WO2017149863A1 - 走査型内視鏡 - Google Patents

走査型内視鏡 Download PDF

Info

Publication number
WO2017149863A1
WO2017149863A1 PCT/JP2016/084764 JP2016084764W WO2017149863A1 WO 2017149863 A1 WO2017149863 A1 WO 2017149863A1 JP 2016084764 W JP2016084764 W JP 2016084764W WO 2017149863 A1 WO2017149863 A1 WO 2017149863A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
region
ferrule
scanning endoscope
optical
Prior art date
Application number
PCT/JP2016/084764
Other languages
English (en)
French (fr)
Inventor
和彦 田邉
靖明 葛西
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2018502528A priority Critical patent/JPWO2017149863A1/ja
Publication of WO2017149863A1 publication Critical patent/WO2017149863A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides

Definitions

  • the present invention relates to a scanning endoscope that scans irradiation light applied to a subject.
  • Endoscopes using imaging elements are widely used in the medical field and the like, but in recent years, various scanning endoscopes that scan light guided by an optical fiber have been proposed.
  • the insertion portion can be reduced in diameter, and there is an advantage that it can be observed and inspected by being inserted into a thin tubular portion.
  • Japanese Patent No. 5452781 as a conventional example holds an optical fiber that guides light for illuminating a living body, an insertion hole through which the optical fiber is inserted, and the optical fiber is (Optical fiber) holding member that extends from the front end surface with a predetermined length and that communicates with the insertion hole from the front end surface, and the front end of the holding member.
  • a driving unit that scans a free end of the optical fiber extending from the surface, and a plane that is applied or filled in the concave portion to fix the optical fiber and the holding member, and coincides with the distal end surface of the holding member.
  • a scanning endoscope having a formed adhesive portion is disclosed.
  • the above-described conventional example discloses a holding portion (holder) that holds a ferrule as an optical fiber holding member that holds an optical fiber together with the optical fiber, but the portion (region) near the base end of the holding portion has a small diameter.
  • the content for preventing the optical fiber from being easily broken is not disclosed.
  • the present invention has been made in view of the above-described points, and an object of the present invention is to provide a scanning endoscope that can reduce the breakage of the optical fiber in the vicinity of the proximal end of the holding portion that holds the optical fiber.
  • a scanning endoscope is provided so as to guide incident light incident on an incident side and irradiate a subject with irradiation light from the irradiation side, and to surround the optical fiber.
  • FIG. 1 is a diagram showing an overall configuration of a scanning endoscope apparatus provided with a first embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view showing the structure of the distal end side of the insertion portion in the scanning endoscope according to the first embodiment.
  • 3A is an enlarged cross-sectional view taken along line AA in FIG. 3B is an enlarged cross-sectional view taken along line BB in FIG. 3C is an enlarged cross-sectional view taken along line CC in FIG.
  • FIG. 4A is an explanatory view showing the distal end side of the insertion portion in a state where the insertion portion is inserted into a bent lumen organ.
  • FIG. 1 is a diagram showing an overall configuration of a scanning endoscope apparatus provided with a first embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view showing the structure of the distal end side of the insertion portion in the scanning endoscope according to the first embodiment.
  • 3A is an enlarged cross-sectional view taken
  • FIG. 4B is a schematic explanatory diagram illustrating the action in a state where the vicinity of the proximal end of the distal end portion of the insertion portion 6 is further bent by the operation of pushing the distal end side in FIG.
  • FIG. 5 is a longitudinal sectional view showing the structure of the distal end side of the insertion portion in the scanning endoscope of the first modification of the first embodiment.
  • 6 is an enlarged cross-sectional view taken along the line DD in FIG.
  • FIG. 7 is a longitudinal sectional view showing the structure of the distal end side of the insertion portion in the scanning endoscope of the second modification of the first embodiment.
  • a scanning endoscope apparatus 1 includes a scanning endoscope 2 according to a first embodiment of the present invention and a main body apparatus (or scanning) in which the scanning endoscope 2 is detachably connected.
  • the scanning endoscope 2 has an elongated shape that can be inserted into the body or body cavity of the subject 5 and has a flexible insertion portion 6, and the proximal end (rear end) of the insertion portion 6 has A connector 7 is provided for detachably connecting the scanning endoscope 2 to the main body device 3.
  • the insertion portion 6 includes a hard tip portion 8 and a flexible tube portion 9 having flexibility and extending from the rear end of the tip portion 8 to the connector 7.
  • An operation portion provided with a bendable bending portion between the distal end portion 8 and the flexible tube portion 9 and an operation knob or the like for bending the bending portion between the flexible tube portion 9 and the connector 7 is provided. You may make it provide.
  • the distal end portion 8 has a cylindrical member 10 as a hard cylindrical member, and a distal end of a flexible cylindrical tube 12 is connected to a hard holding member 11 that holds the rear end of the cylindrical member 10. The rear end of the cylindrical tube 12 is fixed to the connector 7.
  • the optical fiber 13 that forms a light guide member that guides incident light is inserted into the insertion portion 6.
  • the optical fiber 13 provided in the scanning endoscope 2 includes an optical structure (or optical structure) 13a having a function of guiding incident light as described later, and at least the holding member 11.
  • a covering tube 14a that forms a covering structure (or covering structure) that covers the optical structure 13a in the first region R1 as a region around the base end.
  • the base end (rear end) of the optical fiber 13 is connected to the optical fiber 15 b inside the main body device 3 at the optical connection portion 15 a in the connector 7. Then, the light generated by the light source unit 31 inside the main body device 3 enters the base end of the optical fiber 13 as incident light through the optical fiber 15b.
  • Incident light guided by the optical fiber 13 is emitted as irradiation light (or illumination light) from the front end surface of the optical fiber 13, and is collected near the front end of the cylindrical member 10 so as to face the front end surface.
  • An object such as an examination site in the subject 5 is irradiated through the condenser lens 16 so as to form a light spot.
  • FIG. 2 shows the structure of the distal end side including the distal end portion 8 of the insertion portion 6 in FIG.
  • the outer tube 23 of FIG. 1 is omitted.
  • the cylindrical member 10 is illustrated in a simplified manner.
  • the cylindrical member 10 holds a cylindrical member main body 10 a and a first lens 16 a disposed near the tip of the cylindrical member main body 10 a.
  • the first lens frame 10b has a second lens frame 10c that fits the proximal end side of the first lens frame 10b and fits the distal end side of the cylindrical member body 10a and holds the second lens 16b.
  • the condensing lens 16 includes a first lens 16a and a second lens 16b.
  • FIG. 2 shows an example in which a protective glass 16c is disposed on the front surface of the first lens 16a. It should be noted that the protective glass 16c may be omitted.
  • the first lens 16a and the second lens 16b may be attached to the tip of the cylindrical member 10 as shown in FIG.
  • the distal end side of the optical fiber 13 is disposed along the substantially central axis of the cylindrical member 10 inside the cylindrical member 10 (cylindrical member main body 10 a) constituting the distal end portion 8.
  • An optical fiber 13 that guides incident light incident on an end face on the base end side (incident side) and emits irradiation light from the end face on the distal end side (irradiation side) has a cross section as shown in the enlarged view of FIG.
  • the core 13b and the clad 13c The optical structure 13a is formed.
  • FIG. 3A showing a cross section at the position where the piezoelectric elements 17a to 17d are provided also shows that the optical structure 13a is formed by the core 13b and the clad 13c.
  • the optical structure 13a is simply shown without clearly showing the core 13b and the clad 13c.
  • the optical fiber 13 having the optical structure 13a disposed inside the cylindrical member 10 includes a longitudinal direction of the optical fiber 13 at a position near the proximal end of the cylindrical member 10 (or the distal end portion 8).
  • Piezoelectric elements 17a to 17d constituting an actuator 17 (see FIG. 1) that forms a drive unit (or a scanning unit) that vibrates in a direction orthogonal to the direction are arranged.
  • the piezoelectric elements 17a to 17d of the actuator 17 are applied with a drive signal from a drive unit 32 inside the main body device 3 via a drive line 18 inserted through the insertion portion 6, thereby causing the piezoelectric elements 17a to 17d to move in the longitudinal direction (FIGS. 2 in the Z-axis direction).
  • the actuator 17 includes piezoelectric elements 17 a to 17 d that are disposed on the outer surface of a ferrule 19 provided so as to surround the optical fiber 13 and serve as driving elements that vibrate the optical fiber 13.
  • the ferrule 19 is formed so that the cross section perpendicular to the longitudinal direction (or axial direction) of the ferrule 19 is a square, and is provided along the central axis.
  • the optical fiber 13 is provided so as to surround the optical fiber 13 through the hole. Further, one surface of the thin plate-shaped piezoelectric elements 17a to 17d constituting the actuator 17 is attached to each of the upper, lower, left and right surfaces of the ferrule 19, respectively. As shown in FIG.
  • flat electrodes 20 are provided on both surfaces of the piezoelectric elements 17a to 17d, and a drive signal from the drive unit 32 is transmitted via the drive line 18 to the piezoelectric elements 17a to 17d.
  • a drive signal from the drive unit 32 is transmitted via the drive line 18 to the piezoelectric elements 17a to 17d.
  • the tip of the drive line 18 is electrically connected to the electrode 20 near the base ends of the piezoelectric elements 17a to 17d by soldering or the like.
  • a drive signal is applied from the drive unit 32 to, for example, the electrodes 20 of the piezoelectric elements 17a and 17c, the tip of the optical fiber 13 vibrates in the vertical direction within the paper surface as indicated by a dotted line in FIG.
  • the piezoelectric elements 17 a to 17 d are not provided on the outer peripheral surface of the optical fiber 13, but are disposed on the orthogonal side surfaces of the ferrule 19 as a bonding member provided on the outer peripheral surface of the optical fiber 13.
  • the ferrule 19 transmits a force corresponding to the expansion and contraction of the actuator 17 to the optical fiber 13 arranged along the center of the ferrule 19.
  • the ferrule 19 is formed of a hard member such as zirconia (ceramic) or nickel, for example.
  • the ferrule 19 is formed so as to have a quadrangular prism shape having a square cross section as described above, and the optical fiber 13 disposed in the hole along the central axis is fixed (FIG. 1, FIG.
  • Piezoelectric elements 17a, 17b, 17c, and 17d (see FIG. 3A) that form the actuator 17 are attached to both side surfaces in the vertical direction (2) and both side surfaces in the X-axis direction (left and right direction perpendicular to the paper surface). ing.
  • the ferrule 19 has, for example, a prismatic shape with a side of 150 ⁇ m, and holds an optical structure 13a composed of an 80 ⁇ m core 13b and a clad 13c inserted into the hole of the central axis.
  • the tip side of the optical fiber 13 can be vibrated or swung in the vertical direction.
  • the base end (rear end) side of the ferrule 19 is held by a cylindrical holding member 11 that holds (fixes) the base end side of the ferrule 19.
  • the holding member 11 has a hole that penetrates and holds the optical structure 13 a portion of the optical fiber 13 and holds (or fixes) the proximal end side of the ferrule 19.
  • the outer peripheral surface of the cylindrical holding member 11 is formed with a narrow-diameter portion in which both ends in the longitudinal direction are notched in steps, and the base end of the cylindrical member 10 and the cylindrical tube 12 are respectively formed. Is fixed to each small diameter portion.
  • the length of the rigid portion at the distal end portion 8 in the insertion portion 6 is the proximal end of the holding member 11 extending from the distal end of the first lens frame 10b in FIG. 2 to the rear side of the proximal end of the cylindrical member 10 (or the cylindrical member main body 10a).
  • the length is up to L.
  • the base end of the cylindrical member main body 10 a and the distal end of the cylindrical tube 12 may be fixed to the outer peripheral surface of the holding member 11 without providing a step on the outer peripheral surface of the holding member 11. As shown in FIGS.
  • a plurality of light receiving optical fibers 21 for receiving the illumination light reflected by the subject along the outer peripheral surfaces of the cylindrical member 10 and the cylindrical tube 12 are formed in a ring shape.
  • the arranged light received by the light receiving optical fiber 21 (returned light or reflected from the subject) is guided to the light receiving optical fiber 22b in the main body device 3 through the optical connecting portion 22a of the connector 7.
  • the light guided to the light receiving optical fiber 22b enters the detection unit 33 and is converted into an electric signal.
  • the light receiving optical fiber 21 arranged in a ring shape is covered and protected by a flexible outer tube 23 shown in FIG.
  • Each scanning endoscope 2 has driving data for driving the tip of the optical fiber 15 along a predetermined scanning pattern by the actuator 17 and coordinate position data corresponding to the irradiation position when driving. It has a memory 26 that stores information. The information stored in the memory 26 is input to the controller 34 in the main unit 3 through the contact points and signal lines of the connector 7. As shown in FIG. 1, the main unit 3 is connected to the light source unit 31, the drive unit 32, the detection unit 33, the controller 34 that controls each unit of the main unit 3, and the controller 34, and stores various types of information. And a power source (circuit) 36 that supplies a DC power source to the controller 34 and the like.
  • the light source unit 31 includes an R light source 31a that generates light in a red wavelength band (also referred to as R light), a G light source 31b that generates light in a green wavelength band (also referred to as G light), and a blue wavelength band. It has a B light source 31c that generates light (also referred to as B light) and a multiplexer 31d that combines (mixes) R light, G light, and B light.
  • the R light source 31a, the G light source 31b, and the B light source 31c are configured using, for example, a laser light source, and emit R light, G light, and B light to the multiplexer 31d, respectively, when turned on under the control of the controller 34.
  • the controller 34 includes a light source control unit 34a including a central processing unit (abbreviated as CPU) that controls discrete light emission of the R light source 31a, the G light source 31b, and the B light source 31c.
  • CPU central processing unit
  • the light source control unit 34a of the controller 34 sends a control signal for causing the R light source 31a, the G light source 31b, and the B light source 31c to emit light in a pulse at the same time, and the R light source 31a, the G light source 31b, and the B light source 31c G light and B light are generated and emitted to the multiplexer 31d.
  • the multiplexer 31d combines the R light from the R light source 31a, the G light from the light source 31b, and the B light from the light source 31c, and supplies the combined light to the light incident surface of the optical fiber 15b. Enters the combined R light, G light, and B light at the base end of the optical fiber 13.
  • the optical fiber 13 guides the incident light incident on the proximal end, and emits the guided light as irradiation light from the distal end surface.
  • the drive unit 32 includes a signal generator 32a, D / A converters 32b and 32c, and amplifiers 32d and 32e.
  • the signal generator 32a generates a drive signal for vibrating (or swinging) the tip of the optical fiber 13 based on the control of the scanning control unit 34b of the controller 34, and outputs the drive signal to the D / A converters 32b and 32c.
  • the D / A converters 32b and 32c convert the digital drive signal output from the signal generator 32a into an analog drive signal and output the analog drive signal to the amplifiers 32d and 32e, respectively.
  • the amplifiers 32d and 32e amplify the drive signals output from the D / A converters 32b and 32c, respectively, and drive signals generated by the piezoelectric elements 17a to 17d as drive elements that form the actuator 17 via the drive line 18. Output to.
  • the tip of the optical fiber 13 is swung so as to form a spiral scanning locus.
  • the detection unit 33 includes a duplexer 33a, detectors 33b, 33c, and 33d, and A / D converters 33e, 33f, and 33g.
  • the demultiplexer 33a has a dichroic mirror or the like, and returns light emitted from the light emitting end face at the base end of the light receiving optical fiber 22b for each color component of R (red), G (green), and B (blue). And then output to the detectors 33b, 33c and 33d.
  • the detectors 33b, 33c, and 33d are configured by photodetectors such as photodiodes, and detect the intensity of R light, the intensity of G light, and the intensity of B light output from the demultiplexer 33a, respectively, and detect the detection.
  • Analog R, G, and B detection signals corresponding to the intensities of the R light, G light, and B light are generated and output to the A / D converters 33e, 33f, and 33g.
  • the A / D converters 33e, 33f, and 33g convert the analog R, G, and B detection signals output from the detectors 33b, 33c, and 33d, respectively, into digital R, G, and B detection signals.
  • the controller 34 Provided in the controller 34 and outputs the image (signal) to the image generation unit 34c.
  • the image generated by the image generation unit 34 c is displayed on the monitor 4.
  • the memory 35 stores a control program for controlling the main device 3 in advance. In addition, the memory 35 stores information on the coordinate position read from the memory 26 by the controller 34 of the main body device 3.
  • the controller 34 is configured using a CPU, FPGA, or the like, reads a control program stored in the memory 35, and controls the light source unit 31 and the drive unit 32 based on the read control program.
  • the optical structure 13a composed of the core 13b and the clad 13c is covered in the first region R1 as the region around the proximal end of the holding member 11 that forms the proximal end side of the hard portion.
  • a flexible covering tube 14a formed of a polyimide resin or the like having a characteristic of suppressing the bending characteristic of the optical fiber 13 made of only the optical structure 13a is provided.
  • the phrase (term) of the region around the proximal end of the holding member 11 is used, but the incident light from the proximal end of the optical fiber 13 is used. May be used in accordance with the function of guiding light to the front end surface on the irradiation side.
  • the first region R1 can be expressed as a region around the incident-side end surface (as the first end surface) of the holding member 11.
  • the words on the front end side of the holding member 11 can be expressed using the words on the emission side.
  • the tip of the coated tube 14 a is fixed to the second recess 11 b of the holding member 11. Further, as shown in FIG. 1, the coated tube 14a extends to the vicinity of the proximal end of the connector 7, and the coated tube 14a has an optical fiber 13 of an optical structure 13a composed of an inner core 13b and a clad 13c. This prevents breakage when bent to the right.
  • the optical structure 13a is formed by the covering tube 14a formed of a flexible member.
  • the first region in the vicinity of the boundary between the hard portion and the flexible tube portion 9 is provided by covering the optical structure 13a with the covering tube 14a in the flexible tube portion 9 on the rear side of the first region R1.
  • the optical fiber 13 is prevented from being broken by excessive bending at R1 and the flexible tube portion 9 extending to the rear side of the first region R1.
  • the outer diameter of the covering tube 14a covering the optical structure 13a of about 80 ⁇ m is set to about 250 ⁇ m, for example.
  • the coated tube 14a is set to have a bending characteristic that is difficult to bend rather than the flexibility (bending characteristic) of the optical fiber 13 made of only the optical structure 13a.
  • the covering tube 14a is difficult to be bent. Due to the bending characteristics, a function of preventing bending (preventing breakage) from occurring beyond the allowable bending amount is generated. Further, in the present embodiment, as shown in FIG. 2, the region closer to the distal end than the first region R ⁇ b> 1 is configured not to cover the optical structure 13 a of the optical fiber 13.
  • the optical fiber 13 consisting only of the optical structure 13a has a characteristic that does not break against bending within an allowable range (or maximum bending amount).
  • the optical fiber 13 is vibrated by the actuator 17 inside the distal end portion 8 forming the hard portion, but the bending amount in the case of the maximum amplitude of the vibration is set within an allowable range in the optical fiber 13. ing. Since the optical fiber 13 inside the distal end portion 8 is hardly affected when the insertion portion 6 is bent, in the present embodiment, as described above, the region closer to the distal end than the first region R1. In FIG. 3, the optical structure 13a of the optical fiber 13 is not covered.
  • the coated tube 14a and the cylindrical tube 12 as a flexible tube are not less than the maximum allowable bending amount in the optical fiber 13 made of only the optical structure 13a in at least the longitudinal region including the first region R1. You may set so that it may have the hardness or flexibility of the characteristic which suppresses it to be bent.
  • the scanning endoscope 2 guides incident light incident on the incident side, and is provided so as to surround the optical fiber 13 that irradiates the subject with irradiation light from the irradiation side.
  • the optical fiber 13 includes a core 13b and a clad 13c that form an optical structure (or optical structure) 13a that guides the incident light, and the holding portion.
  • a covering tube 14a that forms a covering structure that covers the optical structure 13a in the first region R1 around the first end surface on the incident side.
  • the core 13b and the clad in the optical fiber 13 are properly operated. It is rare that the insertion portion 6 is bent with a bending amount equal to or larger than the (allowable) maximum bending amount that the 13c has. However, there may be a case where the operator performs an operation of bending the vicinity of the maximum bending amount by, for example, placing a part of the distal end side of the insertion portion 6 against the inner wall surface of the luminal organ.
  • FIG. 4A shows an example close to such a state.
  • the distal end side of the insertion portion 6 can be smoothly inserted into the deep portion side of the bent luminal organ 41 as indicated by a dotted line.
  • an operation of pushing in the direction indicated by the arrow E on the proximal end side of the insertion portion 6 in this state is performed. If this is done, there may be a case where the distal end portion 8 cannot be inserted in the direction of the deep side (of the luminal organ) indicated by the arrow F.
  • the tip portion 8 can be moved to the deeper side as indicated by the arrow F by the pushing operation.
  • the arrow G indicates the vicinity of the proximal end of the distal end 8 along with the force for moving the distal end 8 in the direction of the arrow F.
  • the distal end portion 8 is formed of a hard member that does not bend, in the region near the boundary between the proximal end of the distal end portion 8 and the distal end of the flexible tube portion 9 that can be bent (perpendicular to the longitudinal direction). In most cases, a bending force acts on the bending direction.
  • the optical fiber 13 in the flexible tube portion 9 on the rear side from the first region R1 including the proximal end of the distal end portion 8 (the proximal end of the holding member 11) is bent.
  • the tube is covered with a coated tube 14a having a property of suppressing the bending, and the bending is prevented from being bent beyond the maximum allowable bending amount (in the optical fiber 13).
  • the flexible tube portion 9 as shown in the explanatory view of FIG. 4B.
  • 4B is a schematic explanatory diagram in which only the distal end side portion (the distal end portion 8 and the flexible tube portion 9) that are bent in the direction of arrow G in FIG. 4A is enlarged.
  • the flexible tube portion 9 near the proximal end of the distal end portion 8 is bent (as compared with the case of FIG. 4A) as shown in FIG. 4B by the pushing operation on the hand side, it is arranged inside the flexible tube portion 9.
  • the optical fiber 13 is held at the proximal end of the distal end portion 8 (holding member 11) along the central axis thereof, and is covered with a covering tube 14a that suppresses bending.
  • the flexible tube portion 9 is bent, if it is an optical fiber having a structure not covered by the covering tube 14a, the optical fiber is easily bent along the central axis as indicated by the center line O, In that case, the amount of bending increases.
  • the optical fiber 13 of the present embodiment has a structure in which the optical structure 13a is covered with the covering tube 14a, the bending is suppressed by the covering tube 14a rather than the above case (only the optical structure). 4B, the bending amount is reduced as indicated by a dotted line. That is, the amount of bending of the optical fiber 13 is deviated from the center line O and the amount of bending is suppressed due to the characteristic of suppressing bending by the coated tube 14a. Therefore, according to this embodiment, excessive bending with respect to the optical fiber 13 can be suppressed, and breakage of the optical fiber 13 can be prevented.
  • the hardness against bending near the tip of the cylindrical tube 12 or near the first region R1 may be increased. Further, the hardness against bending in the vicinity of the first region R1 in the outer tube 23 may be increased.
  • the bending amount of the optical fiber 13 is reduced (relaxed) as shown in FIGS. 4A and 4B also in the region on the rear side of the first region R1 in the distal end portion 8. The breakage can be reduced. For this reason, according to this embodiment, it is possible to reduce the breakage of the optical fiber in the vicinity of the proximal end of the holding portion constituting the hard portion or the distal end portion 8 in the insertion portion 6. Further, it is possible to effectively prevent the optical fiber 13 from being broken with respect to an excessive bending in which the insertion portion 6 is equal to or larger than the (allowable) maximum bending amount in the optical fiber 13.
  • FIG. 5 shows the configuration of the distal end side of the insertion portion 6 in the first modification of the first embodiment.
  • FIG. 6 shows an enlarged cross section along the line DD in FIG.
  • the optical fiber 13 includes an optical structure (optical structure) 13a of the core 13b and the clad 13c, and the optical structure 13a from the vicinity of the proximal end of the distal end portion 8 to its rear side.
  • the structure includes a covering tube 14 a that covers the vicinity of the proximal end of the flexible tube portion 9.
  • the optical structure of the core 13b and the clad 13c and a thin covering tube 14b that covers almost the entire length of the optical structure 13a are provided.
  • the coated tube 14b is formed of, for example, a polyimide resin, and the outer diameter is set to about 100 ⁇ m.
  • the optical fiber 13 has a thin coated tube 14b covering the optical structure 13a of the core 13b and the clad 13c in the flexible tube portion 9 as in the first embodiment.
  • the tube 14b has a structure that covers the optical structure 13a of the core 13b and the clad 13c even in the distal end portion 8.
  • the covering tube 14b covers the optical structure 13a of the core 13b and the clad 13c in the first region R1 around the proximal end of the holding member 11, and the distal end (side end portion) of the holding member 11.
  • the covering structure covers the optical structure 13a in the second region R2 in the periphery of the optical region 13 and the optical structure 13a in the third region R3 in which the piezoelectric elements 17a to 17d as drive elements are arranged.
  • the covering tube 14b covering the optical structure 13a may be provided so as to cover the tip of the optical structure 13a in the optical fiber 13, but in this modification, as shown in FIG. 5, the tip that is on the tip side of the third region R3.
  • the structure may be such that the covering tube 14b is not provided.
  • the optical structure 13a may be exposed in the vicinity of the tip.
  • a ferrule 19 provided with piezoelectric elements 17a to 17d on the outer surface on the tip side is provided so as to surround the outer peripheral surface of the coated tube 14b.
  • the ferrule 19 has a side of about 150 ⁇ m in the third region R ⁇ b> 3, and holds the optical fiber 13 of about 100 ⁇ m, as described above, inserted through a hole provided along the central axis.
  • the base end of the ferrule 19 is provided at a position closer to the front end side than the position of the base end of the holding member 11.
  • the base end of the ferrule 19 is located on the rear side of the base end of the holding member 11. More specifically, as shown by a solid line in FIG. 5, the base end of the ferrule 19 is a position on the way to the base end side boundary of the first region R ⁇ b> 1 near the base end of the holding member 11. In this way, the base end of the ferrule 19 is extended to a position slightly behind the base end of the holding member 11 that forms the base end of the hard portion and halfway to the base end side boundary of the first region R1.
  • the base end of the ferrule 19 may be provided at a position extending to the rear side from the first region R1 so as to cover the optical structure 13a of the optical fiber 13 in the first region R1.
  • the ferrule 19 is formed in a prismatic shape so that the piezoelectric elements 17a to 17d can be easily attached in a direction orthogonal to each other at least in the third region R3, but in a portion extending rearward from the base end of the holding member 11.
  • a cylindrical shape may be used.
  • the ferrule 19 extends rearward from the proximal end of the holding member 11, adjusts the thickness of the cylinder in the portion covering the coated tube 14 b, suppresses the bending of the optical fiber 13 in the vicinity of the first region R 1, The breakage may be further reduced.
  • the ferrule 19 covers the optical structure 13a of the optical fiber 13 in the second region R2 and the third region R3.
  • the holding member 11 has a through hole 11 a ′ that penetrates and holds the ferrule 19. According to this modification, it is possible to prevent breakage of the optical fiber 13 in the vicinity of the proximal end of the holding member 11 as in the first embodiment.
  • the optical fiber 13 is possible to prevent the optical fiber 13 from being broken with respect to an excessive bend in which the insertion portion 6 is not less than the maximum allowable bend amount in the optical fiber 13.
  • stress concentrates on the base end portion (root portion) of the actuator 17 it is desirable that the optical fiber 13 is covered and held by the ferrule 19 at the tip end side end portion of the holding member 11.
  • the disposable scanning endoscope used in a disposable manner has a low durability requirement.
  • FIG. 7 shows the structure of the distal end side of the insertion portion 6 in the scanning endoscope of the second modification.
  • the covering tube 14 a of the optical fiber 13 covers the covering structure on the distal end side rather than the end portion on the distal end side of the holding member 11.
  • the distal end of the covering tube 14a of the optical fiber 13 is fixed near the proximal end of the holding member 11.
  • the distal end further extends to the distal end side. Then, it passes through the through hole 11 b ′ of the holding member 11 and extends to a position closer to the distal end side than the end portion on the distal end side of the holding member 11.
  • the optical fiber 13 has an optical structure 13a composed of koa 13b and a clad 13c at the distal end side from the position of the distal end of the coated tube 14a, and the base end side of the optical structure 13a is inserted through the through hole of the ferrule 19.
  • the piezoelectric elements 17 a to 17 d of the actuator 17 are provided on the upper, lower, left and right outer surfaces of the ferrule 19.
  • the covering tube 14a has a structure that covers the optical structure 13a in the first region R1 and the second region R2, and does not cover the optical structure 13a in the third region R3.
  • the ferrule 19 is arrange
  • the insertion portion 6 is inserted into a bent hollow organ or the like, if the first region R1 around the proximal end of the distal end portion 8 is excessively bent, the first portion R As described in the embodiment, breakage of the optical fiber 13 can be effectively prevented.
  • different embodiments may be configured by partially combining the above-described embodiments or modifications.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

先端部8を構成する硬質の円筒部材10の内部に配置された光ファイバ13は、上下等の外面に圧電素子17a、17b等が取り付けられたフェルール19の中心の孔に挿通されて保持され、フェルール13の基端と共に光ファイバ13を保持する硬質の保持部材11における基端付近の第1領域R1において、コア13b及びクラッド13cからなる光学構造13aを、可撓性を有し、光ファイバ13における過度の屈曲を抑制する被覆チューブ14aで被覆している。

Description

走査型内視鏡
 本発明は、被写体に照射される照射光を走査する走査型内視鏡に関する。
 医療分野等において撮像素子を用いた内視鏡が広く普及しているが、近年、光ファイバにより導光した光を走査する走査型内視鏡が種々提案されている。走査型内視鏡においては、光ファイバを用いることにより、挿入部を細径化でき、細径の管状部位に挿通して観察、検査することができるメリットを有する。 
 例えば、従来例としての日本国特許5452781号公報は、生体に照明する光を導光する光ファイバと、 前記光ファイバが挿通される挿通孔を介して前記光ファイバを保持し、前記光ファイバが所定の長さで先端面から延設され、前記先端面から前記挿通孔に対して連通する凹部が形成された(光ファイバ)保持部材と、前記保持部材に設けられ、前記保持部材の前記先端面から延出する前記光ファイバの自由端を走査させる駆動部と、前記凹部に塗布または充填されて前記光ファイバと前記保持部材とを固着し、前記保持部材の前記先端面と一致する平面が形成された接着部と、を具備する走査型内視鏡を開示している。
 上記従来例は、光ファイバを保持する光ファイバ保持部材としてのフェルールを光ファイバと共に保持する保持部(ホルダ)を開示しているが、保持部の基端付近の部分(領域)において細径の光ファイバが折損し易くなることを防止する内容を開示していない。 
 本発明は上述した点に鑑みてなされたもので、光ファイバを保持する保持部の基端付近において光ファイバの折損を低減できる走査型内視鏡を提供することを目的とする。
 本発明の一態様の走査型内視鏡は、入射側に入射された入射光を導光し、照射側から被写体に照射光を照射する光ファイバと、前記光ファイバを取り囲むように設けられたフェルールと、前記ファイバを取り囲んで保持する保持部と、前記保持部よりも前記照射側における前記フェルールに配置され、前記光ファイバを振動させる駆動素子と、を有し、前記光ファイバは、前記入射光を導光する光学構造と、前記保持部における前記入射側の第1端面の周辺の第1領域において前記光学構造を被覆する被覆構造と、を有する。
図1は本発明の第1の実施形態を備えた走査型内視鏡装置の全体構成を示す図。 図2は第1の実施形態の走査型内視鏡における挿入部の先端側の構造を示す縦断面図。 図3Aは図2におけるA-A線の拡大横断面図。 図3Bは図2におけるB-B線の拡大横断面図。 図3Cは図2におけるC-C線の拡大横断面図。 図4Aは屈曲した管腔臓器内に挿入部が挿入された状態における挿入部の先端側を示す説明図。 図4Bは、図4Aにおいて先端側を押し込む操作により挿入部6の先端部の基端付近がより屈曲した状態の作用を示す概略の説明図。 図5は第1の実施形態の第1変形例の走査型内視鏡における挿入部の先端側の構造を示す縦断面図。 図6は図5におけるD-D線の拡大横断面図。 図7は第1の実施形態の第2変形例の走査型内視鏡における挿入部の先端側の構造を示す縦断面図。
 以下、図面を参照して本発明の実施形態を説明する。 
(第1の実施形態)
 図1に示すように走査型内視鏡装置1は、本発明の第1の実施形態の走査型内視鏡2と、走査型内視鏡2が着脱自在に接続される本体装置(又は走査型内視鏡制御装置)3と、本体装置3に接続される表示装置としてのモニタ4と、を有する。 
 走査型内視鏡2は、被検体5の体内又は体腔内に挿入可能な細長の形状で、可撓性を備える挿入部6を有し、挿入部6の基端(後端)には、走査型内視鏡2を本体装置3に着脱自在に接続するためのコネクタ7が設けられている。 
 また、挿入部6は、硬質の先端部8と、先端部8の後端からコネクタ7に延びる、可撓性を有する可撓管部9と、を有する。なお、先端部8と可撓管部9との間に、湾曲自在の湾曲部を設け、可撓管部9とコネクタ7との間に湾曲部を湾曲する操作ノブ等を設けた操作部を設けるようにしても良い。 
 先端部8は、硬質の筒状部材としての円筒部材10を有し、この円筒部材10の後端を保持する硬質の保持部材11に、可撓性の円筒チューブ12の先端が連結され、この円筒チューブ12の後端は、コネクタ7に固定されている。
 挿入部6内には、入射光を導光する導光部材を形成する光ファイバ13が挿通されている。 
 本実施形態においては、走査型内視鏡2に設けられた光ファイバ13は、後述するように入射光を導光する機能を持つ光学構造(又は光学構造体)13aと、少なくとも保持部材11における基端の周辺の領域としての第1領域R1において前記光学構造13aを覆う被覆構造(又は被覆構造体)を形成する被覆チューブ14aと、を有する。 
 上記光ファイバ13の基端(後端)は、コネクタ7における光接続部15aにおいて本体装置3内部の光ファイバ15bと接続される。 
 そして、本体装置3内部の光源ユニット31で発生した光が光ファイバ15bを経て光ファイバ13の基端に入射光として入射される。光ファイバ13により導光された入射光は、光ファイバ13の先端面から照射光(又は照明光)として出射され、該先端面に対向して円筒部材10の先端付近に取り付けられた集光する集光レンズ16を経て、被検体5内の検査部位等の被写体に光スポットを形成するように照射される。
 図2は、図1における挿入部6の先端部8を含む先端側の構造を示す。なお、図2(図3A,図3B,図3C)においては、図1の外装チューブ23を省略している。 
 図1においては円筒部材10を簡略的に示しており、図2においては、円筒部材10は、円筒部材本体10aと、この円筒部材本体10aの先端付近に配置される第1レンズ16aを保持した第1レンズ枠10bと、第1レンズ枠10bの基端側が嵌合し、かつ円筒部材本体10aの先端側が嵌合し、第2レンズ16bを保持した第2レンズ枠10cとを有する。 
 なお、集光レンズ16は、第1レンズ16aと第2レンズ16bを有する。また、図2においては、第1レンズ16aの前面に保護ガラス16cを配置している例を示している。なお、保護ガラス16cを省略した構成にしても良い。 
 図2に示すレンズ枠10b、10cを用いないで、図1に示すように、第1レンズ16aと第2レンズ16bとを円筒部材10の先端に取り付ける構造にしても良い。 
 図2にも示すように先端部8を構成する円筒部材10(円筒部材本体10a)の内側には、光ファイバ13の先端側が、円筒部材10の略中心軸に沿って配置されている。
 基端側(入射側)の端面に入射された入射光を導光して、先端側(照射側)の端面から照射光を照射する光ファイバ13は、図2における拡大図に示すように断面が円形となる円柱形状のコア13bと、このコア13bの外周面に一体的に設けられ、コア13bの屈折率よりも小さい屈折率を有するクラッド13cとを有し、コア13bとクラッド13cとにより光学構造13aを形成する。 
 また、圧電素子17a~17dが設けられた位置での横断面を示す図3Aにおいてもコア13bとクラッド13cとにより光学構造13aが形成されることを示している。なお、図3B、図3Cでは、コア13bとクラッド13cとを明示しないで、簡略的に光学構造13aを示している。 
 図2に示すように、円筒部材10の内側に配置された光学構造13aを有する光ファイバ13には、円筒部材10(又は先端部8)の基端寄りの位置において該光ファイバ13の長手方向と直交する方向に振動させる駆動部(又は走査部)を形成するアクチュエータ17(図1参照)を構成する圧電素子17a~17dが配置されている。このアクチュエータ17の圧電素子17a~17dは、挿入部6内を挿通された駆動線18を介して本体装置3内部の駆動ユニット32から駆動信号が印加されることにより、長手方向(図1,図2におけるZ軸方向)に伸縮する。
 このアクチュエータ17は、光ファイバ13を取り囲むように設けたフェルール19の外面に配置され、光ファイバ13を振動させる駆動素子となる圧電素子17a~17dを有する。なお、フェルール19は、図2又は図3A等から分かるように、フェルール19の長手方向(又は軸方向)と垂直方向となる横断面が正方形となるように形成され、その中心軸に沿って設けた孔に光ファイバ13を通して、光ファイバ13を取り囲むように設けている。 
 また、フェルール19の上下、左右の各面にはアクチュエータ17を構成する薄板形状の圧電素子17a~17dの一方の面がそれぞれ貼り付けるようにして取り付けられている。 
 また、図3Aに示すように、圧電素子17a~17dにおける各両面には、平板形状の電極20が設けてあり、上記駆動ユニット32からの駆動信号が駆動線18を介して圧電素子17a~17dの両面の電極20にそれぞれ印加される。 
 図2に示すように圧電素子17a~17dの基端付近の電極20部分に、駆動線18の先端が半田付け等して電気的に接続されている。そして、駆動ユニット32から、例えば圧電素子17a,17cの電極20に、駆動信号を印加した場合には、光ファイバ13の先端は図1において点線で示すように紙面内で上下方向に振動する。
 このように、圧電素子17a~17dは、光ファイバ13の外周面に設けられないで、光ファイバ13の外周面に設けられた接合部材としてのフェルール19における直交する側面に配置されている。そして、このフェルール19は、アクチュエータ17の伸縮に応じた力を、フェルール19の中心に沿って配置された光ファイバ13に伝達する。フェルール19は、例えば、ジルコニア(セラミック)またはニッケル等の硬質の部材により形成されている。 
 フェルール19は、上記のように横断面が正方形となる四角柱の形状を有するように形成されており、中心軸に沿った孔内に配置された光ファイバ13が固定され、(図1、図2の紙面の上下方向)の両側面と、X軸方向(紙面に垂直な左右方向)の両側面とにアクチュエータ17を形成する圧電素子17a、17bと17c、17d(図3A参照)が取り付けられている。なお、フェルール19は、例えば1辺が150μmの角柱形状であり、その中心軸の孔内に挿通された80μmのコア13b及びクラッド13cからなる光学構造13aを保持している。 
 各圧電素子17i(i=a,b,c,d)は、駆動信号の印加により、長手方向に伸縮する。また、図2に示すように圧電素子17a~17dの基端付近は、フェルール19の基端付近を保持すると共に、光ファイバ13を保持する保持部を形成する硬質の保持部材11により保持される。
 従って、基端が保持部材11により保持又は固定された状態で、例えば圧電素子17a,17bに対して(一方を伸張、他方を収縮させる)逆位相の駆動信号を印加することにより、図1において点線で示すように光ファイバ13の先端側を上下方向に振動又は揺動させることができる。 
 また、フェルール19の基端(後端)側は、このフェルール19の基端側を保持(固定)する円柱形状の保持部材11により保持される。 
 本実施形態においては、図2に示すように保持部材11は、光ファイバ13における光学構造13a部分を貫通して保持する孔を有すると共に、フェルール19の基端側を保持(又は固定)する第1凹部11aと、光ファイバ13における被覆構造を形成する被覆チューブ14aの先端を保持(又は固定)する第2凹部11bとを備える。 
 また、図2に示すように円柱形状の保持部材11の外周面は、その長手方向の両端が段差状に切り欠いた細径部が形成され、それぞれ円筒部材10の基端と、円筒チューブ12の先端が各細径部に固定されている。
 従って、挿入部6における先端部8における硬質部長は、図2における第1レンズ枠10bの先端から円筒部材10(又は円筒部材本体10a)の基端よりも後方側に延びる保持部材11の基端までの長さLとなる。 
 なお、保持部材11の外周面に段差を設けること無く、保持部材11の外周面に円筒部材本体10aの基端と円筒チューブ12の先端とを固定しても良い。 
 図2,図3A~図3Cに示すように円筒部材10及び円筒チューブ12の外周面に沿って、被写体により反射された照明光を受光するための受光用光ファイバ21がリング状に複数本、配置され、受光用光ファイバ21により受光された(被写体からの戻り光又は反射)光は、コネクタ7の光接続部22aを経て本体装置3内部の受光用光ファイバ22bに導光される。この受光用光ファイバ22bに導光された光は、検出ユニット33に入射され、電気信号に変換される。 
 リング状に配置された受光用光ファイバ21は、図1に示す可撓性を有する外装チューブ23により覆われ、保護されている。
 また、各走査型内視鏡2には、アクチュエータ17により、光ファイバ15の先端を所定の走査パターンに沿って駆動させるための駆動データ及び駆動した場合の照射位置に対応する座標位置データ等の情報を格納したメモリ26を有する。このメモリ26に格納された情報は、コネクタ7の接点、信号線を経て本体装置3内部のコントローラ34に入力される。 
 図1に示すように本体装置3は、光源ユニット31と、駆動ユニット32と、検出ユニット33と、本体装置3の各ユニットを制御するコントローラ34と、コントローラ34と接続され、各種の情報を格納するメモリ35と、コントローラ34等に直流の電源を供給する電源(回路)36とを有する。 
 光源ユニット31は、赤色の波長帯域の光(R光とも言う)を発生するR光源31aと、緑色の波長帯域の光(G光とも言う)を発生するG光源31bと、青色の波長帯域の光(B光とも言う)を発生するB光源31cと、R光、G光及びB光を合波(混合)する合波器31dと、を有する。
 R光源31a、G光源31b及びB光源31cは、例えばレーザ光源等を用いて構成され、コントローラ34の制御によりオンされた際に、それぞれR光、G光、B光を合波器31dへ出射する。コントローラ34は、R光源31a、G光源31b及びB光源31cの離散的な発光を制御する中央演算装置(CPUと略記)などから構成される光源制御部34aを有する。 
 コントローラ34の光源制御部34aは、R光源31a、G光源31b及びB光源31cに対して同時にパルス的に発光させる制御信号を送り、R光源31a、G光源31b及びB光源31cは同時にR光、G光、B光を発生し、合波器31dへ出射する。 
 合波器31dは、R光源31aからのR光と、光源31bからのG光と、光源31cからのB光と、を合波して光ファイバ15bの光入射面に供給し、光ファイバ15bは、合波されたR光、G光、B光を光ファイバ13の基端に入射する。光ファイバ13は、基端に入射された入射光を導光し、導光した光を先端面から照射光として出射する。
 駆動ユニット32は、信号発生器32aと、D/A変換器32b及び32cと、アンプ32d及び32eと、を有する。 
 信号発生器32aは、コントローラ34の走査制御部34bの制御に基づき、光ファイバ13の先端を振動(又は揺動)させるための駆動信号を生成してD/A変換器32b及び32cに出力する。D/A変換器32b及び32cは、信号発生器32aから出力されたデジタルの駆動信号をアナログの駆動信号に変換してそれぞれアンプ32d及び32eへ出力する。 
 アンプ32d及び32eは、D/A変換器32b及び32cから出力された駆動信号をそれぞれ増幅して生成した駆動信号を駆動線18を介してアクチュエータ17を形成する駆動素子としての圧電素子17a~17dに出力する。 
 そして、光ファイバ13の先端は、渦巻き形状の走査軌跡を形成するように揺動される。 
 検出ユニット33は、分波器33aと、検出器33b、33c及び33dと、A/D変換器33e、33f及び33gと、を有する。
 分波器33aは、ダイクロイックミラー等を有し、受光用光ファイバ22bの基端の光出射端面から出射された戻り光をR(赤)、G(緑)及びB(青)の色成分毎の光に分離して検出器33b、33c及び33dへ出射する。 
 検出器33b、33c及び33dは、フォトダイオード等の光検出器により構成され、分波器33aから出力されるR光の強度、G光の強度、及びB光の強度をそれぞれ検出し、当該検出したR光、G光及びB光の強度にそれぞれ応じたアナログのR,G,B検出信号を生成し、A/D変換器33e、33f、及び33gへ出力する。 
 A/D変換器33e、33f、及び33gは、検出器33b、33c及び33dからそれぞれ出力されたアナログのR、G及びB検出信号を、それぞれデジタルのR、G及びB検出信号に変換してコントローラ34内に設けられ、画像(信号)を生成する画像生成部34cへ出力する。画像生成部34cにより生成された画像は、モニタ4によって表示される。 
 メモリ35は、本体装置3の制御を行うための制御プログラム等を予め格納している。また、メモリ35は、本体装置3のコントローラ34により、メモリ26から読み込まれた座標位置の情報が格納される。
 コントローラ34は、CPU、又はFPGA等を用いて構成され、メモリ35に格納された制御プログラムを読み出し、当該読み出した制御プログラムに基づいて光源ユニット31及び駆動ユニット32の制御を行う。 
 本実施形態においては、図2に示すように硬質部の基端側を形成する保持部材11における基端周辺の領域としての第1領域R1において、コア13b及びクラッド13cからなる光学構造13aを被覆する被覆構造を形成し、光学構造13aのみからなる光ファイバ13の屈曲特性を抑制する特性を持つ、ポリイミドの樹脂等により形成された可撓性の被覆チューブ14aを設けている。 
 なお、上記の記載において、第1領域R1を特定するために、保持部材11における基端の周辺の領域の語句(用語)を用いているが、光ファイバ13がその基端側からの入射光を、照射側の先端面に導光する機能に沿った用語を用いても良い。例えば、第1領域R1を、保持部材11における入射側の端面(としての第1端面)の周辺の領域と表現することができる。このような表現を用いた場合には、例えば保持部材11における先端側の語句は、出射側の語句を用いて表現することができる。
 上記のようにこの被覆チューブ14aは、その先端が保持部材11の第2凹部11bに固定されている。また、図1に示すように、この被覆チューブ14aは、コネクタ7の基端付近まで延びており、被覆チューブ14aは、その内側のコア13bとクラッド13cからなる光学構造13aの光ファイバ13が過度に屈曲された場合においての折損を防止する。 
 入射光を導光するコア13bとクラッド13cのみ、つまり光学構造13aのみからなる光ファイバ13は、細径であり、過度に屈曲されると簡単に折損する。このため、本実施形態においては、少なくとも硬質部の基端と可撓管部9との境界付近の第1領域R1においては、可撓性を有する部材で形成した被覆チューブ14aで光学構造13aを覆う構造を備え、更に第1領域R1よりも後方側の可撓管部9においても被覆チューブ14aで光学構造13aを覆うことにより、硬質部と可撓管部9との境界付近の第1領域R1とこの第1領域R1の後方側に延びる可撓管部9とにおける過度の屈曲に対する光ファイバ13の折損を防止する構造にしている。80μm程度の光学構造13aを覆う被覆チューブ14aの外径は、例えば250μm程度に設定される。
 上記被覆チューブ14aは、光学構造13aのみからなる光ファイバ13における可撓性(屈曲特性)よりは、屈曲し難い屈曲特性を持つように設定されている。そして、挿入部6が光学構造13aのみからなる光ファイバ13における許容される屈曲量よりも若干小さい屈曲量付近から許容される屈曲量以上に屈曲されようとした場合、被覆チューブ14aの屈曲し難い屈曲特性により、許容される屈曲量以上に屈曲されることを防止(して折損を防止)する機能を発生するようにしている。 
 また、本実施形態においては、図2に示すように第1領域R1よりも先端側の領域においては、光ファイバ13の光学構造13aを被覆しない構造にしている。光学構造13aのみからなる光ファイバ13は、許容される範囲(又は最大の屈曲量)内の屈曲に対しては、折損しない特性を有する。 
 硬質部を形成する先端部8の内部においては、光ファイバ13は、アクチュエータ17により振動されるが、その振動の最大振幅の場合の屈曲量は、光ファイバ13における許容される範囲内に設定されている。そして、先端部8内部での光ファイバ13には、挿入部6が屈曲された場合の影響が殆ど及ばないために、本実施形態においては上記のように第1領域R1よりも先端側の領域においては、光ファイバ13の光学構造13aを被覆しない構造にしている。 
 上記被覆チューブ14aと、可撓性のチューブとしての上記円筒チューブ12を、少なくとも第1領域R1を含む長手方向の領域において、光学構造13aのみからなる光ファイバ13における許容される最大の屈曲量以上に屈曲されることを抑制する特性の硬度又は可撓性を持つように設定しても良い。
 本実施形態の走査型内視鏡2は、入射側に入射された入射光を導光し、照射側から被写体に照射光を照射する光ファイバ13と、前記光ファイバ13を取り囲むように設けられたフェルール19と、前記光ファイバ13を取り囲んで保持する保持部を形成する硬質の保持部材11と、前記保持部よりも前記照射側における前記フェルール19に配置され、前記光ファイバ13を振動させる駆動素子を形成する圧電素子17a~17dと、を有し、前記光ファイバ13は、前記入射光を導光する光学構造(又は光学構造体)13aを形成するコア13b及びクラッド13cと、前記保持部における前記入射側の第1端面の周辺の第1領域R1において前記光学構造13aを被覆する被覆構造を形成する被覆チューブ14aと、を有することを特徴とする。 
 次に本実施形態の動作を説明する。 
 図1に示すように本実施形態の走査型内視鏡2を本体装置3に接続して術者は、走査型内視鏡2の挿入部6を被検体5の例えば管腔臓器の内部に挿入する。
 挿入部6が挿入される挿入対象の管腔臓器が屈曲している状態の概要は、術者により把握されている場合が多いので、適正な操作のもとでは光ファイバ13におけるコア13b及びクラッド13cが持つ、(許容される)最大の屈曲量以上の屈曲量で挿入部6が屈曲されることは少ない。 
 しかし、術者が、挿入部6の先端側の一部を管腔臓器の内壁面に当てる等して、この最大の屈曲量付近まで屈曲させてしまう操作を行う場合も起こりえる。図4Aは、このような状態に近い例を示す。 
 適正な操作を行った場合には、点線で示すように挿入部6の先端側を、屈曲した管腔臓器41の深部側に円滑に挿入することができる。しかし、実線で示すように先端部8の側面を、かなり屈曲した内面41aに当ててしまった状態においては、この状態のまま挿入部6の基端側において、矢印Eで示す方向に押し込む操作を行った場合には、先端部8を矢印Fで示す(管腔臓器の)深部側の方向に挿入できない場合が発生する。 
 具体的には、当てた部分における内面41aと先端部8の側面との間の摩擦力が小さい場合には、押し込む操作により、先端部8を矢印Fで示すように、深部側に移動できる。
 しかし、内面41aの襞等のために両者の摩擦力が大きくなり、押し込む操作を行った場合、先端部8を矢印Fの方向に移動させる力と共に、先端部8の基端付近を矢印Gで示す(矢印Fとほぼ直交する)方向に移動させ、より屈曲量を大きくするように作用する場合があり得る。先端部8は、屈曲しない硬質の部材で形成されているために、先端部8の基端と、屈曲可能となる可撓管部9の先端との境界近傍の領域において、(長手方向と直交する方向に最も大きく)屈曲させる力が作用する場合が多い。 
 本実施形態においては、上述したように、先端部8の基端(保持部材11の基端)を含む第1領域R1からその後方側の可撓管部9における光ファイバ13を、その屈曲特性を抑制する特性を持つ被覆チューブ14aにより被覆し、屈曲を抑制する構造にして、(光ファイバ13における)許容される最大の屈曲量以上に屈曲することを防止している。 
 例えば、図4Aにおいて先端部8の基端付近が矢印Gの方向に移動して、この基端付近での屈曲量がより大きくなっても、図4Bの説明図のように可撓管部9(外装チューブ23)の屈曲量よりも光ファイバ13の屈曲量を低減又は抑制できる。なお、図4Bは、図4Aにおいて矢印G方向に屈曲した状態の挿入部6の先端側部分(となる先端部8及び可撓管部9)のみを拡大した概略の説明図を示す。
 手元側での押し込む操作により、図4Bに示すように先端部8の基端付近の可撓管部9が(図4Aの場合よりも)屈曲しても、可撓管部9の内部に配置された光ファイバ13は、先端部8(保持部材11)の基端において、その中心軸に沿うように保持されており、屈曲を抑制する被覆チューブ14aにより被覆されている。 
 可撓管部9が屈曲された際に、被覆チューブ14aにより被覆されていない構造の光ファイバであると、中心線Oで示すように光ファイバが、その中心軸に沿うように屈曲され易く、その場合の屈曲量が大きくなる。 
 これに対して、本実施形態の光ファイバ13では、光学構造13aを被覆チューブ14aにより被覆した構造であるために、上記の場合(光学構造のみの場合)よりも被覆チューブ14aにより屈曲が抑制され、図4Bにおいて点線で示すようにその屈曲量が低減される。つまり被覆チューブ14aによる屈曲を抑制する特性により、光ファイバ13は、中心線Oから外れて屈曲量が抑制される。従って、本実施形態によれば、光ファイバ13に対しての過度の屈曲を抑制でき、光ファイバ13の折損を防止できる。 
 なお、上記の動作(作用)の説明から明らかなように円筒チューブ12における先端付近、又は第1領域R1付近の屈曲に対する硬度を大きくしても良い。また、外装チューブ23における第1領域R1付近における屈曲に対する硬度を大きくしても良い。 
 本実施形態における代表的な動作を説明したが、先端部8における第1領域R1よりも後方側の領域においても、図4A,図4Bのように光ファイバ13の屈曲量を低減(緩和)して、その折損を低減できる。 
 このため、本実施形態によれば、挿入部6における硬質部又は先端部8を構成する保持部の基端付近においての光ファイバの折損を低減できる。 
 また、挿入部6が光ファイバ13における(許容される)最大の屈曲量以上となる過度の屈曲に対して、光ファイバ13が折損することを有効に防止できる。
 次に第1の実施形態の第1変形例を説明する。 
 図5は、第1の実施形態の第1変形例における挿入部6の先端側の構成を示す。また、図6は、図5におけるD-D線の拡大横断面を示す。第1の実施形態の挿入部6においては、光ファイバ13は、コア13b及びクラッド13cの光学構造(光学構造体)13aと、この光学構造13aを先端部8の基端付近からその後方側を可撓管部9の基端付近までを覆う被覆チューブ14aとを備えた構造にしていた。これに対して、本変形例では、上記コア13b及びクラッド13cの光学構造と、該光学構造13aのほぼ全長を覆う、薄い被覆チューブ14bとを備えた構造にしている。この被覆チューブ14bは、例えばポリイミドの樹脂により形成され、その外径は、100μm程度に設定されている。 
 図5に示す具体例においては、光ファイバ13は、第1の実施形態と同様に可撓管部9内においてコア13b及びクラッド13cの光学構造13aを覆う薄い被覆チューブ14bを有し、この被覆チューブ14bは、先端部8内においても、コア13b及びクラッド13cの光学構造13aを覆う構造となっている。
 従って、本変形例では、被覆チューブ14bは、保持部材11の基端の周辺の第1領域R1において、コア13b及びクラッド13cの光学構造13aを覆うし、保持部材11の先端(側端部)の周辺の第2領域R2の光学構造13aと、駆動素子としての圧電素子17a~17dが配置された第3領域R3の光学構造13aとを、それぞれ覆う被覆構造を有する。 
 光学構造13aを覆う被覆チューブ14bは、光ファイバ13における光学構造13aの先端を覆うように設けても良いが、本変形例において図5に示すように第3領域R3よりも先端側となる先端近傍においては、被覆チューブ14bを設けない構造にしても良い。つまり、先端近傍においては、光学構造13aが露呈する構造であっても良い。なお、先端近傍以外における第3領域R3よりも先端側となる領域において被覆チューブ14bを設けない構造にしても良い。 
 また、本変形例においては、図5及び図6に示すように、その先端側の外面に圧電素子17a~17dを設けたフェルール19が、被覆チューブ14bの外周面を取り囲むように設けている。 
 フェルール19は、第3領域R3においては1辺が150μm程度であり、その中心軸に沿って設けた孔内に挿通された上記のように100μm程度の光ファイバ13を保持する。
 第1の実施形態においては、フェルール19の基端は、保持部材11の基端の位置よりも先端側の位置となるように設けていた。 
 これに対して、本変形例においては、フェルール19の基端は、保持部材11の基端よりも、後方側の位置となっている。より具体的には、図5の実線で示すようにフェルール19の基端は、保持部材11の基端付近の第1領域R1の基端側の境界に至る途中の位置となっている。 
 このように、硬質部の基端を形成する保持部材11の基端よりも、若干後方側となり、第1領域R1の基端側の境界に至る途中までフェルール19の基端を延出することにより、第1領域R1に過度の屈曲が作用した場合に、フェルール19の基端部分により過度の屈曲を抑制することができる。 
 なお、図5において点線で示すようにフェルール19の基端を第1領域R1よりも後方側まで延出した位置とし、第1領域R1における光ファイバ13の光学構造13aを覆うように設けても良い。また、フェルール19は、少なくとも第3領域R3においては圧電素子17a~17dを直交する方向に取り付け易いように角柱形状にしているが、保持部材11の基端より後方側に延出する部分においては、光ファイバ13の被覆チューブ14bと同様に円筒形状にしても良い。
 また、フェルール19における保持部材11の基端より後方側に延出し、被覆チューブ14bを覆う部分における円筒の肉厚を調整し、第1領域R1付近における光ファイバ13の屈曲を抑制して、その折損をより低減するようにしても良い。 
 本変形例においては、フェルール19は、第2領域R2及び第3領域R3における光ファイバ13の光学構造13aを覆う。 
 また、本変形例においては、保持部材11には、フェルール19を貫通して保持する貫通孔11a′を有する。 
 本変形例によれば、第1の実施形態と同様に保持部材11の基端の周辺においての光ファイバ13の折損を防止することができる。また、挿入部6が光ファイバ13における許容される最大の屈曲量以上となる過度の屈曲に対して、光ファイバ13が折損することを防止できる。 
 なお、アクチュエータ17の基端部分(根元部分)は、応力が集中するので、保持部材11の先端側端部において、光ファイバ13は、フェルール19に覆われて保持されている方が望ましい。しかし、使い捨てで使用されるディスポザブルの走査型内視鏡においては、耐久性の要求が低い。
 このように、耐久性が低い用途や、他の構成においてアクチュエータ17の基端部分での強度が保障される状況においては、図7に示す第2変形例の構造にしても良い。図7は、第2変形例の走査型内視鏡における挿入部6の先端側の構造を示す。 
 図7に示すように本変形例の走査型内視鏡の挿入部6においては、光ファイバ13の被覆チューブ14aが保持部材11の先端側の端部よりも先端側の被覆構造を覆うように設けている。 
 第1の実施形態の挿入部6においては、光ファイバ13の被覆チューブ14aの先端は、保持部材11の基端付近に固定されていたが、本変形例においては、更に先端側にまで延出され、保持部材11の貫通孔11b′を貫通して、保持部材11の先端側の端部よりも先端側の位置にまで延出されている。 
 また、光ファイバ13は、この被覆チューブ14aの先端の位置より先端側は、koa13b及びクラッド13cからなる光学構造13aとなり、この光学構造13aの基端側は、フェルール19の貫通孔を挿通されるようにして取り囲むように保持され、フェルール19の上下、左右の外面にアクチュエータ17の圧電素子17a~17dが設けられる。
 本変形例においては、被覆チューブ14aは、第1領域R1と、第2領域R2において、光学構造13aを覆い、第3領域R3においては光学構造13aを覆わない構造にしている。 
 また、フェルール19は、第3領域R3において光学構造13aを取り囲むように光ファイバ13を保持するように配置されている。 
 本変形例においても、挿入部6が屈曲した管腔臓器内等に挿入された場合において、先端部8の基端の周辺の第1領域R1に過度の屈曲が作用した場合には、第1の実施形態において説明したように光ファイバ13の折損を有効に防止することができる。 
 なお、上述した実施形態又は変形例を部分的に組み合わせて異なる実施形態を構成しても良い。
 本出願は、2016年2月29日に日本国に出願された特願2016-37581号を優先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の範囲に引用されるものとする。

Claims (11)

  1.  入射側に入射された入射光を導光し、照射側から被写体に照射光を照射する光ファイバと、
     前記光ファイバを取り囲むように設けられたフェルールと、
     前記光ファイバを取り囲んで保持する保持部と、
     前記保持部よりも前記照射側における前記フェルールに配置され、前記光ファイバを振動させる駆動素子と、を有し、
     前記光ファイバは、前記入射光を導光する光学構造と、
     前記保持部における前記入射側の第1端面の周辺の第1領域において前記光学構造を被覆する被覆構造と、
     を有することを特徴とする走査型内視鏡。
  2.  前記被覆構造は、前記保持部における前記照射側の第2端面の周辺の第2領域において、前記光学構造を被覆しない構造であり、
     前記フェルールは、前記第2領域において前記光ファイバを取り囲むことを特徴とする請求項1に記載の走査型内視鏡。
  3.  前記被覆構造は、前記保持部における前記照射側の第2端面の周辺の第2領域において、前記光学構造を被覆し、
     前記被覆構造は、前記駆動素子が配置された第3領域において、前記光学構造を被覆することを特徴とする請求項1に記載の走査型内視鏡。
  4.  前記被覆構造はポリイミドを含み、
     前記光ファイバの外径は、100μm以下であることを特徴とする請求項3に記載の走査型内視鏡。
  5.  前記被覆構造は、前記第3領域よりも前記出射側の少なくとも一部において、前記光学構造を被覆していないことを特徴とする請求項3に記載の走査型内視鏡。
  6.  前記フェルールは、前記第2領域において、前記光ファイバを取り囲むことを特徴とする請求項3に記載の走査型内視鏡。
  7.  前記フェルールは、前記第1領域において、前記光ファイバを取り囲むことを特徴とする請求項3に記載の走査型内視鏡。
  8.  前記フェルールは、軸と垂直方向の断面が正方形となるように形成され、
     前記駆動素子は、前記正方形の辺に沿うように配置された平板電極を含むことを特徴とする請求項1に記載の走査型内視鏡。
  9.  更に、中心軸に沿った孔を貫通させるようにして前記光ファイバの先端側部分の外周面に設けた四角柱形状に形成された前記フェルールと、前記駆動素子とを収納し、前記保持部の外周面が固定される、挿入部の先端側に設けられた硬質部を構成する硬質の円筒部材と、
     前記円筒部材の基端付近に、先端が接続され、前記先端からその基端までが前記挿入部の可撓管部を構成する可撓性のチューブと、
     を有し、
     前記光ファイバは、前記光学構造として円柱形状のコアと、前記コアの外周に一体的に設けられ、前記コアの屈折率より小さい屈折率を有する円筒形状のクラッドとを有し、
     前記被覆構造は、前記第1の領域を形成する前記硬質部と前記可撓管部との境界領域において前記クラッドの外周面を被覆する可撓性の被覆チューブにより形成されることを特徴とする請求項1に記載の走査型内視鏡。
  10.  前記円筒部材は、硬質の部材で形成される前記保持部の先端側の外周面に固定され、前記円筒部材の基端よりも前記挿入部の基端側に延出する前記保持部の基端が前記硬質部の基端を形成することを特徴とする請求項9に記載の走査型内視鏡。
  11.  前記被覆チューブは、前記光学構造のみからなる前記光ファイバにおける許容される最大の屈曲量以上に屈曲されることを抑制する特性の硬度又は可撓性に設定されることを特徴とする請求項9に記載の走査型内視鏡。
PCT/JP2016/084764 2016-02-29 2016-11-24 走査型内視鏡 WO2017149863A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018502528A JPWO2017149863A1 (ja) 2016-02-29 2016-11-24 走査型内視鏡

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016037581 2016-02-29
JP2016-037581 2016-02-29

Publications (1)

Publication Number Publication Date
WO2017149863A1 true WO2017149863A1 (ja) 2017-09-08

Family

ID=59743694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084764 WO2017149863A1 (ja) 2016-02-29 2016-11-24 走査型内視鏡

Country Status (2)

Country Link
JP (1) JPWO2017149863A1 (ja)
WO (1) WO2017149863A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020044541A1 (ja) * 2018-08-31 2020-03-05 オリンパス株式会社 光ファイバスキャナ、照明装置および観察装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002505890A (ja) * 1998-03-06 2002-02-26 オプティカル・コーヒランス・テクノロジーズ・インコーポレーテッド 光学干渉性トモグラフィー装置、光ファイバ側方向スキャナと“invivo”生体組織検査法
JP2003535659A (ja) * 2000-06-19 2003-12-02 ユニヴァーシティ オブ ワシントン 走査型単一光ファイバシステムを用いる医療用画像化、診断および治療
JP2007275193A (ja) * 2006-04-04 2007-10-25 Fujifilm Corp 光プローブおよび光断層画像化装置
JP2009077843A (ja) * 2007-09-26 2009-04-16 Fujifilm Corp 光走査プローブ
JP2011043389A (ja) * 2009-08-20 2011-03-03 Yokogawa Denshikiki Co Ltd フェルールプローブ
WO2015004961A1 (ja) * 2013-07-12 2015-01-15 オリンパスメディカルシステムズ株式会社 走査型内視鏡
JP2015080620A (ja) * 2013-10-23 2015-04-27 オリンパス株式会社 走査型内視鏡の光射出プローブ及び走査型内視鏡

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002505890A (ja) * 1998-03-06 2002-02-26 オプティカル・コーヒランス・テクノロジーズ・インコーポレーテッド 光学干渉性トモグラフィー装置、光ファイバ側方向スキャナと“invivo”生体組織検査法
JP2003535659A (ja) * 2000-06-19 2003-12-02 ユニヴァーシティ オブ ワシントン 走査型単一光ファイバシステムを用いる医療用画像化、診断および治療
JP2007275193A (ja) * 2006-04-04 2007-10-25 Fujifilm Corp 光プローブおよび光断層画像化装置
JP2009077843A (ja) * 2007-09-26 2009-04-16 Fujifilm Corp 光走査プローブ
JP2011043389A (ja) * 2009-08-20 2011-03-03 Yokogawa Denshikiki Co Ltd フェルールプローブ
WO2015004961A1 (ja) * 2013-07-12 2015-01-15 オリンパスメディカルシステムズ株式会社 走査型内視鏡
JP2015080620A (ja) * 2013-10-23 2015-04-27 オリンパス株式会社 走査型内視鏡の光射出プローブ及び走査型内視鏡

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020044541A1 (ja) * 2018-08-31 2020-03-05 オリンパス株式会社 光ファイバスキャナ、照明装置および観察装置

Also Published As

Publication number Publication date
JPWO2017149863A1 (ja) 2018-12-27

Similar Documents

Publication Publication Date Title
JP5765756B2 (ja) 走査型内視鏡
JP2009528128A (ja) 多クラッド光ファイバ走査器
WO2015163001A1 (ja) 光走査装置及び走査型内視鏡
JP5617057B2 (ja) 内視鏡装置
JP5551844B1 (ja) 内視鏡装置及び治療装置
WO2017149863A1 (ja) 走査型内視鏡
JP5836509B2 (ja) 走査型内視鏡
JP6033501B1 (ja) 走査型内視鏡
JP5993531B1 (ja) 走査型内視鏡
JP6143953B2 (ja) 走査型内視鏡システム
JP5953452B1 (ja) 走査型内視鏡
JP6210837B2 (ja) 走査型内視鏡の光射出プローブ
US9753281B2 (en) Scanning endoscope with longitudinal vibration absorption
JP6081678B1 (ja) 走査型内視鏡
WO2016017199A1 (ja) 光走査型観察システム
JP2015089440A (ja) 走査型内視鏡システム
JP2017077284A (ja) 走査型内視鏡
JP2016147021A (ja) 走査型内視鏡

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018502528

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16892698

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16892698

Country of ref document: EP

Kind code of ref document: A1