WO2017150508A1 - コンベヤベルトの摩耗検出装置 - Google Patents

コンベヤベルトの摩耗検出装置 Download PDF

Info

Publication number
WO2017150508A1
WO2017150508A1 PCT/JP2017/007710 JP2017007710W WO2017150508A1 WO 2017150508 A1 WO2017150508 A1 WO 2017150508A1 JP 2017007710 W JP2017007710 W JP 2017007710W WO 2017150508 A1 WO2017150508 A1 WO 2017150508A1
Authority
WO
WIPO (PCT)
Prior art keywords
conveyor belt
thickness
value
amount
processing unit
Prior art date
Application number
PCT/JP2017/007710
Other languages
English (en)
French (fr)
Inventor
坂口 年規
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to AU2017227277A priority Critical patent/AU2017227277B2/en
Priority to CN201780013713.3A priority patent/CN108698765B/zh
Priority to EP17759974.3A priority patent/EP3424849B1/en
Priority to JP2018503319A priority patent/JP6807920B2/ja
Priority to US15/998,656 priority patent/US10829310B2/en
Publication of WO2017150508A1 publication Critical patent/WO2017150508A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G43/00Control devices, e.g. for safety, warning or fault-correcting
    • B65G43/02Control devices, e.g. for safety, warning or fault-correcting detecting dangerous physical condition of load carriers, e.g. for interrupting the drive in the event of overheating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/20Administration of product repair or maintenance
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • G08B21/182Level alarms, e.g. alarms responsive to variables exceeding a threshold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2203/00Indexing code relating to control or detection of the articles or the load carriers during conveying
    • B65G2203/02Control or detection
    • B65G2203/0266Control or detection relating to the load carrier(s)
    • B65G2203/0275Damage on the load carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2203/00Indexing code relating to control or detection of the articles or the load carriers during conveying
    • B65G2203/04Detection means
    • B65G2203/042Sensors
    • B65G2203/043Magnetic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2207/00Indexing codes relating to constructional details, configuration and additional features of a handling device, e.g. Conveyors
    • B65G2207/48Wear protection or indication features

Definitions

  • the present invention relates to a conveyor belt wear detection device.
  • This application claims priority based on Japanese Patent Application No. 2016-38342 for which it applied to Japan on February 29, 2016, and uses the content here.
  • Patent Document 1 proposes a monitoring system for detecting cutting of the core canvas of the conveyor belt at an early stage and preventing cutting of the conveyor belt.
  • FIG. 5 shows how the wear of the conveyor belt progresses with the travel distance of the conveyor belt.
  • the horizontal axis indicates the travel distance of the conveyor belt
  • the vertical axis indicates the thickness of the conveyor belt.
  • the slope of the graph indicates the amount of wear of the conveyor belt per unit travel distance (hereinafter referred to as wear speed).
  • the control limit thickness shown in FIG. 5 indicates the thickness at which the conveyor belt should be replaced. In other words, when wear progresses and the thickness of the conveyor belt decreases to the control limit thickness, it is necessary to replace the conveyor belt.
  • the slope from X2 to X3 is larger than the slope from the time of travel distance X1 (hereinafter simply referred to as X1 etc.) to X2. This means that the wear speed suddenly increased after the travel distance reached X2.
  • the wear speed of the conveyor belt rapidly increases in this way, the thickness of the conveyor belt suddenly falls below the control limit thickness, and the belt conveyor may suddenly stop.
  • the present invention has been made in consideration of such circumstances, and an object of the present invention is to provide a conveyor belt wear detecting device capable of sensing when the wear speed of the conveyor belt increases rapidly.
  • a magnet member embedded in an endless belt-like conveyor belt and a magnet that is disposed to face the outer peripheral surface of the conveyor belt detects a magnetic field from the magnet member, and generates an output signal.
  • a wear detecting device for a conveyor belt comprising: a sensor; and a calculation unit that calculates a thickness of the conveyor belt based on an output signal generated from the magnetic sensor, and a storage unit that stores the thickness calculated by the calculation unit And a processing unit that calculates a reduction amount of the thickness per predetermined traveling load of the conveyor belt from the thickness stored in the storage unit and determines whether or not this value exceeds a preset threshold value; Have.
  • FIG. 2 is a bottom view of the periphery of the magnetic sensor in FIG. 1. It is a figure explaining the calculation method of the reduction
  • FIG. 1 is a side view of a conveyor belt wear detection apparatus 1 according to this embodiment.
  • FIG. 2 is a bottom view focusing on the periphery of the magnetic sensors 13a to 13j in the conveyor belt wear detecting apparatus 1 shown in FIG.
  • the conveyor belt 11 will be described.
  • the conveyor belt 11 is used for transporting a transported object (not shown) and is formed in an endless belt shape.
  • the width and circumferential length of the conveyor belt 11 are determined by the type of transported object and the transport distance. For example, when transporting minerals mined at a mining site, a conveyor belt 11 having a width of about 600 mm to 3000 mm and a circumference of about 100 m to 10000 m is used.
  • the conveyor belt 11 is supported by the driving pulley 111 and the driven pulley 112 with a predetermined tension, and travels by the driving force transmitted from the driving pulley 111.
  • the rotation axes of the drive pulley 111 and the driven pulley 112 are parallel to each other and extend along the width direction W of the conveyor belt 11.
  • the conveyor belt 11 includes an endless belt-like cover rubber 11a on which a conveyed product is loaded.
  • NR natural rubber
  • IR isoprene rubber
  • BR butadiene rubber
  • SBR styrene-butadiene copolymer rubber
  • the conveyor belt wear detection device 1 is disposed opposite to the outer peripheral surface of the conveyor belt 11 with rubber magnets 12a and 12b, which are magnet members embedded in the conveyor belt 11, and from the rubber magnets 12a and 12b.
  • Magnetic sensors 13a to 13j that detect the magnetic field and generate output signals
  • a calculation unit 141 that calculates the thickness of the conveyor belt 11 based on the output signals generated from the magnetic sensors 13a to 13j.
  • the rubber magnets 12 a and 12 b extend along the width direction W of the conveyor belt 11.
  • the rubber magnets 12 a and 12 b are disposed over the entire length in the width direction W of the conveyor belt 11.
  • the rubber magnets 12 a and 12 b are formed in a rectangular shape, the short sides extend along the circumferential direction R, and the long sides extend along the width direction W.
  • the rubber magnets 12a and 12b are embedded in the conveyor belt 11 with a predetermined interval ⁇ in the circumferential direction R.
  • the rubber magnets 12 a and 12 b have flexibility that can be deformed following the conveyor belt 11.
  • the rubber magnets 12a and 12b are formed so as to be magnetized in the thickness direction of the conveyor belt 11 by, for example, a bond magnetic material formed by dispersing magnetic powder of a permanent magnet material in a compounded rubber.
  • a bond magnetic material formed by dispersing magnetic powder of a permanent magnet material in a compounded rubber.
  • the magnetic powder for example, a rare earth magnet such as neodymium iron boron or samarium iron nitrogen, an alnico magnet, and ferrite can be employed.
  • the rubber magnets 12 a and 12 b are exposed on the stacking surface of the conveyor belt 11. For this reason, when the conveyor belt 11 is worn, the rubber magnets 12a and 12b are also worn.
  • the magnetic sensors 13a to 13j detect the magnetic field emitted from the rubber magnets 12a and 12b.
  • the magnetic sensors 13a to 13j detect magnetic fields emitted from the rubber magnets 12a and 12b, thereby collecting data for calculating the thickness of the conveyor belt 11 at the location where the rubber magnets 12a and 12b are embedded. it can.
  • a plurality of magnetic sensors 13 a to 13 j are arranged at intervals ⁇ in the width direction W of the conveyor belt 11. This interval ⁇ may be arbitrarily determined according to the width of the conveyor belt 11, the number of magnetic sensors to be arranged, the type of the conveyed product, and the like.
  • Each of the magnetic sensors 13a to 13j faces the outer peripheral surface of the conveyor belt 11.
  • the magnetic sensors 13a to 13j for example, a gauss meter, a loop coil, or the like can be employed.
  • the magnetic sensors 13a to 13j detect a magnetic field
  • the magnetic sensors 13a to 13j emit output signals corresponding to the detected magnetic fields.
  • Each of the magnetic sensors 13a to 13j is electrically connected to the control panel 14, and transmits an output signal corresponding to the detected magnetic field to the control panel 14.
  • the control panel 14 includes a calculation unit 141, a storage unit 142, and a processing unit 143.
  • Each of the magnetic sensors 13a to 13j is electrically connected to the calculation unit 141.
  • the computing unit 141 is electrically connected to the storage unit 142.
  • the storage unit 142 is electrically connected to the processing unit 143.
  • the rubber magnets 12a and 12b embedded in the conveyor belt 11 sequentially pass through the vicinity of the magnetic sensors 13a to 13j.
  • the magnetic sensors 13a to 13j detect magnetic fields generated by the rubber magnets 12a and 12b that pass therethrough.
  • the magnetic sensors 13a to 13j issue output signals corresponding to the magnetic fields generated by the rubber magnets 12a and 12b to the calculation unit 141 of the control panel 14, respectively.
  • the calculation unit 141 is arranged in the circumferential direction R of the conveyor belt 11 in which the rubber magnets 12a and 12b are embedded and in the width direction W in which the magnetic sensors 13a to 13j are disposed.
  • the thickness at the location is calculated.
  • the thickness of each portion of the conveyor belt 11 calculated by the calculation unit 141 is stored in the storage unit 142. If the traveling speed of the conveyor belt 11 is constant, the rubber magnets 12a and 12b periodically pass in the vicinity of the magnetic sensors 13a to 13j. Accordingly, the thickness of each portion of the conveyor belt 11 in which the rubber magnets 12a and 12b are embedded is periodically stored in the storage unit 142.
  • FIG. 3 shows a change in thickness at any one of the thicknesses at the respective locations of the conveyor belt 11 stored in the storage unit 142 in this way.
  • the vertical axis represents the calculated thickness at an arbitrary position of the conveyor belt 11.
  • the horizontal axis indicates the travel distance of the conveyor belt 11.
  • the thickness of an arbitrary portion of the conveyor belt 11 shown in the graph of FIG. 3 is as follows.
  • the calculation unit 141 calculates by outputting to the calculation unit 141. Therefore, the thickness at an arbitrary location of the conveyor belt 11 has some variation. Due to this variation, the graph shown in FIG. 3 is not linear but has “swells”.
  • the processing unit 143 uses the conveyor belt 11 thickness data stored in the storage unit 142 to reduce the conveyor belt 11 thickness reduction amount ⁇ (hereinafter simply referred to as ⁇ ) per predetermined traveling distance ⁇ X (predetermined traveling load amount). Is calculated).
  • the travel load amount indicates a travel distance, a travel time, a transport amount of a conveyed product, the number of revolutions of the conveyor belt, or the rotation speed of a drive motor of the conveyor belt.
  • ⁇ X predetermined traveling distance
  • ⁇ X predetermined traveling load amount
  • the value of ⁇ X may be the distance traveled by the conveyor belt during one day.
  • the processing unit 143 in this embodiment reads from the storage unit 142 the thickness T1 of the conveyor belt 11 when the travel distance in FIG. 3 is X1 and the thickness T2 of the conveyor belt 11 when the traveling distance is X2. And the process part 143 calculates the value of (gamma) by following formula (1).
  • (T1 ⁇ T2) ⁇ ⁇ X (1)
  • the processing unit 143 determines whether or not the value of ⁇ exceeds a preset threshold value.
  • the threshold value may be set to a value slightly higher than the value of ⁇ after grasping in advance the value of ⁇ during normal running. By setting the threshold in this way, it is possible to detect early that the value of ⁇ has increased. Further, the threshold value may be arbitrarily set by the user according to the usage status of the belt conveyor. That is, the threshold value may be changed as appropriate. By doing in this way, the conveyor belt 11 can be used appropriately according to a user's convenience.
  • the processing unit 143 performs the above calculation and determination of the value of ⁇ for each travel distance equal to or less than ⁇ X.
  • the processing unit 143 turns on the LED lamp of the control panel 14 to notify that the value of ⁇ has exceeded the threshold value.
  • the processing unit 143 may transmit information to the external computer (external server) that manages the control panel 14 by a warning mail or the like when the value of ⁇ exceeds a threshold value.
  • the processing unit 143 calculates a value of ⁇ (a reduction amount of the thickness of the conveyor belt 11 per predetermined traveling load amount) based on output signals from the plurality of magnetic sensors 13a to 13j, When one of these values exceeds a preset threshold, this value and from other magnetic sensors 13a-13j adjacent to the magnetic sensor 13a-13j that emitted the calculated output signal. The value of ⁇ calculated based on the output signal is compared. For example, when ⁇ (hereinafter referred to as ⁇ f ) calculated based on the output signal from the magnetic sensor 13 f exceeds a threshold, the processing unit 143 is adjacent to the value of ⁇ f and the magnetic sensor 13 f.
  • a reduction amount of the thickness of the conveyor belt 11 per predetermined traveling load amount
  • ⁇ e The value of ⁇ (hereinafter referred to as ⁇ e ) calculated based on the output signal from the magnetic sensor 13e and the value of ⁇ (hereinafter referred to as ⁇ g ) calculated based on the output signal from the magnetic sensor 13g; , Compare.
  • the processing unit 143 calculates the value of ⁇ based on the output signals from the plurality of magnetic sensors 13a to 13j, and among these values, the specific value calculated based on the output signal from the specific magnetic sensor And the average value of the remaining values. For example, the processing unit 143 calculates the value of ⁇ (hereinafter referred to as ⁇ a ) calculated based on the output signal from the magnetic sensor 13a and the ⁇ calculated based on the output signals from the remaining magnetic sensors 13b to 13j. The average value of the values (hereinafter referred to as ⁇ b to ⁇ j ) is compared.
  • the processing unit 143 calculates the value of ⁇ for each of the plurality of rubber magnets 12a and 12b based on output signals from the plurality of magnetic sensors 13a to 13j.
  • the storage unit 142 stores the thickness of the conveyor belt 11 calculated by the calculation unit 141
  • the processing unit 143 stores the storage unit 142.
  • the value of ⁇ is calculated from the measured thickness, and it is determined whether or not the value of ⁇ exceeds a preset threshold value, and this is detected when the wear speed of the conveyor belt 11 increases rapidly.
  • the processing unit 143 calculates a decrease amount ⁇ of the thickness of the conveyor belt 11 per predetermined traveling load amount, and this value is set to a preset threshold value. In order to determine whether or not it has been exceeded, this can be detected when the wear speed of the conveyor belt 11 increases rapidly.
  • the processing unit 143 when the value of for example gamma f as described above exceeds the threshold value, since compares the value of gamma f, the value of gamma e values and gamma g, a rapidly wear speed Whether only the portion of the conveyor belt 11 that faces the magnetic sensor 13f or the portion that faces the other magnetic sensors 13e and 13g adjacent to the magnetic sensor 13f has increased in the same manner. Can be determined. That is, a plurality of magnetic sensors 13a to 13j are arranged at intervals in the width direction of the conveyor belt 11, and the processing unit 143 is configured to perform a predetermined travel load amount based on output signals from the plurality of magnetic sensors 13a to 13j.
  • a reduction amount ⁇ of the thickness of the perimeter conveyor belt 11 is calculated.
  • this value and the output signal from another magnetic sensor adjacent to the magnetic sensor that issued the calculated output signal The thickness reduction amount per predetermined traveling load amount calculated in the above may be compared.
  • the processing unit 143 can wear this wear speed and wear speed of other places adjacent to this place. And can be compared. For this reason, it is easy to determine whether the rapid increase in the wear speed is caused only at a certain point or the entire width of the conveyor belt 11.
  • the case where the conveyor belt 11 travels while being in contact with a structure such as a frame can be considered as a cause of the rapid increase in the wear speed of the conveyor belt 11.
  • the conveyor belt is in contact with a structure such as a frame.
  • 11 may be useful for identifying the cause of abnormal wear, such as a portion facing the magnetic sensor 13f. That is, in the conveyor belt 11, only one place in the width direction of the conveyor belt 11 may be abnormally worn. For example, when the conveyor belt 11 continues traveling while being in contact with a structure such as a frame, only the contacted portion is abnormally worn. In such a case, since the rapid increase in wear speed occurs only at a certain location, the determination as described above may contribute to the identification of the cause of abnormal wear.
  • the processing unit 143 the value of for example gamma a as described above, gamma b and the average value of the values of ⁇ gamma j, so comparing the average value of the values of gamma a value and ⁇ b ⁇ ⁇ j Can be determined that there is a bias in the wear speed in the width direction W of the conveyor belt 11. That is, a plurality of magnetic sensors 13a to 13j are arranged at intervals in the width direction of the conveyor belt 11, and the processing unit 143 is configured to perform a predetermined travel load amount based on output signals from the plurality of magnetic sensors 13a to 13j. A reduction amount ⁇ of the thickness of the perimeter conveyor belt 11 is calculated.
  • a specific value calculated based on an output signal from a specific magnetic sensor may be compared with an average value of the remaining plurality of values.
  • the processing unit 143 compares the wear speed of the entire width direction of the conveyor belt 11 with the wear speed of a specific portion, so whether or not there is an uneven wear speed in the width direction of the conveyor belt 11. Can be determined.
  • the wear speed is biased in the width direction W of the conveyor belt 11, for example, that the conveyed product loaded on the conveyor belt 11 is in a biased position. That is, in the conveyor belt 11, the conveyed product may be loaded with a deviation in the width direction of the conveyor belt 11.
  • the wear speed of a part of the conveyor belt becomes faster than other parts. Then, since the thickness of a part reaches the control limit thickness shown in FIG. 5, it is necessary to replace the conveyor belt 11.
  • the conveyed product is loaded unevenly on the conveyor belt 11 at a location facing the magnetic sensor 13a. Therefore, when it is determined whether or not there is a bias in wear speed in the width direction of the conveyor belt 11 as described above, it may be possible to detect that there is a bias in the position of the conveyed product in the width direction W of the conveyor belt 11. .
  • a wear speed bias in the width direction W of the conveyor belt 11 may be detected.
  • a plurality of rubber magnets 12a and 12b are embedded in the conveyor belt 11 at intervals in the circumferential direction R, and the processing unit 143 has ⁇ (predetermined traveling load) for each of the plurality of rubber magnets 12a and 12b.
  • the value of the reduction amount of the thickness of the conveyor belt 11 per unit amount) is calculated. Therefore, the wear speed at a plurality of locations in the circumferential direction R of the conveyor belt 11 can be detected.
  • the processing unit 143 can detect the wear speed at a plurality of locations in the circumferential direction of the conveyor belt 11.
  • the wear of the conveyor belt 11 may continue in the circumferential direction. In such a case, it is possible to determine which part in the circumferential direction is heavily worn by detecting the wear speed at a plurality of places in the circumferential direction.
  • Example 2 Next, although another embodiment according to the present invention will be described, the basic configuration is the same as that of the first embodiment. For this reason, the same code
  • FIG. 4 is a graph for explaining a method in which the processing unit 143 according to the present embodiment calculates the value of ⁇ based on the thickness data of the conveyor belt 11 stored in the storage unit 142. Similar to the first embodiment, “swell” is generated in the graph shown in FIG. In FIG. 4, the processing unit 143 calculates an average value (hereinafter referred to as T12) of the thickness of the conveyor belt 11 in the section of the travel distances X1 to X2. Similarly, the average value (hereinafter referred to as T23) of the thickness of the conveyor belt 11 in the section of the travel distances X2 to X3 is calculated. And the value of (gamma) is calculated
  • X12 is a midpoint in the section of travel distances X1 to X2
  • X23 is a midpoint in the section of travel distances X2 to X3.
  • (T23 ⁇ T12) ⁇ (X23 ⁇ X12) (2)
  • the processing unit 143 calculates the value of ⁇ for each travel distance equal to or less than the difference between the maximum travel distance X3 and the minimum travel distance X1 in the two travel distance sections. As a result, similar to the first embodiment, it is possible to prevent a traveling section where ⁇ is not calculated.
  • the processing unit 143 in the present embodiment calculates the value of ⁇ based on the average value of the thickness of the conveyor belt 11 in the two sections as described above, the calculation error of ⁇ due to “swell” is reduced. Can do.
  • the processing unit 143 calculates the amount of decrease in the thickness of the conveyor belt 11 per predetermined traveling distance of the conveyor belt 11, but is not limited thereto, and the thickness per predetermined traveling time is calculated.
  • Reduction amount, thickness reduction amount per predetermined transport amount of the conveyed product, thickness reduction amount per predetermined number of revolutions of the conveyor belt 11, or thickness per predetermined number of rotations of the drive motor of the conveyor belt 11 The amount of decrease in length may be calculated.
  • the horizontal axis X in FIG. 3 may be regarded as the traveling time.
  • the amount of decrease ⁇ in the thickness of the conveyor belt 11 per predetermined traveling time ⁇ X1 can be calculated by using the equation (1).
  • the processing unit 143 may determine whether or not the threshold value is exceeded. Further, the number of magnetic sensors to be arranged may be reduced to one. Alternatively, a configuration may be employed in which a plurality of magnetic sensors are arranged and the value of ⁇ is calculated based on data detected by any one magnetic sensor according to the usage situation.
  • the magnetic sensors 13a to 13j are arranged at the same position in the circumferential direction R.
  • a plurality of magnetic sensors may be arranged at intervals in the circumferential direction R of the conveyor belt.
  • only one rubber magnet may be embedded in the conveyor belt 11.
  • the processing unit 143 calculates the value of ⁇ based on the output signals from the plurality of magnetic sensors 13a to 13j, and one of these values exceeds a preset threshold value. In this case, this value is compared with the value of ⁇ calculated based on the output signals from the other magnetic sensors 13a to 13j adjacent to the magnetic sensors 13a to 13j that issued the output signal for which the value is calculated.
  • a processing unit that does not perform such comparison may be employed.
  • the processing unit 143 calculates the value of ⁇ based on the output signals from the plurality of magnetic sensors 13a to 13j, and among these values, the output signal from a specific magnetic sensor is calculated.
  • the configuration for comparing the specific value calculated based on the average value of the plurality of remaining values is shown, the present invention is not limited to this, and a processing unit that does not compare the specific value with the average value is adopted. May be.
  • the processing unit 143 has been configured to calculate the value of ⁇ based on the output signals from the magnetic sensors 13a to 13j for each of the plurality of rubber magnets 12a and 12b.
  • the processing unit may calculate a value of ⁇ based on output signals from the magnetic sensors 13a to 13j for any one of the plurality of rubber magnets 12a and 12b.
  • the processing unit 143 employs a processing unit that calculates the value of ⁇ based on an output signal from any one of the plurality of magnetic sensors 13a to 13j for any one of the plurality of rubber magnets 12a and 12b. May be.
  • the value of ⁇ (a reduction amount of the thickness of the conveyor belt 11 per predetermined traveling load amount) during normal traveling is grasped in advance and set to a value slightly higher than this ⁇ value.
  • past data may be referred to. That is, an obvious abnormal value of the amount of decrease ⁇ in the thickness of the conveyor belt 11 per predetermined traveling load recorded in the past may be set as a threshold value. By doing in this way, since the abnormal value which actually appeared in the past is used as a threshold value, the threshold value according to the environment where the conveyor belt 11 is actually used can be set.
  • the abrasion detection apparatus of the conveyor belt which can detect this can be provided.

Landscapes

  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Immunology (AREA)
  • Emergency Management (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Conveyors (AREA)

Abstract

コンベヤベルトの摩耗検出装置(1)は、無端帯状のコンベヤベルト(11)内に埋設された磁石部材(12a、12b)と、コンベヤベルト(11)の外周面に対向して配設され、磁石部材(12a、12b)からの磁界を検出して出力信号を発する磁気センサ(13j)と、磁気センサ(13j)から発せられた出力信号に基づいてコンベヤベルト(11)の厚さを算出する演算部(141)と、を備え、演算部(141)が算出した厚さを記憶する記憶部(142)と、記憶部(142)が記憶している厚さから、コンベヤベルト(11)の所定の走行負荷量あたりの厚さの減少量を算出し、この値が予め設定した閾値を超えたか否かを判定する処理部(143)と、を備える。

Description

コンベヤベルトの摩耗検出装置
 本発明は、コンベヤベルトの摩耗検出装置に関する。
本願は、2016年2月29日に日本国に出願された特願2016-38342号に基づき優先権を主張し、その内容をここに援用する。
 従来、石炭や鉱石などの採掘現場における採掘された鉱物の運搬、また工場における工業製品の搬送などにベルトコンベヤが用いられている。また、ベルトコンベヤに用いられるコンベヤベルトの異常を検知する方法が従来から提案されている。
 例えば特許文献1では、コンベヤベルトの芯体帆布の切断等を早期に発見し、コンベヤベルトの切断を防止するためのモニタリングシステムを提案している。
日本国特開2014-58394号公報
 コンベヤベルトは搬送物等との接触により摩耗する。摩耗はコンベヤベルトの走行距離が大きくなるに従って進行する。摩耗が進行すると、コンベヤベルトの厚さが減少していく。そしてある程度摩耗が進行した後に、摩耗が急速に進行する場合がある。この現象について、図5を用いて説明する。
 図5はコンベヤベルトの走行距離とともにコンベヤベルトの摩耗が進行する様子を示している。図5において、横軸はコンベヤベルトの走行距離を示し、縦軸はコンベヤベルトの厚さを示す。そして、グラフの傾きは単位走行距離あたりのコンベヤベルトの摩耗量(以降、これを摩耗スピードと記す)を示している。なお、コンベヤベルトが一定速度で走行する場合には、図5の横軸は時間に置き換えられる。
 図5に示す管理限界厚さは、コンベヤベルトを交換すべき厚さを示す。つまり、摩耗が進行して管理限界厚さまでコンベヤベルトの厚さが減少した場合にはコンベヤベルトを交換する必要がある。
 図5において、走行距離X1の時点(以下、単にX1等と記す)からX2までの傾きと比較して、X2からX3までの傾きが大きい。これは、走行距離がX2に到達してから、摩耗スピードが急激に増大したことを意味する。
 このようにコンベヤベルトの摩耗スピードが急激に増大した場合、コンベヤベルトの厚さが急に管理限界厚さを下回り、ベルトコンベヤが急停止する可能性がある。
 本発明はこのような事情を考慮してなされ、コンベヤベルトの摩耗スピードが急激に増大した場合に、これを感知可能なコンベヤベルトの摩耗検出装置を提供することを目的とする。
 本発明の第1の態様は、無端帯状のコンベヤベルト内に埋設された磁石部材と、コンベヤベルトの外周面に対向して配設され、磁石部材からの磁界を検出して出力信号を発する磁気センサと、磁気センサから発せられた出力信号に基づいてコンベヤベルトの厚さを算出する演算部と、を備えるコンベヤベルトの摩耗検出装置であって、演算部が算出した厚さを記憶する記憶部と、記憶部が記憶している厚さから、コンベヤベルトの所定の走行負荷量あたりの厚さの減少量を算出し、この値が予め設定した閾値を超えたか否かを判定する処理部と、を有する。
 本発明によれば、コンベヤベルトの摩耗スピードが急激に増大した場合に、これを感知可能なコンベヤベルトの摩耗検出装置を提供することができる。
本発明のコンベヤベルトの摩耗検出装置の構成例を示す図である。 図1の磁気センサ周辺の下面図である。 実施例1におけるコンベヤベルトの厚さの減少量の算出方法を説明する図である。 実施例2におけるコンベヤベルトの厚さの減少量の算出方法を説明する図である。 本発明の課題を説明する図である。
(実施例1)
 以下、実施例1に係るコンベヤベルトの摩耗検出装置1の構成を、図1および図2を参照しながら説明する。図1は本実施例に係るコンベヤベルトの摩耗検出装置1の側面図である。図2は、図1に示すコンベヤベルトの摩耗検出装置1のうち、磁気センサ13a~13jの周辺に着目した下面図である。
 まず、コンベヤベルト11について説明する。図1および図2に示すように、コンベヤベルト11は図示しない搬送物を輸送するのに用いられ、無端帯状に形成されている。コンベヤベルト11の幅や周長は搬送物の種類や輸送する距離によって決定される。例えば採掘現場において採掘された鉱物を輸送する場合には、幅が600mm~3000mm程度で周長が100m~10000m程度のコンベヤベルト11が使用される。
 コンベヤベルト11は、駆動プーリ111および従動プーリ112によって所定の張力をもって支持されるとともに、駆動プーリ111から伝達される駆動力によって走行する。これらの駆動プーリ111および従動プーリ112の回転軸は互いに平行であるとともに、コンベヤベルト11の幅方向Wに沿って延びている。コンベヤベルト11は、搬送物が積載される無端帯状のカバーゴム11aを備える。カバーゴム11aの材質としては、例えば天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレン―ブタジエン共重合ゴム(SBR)などを単独であるいは混合して用いてもよい。
 そして、コンベヤベルトの摩耗検出装置1は、コンベヤベルト11内に埋設された磁石部材であるゴム磁石12a、12bと、コンベヤベルト11の外周面に対向して配設され、ゴム磁石12a、12bからの磁界を検出して出力信号を発する磁気センサ13a~13jと、磁気センサ13a~13jから発せられた出力信号に基づいてコンベヤベルト11の厚さを算出する演算部141と、を有する。
 ゴム磁石12a、12bは、コンベヤベルト11の幅方向Wに沿って延びている。図2に示す例では、ゴム磁石12a、12bは、コンベヤベルト11における幅方向Wの全長にわたって配設されている。ゴム磁石12a、12bは、長方形に形成され、短辺が周方向Rに沿って延び、かつ長辺が幅方向Wに沿って延びている。また、ゴム磁石12a、12bはコンベヤベルト11内に周方向Rに所定の間隔αをあけて埋設されている。この間隔αは、コンベヤベルト11の周長や搬送物の種類に応じて任意に決定すればよい。例えば、周長が3000mのコンベヤベルト11によって採掘された鉱物を運搬する場合にはα=300mとして、10箇所にゴム磁石を埋設してもよい。
 ゴム磁石12a、12bは、コンベヤベルト11に追従して変形可能な程度の柔軟性を備えている。ゴム磁石12a、12bは、例えば永久磁石材料の磁性粉が配合ゴム中に分散されて形成されるボンド磁性体等により、コンベヤベルト11の厚さ方向に磁化されるように形成される。前記磁性粉としては、例えばネオジウム鉄ボロンまたはサマリウム鉄窒素等の希土類磁石、アルニコ磁石、およびフェライト等を採用することができる。
 またゴム磁石12a、12bは、コンベヤベルト11の積載面に露出している。このため、コンベヤベルト11が摩耗するとゴム磁石12a、12bも摩耗する。ゴム磁石12a、12bが摩耗すると、ゴム磁石12a、12bから発する磁界が摩耗量に相関して変化する。したがって、磁気センサ13a~13jが、ゴム磁石12a、12bから発する磁界を検知することにより、ゴム磁石12a、12bの厚さを検知することができる。そして、ゴム磁石12a、12bの摩耗はコンベヤベルト11の摩耗に伴って発生する。つまり、磁気センサ13a~13jがゴム磁石12a、12bから発する磁界を検知することにより、ゴム磁石12a、12bが埋設された箇所におけるコンベヤベルト11の厚さを算出するためのデータを採取することができる。
 コンベヤベルト11の下方には、磁気センサ13a~13jがコンベヤベルト11の幅方向Wに間隔βをあけて複数配設されている。この間隔βはコンベヤベルト11の幅や配設する各磁気センサの数、搬送物の種類等に応じて任意に決定すればよい。磁気センサ13a~13jはそれぞれ、コンベヤベルト11の外周面に対向している。
 磁気センサ13a~13jとしては、例えばガウスメータやループコイル等を採用することができる。磁気センサ13a~13jは磁界を検知すると、これに応じた出力信号を発する。磁気センサ13a~13jはそれぞれ、制御盤14と電気的に接続されており、検知した磁界に応じた出力信号を制御盤14に伝達する。
 制御盤14は演算部141と、記憶部142と、処理部143と、を備える。磁気センサ13a~13jはそれぞれ演算部141に電気的に接続されている。演算部141は記憶部142に電気的に接続されている。記憶部142は処理部143に電気的に接続されている。
 次に、以上のように構成されたコンベヤベルトの摩耗検出装置1の作用について説明する。
 駆動プーリ111からの駆動力によってコンベヤベルト11が走行すると、コンベヤベルト11に埋設されたゴム磁石12a、12bは順次、磁気センサ13a~13jの近傍を通過する。磁気センサ13a~13jは、通過するゴム磁石12a、12bのそれぞれが発する磁界を検知する。磁気センサ13a~13jは、ゴム磁石12a、12bが発した磁界に応じた出力信号をそれぞれ制御盤14の演算部141に発する。演算部141は、磁気センサ13a~13jからの出力信号に基づいて、ゴム磁石12a、12bが埋設されたコンベヤベルト11の周方向Rおよび磁気センサ13a~13jが配設された幅方向Wのそれぞれの箇所における厚さを算出する。演算部141により算出されたコンベヤベルト11のそれぞれの箇所の厚さは、記憶部142に記憶される。コンベヤベルト11の走行速度が一定であれば、定期的にゴム磁石12a、12bが磁気センサ13a~13jの近傍を通過する。従って、ゴム磁石12a、12bが埋設されたコンベヤベルト11のそれぞれの箇所における厚さが、定期的に記憶部142に記憶される。図3は、このようにして記憶部142に記憶されたコンベヤベルト11のそれぞれの箇所における厚さのうち、任意の1箇所の厚さの変化を示す。
 図3に示すグラフ中、縦軸は算出されたコンベヤベルト11の任意の箇所における厚さである。また、横軸はコンベヤベルト11の走行距離を示す。尚、コンベヤベルト11の走行速度が一定の場合は、図3の横軸は時間に置き換えることができる。
 図3のグラフに示すコンベヤベルト11の任意の箇所における厚さは、ゴム磁石12a、12bが発する磁界を磁気センサ13a~13jが検知し、このときに採取されたデータを磁気センサ13a~13jが演算部141に出力することで、演算部141が算出する。そのため、コンベヤベルト11の任意の箇所における厚さは、ある程度のばらつきを持つ。このばらつきにより、図3に示すグラフは直線状にならず「うねり」をもっている。
 処理部143は、記憶部142に記憶されたコンベヤベルト11の厚みのデータから、所定の走行距離ΔX(所定の走行負荷量)あたりのコンベヤベルト11の厚さの減少量γ(以降、単にγと記す)を算出する。なお、走行負荷量とは、走行距離、走行時間、搬送物の輸送量、コンベヤベルトの周回数、またはコンベヤベルトの駆動モータの回転数を示す。このとき、ΔXの値が小さすぎると先述した「うねり」のために、γを正確に算出できない場合がある。従って、ΔXの値は「うねり」の影響が小さくなるように、ある程度の大きさを持った値にするのが望ましい。例えば、ΔXの値を、1日の間にコンベヤベルトが走行する距離としてもよい。
 本実施例における処理部143は、例えば図3における走行距離がX1の時点におけるコンベヤベルト11の厚さT1と、X2の時点におけるコンベヤベルト11の厚さT2と、を記憶部142から読み取る。そして、処理部143は下記式(1)によってγの値を算出する。
γ=(T1-T2)÷ΔX …(1)
 処理部143はこのγの値が、予め設定した閾値を超えたか否かを判定する。閾値は、通常走行時におけるγの値を予め把握したうえで、このγの値を少し上回る程度に設定してもよい。このように閾値を設定すると、γの値が増大したことを早期に検出することができる。また、閾値は、ベルトコンベヤの使用状況に合わせて、使用者が任意に設定できるようにしてもよい。即ち、閾値を適宜、変更できるようにしても良い。このようにすることで、使用者の都合に合わせてコンベヤベルト11を適切に運用することができる。
 処理部143は、以上のγの値の算出と判定とを、ΔX以下の走行距離ごとに行う。これにより、γの値が算出されない走行区間が生ずるのを防ぐことができる。
 処理部143は、判定の結果、γの値が閾値より大きい場合には、例えば制御盤14のLEDランプを点灯してγの値が閾値を超えたことを知らせる。あるいは、処理部143は、γの値が閾値を超えた場合に、制御盤14を管理する外部コンピュータ(外部サーバー)に警告メール等により情報を送信してもよい。
このようにすることで、遠隔地にあるコンベヤベルト11の摩耗状態を瞬時に察知することができる。
 さらに本実施形態では、処理部143は、複数の磁気センサ13a~13jからの出力信号に基づいてγ(所定の走行負荷量あたりのコンベヤベルト11の厚さの減少量)の値を算出し、これらの値のうちの1つが予め設定した閾値を超えた場合に、この値と、この値が算出された出力信号を発した磁気センサ13a~13jに隣接する他の磁気センサ13a~13jからの出力信号に基づいて算出されたγの値と、を比較する。
 例えば、処理部143は、磁気センサ13fからの出力信号に基づいて算出されたγ(以降、γfと記す)が閾値を超えた場合に、このγfの値と、磁気センサ13fに隣接する磁気センサ13eからの出力信号に基づいて算出されたγ(以降、γeと記す)の値および磁気センサ13gからの出力信号に基づいて算出されたγ(以降、γgと記す)の値と、を比較する。
 また、処理部143は、複数の磁気センサ13a~13jからの出力信号に基づいてγの値を算出し、これらの値のうち、特定の磁気センサからの出力信号に基づいて算出された特定値と、残りの複数の値の平均値と、を比較する。
 例えば処理部143は、磁気センサ13aからの出力信号に基づいて算出されたγ(以降、γaと記す)の値と、残りの磁気センサ13b~13jからの出力信号に基づいて算出されたγ(以降、γb~γjと記す)の値の平均値と、を比較する。
 また、処理部143は、複数のゴム磁石12a、12bのそれぞれについて、複数の磁気センサ13a~13jからの出力信号に基づいてγの値を算出する。
 以上説明したように、本実施例によるコンベヤベルトの摩耗検出装置1によれば、記憶部142は演算部141が算出したコンベヤベルト11の厚さを記憶し、処理部143は記憶部142が記憶した厚さからγの値を算出し、かつこのγの値が予め設定した閾値を超えたか否かを判定するので、コンベヤベルト11の摩耗スピードが急激に増大した場合に、これを感知することができる。
即ち、本実施例によるコンベヤベルトの摩耗検出装置1によれば、処理部143がコンベヤベルト11の所定の走行負荷量あたりの厚さの減少量γを算出し、この値が予め設定した閾値を超えたか否か判定するため、コンベヤベルト11の摩耗スピードが急激に増大した場合にこれを感知することができる。
 また、処理部143が、前述したように例えばγfの値が閾値を超えたときに、γfの値と、γeの値やγgの値と、を比較するので、摩耗スピードが急激に増大したのがコンベヤベルト11のうち磁気センサ13fと対向する箇所のみであるのか、磁気センサ13fに隣接する他の磁気センサ13e、13gと対向する箇所についても同様に摩耗スピードが増大したのかを判定することができる。
即ち、磁気センサ13a~13jは、コンベヤベルト11の幅方向に間隔をあけて複数配設され、処理部143は、複数の磁気センサ13a~13jからの出力信号に基づいて、所定の走行負荷量あたりのコンベヤベルト11の厚さの減少量γを算出する。算出したこれらの値のうちの1つが予め設定した閾値を超えた場合に、この値と、この値が算出された出力信号を発した磁気センサに隣接する他の磁気センサからの出力信号に基づいて算出された所定の走行負荷量あたりの厚さの減少量と、を比較してもよい。
このようにすると、処理部143は、コンベヤベルト11の幅方向における1箇所においてコンベヤベルト11の摩耗スピードが急激に増大した場合に、この摩耗スピードと、この箇所に隣接する他の箇所の摩耗スピードと、を比較することができる。そのため、摩耗スピードの急激な増大が、ある一定箇所のみに生じたものなのか、あるいはコンベヤベルト11の幅方向全体に生じたものなのかを判別しやすくなる。
 なお、コンベヤベルト11の摩耗スピードが急激に増大する原因として、コンベヤベルト11がフレーム等の構造物と接触したまま走行する場合等が考えられる。このような場合に、γfの値が急激に大きくなったにも関わらずγeの値やγgの値にさほど変化が無ければ、フレーム等の構造物と接触しているのがコンベヤベルト11のうち磁気センサ13fと対向する箇所である等、異常摩耗の原因の特定に資する場合がある。
即ち、コンベヤベルト11においては、コンベヤベルト11の幅方向の1箇所のみが異常に摩耗する場合がある。例えばコンベヤベルト11がフレーム等の構造物に接触したまま走行を続けた場合、接触した部位のみが異常に摩耗する。このような場合には、摩耗スピードの急激な増大が一定箇所のみに生じるため、上記のように判別することで異常摩耗の原因の特定に資する場合がある。
 また、処理部143が、前述したように例えばγaの値と、γb~γjの値の平均値と、を比較するので、γaの値とγb~γjの値の平均値とに差がある場合には、コンベヤベルト11の幅方向Wにおいて摩耗スピードに偏りがあることが判定できる。
即ち、磁気センサ13a~13jは、コンベヤベルト11の幅方向に間隔をあけて複数配設され、処理部143は、複数の磁気センサ13a~13jからの出力信号に基づいて、所定の走行負荷量あたりのコンベヤベルト11の厚さの減少量γを算出する。算出したこれらの値のうち、特定の磁気センサからの出力信号に基づいて算出された特定値と、残りの複数の値の平均値と、を比較してもよい。
 このようにすると、処理部143は、コンベヤベルト11の幅方向全体の摩耗スピードと特定の箇所の摩耗スピードとを比較するため、コンベヤベルト11の幅方向において摩耗スピードの偏りがあるか否かを判別することができる。
 なお、コンベヤベルト11の幅方向Wにおいて摩耗スピードに偏りが生じる原因として、例えばコンベヤベルト11に積載される搬送物が偏った位置にあることが考えられる。即ち、コンベヤベルト11においては、搬送物がコンベヤベルト11の幅方向において偏りをもって積載される場合がある。例えば、幅方向における一部分のみに集中して搬送物が積載される場合に、コンベヤベルトの一部分が他の箇所と比較して摩耗スピードが速くなる。すると、一部分の厚さが図5に示す管理限界厚さに到達するため、コンベヤベルト11を交換する必要がある。
 上記の例では、コンベヤベルト11のうち、磁気センサ13aと対向する箇所に搬送物が偏って積載されていることが推測できる。
 したがって、上記のようにコンベヤベルト11の幅方向において摩耗スピードの偏りがあるか否かを判定すると、コンベヤベルト11の幅方向Wにおいて搬送物の位置の偏りがあること等を検出できる場合がある。同様に、コンベヤベルト11が蛇行することによってコンベヤベルト11の幅方向Wにおける摩耗スピードの偏りが生じた際にも、これを検出できる場合がある。
 また、ゴム磁石12a、12b(磁石部材)が、コンベヤベルト11内に周方向Rに間隔をあけて複数埋設され、処理部143が、複数のゴム磁石12a、12bそれぞれについてγ(所定の走行負荷量あたりのコンベヤベルト11の厚さの減少量)の値を算出する。そのため、コンベヤベルト11の周方向Rの複数の箇所における摩耗スピードを検出することができる。
このようにすると、処理部143はコンベヤベルト11の周方向の複数個所における摩耗スピードを検出することができる。
 なお、コンベヤベルト11の摩耗は周方向に連続する場合がある。このような場合に、周方向の複数個所における摩耗スピードを検出することで、周方向のどの部分の摩耗が激しいのかを判別することが可能となる。
(実施例2)
 次に、本発明に係る他の実施例について説明するが、実施例1と基本的な構成は同様である。このため、同様の構成には同一の符号を付してその説明は省略し、異なる点についてのみ説明する。
 本実施例では、γ(所定の走行負荷量あたりのコンベヤベルト11の厚さの減少量)の値の算出方法のみが異なる。
 図4は、本実施例における処理部143が、記憶部142に記憶されたコンベヤベルト11の厚みのデータに基づいて、γの値を算出する方法を説明するグラフである。実施例1と同様に、図4に示すグラフでも「うねり」が生じている。
 図4において、処理部143は、走行距離X1~X2の区間におけるコンベヤベルト11の厚さの平均値(以降、T12と記す)を算出する。同様にして、走行距離X2~X3の区間におけるコンベヤベルト11の厚さの平均値(以降、T23と記す)を算出する。
そして、下記式(2)によりγの値を求める。ここで、X12は走行距離X1~X2の区間における中点であり、X23は走行距離X2~X3の区間における中点である。
γ=(T23-T12)÷(X23-X12) …(2)
処理部143は、このγの値の算出を、2つの走行距離の区間における最大の走行距離X3と最小の走行距離X1との差以下の走行距離ごとに行う。これにより、実施例1と同様に、γが算出されない走行区間が生ずるのを防ぐことができる。
 また、本実施例における処理部143は、このように2つの区間におけるコンベヤベルト11の厚さの平均値に基づいてγの値を算出するため、「うねり」によるγの算出誤差を低減することができる。
 なお、本発明の技術的範囲は上述の実施例に限定されず、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、上記した実施例においては、処理部143はコンベヤベルト11の所定の走行距離あたりのコンベヤベルト11の厚さの減少量を算出したが、これに限られず、所定の走行時間あたりの厚さの減少量、搬送物の所定の輸送量あたりの厚さの減少量、コンベヤベルト11の所定の周回数あたりの厚さの減少量、またはコンベヤベルト11の駆動モータの所定の回転数あたりの厚さの減少量を算出してもよい。
例えば、所定の走行時間毎にコンベヤベルト11の厚さの減少量を算出する場合は、図3の横軸Xが走行時間であると見なせばよい。この場合も、式(1)を用いることで、所定の走行時間ΔX1(所定の走行負荷量)あたりのコンベヤベルト11の厚さの減少量γを算出することができる。このように、コンベヤベルト11の厚さの減少量γを、所定の走行時間ΔX1、次の所定の走行時間ΔX2、またその次の所定の走行時間ΔX3と繰り返し算出することで、減少量γが閾値を超えるか否かを処理部143が判断しても良い。
 また、配設する磁気センサの数を減らして1個にしてもよい。あるいは、磁気センサを複数配設した上で、使用状況に応じて任意の一つの磁気センサが検出したデータに基づいてγの値を算出する構成を採用してもよい。
 また、上記した実施例においては磁気センサ13a~13jを周方向Rの同じ位置に配設したが、コンベヤベルトの周方向Rに間隔をあけて磁気センサを複数配設してもよい。
 さらに、コンベヤベルト11内に埋設するゴム磁石を1個のみにしてもよい。
 また、上記した実施例においては、処理部143として、複数の磁気センサ13a~13jからの出力信号に基づいてγの値を算出し、これらの値のうちの1つが予め設定した閾値を超えた場合に、この値と、この値が算出された出力信号を発した磁気センサ13a~13jに隣接する他の磁気センサ13a~13jからの出力信号に基づいて算出されたγの値と、を比較する構成を示したが、このような比較を行わない処理部を採用してもよい。
 また、上記した実施例においては、処理部143として、複数の磁気センサ13a~13jからの出力信号に基づいてγの値を算出し、これらの値のうち、特定の磁気センサからの出力信号に基づいて算出された特定値と、残りの複数の値の平均値と、を比較する構成を示したが、これに限られず、上記特定値と、上記平均値と、を比較しない処理部を採用してもよい。
 また、上記した実施例においては、処理部143として、複数のゴム磁石12a、12bのそれぞれについて、磁気センサ13a~13jからの出力信号に基づいてγの値を算出する構成を示したが、これに限られず、複数のゴム磁石12a、12bのいずれか1つについて、磁気センサ13a~13jからの出力信号に基づいてγの値を算出する処理部を採用してもよい。
 あるいは、処理部143は、複数のゴム磁石12a、12bのいずれか1つについて、複数の磁気センサ13a~13jのいずれか1つからの出力信号に基づいてγの値を算出する処理部を採用してもよい。
なお、閾値の設定方法として、通常走行時におけるγ(所定の走行負荷量あたりのコンベヤベルト11の厚さの減少量)の値を予め把握したうえで、このγの値を少し上回る程度に設定するという上述の実施例に記載した方法に加え、過去のデータを参照しても良い。即ち、過去に記録した、所定の走行負荷量あたりのコンベヤベルト11の厚さの減少量γの明らかな異常値を閾値として設定しても良い。このようにすることで、過去に実際に出現した異常値を閾値として使用するため、コンベヤベルト11が実際に使用される環境に即した閾値を設定することができる。
 その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した実施例や変形例を適宜組み合わせてもよい。
本発明によれば、コンベヤベルトの摩耗スピードが急激に増大した場合に、これを感知可能なコンベヤベルトの摩耗検出装置を提供することができる。
 1  コンベヤベルトの摩耗検出装置
 11 コンベヤベルト
 11a カバーゴム
 12a、12b ゴム磁石
 13a~13j 磁気センサ
 14 制御盤
 141 演算部
 142 記憶部
 143 処理部

Claims (9)

  1.  無端帯状のコンベヤベルト内に埋設された磁石部材と、
     前記コンベヤベルトの外周面に対向して配設され、前記磁石部材からの磁界を検出して出力信号を発する磁気センサと、
     前記磁気センサから発せられた出力信号に基づいて前記コンベヤベルトの厚さを算出する演算部と、を備えるコンベヤベルトの摩耗検出装置であって、
     前記演算部が算出した前記厚さを記憶する記憶部と、
     前記記憶部が記憶している前記厚さから、前記コンベヤベルトの所定の走行負荷量あたりの前記厚さの減少量を算出し、この値が予め設定した閾値を超えたか否かを判定する処理部と、を有することを特徴とするコンベヤベルトの摩耗検出装置。
  2.  前記磁気センサは、前記コンベヤベルトの幅方向に間隔をあけて複数配設され、
     前記処理部は、複数の前記磁気センサからの出力信号に基づいて、前記所定の走行負荷量あたりの前記厚さの減少量を算出し、これらの値のうちの1つが予め設定した閾値を超えた場合に、この値と、この値が算出された出力信号を発した前記磁気センサに隣接する他の前記磁気センサからの出力信号に基づいて算出された、前記所定の走行負荷量あたりの前記厚さの減少量と、を比較することを特徴とする請求項1に記載のコンベヤベルトの摩耗検出装置。
  3.  前記磁気センサは、前記コンベヤベルトの幅方向に間隔をあけて複数配設され、
     前記処理部は、複数の前記磁気センサからの出力信号に基づいて、前記所定の走行負荷量あたりの前記厚さの減少量を算出し、これらの値のうち、特定の前記磁気センサからの出力信号に基づいて算出された特定値と、残りの複数の値の平均値と、を比較することを特徴とする請求項1に記載のコンベヤベルトの摩耗検出装置。
  4.  前記磁石部材は、前記コンベヤベルト内に周方向に間隔をあけて複数埋設され、
     前記処理部は、複数の前記磁石部材それぞれについて、前記所定の走行負荷量あたりの前記厚さの減少量を算出することを特徴とする請求項1乃至3のいずれか1項に記載のコンベヤベルトの摩耗検出装置。
  5.  前記閾値は、変更可能である請求項1乃至3のいずれか1項に記載のコンベヤベルトの摩耗検出装置。
  6.  前記コンベヤベルトの所定の走行負荷量あたりの前記厚さの減少量が前記閾値を超えた場合に、前記処理部が外部サーバーに情報を送信する請求項1乃至3のいずれか1項に記載のコンベヤベルトの摩耗検出装置。
  7.  前記閾値は、変更可能である請求項4に記載のコンベヤベルトの摩耗検出装置。
  8.  前記コンベヤベルトの所定の走行負荷量あたりの前記厚さの減少量が前記閾値を超えた場合に、前記処理部が外部サーバーに情報を送信する請求項4に記載のコンベヤベルトの摩耗検出装置。
  9.  前記コンベヤベルトの所定の走行負荷量あたりの前記厚さの減少量が前記閾値を超えた場合に、前記処理部が外部サーバーに情報を送信する請求項5に記載のコンベヤベルトの摩耗検出装置。
PCT/JP2017/007710 2016-02-29 2017-02-28 コンベヤベルトの摩耗検出装置 WO2017150508A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2017227277A AU2017227277B2 (en) 2016-02-29 2017-02-28 Wear detection device for conveyor belt
CN201780013713.3A CN108698765B (zh) 2016-02-29 2017-02-28 输送带的磨损检测装置
EP17759974.3A EP3424849B1 (en) 2016-02-29 2017-02-28 Wear detection device for conveyor belt
JP2018503319A JP6807920B2 (ja) 2016-02-29 2017-02-28 コンベヤベルトの摩耗検出装置
US15/998,656 US10829310B2 (en) 2016-02-29 2017-02-28 Wear detection device for conveyor belt

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-038342 2016-02-29
JP2016038342 2016-02-29

Publications (1)

Publication Number Publication Date
WO2017150508A1 true WO2017150508A1 (ja) 2017-09-08

Family

ID=59743921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007710 WO2017150508A1 (ja) 2016-02-29 2017-02-28 コンベヤベルトの摩耗検出装置

Country Status (7)

Country Link
US (1) US10829310B2 (ja)
EP (1) EP3424849B1 (ja)
JP (1) JP6807920B2 (ja)
CN (1) CN108698765B (ja)
AU (1) AU2017227277B2 (ja)
CL (1) CL2018002447A1 (ja)
WO (1) WO2017150508A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220009721A1 (en) * 2018-11-16 2022-01-13 Contitech Transportbandsysteme Gmbh Sensor for fabric- or textile-based conveyor belt scanning and monitoring

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6946704B2 (ja) * 2017-04-14 2021-10-06 横浜ゴム株式会社 コンベヤベルトの管理システム
AU2018384079A1 (en) * 2017-12-11 2020-07-23 Baseline Asset Technologies Pty Ltd Conveyor wear measurement
WO2020109372A1 (en) * 2018-11-28 2020-06-04 Contitech Transportbandsysteme Gmbh Metal or rubber resonators for use in monitoring conveyor belt wear and longitudinal rip sensor systems
JP2020093874A (ja) * 2018-12-11 2020-06-18 株式会社ブリヂストン コンベヤベルト用の位置情報処理装置、コンベヤベルト装置、コンベヤベルト用の位置情報処理方法、コンベヤベルト、及び、位置情報処理装置
DE102020118189B4 (de) * 2020-07-09 2022-06-09 Rolf Gnauert Gurtriss-Überwachungssystem
US12017862B2 (en) 2022-03-30 2024-06-25 Contitech Usa, Inc. Magnetic based conveyor belt subsegment monitoring systems and methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6712199B1 (en) * 1999-06-11 2004-03-30 Phoenix Ag Device for controlling and monitoring a conveyor belt, notably a tubular conveyor belt
JP2005138979A (ja) * 2003-11-07 2005-06-02 Bridgestone Corp コンベアベルトの摩耗度合測定方法およびコンベアベルト摩耗度合測定装置。
JP2009166947A (ja) * 2008-01-16 2009-07-30 Bridgestone Corp ベルトモニタリングシステム
WO2013179903A1 (ja) * 2012-05-30 2013-12-05 株式会社ブリヂストン ベルト個体管理システム及びその方法
JP2014058394A (ja) 2012-09-19 2014-04-03 Yokohama Rubber Co Ltd:The コンベヤベルトおよびコンベヤベルトのモニタリングシステム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19831854C2 (de) * 1998-07-16 2002-12-19 Contitech Transportbandsysteme Fördergurt mit Trägergewebe, in den Leiterschleifen eingebettet sind
US7347317B2 (en) 2003-07-09 2008-03-25 Bridgestone Corporation Method and device for measuring conveyor belt elongation, method and device for measuring conveyor belt wear extent, method and device for measuring conveyor belt temperature, rubber magnet sheet, and method of producing rubber magnet sheet
US7275637B2 (en) * 2005-02-24 2007-10-02 Barry Charles Brown Multi-channel conveyor belt condition monitoring
JP4932222B2 (ja) * 2005-04-13 2012-05-16 株式会社ブリヂストン コンベヤベルトの摩耗検出装置
AU2006288265B2 (en) 2005-09-07 2010-09-23 Bridgestone Corporation Wear detection device for conveyor belt
JP5693464B2 (ja) 2009-11-11 2015-04-01 株式会社ブリヂストン コンベアベルト摩耗検出装置
DE102011051923A1 (de) * 2011-07-19 2013-01-24 Contitech Transportbandsysteme Gmbh Einrichtung zur Überwachung einer Förderanlage zur Erfassung von Schäden eines Fördergurtes mittels sequentieller Leiterschleifen und eines sequentiellen Schlitzschutzsystems
PE20171509A1 (es) * 2014-11-05 2017-10-20 Bridgestone Corp Cinta transportadora y dispositivo de cinta transportadora
JP6432291B2 (ja) * 2014-11-10 2018-12-05 横浜ゴム株式会社 コンベヤベルトの摩耗モニタリングシステム
JP6065079B2 (ja) * 2015-04-23 2017-01-25 横浜ゴム株式会社 コンベヤベルトの仕様決定方法
DE102016111421A1 (de) * 2016-06-22 2017-12-28 Khs Gmbh Transportvorrichtung und Verfahren zur Steuerung und Überwachung einer Transportvorrichtung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6712199B1 (en) * 1999-06-11 2004-03-30 Phoenix Ag Device for controlling and monitoring a conveyor belt, notably a tubular conveyor belt
JP2005138979A (ja) * 2003-11-07 2005-06-02 Bridgestone Corp コンベアベルトの摩耗度合測定方法およびコンベアベルト摩耗度合測定装置。
JP2009166947A (ja) * 2008-01-16 2009-07-30 Bridgestone Corp ベルトモニタリングシステム
WO2013179903A1 (ja) * 2012-05-30 2013-12-05 株式会社ブリヂストン ベルト個体管理システム及びその方法
JP2014058394A (ja) 2012-09-19 2014-04-03 Yokohama Rubber Co Ltd:The コンベヤベルトおよびコンベヤベルトのモニタリングシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3424849A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220009721A1 (en) * 2018-11-16 2022-01-13 Contitech Transportbandsysteme Gmbh Sensor for fabric- or textile-based conveyor belt scanning and monitoring

Also Published As

Publication number Publication date
EP3424849A4 (en) 2019-03-06
CN108698765B (zh) 2020-05-12
JP6807920B2 (ja) 2021-01-06
US20200262657A1 (en) 2020-08-20
AU2017227277A1 (en) 2018-08-30
US10829310B2 (en) 2020-11-10
CN108698765A (zh) 2018-10-23
AU2017227277B2 (en) 2019-07-25
EP3424849A1 (en) 2019-01-09
JPWO2017150508A1 (ja) 2018-12-20
EP3424849B1 (en) 2021-06-09
CL2018002447A1 (es) 2018-11-09

Similar Documents

Publication Publication Date Title
WO2017150508A1 (ja) コンベヤベルトの摩耗検出装置
US9284129B2 (en) Conveyor belt apparatus
JP6242014B2 (ja) ベルト個体管理システム及びその方法
JP6212487B2 (ja) コンベア装置及びコンベア装置による重量検知方法
EP3471530B1 (en) System and method for belt tracking sensor for agricultural
US20070102264A1 (en) Method for self-synchronizing a conveyor belt sensor system
US9671251B2 (en) Reluctance chain sensor and method of measuring the chain elongation
CN104053616A (zh) 用于监测传送带的状况的系统和方法
US9359146B2 (en) Monitoring system for transport chains for conveyors of articles
GB2406844A (en) Chain elongation monitoring apparatus and method
JP6701042B2 (ja) コンベヤベルトの伸び測定装置およびコンベヤベルトの伸び測定方法
CN110498330A (zh) 人员输送机中的链缺陷监测
JP2016060556A (ja) ベルトコンベアの異常検知方法
JP2010052927A (ja) コンベヤベルトのモニタリングシステム
JP2011042468A (ja) コンベアベルト及びベルトコンベア装置
CN105283395B (zh) 用于采矿业中的传送带的接头监视系统
JP2005138979A (ja) コンベアベルトの摩耗度合測定方法およびコンベアベルト摩耗度合測定装置。
KR101529200B1 (ko) 컨베이어 벨트 감시 장치
JPH0648533A (ja) ベルト蛇行検出方法
Banerjee et al. Conveyor belt health monitoring
US12017863B2 (en) Conveyor belt monitoring for temperature, rip detection and speed
JP7486156B2 (ja) 回転部材の偏心検出装置及び回転部材の監視システム
CN117302897A (zh) 一种带式输送机智能监测防控方法及系统
JP2013116794A (ja) コンベヤベルト装置
TH78536B (th) แผ่นจานรหัส

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018503319

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 001572-2018

Country of ref document: PE

ENP Entry into the national phase

Ref document number: 2017227277

Country of ref document: AU

Date of ref document: 20170228

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017759974

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017759974

Country of ref document: EP

Effective date: 20181001

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759974

Country of ref document: EP

Kind code of ref document: A1