WO2017150840A1 - 단일 광섬유 기반의 멀티-링 레이저빔 디바이스, 그리고 이의 제조 방법 - Google Patents

단일 광섬유 기반의 멀티-링 레이저빔 디바이스, 그리고 이의 제조 방법 Download PDF

Info

Publication number
WO2017150840A1
WO2017150840A1 PCT/KR2017/001948 KR2017001948W WO2017150840A1 WO 2017150840 A1 WO2017150840 A1 WO 2017150840A1 KR 2017001948 W KR2017001948 W KR 2017001948W WO 2017150840 A1 WO2017150840 A1 WO 2017150840A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
ring
laser beam
glass tube
beam device
Prior art date
Application number
PCT/KR2017/001948
Other languages
English (en)
French (fr)
Inventor
이경용
Original Assignee
이경용
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160131570A external-priority patent/KR101934774B1/ko
Application filed by 이경용 filed Critical 이경용
Priority to US16/066,646 priority Critical patent/US20190020170A1/en
Priority to CN201780005293.4A priority patent/CN108432068A/zh
Priority to JP2018545851A priority patent/JP2019512725A/ja
Publication of WO2017150840A1 publication Critical patent/WO2017150840A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers

Definitions

  • the present invention relates to a single optical fiber-based multi-ring laser beam device, and more particularly, orthogonal to the irradiation angle of the laser beam to go straight in the optical fiber for medical devices used for intravascular laser treatment, such as varicose veins
  • the present invention relates to a single fiber-based multi-ring laser beam device for enabling irradiation in a 360 ° circular direction of the optical fiber central axis by switching in the direction of the direction.
  • Various laser wavelengths are used for laser treatments requiring intravascular laser irradiation such as varicose veins.
  • the laser treatment is avoided because it can damage nerves in the treatment of blood vessels using the laser beam.
  • the energy does not concentrate to any place in the blood vessel, but the energy is radiated. Therefore, the side effect of the laser beam being concentrated in one region of the blood vessel due to the energy dispersing effect should be solved. will be.
  • Patent Document 1 Republic of Korea Patent Publication No. 10-2014-0143667 "Legary Vein Laser Surgery Method”
  • Patent Document 2 Korean Patent Registration Publication No. 10-1004373 "Electric Stimulation Acupoint Therapy Equipment with Laser Irradiation Unit"
  • the present invention is to solve the above problems, a single optical fiber based multi-ring laser beam for radiating the laser beam from the optical fiber in the form of two or more rings by at least two or more stepwise processing on a single optical fiber. To provide a device, and a method of manufacturing the same.
  • the present invention provides a single optical fiber based multi-ring laser beam device for reducing the energy burden on a glass tube with an energy dissipation effect by using two or more ring shaped light profiles rather than one ring shaped light profile, and It is for providing a manufacturing method.
  • the present invention allows the production of two or more ring-shaped light profiles in a single optical fiber, so that the unnecessary processing process using two or more optical fibers and the need to expand the size of the glass tube to multi-ring based on a single optical fiber It is to provide a laser beam device, and a manufacturing method thereof.
  • a single optical fiber-based multi-ring laser beam device includes a laser beam in the form of two or more rings by at least two stepwise processing on a single optical fiber in the longitudinal direction of the optical fiber. Can be radially spread out therefrom.
  • the single optical fiber-based multi-ring laser beam device the optical fiber shell 110 formed to cover the optical fiber therein; A multi-ring optical fiber 120 formed by two or more stepwise processing in an area not covered by the optical fiber envelope 110 as part of the optical fiber covered by the optical fiber envelope 110; And processing the inner diameter d1 of the glass tube inlet 131 to be wider than the inner diameter d2 of the glass tube body 132 to provide a structure in which the outer diameter of the optical fiber sheath 110 may enter the glass tube inlet 131. ); It may be configured as.
  • the multi-ring optical fiber 120 is orthogonal to the traveling direction p1 of the laser beam irradiated through the optical fiber.
  • the ring-shaped light profile in the direction may be formed in the cylindrical side of the primary-ring forming region 121a and the secondary-ring processing region 122 in an area that rotates 360 ° along the central axis of the optical fiber.
  • the multi-ring optical fiber 120 is narrow toward the central axis of the cylindrical optical fiber on the multi-ring optical fiber 120.
  • a primary-ring machining region 121 corresponding to an inclined surface formed by machining to have an inclined angle on a cross section of the cylinder in a losing form;
  • a primary-ring forming region 121a which is generated by processing a plane parallel to the central axis of the optical fiber in the middle region of the inclination angle region of the primary-ring processing region 121 when performing the inclined surface processing. It may include.
  • the multi-ring optical fiber 120 the diameter of the primary-ring processing region 121 corresponding to the inclined surface is most
  • a secondary-ring machining region 122 which is formed by performing a cutting process to form a plane by a predetermined distance from the small end, and is produced through machining on a plane parallel to the central axis of the optical fiber; It may further include.
  • the primary-ring forming region 121a and the secondary-ring forming region 122 are 360 along the central axis of the optical fiber. It can be formed by the area of the cylindrical side surface formed by the rotation.
  • the multi-ring optical fiber 120, the primary-ring processing of both ends of the secondary-ring processing region 122 The tertiary-ring machining area is formed at the other end than the end contacting the area 121 and processes the optical fiber end into a coniform, so that the laser beam is radiated radially to the front through the conical inclined surface. (123); It may further include.
  • the secondary-ring processing region 122 may be formed wider than the primary-ring forming region 121a. .
  • the adhesive portion 140 formed by using an adhesive material in the region of the inner circumferential surface of the glass tube 130 and the outer circumferential surface of the optical fiber shell 110. ); It may further include.
  • the diameter of the multi-ring optical fiber 120 may be formed to 100 ⁇ m to 1000 ⁇ m.
  • the wavelength of the laser beam first transmitted to the optical fiber including the multi-ring optical fiber 120 is 200 nm to 3000 nm. It is a range,
  • the outer diameter of the glass tube 130 is 0.5 mm-50 mm,
  • the inner diameter of the glass tube 130 can use the range of 0.2 mm-2 mm.
  • a method of manufacturing a single optical fiber-based multi-ring laser beam device when manufacturing a single optical fiber-based multi-ring laser beam device described above, the ring optical fiber 120 processing process, the glass tube 130 processing process, the optical fiber shell 110 may be inserted into the glass tube 130, the process of forming and fixing the contact portion 140 in the insertion region may be performed sequentially. .
  • the glass tube is less energized by energy dissipation effect. This can escape the risk of breakage and provide the effect of a safe procedure.
  • the single-fiber-based multi-ring laser beam device according to another embodiment of the present invention, if two rings are made from one optical fiber than using two optical fibers, there is no unnecessary processing process, so the manufacturing is easy It has the effect of providing the advantage that the cost is reduced.
  • a single optical fiber-based multi-ring laser beam device provides an effect of reducing the size of the glass tube by providing two or more ring-shaped light profiles in one optical fiber. .
  • FIG. 1 is a cross-sectional view illustrating a single optical fiber based multi-ring laser beam device 100 according to an embodiment of the invention.
  • FIG. 2 is a cross-sectional view illustrating a multi-ring optical fiber 120 of the single optical fiber-based multi-ring laser beam device 100 of FIG. 1.
  • FIG 3 is a diagram illustrating a manufacturing process of a single optical fiber based multi-ring laser beam device 100 according to an embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating a method of manufacturing a single optical fiber based multi-ring laser beam device 100 according to an embodiment of the present invention.
  • FIG. 5 is a reference diagram showing a prototype of a single optical fiber based multi-ring laser beam device 100 manufactured according to the method according to the embodiment of the present invention of FIG. 4.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • FIG. 1 is a cross-sectional view illustrating a single optical fiber based multi-ring laser beam device 100 according to an embodiment of the invention.
  • 2 is a cross-sectional view illustrating a multi-ring optical fiber 120 of the single optical fiber-based multi-ring laser beam device 100 of FIG. 1.
  • a single optical fiber based multi-ring laser beam device 100 includes an optical fiber envelope 110, a multi-ring optical fiber 120, a glass tube 130, and a multi-ring
  • the optical fiber 120 has a primary ring processing region 121, a secondary ring processing region 122, and a tertiary processing region 123.
  • the optical fiber shell 110 is formed to cover the optical fiber therein, and is fastened into the glass tube 130.
  • the multi-ring optical fiber 120 is a portion of the optical fiber covered by the optical fiber shell 110 and corresponds to an area not covered by the optical fiber shell 110, that is, the optical fiber shell 110 and the glass tube 130 of the optical fiber. It refers to the optical fiber processed into the region to be inserted into the glass tube 130 when bonding.
  • the multi-material of the optical fibers comprising the optical fiber ring 120 is SiO 2 (silica) using a material such as, and a multi-diameter of the optical fiber ring 120 as a single optical fiber is formed in a 100 ⁇ m to 1000 ⁇ m It is used for laser beam output of at least two rings.
  • the wavelength of the laser beam delivered to the optical fiber including the multi-ring optical fiber 120 is preferably used in the range of 200 nm to 3000 nm.
  • the multi-ring optical fiber 120 may include a primary ring processing region 121, a secondary ring processing region 122, and a tertiary processing region 123. .
  • the primary-ring processing region 121 is formed through the inclined surface processing to have an inclination angle on the cross section of the cylinder in the form of narrowing toward the central axis of the cylindrical optical fiber on the multi-ring optical fiber 120.
  • the optical fiber is formed by simultaneously performing the processing of forming the primary-ring forming region 121a, which is a plane parallel to the central axis of the optical fiber, in the middle region of the inclination angle region of the primary-ring processing region 121.
  • the ring-shaped first optical profile can be formed by the primary-ring forming region 121a in the middle. It works.
  • the secondary ring processing region 122 is formed by performing a cutting process to form a plane by a predetermined distance from the end of the smallest diameter of the primary ring processing regions 121 corresponding to the inclined surface. That is, similarly to the primary-ring forming region 121a of the primary-ring processing region 121, processing for forming the secondary-ring processing region 122, which is a plane parallel to the central axis of the optical fiber, is performed together.
  • the optical profile in the form of a ring may be formed in a direction orthogonal to the traveling direction p1 of the laser beam irradiated through the optical fiber.
  • the secondary ring forming region 122 may be formed by a cylindrical side surface area formed by rotating 360 ° along the central axis of the optical fiber.
  • the tertiary ring processing region 123 is formed at the other end of the tertiary ring processing region 122 that is not in contact with the primary ring processing region 121, and conical the optical fiber end.
  • the laser beam can be radiated to the front surface through a conical inclined surface.
  • the primary ring forming region 121a and the secondary ring forming region 122 are secondary ring forming regions as shown in FIGS. 1 and 2 as compared with the primary ring forming region 121a. Since the 122 is wider, the light profile in the form of a ring in which the laser beam is irradiated in the front end region of the glass tube 130 may be larger.
  • the glass tube 130 processes the inner diameter d1 of the glass tube inlet 131 to be wider than the inner diameter d2 of the glass tube body 132 to provide a structure in which the outer diameter of the optical fiber sheath 110 may enter the glass tube inlet 131. do.
  • the multi-ring optical fiber 120 and the glass tube may be fixed to an area between the inner circumferential surface of the glass tube 130 and the outer circumferential surface of the optical fiber shell 110 by using an adhesive part 140 using an adhesive material such as a bond or an adhesive pad. Coincide with the central axis of 130).
  • the glass tube 130 is used to protect the multi-ring optical fiber 120, and may be formed by replacing quartz glass or transparent acrylic material obtained by melting and solidifying quartz (SiO 2 ).
  • the outer diameter of the glass tube 130 is in the range of 0.5mm to 50mm
  • the inner diameter of the glass tube 130 is preferably used in the range of 0.2mm to 2mm
  • the inner diameter is d1 which is the inner diameter of the glass tube inlet 131 described above
  • From the multi-ring optical fiber 120 by further forming a step between at least one central axis between the glass tube inlet 131 and the glass tube body 132 as shown in FIG. 1B, and d2, the inner diameter of the glass tube body 132.
  • the reflection angle of the output laser beam can be diversified.
  • the single-fiber-based multi-ring laser beam device 100 generates a ring-shaped optical profile in a direction perpendicular to about 90 ° with respect to the straight direction of the laser beam having straightness in the optical fiber for medical devices.
  • the two formed multi-ring optical fiber 120 it is possible to irradiate the laser beam in a 360 ° circular direction.
  • the multi-ring optical fiber 120 is irradiated in the form of two or more circular beams instead of a single circular beam, it can provide the same effect as using two or more optical fibers using a single strand of optical fiber. have.
  • FIG. 3 is a diagram illustrating a manufacturing process of a single optical fiber based multi-ring laser beam device 100 according to an embodiment of the present invention.
  • 4 is a flowchart illustrating a method of manufacturing a single optical fiber based multi-ring laser beam device 100 according to an embodiment of the present invention.
  • the multi-ring optical fiber 120 is processed (S11), the glass tube 130 is processed (S12), and the optical fiber sheath 110 is connected to the glass tube 130.
  • Insertion step (S13) into the inside, step (S14) of forming and fixing the contact portion 140 in the insertion region is performed sequentially.
  • the primary for the optical fiber in the stripped area A primary cutting process, a secondary cutting process, and a tertiary cutting process for sequentially forming each of the ring machining region 121, the secondary-ring machining region 122, and the tertiary machining region 123 are sequentially performed.
  • the optical fiber end in the conical (coniform) in the tertiary cutting process by processing the conical shape having a polygonal mirror surface shape, it is possible to maximize the effect of the diffuse reflection by causing diffuse reflection at the end.
  • the glass tube 130 processing (S12), to prepare the glass tube 130 with a processing groove 131 when manufacturing the glass tube 130, or of the glass tube inlet 131 and the glass tube body 132 A glass tube 130 having the same inner diameter and outer diameter is prepared, and the inner diameter d1 of a predetermined length is made wider than the inner diameter d2 of the glass tube main body 132 by the glass tube inlet 131 through a glass tube aperture processing device.
  • the optical fiber shell 110 is processed into a structure that can enter the glass tube inlet 131, thereby obtaining a glass tube 130, the glass tube inlet 131 as shown in Figure 3a is processed (S12).
  • the multi-ring optical fiber 120 is formed at the end to the inner peripheral surface of the glass tube inlet 131 of the processed glass tube 130, a single optical fiber base of the shape as shown in Figure 3b Obtain an intermediate of the multi-ring laser beam device 100 (S13).
  • step (S13) by forming the adhesive portion 140 in the region where the outer peripheral surface of the optical fiber outer 120 and the inner peripheral surface of the glass tube 130 abuts the optical fiber outer shell 120 is inserted into the glass tube 130, By fixing the glass tube 130 and 120, to obtain a final result of the multi-ring laser beam device 100 based on a single optical fiber of the form as shown in Figure 3c (S14).
  • FIG. 5 is a reference diagram showing a prototype of a single optical fiber based multi-ring laser beam device 100 manufactured according to the method according to the embodiment of the present invention of FIG. 4.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

본 발명은 단일 광섬유 기반의 멀티-링 레이저빔 디바이스, 그리고 이의 제조 방법에 관한 것이다. 본 발명은, 단일 광섬유에 적어도 2개 이상의 계단식 가공에 의해 레이저 빔을 2개 이상의 링 형태로 광섬유의 길이 방향으로부터 방사형으로 퍼져서 조사되도록 할 수 있다. 이에 의해, 한 개의 링 형태의 광 프로파일보다 두 개의 링 형태의 광 프로파일을 사용하면 에너지 분산 효과로 유리관에 에너지 부담을 덜 줌으로써, 유리관이 파손의 위험에서 벗어나 안전한 시술의 효과를 제공할 수 있다. 또한, 본 발명의 일 실시예에 따라, 두 개의 광섬유를 사용하는 것보다 한 개의 광섬유에서 두 개의 링이 만들어지면 불필요한 공정 과정이 없게 되어 제작이 용이하게 되고 비용 또한 절감이 되는 장점을 제공하는 효과가 있다. 뿐만 아니라, 본 발명의 다른 실시예에 따라 하나의 광섬유에서 두 개 이상의 링 형태의 광 프로파일을 제공함으로써, 유리관의 크기를 줄일 수 있는 효과를 제공한다.

Description

단일 광섬유 기반의 멀티-링 레이저빔 디바이스, 그리고 이의 제조 방법
본 발명은 단일 광섬유 기반의 멀티-링 레이저빔 디바이스에 관한 것으로, 보다 구체적으로는, 하지정맥류와 같이 혈관 내 레이저 치료 등에 사용하는 의료기기용 광섬유에 있어서 직진하는 레이저 빔의 조사각을 90°가량 직교하는 방향으로 전환을 통해 광섬유 중심축의 360°원형 방향으로 조사가 가능하도록 하기 위한 단일 광섬유 기반의 멀티-링 레이저빔 디바이스에 관한 것이다.
하지정맥류 치료와 같은 혈관 내 레이저 조사가 필요한 레이저 치료를 위해서는 여러 가지 레이저 파장을 사용하고 있다.
그러나 이러한 레이저 빔을 이용한 혈관 치료시 신경에 손상을 줄 수 있어서 레이저 시술을 기피하고 있다.
이에 따라 광섬유를 통해 전달되는 레이저 빔의 직진성으로 인해 혈관 내 어느 한곳으로 에너지가 집중하지 않고 에너지가 방사하도록 함으로써, 에너지 분산 효과로 혈관의 어느 하나의 영역으로 레이저 빔이 집중되는 부작용을 해소하여야 할 것이다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 대한민국 특허공개공보 공개번호 제10-2014-0143667호 "하지정맥 레이저수술방법"
(특허문헌 2) 대한민국 특허등록공보 등록번호 제10-1004373호 "레이저 조사부가 장착된 전기자극 경혈치료기"
본 발명은 상기의 문제점을 해결하기 위한 것으로, 단일 광섬유에 적어도 2개 이상의 계단식 가공에 의해 레이저 빔을 2개 이상의 링 형태로 광섬유로부터 방사형으로 퍼져서 조사되도록 하기 위한 단일 광섬유 기반의 멀티-링 레이저빔 디바이스, 그리고 이의 제조 방법을 제공하기 위한 것이다.
또한, 본 발명은 한 개의 링 형태의 광 프로파일보다 두 개 이상의 링 형태의 광 프로파일을 사용함으로써 에너지 분산 효과로 유리관에 에너지 부담을 덜 주도록 하기 위한 단일 광섬유 기반의 멀티-링 레이저빔 디바이스, 그리고 이의 제조 방법을 제공하기 위한 것이다.
또한, 본 발명은 단일의 광섬유에서 두 개 이상의 링 형태의 광 프로파일이 생성되도록 하여, 두 개 이상의 광섬유를 사용하는 불필요한 공정 과정과 유리관의 크기를 확장할 필요 없도록 하기 위한 단일 광섬유 기반의 멀티-링 레이저빔 디바이스, 그리고 이의 제조 방법을 제공하기 위한 것이다.
그러나 본 발명의 목적들은 상기에 언급된 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기의 목적을 달성하기 위해 본 발명의 실시예에 따른 단일 광섬유 기반의 멀티-링 레이저빔 디바이스는, 단일 광섬유에 적어도 2개 이상의 계단식 가공에 의해 레이저 빔을 2개 이상의 링 형태로 광섬유의 길이 방향으로부터 방사형으로 퍼져서 조사되도록 할 수 있다.
이때, 본 발명의 다른 실시예에 따른 단일 광섬유 기반의 멀티-링 레이저빔 디바이스는, 내부로 광섬유를 피복하기 위해 형성되는 광섬유 외피(110); 광섬유 외피(110)에 의해 피복된 광섬유의 일부로 광섬유 외피(110)에 의해 피복되지 않은 영역에 2개 이상의 계단식 가공을 통해 형성되는 멀티-링 광섬유(120); 및 유리관 입구(131)의 내경(d1)을 유리관 본체(132)의 내경(d2) 보다 넓게 가공하여 광섬유 외피(110)의 외경이 유리관 입구(131)로 들어갈 수 있는 구조를 제공하는 유리관(130); 으로 구성될 수 있다.
또한, 본 발명의 또 다른 실시예에 따른 단일 광섬유 기반의 멀티-링 레이저빔 디바이스에 있어서, 멀티-링 광섬유(120)는, 광섬유를 통해 조사되는 레이저 빔의 진행 방향(p1)에 대해서 직교하는 방향으로 링(ring) 형태의 광 프로파일을 1차-링 형성 영역(121a) 및 2차-링 가공 영역(122)을 광섬유의 중심축을 따라 360°회전하는 면적의 원통형 측면으로 형성할 수 있다.
또한, 본 발명의 또 다른 실시예에 따른 단일 광섬유 기반의 멀티-링 레이저빔 디바이스에 있어서, 멀티-링 광섬유(120)는, 멀티-링 광섬유(120) 상에 원통 형상의 광섬유 중심축을 향하여 좁아지는 형태로 원통의 단면상에서 경사각을 갖도록 가공하여 형성된 경사면에 해당하는 1차-링 가공 영역(121); 및 상기 경사면 가공 수행시, 1차-링 가공 영역(121)의 경사각 영역의 중간 영역에 광섬유의 중심축과 평행한 평면에 대한 가공을 통해 생성되는 1차-링 형성 영역(121a); 을 포함할 수 있다.
또한, 본 발명의 또 다른 실시예에 따른 단일 광섬유 기반의 멀티-링 레이저빔 디바이스에 있어서, 멀티-링 광섬유(120)는, 경사면에 해당하는 1차-링 가공 영역(121) 중 직경이 가장 작은 끝단으로부터 미리 설정된 거리 만큼의 평면을 형성하는 절삭 가공을 수행하여 형성되며, 광섬유의 중심축과 평행한 평면에 대한 가공을 통해 생성되는 2차-링 가공 영역(122); 을 더 포함할 수 있다.
또한, 본 발명의 또 다른 실시예에 따른 단일 광섬유 기반의 멀티-링 레이저빔 디바이스에 있어서, 1차-링 형성 영역(121a) 및 2차-링 형성 영역(122)은 광섬유의 중심축을 따라 360°회전하여 형성되는 면적인 원통형 측면 면적만큼 형성될 수 있다.
또한, 본 발명의 또 다른 실시예에 따른 단일 광섬유 기반의 멀티-링 레이저빔 디바이스에 있어서, 멀티-링 광섬유(120)는, 2차-링 가공 영역(122) 양 끝단 중 1차-링 가공 영역(121)과 맞닿는 끝단이 아닌 다른 쪽 끝단에 형성되며, 광섬유 끝단을 원추형(coniform)으로 가공하여, 원뿔 모양의 경사면을 통해 레이저 빔이 전면으로 방사상으로 퍼져나가도록 하는 3차-링 가공 영역(123); 을 더 포함할 수 있다.
또한, 본 발명의 또 다른 실시예에 따른 단일 광섬유 기반의 멀티-링 레이저빔 디바이스에 있어서, 1차-링 형성 영역(121a)에 비해 2차-링 가공 영역(122)이 넓게 형성될 수 있다.
또한, 본 발명의 또 다른 실시예에 따른 단일 광섬유 기반의 멀티-링 레이저빔 디바이스는, 유리관(130)의 내주면과 광섬유 외피(110)의 외주면의 맞닿는 영역에는 접착 물질을 이용해 형성되는 접착부(140); 를 더 포함할 수 있다.
또한, 본 발명의 또 다른 실시예에 따른 단일 광섬유 기반의 멀티-링 레이저빔 디바이스에 있어서, 멀티-링 광섬유(120)의 직경은 100㎛ 내지 1000㎛으로 형성될 수 있다.
또한, 본 발명의 또 다른 실시예에 따른 단일 광섬유 기반의 멀티-링 레이저빔 디바이스에 있어서, 멀티-링 광섬유(120)를 포함하는 광섬유로 최초 전달되는 레이저 빔의 파장은 200㎚ 내지 3000㎚의 범위이며, 유리관(130)의 외경은, 0.5mm 내지 50mm의 범위로, 유리관(130)의 내경은, 0.2mm 내지 2mm의 범위를 사용할 수 있다.
상기의 목적을 달성하기 위해 본 발명의 실시예에 따른 단일 광섬유 기반의 멀티-링 레이저빔 디바이스의 제조 방법은, 상술한 어느 하나의 단일 광섬유 기반의 멀티-링 레이저빔 디바이스를 제조시, 멀티-링 광섬유(120) 가공 과정, 유리관(130) 가공 과정, 광섬유 외피(110)를 유리관(130) 내부로 삽입 과정, 삽입 영역으로 접촉부(140)를 형성하여 고정하는 과정이 순차적으로 수행될 수 있다.
본 발명의 실시예에 따른 단일 광섬유 기반의 멀티-링 레이저빔 디바이스는, 한 개의 링 형태의 광 프로파일보다 두 개의 링 형태의 광 프로파일을 사용하면 에너지 분산 효과로 유리관에 에너지 부담을 덜 줌으로써, 유리관이 파손의 위험에서 벗어나 안전한 시술의 효과를 제공할 수 있다.
또한, 본 발명의 다른 실시예에 따른 단일 광섬유 기반의 멀티-링 레이저빔 디바이스는, 두 개의 광섬유를 사용하는 것보다 한 개의 광섬유에서 두 개의 링이 만들어지면 불필요한 공정 과정이 없게 되어 제작이 용이하게 되고 비용 또한 절감이 되는 장점을 제공하는 효과가 있다.
뿐만 아니라, 본 발명의 다른 실시예에 따른 단일 광섬유 기반의 멀티-링 레이저빔 디바이스는, 하나의 광섬유에서 두 개 이상의 링 형태의 광 프로파일을 제공함으로써, 유리관의 크기를 줄일 수 있는 효과를 제공한다.
도 1은 본 발명의 실시예에 따른 단일 광섬유 기반의 멀티-링 레이저빔 디바이스(100)를 나타내는 단면도이다.
도 2는 도 1의 단일 광섬유 기반의 멀티-링 레이저빔 디바이스(100) 중 멀티-링 광섬유(120)를 나타내는 단면도이다.
도 3은 본 발명의 실시예에 따른 단일 광섬유 기반의 멀티-링 레이저빔 디바이스(100)의 제조 공정을 나타내는 도면이다.
도 4는 본 발명의 실시예에 따른 단일 광섬유 기반의 멀티-링 레이저빔 디바이스(100)의 제조 방법을 나타내는 흐름도이다.
도 5는 도 4의 본 발명의 실시예에 따른 방법에 따라 제조된 단일 광섬유 기반의 멀티-링 레이저빔 디바이스(100)의 프로토타입을 나타내는 참조도면이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는바, 특정 실시예들을 도면에 예시하여 상세하게 설명한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제 1, 제 2 등과 같이 서수를 포함하는 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다.
예를 들어, 본 발명의 권리범위를 벗어나지 않으면서 제 1 구성 요소는 제 2 구성 요소로 명명될 수 있고, 유사하게 제 2 구성 요소도 제 1 구성 요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 일반적으로 이해되는 것과 동일한 의미가 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련기술의 문맥상 가지는 의미와 일치하는 의미가 있는 것으로 해석 되어야하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부된 도면들을 참조하여 본 발명에 따른 단일 광섬유 기반의 멀티-링 레이저빔 디바이스의 바람직한 실시예를 첨부된 도면을 참조하여 설명한다. 이 과정에서 도면에 도시된 선들의 두께나 구성요소의 크기 등은 설명의 명료성과 편의상 과장되게 도시되어 있을 수 있다. 또한, 후술 되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 그러므로, 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
도 1은 본 발명의 실시예에 따른 단일 광섬유 기반의 멀티-링 레이저빔 디바이스(100)를 나타내는 단면도이다. 도 2는 도 1의 단일 광섬유 기반의 멀티-링 레이저빔 디바이스(100) 중 멀티-링 광섬유(120)를 나타내는 단면도이다.
먼저, 도 1 및 도 2를 참조하면, 단일 광섬유 기반의 멀티-링 레이저빔 디바이스(100)는 광섬유 외피(110), 멀티-링 광섬유(120), 유리관(130)을 포함하며, 멀티-링 광섬유(120)는 1차-링 가공 영역(121), 2차-링 가공 영역(122), 그리고 3차 가공 영역(123)을 구비한다.
광섬유 외피(110)는 내부로 광섬유를 피복하기 위해 형성되며, 유리관(130) 내부로 체결된다.
멀티-링 광섬유(120)는 광섬유 외피(110)에 의해 피복된 광섬유의 일부로 광섬유 외피(110)에 의해 피복되지 않은 영역에 해당하며, 즉, 광섬유 중 광섬유 외피(110)와 유리관(130)을 접합시 유리관(130)으로 삽입되는 영역으로 가공된 광섬유를 의미한다.
여기서 멀티-링 광섬유(120)를 포함하는 광섬유의 재질은 SiO2(실리카) 등의 재질을 사용하고, 멀티-링 광섬유(120)의 직경은 100㎛ 내지 1000㎛으로 형성되는 하나의 단일 광섬유로 적어도 2-링 이상의 레이저 빔 출력을 위해 사용된다. 여기서 멀티-링 광섬유(120)를 포함하는 광섬유로 전달되는 레이저 빔의 파장은 200㎚ 내지 3000㎚의 범위로 사용하는 것이 바람직하다.
한편, 본 발명의 일 실시예에 따른 멀티-링 광섬유(120)는 1차-링 가공 영역(121), 2차-링 가공 영역(122) 및 3차 가공 영역(123)을 구비할 수 있다.
여기서, 1차-링 가공 영역(121)은 멀티-링 광섬유(120) 상에 원통 형상의 광섬유 중심축을 향하여 좁아지는 형태로 원통의 단면상에서 경사각을 갖도록 하여 경사면 가공을 통해 형성된다. 이러한 경사면 가공 수행시, 1차-링 가공 영역(121)의 경사각 영역의 중간 영역에 광섬유의 중심축과 평행한 평면인 1차-링 형성 영역(121a)을 형성하는 가공을 함께 수행함으로써, 광섬유를 통해 조사되는 레이저 빔의 진행 방향(p1)에 대해서 직교하는 방향으로 링(ring) 형태의 광 프로파일을 1차-링 형성 영역(121a)을 광섬유의 중심축을 따라 360°회전하는 면적의 원통형 측면으로 형성할 수 있다.
즉, 1차-링 가공 영역(121)의 경사면에 의해 굴절 각도의 차등화를 수행할 뿐만 아니라, 중간에 1차-링 형성 영역(121a)에 의해 링 형태의 제 1 광 프로파일을 형성할 수 있는 효과가 있다.
2차-링 가공 영역(122)은 경사면에 해당하는 1차-링 가공 영역(121) 중 직경이 가장 작은 끝단으로부터 미리 설정된 거리 만큼의 평면을 형성하는 절삭 가공을 수행하여 형성된다. 즉, 1차-링 가공 영역(121)의 1차-링 형성 영역(121a)과 마찬가지로, 광섬유의 중심축과 평행한 평면인 2차-링 가공 영역(122)을 형성하는 가공을 함께 수행하는데, 광섬유를 통해 조사되는 레이저 빔의 진행 방향(p1)에 대해서 직교하는 방향으로 링(ring) 형태의 광 프로파일을 형성할 수 있다. 이러한 2차-링 형성 영역(122)은 광섬유의 중심축을 따라 360°회전하여 형성되는 면적인 원통형 측면 면적만큼 형성할 수 있다.
3차-링 가공 영역(123)은 2차-링 가공 영역(122) 양 끝단 중 1차-링 가공 영역(121)과 맞닿는 끝단이 아닌 다른 쪽 끝단에 형성되며, 광섬유 끝단을 원추형(coniform)으로 가공함으로써, 원뿔 모양의 경사면을 통해 레이저 빔이 전면으로 방사상으로 퍼져나갈 수 있는 효과를 제공한다.
한편, 1차-링 형성 영역(121a)과 2차-링 가공 영역(122)은 도 1 및 도 2에 도시된 바와 같이, 1차-링 형성 영역(121a)에 비해 2차-링 가공 영역(122)이 넓게 형성됨으로써, 유리관(130)의 몸체보다 전면 끝단 영역에서 더욱 레이저 빔의 조사되는 링(ring) 형태의 광 프로파일이 크게 형성될 수 있다.
유리관(130)은 유리관 입구(131)의 내경(d1)을 유리관 본체(132)의 내경(d2) 보다 넓게 가공하여 광섬유 외피(110)의 외경이 유리관 입구(131)로 들어갈 수 있는 구조를 제공한다.
한편, 유리관(130)의 내주면과 광섬유 외피(110)의 외주면의 맞닿는 영역에는 본드, 접착 패드 등의 접착 물질을 이용한 접착부(140)를 사용하여 고정함으로써, 멀티-링 광섬유(120)와 유리관(130)의 중심축과 일치되도록 한다.
여기서 유리관(130)은 멀티-링 광섬유(120)를 보호하기 위해 사용되며, 석영(SiO2)을 용융 응고하여 얻어진 석영 유리(quartz glass)나 투명한 아크릴 재질로 대체하여 형성될 수 있다.
한편, 유리관(130)의 외경은 0.5mm 내지 50mm의 범위로, 유리관(130)의 내경은 0.2mm 내지 2mm의 범위를 사용하는 것이 바람직하며, 내경은 상술한 유리관 입구(131)의 내경인 d1, 유리관 본체(132)의 내경인 d2, 그리고 도 1b와 같이 유리관 입구(131)와 유리관 본체(132) 사이에 적어도 하나 이상의 중심축을 향하여 단턱을 추가로 형성함으로써, 멀티-링 광섬유(120)로부터 출력된 레이저 빔의 반사각을 다각화할 수 있다.
이러한 구조를 통해 단일 광섬유 기반의 멀티-링 레이저빔 디바이스(100)는 의료기기용 광섬유에 있어서 직진성을 갖는 레이저 빔을 직진 방향에 대해서 약 90°정도의 직각 방향으로 링(ring) 형태의 광 프로파일을 2개를 형성한 멀티-링 광섬유(120)를 이용하여, 360°원형 방향으로 레이저 빔을 조사할 수 있도록 한다.
이때, 멀티-링 광섬유(120)는 한 개의 원형 빔 형태가 아닌 2개 또는 그 이상의 원형 빔 형태로 조사를 수행함으로써, 단일 가닥의 광섬유를 이용해 두 개 이상의 광섬유를 사용한 것과 같은 효과를 제공할 수 있다.
도 3은 본 발명의 실시예에 따른 단일 광섬유 기반의 멀티-링 레이저빔 디바이스(100)의 제조 공정을 나타내는 도면이다. 도 4는 본 발명의 실시예에 따른 단일 광섬유 기반의 멀티-링 레이저빔 디바이스(100)의 제조 방법을 나타내는 흐름도이다.
이하에서는 도 3 및 도 4를 참조하여 단일 광섬유 기반의 멀티-링 레이저빔 디바이스(100)의 제조 방법에 대해서 구체적으로 살펴보도록 한다. 먼저, 도 4를 참조하면, 멀티-링 레이저빔 디바이스(100)의 제조시 멀티-링 광섬유(120) 가공(S11), 유리관(130) 가공(S12), 광섬유 외피(110)를 유리관(130) 내부로 삽입 공정(S13), 삽입 영역으로 접촉부(140) 형성하여 고정하는 공정(S14)이 순차적으로 수행한다.
멀티-링 광섬유(120)의 가공시(S11), 광섬유 외피(110) 중 멀티-링 광섬유(120) 형성 구간에 대한 피복을 벗기는 공정을 수행한 뒤, 피복이 벗겨진 영역의 광섬유에 대한 1차-링 가공 영역(121), 2차-링 가공 영역(122) 및 3차 가공 영역(123) 각각의 순차적 형성을 위한 1차 절삭 공정, 2차 절삭 공정 및 3차 절삭 공정을 순차적으로 수행한다. 한편, 3차 절삭 공정에서 광섬유 끝단을 원추형(coniform)으로 가공시 다각경면 형상을 가진 원추형으로 처리함으로써, 끝단에서 난반사를 유발하여 난반사의 효과를 극대화할 수 있다.
단계(S11) 이후, 유리관(130) 가공시(S12), 유리관(130) 제조시 가공 홈(131)이 구비된 유리관(130)을 준비하거나, 유리관 입구(131)와 유리관 본체(132)의 내경과 외경이 같은 유리관(130)을 준비하여 유리관의 구경 가공 장치를 통해 유리관 입구(131)인 접합면으로부터 소정의 길이만큼의 내경(d1)을 유리관 본체(132)의 내경(d2) 보다 넓게 가공함으로써, 광섬유 외피(110)를 유리관 입구(131)로 들어갈 수 있는 구조로의 가공을 수행함으로써, 도 3a과 같은 유리관 입구(131)가 가공된 유리관(130)을 획득한다(S12).
단계(S12) 이후, 가공된 유리관(130) 중 유리관 입구(131)의 내주면으로 끝단에 멀티-링 광섬유(120)이 형성된 광섬유 외피(110)를 삽입함으로써, 도 3b와 같은 형태의 단일 광섬유 기반의 멀티-링 레이저빔 디바이스(100)의 중간물을 획득한다(S13).
단계(S13) 이후, 광섬유 외피(120)가 유리관(130)으로 삽입된 영역 중 광섬유 외부(120)의 외주면과 유리관(130)의 내주면이 맞닿는 영역을 접착부(140)를 형성함으로써, 광섬유 외피(120)와 유리관(130)을 고정함으로써, 도 3c와 같은 형태의 단일 광섬유 기반의 멀티-링 레이저빔 디바이스(100)의 최종 결과물을 획득한다(S14).
한편, 도 5는 도 4의 본 발명의 실시예에 따른 방법에 따라 제조된 단일 광섬유 기반의 멀티-링 레이저빔 디바이스(100)의 프로토타입을 나타내는 참조도면이다.
이상과 같이, 본 명세서와 도면에는 본 발명의 바람직한 실시예에 대하여 개시하였으며, 비록 특정 용어들이 사용되었으나, 이는 단지 본 발명의 기술 내용을 쉽게 설명하고 발명의 이해를 돕기 위한 일반적인 의미에서 사용된 것이지, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예 외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.
[부호의 설명]
100 : 단일 광섬유 기반의 멀티-링 레이저빔 디바이스
110 : 광섬유 외피
120 : 멀티-링 광섬유
121 : 1차-링 가공 영역
121a : 1차-링 형성 영역
122 : 2차-링 가공 영역
123 : 3차 가공 영역
130 : 유리관
131 : 유리관 입구
132 : 유리관 본체
133: 유리관 곡면부

Claims (13)

  1. 단일 광섬유에 적어도 2개 이상의 계단식 가공에 의해 레이저 빔을 2개 이상의 링 형태로 광섬유의 길이 방향으로부터 방사형으로 퍼져서 조사되도록 하는 것을 특징으로 하는 단일 광섬유 기반의 멀티-링 레이저빔 디바이스.
  2. 청구항 1에 있어서,
    내부로 광섬유를 피복하기 위해 형성되는 광섬유 외피(110);
    광섬유 외피(110)에 의해 피복된 광섬유의 일부로 광섬유 외피(110)에 의해 피복되지 않은 영역에 2개 이상의 계단식 가공을 통해 형성되는 멀티-링 광섬유(120); 및
    유리관 입구(131)의 내경(d1)을 유리관 본체(132)의 내경(d2) 보다 넓게 가공하여 광섬유 외피(110)의 외경이 유리관 입구(131)로 들어갈 수 있는 구조를 제공하는 유리관(130); 으로 구성되는 것을 특징으로 하는 단일 광섬유 기반의 멀티-링 레이저빔 디바이스.
  3. 청구항 2에 있어서, 멀티-링 광섬유(120)는,
    광섬유를 통해 조사되는 레이저 빔의 진행 방향(p1)에 대해서 직교하는 방향으로 링(ring) 형태의 광 프로파일을 광섬유의 중심축을 따라 360°회전하는 면적의 원통형 측면으로 형성하는 것을 특징으로 하는 단일 광섬유 기반의 멀티-링 레이저빔 디바이스.
  4. 청구항 2에 있어서, 멀티-링 광섬유(120)는,
    멀티-링 광섬유(120) 상에 원통 형상의 광섬유 중심축을 향하여 좁아지는 형태로 원통의 단면상에서 경사각을 갖도록 가공하여 형성된 경사면에 해당하는 1차-링 가공 영역(121); 및
    상기 경사면 가공 수행시, 1차-링 가공 영역(121)의 경사각 영역의 중간 영역에 광섬유의 중심축과 평행한 평면에 대한 가공을 통해 생성되는 1차-링 형성 영역(121a); 을 포함하는 것을 특징으로 하는 단일 광섬유 기반의 멀티-링 레이저빔 디바이스.
  5. 청구항 4에 있어서, 멀티-링 광섬유(120)는,
    경사면에 해당하는 1차-링 가공 영역(121) 중 직경이 가장 작은 끝단으로부터 미리 설정된 거리 만큼의 평면을 형성하는 절삭 가공을 수행하여 형성되며, 광섬유의 중심축과 평행한 평면에 대한 가공을 통해 생성되는 2차-링 가공 영역(122); 을 더 포함하는 것을 특징으로 하는 단일 광섬유 기반의 멀티-링 레이저빔 디바이스.
  6. 청구항 5에 있어서,
    1차-링 형성 영역(121a) 및 2차-링 형성 영역(122)은 광섬유의 중심축을 따라 360°회전하여 형성되는 면적인 원통형 측면 면적만큼 형성되는 것을 특징으로 하는 단일 광섬유 기반의 멀티-링 레이저빔 디바이스.
  7. 청구항 5에 있어서, 멀티-링 광섬유(120)는,
    2차-링 가공 영역(122) 양 끝단 중 1차-링 가공 영역(121)과 맞닿는 끝단이 아닌 다른 쪽 끝단에 형성되며, 광섬유 끝단을 원추형(coniform)으로 가공하여, 원뿔 모양의 경사면을 통해 레이저 빔이 전면으로 방사상으로 퍼져나가도록 하는 3차-링 가공 영역(123); 을 더 포함하는 것을 특징으로 하는 단일 광섬유 기반의 멀티-링 레이저빔 디바이스.
  8. 청구항 5에 있어서,
    1차-링 형성 영역(121a)에 비해 2차-링 가공 영역(122)이 넓게 형성되는 것을 특징으로 하는 단일 광섬유 기반의 멀티-링 레이저빔 디바이스.
  9. 청구항 2에 있어서,
    유리관(130)의 내주면과 광섬유 외피(110)의 외주면의 맞닿는 영역에는 접착 물질을 이용해 형성되는 접착부(140); 를 더 포함하는 것을 특징으로 하는 단일 광섬유 기반의 멀티-링 레이저빔 디바이스.
  10. 청구항 2에 있어서,
    멀티-링 광섬유(120)의 직경은 100㎛ 내지 1000㎛으로 형성되는 것을 특징으로 하는 단일 광섬유 기반의 멀티-링 레이저빔 디바이스.
  11. 청구항 10에 있어서,
    멀티-링 광섬유(120)를 포함하는 광섬유로 최초 전달되는 레이저 빔의 파장은 200㎚ 내지 3000㎚의 범위인 것을 특징으로 하는 단일 광섬유 기반의 멀티-링 레이저빔 디바이스.
  12. 청구항 11에 있어서, 유리관(130)의 외경은,
    0.5mm 내지 50mm의 범위로,
    유리관(130)의 내경은,
    0.2mm 내지 2mm의 범위를 사용하는 것을 특징으로 하는 단일 광섬유 기반의 멀티-링 레이저빔 디바이스.
  13. 단일 광섬유 기반의 멀티-링 레이저빔 디바이스에 대한 제조시,
    멀티-링 광섬유(120) 가공 과정, 유리관(130) 가공 과정, 광섬유 외피(110)를 유리관(130) 내부로 삽입 과정, 삽입 영역으로 접촉부(140)를 형성하여 고정하는 과정이 순차적으로 수행되는 것을 특징으로 하는 단일 광섬유 기반의 멀티-링 레이저빔 디바이스의 제조 방법.
PCT/KR2017/001948 2016-02-29 2017-02-22 단일 광섬유 기반의 멀티-링 레이저빔 디바이스, 그리고 이의 제조 방법 WO2017150840A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/066,646 US20190020170A1 (en) 2016-02-29 2017-02-22 Single optical fiber-based multi-ring laser beam device, and manufacturing method therefor
CN201780005293.4A CN108432068A (zh) 2016-02-29 2017-02-22 基于单光纤的多环激光束装置以及制造方法
JP2018545851A JP2019512725A (ja) 2016-02-29 2017-02-22 単一光ファイバ基盤のマルチリングレーザビームデバイス及びその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160024667 2016-02-29
KR10-2016-0024667 2016-02-29
KR10-2016-0131570 2016-10-11
KR1020160131570A KR101934774B1 (ko) 2016-02-29 2016-10-11 단일 광섬유 기반의 멀티-링 레이저빔 디바이스, 그리고 이의 제조 방법

Publications (1)

Publication Number Publication Date
WO2017150840A1 true WO2017150840A1 (ko) 2017-09-08

Family

ID=59744192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/001948 WO2017150840A1 (ko) 2016-02-29 2017-02-22 단일 광섬유 기반의 멀티-링 레이저빔 디바이스, 그리고 이의 제조 방법

Country Status (1)

Country Link
WO (1) WO2017150840A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111948757A (zh) * 2020-08-31 2020-11-17 刘侠 一种医用光纤输出头的制备方法及医用光纤输出头

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005087530A (ja) * 2003-09-18 2005-04-07 Seikoh Giken Co Ltd レーザプローブ
JP2005087531A (ja) * 2003-09-18 2005-04-07 Seikoh Giken Co Ltd レーザプローブ
US20100004646A1 (en) * 2008-07-02 2010-01-07 Joe Denton Brown Laser delivery apparatus for endovascular applications
US20130114927A1 (en) * 2011-11-09 2013-05-09 Ronald T. Smith Multi-spot laser probe with faceted optical element
KR20140012031A (ko) * 2010-09-30 2014-01-29 바이오리텍 파마 마케팅 엘티디. 관내 레이저 절제 장치 및 정맥을 치료하는 개선된 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005087530A (ja) * 2003-09-18 2005-04-07 Seikoh Giken Co Ltd レーザプローブ
JP2005087531A (ja) * 2003-09-18 2005-04-07 Seikoh Giken Co Ltd レーザプローブ
US20100004646A1 (en) * 2008-07-02 2010-01-07 Joe Denton Brown Laser delivery apparatus for endovascular applications
KR20140012031A (ko) * 2010-09-30 2014-01-29 바이오리텍 파마 마케팅 엘티디. 관내 레이저 절제 장치 및 정맥을 치료하는 개선된 방법
US20130114927A1 (en) * 2011-11-09 2013-05-09 Ronald T. Smith Multi-spot laser probe with faceted optical element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111948757A (zh) * 2020-08-31 2020-11-17 刘侠 一种医用光纤输出头的制备方法及医用光纤输出头

Similar Documents

Publication Publication Date Title
US4782818A (en) Endoscope for guiding radiation light rays for use in medical treatment
WO2019112199A1 (ko) 마이크로 렌즈 어레이, 이를 포함하는 레이저 빔 핸드 피스 및 치료용 레이저 장치
KR101934774B1 (ko) 단일 광섬유 기반의 멀티-링 레이저빔 디바이스, 그리고 이의 제조 방법
GB2227103A (en) Laser apparatus for medical treatment
WO2017150840A1 (ko) 단일 광섬유 기반의 멀티-링 레이저빔 디바이스, 그리고 이의 제조 방법
WO2021040191A1 (ko) 제모용 레이저 핸드피스 장치
WO2018105894A1 (ko) 초소형 내시경 카메라 모듈 및 이를 구비하는 초소형 내시경
JPH0627351A (ja) 光ファイバコネクタ
WO2013073913A1 (ko) 광섬유를 이용한 의료용 마스크 장치
WO2015053550A1 (ko) 일루미네이션 차퍼
IT1222901B (it) Connettore per fibre ottiche e metodo per posizionare assialmente una fibra ottica nel connettore
FI880307A0 (fi) Menetelmä ja laite määrättyjen valoaaltojohdinpituuksien säätämiseksi valojohdoissa
US5625728A (en) Method of coupling a multi-core optical fiber to a plurality of single-core optical fibers
CA1112923A (en) Detachable connector for links by optical fibres
US20130331654A1 (en) Transmission-Efficient Light Couplings and Tools and Systems Utilizing Such Couplings
US20210356675A1 (en) Method for manufacturing fan-in fan-out device and fan-in fan-out device
WO2005079917A1 (en) Intense pulse light device having individual rotational light filters therein
JP2002148468A (ja) フォトニッククリスタルファイバの融着方法
WO2016048023A1 (ko) 방사상 조사가 가능한 광섬유 팁, 이의 제조방법, 및 이를 포함하는 의료용 광섬유 장치
JP7297643B2 (ja) 光ファイバテープ心線の製造方法及び光ファイバテープ心線の製造装置
TWI278719B (en) Light-conducting device
WO2020209545A2 (ko) 다중 진단 및 치료 카테터와 이를 포함하는 카테터 시스템
CN1251659A (zh) 把光导纤维部件安装到光源系统上的咬接式基部连接器
WO2017052101A1 (ko) 광중합기에 결합가능한 치아균열관찰팁
CN112327404A (zh) 一种光纤加工工艺及光纤

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018545851

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17760244

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17760244

Country of ref document: EP

Kind code of ref document: A1