WO2017149601A1 - ビーム送受信方法、基地局、端末、および無線通信システム - Google Patents

ビーム送受信方法、基地局、端末、および無線通信システム Download PDF

Info

Publication number
WO2017149601A1
WO2017149601A1 PCT/JP2016/056054 JP2016056054W WO2017149601A1 WO 2017149601 A1 WO2017149601 A1 WO 2017149601A1 JP 2016056054 W JP2016056054 W JP 2016056054W WO 2017149601 A1 WO2017149601 A1 WO 2017149601A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
terminal
random access
signal
access signal
Prior art date
Application number
PCT/JP2016/056054
Other languages
English (en)
French (fr)
Inventor
福井 範行
石岡 和明
啓二郎 武
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/056054 priority Critical patent/WO2017149601A1/ja
Priority to CN201680082762.8A priority patent/CN108781374B/zh
Priority to US16/061,795 priority patent/US10897717B2/en
Priority to EP16892446.2A priority patent/EP3425949B1/en
Priority to JP2017551342A priority patent/JP6525357B2/ja
Publication of WO2017149601A1 publication Critical patent/WO2017149601A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]

Definitions

  • the present invention relates to a beam transmission / reception method, a base station, a terminal, and a wireless communication system in which one or more base stations forming a communication service area communicate with one or more terminals existing in each communication service area. .
  • This beam forming can also be applied when the base station receives a signal from the terminal. That is, by giving the receiving antenna of the base station a direction for receiving a signal, it is possible to prevent or reduce the influence of interference waves coming from other directions.
  • FIG. 13 is an explanatory diagram relating to a base station that secures a service area with a plurality of beam directions.
  • the terminal In the initial connection for starting communication, the terminal first searches for a base station that can obtain sufficient signal quality for communication. In addition, the terminal searches for neighboring base stations other than the base station in communication in the same manner during the so-called handover in which the base station with which communication is performed is switched.
  • FIG. 14 is an explanatory diagram showing a general handover signal sequence in a wireless communication system that does not use beamforming.
  • the terminal detects signal quality degradation with a base station (communication base station) that is in communication, the terminal receives and measures a broadcast signal transmitted by the neighboring base stations. Then, the terminal reports the result together with the handover request to the current communication base station.
  • a base station communication base station
  • the communication base station that has received the report determines one of the neighboring base stations with the best reception quality or the neighboring base station that can obtain the signal quality necessary for communication, and determines the neighboring base station. Make a handover request. If the neighboring base station that received the request can accept the handover, it returns a message to that effect to the communication base station.
  • the communication base station that has received the response indicating that the handover can be accepted transmits a handover execution command to the terminal together with information on the neighboring base station that is the handover destination (such as a base station ID).
  • the terminal that has received the handover execution command transmits a random access (RACH) signal as a communication request to the neighboring base station that is the handover destination.
  • RACH random access
  • the terminal can know the RACH signal reception timing of the base station from the broadcast signal, and transmits the RACH signal in accordance with the timing.
  • a synchronization signal necessary for the terminal to perform frequency synchronization and time synchronization with the base station and including a base station identifier (base station ID).
  • Reference signal (pilot) for measuring the quality of the signal from the base station also called a signal) -This is the minimum information necessary for the terminal to communicate with the base station. For example, information on the frequency and timing used by the base station for RACH signal reception
  • Patent Document 1 There is a conventional technique that discloses a method for performing an initial connection in a system using a beam forming technique (see, for example, Patent Document 1).
  • one base station sequentially changes the beam direction, and a terminal transmits a signal (search signal) for searching for a base station.
  • the search signal includes information related to the timing at which the base station receives the RACH signal.
  • the base station changes the beam direction for transmitting the search signal and changes the beam direction for receiving the RACH signal each time the timing is changed. For this reason, there is a correspondence between the direction and timing of both the search transmission beam and the RACH signal reception beam, and the search signal includes information on the corresponding RACH signal reception timing.
  • Patent Document 1 discloses that when a base station can simultaneously form a plurality of beams, a RACH signal is received by forming beams in a plurality of directions at one reception timing. At this time, only the fact that a high orthogonality is selected as the combination of the plurality of beam directions is described. Furthermore, this patent document 1 describes that the same concept is applied to handover.
  • the prior art has the following problems. A time has elapsed from when the terminal receives and measures the notification signal of the neighboring base station until it transmits the RACH signal. In the meantime, the terminal may be moving. Therefore, only by the method described in Patent Document 1, the optimum beam direction that the base station directs to the terminal changes between when the terminal measures the signal of the neighboring base station and when the terminal transmits the RACH signal. There is a possibility.
  • Patent Document 1 describes that a plurality of beams are formed at one timing. However, Patent Document 1 describes only combining beams that are orthogonal to each other with respect to combinations of beam directions.
  • the terminal identifies the optimum beam direction from the result of receiving and measuring the notification signal of the neighboring base station, and the optimum beam direction is transmitted to the neighboring base station.
  • the terminal even if the peripheral base station transmits the RACH signal at the timing when the beam is directed to the optimum beam direction for receiving the RACH signal, the terminal has already moved out of the beam area. As a result, a problem that the RACH signal cannot be correctly received occurs.
  • the present invention has been made to solve the above-described problems, and suppresses a state in which a RACH signal cannot be received from a moving terminal at the time of handover, and performs handover more reliably than before.
  • An object of the present invention is to obtain a beam transmission / reception method, a base station, a terminal, and a wireless communication system.
  • a beam transmission / reception method is a beam transmission / reception method executed in a radio communication system in which a terminal and a base station perform communication using a beam, and is transmitted at a base station as a connection request from a terminal.
  • a plurality of beam directions are grouped by combining one or more beam directions adjacent to the main beam direction in addition to the main beam direction determined to be appropriate for receiving a random access signal. , Having a first step of receiving a random access signal using a plurality of grouped beam directions.
  • the base station is a base station applied to a wireless communication system that performs beam communication with a terminal, and receives a random access signal transmitted as a connection request from the terminal.
  • a plurality of beam directions are grouped by combining one or more beam directions adjacent to the main beam direction in addition to the main beam direction determined to be appropriate for receiving a random access signal.
  • a controller for controlling the beam direction of the unit, a transceiver for receiving a random access signal transmitted from the terminal via the antenna unit, and a detector for detecting whether or not the random access signal is received by the transceiver Is provided.
  • a terminal is a terminal applied to a wireless communication system that performs beam-based communication with a base station, and the base station communicates with the terminal and a communication base station.
  • a transmitter / receiver for receiving a notification signal including information on timing at which a random access signal can be received, grouped in a plurality of beam directions from a neighboring base station when configured with a neighboring base station.
  • a quality measuring device that identifies each timing at which a random access signal can be received, and a plurality of broadcast signals can be determined to have appropriate communication quality 2 If the broadcast signal of the above are present, each of the timing that matches the two or more broadcast signals, and has a controller for controlling to transmit a random access signal.
  • a wireless communication system is a wireless communication system including a base station and a terminal, and the base station includes a communication base station that is communicating with the terminal and a peripheral base station that is a handover destination.
  • the controller in the neighboring base station groups the plurality of beam directions, first information on common timing at which a random access signal can be received for each of the grouped beam directions, and the beam A broadcast signal including second information defining the number of direction groups is generated, the broadcast signal is transmitted via a transmitter / receiver in the neighboring base station, and a controller in the terminal receives the broadcast signal from the neighboring base station.
  • the timing at which the random access signal can be received is specified from the first information included in the broadcast signal, and the number of beam direction groups according to the second information is equal to the number of groups.
  • a configuration in which adjacent beam directions are combined and grouped as a combination of a plurality of beam directions is provided.
  • a beam transmission / reception method, a base station, a terminal, and a radio communication system capable of suppressing a state in which a RACH signal cannot be received from a moving terminal at the time of handover and performing handover more reliably than in the past.
  • Embodiment 1 of this invention it is a figure which shows an example at the time of dividing the whole service area by one base station into two groups. It is a figure which shows an example at the time of dividing the whole service area by one base station into two groups in a prior art.
  • wireless communications system which concerns on Embodiment 1 of this invention, it is the figure which showed the example of the relationship between the timing of alerting
  • Embodiment 1 of this invention it is the figure which showed the signal sequence of a base station and a terminal in case a base station notifies the number of beam direction groups.
  • wireless communications system which concerns on Embodiment 1 of this invention, it is a figure different from previous FIG. 3 which showed the example of the relationship between the timing of alerting
  • FIG. 1 is a diagram illustrating an example where the entire service area of one base station is divided into two groups in Embodiment 1 of the present invention.
  • FIG. 1 when there are 32 beam directions necessary to cover the service area of the base station and the number of beam directions to be combined is 16 at the same time, FIG.
  • the state divided into the two groups in FIG. Ellipses surrounded by solid lines and filled in indicate the beam direction groups that are combined at the same timing to receive the RACH signal.
  • group 1 in FIG. 1A combines beams in the edge direction of the service area
  • group 2 in FIG. The beam is combined.
  • FIG. 2 is a diagram showing an example in the case where the entire service area by one base station is divided into two groups in the prior art. Specifically, in FIG. 2, the non-adjacent beam directions are set as the same group, and two groups of FIGS. 2 (a) and 2 (b) are provided, which is different from FIG. 1 in the first embodiment. An example of grouping is shown.
  • FIG. 3 is a diagram illustrating an example of a relationship between a broadcast signal transmission timing by a base station and a RACH signal reception timing in the wireless communication system according to Embodiment 1 of the present invention.
  • Information 1 “Information 2”, “RA1”, and “RA2” shown in FIG. 3 respectively mean the following contents.
  • Report 1 Timing of transmitting a broadcast signal in the same beam direction group as RACH signal reception group 1 •
  • Report 2 Timing of transmitting a broadcast signal in the same beam direction group as RACH signal reception group 2
  • RA1 RACH signal reception group 1 receives a RACH signal timing
  • RA2 RACH signal reception group 2 receives a RACH signal timing
  • the blank time slot is used for other signal transmission / reception.
  • the base station directs the beam in the beam direction shown in FIG. 1 and performs the RACH signal detection operation.
  • the terminal can determine the cycle by detecting a broadcast signal and detecting the same broadcast signal twice or more. If the terminal detects the broadcast signal having a different content, the terminal also measures the broadcast signal if the same base station is the transmission source within the cycle.
  • the terminal transmits the RACH signal at the timing of “RA1”, and the highest quality is obtained at the timing of “report 2”.
  • the RACH signal is transmitted at the timing of “RA2”.
  • the base station In the initial connection, the base station is not sure at which timing the terminal transmits the RACH signal. For this reason, the base station performs the RACH signal detection operation equally at the two timings shown in FIG. 3 for the two beam directions shown in FIG.
  • the terminal reports the measurement results of all beam directions in which the broadcast signal can be detected to the communication base station. Then, the communication base station determines the beam direction or RACH signal transmission / reception timing to be transmitted by the terminal to the handover destination base station, and notifies the handover destination base station and the terminal of such information.
  • the terminal transmits a RACH signal at the same RACH signal reception timing as the beam direction. Further, when the terminal receiving the notification is notified of the RACH signal transmission / reception timing instead of the beam direction, the terminal transmits the RACH signal according to the timing.
  • the handover destination base station When the handover destination base station that has received the notification from the communication base station has received the notification of the beam direction in which the handover terminal transmits the RACH signal, the handover destination base station receives the RACH signal at the group that includes the beam direction. Then, RACH signal detection of the terminal is performed. Further, when the handover destination base station receives notification of the RACH signal transmission / reception timing of the handover terminal instead of the beam direction, the handover destination base station detects the RACH signal of the terminal when receiving the RACH signal at that timing.
  • the terminal has already explained that the period is determined by detecting the same notification signal twice or more. However, such period information may be directly included in the notification signal.
  • the timing when the base station that receives the RACH signal is notified from the communication base station that the RACH signal is transmitted from the terminal is at the time of handover of the terminal.
  • the present invention is not limited to this, and the above-described operation can be performed even when the base station that should receive the RACH signal is a wireless communication system that can know the RACH signal transmission timing of the terminal in advance.
  • the terminal located at the point A measures the notification signal, it can be determined that the beam direction 1 is appropriate. However, after that, when transmitting the RACH signal, if the terminal has already moved to the area in the beam direction 2 shown in FIG. 2A, the base station cannot receive the RACH signal.
  • adjacent beam directions are combined as the same group. For this reason, even when the movement of the terminal occurs, the base station can receive the RACH signal.
  • the main reason is that the handover occurs when the terminal moves from the service area of another base station. That is, the terminal that performs handover normally enters from the edge direction of the service area.
  • the edge direction of the service area (that is, the surrounding portion as shown in FIG. 1 (a)) is the same group, particularly from a moving terminal during handover. It is effective for receiving signals.
  • FIG. 1 shows an example in which all beam directions directed to the edge of the service area are combined as the same group.
  • the beam direction toward the edge of the service area must also be divided into two or more groups. There are cases.
  • FIG. 4 is a diagram illustrating an example when the entire service area by one base station is divided into four groups in Embodiment 1 of the present invention.
  • the area in FIG. 1A is further divided into two groups, group 1 in FIG. 4A and group 2 in FIG. 4B, and the area in FIG.
  • the area is further divided into two as group 3 in FIG. 4 (c) and group 4 in FIG. 4 (d), and the number of combinations of beam directions is limited to eight at the same time. Even with such a 4-split configuration, the same effects as those of the 2-split configuration in FIG. 1 can be obtained.
  • FIG. 5 is a diagram showing the configuration of the base station according to Embodiment 1 of the present invention.
  • the controller 11 receives data for each terminal arriving from the network to which the base station is connected.
  • the controller 11 manages the timing of sending data to each terminal or the radio resources used when sending data.
  • the controller 11 also manages the timing for receiving data from the terminal and the radio resources used when receiving data. Furthermore, the controller 11 also manages the transmission timing of the notification signal and the radio resource for transmitting it.
  • the controller 11 determines to send data or a notification signal to a specific terminal and notifies the modem 12 of information to be sent.
  • the modem 12 performs signal modulation on the notified information and transmits it to the transceiver 13.
  • the transceiver 13 converts the received modulation signal from digital to analog, and further up-converts it to a radio frequency.
  • the signal processed by the transceiver 13 is transmitted from the antenna unit 14 to the terminal.
  • the antenna unit 14 is controlled by the controller 11 so as to direct the beam toward the terminal to which information is sent.
  • the antenna unit 14 is controlled by the controller 11 to direct the beam toward the terminal that sends the data.
  • the signal received by the antenna unit 14 is transmitted to the transceiver 13.
  • Controller 11 sends the received data to the network. If the received data is a handover request from the terminal, the controller 11 analyzes the notification signal measurement results of the neighboring base stations received accompanying the data.
  • the base station that has received the handover request determines the appropriate surrounding base station and beam direction as a handover destination from the broadcast signal measurement result reported by the terminal in the controller 11, and makes a handover request to the corresponding surrounding base station. At this time, the base station also notifies the handover request of information such as the ID of the terminal that performs the handover.
  • the base station that has received the response from the neighboring base station creates a handover execution command by the controller 11 and performs handover for the terminal that has issued the handover request through the modem 12, the transceiver 13, and the antenna unit 14. Instruct.
  • the handover execution command includes the ID of the handover destination base station and timing information for transmitting the RACH signal.
  • the neighboring base station that has received the handover request based on the information on the beam direction notified at the same time as the handover request, at the RACH reception timing of the beam direction group that includes the beam direction, the RACH signal of the terminal that performs the handover Wait for.
  • the control of the beam direction at this time follows the operation described above with reference to FIG. 1, FIG. 3, and FIG.
  • the controller 11 of the neighboring base station that is the handover destination controls the beam direction of the antenna unit 14 at the RACH signal reception timing.
  • the RACH signal detector 15 performs a RACH signal detection operation on the signal input via the transceiver 13. When the RACH signal detector 15 detects the RACH signal, the RACH signal detector 15 notifies the controller 11 of RACH signal detection.
  • the controller 11 Upon receiving the notification of RACH signal detection, the controller 11 generates a random access response signal, and returns the random access response signal to the terminal through the modem 12, the transceiver 13, and the antenna unit 14.
  • FIG. 6 is a diagram showing a configuration of the terminal according to Embodiment 1 of the present invention.
  • the controller 21 detects data generated in the terminal, and transmits the detected data to the modem 22 according to the transmission timing and radio resources allocated from the base station.
  • the modem 22 performs signal modulation on the received data and transmits the data to the transceiver 23.
  • the transceiver 23 converts the received modulation signal from digital to analog, and further up-converts it to a radio frequency.
  • the signal processed by the transceiver 23 is transmitted from the antenna unit 24 to the base station.
  • the terminal When receiving a signal, the terminal operates the controller 21, the modulator / demodulator 22, the transceiver 23, and the antenna unit 24 so that the signal addressed to the terminal can be received and demodulated at any time.
  • the terminal confirms the message addressed to itself in the signal, the terminal processes the data as data addressed to itself.
  • the quality measuring device 25 measures the received power level and SINR (Signal to Interference plus Noise Ratio) with respect to the signal carrying the data addressed to itself or the broadcast signal, and reports the result to the controller 21. To do.
  • SINR Signal to Interference plus Noise Ratio
  • the controller 21 that has received the report determines that the quality is degraded if the measured value falls below a predetermined threshold value. Further, the controller 21 instructs the quality measuring unit 25 to measure the notification signal of the neighboring base station.
  • the quality measuring device 25 that has received an instruction to measure the notification signal of the surrounding base station reports the measurement result to the controller 21.
  • the controller 21 Upon receiving the measurement result of the peripheral base station, the controller 21 puts this measurement result in a handover request message and transmits it to the current communication base station through the modem 22, the transceiver 23, and the antenna unit 24.
  • the terminal When a handover execution command is included in the data addressed to itself received from the base station, the terminal transmits a RACH signal to the handover destination base station at the RACH signal transmission timing using the notified information. Will be. Therefore, the controller 21 instructs the RACH signal generator 26 to generate a RACH signal.
  • the generated RACH signal is transmitted to the handover destination base station through the transceiver 23 and the antenna unit 24. Further, after transmitting the RACH signal, the controller 21 performs an operation of detecting a random access response from the demodulated data received from the modem 22.
  • FIG. 7 is a diagram illustrating an example of a hardware configuration for realizing the base station and the terminal according to Embodiment 1 of the present invention.
  • the base station shown in FIG. 5 is realized by, for example, the processor 31, the memory 32, the transmitter 33, the receiver 34, and the antenna device 35.
  • the processor 31 is a CPU (Central Processing Unit, a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, or a DSP), a system LSI (Large Scale Integration), or the like.
  • CPU Central Processing Unit
  • processing unit a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, or a DSP), a system LSI (Large Scale Integration), or the like.
  • LSI Large Scale Integration
  • the memory 32 includes a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically Programmable Memory Programmable, or an EEPROM Memory, magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD (Digital Versatile Disc), and the like.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory an EPROM (Erasable Programmable Read Only Memory)
  • EEPROM Electrically Programmable Memory Programmable, or an EEPROM Memory
  • magnetic disk flexible disk, optical disk, compact disk, mini disk, DVD (Digital Versatile Disc), and the like.
  • the controller 11 of the base station, the modem 12 and the RACH signal detector 15 are realized by programs stored in the processor 31 and the memory 32. Specifically, it is realized by the processor 31 reading out a program for performing the operation of each unit from the memory 32 and executing it.
  • the transceiver 13 is realized by a transmitter 33 and a receiver 34. That is, the transmission process in the transmitter / receiver 13 is performed in the transmitter 33, and the reception process in the transmitter / receiver 13 is performed in the receiver 34.
  • the antenna unit 14 is realized by the antenna device 35.
  • the terminal controller 21, modem 22 and RACH signal generator 26 shown in FIG. 6 are realized by programs stored in the processor 31 and the memory 32. Specifically, it is realized by the processor 31 reading out a program for performing the operation of each unit from the memory 32 and executing it.
  • the transceiver 23 is realized by a transmitter 33 and a receiver 34. That is, transmission processing in the transmitter / receiver 23 is performed in the transmitter 33, and reception processing in the transmitter / receiver 23 is performed in the receiver 34.
  • the quality measuring device 25 is also realized by the receiver 34.
  • the antenna unit 24 is realized by the antenna device 35.
  • FIG. 8 shows the RACH signal using the beam direction information judged appropriate by the base station designated as the handover destination base station according to Embodiment 1 of the present invention, which is notified at the same time as the handover request.
  • Fig. 4 shows another way of combining adjacent beams when receiving.
  • the beam direction identified as appropriate from the measurement result of the terminal is indicated by an arrow. Further, in the method shown in FIG. 8, it is assumed that the base station knows the timing at which the terminal that performs handover transmits the RACH signal, and does not transmit the RACH signal to other than the handover terminal. I have to.
  • the adjacent beam direction combined with the specified beam direction is not limited to the beam directed to the edge direction of the service area of the base station, and the beam direction closer to the base station than the edge is also combined. That is, in this method, the beam directions surrounding the specified beam directions are combined.
  • the base station receives the RACH signal by directing beams in all directions in the service area of the local station. You must be prepared for. For this reason, the base station cannot concentrate exclusively on receiving the RACH signal of the handover terminal.
  • the situation in which the base station knows when the handover terminal transmits the RACH signal and does not transmit the RACH signal other than the handover terminal is, for example, a dual connectivity configuration standardized by the standardization organization 3GPP Can occur when.
  • FIG. 9 is a diagram illustrating a wireless communication system including the dual connectivity configuration according to the first embodiment of the present invention.
  • small cell base stations 1 to 3 having a small service area are scattered under a macro cell base station having a large service area.
  • the terminal is connected to a macro cell base station as a main station, and further connected to a nearby small cell base station as a second base station.
  • a terminal connects to a small cell base station, the terminal measures signals of neighboring small cell base stations in advance and reports the result to the macro cell base station.
  • the macro cell base station determines the small cell base station to which the terminal should connect from the measurement result received, and notifies the determined small cell base station and the terminal of the connection.
  • the judgment of the macro cell base station is involved. That is, the macro cell base station determines the switching destination small cell base station and instructs the terminal and the switching destination small cell base station to connect. Therefore, this small cell base station can know the timing at which the terminal transmits the RACH signal. Moreover, since it is such a connection form, a terminal does not transmit a RACH signal by its own judgment.
  • the dual connectivity configuration is given as a specific example, but the wireless communication system to which the present invention is applied is not limited to such a configuration.
  • the beam direction control described above can also be applied to a configuration in which another control device manages the RACH signal transmission timing of the terminal and the information is notified to the base station that should receive the RACH signal.
  • this technique is applicable not only to a handover terminal but also to a terminal that performs initial connection.
  • the base station and the terminal that realize the control of the beam direction can be handled by the configurations shown in FIGS.
  • the terminal uses the controller 21 to determine whether to transmit the transmission signal to the macro cell base station or to the small cell base station.
  • the transmitter / receiver 23 If the frequency differs depending on the destination, the transmitter / receiver 23 generates a signal by distinguishing the frequency. Alternatively, when the frequency is common and the destination base station ID is included in the signal, the controller 21 only sends the signal with the base station ID inserted to the modem 22.
  • the controller 11 In order for the small cell base station to form a beam direction group for receiving the RACH signal, the controller 11 starts preparation for receiving the RACH signal after receiving notification of the RACH signal reception timing at the other base station interface. To do. At this time, the controller 11 determines which adjacent beam direction is to be grouped based on the predetermined grouping, and controls the direction in which the beam is directed to the antenna unit 14.
  • the controller 11 determines to direct the beam in the same beam direction as the previous time even at the next RACH signal reception timing, and the antenna unit. 14 is controlled.
  • the notified quality information of each adjacent beam direction is used to receive the RACH signal. Form a beam direction group.
  • FIG. 10 is a diagram showing a handover signal sequence on the premise of the dual connectivity configuration in the wireless communication system according to the first embodiment of the present invention.
  • the terminal detects quality deterioration through communication with the small cell base station 1, the terminal receives notification signals from the neighboring small cell base station 2 and the neighboring small cell base station 3, and measures their quality. Furthermore, when the quality measurement is completed, the terminal transmits a handover request including quality information for each beam to the macro cell base station.
  • the macro cell base station determines an appropriate small cell base station as a handover destination from the received quality information.
  • a case where a handover request is made to the small cell base station 2 is shown.
  • the macro cell base station notifies the quality information of each beam to the small cell base station 2 determined to be appropriate as a handover destination.
  • the macro cell base station When receiving the response from the small cell base station 2, the macro cell base station sends a handover execution command to the terminal. At this time, the macro cell base station notifies the ID of the small cell base station that is the handover destination and the timing for transmitting the RACH signal together with the handover execution command.
  • the small cell base station 2 which is the handover destination also receives the handover execution command and starts preparation for receiving the RACH signal.
  • the small cell base station 2 that is the handover destination determines the beam direction for receiving the RACH signal using the notified quality information of each beam.
  • N beam directions may be selected from those having better quality. Note that one value can be determined in advance for N.
  • the controller 21 may include the quality information of each beam direction in the transmission signal.
  • the small cell base station When the small cell base station receives a handover execution command from the macro cell base station, the small cell base station only forms a group of beam directions for RACH signal reception using the quality information of each beam direction notified in advance by the controller 11. It is.
  • the RACH signal detection probability can be increased with a small number of beams.
  • a terminal when performing a handover in general, reports a measurement result to a communication base station, and determines a handover destination base station at the communication base station or a separately prepared control station. Even in this case, it is obvious that the same operation can be realized.
  • the number of N is determined to be one value in advance.
  • the beam direction is increased to N, N + 1, N + 2,.
  • various methods such as N, N + 2, N + 4,... Can be employed for increasing the beam direction.
  • the base station uses the quality information of the beam direction and adds the beam direction according to the priority order with good quality.
  • the RACH signal detection probability can be increased by using quality information in the beam direction when increasing the number of beam directions.
  • This method can be realized by the controller 11 having the base station configuration shown in FIG.
  • the terminal transmits the RACH signal at any one timing when each RACH signal reception timing exists.
  • the groups in the beam direction are different between RA1 and RA2 in FIG. 3, and the terminal has described the case where the RACH signal is transmitted at either timing.
  • the present invention need not be limited to such timing.
  • the terminal receives the notification signal 1 (report 1) and the report signal 2 (report 2) of FIG. 3, and the first quality beam is present in the report 1, and the second quality is the second.
  • both RA1 and RA2 may operate to transmit a RACH signal. By performing such an operation, the probability that the base station detects the RACH signal can be increased.
  • Such an operation is particularly effective when, for example, the terminal is located at the boundary between different beam direction groups as shown in FIG.
  • Such an operation can be adopted not only between two groups, but also in three or more groups, and if any group can obtain a quality that allows communication, it can be applied to all the groups.
  • a RACH signal may be transmitted.
  • this terminal can be realized with the terminal configuration shown in FIG. If the controller 21 determines that the RACH signal can be transmitted to a plurality of beam direction groups from the result of measurement by the quality measuring unit 25, the controller 21 instructs the RACH signal generator 26 at the timing of each beam direction group. Instructs RACH signal generation.
  • FIG. 11 is a diagram showing a signal sequence of the base station and the terminal when the base station notifies the number of beam direction groups in Embodiment 1 of the present invention.
  • the base station notifies only the common RACH signal reception timing regardless of the beam direction group, and information on the number of beam direction groups is further added to the broadcast signal.
  • the premise that the base station notifies the common RACH signal reception timing means the following. For example, in FIG. 3, while the broadcast signal 1 (report 1) and the broadcast signal 2 (report 2) are transmitted while changing the beam direction, the RACH signal reception timings of RA1 and RA2 associated with each are transmitted. Is not notified of each.
  • the period (the interval between RA1 and RA2 or the interval between RA2 and RA1) is used as a common RACH signal reception timing regardless of RA1 and RA2 under the same conditions, and the interval between RA1 and RA2 and the interval between RA2 and RA1. This means that only the offset from the reference is notified.
  • the terminal determines that the beam direction group transmitting the broadcast signal 1 (report 1) includes a beam direction suitable for communication of the local station, the terminal associates the RACH signal associated therewith. I do not know the transmission timing. For this reason, the RACH signal is transmitted at the timing of both RA1 and RA2 in FIG. At this time, a problem occurs particularly when the terminal cannot receive the notification signal 2 (report 2) at all.
  • the terminal manages the number of RACH retransmissions and stops RACH retransmission when a predetermined number of times is reached. Also, the terminal increases transmission power little by little every time it retransmits. Therefore, as described above, when the terminal cannot know the number of beam direction groups, it is difficult to control the number of RACH retransmissions or to control increase in transmission power.
  • the base station notifies the number of beam direction groups.
  • FIG. 11 specifically shows an example in which the number of beam direction groups is two.
  • the terminal increments the transmission counter managed by one, and further transmits the RACH signal twice (corresponding to “RACH second time” in FIG. 11). It counts that it transmitted twice. Also, the terminal increases the transmission power once every two RACH signal transmissions.
  • the base station notifies the terminal of the number of beam direction groups, so that the number of RACH signal retransmissions and transmission power on the terminal side can be efficiently controlled without waste.
  • These operations can also be realized by the configuration of the base station and terminal shown in FIGS.
  • the base station simply puts the number of beam direction groups in the broadcast signal in the controller 11, and the terminal only controls the RACH signal retransmission count and transmission power in the controller 21.
  • the beam direction is directed to one beam direction group in one time slot.
  • the beam direction can be switched in one time slot.
  • FIG. 12 is a diagram different from FIG. 3 above, showing an example of the relationship between the broadcast signal transmission timing by the base station and the RACH signal reception timing in the wireless communication system according to Embodiment 1 of the present invention. It is. Specifically, FIG. 12 shows an example in which there are two beam direction groups and two beam direction groups are switched within one time slot.
  • the beam direction group is switched to transmit the broadcast signal 1 and the broadcast signal 2, and in another time slot, the beam direction group of the RACH signal 1 associated with the broadcast signal 1 and the broadcast signal The beam direction group of the RACH signal 2 associated with 2 is switched.
  • the present invention has a configuration in which adjacent beam directions are combined as a combination of a plurality of beam directions when a RACH signal is received. As a result, it is possible to suppress a state in which a signal cannot be received from a moving terminal during a handover.
  • the present invention can cover the entire service area of the base station even if a plurality of beam directions are combined, and if two or more timings are required, at least one group as a group of beam directions to be combined Has a configuration in which adjacent beam directions are combined in a direction toward the edge of the service area. As a result, handover of a terminal that has moved from the service area of another base station can be more reliably executed.
  • the RACH signal receiving base station of the present invention has a configuration in which when the beam direction suitable for RACH signal reception is notified, the beam direction and the beam direction surrounding the beam direction are combined. As a result, it is possible to increase the probability of detecting the RACH signal even when the terminal moves in the direction of the base station or when an appropriate beam changes due to changes in the radio propagation environment such as shadowing or fading.
  • the base station or the control station of the present invention that determines the beam direction for RACH signal transmission / reception prioritizes the beam direction that can be determined to be appropriate as the RACH signal transmission / reception beam direction, and receives information on this priority for receiving the RACH signal
  • a configuration for notifying the base station is provided.
  • the RACH signal receiving base station has a configuration in which a plurality of beam directions are combined based on the notified priority order when combining a plurality of beam directions for RACH signal reception. As a result, by forming the beam direction group for receiving the RACH signal using the quality information of each beam direction, the RACH signal detection probability can be increased with a small number of beams.
  • the RACH signal receiving base station of the present invention when combining a plurality of beam directions, the number of combinations at the time of receiving the next RACH signal when the RACH signal is not received is the combination when the RACH signal is not received. It has a configuration that increases more than the number. As a result, the time during which the RACH signal cannot be received becomes longer, and it is possible to prevent the terminal from moving further at this time and going out of the reception beam area.
  • the present invention has a configuration that can increase the number of combinations based on quality information for each beam direction. As a result, when the number of beam directions is increased, it is possible to further increase the RACH signal detection probability by using quality information in the beam direction and preferentially adopting the quality information.
  • the terminal of the present invention has two or more beam directions that can be determined to be appropriate as the handover destination beam direction when receiving and measuring the broadcast signal of the neighboring base station, and the RACH signal reception timing of the base station associated therewith is different. In some cases, a RACH signal is transmitted at each timing. As a result, the probability that the base station detects the RACH signal can be increased.
  • the base station of the present invention cannot cover the entire service area of the base station even if a plurality of beam directions are combined, and the number of beam direction groups is used as a broadcast signal when two or more timings are required. Including the configuration to notify the terminal. As a result, the number of RACH signal retransmissions and transmission power on the terminal side can be efficiently controlled without waste.
  • the present invention has a configuration for switching the beam direction in one time slot. As a result, it is possible to reduce the time spent performing broadcast signal transmission and RACH signal reception, and to increase the number of time slots allocated for communication.

Abstract

端末と基地局とがビームを使用した通信を行う無線通信システムにおいて実行されるビーム送受信方法であって、基地局において、端末からの接続要求として送信されるランダムアクセス信号を受信する際に、ランダムアクセス信号を受信するために適切と判断される主ビーム方向に加えて、主ビーム方向に隣接する1以上のビーム方向を組み合わせて、複数のビーム方向をグループ化し、グループ化された複数のビーム方向を用いてランダムアクセス信号を受信するステップを有する。

Description

ビーム送受信方法、基地局、端末、および無線通信システム
 本発明は、通信サービスエリアを形成する1台以上の基地局と、各通信サービスエリア内に存在する1台以上の端末とが通信を行うビーム送受信方法、基地局、端末、および無線通信システムに関する。
 基地局と端末が通信を行う際に、基地局が複数のアンテナを用いて通信対象端末の方向のみにビームを形成(ビームフォーミング)して、信号を送る技術がある。この技術により、無線信号が飛ぶ方向を絞ることができる。この結果、他の場所に存在する別の端末への干渉を防ぐ、あるいは低減することができる。
 また、特定の方向に信号を送信することにより、サービスエリア全体に信号送信する場合に比べて、送信電力を集中させることができ、信号到達距離の拡大に繋げることができる。
 このビームフォーミングは、基地局が端末から信号を受信する場合にも、適用できる。すなわち、基地局の受信アンテナに、信号を受信する方向を持たせることで、それ以外の方向から到来する干渉波の影響を防ぐ、または低減することができる。
 しかしながら、上述したように、1本のビームは、特定の方向にのみ信号が飛ぶこと、または特定の方向からのみ信号を受けることが可能となるため、1台の基地局のサービスエリア全体をカバーするには、複数のビーム方向が必要となる。図13は、複数のビーム方向によってサービスエリアを確保する基地局に関する説明図である。
 端末は、通信を開始する初期接続の際には、まず、通信を行うための十分な信号品質が得られる基地局を探索する。また、端末は、通信を行う基地局を切り替える、いわゆるハンドオーバの際にも、通信中の基地局以外の周辺基地局について、同様に探索を行う。
 図14は、ビームフォーミングを使わない無線通信システムにおける、一般的なハンドオーバの信号シーケンスを示す説明図である。端末は、通信中の基地局(通信基地局)との間で信号品質劣化を検知すると、周辺基地局が送信している報知信号を受信・測定する。そして、端末は、その結果を、ハンドオーバ要求とともに、現在の通信基地局へ報告する。
 報告を受けた通信基地局は、受信品質が一番良い周辺基地局、または通信を行うために必要な信号品質が得られる周辺基地局のうちから1台を決定し、決定した周辺基地局へハンドオーバ要求を行う。要求を受けた周辺基地局は、ハンドオーバ受入が可能ならば、通信基地局へその旨を返送する。
 ハンドオーバ受入可能のレスポンスを受けた通信基地局は、端末に対して、ハンドオーバ先となる周辺基地局の情報(基地局IDなど)とともに、ハンドオーバ実施命令を送信する。
 ハンドオーバ実施命令を受けた端末は、ハンドオーバ先である周辺基地局に対し、通信要求として、ランダムアクセス(RACH)信号を送信する。一方、RACH信号を検出した周辺基地局は、アクセスレスポンス信号を当該端末へ返送し、通信を開始する。
 なお、基地局がRACH信号を受信できるタイミングに関する情報は、通常、報知信号に含まれている。従って、端末は、その報知信号から基地局のRACH信号受信タイミングを知ることができ、そのタイミングに合わせて、RACH信号を送信する。
 なお、本明細書では、以下のような情報あるいは信号のいずれか、あるいは全てを、報知信号と呼ぶことにする。
 ・端末が基地局に周波数同期および時間同期をとるために必要で、かつ、基地局の識別子(基地局ID)を含む同期信号
 ・基地局からの信号の品質を測定するためのリファレンス信号(パイロット信号とも呼ぶ)
 ・端末が基地局との通信に至るまでに最低限必要な情報であり、例えば、基地局がRACH信号受信で使用している周波数とタイミングの情報
 ビームフォーミング技術を使ったシステムにおいて、初期接続を行う方法を開示している従来技術がある(例えば、特許文献1参照)。この特許文献1においては、1台の基地局が、順番にビーム方向を変えるとともに、端末が基地局を探索するための信号(探索用信号)を送信する。探索用信号には、その基地局がRACH信号を受信するタイミングに関する情報も含まれている。
 このとき、基地局は、タイミングを変えるごとに、探索用信号を送信するビーム方向を変え、また、RACH信号を受信するビーム方向も変える。このため、探索用送信ビームとRACH信号受信ビームの両者の方向とタイミングには対応関係があり、探索用信号には、対応するRACH信号受信タイミングの情報が含まれている。
 また、特許文献1は、基地局が複数のビームを同時に形成できる場合には、1つの受信タイミングで複数の方向にビームを形成してRACH信号を受信することを開示している。このとき、複数ビーム方向の組み合わせとしては、直交性の高いものが選択されることのみが記載されている。さらに、この特許文献1には、同様の考え方をハンドオーバにも適用する点が記載されている。
特開2015-185914号公報
 しかしながら、従来技術には、以下のような課題がある。
 端末が、周辺基地局の報知信号を受信・測定してから、RACH信号を送信するまでには、時間が経過している。また、その間に、端末は、移動している可能性がある。従って、特許文献1に記載されている方法だけでは、端末が周辺基地局の信号を測定した時点と、端末がRACH信号を送信する時点とでは、基地局が端末へ向ける最適なビーム方向が変わっている可能性がある。
 また、特許文献1は、1つのタイミングで複数のビームを形成することを述べている。しかしながら、特許文献1は、ビーム方向の組み合わせに関しては、お互いが直交するビームを組み合わせることのみを述べている。
 以上のように、端末は、周辺基地局の報知信号を受信・測定した時点の結果から、最適ビーム方向を特定し、その最適ビーム方向が周辺基地局に伝えられる。しかしながら、周辺基地局が、RACH信号受信用に、ビームを最適ビーム方向に向けたタイミングで、端末がRACH信号を送信したとしても、その端末が、ビームのエリア外にすでに移動してしまったことに起因して、正しくRACH信号を受信できない問題が発生する。
 また、端末が移動していなくても、基地局または端末周辺の環境変化により、無線伝送路が変化して、RACH信号を受信できない問題が発生し得る。なお、特許文献1のみならず、図14の例を応用し、ハンドオーバの際に、端末から測定結果の報告を受けた通信基地局が、ハンドオーバ先基地局と、ハンドオーバ先ビーム方向を決定したとしても、同様の問題が発生する。
 本発明は、前記のような課題を解決するためになされたものであり、ハンドオーバ時に、移動している端末からRACH信号を受信できなくなる状態を抑制し、従来よりもハンドオーバをより確実に実行することのできるビーム送受信方法、基地局、端末、および無線通信システムを得ることを目的とする。
 本発明に係るビーム送受信方法は、端末と基地局とがビームを使用した通信を行う無線通信システムにおいて実行されるビーム送受信方法であって、基地局において、端末からの接続要求として送信されるランダムアクセス信号を受信する際に、ランダムアクセス信号を受信するために適切と判断される主ビーム方向に加えて、主ビーム方向に隣接する1以上のビーム方向を組み合わせて、複数のビーム方向をグループ化し、グループ化された複数のビーム方向を用いてランダムアクセス信号を受信する第1ステップを有するものである。
 また、本発明に係る基地局は、端末との間でビームを使用した通信を行う無線通信システムに適用される基地局であって、端末からの接続要求として送信されるランダムアクセス信号を受信する際に、ランダムアクセス信号を受信するために適切と判断される主ビーム方向に加えて、主ビーム方向に隣接する1以上のビーム方向を組み合わせて、複数のビーム方向をグループ化することで、アンテナ部のビーム方向を制御する制御器と、アンテナ部を介して、端末から送信されたランダムアクセス信号を受信する送受信器と、送受信器でランダムアクセス信号が受信されたか否かを検出する検出器とを備えるものである。
 また、本発明に係る端末は、基地局との間でビームを使用した通信を行う無線通信システムに適用される端末であって、基地局が、端末と通信中である通信基地局と、ハンドオーバ先である周辺基地局とで構成されている場合に、周辺基地局から、複数のビーム方向にグループ化され、ランダムアクセス信号を受信できるタイミングに関する情報が含まれた報知信号を受信する送受信器と、送受信器において報知信号として異なるグループに対応する複数の報知信号を受信した場合には、複数の報知信号の受信状態からそれぞれの報知信号の通信品質を測定するとともに、複数の報知信号に対応してランダムアクセス信号を受信できるそれぞれのタイミングを特定する品質測定器と、複数の報知信号の中に、通信品質が適切と判断できる2以上の報知信号が存在する場合には、2以上の報知信号に合ったそれぞれのタイミングで、ランダムアクセス信号を送信するように制御する制御器とを有するものである。
 さらに、本発明に係る無線通信システムは、基地局と端末とを備えた無線通信システムであって、基地局が、端末と通信中である通信基地局と、ハンドオーバ先である周辺基地局とで構成されている場合に、周辺基地局内の制御器は、複数のビーム方向をグループ化し、グループ化した複数のビーム方向のそれぞれについて、ランダムアクセス信号を受信できる共通のタイミングに関する第1情報、およびビーム方向グループ数を規定する第2情報を含めた報知信号を生成し、周辺基地局内の送受信器を介して、報知信号を送信し、端末内の制御器は、周辺基地局から、報知信号を受信した場合には、報知信号に含まれている第1情報からランダムアクセス信号を受信できるタイミングを特定し、第2情報によるビーム方向グループ数と一致する回数をランダムアクセス信号の送信回数として特定し、特定したタイミングで、特定した送信回数にわたり、ランダムアクセス信号を送信するものである。
 本発明によれば、基地局におけるRACH信号受信時に、複数ビーム方向の組み合わせとして、隣接するビーム方向を組み合わせてグループ化する構成を備えている。この結果、ハンドオーバ時に、移動している端末からRACH信号を受信できなくなる状態を抑制し、従来よりもハンドオーバをより確実に実行することのできるビーム送受信方法、基地局、端末、および無線通信システムを得ることができる。
本発明の実施の形態1において、1つの基地局によるサービスエリア全体を2つのグループに分けた場合の一例を示す図である。 従来技術において、1つの基地局によるサービスエリア全体を2つのグループに分けた場合の一例を示す図である。 本発明の実施の形態1に係る無線通信システムにおいて、基地局による報知信号送信のタイミングと、RACH信号受信のタイミングとの関係の例を示した図である。 本発明の実施の形態1において、1つの基地局によるサービスエリア全体を4つのグループに分けた場合の一例を示す図である。 本発明の実施の形態1における基地局の構成を示す図である。 本発明の実施の形態1における端末の構成を示した図である。 本発明の実施の形態1における基地局および端末を実現するハードウェア構成の一例を示した図である。 本発明の実施の形態1に係るハンドオーバ先基地局に指定された基地局が、ハンドオーバ要求と同時に通知を受けた、適切と判断されたビーム方向の情報を使って、RACH信号を受信する際に隣接ビームを組み合わせる別の方法を示している。 本発明の実施の形態1におけるDual Connectivity構成を備えた無線通信システムを示す図である。 本発明の実施の形態1に係る無線通信システムにおいて、Dual Connectivity構成を前提にしたハンドオーバの信号シーケンスを示した図である。 本発明の実施の形態1において、基地局がビーム方向グループ数を通知する場合の、基地局と端末の信号シーケンスを示した図である。 本発明の実施の形態1に係る無線通信システムにおいて、基地局による報知信号送信のタイミングと、RACH信号受信のタイミングとの関係の例を示した、先の図3とは異なる図である。 複数のビーム方向によってサービスエリアを確保する基地局に関する説明図である。 ビームフォーミングを使わない無線通信システムにおける、一般的なハンドオーバの信号シーケンスを示す説明図である。
 以下、本発明のビーム送受信方法、基地局、端末、および無線通信システムの好適な実施の形態につき、図面を用いて説明する。
 実施の形態1.
 まず始めに、本発明に基づく、複数ビーム方向を組み合わせる方法について、図面を用いて説明する。図1は、本発明の実施の形態1において、1つの基地局によるサービスエリア全体を2つのグループに分けた場合の一例を示す図である。
 より具体的には、この図1では、基地局のサービスエリアをカバーするのに必要なビーム方向が32個あり、同時にビーム方向を組み合わせる数が16個である場合に、図1(a)、図1(b)の2つのグループに分けた状態を示している。実線で囲まれて塗りつぶされている楕円が、RACH信号を受信するために同じタイミングで組み合わせているビーム方向のグループを示す。
 図1に示すように、隣接するビーム方向を同一グループとしており、図1(a)のグループ1で、サービスエリアのエッジ方向のビームを組み合わせ、図1(b)のグループ2で、エッジ方向以外のビームを組み合わせている。
 一方、図2は、従来技術において、1つの基地局によるサービスエリア全体を2つのグループに分けた場合の一例を示す図である。具体的には、この図2においては、非隣接するビーム方向を同一グループとして、図2(a)、図2(b)の2つのグループとしており、本実施の形態1における図1とは異なるグループ化を行った例を示している。
 図3は、本発明の実施の形態1に係る無線通信システムにおいて、基地局による報知信号送信のタイミングと、RACH信号受信のタイミングとの関係の例を示した図である。図3中に示された「報1」、「報2」、「RA1」、「RA2」は、それぞれ、以下の内容を意味している。
 ・「報1」:RACH信号受信グループ1と同じビーム方向のグループで、報知信号を送信するタイミング
 ・「報2」:RACH信号受信グループ2と同じビーム方向のグループで、報知信号を送信するタイミング
 ・「RA1」:RACH信号受信グループ1で、RACH信号を受信するタイミング
 ・「RA2」:RACH信号受信グループ2で、RACH信号を受信するタイミング
 空白のタイムスロットは、その他の信号送受信に用いられる。基地局は、RACH信号受信タイミングの時には、図1に示すビーム方向にビームを向けて、RACH信号検出動作を行う。
 端末は、初期接続やハンドオーバのために、基地局およびビーム方向を探索する際、報知信号を検出し、同一報知信号を2回以上検出することで、その周期を判断できる。端末は、仮に、その周期内に同一基地局が送信元であるが、内容の異なる報知信号を検出すれば、その報知信号の測定も行う。
 このように、異なる複数の報知信号を端末が検出した場合には、初期接続であれば、例えば、一番高い品質を得られた報知信号のビーム方向と同じグループのRACH信号受信タイミングで、端末は、RACH信号を送信する。
 すなわち、端末は、「報1」のタイミングで一番高い品質が得られた場合には、「RA1」のタイミングでRACH信号を送信し、「報2」のタイミングで一番高い品質が得られた場合には、「RA2」のタイミングでRACH信号を送信する。
 初期接続においては、基地局は、いずれのタイミングで端末がRACH信号を送信してくるかは不明である。このため、基地局は、図1に示した2つのビーム方向に関して、図3に示した2つのタイミングで、同等にRACH信号検出動作を行う。
 一方、ハンドオーバであれば、端末は、報知信号を検出できたビーム方向すべての測定結果を、通信基地局へ報告する。そして、通信基地局は、ハンドオーバ先基地局に対して、端末が送信すべきビーム方向またはRACH信号送受信タイミングを決定して、それらの情報を、ハンドオーバ先基地局、および端末に通知する。
 よって、通知を受けた端末は、指定されたハンドオーバ先基地局に対して、ビーム方向が通知されている場合には、そのビーム方向と同じRACH信号受信タイミングでRACH信号を送信する。また、通知を受けた端末は、ビーム方向ではなく、RACH信号送受信タイミングが通知されている場合には、そのタイミングに従ってRACH信号を送信する。
 通信基地局から通知を受けたハンドオーバ先基地局は、ハンドオーバ端末がRACH信号を送信してくるビーム方向の通知を受けている場合には、そのビーム方向を含むグループでRACH信号受信を行うタイミングで、当該端末のRACH信号検出を行う。また、ハンドオーバ先基地局は、ビーム方向ではなく、ハンドオーバ端末のRACH信号送受信タイミングの通知を受けている場合には、そのタイミングでRACH信号受信を行うときに、当該端末のRACH信号検出を行う。
 なお、端末は、同一報知信号を2回以上検出することにより、その周期を判断する点について、すでに説明した。しかしながら、このような周期の情報は、報知信号に直接入れておいてもよい。
 さらに、端末からRACH信号が送信されてくることを、RACH信号を受信する基地局が、通信基地局から通知されるタイミングは、端末のハンドオーバ時である点について、すでに説明した。しかしながら、それに限らず、RACH信号を受信すべき基地局が、端末のRACH信号送信タイミングをあらかじめ知ることができる無線通信システムである場合にも、上述した動作を行うことが可能である。
 図2(a)に示した例において、地点Aに存在した端末が、報知信号の測定を行った際には、ビーム方向1が適切と判断できる。しかしながら、その後に、RACH信号を送信する際に、端末が、図2(a)に示すビーム方向2のエリアにすでに移動していた場合には、基地局は、RACH信号を受信できない。
 一方、本実施の形態1によれば、図1(a)に示したように、隣接するビーム方向を同一グループとして組み合わせている。このため、端末の移動が発生した場合にも、基地局は、RACH信号を受信することができる。
 なお、ハンドオーバは、端末が別の基地局のサービスエリアから移動することにより発生することが主な理由である。すなわち、ハンドオーバを行う端末は、通常、サービスエリアのエッジ方向から侵入することになる。
 このため、図1のように、サービスエリアのエッジ方向(すなわち、図1(a)に示したような周囲部分)を同一グループとすることは、特に、ハンドオーバ時に、移動している端末から確実に信号を受信するために有効である。
 なお、図1では、サービスエリアのエッジに向いたビーム方向のすべてを、同一グループとして組み合わせている例を示している。しかしながら、エッジに向いたビーム方向の数が多い場合、あるいは同時に形成可能なビームの数が少ない場合には、サービスエリアのエッジに向いたビーム方向に関しても、2つ以上のグループに分けなければならない場合が考えられる。
 このような場合でも、本願発明の基本的な考え方は変わらず、可能な限り、サービスエリアのエッジに向いたビーム方向で、隣接するものを同一グループとする。図4は、本発明の実施の形態1において、1つの基地局によるサービスエリア全体を4つのグループに分けた場合の一例を示す図である。
 図4に示した具体例では、先の図1(a)のエリアをさらに図4(a)のグループ1、図4(b)のグループ2として2分割し、先の図1(b)のエリアをさらに図4(c)のグループ3、図4(d)のグループ4として2分割し、同時にビーム方向を組み合わせる数が8個に制限されている場合を例示している。このような4分割構成によっても、先の図1の2分割構成と同様の効果を得ることができる。
 図5は、本発明の実施の形態1における基地局の構成を示す図である。通信中は、基地局が繋がっているネットワーク網から到着する各端末へのデータを、制御器11が受け取る。制御器11は、各端末へデータを送るタイミング、あるいは送る際に使用する無線リソースの管理を行っている。
 また、制御器11は、端末からデータを受けるためのタイミングや、受ける際に使用する無線リソースの管理も行っている。さらに、制御器11は、報知信号の送信タイミングとそれを送信するための無線リソースの管理も行っている。
 そして、制御器11は、ある特定の端末に対して、データを送ること、あるいは報知信号を送ることを決定し、送るべき情報を変復調器12へ通知する。変復調器12は、通知された情報に信号変調をかけ、送受信器13に送信する。
 送受信器13は、受け取った変調信号をデジタルからアナログに変換し、さらに、無線周波数へアップコンバートする。送受信器13で処理された信号は、アンテナ部14から端末へ送信される。なお、アンテナ部14は、情報を送る先の端末の方向にビームを向けるように、制御器11によって制御される。
 制御器11がある特定の端末からデータを受け取ることを決定すると、アンテナ部14は、データを送ってくる端末の方向にビームを向けるように、制御器11によって制御される。アンテナ部14が受けた信号は、送受信器13に送信される。
 送受信器13は、受信した信号の周波数をダウンコンバートし、さらに、その信号をアナログからデジタルに変換して、変復調器12へ送信する。変復調器12は、信号復調を行い、復調後のデータを、制御器11に送る。
 制御器11は、受け取ったデータをネットワーク網へ流す。また、受け取ったデータが端末からのハンドオーバ要求であれば、制御器11は、データに付随して受け取った周辺基地局の報知信号測定結果の分析を行う。
 ハンドオーバ要求を受けた基地局は、制御器11にて、端末が報告した報知信号測定結果から、ハンドオーバ先として適切な周辺基地局とビーム方向を判定し、該当周辺基地局へハンドオーバ要求を行う。この際、基地局は、ハンドオーバを行う端末のIDなどの情報も、ハンドオーバ要求に含めて通知する。
 周辺基地局からレスポンスを受け取った基地局は、制御器11でハンドオーバ実施命令を作成して、変復調器12、送受信器13、アンテナ部14を通して、ハンドオーバ要求を出した端末に対して、ハンドオーバの実施を指示する。なお、このハンドオーバ実施命令には、ハンドオーバ先基地局のID、およびRACH信号を送信するタイミング情報が含まれている。
 一方、ハンドオーバ要求を受けた周辺基地局は、ハンドオーバ要求と同時に通知を受けたビーム方向の情報を基に、そのビーム方向が含まれるビーム方向グループのRACH受信タイミングで、ハンドオーバを行う端末のRACH信号を待つ。この時のビーム方向の制御は、先の図1、図3、図4を用いて上述した動作に従う。
 ハンドオーバ先となった周辺基地局の制御器11は、RACH信号受信タイミングで、アンテナ部14のビーム方向を制御する。RACH信号検出器15は、送受信器13を経由して入力された信号に対して、RACH信号の検出動作を行う。そして、RACH信号検出器15は、RACH信号を検出すると、制御器11にRACH信号検出を通知する。
 制御器11は、RACH信号検出の通知を受けると、ランダムアクセスレスポンス信号を生成し、変復調器12、送受信器13、アンテナ部14を通して、端末に対してランダムアクセスレスポンス信号を返送する。
 図6は、本発明の実施の形態1における端末の構成を示した図である。通信中は、端末で発生したデータを制御器21が検出し、基地局から割り当てられた送信タイミングと無線リソースに従って、検出したデータを変復調器22へ送信する。変復調器22は、受信したデータに信号変調をかけ、送受信器23に送信する。
 送受信器23は、受け取った変調信号をデジタルからアナログに変換し、さらに、無線周波数へアップコンバートする。送受信器23で処理された信号は、アンテナ部24から基地局へ送信される。
 端末は、信号を受信する際には、いつでも自局宛の信号を受信・復調できるように、制御器21、変復調器22、送受信器23、アンテナ部24を動作させる。そして、端末は、信号の中に自局宛であるメッセージを確認すると、自局宛データとして処理する。
 この時、品質測定器25は、自局宛データが載った信号、あるいは報知信号に対して、受信電力レベルやSINR(Signal to Interference plus Noise Ratio)を測定し、その結果を制御器21に報告する。
 報告を受けた制御器21は、測定値があらかじめ決めておいたしきい値を下回るならば、品質劣化と判断する。さらに、制御器21は、品質測定器25に対して、周辺基地局の報知信号を測定するように指示する。
 周辺基地局の報知信号を測定するよう指示を受けた品質測定器25は、測定結果を制御器21に報告する。周辺基地局の測定結果を受けた制御器21は、この測定結果をハンドオーバ要求のメッセージに入れ、変復調器22、送受信器23、アンテナ部24を通して、現在の通信基地局へ送信する。
 端末は、基地局から受信した自局宛データにハンドオーバ実施命令が入っていた場合には、通知を受けた情報を用いて、ハンドオーバ先基地局に対し、RACH信号送信タイミングで、RACH信号を送信することとなる。そのため、制御器21は、RACH信号生成器26にRACH信号生成を指示する。
 生成されたRACH信号は、送受信器23、アンテナ部24を通して、ハンドオーバ先基地局へ送信される。また、RACH信号送信後、制御器21は、変復調器22から受け取る復調後のデータから、ランダムアクセスレスポンスを検出する動作を行う。
 図7は、本発明の実施の形態1における基地局および端末を実現するハードウェア構成の一例を示した図である。先の図5に示した基地局は、例えば、プロセッサ31、メモリ32、送信機33、受信機34、およびアンテナ装置35により実現される。
 プロセッサ31は、CPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、DSPともいう)、システムLSI(Large Scale Integration)などである。
 メモリ32は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリー、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read-Only Memory)等の、不揮発性または揮発性の半導体メモリや、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disc)等である。
 基地局の制御器11、変復調器12、およびRACH信号検出器15は、プロセッサ31およびメモリ32に格納されているプログラムにより実現される。具体的には、プロセッサ31が、各部の動作を行うためのプログラムをメモリ32から読み出して実行することにより実現される。
 送受信器13は、送信機33および受信機34により実現される。すなわち、送受信器13における送信処理は、送信機33において実施され、送受信器13における受信処理は、受信機34において実施される。アンテナ部14は、アンテナ装置35により実現される。
 また、先の図6に示した端末の制御器21、変復調器22、およびRACH信号生成器26は、プロセッサ31およびメモリ32に格納されているプログラムにより実現される。具体的には、プロセッサ31が、各部の動作を行うためのプログラムをメモリ32から読み出して実行することにより実現される。
 送受信器23は、送信機33および受信機34により実現される。すなわち、送受信器23における送信処理は、送信機33において実施され、送受信器23における受信処理は、受信機34において実施される。品質測定器25も、受信機34により実現される。アンテナ部24は、アンテナ装置35により実現される。
 図8は、本発明の実施の形態1に係るハンドオーバ先基地局に指定された基地局が、ハンドオーバ要求と同時に通知を受けた、適切と判断されたビーム方向の情報を使って、RACH信号を受信する際に隣接ビームを組み合わせる別の方法を示している。
 なお、図8においては、端末の測定結果から適切であると特定されたビーム方向を矢印で図示している。また、この図8に示した方法では、ハンドオーバを行う端末がRACH信号を送信してくるタイミングを、基地局が知っており、かつ、ハンドオーバ端末以外にはRACH信号を送信してこないことを前提にしている。
 この方法では、特定されたビーム方向に組み合わせられる隣接ビーム方向は、基地局のサービスエリアのエッジ方向に向いたビームに限定されず、エッジよりも基地局に近いビーム方向も組み合わせている。すなわち、この方法では、特定されたビーム方向を囲むビーム方向を、組み合わせている。
 この場合、端末の測定結果により、ハンドオーバするための適切なビームを特定してから、実際にRACH信号を端末が送信するまでに、端末が基地局方向に移動した場合、あるいはシャドゥイングやフェージングなどの無線伝搬環境の変化により、適切なビームが変化した場合などでも、RACH信号を検出する確率が高まる。
 また、RACH信号を受信する1回目のタイミングでRACH信号を検出できずに、次にRACH信号を受信するタイミングでも、前回と同じビーム方向のグループを使用する手法を採用できる。この手法は、ハンドオーバ端末がRACH信号を送信してくるタイミングを基地局が知っており、かつ、ハンドオーバ端末以外にはRACH信号を送信してこない場合に有効である。
 仮に、ハンドオーバ端末以外の端末がRACH信号を送信してくる可能性がある場合には、基地局は、自局のサービスエリアのすべての方向に、タイミングを分けてビームを向けてRACH信号の受信に備えなければならない。このため、基地局は、ハンドオーバ端末のRACH信号の受信にのみ専念することができない。
 ハンドオーバ端末がRACH信号を送信してくるタイミングを基地局が知っており、かつ、ハンドオーバ端末以外にはRACH信号を送信してこない状況は、例えば、標準化団体3GPPが規格化を行ったDual Connectivity構成のときに発生し得る。
 図9は、本発明の実施の形態1におけるDual Connectivity構成を備えた無線通信システムを示す図である。図9の例では、サービスエリアの大きいマクロセル基地局の配下に、サービスエリアの小さいスモールセル基地局1~3が点在している。
 端末は、主局として、マクロセル基地局に接続しており、さらに、第2の基地局として、近くのスモールセル基地局に接続する。端末は、スモールセル基地局に接続する際には、事前に周辺のスモールセル基地局の信号を測定し、その結果をマクロセル基地局へ報告する。
 これに対して、マクロセル基地局は、報告を受けた測定結果から、端末が接続すべきスモールセル基地局を決定し、決定したスモールセル基地局および端末に対して、接続することを通知する。
 スモールセル基地局を切り替える場合にも、マクロセル基地局の判断が介在する。つまり、マクロセル基地局は、切替先のスモールセル基地局を判断し、端末と切替先スモールセル基地局に対して、接続を指示する。従って、このスモールセル基地局は、端末がRACH信号を送信してくるタイミングを知ることができる。また、このような接続形態であるために、端末が自身の判断でRACH信号を送信してくることがない。
 なお、図9を用いた説明では、具体例として、Dual Connectivity構成を挙げたが、本発明が適用される無線通信システムは、このような構成に限定されるものではない。端末のRACH信号送信タイミングを別の制御装置が管理し、その情報がRACH信号を受信すべき基地局に通知される構成であっても、上述したビーム方向の制御が適用できる。また、この手法は、ハンドオーバ端末に限らず、初期接続を行う端末にも適用可能である。
 上述したDual Connectivity構成において、ビーム方向の制御を実現する基地局および端末は、先の図5、図6に示した構成で対応可能である。端末は、送信信号をマクロセル基地局に送信するか、スモールセル基地局に送信するか、の判断を制御器21で実施する。
 そして、もし、宛先によって周波数が異なる場合には、送受信器23は、周波数を区別して信号を生成する。あるいは、周波数は共通で、信号に宛先の基地局IDを入れる場合には、制御器21は、基地局IDを挿入した信号を、変復調器22に送るのみである。
 スモールセル基地局がRACH信号受信のためのビーム方向グループを形成するためには、制御器11は、他基地局インタフェースにてRACH信号受信タイミングの通知を受けた後に、RACH信号受信の準備を開始する。このとき、制御器11は、あらかじめ決定したグルーピングに基づいて、どの隣接ビーム方向をグルーピングするかを決定し、アンテナ部14に対してビームを向ける方向を制御する。
 また、制御器11は、1回目のRACH信号受信タイミングでRACH信号を検出できなかった場合には、次のRACH信号受信タイミングでも、前回と同じビーム方向にビームを向けることを決定し、アンテナ部14を制御する。
 本発明による別の実施例は、特定されたビームに加えて隣接ビーム方向を使用してRACH信号を受信する際に、通知された各隣接ビーム方向の品質情報を用いて、RACH信号受信のためのビーム方向グループを形成する。
 図10は、本発明の実施の形態1に係る無線通信システムにおいて、Dual Connectivity構成を前提にしたハンドオーバの信号シーケンスを示した図である。端末は、スモールセル基地局1との通信で品質劣化を検知すると、周辺スモールセル基地局2や周辺スモールセル基地局3の報知信号を受信し、それらの品質を測定する。さらに、端末は、品質測定が完了すると、ビーム毎の品質情報が含まれたハンドオーバ要求を、マクロセル基地局へ送信する。
 マクロセル基地局は、報告を受けた品質情報から、ハンドオーバ先として適切なスモールセル基地局を判断する。図10の例では、スモールセル基地局2にハンドオーバ要求を行う場合を示している。この時、マクロセル基地局は、ハンドオーバ先として適切と判断したスモールセル基地局2に、各ビームの品質情報も通知する。
 マクロセル基地局は、スモールセル基地局2からレスポンスを受けると、端末に対してハンドオーバ実施命令を送る。この時、マクロセル基地局は、ハンドオーバ先であるスモールセル基地局のIDと、RACH信号を送信すべきタイミングを、ハンドオーバ実施命令とともに通知する。
 また、ハンドオーバ先であるスモールセル基地局2も、ハンドオーバ実施命令を受け、RACH信号受信の準備を始める。この際、ハンドオーバ先であるスモールセル基地局2は、通知されている各ビームの品質情報を用いて、RACH信号受信のためのビーム方向を決定する。品質情報の用い方としては、品質の良い方からN本のビーム方向を選択する、などが考えられる。なお、Nは、あらかじめ1つの値を決定しておくことができる。
 上述したような図10の通信手順を実現する基地局および端末も、先の図5、図6に示した構成で対応可能である。端末がマクロセル基地局にハンドオーバ要求を行うときに、制御器21は、各ビーム方向の品質情報を送信信号に含めればよい。
 スモールセル基地局は、マクロセル基地局からハンドオーバ実施命令を受けたとき、制御器11があらかじめ通知された各ビーム方向の品質情報を用いて、RACH信号受信のためのビーム方向のグループを形成するのみである。
 このように、各ビーム方向の品質情報を用いて、RACH信号受信のためのビーム方向グループを形成することで、少ないビーム本数でRACH信号検出確率を高めることができる利点がある。
 なお、図9,図10を用いた以上の説明では、Dual Connectivity構成を前提に、ハンドオーバの場合について詳述した。しかしながら、Dual Connectivity構成であれば、端末が第2の基地局として初めてスモールセル基地局に接続される場合も、同様の動作と装置構成で、実現可能である。
 また、Dual Connectivity構成でなくても、一般的にハンドオーバを行う際には、端末が測定結果を通信基地局に報告し、通信基地局または別途用意された制御局にてハンドオーバ先基地局を判断する場合においても、同様の動作が実現可能であることは明らかである。
 さらに、上述した具体例では、Nの数をあらかじめ1つの値に決定しておく、とした。しかしながら、別の方法として、RACH信号受信のタイミングでRACH信号を検出できなかった場合に、次のRACH信号受信タイミングでは、Nの数を増やす方法もある。
 この方法では、RACH信号受信を繰り返すごとに、N本、N+1本、N+2本、・・、とビーム方向を増やす。なお、ビーム方向の増やし方は、例えば、N本、N+2本、N+4本、・・、など、種々の方法を採用できる。ビーム方向を増やす際には、基地局は、ビーム方向の品質情報を用いて、品質の良い優先順位に従って追加していく。
 このように、RACH信号受信を繰り返すごとに、使用するビーム方向数を増やすことは、RACH信号受信ができないことの時間が長くなり、この時間に端末がさらに移動して、受信ビームのエリア外に出てしまうことへの対策となる。
 また、ビーム方向数を増やす際に、ビーム方向の品質情報を用いることで、RACH信号検出確率を高めることができる利点がある。この方法は、先の図5の基地局構成の制御器11が行うことで、実現できる。
 これまでの説明では、異なるビーム方向のグループが存在することで、それぞれのRACH信号受信タイミングが存在する時に、端末は、いずれか1つのタイミングでRACH信号を送信することとしていた。例えば、図3のRA1とRA2では、ビーム方向のグループが異なり、端末は、どちらか一方のタイミングで、RACH信号を送信する場合について説明していた。
 しかしながら、本発明は、このようなタイミングに限る必要はない。例えば、端末は、先の図3の報知信号1(報1)と報知信号2(報2)を受信して、1番目に品質の良いビームが報1に存在し、2番目に品質の良いビームが報2に存在する場合には、RA1とRA2の両方で、RACH信号を送信するように動作してもよい。このような動作をすることで、基地局がRACH信号を検出する確率を高めることができる。
 このような動作は、特に、例えば、図4に示しているような、異なるビーム方向グループ間の境界に端末が位置している場合などに、効果がある。なお、このような動作は、2つのグループ間に限らず、3つ以上のグループにおいても採用することができ、どのグループでも通信が可能な程度の品質が得られるならば、そのすべてのグループに対してRACH信号を送信してよい。
 この端末の動作は、先の図6に示した端末構成で実現できる。品質測定器25が測定した結果から、制御器21は、複数のビーム方向グループにRACH信号を送信可能と判断した場合には、RACH信号生成器26に対し、それぞれのビーム方向グループのタイミングで、RACH信号生成を指示する。
 図11は、本発明の実施の形態1において、基地局がビーム方向グループ数を通知する場合の、基地局と端末の信号シーケンスを示した図である。この図11では、基地局がビーム方向グループに関係なく、共通のRACH信号受信タイミングのみを通知することを前提としており、報知信号に対して、さらにビーム方向グループ数の情報が追加されている。
 なお、基地局が共通のRACH信号受信タイミングを通知するという前提は、以下のことを意味している。この前提は、例えば、図3において、ビーム方向を変えて報知信号1(報1)、報知信号2(報2)を送信している一方で、それぞれに関連づけられるRA1とRA2のRACH信号受信タイミングをそれぞれ通知するのではない。
 RA1とRA2の間隔と、RA2とRA1の間隔とが、同じ条件下で、RA1とRA2に関係なく共通のRACH信号受信タイミングとして、その周期(RA1とRA2の間隔、またはRA2とRA1の間隔)と、基準からのオフセットのみを通知することを意味している。
 この場合、端末は、報知信号1(報1)を送信しているビーム方向グループが自局の通信に適しているビーム方向を含んでいると判断した場合であっても、それに関連づけられるRACH信号送信タイミングがわからない。このため、図3のRA1およびRA2の両方のタイミングで、RACH信号を送信することになる。この時、特に、端末が報知信号2(報2)を全く受信できない場合に、問題が発生する。
 すでに3GPPで規格化され、サービス運用が始まっているLTEの通信システムでは、端末は、RACHの再送回数を管理し、あらかじめ決められた回数に達すると、RACH再送を止める。また、端末は、再送する度に、送信電力を少しずつ大きくする。従って、上述したように、端末がビーム方向グループ数を知ることができない場合には、RACH再送回数のカウントを制御すること、あるいは送信電力の増大を制御することが困難になる。
 そこで、本発明では、基地局が、ビーム方向グループ数を通知する。図11は、ビーム方向グループ数が2の場合の例を具体的に示したものである。この場合、端末は、RACH信号を2回送信する度に、管理している送信カウンタを1つアップさせ、さらにRACH信号を2回送信すると(図11における「RACH2回目」に相当)、トータルで2回送信したとカウントする。また、端末は、2回のRACH信号送信毎に、送信電力を1回大きくする。
 以上のように、基地局がビーム方向グループ数を端末に通知することで、端末側のRACH信号再送回数および送信電力の制御が、無駄なく効率的に実施できる。なお、これらの動作も、先の図5、図6で示した基地局および端末の構成で実現できる。基地局は、制御器11において、ビーム方向グループ数を報知信号に入れるのみであり、端末は、制御器21において、RACH信号再送回数カウントおよび送信電力の制御を行うのみである。
 以上の説明では、先の図3に示したように、1つのタイムスロットでは、1つのビーム方向グループにビーム方向を向けていた。しかしながら、本発明は、1つのタイムスロットの中で、ビーム方向を切り替えることも可能である。
 図12は、本発明の実施の形態1に係る無線通信システムにおいて、基地局による報知信号送信のタイミングと、RACH信号受信のタイミングとの関係の例を示した、先の図3とは異なる図である。具体的には、この図12は、ビーム方向グループが2つあり、1タイムスロット内で2つのビーム方向グループを切り替えている場合の例を示している。
 1つのタイムスロット内で、ビーム方向グループを切り替えて報知信号1と報知信号2を送信し、別の1つのタイムスロット内で、報知信号1に関連づけられるRACH信号1のビーム方向グループと、報知信号2に関連づけられるRACH信号2のビーム方向グループとを切り替えている。
 このようにすることで、報知信号送信やRACH信号受信を行うことに費やす時間を少なくし、通信に割り当てるタイムスロットを多くすることができる。
 以上のように、本発明は、RACH信号受信時に複数ビーム方向の組み合わせとして、隣接するビーム方向を組み合わせる構成を備えている。この結果、ハンドオーバ時に、移動している端末から信号を受信できなくなる状態を抑制することができる。
 また、本発明は、複数のビーム方向を組み合わせても、その基地局のサービスエリア全体をカバーできず、2回以上のタイミングが必要な場合には、組み合わせるビーム方向のグループとして、少なくとも1つのグループは、サービスエリアのエッジに向けた方向の中で隣接するビーム方向を組み合わせる構成を備えている。この結果、別の基地局のサービスエリアから移動してきた端末のハンドオーバを、より確実に実行することができる。
 また、本発明のRACH信号受信基地局は、RACH信号受信に適しているビーム方向が通知されている場合には、そのビーム方向と、それを囲むビーム方向を組み合わせる構成を備えている。この結果、端末が基地局方向に移動した場合、あるいはシャドゥイングやフェージングなどの無線伝搬環境の変化により、適切なビームが変化した場合などでも、RACH信号を検出する確率を高めることができる。
 また、RACH信号送受信のためのビーム方向を決定する本発明の基地局または制御局は、RACH信号送受信ビーム方向として適切と判断できるビーム方向に優先順位をつけ、この優先順位に関する情報をRACH信号受信基地局へ通知する構成を備えている。一方、RACH信号受信基地局は、RACH信号受信として複数ビーム方向を組み合わせる際に、通知された優先順位に基づいて複数ビーム方向を組み合わせる構成を備えている。この結果、各ビーム方向の品質情報を用いて、RACH信号受信のためのビーム方向グループを形成することで、少ないビーム本数でRACH信号検出確率を高めることができる。
 また、本発明のRACH信号受信基地局は、複数ビーム方向を組み合わせる際に、RACH信号を受信しなかった場合の次のRACH信号受信時における組み合わせ本数を、RACH信号を受信しなかった時の組み合わせ本数よりも増やす構成を備えている。この結果、RACH信号受信ができないことの時間が長くなり、この時間に端末がさらに移動して、受信ビームのエリア外に出てしまうことを未然に防止することができる。
 また、本発明は、組み合わせ本数を増やす際に、ビーム方向毎の品質情報に基づいて増やすことができる構成を備えている。この結果、ビーム方向数を増やす際に、ビーム方向の品質情報を用いて、品質の良いものを優先して採用することで、RACH信号検出確率をさらに高めることができる。
 また、本発明の端末は、周辺基地局の報知信号を受信・測定した際、ハンドオーバ先ビーム方向として適切と判断できるビーム方向が2つ以上あり、それに関連づけられる基地局のRACH信号受信タイミングが異なる場合には、それぞれのタイミングでRACH信号を送信する構成を備えている。この結果、基地局がRACH信号を検出する確率を高めることができる。
 また、本発明の基地局は、複数のビーム方向を組み合わせても、その基地局のサービスエリア全体をカバーできなく、2回以上のタイミングが必要な場合には、ビーム方向グループ数を報知信号に含めて端末に通知する構成を備えている。この結果、端末側のRACH信号再送回数および送信電力の制御が、無駄なく効率的に実施できる。
 さらに、本発明は、1つのタイムスロットの中で、ビーム方向を切り替える構成を備えている。この結果、報知信号送信やRACH信号受信を行うことに費やす時間を少なくし、通信に割り当てるタイムスロットを多くすることができる。

Claims (16)

  1.  端末と基地局とがビームを使用した通信を行う無線通信システムにおいて実行されるビーム送受信方法であって、
     前記基地局において、
      前記端末からの接続要求として送信されるランダムアクセス信号を受信する際に、前記ランダムアクセス信号を受信するために適切と判断される主ビーム方向に加えて、前記主ビーム方向に隣接する1以上のビーム方向を組み合わせて、複数のビーム方向をグループ化し、グループ化された複数のビーム方向を用いて前記ランダムアクセス信号を受信する第1ステップを有する
     ビーム送受信方法。
  2.  前記第1ステップは、前記複数のビーム方向を組み合わせてグループ化された1つのグループによっても、前記基地局のサービスエリアの全領域をカバーできず、前記サービスエリアを複数のグループに分割する必要がある場合には、少なくとも1つのグループを、前記サービスエリアのエッジ方向で互いに隣接する複数のビーム方向を組み合わせることでグループ化する
     請求項1に記載のビーム送受信方法。
  3.  前記第1ステップは、前記主ビーム方向と、前記主ビーム方向を囲むビーム方向とを組み合わせることで前記複数のビーム方向をグループ化する
     請求項1に記載のビーム送受信方法。
  4.  前記基地局が、前記端末と通信中である通信基地局と、ハンドオーバ先である周辺基地局とで構成されている場合に、
     前記周辺基地局において、
      前記複数のビーム方向をグループ化する第2ステップと、
      前記第2ステップでグループ化された複数のビーム方向を用いて、前記ランダムアクセス信号の受信処理を実行する第3ステップと、
      前記第3ステップにおいて、前記第2ステップでグループ化された前記複数のビーム方向を用いても、前記ランダムアクセス信号の受信ができなかった場合には、前記第2ステップによりグループ化されたビーム方向の本数をさらに増やして再グループ化する第4ステップと、
      前記第4ステップで再グループ化された複数のビーム方向を用いて、前記ランダムアクセス信号の受信処理を再実行する第5ステップと
     を有する請求項1に記載のビーム送受信方法。
  5.  前記基地局が、前記端末と通信中である通信基地局と、ハンドオーバ先である周辺基地局とで構成されている場合に、
     前記通信基地局において、
      前記端末から送信される前記ランダムアクセス信号を前記周辺基地局で受信する際に通信品質が適切と判断できる複数のビーム方向について優先順位を付けた優先順位情報を生成し、前記優先順位情報を前記周辺基地局に送信する第6ステップ
     を有し、
     前記周辺基地局において、
      前記通信基地局から取得した前記優先順位情報に基づいて、前記通信品質の高いものを優先して複数のビーム方向をグループ化する第7ステップと、
      前記第7ステップでグループ化された複数のビーム方向を用いて、前記ランダムアクセス信号の受信処理を実行する第8ステップと
     を有する
     請求項1に記載のビーム送受信方法。
  6.  前記周辺基地局において、
      前記第8ステップにおいて、前記第7ステップでグループ化された前記複数のビーム方向を用いても、前記ランダムアクセス信号の受信ができなかった場合には、前記優先順位情報に基づいて前記通信品質の高いものを優先して、前記第7ステップによりグループ化されたビーム方向の本数をさらに増やして再グループ化する第9ステップと、
      前記第9ステップで再グループ化された複数のビーム方向を用いて、前記ランダムアクセス信号の受信処理を再実行する第10ステップと
     をさらに有する請求項5に記載のビーム送受信方法。
  7.  前記基地局が、前記端末と通信中である通信基地局と、ハンドオーバ先である周辺基地局とで構成されている場合に、
     前記周辺基地局において、
      前記複数のビーム方向をグループ化し、グループ化した前記複数のビーム方向のそれぞれについて、ランダムアクセス信号を受信できるタイミングに関する情報を含む報知信号を送信する第11ステップと、
     前記端末において、
      前記周辺基地局から、前記報知信号を受信する第12ステップと、
      前記第12ステップで前記報知信号として異なるグループに対応する複数の報知信号を受信した場合には、前記複数の報知信号の受信状態からそれぞれの報知信号の通信品質を測定するとともに、前記複数の報知信号に対応してランダムアクセス信号を受信できるそれぞれのタイミングを特定する第13ステップと、
      前記複数の報知信号の中に、前記通信品質が適切と判断できる2以上の報知信号が存在する場合には、前記2以上の報知信号に合ったそれぞれのタイミングで、ランダムアクセス信号を送信する第14ステップと
     を有する請求項1に記載のビーム送受信方法。
  8.  前記基地局が、前記端末と通信中である通信基地局と、ハンドオーバ先である周辺基地局とで構成されている場合に、
     前記周辺基地局において、
      前記複数のビーム方向をグループ化し、グループ化した前記複数のビーム方向のそれぞれについて、ランダムアクセス信号を受信できる共通のタイミングに関する第1情報、およびビーム方向グループ数を規定する第2情報を含む報知信号を送信する第15ステップと、
     前記端末において、
      前記周辺基地局から、前記報知信号を受信する第16ステップと、
      前記報知信号に含まれている前記第1情報からランダムアクセス信号を受信できるタイミングを特定し、前記第2情報による前記ビーム方向グループ数と一致する回数を前記ランダムアクセス信号の送信回数として特定する第17ステップと、
      特定した前記タイミングで、特定した前記送信回数にわたり、ランダムアクセス信号を送信する第18ステップと
     を有する請求項1に記載のビーム送受信方法。
  9.  端末との間でビームを使用した通信を行う無線通信システムに適用される基地局であって、
     前記端末からの接続要求として送信されるランダムアクセス信号を受信する際に、前記ランダムアクセス信号を受信するために適切と判断される主ビーム方向に加えて、前記主ビーム方向に隣接する1以上のビーム方向を組み合わせて、複数のビーム方向をグループ化することで、アンテナ部のビーム方向を制御する制御器と、
     前記アンテナ部を介して、前記端末から送信された前記ランダムアクセス信号を受信する送受信器と、
     前記送受信器で前記ランダムアクセス信号が受信されたか否かを検出する検出器と
     を備える基地局。
  10.  前記制御器は、前記複数のビーム方向を組み合わせてグループ化された1つのグループによっても、前記基地局のサービスエリアの全領域をカバーできず、前記サービスエリアを複数のグループに分割する必要がある場合には、少なくとも1つのグループは、前記サービスエリアのエッジ方向で互いに隣接する複数のビーム方向を組み合わせることでグループ化する
     請求項9に記載の基地局。
  11.  前記制御器は、前記主ビーム方向と、前記主ビーム方向を囲むビーム方向とを組み合わせることで前記複数のビーム方向をグループ化する
     請求項9に記載の基地局。
  12.  前記基地局は、前記端末と通信中である通信基地局と、ハンドオーバ先である周辺基地局とで構成され、
     前記周辺基地局は、
      前記複数のビーム方向をグループ化して、前記ランダムアクセス信号の1回目の受信処理を実行し、
      前記1回目の受信処理において、前記ランダムアクセス信号の受信ができなかった場合には、すでにグループ化されたビーム方向の本数をさらに増やして再グループ化して、前記ランダムアクセス信号の2回目の受信処理を再実行する
     請求項9に記載の基地局。
  13.  前記基地局は、前記端末と通信中である通信基地局と、ハンドオーバ先である周辺基地局とで構成され、
     前記通信基地局は、
      前記端末から送信される前記ランダムアクセス信号を受信する際に通信品質が適切と判断できる複数のビーム方向について優先順位を付けた優先順位情報を生成し、前記優先順位情報を前記周辺基地局に送信し、
     前記周辺基地局は、
      前記通信基地局から取得した前記優先順位情報に基づいて、前記通信品質の高いものを優先して複数のビーム方向をグループ化し、
      グループ化した前記複数のビーム方向を用いて、前記ランダムアクセス信号の1回目の受信処理を実行する
     請求項9に記載の基地局。
  14.  前記周辺基地局は、
      前記1回目の受信処理において、前記ランダムアクセス信号の受信ができなかった場合には、前記優先順位情報に基づいて前記通信品質の高いものを優先して、すでにグループ化されたビーム方向の本数をさらに増やして再グループ化して、前記ランダムアクセス信号の2回目の受信処理を再実行する
     請求項13に記載の基地局。
  15.  基地局との間でビームを使用した通信を行う無線通信システムに適用される端末であって、
     前記基地局が、前記端末と通信中である通信基地局と、ハンドオーバ先である周辺基地局とで構成されている場合に、
     前記周辺基地局から、複数のビーム方向にグループ化され、ランダムアクセス信号を受信できるタイミングに関する情報が含まれた報知信号を受信する送受信器と、
     前記送受信器において前記報知信号として異なるグループに対応する複数の報知信号を受信した場合には、前記複数の報知信号の受信状態からそれぞれの報知信号の通信品質を測定するとともに、前記複数の報知信号に対応してランダムアクセス信号を受信できるそれぞれのタイミングを特定する品質測定器と、
     前記複数の報知信号の中に、前記通信品質が適切と判断できる2以上の報知信号が存在する場合には、前記2以上の報知信号に合ったそれぞれのタイミングで、ランダムアクセス信号を送信するように制御する制御器と
     を有する端末。
  16.  請求項9に記載の基地局と、請求項15に記載の端末とを備えた無線通信システムであって、
     前記基地局が、前記端末と通信中である通信基地局と、ハンドオーバ先である周辺基地局とで構成されている場合に、
     前記周辺基地局内の制御器は、
      前記複数のビーム方向をグループ化し、グループ化した前記複数のビーム方向のそれぞれについて、ランダムアクセス信号を受信できる共通のタイミングに関する第1情報、およびビーム方向グループ数を規定する第2情報を含めた報知信号を生成し、前記周辺基地局内の送受信器を介して、前記報知信号を送信し、
     前記端末内の制御器は、
      前記周辺基地局から、前記報知信号を受信した場合には、前記報知信号に含まれている前記第1情報からランダムアクセス信号を受信できるタイミングを特定し、前記第2情報による前記ビーム方向グループ数と一致する回数を前記ランダムアクセス信号の送信回数として特定し、特定した前記タイミングで、特定した前記送信回数にわたり、ランダムアクセス信号を送信する
     無線通信システム。
PCT/JP2016/056054 2016-02-29 2016-02-29 ビーム送受信方法、基地局、端末、および無線通信システム WO2017149601A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2016/056054 WO2017149601A1 (ja) 2016-02-29 2016-02-29 ビーム送受信方法、基地局、端末、および無線通信システム
CN201680082762.8A CN108781374B (zh) 2016-02-29 2016-02-29 波束发送接收方法、基站、终端和无线通信系统
US16/061,795 US10897717B2 (en) 2016-02-29 2016-02-29 Beam transmission-reception method, base station, terminal, and wireless communication system
EP16892446.2A EP3425949B1 (en) 2016-02-29 2016-02-29 Beam transmission-reception method, base station, terminal, and wireless communication system
JP2017551342A JP6525357B2 (ja) 2016-02-29 2016-02-29 ビーム送受信方法、基地局、端末、および無線通信システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/056054 WO2017149601A1 (ja) 2016-02-29 2016-02-29 ビーム送受信方法、基地局、端末、および無線通信システム

Publications (1)

Publication Number Publication Date
WO2017149601A1 true WO2017149601A1 (ja) 2017-09-08

Family

ID=59743523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056054 WO2017149601A1 (ja) 2016-02-29 2016-02-29 ビーム送受信方法、基地局、端末、および無線通信システム

Country Status (5)

Country Link
US (1) US10897717B2 (ja)
EP (1) EP3425949B1 (ja)
JP (1) JP6525357B2 (ja)
CN (1) CN108781374B (ja)
WO (1) WO2017149601A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018110336A (ja) * 2017-01-05 2018-07-12 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 基地局制御装置、基地局装置および制御方法
WO2019163139A1 (ja) * 2018-02-26 2019-08-29 三菱電機株式会社 基地局および無線通信方法
CN110708726A (zh) * 2018-07-10 2020-01-17 中国移动通信有限公司研究院 随机接入资源使用方法、网络侧设备及用户终端
WO2020065818A1 (ja) * 2018-09-27 2020-04-02 三菱電機株式会社 送信装置、受信装置および無線通信システム
WO2021181460A1 (ja) * 2020-03-09 2021-09-16 三菱電機株式会社 通信装置、制御回路および記憶媒体

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3520477B1 (en) * 2016-09-30 2019-11-06 Telefonaktiebolaget LM Ericsson (PUBL) Network, network nodes and method therein for handling connection in a wireless communication network
CN109906666B (zh) * 2016-11-02 2023-05-30 瑞典爱立信有限公司 用于基于波束的系统中的随机接入的网络节点和无线通信设备
EP3535865B1 (en) 2016-11-04 2024-02-14 Sony Group Corporation Multi-beam operation for random access transmission in a mobile radio communication network
EP3832902A1 (en) * 2017-02-13 2021-06-09 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method, terminal device and network device
US10779350B2 (en) 2017-08-10 2020-09-15 Futurewei Technologies, Inc. Beam failure recovery request
US10374683B2 (en) * 2017-09-07 2019-08-06 Futurewei Technologies, Inc. Apparatus and method for beam failure recovery
CN109788576B (zh) * 2017-11-15 2020-10-23 华为技术有限公司 随机接入方法、装置及设备
US10827364B2 (en) 2018-02-14 2020-11-03 Futurewei Technologies, Inc. Phased array antenna system for fast beam searching
CN111093232B (zh) * 2018-10-23 2021-03-30 电信科学技术研究院有限公司 一种切换方法、切换装置及计算机可读存储介质
CN111278157B (zh) * 2019-01-25 2022-03-25 维沃移动通信有限公司 随机接入资源的选择方法及终端

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001203623A (ja) * 2000-01-19 2001-07-27 Oki Electric Ind Co Ltd 基地局アンテナシステム
JP2004072539A (ja) * 2002-08-07 2004-03-04 Ntt Docomo Inc 無線通信システム、基地局及び無線通信方法
JP2009159214A (ja) * 2007-12-26 2009-07-16 Fujitsu Ltd 無線通信システムにおける通信方法並びに無線端末及び無線基地局
JP2010171653A (ja) * 2009-01-21 2010-08-05 National Institute Of Information & Communication Technology 指向性ビームを用いた無線通信を行う無線通信システム及び無線通信方法
JP2015185914A (ja) * 2014-03-20 2015-10-22 パナソニック株式会社 基地局、端末装置及び初期接続方法
JP2015532805A (ja) * 2012-08-17 2015-11-12 サムスン エレクトロニクス カンパニー リミテッド ビームフォーミングを利用したシステムでシステムアクセス方法及び装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9453845B2 (en) * 2010-02-01 2016-09-27 Cell Signaling Technology, Inc. Mass spectroscopy analysis of mutant polypeptides in biological samples
CN102300279B (zh) * 2011-08-03 2014-03-12 北京交通大学 高速移动环境下基于载波聚合的切换方法
CN105846875B (zh) * 2011-08-15 2019-04-16 株式会社Ntt都科摩 无线基站、用户终端、无线通信系统以及无线通信方法
CN103931112B (zh) 2011-09-15 2017-03-08 三星电子株式会社 用于在波束形成无线通信系统中进行波束选择的装置和方法
KR101995798B1 (ko) * 2012-07-03 2019-07-03 삼성전자주식회사 빔포밍을 사용하는 통신 시스템의 랜덤 억세스 장치 및 방법
US9699811B2 (en) * 2012-07-12 2017-07-04 Samsung Electronics Co., Ltd. Apparatus and method for random access with multiple antennas in a wireless network
JP2014027608A (ja) 2012-07-30 2014-02-06 Ntt Docomo Inc 基地局装置、ユーザ端末、通信システム及び通信制御方法
US9468022B2 (en) * 2012-12-26 2016-10-11 Samsung Electronics Co., Ltd. Method and apparatus for random access in communication system with large number of antennas
KR102049772B1 (ko) * 2013-01-15 2019-11-28 삼성전자 주식회사 빔포밍 시스템에서 신호 측정 방법 및 장치
US9948375B2 (en) * 2013-08-05 2018-04-17 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving reference signal through beam grouping in wireless communication system
EP2928235B1 (en) * 2014-03-31 2016-05-25 Alcatel Lucent Methods For Operating A First Base Station And A Second Base Station In A Radio Communication System, First Base Station And Second Base Station Thereof
CN106256144B (zh) * 2014-04-30 2022-02-11 株式会社Ntt都科摩 用户装置、基站、通信接入方法以及通信方法
EP3160186B1 (en) * 2014-06-19 2019-01-02 Mitsubishi Electric Corporation Base station, control station, and handover method
US9537548B2 (en) * 2014-10-27 2017-01-03 Nokia Solutions And Networks Oy Random access channel using basis functions
US9641230B2 (en) * 2014-12-30 2017-05-02 Electronics And Telecommunications Research Institute Base station and signal transmitting control method of the same, and wireless communication system
US9979457B2 (en) * 2015-05-08 2018-05-22 Lg Electronics Inc. Multi-beamforming training
US10368373B2 (en) * 2016-07-25 2019-07-30 Qualcomm Incorporated Beam selection and refinement during a random access channel (RACH) procedure
JP6198993B1 (ja) * 2016-10-06 2017-09-20 三菱電機株式会社 ビーム送受信方法、基地局、端末、および無線通信システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001203623A (ja) * 2000-01-19 2001-07-27 Oki Electric Ind Co Ltd 基地局アンテナシステム
JP2004072539A (ja) * 2002-08-07 2004-03-04 Ntt Docomo Inc 無線通信システム、基地局及び無線通信方法
JP2009159214A (ja) * 2007-12-26 2009-07-16 Fujitsu Ltd 無線通信システムにおける通信方法並びに無線端末及び無線基地局
JP2010171653A (ja) * 2009-01-21 2010-08-05 National Institute Of Information & Communication Technology 指向性ビームを用いた無線通信を行う無線通信システム及び無線通信方法
JP2015532805A (ja) * 2012-08-17 2015-11-12 サムスン エレクトロニクス カンパニー リミテッド ビームフォーミングを利用したシステムでシステムアクセス方法及び装置
JP2015185914A (ja) * 2014-03-20 2015-10-22 パナソニック株式会社 基地局、端末装置及び初期接続方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018110336A (ja) * 2017-01-05 2018-07-12 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 基地局制御装置、基地局装置および制御方法
WO2019163139A1 (ja) * 2018-02-26 2019-08-29 三菱電機株式会社 基地局および無線通信方法
CN110708726A (zh) * 2018-07-10 2020-01-17 中国移动通信有限公司研究院 随机接入资源使用方法、网络侧设备及用户终端
WO2020065818A1 (ja) * 2018-09-27 2020-04-02 三菱電機株式会社 送信装置、受信装置および無線通信システム
WO2020067449A1 (ja) * 2018-09-27 2020-04-02 三菱電機株式会社 送信装置、受信装置、無線通信システム、制御回路および記憶媒体
JPWO2020067449A1 (ja) * 2018-09-27 2021-03-11 三菱電機株式会社 送信装置、受信装置、無線通信システム、制御回路および記憶媒体
WO2021181460A1 (ja) * 2020-03-09 2021-09-16 三菱電機株式会社 通信装置、制御回路および記憶媒体
JPWO2021181460A1 (ja) * 2020-03-09 2021-09-16
JP7049537B2 (ja) 2020-03-09 2022-04-06 三菱電機株式会社 通信装置、制御回路および記憶媒体
CN115211161A (zh) * 2020-03-09 2022-10-18 三菱电机株式会社 通信装置、控制电路以及存储介质

Also Published As

Publication number Publication date
CN108781374B (zh) 2021-09-21
US10897717B2 (en) 2021-01-19
EP3425949A4 (en) 2019-02-27
US20180368005A1 (en) 2018-12-20
EP3425949B1 (en) 2023-09-13
EP3425949A1 (en) 2019-01-09
JPWO2017149601A1 (ja) 2018-03-22
CN108781374A (zh) 2018-11-09
JP6525357B2 (ja) 2019-06-05

Similar Documents

Publication Publication Date Title
WO2017149601A1 (ja) ビーム送受信方法、基地局、端末、および無線通信システム
US20230143378A1 (en) Method for beam failure detection, and terminal device
RU2679881C1 (ru) Мобильность для систем с формированием диаграммы направленности
JP6431091B2 (ja) Ulからdlへの干渉を軽減すること
CN108882358B (zh) 用于在使用波束赋型的系统中进行系统接入的方法和装置
CN107787602B (zh) 基于公共随机接入信道资源的协调随机接入
US10425919B2 (en) Decoupled downlink and uplink
JP6198993B1 (ja) ビーム送受信方法、基地局、端末、および無線通信システム
CN106031235A (zh) 基于盲区中实现高频通信的处理方法、装置和设备
US20170208524A1 (en) Base station, control station, and handover method
US11695534B2 (en) Base station, terminal, wireless communication system, and transmission/reception method
US11343851B2 (en) Method and apparatus for managing carrier sensing
US11616562B1 (en) Multi-link establishment for sidelink enhancement
KR20140055858A (ko) 기지국 및 이를 이용한 무선 신호 처리부 확인 방법
KR20140055855A (ko) 상향링크 성능 개선 장치, 성능 개선 방법 및 기지국

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017551342

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016892446

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016892446

Country of ref document: EP

Effective date: 20181001

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16892446

Country of ref document: EP

Kind code of ref document: A1