WO2017150832A1 - 부반송파간의 간섭 및 잡음 신호를 억제하는 방법 및 이를 수행하는 직교 주파수 분할 다중 수신기 - Google Patents
부반송파간의 간섭 및 잡음 신호를 억제하는 방법 및 이를 수행하는 직교 주파수 분할 다중 수신기 Download PDFInfo
- Publication number
- WO2017150832A1 WO2017150832A1 PCT/KR2017/001776 KR2017001776W WO2017150832A1 WO 2017150832 A1 WO2017150832 A1 WO 2017150832A1 KR 2017001776 W KR2017001776 W KR 2017001776W WO 2017150832 A1 WO2017150832 A1 WO 2017150832A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- symbol
- interval
- signal
- noise ratio
- period
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03821—Inter-carrier interference cancellation [ICI]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J11/00—Orthogonal multiplex systems, e.g. using WALSH codes
- H04J11/0023—Interference mitigation or co-ordination
- H04J11/005—Interference mitigation or co-ordination of intercell interference
- H04J11/0056—Inter-base station aspects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/14—Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J11/00—Orthogonal multiplex systems, e.g. using WALSH codes
- H04J11/0023—Interference mitigation or co-ordination
- H04J11/0026—Interference mitigation or co-ordination of multi-user interference
- H04J11/0036—Interference mitigation or co-ordination of multi-user interference at the receiver
- H04J11/0046—Interference mitigation or co-ordination of multi-user interference at the receiver using joint detection algorithms
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J11/00—Orthogonal multiplex systems, e.g. using WALSH codes
- H04J11/0023—Interference mitigation or co-ordination
- H04J11/005—Interference mitigation or co-ordination of intercell interference
- H04J11/0059—Out-of-cell user aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
- H04L27/2605—Symbol extensions, e.g. Zero Tail, Unique Word [UW]
- H04L27/2607—Cyclic extensions
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2626—Arrangements specific to the transmitter only
- H04L27/2646—Arrangements specific to the transmitter only using feedback from receiver for adjusting OFDM transmission parameters, e.g. transmission timing or guard interval length
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2647—Arrangements specific to the receiver only
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2647—Arrangements specific to the receiver only
- H04L27/2655—Synchronisation arrangements
- H04L27/2662—Symbol synchronisation
- H04L27/2665—Fine synchronisation, e.g. by positioning the FFT window
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0058—Allocation criteria
- H04L5/006—Quality of the received signal, e.g. BER, SNR, water filling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
Definitions
- the present invention relates to a method for suppressing interference and noise signals between subcarriers and an orthogonal frequency division multiplex (hereinafter, referred to as 'OFDM') receiver for performing the same, and more particularly, to a subcarrier in an OFDM receiver.
- 'OFDM' orthogonal frequency division multiplex
- OFDM orthogonal frequency division multiple access
- a transmitting end of a communication system using an OFDM scheme modulates serial data symbols, demultiplexes them into parallel data, and then inverses Fast Fourier Transform (IFFT).
- IFFT Fast Fourier Transform
- a plurality of subcarriers are allocated to the demultiplexed parallel data and transmitted to the receiver.
- the receiving end separates the subcarriers from the received signal by fast Fourier transform (hereinafter, referred to as 'FFT'), multiplexes the parallel data from which the subcarriers are separated, into serial data, and then multiplexes serialized data.
- the data is demodulated to detect a desired data symbol.
- the FFT output data of the OFDM receiver generates inter-carrier interference (hereinafter, referred to as 'ICI') due to radio channel characteristics.
- 'ICI' inter-carrier interference
- an area without OFDM inter-symbol interference hereinafter, referred to as 'ISI'
- 'ISI' an area without OFDM inter-symbol interference
- a guard interval that is, no ISI in the time domain, that is, sample data of a symbol interference free interval and sample data of an effective symbol interval are added up.
- the FFT operation is performed on the FFT input data including the summed sample data.
- a ratio between the symbol interference free period and the FFT size may be added.
- EGC equal gain combining
- the Signal to Noise Ratio (hereinafter referred to as SNR) of the symbol interference free period may be higher or lower than the SNR of the effective symbol period.
- a change width of channel power between a guard period and an effective symbol period is large.
- an aspect of the present invention is to reduce the interference and noise signals between subcarriers by performing a weighting operation between the sample data included in the symbol interference pre-interval and the sample data of the effective symbol interval in the time domain in consideration of the channel change.
- a method and an OFDM receiver for performing the same are provided.
- a method for suppressing interference between subcarriers and a noise signal includes an orthogonal frequency division multiplex (OFDM) receiver in an inter-symbol interference in a guard interval (GI).
- OFDM orthogonal frequency division multiplex
- GI guard interval
- ISI symbol interference free period without interference
- SNR signal to noise ratio
- the signal-to-noise ratio of the measured or estimated symbol-interference free interval and the signal-to-noise ratio of the effective symbol interval may be used.
- a weighting operation may be performed by applying a range setting value of hardware bit precision using the signal-to-noise ratio of the symbol interference free period and the signal-to-noise ratio of the effective symbol period.
- an orthogonal frequency division multiplexing receiver has no inter-symbol interference (ISI) in a guard interval (GI) of an orthogonal frequency division multiplex (OFDM) symbol.
- Sample data of the symbol interference free period and sample data of the effective symbol period using a signal to noise ratio (SNR) of a symbol interference free period and a signal to noise ratio of an effective symbol period corresponding to the symbol interference free period A weighting operation unit that performs a weighting operation between the fast Fourier transform sampling data control unit to generate fast Fourier transform (FFT) input data by including weighted sample data in the valid symbol interval, and the fast Fourier transform input
- FFT fast Fourier transform
- the weight calculation unit calculates
- a weighting operation may be performed using a sum of a second operation value and a signal-to-noise ratio of the symbol interference pre-section and the signal-to-noise ratio of the effective symbol period.
- the weight calculation unit calculates
- a range setting value of hardware bit precision is calculated using the signal-to-noise ratio of the symbol interference pre-period and the signal-to-noise ratio of the effective symbol interval, and the range setting value is converted into a signal modeling the symbol interference pre-interval and the effective symbol period.
- the weighted operation may be performed by applying the weighted coefficient to each modeled signal.
- the apparatus may further include an estimator configured to estimate the signal-to-noise ratio of the interval in the time domain or the frequency domain.
- the first power spectrum of the fast Fourier transform result of the sample data of the symbol interference pre-period and the second power spectrum of the fast Fourier transform result of the sample data of the effective symbol-interval are both greater than or equal to a predetermined threshold.
- the value obtained by accumulating or averaging one power spectrum may be estimated as a signal-to-noise ratio of the symbol interference pre-interval, and the value obtained by accumulating or averaging the second power spectrum may be estimated as a signal-to-noise ratio of the effective symbol interval. .
- a weight ratio calculation is performed in consideration of SNR to maximize the maximum ratio combining.
- 'MRC' a weight ratio calculation
- FIG. 2 is an exemplary diagram of an OFDM symbol showing a guard interval without intersymbol interference according to an embodiment of the present invention.
- FIG. 3 is a block diagram showing the configuration of an OFDM receiver according to an embodiment of the present invention.
- FIG. 4 is a flowchart illustrating a method of suppressing interference and noise signals between subcarriers according to an embodiment of the present invention.
- FIG. 5 is a diagram for obtaining correlation energy in order to estimate a symbol interference free interval according to an embodiment of the present invention.
- FIG 6 illustrates an example of configuring FFT input data according to an embodiment of the present invention.
- FIG. 7 is a block diagram showing the configuration of an OFDM receiver according to another embodiment of the present invention.
- FIG. 8 is a flowchart illustrating a method of suppressing interference and noise signals between subcarriers according to another embodiment of the present invention.
- FIG 9 illustrates an example of configuring FFT input data according to another embodiment of the present invention.
- FIG. 10 is a flowchart illustrating an SNR estimation method according to an embodiment of the present invention.
- ... unit means a unit for processing at least one function or operation, which may be implemented in hardware or software or a combination of hardware and software.
- ... module means a unit for processing at least one function or operation, which may be implemented in hardware or software or a combination of hardware and software.
- Like reference numerals in the drawings denote like elements.
- FIG. 2 is an exemplary diagram of an OFDM symbol showing a guard interval without intersymbol interference according to an embodiment of the present invention.
- an arbitrary OFDM symbol that is, the (b) th symbol includes a guard interval and a valid symbol interval at the front end.
- the effective symbol interval includes a symbol data interval and a guard interval at a later stage.
- FIG. 3 is a block diagram illustrating a configuration of an OFDM receiver according to an embodiment of the present invention.
- FIG. 4 is a flowchart illustrating a method of suppressing interference and noise signals between subcarriers according to an embodiment of the present invention.
- 5 is a diagram illustrating correlation energy for estimating a symbol interference free interval according to an embodiment of the present invention, and
- FIG. 6 is an exemplary diagram for configuring FFT input data according to an embodiment of the present invention.
- the OFDM receiver 100 includes a symbol interference pre-section estimation unit 101, an SNR measurement unit 103, a weighting operation unit 105, an FFT sampling data control unit 107, and an FFT operation unit 109. ) And the equalization unit 111.
- the symbol interference free interval estimator 101 estimates the number of samples ( ⁇ ) of the symbol interference free interval and the symbol interference free interval using the received data (S101).
- the symbol interference pre-interval estimator 101 may use a method using a correlation of the guard interval of the OFDM symbol as shown in FIG. 5.
- the symbol interference free interval estimator 101 finds a symbol interference free interval by obtaining a correlation energy between a guard interval and an effective symbol interval.
- the transmission data of the guard interval is the same as the transmission data located in the last region of the valid symbol interval.
- the SNR measuring unit 103 measures the SNR of each of the symbol interference free period and the effective symbol period (S103).
- the SNR may be calculated by measuring the channel power, but the SNR measurement method may be measured using a method or apparatus well known in the telecommunications industry, and thus it is not specifically described, and description thereof will be omitted.
- the weighting operation unit 105 performs a weighting operation using the SNR of each section between the sample data P1 of the symbol interference free interval and the sample data P3 located at the rear of the effective symbol section corresponding thereto using the CP data characteristic. (S105). This weighting operation reduces not only the differential and noise components of the wireless channel, but also the gain of a large SNR section in a channel change environment.
- modeling the received symbol is as follows.
- N is the effective symbol interval length
- N G is the guard interval length
- ⁇ is the number of samples for the symbol interference pre-interval
- y (n) is the Analog-Digital Converter at the nth time. ) Indicates the output signal.
- Modeling a valid symbol interval for the received symbol is as follows.
- the output out [n] of the weighting unit 105 is as follows.
- N- ⁇ ⁇ n ⁇ N N- ⁇ ⁇ n ⁇ N.
- SNR GI means SNR of the symbol interference free period
- SNR EFF means SNR of the effective symbol period corresponding to the symbol interference free period
- This weighting algorithm can obtain MRC gain. However, if the difference between the SNR GI and the SNR EFF is very large, the hardware bit precision (HW bit precision) for expressing this may be increased, thereby increasing the hardware (HW) calculation amount. If the hardware bit precision is not sufficient, the magnitude of the weighting unit 105 output may be biased.
- the hardware calculation amount is reduced by setting the range with limited hardware bit precision for the ratio of the SNR GI and the SNR EFF .
- ⁇ means a range setting value of hardware bit precision.
- the FFT sampling data control unit 107 weights the sample data P5 that is weighted by the weighting operation unit 105 between the sample data P1 of the symbol interference free interval and the sample data P3 located at the rear of the effective symbol interval corresponding thereto. ) Is positioned at the rear of the valid symbol interval to configure FFT input data (S107).
- the FFT input data in which the weighted sampled data P5 is arranged is output to the FFT calculator 109.
- the FFT input data is as follows.
- FFT input data is represented as received data, SNR GI and SNR EFF as follows.
- the FFT calculator 109 performs an FFT operation on the FFT input data output from the FFT sampling data controller 120 (S109).
- the equalizer 111 performs channel equalization on the signal output from the FFT calculator 109 (S111).
- a weighting operation is performed on each sample data by using the SNR of the symbol interference pre-section and the effective symbol section in a large channel change, thereby obtaining a gain similar to MRC diversity.
- FIG. 7 is a block diagram showing the configuration of an OFDM receiver according to another embodiment of the present invention
- Figure 8 is a subcarrier between subcarriers according to another embodiment of the present invention
- 9 is a flowchart illustrating a method of suppressing interference and noise signals
- FIG. 9 is a flowchart illustrating a method of estimating SNR according to an embodiment of the present invention
- FIG. 10 is an example of configuring FFT input data according to another embodiment of the present invention. It is also.
- the OFDM receiver 100 ′ includes a symbol interference pre-section estimation unit 101, a weighting operation unit 105, an FFT sampling data control unit 107, an FFT operation unit 109, an equalizer 111, and an add-on. Government 113.
- the symbol interference free interval estimator 101 estimates a symbol interference free interval from OFDM symbols of received data (S201).
- Step S201 is the same as step S101 of FIG. 4.
- the estimator 113 estimates the SNR of the symbol interference free period and the SNR of the effective symbol period (S203).
- the weighting unit 105 performs a weighting operation between the sample data of the symbol interference free interval and the sample data of the effective symbol interval using the SNR estimated by the estimator 113 (S205).
- Step S205 is the same as step S105 of FIG. 4.
- the FFT sampling data control unit 107 configures the FFT input data by placing the weighted sample data P5 at the rear of the effective symbol interval (S207).
- Step S207 is the same as step S107 of FIG. 4.
- the weight calculation used in the weighting calculation is performed by the estimator 113, which will be described later.
- the FFT calculator 109 performs an FFT operation on the FFT input data in which the weighted sample data P5 is aligned (S209).
- Step S209 is the same as step S109 of FIG. 4.
- the equalizer 111 performs channel equalization on the result of the FFT operation (S211).
- Step S211 is the same as step S111 of FIG. 4.
- the estimator 113 estimates the SNR in the time domain. Since the noise over time does not change significantly, it may be assumed that the noise of the sample data of the symbol interference free period and the sample data of the corresponding effective symbol period are similar. Therefore, the power of the time domain data can correspond to the SNR.
- the estimator 113 may indirectly estimate the SNR GI and the SNR EFF as follows.
- a size component other than power may be used to simplify hardware (HW).
- the magnitude component means the sum of the absolute values.
- the sum of the squared components of the signal is performed.
- the squared operation is not performed when the magnitude component is used, a smaller hardware bit can be used compared to the power usage, and the process for the squared operation is not necessary.
- an average or a random scale reduction may be performed as the number of samples ( ⁇ ) of the symbol interference free interval.
- the estimator 113 estimates the SNR in the frequency domain.
- the carrier-to-noise ratio (hereinafter referred to as 'CNR') on the frequency of the sample data of the symbol interference free interval and the sample data of the effective symbol interval is not constant. do. Therefore, if the method of indirectly estimating the SNR on the frequency is applied, it is as shown in FIG.
- the estimator 113 performs FFTs corresponding to the guard interval (GI) length for each of the sample data of the symbol interference free interval and the sample data of the effective symbol interval (S301 and S303).
- GI guard interval
- a power spectrum 1 of the FFT result for the sample data of the symbol interference free period and a power spectrum 2 of the FFT result for the sample data of the effective symbol interval are obtained (S305 and S307).
- the estimator 113 accumulates each of the power spectrums for the subcarriers whose FFT results for the sample data of the symbol interference pre-period and for each of the power spectrums of the FFT results for the sample data of the effective symbol interval are above a predetermined threshold.
- An operation (addition) or an average operation is performed (S309).
- the cumulative or averaged power spectrum values are estimated as SNR GI and SNR EFF , respectively (S311).
- the estimator 113 estimates, by SNR GI , the value of cumulative calculation or averaging power spectrum 1 for each subcarrier whose power spectra 1 and 2 are equal to or greater than a predetermined threshold, and the cumulative calculation or averaging of power spectrum 2.
- the value is estimated as SNR EFF .
- a subcarrier whose power spectrum is below a predetermined threshold is a subcarrier having a low CNR and uses only a subcarrier having a high CNR because of its low reliability.
- the weighting unit 105 performs a weighting operation as shown in Equation 4 or 5 using the SNR GI and SNR EFF estimated by the estimator 113.
- the embodiments of the present invention described above are not only implemented through the apparatus and the method, but may be implemented through a program for realizing a function corresponding to the configuration of the embodiments of the present invention or a recording medium on which the program is recorded.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Pure & Applied Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Optimization (AREA)
- Computational Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Analysis (AREA)
- Databases & Information Systems (AREA)
- Algebra (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Quality & Reliability (AREA)
- Noise Elimination (AREA)
- Discrete Mathematics (AREA)
Abstract
Description
Claims (10)
- 직교 주파수 분할 다중(Orthogonal Frequency Division Multiplex, OFDM) 수신기가 보호 구간(Guard Interval, GI)에서 심볼간 간섭(Inter-symbol interference, ISI)이 없는 심볼간섭 프리구간을 이용하여 부반송파간의 간섭 및 잡음 신호를 억제하는 방법으로서,상기 심볼간섭 프리구간의 신호대잡음비(Signal to Noise Ratio, SNR)와, 상기 심볼간섭 프리구간에 대응되는 유효 심볼 구간의 신호대잡음비를 이용하여 상기 심볼간섭 프리구간의 샘플 데이터와 상기 유효 심볼 구간의 샘플 데이터 간에 가중 연산을 수행하는 단계, 그리고가중 연산된 샘플 데이터를 상기 유효 심볼 구간에 포함시켜 구성한 고속 푸리에 변환(Fast Fourier Transform, FFT) 입력 데이터에 대한 고속 푸리에 변환을 수행하는 단계를 포함하는 방법.
- 제1항에서,상기 가중 연산을 수행하는 단계 이전에,상기 심볼간섭 프리구간의 신호대잡음비 및 상기 유효 심볼 구간의 신호대잡음비를 각각 측정하거나 또는 추정하는 단계를 더 포함하고,상기 가중 연산을 수행하는 단계는,측정 또는 추정된 상기 심볼간섭 프리구간의 신호대잡음비 및 상기 유효 심볼 구간의 신호대잡음비를 이용하는 방법.
- 제2항에서,상기 측정하거나 또는 추정하는 단계는,시간 도메인에서 수신 데이터의 전력을 통해 상기 심볼간섭 프리구간의 신호대잡음비 및 상기 유효 심볼 구간의 신호대잡음비를 각각 추정하는 단계를 포함하는 방법.
- 제2항에서,상기 측정하거나 또는 추정하는 단계는,상기 심볼간섭 프리구간의 샘플 데이터와 상기 유효 심볼 구간의 샘플 데이터 각각에 대하여 보호 구간 길이에 해당하는 고속 푸리에 변환 연산을 수행하는 단계,상기 심볼간섭 프리구간의 샘플 데이터에 대한 고속 푸리에 변환 결과의 제1 파워 스펙트럼 및 상기 유효 심볼 구간의 샘플 데이터에 대한 고속 푸리에 변환 결과의 제2 파워 스펙트럼을 각각 측정하는 단계, 그리고상기 제1 파워 스펙트럼 및 상기 제2 파워 스펙트럼이 모두 기 정해진 임계치 이상인 하나 이상의 부반송파 별로 상기 제1 파워 스펙트럼을 누적 연산 또는 평균 연산한 값을 상기 심볼간섭 프리구간의 신호대잡음비로 추정하고, 상기 제2 파워 스펙트럼을 누적 연산 또는 평균 연산한 값을 상기 유효 심볼 구간의 신호대잡음비로 추정하는 단계를 포함하는 방법.
- 제1항에서,상기 가중 연산을 수행하는 단계는,상기 심볼간섭 프리구간의 신호대잡음비와 상기 유효 심볼 구간의 신호대잡음비를 이용한 하드웨어 비트 정밀도의 범위 설정값을 적용한 가중 연산을 수행하는 방법.
- 직교 주파수 분할 다중(Orthogonal Frequency Division Multiplex, OFDM) 심볼의 보호 구간(Guard Interval, GI)에서 심볼간 간섭(Inter-symbol interference, ISI)이 없는 심볼간섭 프리구간의 신호대잡음비(Signal to Noise Ratio, SNR)와, 상기 심볼간섭 프리구간에 대응되는 유효 심볼 구간의 신호대잡음비를 이용하여 상기 심볼간섭 프리구간의 샘플 데이터와 상기 유효 심볼 구간의 샘플 데이터 간에 가중 연산을 수행하는 가중 연산부,가중 연산된 샘플 데이터를 상기 유효 심볼 구간에 포함시켜 고속 푸리에 변환(Fast Fourier Transform, FFT) 입력 데이터를 생성하는 고속 푸리에 변환 샘플링 데이터 제어부, 그리고상기 고속 푸리에 변환 입력 데이터에 대한 고속 푸리에 변환 연산을 수행하는 고속 푸리에 변환 연산부를 포함하는 직교 주파수 분할 다중 수신기.
- 제6항에 있어서,상기 가중 연산부는,상기 심볼간섭 프리구간을 모델링한 신호에 상기 심볼간섭 프리구간의 신호대잡음비를 가중치 계수로 적용한 제1 연산 값과, 상기 유효 심볼 구간을 모델링한 신호에 상기 유효 심볼 구간의 신호대잡음비를 가중치 계수로 적용한 제2 연산 값 및 상기 심볼간섭 프리구간의 신호대잡음비와 상기 유효 심볼 구간의 신호대잡음비를 합산한 값을 이용한 가중 연산을 수행하는 직교 주파수 분할 다중 수신기.
- 제6항에 있어서,상기 가중 연산부는,상기 심볼간섭 프리구간의 신호대잡음비와 상기 유효 심볼 구간의 신호대잡음비를 이용하여 하드웨어 비트 정밀도의 범위 설정값을 산출하고, 상기 범위 설정값을 상기 심볼간섭 프리구간을 모델링한 신호 및 상기 유효 심볼 구간을 모델링한 신호에 각각 가중치 계수로 적용하여 가중 연산을 수행하는 직교 주파수 분할 다중 수신기.
- 제6항에서,상기 심볼간섭 프리구간의 신호대잡음비와, 상기 심볼간섭 프리구간에 대응되는 유효 심볼 구간의 신호대잡음비를 측정하는 측정부 또는상기 심볼간섭 프리구간의 신호대잡음비와, 상기 심볼간섭 프리구간에 대응되는 유효 심볼 구간의 신호대잡음비를 시간 도메인 또는 주파수 도메인에서 추정하는 추정부를 더 포함하는 직교 주파수 분할 다중 수신기.
- 제9항에서,상기 추정부는,상기 심볼간섭 프리구간의 샘플 데이터에 대한 고속 푸리에 변환 결과의 제1 파워 스펙트럼 및 상기 유효 심볼 구간의 샘플 데이터에 대한 고속 푸리에 변환 결과의 제2 파워 스펙트럼이 모두 기 정해진 임계치 이상인 하나 이상의 부반송파 별로 상기 제1 파워 스펙트럼을 누적 연산 또는 평균 연산한 값을 상기 심볼간섭 프리구간의 신호대잡음비로 추정하고, 상기 제2 파워 스펙트럼을 누적 연산 또는 평균 연산한 값을 상기 유효 심볼 구간의 신호대잡음비로 추정하는 직교 주파수 분할 다중 수신기.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/081,968 US10348433B2 (en) | 2016-03-03 | 2017-02-17 | Method for suppressing inter-subcarrier interference and noise signal, and orthogonal frequency division multiplexing receiver for performing same |
JP2018566177A JP6664521B2 (ja) | 2016-03-03 | 2017-02-17 | 副搬送波間の干渉および雑音信号を抑制する方法およびこれを行う直交周波数分割多重受信機 |
EP17760236.4A EP3425834B1 (en) | 2016-03-03 | 2017-02-17 | Method for suppressing inter-subcarrier interference and noise signal, and orthogonal frequency division multiplexing receiver for performing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160025906A KR101794987B1 (ko) | 2016-03-03 | 2016-03-03 | 부반송파간의 간섭 및 잡음 신호를 억제하는 방법 및 이를 수행하는 직교 주파수 분할 다중 수신기 |
KR10-2016-0025906 | 2016-03-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017150832A1 true WO2017150832A1 (ko) | 2017-09-08 |
Family
ID=59744149
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/001776 WO2017150832A1 (ko) | 2016-03-03 | 2017-02-17 | 부반송파간의 간섭 및 잡음 신호를 억제하는 방법 및 이를 수행하는 직교 주파수 분할 다중 수신기 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10348433B2 (ko) |
EP (1) | EP3425834B1 (ko) |
JP (1) | JP6664521B2 (ko) |
KR (1) | KR101794987B1 (ko) |
WO (1) | WO2017150832A1 (ko) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113098815B (zh) * | 2021-03-05 | 2022-04-01 | 华中科技大学 | 一种水声ofdm载波间干扰的频域抑制方法与系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090059781A1 (en) * | 2007-08-31 | 2009-03-05 | Ming-Chien Tseng | Method and apparatus for ici cancellation in communication systems |
KR100992327B1 (ko) * | 2009-02-18 | 2010-11-05 | 성균관대학교산학협력단 | Ofdm 시스템에서의 주파수 동기 장치 |
KR20120133336A (ko) * | 2011-05-31 | 2012-12-10 | 주식회사 텔레칩스 | 직교주파수분할다중접속 시스템을 위한 안테나 다이버시티 획득 장치 및 방법 |
KR101239655B1 (ko) * | 2012-01-13 | 2013-03-05 | (주)에프씨아이 | 오에프디엠 시스템에서의 에프에프티 윈도우 조절방법 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100234329B1 (ko) * | 1997-09-30 | 1999-12-15 | 윤종용 | Ofdm 시스템 수신기의 fft 윈도우 위치 복원장치 및 그 방법_ |
US7769094B2 (en) * | 2006-11-10 | 2010-08-03 | Telefonaktiebolaget L M Ericsson (Publ) | Arrangement and method for reducing the impact of interfering signals in a communication system |
US8000417B1 (en) * | 2007-11-27 | 2011-08-16 | Samsung Electronics Co., Ltd. | Methods and OFDM receivers providing inter-carrier interference cancellation with guard interval reuse scheme |
KR20100039467A (ko) | 2008-10-08 | 2010-04-16 | 주식회사 텔레칩스 | Ofdm 수신기에서 부반송파간의 간섭 신호 억제 장치 및방법 |
-
2016
- 2016-03-03 KR KR1020160025906A patent/KR101794987B1/ko active IP Right Grant
-
2017
- 2017-02-17 EP EP17760236.4A patent/EP3425834B1/en active Active
- 2017-02-17 WO PCT/KR2017/001776 patent/WO2017150832A1/ko active Application Filing
- 2017-02-17 US US16/081,968 patent/US10348433B2/en active Active
- 2017-02-17 JP JP2018566177A patent/JP6664521B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090059781A1 (en) * | 2007-08-31 | 2009-03-05 | Ming-Chien Tseng | Method and apparatus for ici cancellation in communication systems |
KR100992327B1 (ko) * | 2009-02-18 | 2010-11-05 | 성균관대학교산학협력단 | Ofdm 시스템에서의 주파수 동기 장치 |
KR20120133336A (ko) * | 2011-05-31 | 2012-12-10 | 주식회사 텔레칩스 | 직교주파수분할다중접속 시스템을 위한 안테나 다이버시티 획득 장치 및 방법 |
KR101239655B1 (ko) * | 2012-01-13 | 2013-03-05 | (주)에프씨아이 | 오에프디엠 시스템에서의 에프에프티 윈도우 조절방법 |
Non-Patent Citations (2)
Title |
---|
MA, CHUN-YING ET AL.: "A Simple ICI Suppression Method Utilizing Cyclic Prefix for OFDM Systems in the Presence of Phase Noise", IEEE TRANSACTIONS ON COMMUNICATIONS, vol. 61, no. 11, 26 September 2013 (2013-09-26), pages 4539 - 4550, XP011532066 * |
See also references of EP3425834A4 * |
Also Published As
Publication number | Publication date |
---|---|
US10348433B2 (en) | 2019-07-09 |
EP3425834B1 (en) | 2022-08-03 |
EP3425834A1 (en) | 2019-01-09 |
EP3425834A4 (en) | 2019-09-25 |
JP2019511180A (ja) | 2019-04-18 |
KR20170103304A (ko) | 2017-09-13 |
US20190123844A1 (en) | 2019-04-25 |
JP6664521B2 (ja) | 2020-03-13 |
KR101794987B1 (ko) | 2017-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015093711A1 (ko) | Lte 프레임 동기 검출 방법 및 장치, 이를 적용한 중계 장치 | |
WO2012077859A1 (ko) | 무선 통신 시스템에서 프리앰블 전송 방법 및 장치 | |
US8345734B2 (en) | Time error estimation for data symbols | |
WO2010131818A1 (ko) | 다중입출력 안테나 직교주파수 분할 다중화 시스템의 셀간 간섭 완화를 위한 공간 공분산 행렬 추정 기법을 이용한 셀간 간섭 완화 방법 | |
KR101223783B1 (ko) | 무선 통신 시스템에서 심벌 타이밍 오프셋 추정 장치 및방법 | |
WO2013022270A2 (ko) | Ofdm 통신 시스템의 수신 장치 및 그의 위상 잡음 완화 방법 | |
WO2010002186A2 (en) | Apparatus and method for channel estimation in a mobile communication system | |
CN101228759A (zh) | 宏分集ofdm传输的数据和导频符号的加扰 | |
KR100896654B1 (ko) | Ofdm 시스템의 다중경로 페이딩 채널의 지연 확산 추정장치 및 방법 | |
WO2018088620A1 (ko) | Ofdm 시스템에서 단일 탭 등화기를 이용한 부반송파의 왜곡 보상 방법 및 그를 위한 장치 | |
EP3295634A1 (en) | Apparatus and mehtod for synchronization signal detection | |
WO2017131457A1 (en) | Method and apparatus for estimating and correcting phase error in wireless communication system | |
KR100542115B1 (ko) | Ofdma기반 셀룰러 시스템 기지국의 위상 왜곡 보상장치 및 방법 | |
WO2012173321A1 (en) | Apparatus and method for receiving signal in wireless communication system | |
CN101917359A (zh) | 用于在无线通信系统中接收信号的接收设备和方法 | |
WO2019066201A1 (en) | APPARATUS AND METHOD FOR PREAMBLE SYMBOL GENERATION AND DETECTION | |
WO2010071311A2 (ko) | 하향링크 다중 안테나 시스템에 있어서, 파일럿 심볼 전송 방법 | |
EP2612457A1 (en) | Apparatus and method for i/q offset cancellation in sc-fdma system | |
WO2017150832A1 (ko) | 부반송파간의 간섭 및 잡음 신호를 억제하는 방법 및 이를 수행하는 직교 주파수 분할 다중 수신기 | |
Morelli et al. | Estimation of residual carrier and sampling frequency offsets in OFDM-SDMA uplink transmissions | |
KR20010048447A (ko) | Ofdm 시스템에서 cyclic suffix를사용한 보호구간의 구현 방법 및 장치 | |
WO2016163748A1 (ko) | 송신 신호를 검출하기 위한 장치 및 방법 | |
KR20040110342A (ko) | Ofdm 시스템에서 반복 신호를 이용한 신호대잡음비측정장치 및 방법 | |
WO2009134008A1 (en) | Device and method for transmiting and receiving synchronization channel | |
KR101811953B1 (ko) | Ofdm 기반의 전력선 통신 시스템을 이용한 샘플링 주파수 오차 추정 방법 및 그 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018566177 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017760236 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017760236 Country of ref document: EP Effective date: 20181004 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17760236 Country of ref document: EP Kind code of ref document: A1 |