匀后得到聚合物分散液晶与石墨烯混合物;
    步骤2、提供第一基板,在所述第一基板上涂布黑色矩阵材料,并对所述黑色矩阵材料进行图案化处理得到黑色矩阵;所述第一基板与黑色矩阵围成数个像素凹槽;
    步骤3、在所述黑色矩阵、数个像素凹槽、及第一基板上形成整面的公共电极;向所述数个像素凹槽内定点滴入所述聚合物分散液晶与石墨烯混合物,得到聚合物分散液晶基板;
    步骤4、提供第二基板,依次在所述第二基板上形成薄膜晶体管层及像素电极层,得到阵列基板;所述像素电极层包括分别与数个像素凹槽相对应的数个像素电极;
    步骤5、在所述聚合物分散液晶基板或阵列基板周边涂布第一框胶,并将所述聚合物分散液晶基板与所述阵列基板真空贴合;
    步骤6、提供第三基板,在所述第三基板上制作分别与数个像素凹槽相对应的数个像素图案,所述数个像素图案包括红色像素图案、绿色像素图案、及透明像素图案,所述红色像素图案的材料为红光量子点与透明光阻材料的混合物,所述绿色像素图案的材料为绿光量子点与透明光阻材料的混合物,所述透明像素图案上未设任何材料,得到量子点基板;所述红色像素图案与绿色像素图案在蓝光的激发下分别发出红光与绿光;所述透明像素图案可以使蓝光穿过从而显示蓝色;
    步骤7、在所述阵列基板或量子点基板周边涂布第二框胶,并将所述阵列基板与量子点基板相对贴合;所述聚合物分散液晶基板、阵列基板、及量子点基板共同构成PDLC显示面板;
    步骤8、提供背光模组,将所述PDLC显示面板与背光模组结合,得到PDLC显示装置;所述背光模组发出蓝光。
  2. 如权利要求1所述的PDLC显示装置的制作方法,其中,所述步骤1中通过机械搅拌使所述聚合物分散液晶与石墨烯纳米粒子混合。
  3. 如权利要求1所述的PDLC显示装置的制作方法,其中,所述步骤1中石墨烯纳米粒子采用机械剥离法、氧化还原法、碳化硅外延生长法、或 化学气相沉积法获得;所述石墨烯纳米粒子的粒径范围为0nm~80nm。
  4. 如权利要求1所述的PDLC显示装置的制作方法,其中,所述步骤1中,将石墨烯纳米粒子与聚合物分散液晶按照0.1~5:100的质量比进行混合。
  5. 如权利要求1所述的PDLC显示装置的制作方法,其中,所述公共电极与像素电极均为透明电极;所述第一基板、第二基板、及第三基板均为透明基板。
  6. 如权利要求1所述的PDLC显示装置的制作方法,其中,所述第一框胶、第二框胶中含有维持上下基板间距的间隔材。
  7. 如权利要求1所述的PDLC显示装置的制作方法,其中,所述步骤6中,所述红色像素图案与绿色像素图案的制作方法为将混有量子点的透明光阻材料涂布于第三基板上,经过烘干、曝光、显影、及蚀刻制程制得,其中,所述量子点与透明光阻材料的混合比例为5~10:100。
  8. 一种PDLC显示装置,包括PDLC显示面板、及设于所述PDLC显示面板下方的背光模组;
    所述PDLC显示面板包括聚合物分散液晶基板、设于所述聚合物分散液晶基板下方的阵列基板、及设于所述阵列基板下方的量子点基板;
    所述聚合物分散液晶基板包括第一基板、设于所述第一基板上的黑色矩阵、设于所述黑色矩阵与第一基板上的公共电极、及聚合物分散液晶与石墨烯混合物;所述黑色矩阵与第一基板围成数个像素凹槽,所述数个像素凹槽中分别填充有聚合物分散液晶与石墨烯混合物;
    所述阵列基板包括第二基板、设于所述第二基板上的薄膜晶体管层、及设于所述薄膜晶体管层上的像素电极层;所述像素电极层包括分别与数个像素凹槽相对应的数个像素电极;
    所述量子点基板包括第三基板、及设于所述第三基板上的分别与数个像素凹槽相对应的数个像素图案,所述数个像素图案包括红色像素图案、绿色像素图案、及透明像素图案,所述红色像素图案的材料为红光量子点与透明光阻材料的混合物,所述绿色像素图案的材料为绿光量子点与透明光阻材料的混合物,所述透明像素图案上未设任何材料;
    所述背光模组发出蓝光,所述红色像素图案与绿色像素图案在蓝光的激发下分别发出红光与绿光;所述透明像素图案可以使蓝光穿过从而显示蓝色。
  9. 如权利要求8所述的PDLC显示装置,其中,所述公共电极与像素电极均为透明电极。
  10. 如权利要求8所述的PDLC显示装置,其中,所述第一基板、第二基板、及第三基板均为透明基板。
  11. 一种PDLC显示装置的制作方法,包括如下步骤:
    步骤1、提供聚合物分散液晶、及石墨烯纳米粒子,将所述石墨烯纳米粒子与聚合物分散液晶按照0.1~20:100的质量比进行搅拌混合,搅拌均匀后得到聚合物分散液晶与石墨烯混合物;
    步骤2、提供第一基板,在所述第一基板上涂布黑色矩阵材料,并对所述黑色矩阵材料进行图案化处理得到黑色矩阵;所述第一基板与黑色矩阵围成数个像素凹槽;
    步骤3、在所述黑色矩阵、数个像素凹槽、及第一基板上形成整面的公共电极;向所述数个像素凹槽内定点滴入所述聚合物分散液晶与石墨烯混合物,得到聚合物分散液晶基板;
    步骤4、提供第二基板,依次在所述第二基板上形成薄膜晶体管层及像素电极层,得到阵列基板;所述像素电极层包括分别与数个像素凹槽相对应的数个像素电极;
    步骤5、在所述聚合物分散液晶基板或阵列基板周边涂布第一框胶,并将所述聚合物分散液晶基板与所述阵列基板真空贴合;
    步骤6、提供第三基板,在所述第三基板上制作分别与数个像素凹槽相对应的数个像素图案,所述数个像素图案包括红色像素图案、绿色像素图案、及透明像素图案,所述红色像素图案的材料为红光量子点与透明光阻材料的混合物,所述绿色像素图案的材料为绿光量子点与透明光阻材料的混合物,所述透明像素图案上未设任何材料,得到量子点基板;所述红色像素图案与绿色像素图案在蓝光的激发下分别发出红光与绿光;所述透明像素图案可以使蓝光穿过从而显示蓝色;
    步骤7、在所述阵列基板或量子点基板周边涂布第二框胶,并将所述阵列基板与量子点基板相对贴合;所述聚合物分散液晶基板、阵列基板、及量子点基板共同构成PDLC显示面板;
    步骤8、提供背光模组,将所述PDLC显示面板与背光模组结合,得到PDLC显示装置;所述背光模组发出蓝光;
    其中,所述步骤1中通过机械搅拌使所述聚合物分散液晶与石墨烯纳米粒子混合;
    其中,所述步骤1中石墨烯纳米粒子采用机械剥离法、氧化还原法、碳化硅外延生长法、或化学气相沉积法获得;所述石墨烯纳米粒子的粒径范围为0nm~80nm;
    其中,所述步骤1中,将石墨烯纳米粒子与聚合物分散液晶按照0.1~5:100的质量比进行混合。
  12. 如权利要求11所述的PDLC显示装置的制作方法,其中,所述公共电极与像素电极均为透明电极;所述第一基板、第二基板、及第三基板均为透明基板。
  13. 如权利要求11所述的PDLC显示装置的制作方法,其中,所述第一框胶、第二框胶中含有维持上下基板间距的间隔材。
  14. 如权利要求11所述的PDLC显示装置的制作方法,其中,所述步骤6中,所述红色像素图案与绿色像素图案的制作方法为将混有量子点的透明光阻材料涂布于第三基板上,经过烘干、曝光、显影、及蚀刻制程制得,其中,所述量子点与透明光阻材料的混合比例为5~10:100。
PCT/CN2015/098640 2015-11-09 2015-12-24 Pdlc显示装置的制作方法及pdlc显示装置 WO2017080036A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/914,642 US9823504B2 (en) 2015-11-09 2015-12-24 Method for manufacturing PDLC display device comprising quantum dots and a PDLC and graphene mixture and PDLC display device having the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510756204.2A CN105242437A (zh) 2015-11-09 2015-11-09 Pdlc显示装置的制作方法及pdlc显示装置
CN201510756204.2 2015-11-09

Publications (1)

Publication Number Publication Date
WO2017080036A1 true WO2017080036A1 (zh) 2017-05-18

Family

ID=55040127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098640 WO2017080036A1 (zh) 2015-11-09 2015-12-24 Pdlc显示装置的制作方法及pdlc显示装置

Country Status (3)

Country Link
US (1) US9823504B2 (zh)
CN (1) CN105242437A (zh)
WO (1) WO2017080036A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107305302B (zh) * 2016-04-19 2023-09-15 北京八亿时空液晶科技股份有限公司 一种数字窗及显示装置
CN105785659B (zh) * 2016-05-20 2018-07-10 深圳市华星光电技术有限公司 含功能化石墨烯层的液晶面板结构及功能化石墨烯膜的制备方法
KR102027186B1 (ko) * 2017-09-11 2019-10-01 서울대학교산학협력단 광변조 양자점 컬러 디스플레이 및 이의 제조방법
CN107632440B (zh) * 2017-10-09 2021-04-02 天马微电子股份有限公司 显示面板及其制作方法和显示装置
CN108957889A (zh) * 2018-07-27 2018-12-07 上海中航光电子有限公司 显示面板和显示装置
CN110850615B (zh) * 2019-11-27 2022-04-26 深圳市华星光电半导体显示技术有限公司 像素驱动电路、液晶显示面板及投影显示装置
CN110967858B (zh) * 2019-12-20 2022-07-12 深圳市华星光电半导体显示技术有限公司 显示面板和显示装置
CN111077201B (zh) * 2019-12-23 2022-03-22 江苏大学 一种监测玉米赤霉烯酮的光电化学适配体传感器的制备方法
CN111812878B (zh) * 2020-07-06 2022-02-22 深圳市华星光电半导体显示技术有限公司 一种保护膜及其制备方法、显示装置
CN111995836B (zh) * 2020-08-11 2022-11-08 五邑大学 一种聚合物分散液晶和制备方法以及应用
CN115494978A (zh) * 2022-09-23 2022-12-20 武汉华星光电半导体显示技术有限公司 触控显示装置及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1534346A (zh) * 2003-03-31 2004-10-06 ��������ʾ���Ƽ���˾ 彩色高分子分散液晶显示装置及其制造方法
US20100309413A1 (en) * 2009-06-09 2010-12-09 Samsung Electronics Co., Ltd. Reflective-type color display devices using polymer dispersed liquid crystals and dyes
JP2012242442A (ja) * 2011-05-16 2012-12-10 Jsr Corp カラーフィルタ、液晶表示素子およびカラーフィルタの製造方法
CN103278876A (zh) * 2013-05-28 2013-09-04 京东方科技集团股份有限公司 量子点彩色滤光片及其制作方法、显示装置
CN104698668A (zh) * 2015-03-30 2015-06-10 北京三五九投资有限公司 一种掺纳米导电粒子的pdlc薄膜及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0816557D0 (en) * 2008-09-10 2008-10-15 Merck Patent Gmbh Electro-optical switching element and electro-optical display
KR101584663B1 (ko) * 2009-02-17 2016-01-13 삼성전자주식회사 양자 점을 이용한 고분자 분산형 액정 디스플레이 장치
GB2478287A (en) * 2010-03-01 2011-09-07 Merck Patent Gmbh Electro-optical switching element and electro-optical display
KR101177480B1 (ko) * 2011-02-14 2012-08-24 엘지전자 주식회사 조명 장치 및 이를 포함하는 디스플레이 장치
JP5817989B2 (ja) * 2011-10-05 2015-11-18 ソニー株式会社 照明装置、表示装置および電子機器
US8698980B2 (en) * 2011-11-14 2014-04-15 Planck Co., Ltd. Color regulating device for illumination and apparatus using the same, and method of regulating color

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1534346A (zh) * 2003-03-31 2004-10-06 ��������ʾ���Ƽ���˾ 彩色高分子分散液晶显示装置及其制造方法
US20100309413A1 (en) * 2009-06-09 2010-12-09 Samsung Electronics Co., Ltd. Reflective-type color display devices using polymer dispersed liquid crystals and dyes
JP2012242442A (ja) * 2011-05-16 2012-12-10 Jsr Corp カラーフィルタ、液晶表示素子およびカラーフィルタの製造方法
CN103278876A (zh) * 2013-05-28 2013-09-04 京东方科技集团股份有限公司 量子点彩色滤光片及其制作方法、显示装置
CN104698668A (zh) * 2015-03-30 2015-06-10 北京三五九投资有限公司 一种掺纳米导电粒子的pdlc薄膜及其制备方法

Also Published As

Publication number Publication date
US9823504B2 (en) 2017-11-21
CN105242437A (zh) 2016-01-13
US20170261780A1 (en) 2017-09-14

Similar Documents

Publication Publication Date Title
WO2017080036A1 (zh) Pdlc显示装置的制作方法及pdlc显示装置
US10534223B2 (en) Display panel and manufacture thereof
WO2017080034A1 (zh) Pdlc显示装置的制作方法及pdlc显示装置
US9874780B2 (en) Liquid crystal display device and manufacturing method thereof
JP6220064B2 (ja) 液晶ディスプレイ及び表示装置
US10534232B2 (en) Array substrate and manufacturing method thereof
CN105700262B (zh) 液晶显示装置及其制作方法
WO2019223203A1 (zh) 在液晶面板中内置偏光片的方法、液晶显示装置及其制作方法
WO2015010369A1 (zh) 彩膜基板、液晶显示屏及单色量子点的分散方法
KR20110041824A (ko) 양자점을 이용한 표시장치
KR102016958B1 (ko) 액정표시장치 및 그 제조방법
WO2018129766A1 (zh) 一种液晶显示器及其制备方法
KR20180114979A (ko) 표시 장치 및 이의 제조 방법
US10053626B2 (en) Methods of fabricating PDLC thin films
CN110007508A (zh) 彩膜基板、液晶显示面板及液晶显示装置
Gandhi et al. High transmittance optical films based on quantum dot doped nanoscale polymer dispersed liquid crystals
CN109491137B (zh) 光调制量子点彩色显示器及其制造方法
KR20160036732A (ko) 퀀텀 로드 표시장치 및 그 제조 방법
CN110632784A (zh) 基于量子点的偏振内置型彩色液晶显示器及其制造方法
US20190011775A1 (en) Liquid crystal panel, liquid crystal display, and method for manufacturing a yellow-dye polarizer
Gao et al. 72‐2: Invited Paper: Color‐Conversion Liquid Crystal Display with In‐Cell Polarizer
KR100495700B1 (ko) 편광 유기 전기 발광 소자의 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14914642

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15908166

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15908166

Country of ref document: EP

Kind code of ref document: A1