WO2017149708A1 - ストレージ装置及び記憶デバイス管理プログラム - Google Patents

ストレージ装置及び記憶デバイス管理プログラム Download PDF

Info

Publication number
WO2017149708A1
WO2017149708A1 PCT/JP2016/056478 JP2016056478W WO2017149708A1 WO 2017149708 A1 WO2017149708 A1 WO 2017149708A1 JP 2016056478 W JP2016056478 W JP 2016056478W WO 2017149708 A1 WO2017149708 A1 WO 2017149708A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage device
module
fan
temperature
housing
Prior art date
Application number
PCT/JP2016/056478
Other languages
English (en)
French (fr)
Inventor
敏久 田渕
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2018502947A priority Critical patent/JP6438626B2/ja
Priority to CN201680076744.9A priority patent/CN108475091B/zh
Priority to US15/763,222 priority patent/US10244667B2/en
Priority to PCT/JP2016/056478 priority patent/WO2017149708A1/ja
Publication of WO2017149708A1 publication Critical patent/WO2017149708A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20836Thermal management, e.g. server temperature control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/601Mounting; Assembling; Disassembling specially adapted for elastic fluid pumps
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/206Cooling means comprising thermal management
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B33/00Constructional parts, details or accessories not provided for in the other groups of this subclass
    • G11B33/12Disposition of constructional parts in the apparatus, e.g. of power supply, of modules
    • G11B33/125Disposition of constructional parts in the apparatus, e.g. of power supply, of modules the apparatus comprising a plurality of recording/reproducing devices, e.g. modular arrangements, arrays of disc drives
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B33/00Constructional parts, details or accessories not provided for in the other groups of this subclass
    • G11B33/14Reducing influence of physical parameters, e.g. temperature change, moisture, dust
    • G11B33/1406Reducing the influence of the temperature
    • G11B33/1413Reducing the influence of the temperature by fluid cooling
    • G11B33/142Reducing the influence of the temperature by fluid cooling by air cooling
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20718Forced ventilation of a gaseous coolant
    • H05K7/20727Forced ventilation of a gaseous coolant within server blades for removing heat from heat source

Definitions

  • the present invention relates to a storage device that manages storage devices and a storage device management program.
  • Patent Document 1 describes a plurality of dummy units that are detachably attached to a vacant part of a housing, and the dummy units are configured to be extendable and contractable in two stages (Patent Document). 1).
  • Patent Document 2 there is described a device that exhausts and cools the entire apparatus by the operation of an exhaust fan arranged at the top of the housing and the operation of a cooling fan in units of HDD (Hard Disk Drive) modules (see Patent Document 2).
  • an electric heating plate having high thermal conductivity is arranged from a portion close to a heat generation source to an upper end surface region of the storage case, and a Peltier element is interposed in the upper end surface region of the storage case of each electric heating plate.
  • a heat sink is installed to control the current flowing through each Peltier element in accordance with the temperature of each storage device (see Patent Document 3).
  • Storage devices compliant with standards such as SAS (SAN Attached Storage) and SATA (Serial ATA) have a maximum power consumption of about 8W, but storage devices compliant with NVMe (Non-Volatile Memory Express) standards When using, the maximum power consumption is 25W. For this reason, when storage devices with high power consumption are mounted at a high density, it is necessary to sufficiently cool each storage device.
  • SAS SAN Attached Storage
  • SATA Serial ATA
  • NVMe Non-Volatile Memory Express
  • An object of the present invention is to efficiently cool a storage device mounted at high density.
  • the present invention provides one or more housings including a first housing portion for housing a housing fan and a second housing portion for housing a plurality of storage devices;
  • the storage device includes a plurality of modules in which at least one of the storage devices or the storage device fan is modularized, and air outside the casing is supplied to the first storage portion.
  • a housing air inlet that leads to the body fan is formed, and a housing exhaust port that exhausts the air inside the housing to the outside of the housing is formed in the second storage portion,
  • Some modules are configured as storage device modules in which the one storage device is modularized, and other modules are modules in which the one storage device and the storage device fan are modularized.
  • Storage device module attached or the storage device for the fan is characterized in that it is composed of at least one module of the modular fan module.
  • FIG. 1 is an overall configuration diagram of a storage system showing an embodiment of the present invention. It is a perspective view of a drive box. It is a principal part disassembled perspective view of the drive module with a fan. It is a principal part disassembled perspective view of the drive module with another fan. It is a principal part disassembled perspective view of a fan module. It is a block diagram for demonstrating the internal structure of the drive box for high performance. It is a block diagram for demonstrating the internal structure of the drive box for intermediate
  • a plurality of modules in which at least one of the storage devices or storage device fans among the plurality of storage devices is modularized is housed in a housing in which an exhaust port is formed.
  • Some modules are configured by a storage device module in which the one storage device is modularized, and other modules are storage device modules with fans in which the one storage device and the storage device fan are modularized, Alternatively, the storage device fan is configured as a modularized fan module.
  • FIG. 1 is an overall configuration diagram of a storage system showing an embodiment of the present invention.
  • the storage system includes a plurality of host computers (hereinafter referred to as hosts) 10 and 12, a controller box 14, and a plurality of drive boxes 16.
  • hosts host computers
  • controller box 14 is connected to each drive box 16 via the network 20 or 22.
  • the controller box 14 and each drive box 16 are each configured as a casing that is an element of the storage apparatus.
  • Each of the hosts 10 and 12 is a computer device having information processing resources such as a CPU (Central Processing Unit), a memory, and an input / output interface, and is configured as, for example, a personal computer, a workstation, a main frame, or the like.
  • Each host 10, 12 issues an access request designating a logical volume provided from the storage device, for example, a write request (write request) or a read request (read request) to the storage device, thereby managing the storage device. Can be accessed.
  • a write request write request
  • read request read request
  • the controller box 14 includes a plurality of channel adapters (CHAs) 30, a plurality of CPUs 32, a plurality of disk adapters (DKAs) 34, and a plurality of power supply units (PSUs) 36.
  • Each channel adapter 30 transmits / receives information to / from the host 10 or 12 via the network 18.
  • the channel adapter 30 transfers the received access request to the CPU 32.
  • Each CPU 32 incorporates a microprogram 40 and is connected to each other via an internal network 42.
  • each CPU 32 performs processing according to the input access request and transfers the processing result to the disk adapter 34.
  • each CPU 32 When each CPU 32 receives data or the like from the disk adapter 34, the CPU 32 executes processing for storing the received data in the memory 38 and transfers the processing result to the host 10 or 12 via the channel adapter 30. Execute the process.
  • Each disk adapter 34 is connected to each drive box 16 via the network 20 or 22, and is configured as a controller that executes data input / output processing for storage devices in each drive box 16.
  • Each memory 38 is configured as a cache memory, for example, and is configured as a storage area for temporarily storing the processing result of each CPU 32.
  • Each drive box 16 includes a plurality of expanders (EXPs) 50, a plurality of drives 52, and a plurality of power supply units 54.
  • One expander 50 is connected in cascade with another expander 50 through an internal network 56, and the other expander 50 is connected in cascade with another expander 50 through an internal network 58.
  • the expander 50 connected to the internal network 56 is connected to each drive 52 under management and also connected to the drive 52 under management of the expander 50 connected to the internal network 58.
  • the expander 50 connected to the internal network 58 is connected to the drive 52 under management and also connected to the drive 52 under management of the expander 50 connected to the internal network 56.
  • each expander 50 When each expander 50 receives read access or write access from each disk adapter 34, the expander 50 selects the drive 52 designated by the read access or write access from the plurality of drives 52, and performs read access to the selected drive 52. Alternatively, write access is executed, data is read from the drive 52 designated by the read access, the read data is transferred to the disk adapter 34, and the write data is written to the drive 52 designated by the write access. Execute.
  • the drive 52 includes a storage device that stores data.
  • an HDD hard disk drive
  • a hard disk device for example, a SCSI (Small Computer System Interface) disk, a SATA (Serial ATA) disk, an ATA (AT Attachment) disk, a SAS (Serial Attached SCSI) disk, or the like can be used.
  • SCSI Serial Computer System Interface
  • SATA Serial ATA
  • ATA AT Attachment
  • SAS Serial Attached SCSI
  • SSD Solid State Drive
  • phase change memory Ovonic Unified Memory
  • RRAM registered trademark
  • FIG. 2 is a perspective view of the drive box.
  • the drive box 16 includes a fan storage portion (first storage portion) 60 and a canister storage portion (second storage portion) 62, and is configured as a box-shaped housing as a whole.
  • the fan housing 60 contains a plurality of housing fans (not shown).
  • the fan housing 60 is formed with a housing inlet (not shown) that guides air outside the housing to the housing fan.
  • a housing exhaust port for exhausting air inside the housing to the outside of the housing is formed in a region of the canister housing portion 62 opposite to the housing air intake port of the fan housing portion 60 (not shown).
  • a plurality of connectors (not shown), for example, 120 connectors are arranged at a high density on the bottom of the canister housing 62 and are mounted on a substrate (not shown). Each connector is disposed substantially in parallel along a virtual straight line connecting the housing intake port and the housing exhaust port.
  • a drive canister 64 is mounted on each connector. Each drive canister 64 is configured as a module for storing the drive 52, the substrate, or the like or a module for storing a fan. At this time, each canister 64 is a drive module with a fan in which the drive 52 and the fan 66 are modularized, a fan module in which only the fan 66 is modularized, or a drive module in which only the drive 52 is modularized. Composed.
  • Each connector at the bottom of the canister housing 62 is configured as a module connector that detachably supports each drive canister 64.
  • the module is a combination of a plurality of elements such as a drive 52 or a fan, a board, a connector (a connector that can be mounted on the connector at the bottom of the canister housing 62), and has a substantially rectangular parallelepiped shape as a whole. Means that it is configured with the prescribed outer dimensions.
  • FIG. 3 is an exploded perspective view of a main part of a drive module with a fan.
  • the fan-equipped drive module 70 includes a drive 52, a thin fan 66, a printed circuit board (drive adapter) 72, a male drive connector 74, a female drive connector 76, and a male drive connector 78.
  • the fan connector 80 and the fan cable 82 are provided.
  • the fan 66 is attached to substantially the center of the drive 52 and is configured as a drive fan (storage device fan) that sucks air from the back side of the drive 52 and exhausts air to the front side of the drive 52.
  • a female drive connector 76, a male drive connector 78, and a fan connector 80 are mounted on the printed circuit board 72.
  • the female drive connector 76 is coupled to a male drive connector 74 mounted on the drive 52, and the male drive connector 78 is a female drive connector (not shown) disposed in the canister housing portion 62 of the drive box 16.
  • the fan connector 80 is coupled to a connector (not shown) on the printed circuit board 72 and is connected to the fan 66 via the fan cable 82.
  • the fan cable 82 includes a power line for transmitting power to the fan 66 and a signal line (none of which is shown) for transmitting various signals to the fan 66.
  • FIG. 4 is an exploded perspective view of a main part of another fan-equipped drive module.
  • a drive module 90 with a fan includes a drive 52, a fan 92, a printed circuit board (drive adapter) 72, a male drive connector 74, a female drive connector 76, a male drive connector 78, and a fan.
  • a connector 80 and a fan cable 94 are provided.
  • the fan 92 is attached to the top (upper part) of the drive 52 and is configured as a drive fan (storage device fan) that sucks air from the upper surface side of the fan 92 and exhausts air to the drive 52 side.
  • a female drive connector 76, a male drive connector 78, and a fan connector 80 are mounted on the printed circuit board 72.
  • the female drive connector 76 is coupled to a male drive connector 74 mounted on the drive 52, and the male drive connector 78 is a female drive connector (not shown) disposed in the canister housing portion 62 of the drive box 16.
  • the fan connector 80 is coupled to a connector (not shown) on the printed circuit board 72 and is connected to the fan 92 via the fan cable 94.
  • the fan cable 94 includes a power line for transmitting power to the fan 92 and a signal line (none of which is shown) for transmitting various signals to the fan 92.
  • FIG. 5 is an exploded perspective view of the main part of the fan module.
  • the fan module 100 includes a fan case 102, a fan 104, a printed circuit board (drive adapter) 72, a male drive connector 78, a fan connector 80, and a fan cable 106.
  • the fan 104 is disposed at a substantially central portion of the box-shaped fan case 102 and sucks air from the front side (upper surface side) of the fan 104 and exhausts air from the exhaust port 108 to the side surface side of the adjacent module. Configured as a storage device fan).
  • a male drive connector 78 and a fan connector 80 are mounted on the printed circuit board 72.
  • the printed circuit board 72 is fixed to the lower side of the fan case 102.
  • the male drive connector 78 is coupled to a female drive connector (not shown) disposed in the canister housing portion 62 of the drive box 16.
  • the fan connector 80 is coupled to a connector (not shown) on the printed circuit board 72 and connected to the fan 104 via the fan cable 106.
  • the fan cable 106 includes a power line for transmitting power to the fan 104 and a signal line (all not shown) for transmitting various signals to the fan 104.
  • As a module there is a drive module in which a fan is not mounted and the drive 52 is mounted on the printed circuit board 72 via a connector.
  • FIG. 6 is a block diagram for explaining the internal configuration of the high-performance drive box.
  • the high-performance (Hi-Performance) drive box 16 having the highest cooling performance includes a plurality of substrates 200, 202, 204, a plurality of housing fans 206, and a plurality of connectors 208.
  • a plurality of modules are mounted on the substrate 200 on the exhaust side of each housing fan 206 so as to be substantially parallel along the direction in which the cooling air from the housing fan 206 flows.
  • no. 1-No. Drive modules 120 on which 60 drives 52 are mounted are mounted in three rows in the exhaust side area of the housing fan 206. In the region away from the exhaust side of the housing fan 206, no. 61-No.
  • the fan-equipped drive modules 70 on which 120 drives 52 are mounted are mounted in three rows.
  • the drive module 90 with a fan can also be mounted instead of the drive module 70 with a fan.
  • the drive 52 in each module is connected to one of the connectors 208 via the circuit patterns 210 and 212.
  • Each of the substrates 202 and 204 includes a plurality of expanders (EXP) 50, a microcontroller (Micro) 220, a flash memory (Flash) 222, and external connection connectors 224 and 226.
  • Each expander 50 is connected to the microcontroller 220, the flash memory 222, the external connection connector 224 or the external connection connector 226 and to the connector 208.
  • the microcontroller 220 is connected to the connector 208 and to the flash memory 222.
  • the external connection connectors 224 are connected to each other and to the disk adapter 34 via the network 20 or 22.
  • the external connection connectors 226 are connected to each other and to another drive box 16 via the internal network 56 or 58.
  • the microcontroller 220 monitors each drive 52 and controls the rotational speed of the fan 66 mounted on the fan-equipped drive module 70. At this time, the microcontroller 220 controls the rotation speed of the fan 66 based on the threshold value recorded in the flash memory 222.
  • each drive 52 in the high-performance drive box 16 can be cooled with high cooling performance.
  • FIG. 7 is a block diagram for explaining the internal configuration of the intermediate performance drive box.
  • the middle-performance drive box 16 having an intermediate cooling performance includes a plurality of boards 200, 202, 204, a plurality of housing fans 206, and a plurality of connectors 208. .
  • a plurality of modules are mounted on the substrate 200 on the exhaust side of each housing fan 206.
  • no. 1-No. Drive modules 120 including 40 drives 52 are arranged in two rows, and a plurality of types of modules are distributed and arranged in a region away from the exhaust side of the housing fan 206. For example, no.
  • a drive module 120 including 91 to 93, 95 to 97, and 99 to 100 drives 52 is mounted.
  • a drive module 120 including the drives 52 of 101 to 103, 105 to 107, 109 to 111, 113 to 115, and 117 to 119 is mounted.
  • the drive 52 in the drive module 120 adjacent to the fan module 100 can be efficiently cooled.
  • the drive 52 arranged in a region away from the housing fan 206 may not be sufficiently cooled.
  • the fan-equipped drive module 70 is mounted in these regions, The drive 52 can be efficiently cooled by the fan 66.
  • the intermediate performance drive box 16 shown in FIG. 7 can be used as the high performance drive box.
  • FIG. 8 is a block diagram for explaining the internal configuration of the low-performance drive box.
  • the low-performance drive box 16 having the lowest cooling performance includes a plurality of substrates 200, 202, 204, a plurality of housing fans 206, and a plurality of connectors 208.
  • a plurality of modules are mounted on the substrate 200 on the exhaust side of each housing fan 206.
  • This substrate 200 includes a No. 1-No. Only the drive module 120 including the drive 52 of the 120 drives 120 is mounted. Each drive 52 in the drive module 120 mounted on the substrate 200 is cooled only by the housing fan 206. For this reason, as the drive 52 mounted on each drive module 120, it is desirable to use a drive with low power consumption.
  • FIG. 9 is a perspective view of a housing on which a plurality of drive boxes are mounted.
  • a controller box 14 is mounted on the casing 300 from the bottom side, and a plurality of drive boxes 16 are mounted in multiple stages on the controller box 14.
  • a high performance drive box 16 is mounted on the controller box 14
  • an intermediate performance drive box 16 is mounted thereon
  • a low performance drive box 16 is mounted thereon.
  • the expanders 50 in each drive box 16 are cascade-connected (cascade connection), so that the latency due to the switching process of each expander 50 is increased. (Delay time) may occur.
  • the IO (Input / Output) performance decreases as the expander 50 becomes logically or physically far from the disk adapter 34 in the controller box 14. For this reason, by mounting the high performance drive box 16 at the position closest to the controller box 14, mounting the intermediate performance drive box 16 thereon, and further mounting the low performance drive box 16 thereon, The IO performance of the expander 50 is prevented from decreasing with the occurrence of latency.
  • the high performance drive box 16 and the intermediate performance drive box 16 are mounted in multiple stages on the controller box 14 in the housing 300, the high performance drive box 16 is configured as a lower housing.
  • the intermediate performance drive box 16 is configured as an upper casing.
  • a connector mounted in each drive box 16 a connector conforming to the NVMe standard, for example, a connector called SFF (Small Form Factor) -8639 is used.
  • SFF Small Form Factor
  • FIG. 10 is a block diagram for explaining the connection relationship of the electric circuit in the drive box.
  • a protocol signal 400 is output from the expander 50 to the drive module 120.
  • a response signal 402 is output, and a low-level presence signal 404 indicating that the module is mounted is output.
  • the microcontroller 220 outputs a PWM control signal 406 for controlling the rotation of the fan to the drive module 120.
  • a high-level fan module signal 410 which is a signal indicating that no fan is mounted, is output from the drive module 120 to the microcontroller 220.
  • a rotation speed detection signal 408 is output at which the rotation speed becomes zero.
  • the fan module 100 when the fan module 100 is mounted in the drive box 16, when the protocol link signal 400 is output from the expander 50 to the fan module 100, the protocol link signal 400 is directly used as the expander. Looped back to 50.
  • the fan module 100 outputs to the expander 50 a low level presence signal 404 indicating that the module is mounted.
  • the PWM control signal 406 when the PWM control signal 406 is output from the microcontroller 220 to the fan module 100, the fan module 100 controls the rotation of the fan 104 in accordance with the PWM control signal 406.
  • a rotation speed detection signal 408 indicating the rotation speed of the fan 104 is output from the fan module 100 to the microcontroller 220.
  • a low-level fan module signal 410 is output from the fan module 100 to the microcontroller 220 as a signal indicating that the fan 104 is mounted.
  • the PWM control signal 406 is output from the microcontroller 220 to the fan-equipped drive module 70.
  • the fan 66 in the fan-equipped drive module 70 rotates in accordance with the PWM control signal 406.
  • the rotational speed detection signal 408 indicating the rotational speed of the fan 66 is output from the drive module 70 with fan to the microcontroller 220, and the signal is at a low level indicating that the fan 66 is mounted.
  • the fan module signal 410 is output.
  • FIG. 11 is a configuration diagram of the management table.
  • a management table 500 is a table managed by the expander 50 or the microcontroller 220 and stored in each flash memory 222, and includes an item 502 and a value 504.
  • a mounting location 506, a module type 508, an ID (Identification) 510, and a temperature 512 are stored according to the number of drives 52.
  • the value 504 stores the value of each item 502 and the like.
  • the mounting location 506 is information indicating the mounting position of each drive 52 or module mounted in the drive box 16, and for example, when 120 drives 52 are mounted in the mounting location 502, No. 1-No. One of the numbers 120 is stored.
  • the module type 508 is information for identifying three types of modules including the drive 52.
  • the module type 504 stores a number “1” in the case of the drive module 120, a number “2” in the case of the drive module 70 with a fan, and a number in the case of the fan module 100.
  • the number “3” is stored.
  • ID 510 is information for identifying the drive 52.
  • the drive 52 is a storage device that conforms to the NVMe standard
  • information "AAAA” is stored.
  • the temperature 512 is a temperature detected by the internal temperature sensor of the drive 52.
  • the temperature 512 includes, for example, No.
  • information “45” is stored.
  • the management table 500 can also manage the rotational speed of the fan 66 or 104 mounted on the fan-equipped drive module 70 or the fan module 100, the set temperature for each drive 52, its threshold value, and the like.
  • the microcontroller 220 compares the temperature detected by the drive 52 with the set temperature, and can control the rotation speed of the fan according to whether or not the detected temperature exceeds the set temperature. For example, when the detected temperature exceeds the set temperature, the microcontroller 220 outputs a PWM control signal 406 for increasing the number of rotations of the fan, and when the detected temperature exceeds the set temperature after that, further rotation of the fan. A PWM control signal 406 for increasing the number can be output.
  • FIG. 12 is a flowchart for explaining the operation of the expander.
  • the expander 50 is in an idle state (S 1), and determines whether or not a module has been inserted into any of the drive boxes 16. That is, the expander 50 determines whether or not the module insertion is detected in the drive box 16 (S2). For example, it is determined whether or not a low-level presence signal 404 indicating that a module is installed is received from any module. If a negative determination result is obtained in step S2, the expander 50 returns to the process of step S1, and if a positive determination result is obtained in step S2, transmits the protocol link signal 400 to the module (S3). Then, it is determined whether or not there is a link response (S4). That is, the expander 50 determines whether or not the response signal 402 has been received from the module.
  • step S4 the expander 50 determines whether or not the own link signal is looped back (S5). That is, the expander 50 determines whether or not the protocol link signal 400 transmitted to the module is looped back as it is as the response signal 402.
  • step S5 When the negative determination result is obtained in step S5, the expander 50 executes the abnormality / failure process.
  • the expander 50 recognizes the module as the fan module 100 on the condition that the protocol link signal 400 is directly looped back as the response signal 402 (S7).
  • the location (mounting position) of the fan module 100 is recognized from the response signal 402, and the fan ID is recognized based on the recognized location (S8), and then becomes idle (state) (S9), and the process returns to step S1. .
  • step S4 If a positive determination result is obtained in step S4, the expander 50 starts a protocol link on the condition that the response signal 402 has been received (S10), and recognizes the mounting of the drive 52 mounted on the module.
  • step S11 the microcontroller 220 determines whether a low-level fan module signal 410 is detected from the module.
  • step S12 When a positive determination result is obtained in step S12, that is, when a signal indicating that the fan module signal 410 is detected is received from the microcontroller 220, the expander 50 recognizes the module as the fan-equipped drive module 70 (S13). ), The location of the fan-equipped drive module 70 is recognized on the basis of the response signal 402 from the module, and the ID of the drive 52 is recognized on the basis of the recognized location (S14), and then becomes an idle state (S15). The process returns to step S1.
  • step S12 when a negative determination result is obtained in step S12, if the microcontroller 220 does not detect the low level fan module signal 410 from the module, the expander 50 recognizes the module as the drive module 120 (S16). ) Recognizes the location of the drive module 120 based on the response signal 402 from the module, recognizes the ID of the drive 52 based on the recognized location (S17), and then enters the idle state (S18), step S1. Return to the process.
  • FIG. 13 is a flowchart for explaining the expander temperature management method.
  • the expander 50 periodically collects drive temperature information from an internal temperature sensor built in each drive 52 (S 21), and uses the collected drive temperature information as a detected temperature of each drive 52.
  • Information (temperature 512) is updated (S22), and it is determined whether or not the detected temperatures of all the drives 52 are equal to or lower than the temperature threshold Tth (S23).
  • step S23 When an affirmative determination result is obtained in step S23, the expander 50 executes a process for collecting drive temperature information from each drive 52 (S24), and returns to the process of step S21.
  • step S23 when a negative determination result is obtained in step S23, that is, when the temperature of at least one drive 52 exceeds the temperature threshold Tth, the expander 50 detects that the detected temperature exceeds the temperature threshold Tth. It is determined whether or not there is a fan (S25).
  • step S25 the expander 50 sets the fan rotation speed corresponding to the drive temperature for the fan of the module in which the high temperature drive 52 is mounted (S26). Then, the rotational speed of the fan is read (S27), and it is determined whether or not the rotational speed of the fan is the set rotational speed (S28).
  • step S28 If an affirmative determination result is obtained in step S28, the expander 50 starts a process for collecting drive temperature information (S29), and then returns to the process of step 21 and obtains a negative determination result in step S28. If this is the case, exception processing as fan abnormality, for example, processing for generating an alarm is executed (S30), and processing in this routine is terminated.
  • step S25 the expander 50 determines whether or not the fan module 100 is mounted in the coolable area in which the high-temperature drive is disposed (S31). .
  • step S31 the expander 50 sets the fan speed according to the drive temperature (S32), reads the fan speed from the microcontroller 220 (S33), and then sets the fan speed. Is determined to be the set rotational speed (S34).
  • step S34 When the expander 50 obtains a negative determination result in step S34, the expander executes exception processing as a fan abnormality (S30), thereafter ends the processing in this routine, and obtains a positive determination result in step S34. In this case, the process for collecting the temperature information of the drive 52 is started (S35), and the process returns to step S21.
  • step S31 when a negative determination result is obtained in step S31, that is, when it is impossible to cool the high temperature drive, the expander 50 executes a process for issuing a warning to the CPU 32 (S36). Thereafter, a process for collecting temperature information of the drive 52 is started (S37), and the process returns to step S21. Thereafter, the expander 50 repeats the processes of steps S21 to S37.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the expander 50, the microcontroller 220, and the flash memory 222 are integrated, and the integrated unit transmits / receives information to / from each module mounted in the drive box (housing) 16, and the position of each module. It can also be used as a drive controller for managing the type or a drive computer.
  • a storage device management program to be executed by the drive controller or the drive computer can be stored as a program in the flash memory 222 of the storage medium.
  • each of the above-described configurations, functions, etc. may be realized by hardware by designing a part or all of them, for example, by an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tables, and files that realize each function should be recorded in a recording device such as a memory, hard disk, SSD (Solid State Drive), or a recording medium such as an IC card, SD card, or DVD. Can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

筐体用ファンを収納するための第1の収納部と複数の記憶デバイスを収納するための第2の収納部を含む1以上の筐体と、複数の記憶デバイスの中の一つの記憶デバイス又は記憶デバイス用ファンのうち少なくとも一方がモジュール化された複数のモジュールと、モジュールの各々を着脱自在に支持する複数のモジュール用コネクタと、を有し、第1の収納部には、筐体外の空気を筐体用ファンに導く筐体用吸気口が形成され、第2の収納部には、筐体内の空気を筐体外に排気する筐体用排気口が形成され、複数のモジュールのうち一部のモジュールは、一つの記憶デバイスがモジュール化された記憶デバイスモジュールで構成され、他のモジュールは、一つの記憶デバイス及び記憶デバイス用ファンがモジュール化されたファン付き記憶デバイスモジュール、又は記憶デバイス用ファンがモジュール化されたファンモジュールのうち少なくとも一方のモジュールで構成される。

Description

ストレージ装置及び記憶デバイス管理プログラム
 本発明は、記憶デバイスを管理するストレージ装置及び記憶デバイス管理プログラムに関する。
 ハードディスクドライブなどの記憶デバイスは発熱体であるところから、記憶媒体を複数個筐体内に搭載する場合、ファンなどを用いて冷却する構成が採用されている。例えば、特許文献1には、筐体の空いている箇所に着脱可能に取り付けられた複数のダミーユニットを備え、ダミーユニットは2段階で伸縮可能に構成されたものが記載されている(特許文献1参照)。また、筐体の上部に配置された排気ファンの動作とHDD(Hard Disk Drive)モジュール単位の冷却ファンの動作によって装置全体の排気・冷却を行うものが記載されている(特許文献2参照)。さらに、特許文献3には、発熱源に近い部分からストレージ筐体の上端面領域に亘って熱伝導性の高い電熱板を配置し各電熱板のストレージ筐体の上端面領域にペルチェ素子を介して放熱板を設置し、各ペルチェ素子に流す電流を各ストレージ機器の温度に応じて制御するものが記載されている(特許文献3参照)。
 なお、記憶デバイスなどが搭載された増設筐体をドライブボックスなどに高密度に搭載する場合、ドライブボックスの正面から増設筐体を引き出し、ドライブボックスの正面以外のところから記憶デバイスを挿入する構造が採用されている。
特開2006-163695号公報 特開2007-179655号公報 特開2014-216512号公報
 記憶デバイスとしてSAS(SAN Attached Storage)やSATA(Serial ATA)などの規格に準拠した記憶デバイスは最大でも8W程度の消費電力であるが、NVMe(Non-Volatile Memory Express)の規格に準拠した記憶デバイスを用いる場合、最大25Wの消費電力となる。このため、消費電力の高い記憶デバイスを高密度に搭載する場合、各記憶デバイスに対する冷却を十分にすることが必要となる。
 本発明の目的は、高密度に搭載された記憶デバイスに対する冷却を効率良く行うことにある。
 前記課題を解決するために、本発明は、筐体用ファンを収納するための第1の収納部と複数の記憶デバイスを収納するための第2の収納部を含む1以上の筐体と、前記複数の記憶デバイスの中の一つの記憶デバイス又は記憶デバイス用ファンのうち少なくとも一方がモジュール化された複数のモジュールを有し、前記第1の収納部には、前記筐体外の空気を前記筐体用ファンに導く筐体用吸気口が形成され、前記第2の収納部には、前記筐体内の空気を前記筐体外に排気する筐体用排気口が形成され、前記複数のモジュールのうち一部のモジュールは、前記一つの記憶デバイスがモジュール化された記憶デバイスモジュールで構成され、他のモジュールは、前記一つの記憶デバイス及び前記記憶デバイス用ファンがモジュール化されたファン付き記憶デバイスモジュール、又は前記記憶デバイス用ファンがモジュール化されたファンモジュールのうち少なくとも一方のモジュールで構成されることを特徴とする。
 本発明によれば、高密度に搭載された記憶デバイスに対する冷却を効率良く行うことができる。
本発明の一実施例を示すストレージシステムの全体構成図である。 ドライブボックスの斜視図である。 ファン付きドライブモジュールの要部分解斜視図である。 他のファン付きドライブモジュールの要部分解斜視図である。 ファンモジュールの要部分解斜視図である。 高性能用ドライブボックスの内部構成を説明するためのブロック図である。 中間性能用ドライブボックスの内部構成を説明するためのブロック図である。 低性能用ドライブボックスの内部構成を説明するためのブロック図である。 複数のドライブボックスが搭載された筐体の斜視図である。 ドライブボックス内の電気回路の接続関係を説明するためのブロック図である。 管理テーブルの構成図である。 エキスパンダの動作を説明するためのフローチャートである。 エキスパンダの温度管理方法を説明するためのフローチャートである。
 (発明の概念)
 筐体用ファンと複数の記憶デバイスを収納する筐体であって、筐体外の空気を前記筐体用ファンに導く筐体用吸気口と、筐体内の空気を前記筐体外に排気する筐体用排気口が形成された筐体内に、前記複数の記憶デバイスの中の一つの記憶デバイス又は記憶デバイス用ファンのうち少なくとも一方がモジュール化された複数のモジュールが収納され、前記複数のモジュールのうち一部のモジュールは、前記一つの記憶デバイスがモジュール化された記憶デバイスモジュールで構成され、他のモジュールは、前記一つの記憶デバイス及び前記記憶デバイス用ファンがモジュール化されたファン付き記憶デバイスモジュール、又は前記記憶デバイス用ファンがモジュール化されたファンモジュールで構成される。
 (第1実施例)
 以下、本発明の一実施例を図面に基づいて説明する。図1は、本発明の一実施例を示すストレージシステムの全体構成図である。図1において、ストレージシステムは、複数のホスト計算機(以下、ホストと称する。)10、12と、コントローラボックス14と、複数のドライブボックス16を備えて構成される。各ホスト10、12は、ネットワーク18を介してコントローラボックス14に接続され、コントローラボックス14は、ネットワーク20または22を介して各ドライブボックス16に接続される。コントローラボックス14と各ドライブボックス16は、それぞれストレージ装置の一要素となる筐体として構成される。
 各ホスト10、12は、CPU(Central Processing Unit)、メモリ、入出力インタフェース等の情報処理資源を備えたコンピュータ装置であり、例えば、パーソナルコンピュータ、ワークステーション、メインフレーム等として構成される。各ホスト10、12は、ストレージ装置から提供される論理ボリュームを指定したアクセス要求、例えば、書き込み要求(ライト要求)あるいは読み出し要求(リード要求)をストレージ装置に発行することで、ストレージ装置の管理下にある論理ボリュームにアクセスすることができる。
 コントローラボックス14は、複数のチャンネルアダプタ(CHA)30と、複数のCPU32と、複数のディスクアダプタ(DKA)34と、複数の電源供給ユニット(PSU)36を備えて構成される。各チャンネルアダプタ30は、ネットワーク18を介してホスト10または12と情報の送受信を行い、ホスト10または12から、アクセス要求(リード要求またはライト要求)を受信した場合、受信したアクセス要求をCPU32に転送する。各CPU32はマイクロプログラム40を内蔵し、内部ネットワーク42を介して互いに接続される。各CPU32は、チャンネルアダプタ30からアクセス要求を入力した場合、入力したアクセス要求に従った処理を行い、処理結果をディスクアダプタ34に転送する。また、各CPU32は、ディスクアダプタ34からデータ等を受信した場合、受信したデータをメモリ38に格納する処理を実行するとともに、処理結果をチャンネルアダプタ30を介してホスト10または12に転送するための処理を実行する。各ディスクアダプタ34は、ネットワーク20または22を介して各ドライブボックス16に接続され、各ドライブボックス16内の記憶デバイスに対するデータ入出力処理を実行するコントローラとして構成される。なお、各メモリ38は、例えば、キャッシュメモリとして構成され、各CPU32の処理結果を一時的に格納する記憶領域として構成される。
 各ドライブボックス16は、複数のエキスパンダ(EXP)50と、複数のドライブ52と、複数の電源供給ユニット54を備えて構成される。一方のエキスパンダ50は、他のエキスパンダ50と内部ネットワーク56を介して互いに縦続接続され、他方のエキスパンダ50は、他のエキスパンダ50と内部ネットワーク58を介して縦続接続される。なお、内部ネットワーク56に接続されたエキスパンダ50は、管理下にある各ドライブ52に接続されているとともに、内部ネットワーク58に接続されたエキスパンダ50の管理下にあるドライブ52にも接続される。同様に、内部ネットワーク58に接続されたエキスパンダ50は、管理下にあるドライブ52に接続されるとともに、内部ネットワーク56に接続されたエキスパンダ50の管理下にあるドライブ52にも接続される。
 各エキスパンダ50は、各ディスクアダプタ34からリードアクセスまたはライトアクセスを受信した場合、複数のドライブ52の中からリードアクセスまたはライトアクセスで指定されたドライブ52を選択し、選択したドライブ52に対するリードアクセスまたはライトアクセスを実行し、リードアクセスで指定されたドライブ52からデータを読み出し、読み出したデータをディスクアダプタ34に転送する処理を実行し、ライトアクセスで指定されたドライブ52にライトデータを書き込む処理を実行する。
 ドライブ52は、データを記憶する記憶デバイスで構成される。各ドライブ52としては、例えば、HDD(ハードディスクドライブ)、ハードディスクデバイス、半導体メモリデバイス、光ディスクデバイス、光磁気ディスクデバイス、磁気テープデバイス、フレキシブルディスクデバイス等を用いることができる。ハードディスクデバイスとしては、例えば、SCSI(Small Computer System Interface)ディスク、SATA(Serial ATA)ディスク、ATA(AT Attachment)ディスク、SAS(Serial Attached SCSI)ディスク等を用いることができ、半導体メモリデバイスとしては、例えば、SSD(Solid State Drive)、相変化メモリ(Ovonic Unified Memory)、RRAM(登録商標)(Resistance Random Access Memory)等を用いることができる。
 図2は、ドライブボックスの斜視図である。図2において、ドライブボックス16は、ファン収納部(第1の収納部)60と、キャニスタ収納部(第2の収納部)62を有し、全体として箱型の筐体として構成される。ファン収納部60は、筐体用ファン(図示省略)を複数個内蔵している。ファン収納部60には、筐体外の空気を筐体用ファンに導く筐体用吸気口(図示省略)が形成される。キャニスタ収納部62のうち、ファン収納部60の筐体用吸気口とは反対側の領域には、筐体内の空気を筐体外に排気する筐体用排気口が形成される(図示省略)。キャニスタ収納部62の底部には、複数のコネクタ(図示省略)、例えば、120個のコネクタが高密度に配置されて、基板(図示省略)上に搭載されている。各コネクタは、筐体用吸気口と筐体用排気口とを結ぶ仮想の直線に沿って略平行に配置される。各コネクタには、それぞれドライブキャニスタ64が搭載される。各ドライブキャニスタ64は、ドライブ52や基板などを収納するモジュールあるいはファンを収納するモジュールとして構成される。この際、各キャニスタ64は、ドライブ52とファン66がモジュール化されたファン付きドライブモジュール、ファン66のみがモジュール化されたファンモジュール、ドライブ52のみがモジュール化されたドライブモジュールのいずれかのモジュールとして構成される。キャニスタ収納部62底部の各コネクタは、各ドライブキャニスタ64を着脱自在に支持するモジュール用コネクタとして構成される。ここで、モジュールとは、ドライブ52又はファン、基板、コネクタ(キャニスタ収納部62の底部のコネクタに搭載可能なコネクタ)など、複数の要素が組み合わされたものであって、全体として、略直方体形状で規定の外形寸法で構成されているものを意味する。
 図3は、ファン付きドライブモジュールの要部分解斜視図である。図3において、ファン付きドライブモジュール70は、ドライブ52と、薄型のファン66と、プリント基板(ドライブアダプタ)72と、雄型ドライブコネクタ74と、雌型ドライブコネクタ76と、雄型ドライブコネクタ78と、ファンコネクタ80と、ファンケーブル82を備えて構成される。ファン66は、ドライブ52のほぼ中央部に取り付けられ、ドライブ52の背面側から吸気してドライブ52の正面側に排気するドライブ用ファン(記憶デバイス用ファン)として構成される。プリント基板72には、雌型ドライブコネクタ76と雄型ドライブコネクタ78及びファンコネクタ80が搭載されている。雌型ドライブコネクタ76は、ドライブ52に搭載された雄型ドライブコネクタ74と結合され、雄型ドライブコネクタ78は、ドライブボックス16のキャニスタ収納部62に配置された雌型ドライブコネクタ(図示せず)と結合される。ファンコネクタ80は、プリント基板72上のコネクタ(図示せず)と結合され、ファンケーブル82を介してファン66と接続される。ファンケーブル82は、ファン66に電力を伝送するための電力線とファン66に各種の信号を伝送するための信号線(いずれも図示せず)から構成される。
 図4は、他のファン付きドライブモジュールの要部分解斜視図である。図4において、ファン付きドライブモジュール90は、ドライブ52と、ファン92と、プリント基板(ドライブアダプタ)72と、雄型ドライブコネクタ74と、雌型ドライブコネクタ76と、雄型ドライブコネクタ78と、ファンコネクタ80と、ファンケーブル94を備えて構成される。ファン92は、ドライブ52の頂部(上部)に取り付けられ、ファン92の上面側から吸気してドライブ52側に排気するドライブ用ファン(記憶デバイス用ファン)として構成される。プリント基板72には、雌型ドライブコネクタ76と雄型ドライブコネクタ78及びファンコネクタ80が搭載されている。雌型ドライブコネクタ76は、ドライブ52に搭載された雄型ドライブコネクタ74と結合され、雄型ドライブコネクタ78は、ドライブボックス16のキャニスタ収納部62に配置された雌型ドライブコネクタ(図示せず)と結合される。ファンコネクタ80は、プリント基板72上のコネクタ(図示せず)と結合され、ファンケーブル94を介してファン92と接続される。ファンケーブル94は、ファン92に電力を伝送するための電力線とファン92に各種の信号を伝送するための信号線(いずれも図示せず)から構成される。
 図5は、ファンモジュールの要部分解斜視図である。図5において、ファンモジュール100は、ファンケース102と、ファン104と、プリント基板(ドライブアダプタ)72と、雄型ドライブコネクタ78と、ファンコネクタ80と、ファンケーブル106を備えて構成される。ファン104は、箱型形状のファンケース102の略中央部に配置され、ファン104の正面側(上面側)から吸気して排気口108から、隣接するモジュールの側面側に排気するドライブ用ファン(記憶デバイス用ファン)として構成される。プリント基板72には、雄型ドライブコネクタ78及びファンコネクタ80が搭載されている。プリント基板72は、ファンケース102の下部側に固定される。雄型ドライブコネクタ78は、ドライブボックス16のキャニスタ収納部62に配置された雌型ドライブコネクタ(図示せず)と結合される。ファンコネクタ80は、プリント基板72上のコネクタ(図示せず)と結合され、ファンケーブル106を介してファン104と接続される。ファンケーブル106は、ファン104に電力を伝送するための電力線とファン104に各種の信号を伝送するための信号線(いずれも図示せず)から構成される。なお、モジュールとしては、ファンが搭載されず、ドライブ52がコネクタを介してプリント基板72に搭載されるドライブモジュールが存在する。
 図6は、高性能用ドライブボックスの内部構成を説明するためのブロック図である。図6において、冷却性能が最も高い高性能(Hi-Performance)用ドライブボックス16は、複数の基板200、202、204と、複数の筐体用ファン206と、複数のコネクタ208を備えている。基板200には、複数のモジュールが各筐体用ファン206の排気側に、筐体用ファン206からの冷却風が流れる方向に沿って略平行になって搭載されている。例えば、No.1~No.60のドライブ52が搭載されたドライブモジュール120が筐体ファン206の排気側の領域に3列になって搭載されている。また筐体用ファン206の排気側から離れた領域には、No.61~No.120のドライブ52が搭載されたファン付きドライブモジュール70が3列になって搭載されている。なお、ファン付きドライブモジュール70の代わりにファン付きドライブモジュール90を搭載することもできる。各モジュール内のドライブ52は、回路パターン210、212を介していずれかのコネクタ208に接続される。
 各基板202、204は、複数のエキスパンダ(EXP)50と、マイクロコントローラ(Micro)220と、フラッシュメモリ(Flash)222と、外部接続コネクタ224、226を備えて構成される。各エキスパンダ50は、マイクロコントローラ220、フラッシュメモリ222、外部接続コネクタ224または外部接続コネクタ226に接続されるとともにコネクタ208に接続される。マイクロコントローラ220は、コネクタ208に接続されるとともに、フラッシュメモリ222に接続される。外部接続コネクタ224は、互いに接続されるとともに、ネットワーク20または22を介してディスクアダプタ34に接続される。外部接続コネクタ226は、互いに接続されるとともに、内部ネットワーク56または58を介して他のドライブボックス16に接続される。マイクロコントローラ220は、各ドライブ52を監視するとともに、ファン付きドライブモジュール70に搭載されたファン66の回転数などを制御する。この際、マイクロコントローラ220は、フラッシュメモリ222に記録された閾値などを基にファン66の回転数を制御する。
 高性能用ドライブボックス16においては、No.1~No.60のドライブ52が搭載されたドライブモジュール120に対しては、筐体用ファン206の冷却風によって十分に冷却することができる。一方、No.61~No.120のドライブ52に対しては、ファン付きドライブモジュール70に搭載されたファン66によって各ドライブ52を十分に冷却することができる。このため、高性能用ドライブボックス16内に複数のドライブ52が高密度に搭載されても、高い冷却性能で高性能用ドライブボックス16内の各ドライブ52を冷却することができる。
 図7は、中間性能用ドライブボックスの内部構成を説明するためのブロック図である。図7において、冷却性能が中間となる中間性能(Middle-Performance)用ドライブボックス16は、複数の基板200、202、204と、複数の筐体用ファン206と、複数のコネクタ208を備えている。基板200には、複数のモジュールが各筐体用ファン206の排気側に搭載されている。基板200のうち筐体用ファン206の排気側近傍の領域には、No.1~No.40のドライブ52を含むドライブモジュール120が2列になって配置され、筐体用ファン206の排気側から離れた領域には、複数種類のモジュールが分散して配置される。例えば、No.44、48、52、56、60、61、63、65、67、69、71、73、75、77、79、82、86、90、94、98のドライブ52を含むファンモジュール100と、No.41~43、45~47、49~51、53~55、57~59、62、64、66、68、70、72、74、76、78、80、81、83~85、87~89、91~93、95~97、99~100のドライブ52を含むドライブモジュール120が搭載される。また、筐体用ファン206から最も離れた領域には、No.104、108、112、116、120のドライブ52を含むファン付きドライブモジュール70と、No.101~103、105~107、109~111、113~115、117~119のドライブ52を含むドライブモジュール120が搭載される。
 ファンモジュール100は、ファン104が正面から吸気した後、この吸気を側面側から排気するため、ファンモジュール100に隣接したドライブモジュール120内のドライブ52を効率良く冷却することができる。筐体用ファン206から離れた領域に配置されたドライブ52は十分に冷却されない恐れがあるが、これらの領域には、ファン付きドライブモジュール70が搭載されているので、ファン付きドライブモジュール70内のドライブ52をファン66で効率良く冷却することができる。なお、図6に示される高性能用ドライブボックス16の代わりに、図7に示される中間性能用ドライブボック16を高性能用ドライブボックスとして用いることもできる。
 図8は、低性能用ドライブボックスの内部構成を説明するためのブロック図である。図8において、冷却性能が最も低い低性能(Low-Performance)用ドライブボックス16は、複数の基板200、202、204と、複数の筐体用ファン206と、複数のコネクタ208を備えている。基板200には、複数のモジュールが各筐体用ファン206の排気側に搭載されている。この基板200には、No.1~No.120のドライブ120のドライブ52を含むドライブモジュール120のみが搭載される。基板200に搭載されたドライブモジュール120内の各ドライブ52は、筐体用ファン206によってのみ冷却される。このため、各ドライブモジュール120に搭載されるドライブ52としては、消費電力が低いものを用いることが望ましい。
 図9は、複数のドライブボックスが搭載された筐体の斜視図である。図9において、筐体300には、底部側からコントローラボックス14が搭載され、コントローラボックス14の上には、複数のドライブボックス16が多段に搭載されている。この際、コントローラボックス14の上には、高性能用ドライブボックス16が搭載され、その上に、中間性能用ドライブボックス16が搭載され、さらにその上には低性能用ドライブボックス16が搭載される。コントローラボックス14の上に複数のドライブボックス16を積み重ねるように搭載する場合、各ドライブボックス16内のエキスパンダ50は、順次カスケード接続(縦続接続)されるため、各エキスパンダ50のスイッチング処理によるレイテンシ(遅延時間)が発生することがある。この際、コントローラボックス14内のディスクアダプタ34から論理的或いは物理的に遠くなるエキスパンダ50程IO(Input Output)性能が低下する。このため、コントローラボックス14に最も近い位置に高性能用ドライブボックス16を搭載し、その上に中間性能用ドライブボックス16を搭載し、さらにその上に低性能用ドライブボックス16を搭載することで、レイテンシの発生に伴ってエキスパンダ50のIO性能が低下するのを抑制している。なお、筐体300のうちコントローラボックス14の上に、高性能用ドライブボックス16と中間性能用ドライブボックス16が多段に搭載された場合、高性能用ドライブボックス16は、下段側筐体として構成され、中間性能用ドライブボックス16は、上段側筐体として構成される。
 なお、各ドライブボックス16に搭載されるコネクタとしては、NVMe規格に適合するタイプのもの、例えばSFF(Small Form Factor)-8639と呼ばれるものが用いられる。
 図10は、ドライブボックス内の電気回路の接続関係を説明するためのブロック図である。図10(A)において、ドライブボックス16内にドライブモジュール120が搭載された場合、エキスパンダ50からドライブモジュール120に対してプロトコル信号400が出力され、ドライブモジュール120から、エキスパンダ50に対して、応答信号402が出力されると共に、モジュールが搭載されたことを示すローレベルのプレゼンス信号404が出力される。一方、マイクロコントローラ220は、ドライブモジュール120に対して、ファンの回転を制御するためのPWM制御信号406を出力する。この際、ドライブモジュール120には、ファンが搭載されていないため、ドライブモジュール120からマイクロコントローラ220に対して、ファンが搭載されていない旨の信号である、ハイレベルのファンモジュール信号410が出力されると共に、回転数が零となる回転数検知信号408が出力される。
 図10(B)において、ドライブボックス16内にファンモジュール100が搭載された場合、エキスパンダ50からファンモジュール100に対してプロトコルリンク信号400が出力されると、このプロトコルリンク信号400がそのままエキスパンダ50にループバックされる。ファンモジュール100からエキスパンダ50には、モジュールが搭載されたことを示すローレベルのプレゼンス信号404が出力される。一方、マイクロコントローラ220からPWM制御信号406がファンモジュール100に出力されると、ファンモジュール100では、PWM制御信号406に従ってファン104の回転が制御される。このとき、ファンモジュール100からマイクロコントローラ220に対してファン104の回転数を示す回転数検知信号408が出力される。またファンモジュール100からマイクロコントローラ220に対して、ファン104が搭載されている旨の信号として、ローレベルのファンモジュール信号410が出力される。
 図10(C)において、ドライブボックス16内にファン付きドライブモジュール70が搭載された場合、エキスパンダ50からファン付きドライブモジュール70に対してプロトコルリンク信号400が出力されると、ファン付きドライブモジュール70からエキスパンダ50に対して応答信号402が出力されるとともに、モジュールが搭載されたことを示すローレベルのプレゼンス信号404が出力される。
 一方、マイクロコントローラ220からファン付きドライブモジュール70に対してPWM制御信号406が出力される。これにより、ファン付きドライブモジュール70内のファン66がPWM制御信号406に従って回転する。このとき、ファン付きドライブモジュール70からマイクロコントローラ220に対して、ファン66の回転数を示す回転数検知信号408が出力されるとともに、ファン66が搭載されている旨を示すローレベルの信号である、ファンモジュール信号410が出力される。
 図11は、管理テーブルの構成図である。図11において、管理テーブル500は、エキスパンダ50又はマイクロコントローラ220によって管理され、各フラッシュメモリ222に格納されるテーブルであって、項目502と、値504から構成される。項目502には、実装ロケーション506と、モジュールタイプ508と、ID(Identification)510と、温度512がドライブ52の数に応じて格納される。値504には、各項目502の値等が格納される。
 実装ロケーション506は、ドライブボックス16に搭載される各ドライブ52またはモジュールの実装位置を示す情報であって、実装ロケーション502には、例えば、120個のドライブ52が搭載される場合、No.1~No.120のうちいずれかの番号が格納される。
 モジュールタイプ508は、ドライブ52を含む3種類のモジュールのタイプを識別するための情報である。モジュールタイプ504には、ドライブモジュール120の場合には、「1」の番号が格納され、ファン付きドライブモジュール70の場合には、「2」の番号が格納され、ファンモジュール100の場合には、「3」の番号が格納される。
 ID510は、ドライブ52を識別するための情報であって、例えば、ドライブ52が、NVMeの規格に適合する記憶デバイスの場合には、「AAAA」の情報が格納される。温度512は、ドライブ52の内部温度センサで検出される温度である。温度512には、例えば、No.1のドライブ52の温度が45℃である場合、「45」の情報が格納される。
 なお、管理テーブル500で、ファン付きドライブモジュール70又はファンモジュール100に搭載されるファン66又は104の回転数、各ドライブ52に対する設定温度とその閾値等を管理することもできる。この際、マイクロコントローラ220は、ドライブ52で検出された温度と設定温度とを比較し、検出温度が設定温度を超えたか否かに応じてファンの回転数を制御することができる。例えば、検出された温度が設定温度を超えたときには、マイクロコントローラ220は、ファンの回転数を上げるためのPWM制御信号406を出力し、その後検出温度が設定温度を超えたときには、さらにファンの回転数を高くするためのPWM制御信号406を出力することができる。
 図12は、エキスパンダの動作を説明するためのフローチャートである。図12において、まず、エキスパンダ50は、アイドル(状態)にあり(S1)、ドライブボックス16内のいずれかにモジュールが挿入されたか否かを判定する。すなわち、エキスパンダ50は、ドライブボックス16へのモジュール挿入検知がされたか否かを判定する(S2)。例えば、いずれかのモジュールから、モジュールが搭載されたことを示すローレベルのプレゼンス信号404を受信したか否かを判定する。ステップS2で否定の判定結果を得た場合、エキスパンダ50は、ステップS1の処理に戻り、ステップS2で肯定の判定結果を得た場合、モジュールに対してプロトコルリンク信号400を発信し(S3)、リンク応答があるか否かを判定する(S4)。すなわち、エキスパンダ50は、モジュールから応答信号402を受信したか否かを判定する。
 ステップS4で否定の判定結果を得た場合、エキスパンダ50は、自リンク信号がループバックされたか否かを判定する(S5)。すなわち、エキスパンダ50は、モジュールに送信したプロトコルリンク信号400がそのまま応答信号402としてループバックされたか否かを判定する。
 ステップS5で否定の判定結果を得た場合、エキスパンダ50は、異常・障害処理を実行する。一方、ステップS5で肯定の判定結果を得た場合、エキスパンダ50は、プロトコルリンク信号400がそのまま応答信号402としてループバックされたことを条件に、モジュールをファンモジュール100として認識し(S7)、応答信号402からファンモジュール100のロケーション(搭載位置)を認識するとともに、認識したロケーションを基にファンのIDを認識し(S8)、その後アイドル(状態)となり(S9)、ステップS1の処理に戻る。
 また、ステップS4で肯定の判定結果を得た場合、エキスパンダ50は、応答信号402を受信したことを条件に、プロトコルリンクを開始し(S10)、モジュールに搭載されたドライブ52の実装を認識するための処理を行い(S11)、マイクロコントローラ220がモジュールから、ローレベルのファンモジュール信号410を検出したか否かを判定する(S12)。
 ステップS12で肯定の判定結果を得た場合、即ち、マイクロコントローラ220からファンモジュール信号410を検出した旨の信号を受信した場合、エキスパンダ50は、モジュールをファン付きドライブモジュール70として認識し(S13)、モジュールからの応答信号402を基にファン付きドライブモジュール70のロケーションを認識するとともに、認識したロケーションを基にドライブ52のIDを認識し(S14)、その後アイドル(状態)となり(S15)、ステップS1の処理に戻る。
 一方、ステップS12で否定の判定結果を得た場合、マイクロコントローラ220がモジュールから、ローレベルのファンモジュール信号410を検出していない場合、エキスパンダ50は、モジュールをドライブモジュール120として認識し(S16)、モジュールからの応答信号402を基にドライブモジュール120のロケーションを認識するとともに、認識したロケーションを基にドライブ52のIDを認識し(S17)、その後アイドル(状態)となり(S18)、ステップS1の処理に戻る。
 図13は、エキスパンダの温度管理方法を説明するためのフローチャートである。図13において、エキスパンダ50は、各ドライブ52に内蔵された内部温度センサから定期的にドライブ温度情報を採取し(S21)、採取したドライブ温度情報を、各ドライブ52の検出温度として管理テーブル500の情報(温度512)を更新し(S22)、全てのドライブ52の検出温度が、温度閾値Tth以下であるか否かを判定する(S23)。
 ステップS23で肯定の判定結果を得た場合、エキスパンダ50は、各ドライブ52からドライブ温度情報を採取するための処理を実行し(S24)、ステップS21の処理に戻る。
 一方、ステップS23で否定の判定結果を得た場合、即ち、少なくとも1つのドライブ52の温度が温度閾値Tthを超えている場合、エキスパンダ50は、検出温度が温度閾値Tthを超えた高温ドライブ52にファンがあるか否かを判定する(S25)。
 ステップS25で肯定の判定結果を得た場合、エキスパンダ50は、高温ドライブ52が搭載されたモジュールのファンに対して、ドライブ温度に応じたファン回転数を設定し(S26)、マイクロコントローラ220から、ファンの回転数を読み取り(S27)、ファンの回転数が設定回転数か否かを判定する(S28)。
 ステップS28で肯定の判定結果を得た場合、エキスパンダ50は、ドライブ温度情報を採取するための処理を開始し(S29)、その後ステップ21の処理に戻り、ステップS28で否定の判定結果を得た場合、ファン異常としての例外処理、例えば、アラームを発生するための処理を実行し(S30)、このルーチンでの処理を終了する。
 一方、ステップS25で否定の判定結果を得た場合、エキスパンダ50は、高温ドライブが配置されたエリアであって、冷却可能エリアにファンモジュール100が実装されているか否かを判定する(S31)。
 ステップS31で肯定の判定結果を得た場合、エキスパンダ50は、ドライブ温度に応じたファン回転数を設定し(S32)、マイクロコントローラ220から、ファンの回転数を読み取り(S33)、ファン回転数が設定回転数か否かを判定する(S34)。
 エキスパンダ50は、ステップS34で否定の判定結果を得た場合、ファン異常として例外処理を実行し(S30)、その後、このルーチンでの処理を終了し、ステップS34で肯定の判定結果を得た場合、ドライブ52の温度情報を採取するための処理を開始し(S35)、ステップS21の処理に戻る。
 一方、ステップS31で否定の判定結果を得た場合、即ち、高温ドライブを冷却することが不可能である場合、エキスパンダ50は、警告をCPU32へ発行するための処理を実行し(S36)、その後、ドライブ52の温度情報を採取するための処理を開始し(S37)、ステップS21の処理に戻る。この後、エキスパンダ50は、ステップS21~S37の処理を繰り返す。
 本実施例によれば、高密度に搭載された記憶デバイスに対する冷却を効率良く行うことができる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、エキスパンダ50と、マイクロコントローラ220と、フラッシュメモリ222を一体化し、一体化したものを、ドライブボックス(筐体)16に搭載された各モジュールと情報の送受信を行い、各モジュールの位置と種別を管理するドライブコントローラ或いはドライブ用コンピュータとして用いることもできる。この場合、記憶媒体のフラッシュメモリ222に、プログラムとして、ドライブコントローラ或いはドライブ用コンピュータに実行させるための記憶デバイス管理プログラムを格納することができる。上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、上記の各構成、機能等は、それらの一部又は全部を、例えば、集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に記録して置くことができる。
 10、12 ホスト、14 コントローラボックス、16 ドライブボックス、18 ネットワーク、30 チャンネルアダプタ、32 CPU、34 ディスクアダプタ、50 エキスパンダ、52 ドライブ、60 ファン収納部、62 キャニスタ収納部、66 ファン、70 ファン付きドライブモジュール、100 ファンモジュール、104 ファン、120 ドライブモジュール、220 マイクロコントローラ、222 フラッシュメモリ。

Claims (11)

  1.  データを記憶する複数の記憶デバイスを有するストレージ装置であって、
     筐体用ファンを収納するための第1の収納部と前記記憶デバイスを収納するための第2の収納部を含む1以上の筐体と、
     前記複数の記憶デバイスの中の一つの記憶デバイス又は記憶デバイス用ファンのうち少なくとも一方がモジュール化された複数のモジュールと、
     前記第2の収納部に配置されて、前記モジュールの各々を着脱自在に支持する複数のモジュール用コネクタと、を有し、
     前記第1の収納部には、前記筐体外の空気を前記筐体用ファンに導く筐体用吸気口が形成され、
     前記第2の収納部には、前記筐体内の空気を前記筐体外に排気する筐体用排気口が形成され、
     前記複数のモジュールのうち一部のモジュールは、
     前記一つの記憶デバイスがモジュール化された記憶デバイスモジュールで構成され、
     前記複数のモジュールのうち他のモジュールは、
     前記一つの記憶デバイス及び前記記憶デバイス用ファンがモジュール化されたファン付き記憶デバイスモジュール、又は前記記憶デバイス用ファンがモジュール化されたファンモジュールのうち少なくとも一方のモジュールで構成されることを特徴とするストレージ装置。
  2.  請求項1に記載のストレージ装置において、
     前記他のモジュールは、
     前記ファン付き記憶デバイスモジュールで構成され、前記第2の収納部のうち前記筐体用吸気口から離れた領域であって、前記筐体用排気口に近接した排気側の領域に搭載されていることを特徴とするストレージ装置。
  3.  請求項1に記載のストレージ装置において、
     前記第2の収納部のうち、前記第1の収納部に近接した吸気側の領域には、前記記憶デバイスモジュールが2以上搭載され、前記第2の収納部のうち、前記筐体用排気口に近接した排気側の領域には、前記記憶デバイスモジュールと前記ファン付き記憶デバイスモジュールがそれぞれ2以上搭載され、前記第2の収納部のうち、前記吸気側の領域と前記排気側の領域との間の中間領域には、前記ファンモジュールと前記記憶デバイスモジュールがそれぞれ2以上搭載されていることを特徴とするストレージ装置。
  4.  請求項3に記載のストレージ装置において、
     前記排気側の領域には、前記記憶デバイスモジュールと前記ファン付き記憶デバイスモジュールが分散して配置され、
     前記ファン付き記憶デバイスモジュールの記憶デバイス用ファンは、当該ファン付き記憶デバイスモジュール内の記憶デバイスを冷却すると共に、相隣接する記憶デバイスモジュールの記憶デバイスを冷却することを特徴とするストレージ装置。
  5.  請求項3に記載のストレージ装置において、
     前記中間領域には、前記記憶デバイスモジュールと前記ファンモジュールが分散して配置され、
     前記ファンモジュールの記憶デバイス用ファンは、当該ファンモジュールに隣接する記憶デバイスモジュールの記憶デバイスを冷却することを特徴とするストレージ装置。
  6.  請求項1に記載のストレージ装置において、
     前記ファン付き記憶デバイスモジュールの記憶デバイスは、前記記憶デバイスモジュールの記憶デバイスよりも消費電力の高い記憶デバイスで構成されることを特徴とするストレージ装置。
  7.  請求項1に記載のストレージ装置において、
     前記筐体は、前記プロセッサの上部に多段になって配置され、
     前記筐体のうち前記プロセッサに近接した下段側筐体には、前記ファン付き記憶デバイスモジュールと前記記憶デバイスモジュールがそれぞれ2以上分散して搭載され、前記下段側筐体の上部に配置された上段側筐体には、前記記憶デバイスモジュールと前記ファンモジュールがそれぞれ2以上分散して搭載されることを特徴とするストレージ装置。
  8.  請求項1に記載のストレージ装置において、
     前記筐体に搭載された各モジュールと情報の送受信を行い、前記各モジュールの位置と種別を管理するドライブコントローラを有し、
     前記ドライブコントローラは、
     前記モジュールのうち前記記憶デバイスが存在するモジュールに配置された記憶デバイスから温度情報を採取し、前記採取した温度情報から得られたデバイス温度と温度閾値とを比較し、前記デバイス温度が前記温度閾値を超えた場合、前記デバイス温度が前記温度閾値を超えた高温記憶デバイスのモジュールに前記記憶デバイス用ファンが存在するか否かを判定し、前記高温記憶デバイスのモジュールに前記記憶デバイス用ファンが存在すると判定した場合、前記記憶デバイス用ファンの回転数を前記高温記憶デバイスのデバイス温度に応じた設定回転数に制御し、前記高温記憶デバイスのモジュールに前記記憶デバイス用ファンが存在しないと判定した場合、前記高温記憶デバイスのモジュールを冷却可能エリアに前記ファンモジュールが実装されているか否かを判定し、前記冷却可能エリアに前記ファンモジュールが実装されていると判定した場合、前記ファンモジュールの記憶デバイス用ファンの回転数を前記高温記憶デバイスのデバイス温度に応じた設定回転数に制御することを特徴とするストレージ装置。
  9.  請求項8に記載のストレージ装置において、
     前記ドライブコントローラは、
     前記高温記憶デバイスのモジュールにプロトコルリンク信号を送信した後、前記高温記憶デバイスのモジュールから前記プロトコルリンク信号に応答した応答信号を受信し、且つ前記高温記憶デバイスのモジュールから前記記憶デバイス用ファンが搭載されていることを示すファンモジュール信号を受信した場合、前記高温記憶デバイスのモジュールを前記ファン付き記憶デバイスモジュールとして認識し、前記高温温度デバイスのモジュールに前記記憶デバイス用ファンが存在すると判定し、
     前記高温記憶デバイスのモジュールにプロトコルリンク信号を送信した後、前記高温記憶デバイスのモジュールから前記プロトコルリンク信号がそのまま応答信号としてループバックされた場合、前記高温記憶デバイスのモジュールを前記ファンモジュールとして認識し、前記冷却可能エリアに前記ファンモジュールが実装されていると判定することを特徴とするストレージ装置。
  10.  筐体内に搭載されて、複数の記憶デバイスの中の一つの記憶デバイス又は記憶デバイス用ファンのうち少なくとも一方がモジュール化された複数のモジュールと情報の送受信を行い、前記各モジュールの位置と種別を管理するコンピュータに、
     前記モジュールのうち前記記憶デバイスが存在するモジュールに配置された記憶デバイスから温度情報を採取して、前記採取した温度情報から得られたデバイス温度と温度閾値とを比較する第1のステップと、
     前記第1のステップの比較結果から前記デバイス温度が前記温度閾値を超えた場合、前記デバイス温度が前記温度閾値を超えた高温記憶デバイスのモジュールに前記記憶デバイス用ファンが存在するか否かを判定する第2のステップと
     前記第2のステップで、前記高温記憶デバイスのモジュールに前記記憶デバイス用ファンが存在すると判定した場合、前記記憶デバイス用ファンの回転数を前記高温記憶デバイスのデバイス温度に応じた設定回転数に制御する第3のステップと、
     前記第2のステップで、前記高温記憶デバイスのモジュールに前記記憶デバイス用ファンが存在しないと判定した場合、前記高温記憶デバイスのモジュールを冷却可能エリアに前記ファンモジュールが実装されているか否かを判定する第4のステップと、
     前記第4のステップで、前記冷却可能エリアに前記ファンモジュールが実装されていると判定した場合、前記ファンモジュールの記憶デバイス用ファンの回転数を前記高温記憶デバイスのデバイス温度に応じた設定回転数に制御する第5のステップと、を実行させることを特徴とする記憶デバイス管理プログラム。
  11.  請求項10に記載の記憶デバイス管理プログラムにおいて、
     前記第2のステップでは、
     前記高温記憶デバイスのモジュールにプロトコルリンク信号を送信した後、前記高温記憶デバイスのモジュールから前記プロトコルリンク信号に応答した応答信号を受信し、且つ前記高温記憶デバイスのモジュールから前記記憶デバイス用ファンが搭載されていることを示すファンモジュール信号を受信した場合、前記高温記憶デバイスのモジュールを前記ファン付き記憶デバイスモジュールとして認識し、前記高温温度デバイスのモジュールに前記記憶デバイス用ファンが存在すると判定し、
     前記第4のステップでは、
     前記高温記憶デバイスのモジュールにプロトコルリンク信号を送信した後、前記高温記憶デバイスのモジュールから前記プロトコルリンク信号がそのまま応答信号としてループバックされた場合、前記高温記憶デバイスのモジュールを前記ファンモジュールとして認識し、前記冷却可能エリアに前記ファンモジュールが実装されていると判定することを特徴とする記憶デバイス管理プログラム。
PCT/JP2016/056478 2016-03-02 2016-03-02 ストレージ装置及び記憶デバイス管理プログラム WO2017149708A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018502947A JP6438626B2 (ja) 2016-03-02 2016-03-02 ストレージ装置及び記憶デバイス管理プログラム
CN201680076744.9A CN108475091B (zh) 2016-03-02 2016-03-02 存储装置和存储器件管理程序
US15/763,222 US10244667B2 (en) 2016-03-02 2016-03-02 Storage apparatus and storage device management program
PCT/JP2016/056478 WO2017149708A1 (ja) 2016-03-02 2016-03-02 ストレージ装置及び記憶デバイス管理プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/056478 WO2017149708A1 (ja) 2016-03-02 2016-03-02 ストレージ装置及び記憶デバイス管理プログラム

Publications (1)

Publication Number Publication Date
WO2017149708A1 true WO2017149708A1 (ja) 2017-09-08

Family

ID=59743619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056478 WO2017149708A1 (ja) 2016-03-02 2016-03-02 ストレージ装置及び記憶デバイス管理プログラム

Country Status (4)

Country Link
US (1) US10244667B2 (ja)
JP (1) JP6438626B2 (ja)
CN (1) CN108475091B (ja)
WO (1) WO2017149708A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10582650B2 (en) * 2017-10-13 2020-03-03 Arista Networks, Inc. Power supply with interchangeable fan module
US11540421B2 (en) * 2020-09-11 2022-12-27 Seagate Technology Llc Data storage device (DSD) and cooling system for DSD chassis

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007179655A (ja) * 2005-12-28 2007-07-12 Hitachi Ltd ディスクアレイ装置
JP2008251067A (ja) * 2007-03-29 2008-10-16 Hitachi Ltd ディスクアレイ装置
JP2014183062A (ja) * 2013-03-18 2014-09-29 Fujitsu Ltd 電子機器冷却システム及び電子機器冷却方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006163695A (ja) 2004-12-06 2006-06-22 Hitachi Ltd ストレージ装置、ストレージ装置用記憶部及びダミーユニット
US8416571B2 (en) * 2010-06-11 2013-04-09 Hitachi, Ltd. Storage apparatus and method of controlling cooling fans for storage apparatus
JP2014216512A (ja) 2013-04-26 2014-11-17 株式会社日立情報通信エンジニアリング ストレージ機器冷却装置
CN104635877A (zh) * 2015-01-23 2015-05-20 天津市景泰科技发展有限公司 一种加强型静音机箱

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007179655A (ja) * 2005-12-28 2007-07-12 Hitachi Ltd ディスクアレイ装置
JP2008251067A (ja) * 2007-03-29 2008-10-16 Hitachi Ltd ディスクアレイ装置
JP2014183062A (ja) * 2013-03-18 2014-09-29 Fujitsu Ltd 電子機器冷却システム及び電子機器冷却方法

Also Published As

Publication number Publication date
US10244667B2 (en) 2019-03-26
CN108475091B (zh) 2021-03-19
CN108475091A (zh) 2018-08-31
JPWO2017149708A1 (ja) 2018-07-05
JP6438626B2 (ja) 2018-12-19
US20180279513A1 (en) 2018-09-27

Similar Documents

Publication Publication Date Title
US7584325B2 (en) Apparatus, system, and method for providing a RAID storage system in a processor blade enclosure
JP4060235B2 (ja) ディスクアレイ装置及びディスクアレイ装置の制御方法
US9746886B2 (en) Solid state storage system
US9036342B2 (en) Storage apparatus and storage controller of storage apparatus
US8111514B2 (en) Removable hard drive module for a computer with improved thermal performance
JP5243614B2 (ja) ストレージ装置、ストレージ装置の記憶制御部、記憶制御部用筐体
TW201735021A (zh) 具有密集記憶卡之平行陣列與高氣流之資料儲存系統
US10528098B2 (en) Thermal aware workload scheduling
WO2018106355A1 (en) Data storage system with array of front fans and moving doors for airflow control
JP2006215664A (ja) 記憶システム及びその電源制御方法、アダプタ装置及びその電源制御方法並びに記憶制御装置及びその制御方法
US20120262873A1 (en) Motherboard and server using the same
US9280174B2 (en) Data storage device enclosure and module
JP6438626B2 (ja) ストレージ装置及び記憶デバイス管理プログラム
TWI572270B (zh) 存儲伺服器機架系統及存儲伺服器主機
CN114546068A (zh) 服务器
TW202137869A (zh) 伺服器
JP2008135031A (ja) ディスクアレイ装置及びディスクアレイ装置の制御方法
GB2508178A (en) Module for data storage devices with means by which the data storage device can be accessed from outside the module.

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018502947

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15763222

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16892549

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16892549

Country of ref document: EP

Kind code of ref document: A1