WO2017149576A1 - ガスメータ - Google Patents

ガスメータ Download PDF

Info

Publication number
WO2017149576A1
WO2017149576A1 PCT/JP2016/005125 JP2016005125W WO2017149576A1 WO 2017149576 A1 WO2017149576 A1 WO 2017149576A1 JP 2016005125 W JP2016005125 W JP 2016005125W WO 2017149576 A1 WO2017149576 A1 WO 2017149576A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
flow
rate measurement
measurement unit
gas meter
Prior art date
Application number
PCT/JP2016/005125
Other languages
English (en)
French (fr)
Inventor
杉山 正樹
森花 英明
永原 英知
中林 裕治
英樹 木下
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201680082728.0A priority Critical patent/CN108700447B/zh
Priority to EP16892421.5A priority patent/EP3425347B1/en
Priority to US16/074,479 priority patent/US10830624B2/en
Publication of WO2017149576A1 publication Critical patent/WO2017149576A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F5/00Measuring a proportion of the volume flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/14Casings, e.g. of special material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F3/00Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow
    • G01F3/02Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement
    • G01F3/20Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement having flexible movable walls, e.g. diaphragms, bellows
    • G01F3/22Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement having flexible movable walls, e.g. diaphragms, bellows for gases
    • G01F3/225Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement having flexible movable walls, e.g. diaphragms, bellows for gases characterised by constructional features of membranes or by means for improving proper functioning of membranes

Definitions

  • the present invention relates to a configuration of a gas meter using a measuring unit for measuring a gas flow rate, and particularly relates to a gas meter suitable for measuring a large flow rate.
  • the gas meter 1 includes an upper case 2 and a lower case 3 formed by pressing a metal.
  • An inlet pipe 4 and an outlet pipe 5 are arranged on the upper surface of the upper case 2, and the inlet pipe 4 opens through a shutoff valve 6 inside the gas meter 1.
  • a connection pipe 7 is connected to the outlet pipe 5.
  • connection pipe 7 has upper and lower attachment portions 8, the upper attachment portion 8 is connected with an ultrasonic flow rate measuring unit 9, and the lower attachment portion 8 has an upper ultrasonic flow rate.
  • a flow path member 10 formed in the same flow path shape as the measurement unit 9 is connected.
  • the ultrasonic flow rate measuring unit 9 and the flow path member 10 are fixed to the mounting portion 8 by a fixing bracket or the like (not shown).
  • an ultrasonic flow measurement unit from which a mechanism for measuring the flow is removed is used, and the flow rate is the same as that of the ultrasonic flow measurement unit 9. Based on the flow rate measured by the sonic flow rate measurement unit 9, the total flow rate (in this case, estimated to be twice the flow rate measured by the ultrasonic flow rate measurement unit 9) can be measured.
  • the ultrasonic flow rate measuring unit 9 and the flow path member 10 are supported by a support member 11 and the like, and are held by holding portions provided at the edges of the upper case 2 and the lower case 3 (for example, see Patent Document 1).
  • the gas indicated by the arrow flows from the inlet pipe 4, diffuses into the gas meter internal space through the shutoff valve 6, flows into the ultrasonic flow rate measuring unit 9 and the flow path member 10, and is connected to the connection pipe 7. To the exit pipe 5.
  • a method using ultrasonic propagation time is used as a flow rate measurement method in the ultrasonic flow measurement unit 9, but various measurement methods such as a thermal method and a fluidic method can be used. is there.
  • the ultrasonic flow rate measuring unit 9 and the flow path member 10 are separated from each other, the flow of gas flowing into each of them is not always the same, and the gas flow rate may be different. Therefore, there is a problem that even if the flow rate measured by the ultrasonic flow rate measurement unit 9 is doubled, the flow rate may not be accurate.
  • the flow rate of the inflowing gas is different, for example, the flow rate flowing through the flow path member 10 flows into the ultrasonic flow rate measurement unit 9. Is smaller than the maximum flow rate that can be measured as a gas meter, it is smaller than twice the maximum flow rate that can be measured by one ultrasonic flow measurement unit 9. Therefore, the maximum flow rate that can be measured by one ultrasonic flow measurement unit 9 needs to be larger than 1 ⁇ 2 of the maximum measurement flow rate required as a gas meter, and the ultrasonic flow measurement unit 9 is more than necessary. There was a problem of becoming larger.
  • the support member 11 for supporting the ultrasonic flow rate measuring unit 9 and the flow path member 10 is necessary, and there are problems in manufacturing man-hours and costs.
  • the present invention provides a gas meter that can be miniaturized when a plurality of the same flow rate measurement units are used.
  • the gas meter of the present invention includes a meter inlet part into which a fluid flows, a meter outlet part from which the fluid flows out, and a flow rate measuring part that measures the flow rate of the fluid.
  • the flow rate measurement unit uses a plurality of flow rate measurement units having the same shape including a rectangular flow path part and a sensor part arranged on one surface of the flow path part.
  • a plurality of flow rate measurement units are integrally formed by joining surfaces that do not have a sensor unit as joint surfaces.
  • FIG. 1 is a schematic cross-sectional view of a gas meter according to a first embodiment of the present invention.
  • FIG. 2A is a perspective view of a flow rate measurement unit used in the gas meter according to the first embodiment of the present invention.
  • FIG. 2B is a front view of the inlet of the flow rate measurement unit used in the gas meter according to the first embodiment of the present invention.
  • FIG. 3 is a schematic block diagram of a flow rate measurement unit used in the gas meter according to the first embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing a combination example of another flow rate measurement unit used in the gas meter according to the first embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view of a gas meter according to a first embodiment of the present invention.
  • FIG. 2A is a perspective view of a flow rate measurement unit used in the gas meter according to the first embodiment of the present invention.
  • FIG. 2B is a front view of the in
  • FIG. 5 is a schematic sectional drawing which shows the example of a combination of the other flow measurement unit used for the gas meter concerning the 1st Embodiment of this invention.
  • FIG. 6 is a schematic cross-sectional view showing a combination example of another flow rate measurement unit used in the gas meter according to the first embodiment of the present invention.
  • FIG. 7 is a schematic sectional drawing which shows the example of a combination of the other flow measurement unit used for the gas meter concerning the 1st Embodiment of this invention.
  • FIG. 8A is a perspective view of a flow rate measurement unit used in a gas meter according to a second embodiment of the present invention.
  • FIG. 8B is a perspective view of a flow rate measurement unit used in the gas meter according to the second embodiment of the present invention.
  • FIG. 9 is a cross-sectional view schematically showing a conventional gas meter.
  • FIG. 1 shows a schematic cross-sectional view of a gas meter.
  • the gas meter 21 includes a meter inlet portion 22, a meter outlet portion 23, a flow rate measuring portion 24, and a connecting member 25.
  • the flow rate measurement unit 24 is configured integrally by joining the back surfaces of the two flow rate measurement units 26 (the surface opposite to the surface on which the sensor unit 30 described later) is bonded.
  • the connection member 25 is provided with an attachment portion 25a, and the outlet portion of the flow rate measurement unit 24 can be inserted and held.
  • the meter inlet 22 is connected to a shutoff valve 27 for controlling the inflow of gas.
  • a shutoff valve 27 for controlling the inflow of gas.
  • the valve 27 is configured to close and shut off the gas.
  • FIG. 2A is a schematic perspective view of the flow rate measurement unit 26, and FIG. 2B is a front view of the flow rate measurement unit 26 as viewed from the inlet 29a.
  • the flow rate measurement unit 26 includes a flow path portion 29 through which a gas to be measured flows, and a sensor portion 30 in which a sensor for measuring the flow rate and a circuit board are incorporated.
  • the gas to be measured flows into the flow path portion 29 from the inlet 29a, the flow rate is measured by the sensor portion 30, and then flows out from the outlet 29b to the connecting member 25 described above.
  • ultrasonic waves are used as a flow rate measurement method in the sensor unit 30, and in order to improve measurement accuracy, the internal flow path of the flow path part 29 is divided into a plurality of flow paths by a plurality of partition plates 32. It is divided.
  • seal members 28 a and 28 b shown in FIG. 1 are disposed in a groove 31 provided over the entire circumference on the outlet side of the flow path portion 29 of the flow rate measurement unit 26.
  • FIG. 3 shows a block diagram of the flow rate measurement unit 26.
  • the flow rate measuring unit 26 is configured to measure the flow rate using ultrasonic waves.
  • the sensor unit 30 uses a first ultrasonic transducer 33a disposed on the upstream side and an ultrasonic wave utilizing a second ultrasonic transducer 33b disposed on the downstream side. Send and receive.
  • a measurement control circuit 34 for performing transmission / reception switching of the first ultrasonic transducer 33a and the second ultrasonic transducer 33b, output of a transmission signal, reception of a reception signal, and measurement of propagation time and propagation
  • An arithmetic circuit 35 for calculating a flow velocity and a flow rate based on time is provided, and these are attached to the sensor block 33e.
  • the upper surface 29c of the flow path part 29 has a first ultrasonic transmission window 36a and a second ultrasonic transmission window 36b.
  • the first ultrasonic transmission window 36a and the second ultrasonic transmission window 36b may be formed of a material that can transmit ultrasonic waves, or may be openings that transmit ultrasonic waves.
  • the difference between the acoustic impedance of the incident surface and the acoustic impedance of the transmission surface is a predetermined value. Smaller than that.
  • Portions other than the first ultrasonic transmission window 36a and the second ultrasonic transmission window 36b on the upper surface 29c of the flow path portion 29 may be covered with a panel, for example.
  • the lower surface 29d of the flow path part 29 is comprised so that it may act as a reflective surface of an ultrasonic wave.
  • the flow velocity of the fluid flowing through the flow path section 29 is V
  • the velocity of sound in the fluid is C
  • the angle between the direction in which the fluid flows and the ultrasonic wave propagation direction until the ultrasonic wave is reflected by the lower surface 29d is ⁇ .
  • L be the effective length of the propagation path of the ultrasonic wave propagating between the first ultrasonic transducer 33a and the second ultrasonic transducer 33b.
  • the measurement control circuit 34 controls transmission of ultrasonic waves from the first ultrasonic transducer 33a and reception of ultrasonic waves by the second ultrasonic transducer 33b.
  • the propagation time t1 until the ultrasonic wave transmitted from the first ultrasonic transducer 33a reaches the second ultrasonic transducer 33b is expressed by the following equation.
  • the measurement control circuit 34 controls transmission of ultrasonic waves from the second ultrasonic transducer 33b and reception of ultrasonic waves in the first ultrasonic transducer 33a.
  • the propagation time t2 until the ultrasonic wave transmitted from the second ultrasonic transducer 33b reaches the first ultrasonic transducer 33a is expressed by the following equation.
  • V (L / (2 cos ⁇ )) ⁇ ((1 / t1) ⁇ (1 / t2)) (3)
  • the measurement control circuit 34 measures the propagation times t1 and t2, and thereby the flow velocity V is obtained.
  • the arithmetic circuit 35 calculates the flow velocity V.
  • the arithmetic circuit 35 calculates the flow rate Q by multiplying the flow velocity V by the flow path cross-sectional area S of the flow path section 29 and the coefficient K that has been tested in advance, as shown in the following equation.
  • the flow rate measurement method is an ultrasonic method, and a known measuring instrument can be used.
  • the known measuring device may be, for example, a thermal flow sensor that measures a flow rate by using heat transfer caused by a flow. Since these are publicly known, the description thereof is omitted.
  • the flow rate measurement unit 26 can measure the flow rate of the gas that is the fluid flowing through the flow path portion 29.
  • the flow rate measurement unit 26 can measure a flow rate of, for example, 10 cubic meters or more per hour, and more preferably 15 to 30 cubic meters per hour.
  • the flow measurement unit for general households is at most about 6 cubic meters per hour. Therefore, a relatively large flow rate can be measured in a facility used for business purposes.
  • the flow rate measurement unit 26 according to the present embodiment may be used in a general household.
  • the flow measuring unit 24 can be reduced in size, and the gas meter 21 itself can be designed compactly.
  • the gas flow in the present embodiment is as shown by the arrows shown in FIG. 1, and the two flow rate measurement units 26 are close to each other as compared with the conventional example, so that they flow into the two flow rate measurement units 26.
  • the maximum measurement flow rate of one flow rate measurement unit 26 can be 1 ⁇ 2 of the maximum measurement flow rate required for the gas meter, and it is not necessary to make the flow rate measurement unit 26 larger than necessary. Can be planned.
  • a flow path member for connecting the flow rate measuring unit 26 is not necessary, which is advantageous in terms of manufacturing man-hours and costs.
  • FIG. 4 shows a state in which the two flow rate measurement units 26 are arranged in the left-right direction with respect to the gas inflow direction.
  • the flow rates of the gas flowing into the two flow rate measurement units 26 may be the same. it can.
  • FIG. 5 shows two gas flow measurement units 26 in the gas inflow direction indicated by the arrows, and the side surfaces thereof, that is, the surfaces of the flow path portion 29 that do not have the sensor unit 30 are joined as joint surfaces.
  • positioned in the left-right direction with respect to the inflow direction is shown.
  • the flow rate of the gas flowing into the two flow rate measurement units 26 can be made the same.
  • two flow rate measuring units 26 are used in the gas inflow direction indicated by the arrows, and two sets of the back surfaces are joined to each other, and the side surfaces are joined to form four flow rate measuring units 26.
  • a gas meter that can measure a larger flow rate than the case where two flow rate measurement units 26 are used by using four flow rate measurement units 26 will be described.
  • the four flow rate measurement units 26 are bonded to each other with the surfaces of the flow path portion 29 that do not have the sensor unit 30 as bonding surfaces.
  • FIG. 7 shows a total of four flow rate measurement units 26 bonded to the gas inflow direction indicated by the arrows, and the back surfaces thereof are bonded to each other, and the back surfaces of the flow rate measurement unit 26 are bonded to the left and right side surfaces.
  • This example shows a gas meter capable of measuring a large flow rate with the flow rate measurement unit.
  • the cross-sectional outer shape of the measurement flow path of the flow rate measurement unit has a horizontal dimension that is twice the vertical dimension.
  • the four flow rate measurement units 26 are bonded to each other with the surfaces of the flow path portion 29 that do not have the sensor unit 30 as bonding surfaces.
  • the flow of gas flowing into the flow rate measurement unit 26 is a combination of vertical and horizontal, so that the flow rates measured by the four flow rate measurement units 26 should be added even if the gas flow is disturbed. Since the entire flow rate is averaged, a stable flow rate can be measured.
  • the shape of the outlet portion is substantially rectangular, so the sealing member is the mating surface of the flow rate measurement unit 26. And can be easily sealed.
  • FIGSecond Embodiment 8A and 8B are perspective views of a flow rate measurement unit showing a second embodiment of the present invention.
  • engaging portions 38a to 38d and engaged portions 37a to 37d that allow the flow measuring units 26a to engage with each other are provided on the lower surface and side surface of the flow measuring unit 26a.
  • the engaging portions 38a to 38d are formed as convex cuboid convex portions, and the engaged portions 37a to 37d are concave shapes that can be engaged with the convex portions of the engaging portions 38a to 38d. It forms as a recessed part and is arrange
  • the flow rate measuring unit shown in FIGS. 4 to 7 can be connected by using one type of flow rate measuring unit 26a. It becomes possible to do.
  • one type of flow rate measuring unit 26a can be joined without using an engaging member in a combination of two to four.
  • the plurality of flow rate measurement units 26a are joined with the surfaces of the flow path portion 39 that do not have the sensor portion 30 as joining surfaces, and the engaging portions 38a to 38d and the engaged portions 37a to 37a are joined.
  • 37 d is arranged on the surface of the flow path portion 39 that does not have the sensor portion 30.
  • the present invention includes a meter inlet part into which a fluid flows, a meter outlet part from which a fluid flows out, and a flow rate measuring part that measures the flow rate of the fluid.
  • the flow rate measurement unit uses a plurality of flow rate measurement units having the same shape including a rectangular flow path part and a sensor part arranged on one surface of the flow path part.
  • a plurality of flow rate measurement units are integrally formed by joining surfaces having no sensor portion as joint surfaces.
  • the first seal member may be disposed on the joining surface where the flow rate measuring units are joined.
  • the present invention also has a groove on the entire circumference of the flow rate measurement unit, and a flow rate measurement unit is configured by joining a plurality of flow rate measurement units by disposing a first seal member in the groove on the joint surface. It is good also as a structure which winds a 2nd sealing member in groove
  • the present invention may be configured such that the outer dimensions of the flow rate measurement unit are such that the ratio of the short side to the long side of the rectangular cross section is 1: 2, and the cross sectional shape of the measurement unit is rectangular.
  • the flow rate measurement units can be mixed vertically and horizontally, and the influence of the gas inflow direction on the flow rate measurement can be reduced.
  • the flow rate measurement unit may include engagement portions that can engage with each other on the joint surface.
  • the gas meter according to the present invention can be easily combined with the required number of flow rate measurement units according to the required measurement flow rate, and can be applied to a wide range of applications requiring measurement of a large flow rate, such as a large gas meter for business use.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Measuring Volume Flow (AREA)

Abstract

流体が流入するメータ入口部(22)と、流体が流出するメータ出口部(23)と、流体の流量を計測する流量計測部(24)とを備える。また、流量計測部(24)は、外郭の断面形状が矩形の流路部と流路部の一つの面に配置されたセンサー部(30)とで構成された同一形状の流量計測ユニット(26、26)を複数用い、流路部におけるセンサー部(30)を有しない面同士を接合面として接合して複数の流量計測ユニット(26、26)を一体として構成した。

Description

ガスメータ
 本発明は、ガスの流量を計測する計測ユニットを用いたガスメータの構成に関するもので、特に大流量の計測に適したガスメータに関する。
 従来、この種のガスメータとして、図9に示すようなものがある。図9において、ガスメータ1は、金属をプレス加工して形成した上ケース2と下ケース3から構成している。上ケース2の上面には、入口パイプ4と、出口パイプ5を配置しており、入口パイプ4は、ガスメータ1の内部において遮断弁6を介して開口している。出口パイプ5には、接続パイプ7を接続している。
 接続パイプ7には、上下に取付部8を形成しており、上方の取付部8には、超音波式流量計測ユニット9を接続し、下方の取付部8には、上方の超音波式流量計測ユニット9と同一の流路形状に形成した流路部材10を接続している。超音波式流量計測ユニット9および流路部材10は、固定金具等(図示せず)により取付部8に固定している。
 なお、流路部材10として、流量を計測するための機構を除去した超音波式流量計測ユニットを用いており、超音波式流量計測ユニット9と同等の流量が流れるように構成されており、超音波式流量計測ユニット9で計測された流量を元に全体の流量(この場合は、超音波式流量計測ユニット9で計測された流量の2倍と推定)を計測できるようになっている。
 また、超音波式流量計測ユニット9および流路部材10は、支持部材11等により支持されると共に、上ケース2と下ケース3の縁に設けた保持部により保持される構成となっている(例えば、特許文献1参照)。
 この場合、矢印で示すガスは、入口パイプ4から流入して、遮断弁6を通ってガスメータ内部空間に拡散した後、超音波式流量計測ユニット9および流路部材10に流入し、接続パイプ7を経由して出口パイプ5に至る。
 本従来例では、超音波式流量計測ユニット9における流量の計測方法として超音波の伝搬時間を利用した方法を利用しているが、サーマル方式、フルイディック方式など、種々の計測方法が利用可能である。
特開2015-148529号公報
 しかしながら、特許文献1に記載の従来のガスメータ1では、超音波式流量計測ユニット9および流路部材10が離れて接続パイプ7に接続される構成となっているため、収納するための大きな空間が必要でありガスメータ1自体が大きくなってしまうという課題があった。
 また、超音波式流量計測ユニット9および流路部材10が離れているために、それぞれに流入するガスの流れが常に同じ状態にならず、ガスの流量が異なる場合が生じる。従って、超音波式流量計測ユニット9で計測された流量を2倍しても正確な流量とならない場合があるといった課題があった。
 更に、流路部材10として超音波式流量計測ユニット9を用いて計測する場合、流入するガスの流量が異なって、例えば、流路部材10に流れる流量が超音波式流量計測ユニット9に流れる流量よりも小さい場合には、ガスメータとして計測可能な最大流量は、1つの超音波式流量計測ユニット9で計測可能な最大流量の2倍よりも小さくなってしまう。従って、1つの超音波式流量計測ユニット9で計測可能な最大流量を、ガスメータとして要求される最大計測流量の1/2よりも大きくする必要があり、超音波式流量計測ユニット9が必要以上に大きくなるという課題があった。
 また、超音波式流量計測ユニット9および流路部材10を支持するための支持部材11が必要となり、製造工数やコスト面での課題もあった。
 本発明は、同一の流量計測ユニットを複数用いる際に、小形化ができるガスメータを提供する。
 本発明のガスメータは、流体が流入するメータ入口部と、流体が流出するメータ出口部と、流体の流量を計測する流量計測部とを備える。また、流量計測部は、外郭の断面形状が矩形の流路部と流路部の一つの面に配置されたセンサー部とで構成された同一形状の流量計測ユニットを複数用い、流路部におけるセンサー部を有しない面同士を接合面として接合して複数の流量計測ユニットを一体として構成する。
 これによって、大流量の計測が可能な流量計測部を小形化することができ、ガスメータそのものをコンパクトにすることが可能となる。
図1は、本発明の第1の実施の形態にかかるガスメータの概略断面図である。 図2Aは、本発明の第1の実施の形態にかかるガスメータに用いる流量計測ユニットの斜視図である。 図2Bは、本発明の第1の実施の形態にかかるガスメータに用いる流量計測ユニットの入口正面図である。 図3は、本発明の第1の実施の形態にかかるガスメータに用いる流量計測ユニットの概略ブロック図である。 図4は、本発明の第1の実施の形態にかかるガスメータに用いる他の流量計測ユニットの組み合わせ例を示す概略断面図である。 図5は、本発明の第1の実施の形態にかかるガスメータに用いる他の流量計測ユニットの組み合わせ例を示す概略断面図である。 図6は、本発明の第1の実施の形態にかかるガスメータに用いる他の流量計測ユニットの組み合わせ例を示す概略断面図である。 図7は、本発明の第1の実施の形態にかかるガスメータに用いる他の流量計測ユニットの組み合わせ例を示す概略断面図である。 図8Aは、本発明の第2の実施の形態にかかるガスメータに用いる流量計測ユニットの斜視図である。 図8Bは、本発明の第2の実施の形態にかかるガスメータに用いる流量計測ユニットの斜視図である。 図9は、従来のガスメータの概略を示す断面図である。
 以下、添付の図面を参照しながら、本発明によるガスメータの実施の形態を説明する。なお、同じ構成要素には同じ参照符号を付す。既に説明した構成要素については再度の説明を省略する。なお、本発明は、以下で説明する実施の形態によって限定されるものではない。
 (第1の実施の形態)
 図1は、ガスメータの概略断面図を示す。図1に示すように、ガスメータ21は、メータ入口部22、メータ出口部23、流量計測部24、および連結部材25から構成されている。流量計測部24は、2つの流量計測ユニット26の裏面(後述するセンサー部30が配置された面の反対側の面)同士を接合面として接合し一体に構成している。連結部材25には、取付部25aが設けられており流量計測部24の出口部が挿入されて保持できる構成となっている。
 また、メータ出口部23と流量計測部24のシールを確保するために、すなわち、流量計測部24を経由しないガスが連結部材25に流入しないようにするために、2つの流量計測ユニット26の間にはシール部材28aが配設され、外周と連結部材25の取付部25aの内側との間にはシール部材28bが配設されている。
 メータ入口部22には、ガスの流入を制御するための遮断弁27が接続されており、弁が開栓している時にはガスメータ内にガスが流入し、異常時等が発生した場合には遮断弁27が閉栓してガスを遮断するように構成されている。
 図2Aは、流量計測ユニット26の概観斜視図であり、図2Bは入口29aから見た流量計測ユニット26の正面図である。図2A、図2Bに示すように、流量計測ユニット26は計測対象のガスが流れる流路部29と、流量を計測するためのセンサー及び回路基板が内蔵されたセンサー部30で構成されている。計測対象のガスは入口29aから流路部29に流入し、センサー部30で流量が計測された後、出口29bから前述の連結部材25に流出する。本実施の形態においては、センサー部30における流量の計測方法として超音波を用いており、計測精度を向上させるため、流路部29の内部流路は複数の仕切板32で複数の流路に分割されている。
 なお、図1に示すシール部材28a、28bは、流量計測ユニット26の流路部29の出口側の全周にわたって設けされた溝31に配置される。
 ここで、流量計測ユニット26におけるガスの流量計測の方法を説明する。
 図3は、流量計測ユニット26のブロック図を示している。流量計測ユニット26は、超音波を用いて流量を計測する構成である。図に示すように、センサー部30は、上流側に配置された第1の超音波送受波器33aと、下流側に配置された第2の超音波送受波器33bとを利用して超音波の送受信を行う。また、第1の超音波送受波器33a、第2の超音波送受波器33bの送受信の切り替えや、送信信号の出力、或いは受信信号の受信、伝搬時間の計測を行う計測制御回路34および伝搬時間に基づいて流速や流量を演算する演算回路35を備えていており、これらは、センサブロック33eに取り付けられている。
 一方、流路部29の上面29cは第1の超音波透過窓36a、および第2の超音波透過窓36bを有している。
 第1の超音波透過窓36aおよび第2の超音波透過窓36bは超音波が透過できる素材で形成され、または超音波を透過する開口部であってもよい。第1の超音波透過窓36aおよび第2の超音波透過窓36bを超音波が透過できる素材で形成する場合には、入射面の音響インピーダンスおよび透過面の音響インピーダンスの差が予め定められた値よりも小さければよい。流路部29の上面29cの、第1の超音波透過窓36aおよび第2の超音波透過窓36b以外の部分は、たとえばパネルで覆われていてもよい。そして、流路部29の下面29dは超音波の反射面として作用するように構成されている。
 以下、図3を参照しながら、超音波を利用した流量計測の原理を説明する。
 流路部29を流れる流体の流速をV、流体中の音速をC、流体の流れる方向と超音波が下面29dで反射するまでの超音波伝搬方向とのなす角度をθとする。また、第1の超音波送受波器33aと第2の超音波送受波器33bとの間で伝搬する超音波の伝搬経路の有効長さをLとする。
 計測制御回路34は、第1の超音波送受波器33aからの超音波の送信と、第2の超音波送受波器33bにおける超音波の受信とを制御する。第1の超音波送受波器33aから送信された超音波が第2の超音波送受波器33bに到達するまでの伝搬時間t1は、下式にて示される。
  t1=L/(C+Vcosθ)   (1)
 計測制御回路34は、第2の超音波送受波器33bからの超音波の送信と、第1の超音波送受波器33aにおける超音波の受信とを制御する。第2の超音波送受波器33bから送信された超音波が第1の超音波送受波器33aに到達するまでの伝搬時間t2は、下式にて示される。
  t2=L/(C-Vcosθ)   (2)
 式(1)と式(2)から流体の音速Cを消去すると、下式が得られる。
  V=(L/(2cosθ))×((1/t1)-(1/t2))   (3)
 式(3)から理解されるように、Lとθが既知なら、計測制御回路34が伝搬時間t1およびt2を計測することにより、流速Vが求められる。演算回路35が流速Vの演算を行う。
 さらに演算回路35は、下式に示すように、流速Vに流路部29の流路断面積S及び予め検定された係数Kを乗じて流量Qを算出する。
  Q=K×V×S   (4)
 上述の例では、いわゆるVパス方式の流量計測原理を説明したが、これは一例である。いわゆるZパス方式、Iパス方式と呼ばれる計測原理を用いてもよい。
 また、流量の計測方式が超音波式であることは必須ではなく、公知の計測器を用いることができる。公知の計測器とは、たとえば流れによる熱の移動を利用して流量を測定するサーマルフローセンサーであってもよい。これらは公知であるためその説明は省略する。
 以上の構成により、流量計測ユニット26はその流路部29を流れる流体であるガスの流量を計測することができる。
 本実施の形態による流量計測ユニット26は、たとえば毎時10立方メートル以上、より好ましくは、毎時15立方メートルから30立方メートルの流量を計測することができる。一般家庭向けの流量計測ユニットは、高々毎時6立方メートル程度である。よって業務上利用される施設において、比較的大流量を計測することができる。ただし、本実施の形態による流量計測ユニット26を一般家庭において利用してもよい。
 以上のように、本実施の形態によると同一形状の流量計測ユニット26を複数用いる際でも、流量計測部24を小形化することができ、ガスメータ21そのものをコンパクトに設計することができる。
 また、本実施の形態におけるガスの流れは図1に示す矢印の様になり、2つの流量計測ユニット26が従来例に比べて近接しているため、2つの流量計測ユニット26に対して流入するガスの流量の偏りがなくなる。従って、1つの流量計測ユニット26の最大計測流量はガスメータとして要求される最大計測流量の1/2とすることができ、流量計測ユニット26を必要以上に大きくする必要は無く、ガスメータ21の小形化が図れる。
 更に、従来例と同様に一方の流量計測ユニットのみにセンサー部を搭載する場合でも、この一方の流量計測ユニット26で計測された流量を2倍することで全体の流量を計測することが可能となる。
 また、流量計測ユニット26を連結するための流路部材も不要となり、製造工数やコスト面でも有利である。
 次に、流量計測部24を構成する流量計測ユニット26の組み合わせやメータ入口部からのガスの流入方向に対する配置について、種々の形態を説明する。
 図4は、矢印で示すガスの流入方向に対して流量計測ユニット26を2個、その裏面同士を接合している。言い換えると、流量計測ユニット26を構成する流路部29におけるセンサー部30を配置した面の裏面同士、すなわち流路部29におけるセンサー部30を有しない面同士を接合面として接合している。そして図4では、ガスの流入方向に対して2個の流量計測ユニット26を左右方向に配置した状態を示すもので、2個の流量計測ユニット26に流入するガスの流量を同じとすることができる。
 図5は、矢印で示すガスの流入方向に対して流量計測ユニット26を2個、その側面同士、すなわち、流路部29におけるセンサー部30を有しない面同士を接合面として接合し、ガスの流入方向に対して左右方向に配置した状態を示している。この構成でも図4に示す構成と同じように、2つの流量計測ユニット26に流入するガスの流量を同じとすることができる。
 図6は、矢印で示すガスの流入方向に対して流量計測ユニット26を2個、その裏面同士を接合したもの2組用い、その側面同士を接合して4個の流量計測ユニット26で構成したものである。流量計測ユニット26を4個用いたことにより、流量計測ユニット26が2個の場合に比べ更に大流量の計測が可能なガスメータとする場合の一例を示す。図6の構成においても、4個の流量計測ユニット26は、流路部29におけるセンサー部30を有しない面同士を接合面として接合している。
 また、図7は、矢印で示すガスの流入方向に対して流量計測ユニット26を2個、その裏面同士を接合し、更にその左右の側面に流量計測ユニット26の裏面を接合して合計4個の流量計測ユニットで大流量の計測が可能なガスメータとした例を示すものである。なお、この形態の場合に、流量計測ユニットの計測流路の断面外形は、縦寸法に対して横寸法が2倍の寸法としている。図7の構成においても、4個の流量計測ユニット26は、流路部29におけるセンサー部30を有しない面同士を接合面として接合している。
 また、この場合、流量計測ユニット26に流入するガスの流れが縦と横の組み合わせになるので、ガスの流れに乱れがあっても、4つの流量計測ユニット26で計測された流量を加算することで全体の流量が平均化されるので、安定した流量を計測することが可能となる。
 また、図示していないが、流量計測ユニット26を3個用いる場合は図7において、左右どちらかの流量計測ユニット26を除くことで実現できる。
 以上のように、本実施の形態においては、流量計測ユニット26を複数組み合わせて流量計測部24を構成した場合でも、出口部の形状は略四角形となるのでシール部材は流量計測ユニット26の合わせ面と流量計測部24の外周に配置すればよく、容易にシールを行うことができる。
 (第2の実施の形態)
 図8A、図8Bは、本発明の第2の実施の形態を示す流量計測ユニットの斜視図である。図において、流量計測ユニット26aの下面及び側面には流量計測ユニット26a同士が互いに係合可能となる係合部38a~38d、被係合部37a~37dを備えている。
 ここで、係合部38a~38dは、凸形の直方体の凸部として形成されており、被係合部37a~37dは、係合部38a~38dの凸部と係合可能な凹形状の凹部として形成されると共に、図に示すように互い違いに配置されている。
 この様に、係合部38a~38dと被係合部37a~37dを配置することにより、1種類の流量計測ユニット26aを用いることで、図4~図7に示す流量計測ユニットの結合を構成することが可能となる。
 以上のように、本実施の形態によると1種類の流量計測ユニット26aで2個~4個の組み合わせにおいて、係合部材を用いることなく接合が可能となる。
 本実施の形態においても、複数の流量計測ユニット26aを、流路部39におけるセンサー部30を有しない面同士を接合面として接合しており、係合部38a~38dおよび被係合部37a~37dは、流路部39のセンサー部30を有しない面に配置されている。
 以上説明したように、本発明は、流体が流入するメータ入口部と、流体が流出するメータ出口部と、流体の流量を計測する流量計測部とを備える。また、流量計測部は、外郭の断面形状が矩形の流路部と流路部の一つの面に配置されたセンサー部とで構成された同一形状の流量計測ユニットを複数用い、流路部におけるセンサー部を有しない面同士を接合面として接合して複数の流量計測ユニットを一体として構成したことを特徴とする。この構成により、複数の計測ユニットを用いても大流量の計測が可能な流量計の小形化が可能となり、計測ユニットの数により広範囲の流量に対応できる。
 また、本発明は、流量計測ユニット同士が接合する接合面に第1のシール部材を配置してもよい。この構成により、接合面を平面で構成されているので、シールを容易に行うことが可能となる。
 また、本発明は、流量計測ユニットの全周に溝を有し、接合面の溝に第1のシール部材を配置して複数の流量計測ユニットを接合して流量計測部を構成し、接合面以外の溝に第2のシール部材を回装し、第2のシール部材でメータ出口部と流量計測部とのシールを確保する構成としてもよい。この構成により、全周に設けた溝を利用して効率の良いシール構成を実現することができる。
 また、本発明は、流量計測ユニットの外郭寸法として、矩形断面の短辺と長辺の比率を1:2とし、計測部の断面形状が矩形になるように組み合わせる構成としてもよい。この構成により、流量計測ユニットの縦横の混在が可能となり、ガスの流入方向による流量計測への影響を軽減できる。
 また、本発明は、流量計測ユニットが、接合面に互いに係合可能な係合部を備えてもよい。
 本発明にかかるガスメータは、必要な計測流量に応じて流量計測ユニットを必要数結合することが容易となり、業務用の大型ガスメータ等、大流量の計測を必要とする幅広い用途に適用できる。
 1,21 ガスメータ
 22 メータ入口部
 23 メータ出口部
 24 流量計測部
 26,26a 流量計測ユニット
 29,39 流路部
 30 センサー部
 37a~37d 被係合部(係合部)
 38a~38d 係合部

Claims (5)

  1. 流体が流入するメータ入口部と、
    前記流体が流出するメータ出口部と、
    前記流体の流量を計測する流量計測部と、
    を備え、
    前記流量計測部は、外郭の断面形状が矩形の流路部と前記流路部の一つの面に配置されたセンサー部とで構成された同一形状の流量計測ユニットを複数用い、前記流路部における前記センサー部を有しない面同士を接合面として接合して複数の前記流量計測ユニットを一体として構成したことを特徴とするガスメータ。
  2. 前記流量計測ユニット同士が接合する前記接合面に第1のシール部材を配置したことを特徴とする請求項1記載のガスメータ。
  3. 前記流量計測ユニットは全周に溝を有し、前記接合面の前記溝に前記第1のシール部材を配置して複数の前記流量計測ユニットを接合して前記流量計測部を構成し、前記接合面以外の前記溝に第2のシール部材を回装し、前記第2のシール部材で前記メータ出口部と前記流量計測部とのシールを確保したことを特徴とする請求項2記載のガスメータ。
  4. 前記流量計測ユニットの外郭寸法は、矩形断面の短辺と長辺の比率を1:2とし、前記計測部の断面形状が矩形になるように組み合わせたことを特徴とする請求項1~3のいずれか1項に記載のガスメータ。
  5. 前記流量計測ユニットは、前記接合面に互いに係合可能な係合部を備えたことを特徴とする請求項1~4のいずれか1項に記載のガスメータ。
PCT/JP2016/005125 2016-02-29 2016-12-14 ガスメータ WO2017149576A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680082728.0A CN108700447B (zh) 2016-02-29 2016-12-14 气量计
EP16892421.5A EP3425347B1 (en) 2016-02-29 2016-12-14 Gas meter
US16/074,479 US10830624B2 (en) 2016-02-29 2016-12-14 Gas meter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-036759 2016-02-29
JP2016036759A JP6488463B2 (ja) 2016-02-29 2016-02-29 ガスメータ

Publications (1)

Publication Number Publication Date
WO2017149576A1 true WO2017149576A1 (ja) 2017-09-08

Family

ID=59743527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/005125 WO2017149576A1 (ja) 2016-02-29 2016-12-14 ガスメータ

Country Status (5)

Country Link
US (1) US10830624B2 (ja)
EP (1) EP3425347B1 (ja)
JP (1) JP6488463B2 (ja)
CN (1) CN108700447B (ja)
WO (1) WO2017149576A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH095133A (ja) * 1995-06-26 1997-01-10 Matsushita Electric Ind Co Ltd 超音波式流量計
JP2008122106A (ja) * 2006-11-08 2008-05-29 Matsushita Electric Ind Co Ltd 超音波式流体計測装置
JP2009014672A (ja) * 2007-07-09 2009-01-22 Panasonic Corp 超音波式流体計測装置の多層流路部材
JP2014077679A (ja) * 2012-10-10 2014-05-01 Panasonic Corp 流量計
JP2015145827A (ja) * 2014-02-03 2015-08-13 矢崎エナジーシステム株式会社 計測流路ユニット

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000241219A (ja) * 1999-02-19 2000-09-08 Aichi Tokei Denki Co Ltd ガスメータ
CN102589625A (zh) 2007-07-09 2012-07-18 松下电器产业株式会社 超声波流体测量装置的多层流路构件
JP2012247299A (ja) * 2011-05-27 2012-12-13 Panasonic Corp 超音波式流量計測ユニットおよびこれを用いたガス流量計
CN202216742U (zh) * 2011-08-26 2012-05-09 中国计量科学研究院 双通道法超声流量计时间差检测装置
JP5914870B2 (ja) * 2012-06-28 2016-05-11 パナソニックIpマネジメント株式会社 流体計測装置
JP6083664B2 (ja) * 2012-06-28 2017-02-22 パナソニックIpマネジメント株式会社 流量計測装置
DE102013009347A1 (de) * 2013-06-04 2014-12-04 Hydrometer Gmbh Durchflussmesser
JP6263738B2 (ja) * 2014-02-07 2018-01-24 パナソニックIpマネジメント株式会社 ガス流量計

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH095133A (ja) * 1995-06-26 1997-01-10 Matsushita Electric Ind Co Ltd 超音波式流量計
JP2008122106A (ja) * 2006-11-08 2008-05-29 Matsushita Electric Ind Co Ltd 超音波式流体計測装置
JP2009014672A (ja) * 2007-07-09 2009-01-22 Panasonic Corp 超音波式流体計測装置の多層流路部材
JP2014077679A (ja) * 2012-10-10 2014-05-01 Panasonic Corp 流量計
JP2015145827A (ja) * 2014-02-03 2015-08-13 矢崎エナジーシステム株式会社 計測流路ユニット

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3425347A4 *

Also Published As

Publication number Publication date
US20190041250A1 (en) 2019-02-07
JP6488463B2 (ja) 2019-03-27
CN108700447B (zh) 2021-02-12
CN108700447A (zh) 2018-10-23
JP2017156100A (ja) 2017-09-07
EP3425347A1 (en) 2019-01-09
EP3425347B1 (en) 2020-07-29
EP3425347A4 (en) 2019-03-13
US10830624B2 (en) 2020-11-10

Similar Documents

Publication Publication Date Title
WO2012164859A1 (ja) 超音波式流量計測ユニットおよびこれを用いたガス流量計
WO2012063437A1 (ja) 超音波流量計測装置
US20110238333A1 (en) Ultrasonic flowmeter
US10184816B2 (en) Measurement unit and flow rate meter
JP6375519B2 (ja) ガスメータ
JP5728657B2 (ja) 超音波流量計測ユニット
JPS6125291B2 (ja)
JP2012103149A (ja) 超音波式流量計測装置
JP5728639B2 (ja) 超音波流量計
JP2014077679A (ja) 流量計
WO2013051272A1 (ja) 流量計測装置の設定方法
WO2005005932A1 (ja) 流れ計測装置
WO2017149576A1 (ja) ガスメータ
JP2004257738A (ja) 超音波流量計
JP2004279224A (ja) 超音波流量計測装置
CN112097843B (zh) 一种基于超声换能器的高灵敏度超声流量计及其方法
JP2018159627A (ja) 流量計測ユニット及びこれを用いた流量計
JP2013057613A (ja) 超音波流量計
TW202219468A (zh) 超音波流量測量裝置
JP2003114142A (ja) 超音波式ガスメータ
JP3584578B2 (ja) 超音波流量計及び超音波送受信モジュール
JP2021124358A (ja) 超音波流量計
JP2014074728A (ja) 超音波式流体計測構造
JP2022032153A (ja) 超音波流量計

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016892421

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016892421

Country of ref document: EP

Effective date: 20181001

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16892421

Country of ref document: EP

Kind code of ref document: A1