WO2005005932A1 - 流れ計測装置 - Google Patents

流れ計測装置 Download PDF

Info

Publication number
WO2005005932A1
WO2005005932A1 PCT/JP2004/010452 JP2004010452W WO2005005932A1 WO 2005005932 A1 WO2005005932 A1 WO 2005005932A1 JP 2004010452 W JP2004010452 W JP 2004010452W WO 2005005932 A1 WO2005005932 A1 WO 2005005932A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow
measurement
flow path
measuring device
fluid
Prior art date
Application number
PCT/JP2004/010452
Other languages
English (en)
French (fr)
Inventor
Yasuhiro Umekage
Yoshinori Inui
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2005511622A priority Critical patent/JP4578406B2/ja
Publication of WO2005005932A1 publication Critical patent/WO2005005932A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F5/00Measuring a proportion of the volume flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F7/00Volume-flow measuring devices with two or more measuring ranges; Compound meters

Definitions

  • the present invention relates to a flow measuring means for measuring a flow velocity and a flow rate of a fluid such as air, gas, and water using ultrasonic waves.
  • an inflow channel 1 and an outflow channel are used to measure the flow of a fluid over a wide range from a small flow rate (small flow velocity) to a large flow rate (large flow velocity) using ultrasonic waves.
  • the passage 2 was branched into a plurality of flow paths 3 and each of the flow paths 3 was connected to an opening / closing means 4 (Japanese Patent Laid-Open No. 11-287676). And the flow rate and the flow velocity of the fluid were measured based on the measurement results of the measuring means 5 arranged in each flow path 3 respectively.
  • each opening / closing means 4 and each measuring means 5 were controlled by the control means 6.
  • power is supplied to the control means 6 from the power supply means 7.
  • the flow path 3 is switched according to the flow rate and / or flow velocity.For example, for a small flow rate, only one flow path 3 is used, and for a large flow rate, measurement is performed using all the flow paths 3. However, the measurement accuracy of the flow or flow velocity from the small flow S to the large flow was increased.
  • the downstream side of the small meter 9 connected to the flow path 8 is branched into three flow paths 10, 11, 12, and the respective flow paths 10, 11, 1 2 Some of them are equipped with large-scale ultrasonic meters 13, 14, 15, respectively (Japanese Patent Laid-Open No. 2001-133308).
  • the small meter 9 is connected with the shut-off valve 16 in parallel.
  • the shut-off valve 16 is closed at a small flow rate (flow velocity) and the flow is measured by the small meter 9. At a large flow rate (flow velocity), the shut-off valve 16 is opened to flow the fluid in a bypass manner. So that it can be measured by the ultrasonic measuring instruments 13, 14, 15 Was.
  • a first ultrasonic oscillator, a second ultrasonic oscillator, and a flow rate calculating unit that calculates a flow rate based on a signal from the oscillator are disposed, with the flow rate measuring unit interposed therebetween.
  • Japanese Patent Application Laid-Open No. 9-43015 discloses an ultrasonic flowmeter having a plurality of flow paths in which a flow rate measuring section is divided into layers by a partition plate. The reason why the flow path is divided into a plurality of layers is to improve measurement accuracy by improving two-dimensionality. Disclosure of the invention
  • a flow rate measurement unit which includes a first ultrasonic transducer, a second ultrasonic transducer, and a flow rate calculation unit for calculating a flow rate based on a signal of the transducer, which are arranged with the flow rate measurement unit interposed therebetween.
  • Ultrasonic flowmeters that have multiple flow paths that are sectioned in layers by partitions are limited by the size (cross-section) of the flow paths due to the performance of the first and second ultrasonic vibrators. It can be said.
  • the present invention provides a measurement flow path partitioned and formed in a flow path; At least a pair of ultrasonic transmitting and receiving means arranged to measure the flow velocity of the fluid flowing through the measuring flow path, and the total flow rate of the fluid in the entire flow path including the measuring flow path based on the measurement result by the ultrasonic transmitting and receiving means
  • the configuration was provided with estimating means for estimating the average flow velocity. More effective effects than conventional technology
  • the entire flow is estimated by measurement in the measurement flow path defined in a matrix in the flow path. Therefore, the measurement unit can be reduced in size and size, and the power consumption can be greatly reduced.
  • FIG. 1 is a vertical sectional view and a block diagram of a flow channel of a flow measurement and concealment apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the flow path of the flow measurement device according to the first embodiment of the present invention.
  • FIG. 3 is a flow measurement device according to the first embodiment of the present invention, which is further improved. It is a flow path cross-sectional view.
  • FIG. 4 is a vertical sectional view and a block diagram of a flow channel of the flow measuring device according to the second embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a flow channel of the flow measuring device according to the second embodiment of the present invention.
  • (1) is a cross-sectional view of the deflecting means
  • (2) is a cross-sectional view of the cross-section of (1) as viewed from the reverse (back) direction.
  • FIG. 6 is a vertical sectional view and a block diagram of a flow channel of a flow measuring device according to a third embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of a flow channel of the flow measuring device according to the third embodiment of the present invention.
  • FIG. 8 is a configuration diagram of a flow meter according to the related art.
  • FIG. 9 is a configuration diagram of a flow meter according to the related art. BEST MODE FOR CARRYING OUT THE INVENTION
  • the flow measuring device provides a measuring flow defined in a flow path in a matrix.
  • An estimating means for estimating the total flow rate or the average flow velocity of the fluid is provided.
  • the flow path is divided into a plurality of small flow paths in a matrix, and one of the small flow paths is used as the measurement flow path.
  • the ⁇ "measurement channel is preferably arranged in the center region of the channel.
  • the cross section of the channel is circular. It is preferable that the cross section of the flow path is formed in a rectangular shape.
  • the small flow path is formed in a substantially square shape, the fluid flows evenly through each small flow path. Therefore, in such a flow measurement device, if the measurement flow path is measured as a representative flow path, the entire flow rate can be accurately estimated.
  • a rectifying means for rectifying the fluid By disposing a rectifying means for rectifying the fluid on the upstream side of the measurement flow path of the flow path, it is possible to suppress variations in the flow velocity distribution between the l-measurement flow path and the entire flow path. Further, by arranging the second rectifying means on the inlet side of the measurement flow path, the measurement can be performed with higher accuracy.
  • the flow measurement device can measure the flow rate over a wide range stably and accurately.
  • time measuring means for measuring the ultrasonic propagation time between the ultrasonic transmitting and receiving means and estimating means for estimating the total flow rate or the average flow velocity of the fluid based on the output from the time measuring means are arranged outside the flow path. If the wiring connecting the means and the ultrasonic transmission / reception means is led out along the partition plate which divides into a plurality of small flow paths, the wiring hardly obstructs the flow. Furthermore, by sealing the wiring with the connection terminal, it is possible to prevent leakage of the fluid. Furthermore, because of its low power consumption, stable performance can be exhibited over a long period of time even when a battery is used as a power supply.
  • FIG. 1 is a vertical sectional view and a block diagram of a flow channel of a flow measuring device according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a flow channel of the flow measuring device according to the first embodiment of the present invention.
  • a pair of ultrasonic transmission / reception means 20 and 21 for transmitting and receiving ultrasonic waves are provided on opposing side surfaces 19 of the measurement flow path 18 partitioned in a matrix in the flow path 17. Are located.
  • the cross section of the flow path # 7 is preferably circular.
  • Channel :! The inside of 7 is partitioned by a partition plate 30 to form a plurality of small flow channels 29 having a substantially square cross section, and one of the small flow channels 29 located at the center of the small flow channels 29 is measured. It is preferable to set as 18.
  • a signal related to the propagation time of the ultrasonic wave between the ultrasonic transmission / reception means 20 and 21 is sent to the time measurement means 22 via the wiring 27, and the propagation time is measured by the time measurement means 22.
  • the signal relating to the propagation time measured by the clocking means 22 is input to the estimating means 23.
  • the estimating means 23 regards the fluid flow velocity of the measurement flow path 18 calculated from the signal related to the propagation time as the average flow velocity of the flow path 17 and estimates the total flow rate of the flow path 17 based on this. You.
  • Battery 2 is a power source for timekeeping means 22 and estimating means 23.
  • a grid-shaped rectification unit 25 for rectifying the flow of the fluid is arranged on the upstream side of the measurement channel 18 of the channel 17.
  • the flow path 17 is connected to the front and rear pipes by a flange 26.
  • the wiring 27 inside the flow path 17 and the wiring 27 outside the flow path 17 are connected at the connection terminal 28.
  • the connection terminal 28 is sealed with the pipe wall of the flow path 17 (for example, hermetic seal) and is connected to the wiring 27, so that leakage from the flow path 17 is prevented.
  • the wiring 27 and the connection terminal 28 be soldered so that a spark is not generated due to a spark of the electric contact so that the wiring 27 and the connection terminal 28 can be used for measuring fluid such as gas.
  • the flow velocity of the fluid in the measurement flow path 18 is measured via the ultrasonic transmission / reception means 20 and 21. That is, the propagation time of the ultrasonic wave is measured by the timing means 22, and based on this time value, the time counting means 22 calculates a numerical value that matches the average flow velocity of the entire flow path 17.
  • the timing means 22 obtains the value of the fluid flow velocity in the measurement flow path 18 by a method of calculating from the reciprocal difference between the propagation time from the upstream ultrasonic transmission / reception means 20 and the propagation time from the downstream side.
  • the estimating means 23 estimates the flow rate flowing through the entire flow path 17 from the flow velocity value by using a flow rate conversion constant which has been determined in advance by performing a test to determine the total flow rate.
  • the entire apparatus is very small. Can be done.
  • the flow measuring device of the first embodiment does not include means for switching the flow path, there is no need for a shut-off valve or the like for performing a switching action, and as a result, power consumption can be suppressed.
  • the battery 24 having a small electric capacity can be used, and the flow measurement device according to the present invention can be installed in a place where power is not supplied, such as outdoors.
  • the flow channel 17 is divided into a plurality of small flow channels 29 in a matrix and one of them is set as the measurement flow channel 18, the flow channel having a large area is formed by a pair of ultrasonic waves.
  • the measurement accuracy is improved as compared with the measurement using the transmission / reception means, and the average flow velocity and the total flow rate can be estimated with high accuracy.
  • the small flow paths 29 other than the measurement flow path 18 be partitioned so as to have a cross-sectional area substantially equal to that of the measurement flow path 18. The reason is that the measurement value in the measurement flow path 18 becomes measurement data more appropriately representing all the holidays, and thus the measurement accuracy is further improved. Furthermore, if the small flow path 29 has a substantially square shape, the fluid flows evenly through each flow path, so that the measurement flow path 18 is used as a substitute flow path. If measured, the total flow rate can be estimated with high accuracy.
  • the rectifying means 25 is means for substantially equalizing the flow velocity distribution near the downstream side irrespective of the position on the cross section.
  • the rectifying means 25 may be, for example, a grid-shaped flow resistor.
  • the rectification means 25 is arranged on the upstream side of the measurement flow path 18, and each of the small flow paths 29 receives the flow having the uniform flow velocity distribution in a divided manner, so that Means that a fluid with a uniform flow velocity flows.
  • each of the partition plates 30 the same length as the measurement flow path 18 contributes to flowing the upstream flow in each of the small flow paths 29 at a substantially uniform flow velocity.
  • the divided flow of the fluid having the uniform flow velocity flows into the measurement flow path 18 c.
  • the flow that flows in can be said to be a flow that appropriately represents the entire flow, and the measurement flow 18 It can be said that it is appropriate to use the measured value as the representative value of the channel 17. That is, providing the rectification means 25 can improve the accuracy of the estimation.
  • the distance from the downstream end of the rectifying means 25 to the small flow path 29 is preferably set to be about several times the grid width of the rectifying means 25.
  • the rectifying means 25 is described as being, for example, a grid-shaped flow resistor, it may be a fine wire mesh. Further, a combination of a grid-shaped flow resistor and a wire net may be used.
  • the measurement channel 18 is formed using the plurality of partition plates 30, it can be stably held even at the center position of the channel 17.
  • the measurement flow channel 18 substantially at the center of the flow channel 17, it is possible to measure a flow having a stable flow velocity (distribution), and thus to perform measurement with high measurement accuracy.
  • the l-measuring flow channel 18 at a substantially central portion in the flow channel 17, the influence of the external environment can be reduced.
  • the measurement flow path 18 is not much affected by an external temperature change, and stable and accurate measurement can be performed.
  • the built-in ultrasonic transmission / reception ⁇ wiring 20 and 21 wiring 27 along the partition plate 30 Preferably, it is lined. Then, when the ultrasonic transmission / reception means 20 and 21 are arranged, the flow of the fluid is not obstructed as much as possible.
  • the cross section of the flow path 17 is circular, connection to existing pipes such as gas pipes is easy.
  • the measurement channel 18 itself is rectangular, measurement can be performed with less influence of the flow velocity distribution, and measurement accuracy can be improved.
  • the storing section of the ultrasonic transmitting / receiving means 20 and 21 is required (for example, by an appropriate filling member). It may be closed (see Figures 6 and 7). However, at this time, since the cross-sectional area of the entire flow path 17 'is substantially reduced, a pressure loss may be generated downstream. In such a case, in order to cope with the pressure loss, in such a case, it is not a flat flow path wall such as the inner wall of the flow path 17 shown in FIG. It is only necessary to form a pipe wall with a slope that increases the cross-sectional area. Second embodiment
  • FIG. 4 is a vertical sectional view and a block diagram of a flow channel of a flow measuring device according to a second embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a flow channel of the flow measuring device according to the second embodiment of the present invention.
  • (1) is a cross-sectional view of a deflecting means (to be described later), and (2) is a cross-sectional view of the cross-section of (1) as viewed from the reverse (back) direction.
  • the flow measurement device according to the second embodiment is substantially the same as the flow measurement device S according to the first embodiment. Therefore, the same portions are denoted by the same reference numerals and description thereof will be omitted.
  • a deflecting unit including a fixed wing 25a is set instead of the rectifying unit 25 shown in FIG. As shown in FIG. 5, the deflecting means is provided with fixed wings 25a for guiding the flow in the swirling direction.
  • the front and back surfaces of the fixed 3 ⁇ 425a are formed of curved surfaces.
  • the flow measuring device may be designed so that the cross-sectional area of the pipe gradually increases near the inlet.
  • the flow may adhere to the flow channel wall at a specific flow velocity, and the flow velocity distribution may be uneven. It is pointed out.
  • FIG. 6 is a vertical sectional view and a block diagram of a flow channel of the flow measuring device according to the third embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of a flow channel of the flow measuring device according to the third embodiment of the present invention.
  • the flow measuring device according to the third embodiment is substantially the same as the flow measuring device according to the first embodiment. Therefore, the same portions are denoted by the same reference numerals and description thereof will be omitted.
  • the second rectifying means 31 is arranged near the inflow port on the upstream side of the measuring channel 18.
  • the ultrasonic transmission / reception means 20 and 21 are housed in a storage section 32, and fluid is prevented from flowing into the storage section 32 (for example, a gap is formed by an appropriate filling member). Buried). A small flow path 33 exists, of course, outside the storage section 32.
  • the second rectifying section 31 By arranging the second rectifying section 31 at the inflow portion of the measurement flow path 18 as described above, the flow velocity distribution in the measurement flow path 18 is made more uniform, and the average flow velocity in the flow path 1 ⁇ ⁇ is ensured. It can be measured at Therefore, the estimation of the total flow rate is performed with high accuracy.
  • the flow velocity balance between the small flow path 33 and the measurement flow path 18 can be kept almost uniform over a wide flow rate range from small flow rate to large flow return, and the flow rate conversion constant may be set to a substantially constant value. Will not be.
  • the flow rate conversion constant may be set to a constant value, it is not necessary to adjust the flow rate conversion constant for each flow rate, so that the calculation is reduced and the power consumption is reduced.
  • the fact that the flow rate conversion constant may be a constant value means that the effect of the type of fluid is small, that is, there is no need to prepare a flow conversion constant due to the difference in air or gas. It will be connected to.
  • the flow velocity distribution is controlled by attaching the rectifying means 25 described in the first embodiment, and giving a distribution to the size of the rectifying grid 25 to control the flow velocity flowing into the measurement flow path 18. You can also control it to be almost constant. That is, for example, if a slightly narrower grid is arranged in the center of the rectifying means 25 and a slightly wider grid is arranged in the peripheral part, the flow velocity distribution in the central part is relatively slow and the flow velocity in the peripheral part is reduced. Can be adjusted relatively quickly.
  • the flow velocity distribution may be controlled by installing the deflecting means described in the second embodiment and adjusting the number and shape of the fixed blades 25a. Industrial potential
  • the entire flow is estimated by measurement in the measurement flow path defined in the flow path, so that the measurement unit can be reduced in size and size. Power consumption can be greatly reduced, and it can be applied to multipurpose measurement from gaseous fluids such as gas to liquid fluids.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Measuring Volume Flow (AREA)

Abstract

超音波を利用して空気、ガス、水などの流体の流速および流量を計測する流れ計測装置において、小型化と低消費電力化を実現する。流路17内にマトリクス状に区画された計測流路18を設け、前記計測流路18がその側面に超音波を送受信する一対の音波送受信手段20、21を備える。更にこれら音波送受信手段20、21間の超音波の伝搬時間を計測する計時手段22と、前記計時手段22の値に基づいて前記流路17を流れる流体の平均流速および総流量を推測する推測手段23を備えることで、計測装置としての小型化を可能にし、加えて、消費電力の低減化を図った。

Description

明 細 書 流れ計測装置 技術分野
本発明は、 超音波を利用して空気、 ガス、 水などの流体の流速および流量を計 測する流れ計測手段に関するものである。 背景技術
超音波を利用して小流量 (小流速) から大流量 (大流速) の広範囲にわたり流 体の流れを計測するものとして、 従来は、 図 8に示すように、 流体を流す流入路 1と流出路 2との間を複数の流路 3に分岐するとともに、 それぞれの流路 3には 開閉手段 4を接続していた (特開平 1 1—2 8 7 6 7 6号) 。 そして、 各流路 3 にそれぞれ配置した計測手段 5の計測結果にもとづいて流体の流量およびまた 流速を計測していた。
さらに、 各開閉手段 4と各計測手段 5は制御手段 6によって制御されていた。 ここで、 制御手段 6には電源供給手段 7より電力供給される。
前記構成において、 流路 3は流量およびまたは流速によって切り換えられるも ので、 例えば、 小流量では、 1つの流路 3のみを使用し、 大流量では全ての流路 3を使用して計測することで、 小流 Sから大流量までの流量または流速の計測精 度を高めるようにしていた。
また、 図 9に示すように、 流路 8に接続した小型メータ 9の下流側を 3つの流 路 1 0、 1 1、 1 2に分岐し、 それら各流路 1 0、 1 1、 1 2に大型の超音波計 測計 1 3、 1 4、 1 5をそれぞれ備え付けたものも見受けられる (特開 2 0 0 1 一 1 3 3 3 0 8号) 。 この場合、 小型メータ 9には遮断弁 1 6を並列に接続して いる。
前記構成において、 小流量 (流速) 時には遮断弁 1 6を閉じ、 小型メータ 9に よって流れを計測し、 大流量 (流速) 時には遮断弁 1 6を開いて流体をバイパス 的に流し、 下流側の超音波計測計 1 3、 1 4、 1 5によって計測するようにして いた。
更に、 流量測定部を挟んで配置された第一の超音波振動子と、 第二の超音波振 動子と、 振動子の信号を基に流量を箅出する流量演算部とを備え、 さらに流量測 定部を仕切板により層状に区切られた複数の流路を備えてレ、る超音波式流量計が、 特開平 9一 4 3 0 1 5号公報に開示されている。 流路を複数の層状に分割するの は、 二次元性の向上により計測精度を向上するためである。 発明の開示
発明が解決しょうとする技術的課題
しかしながら、 先ず前記従来の構成では、 多くの計測計を配置しなければなら ず、 本体が大きくなるという課題があった。
また、 切り換えて使用することで制御が複雑となり、 更に、 消費電力を多く使 用してしまうという課題があつた。
更に、 流量測定部を挾んで配置された第一の超音波振動子と、 第二の超音波振 動子と、 振動子の信号を基に流量を算出する流量演算部とを備え、 流量測定部が 仕切板により層状に区切られた複数の流路を備えている超音波式流量計は、 流路 の大きさ (断面) が第一と第二の超音波振動子の性能による制約を受けると言え る。 つまり、 プラント配管のように、 超音波振動子の寸法に比べて大きな口径の 配管の流路では、 第一と第二の超音波振動子の設置距離を長くすると、 S /N比 が低下してしまい、 計測精度が低下してしまうため、 第一と第二の超音波振動子 の設置距離には限界がある。 しかも、 第一と第二の超音波振動子は流路の側壁に 設けられる (図 2 ) ため、 流路は所定の大きさ (断面) 以下でなければならない ことになる。
本発明は、 流れ計測装置において、 計測計を流路内に内蔵することで小型化す ること、 及び、 流路の一部の計測流路で計測して消費電力を低減することを目的 とする。 その解決方法
前記課題を解決すべく本発明は、 流路内に区画形成された計測流路と、 この計 測流路を流れる流体の流速を計測するために配設された少なくとも一対の超音波 送受信手段と、 その超音波送受信手段による計測結果に基づき計測流路を含む流 路全体の流体の総流量およびまたは平均流速を推測する推測手段とを具備した構 成とした。 従来技術より有効な効果
本発明に係る流れ計測装置では、 流路内にマトリクス状に区画形成された計測 流路での計測で全体の流れを推測するようにしている。 従って、 計測部の小型、 コンパクト化が促進されるとともに、 消費電力も大いに低減することができる。 図面の簡単な説明
図 1は、 本発明の第 1の実施の形態に係る流れ計測装匿の流路縦断面図とプロ ック図である。
図 2は、 本発明の第 1の実施の形態に係る流れ計測装置の流路横断面図である c 図 3は、 本発明の第 1の実施の形態に係る流れ計測装置を更に改良したものの 流路横断面図である。
図 4は、 本発明の第 2の実施の形態に係る流れ計測装置の流路縦断面図とプロ ヅク図である。
図 5は、 本発明の第 2の実施の形態に係る流れ計測装置の流路横断面図である。
( 1 ) は偏向手段部分での横断面図であり、 ( 2 ) は ( 1 ) の横断面の逆 (裏) の方向から見た横断面図である。
図 6は、 本発明の第 3の実施の形態に係る流れ計測装置の流路縦断面図とプロ ック図である。
図 7は、 本発明の第 3の実施の形態に係る流れ計測装置の流路横断面図である。 図 8は、 従来技術による流量計の構成図である。
9は、 従来技術による流量計の構成図である。 発明を実施するための最良の形態
本発明に係る流れ計測装置は、 流路内にマトリクス状に区画形成された計測流 路と、 この計測流路を流れる流体の流速を計測するために配設された少なくとも 一対の超音波送受信手段と、 前記超音波送受信手段による計測結果にもとづき計 测流路を含む流路全体の流体の総流量または平均流速を推測する推測手段とを具 備した構成としたものである。
したがって、 計測部分の小型化、 コンパクト化が促進できるとともに、 消費電 力も低減できる。
前記流れ計測装置において、 流路が複数の小流路にマトリクス状に分割され、 それら小流路のうちの一つが、 前記計測流路として利用される。 前記^ "測流路は、 流路の中心領域に配置されるのが好ましい。 配管作業性などを考慮し、 高い計測 精度を維持するには、 流路の横断面形状を円形状に、 計測流路の横断面形状を矩 形形状に、 それぞれ形成するのが好ましい。
更に、 前記小流路を略正方形状とすれば、 各小流路に流体が均等に流れるよう になる。 従って、 かような流れ計測装置において、 代表流路として計測流路を計 測すれば全体の流量を精度よく推測することができる。
そして、 流路の計測流路より上流側に流体の整流を行う整流手段を配置するこ とで、 l-測流路と流路全体との間の流速分布のばらつきを抑制できる。 さらに、 計測流路の流入口側に第 2の整流手段を配置すれば、 計測のさらなる高精度化が 図れる。
また、 前記整流手段の代わりに偏向手段を設け、 その偏向手段が、 旋回方向に 流れを導く固定 ¾を含むようにすることで、 特定の流速時に流れが流路壁面に付 着して流速分布が不均一になる現象を防止する効果がある。 そうすると、 本究明 に係る流れ計測装置では、 広い範囲にわたる流量を安定して精度よく計測できる ことになる。
また、 超音波送受信手段間の超音波伝搬時間を計測する計時手段およびこの計 時手段からの出力に基づいて流体の総流量または平均流速を推測する推測手段を 流路外に配置し、 前記計時手段と超音波送受信手段とを連絡する配線を複数の小 流路に分割する仕切板に沿って導出すれば、 この配線が流れを妨げることは殆ど 無い。 更に、 接続端子で配線をシールすることで流体の漏れを防止することがで ぎる。 さらに、 消費電力が小さいため、 電池を電源としても長期間にわたり安定した 性能を発揮させることができる。
以下では、 図面を参照しつつ本発明の実施の形態を説明する。 第 1の実施の形態
図 1は、 本発明の第 1の突施の形態に係る流れ計測装置の流路縦断面図とプロ ック図である。 図 2は、 本発明の第 1の実施の形態に係る流れ計測装置の流路横 断面図である。
図 1、 図 2において、 流路 1 7内にマトリクス状に区画形成された計測流路 1 8の対向する側面 1 9には超音波を送受信する一対の超音波送受信手段 2 0、 2 1が配置されている。
流路; ί 7の横断面は、 円形状が好ましい。 更に、 流路:! 7の内部を仕切板 3 0 により区画して横断面が略正方形状である小流路 2 9を複数形成し、 それらのう ち中央部に位置する一つの小流路 2 9を計測流路 1 8として設定するのが好まし い。
前記超音波送受信手段 2 0、 2 1間の超音波の伝搬時間に係る信号は、 配線 2 7を介して計時手段 2 2に送られ、 その計時手段 2 2により伝搬時間が計時され る。 計時手段 2 2により計時される伝搬時間に係る信号は推測手段 2 3に入力さ れる。
推測手段 2 3は、 前記伝搬時間に係る信号から算出される計測流路 1 8の流体 流速を流路 1 7の平均流速と見なし、 これを基に前記流路 1 7の総流量を推測す る。
電池 2 は、 計時手段 2 2および推測手段 2 3などの電源である。
流路 1 7の前記計測流路 1 8より上流側には、 流体の流れを整流する格子状の 整流手段 2 5が配置してある。
流路 1 7は、 フランジ 2 6により前後の管などに接続する。 流路 1 7内の配線 2 7と流路 1 7外の配線 2 7は、 接続端子 2 8にて繫がっている。 接続端子 2 8 は流路 1 7の管壁でシール (例えば、 ハ一メチックシール) された上で配線 2 7 と接統しているので、 流路 1 7からの漏れは防止される。 ここで、 配線 2 7と接続端子 2 8ははんだ接続とし、 電気接点のスパークによ る火花が発生しないようにしてガスなどの流体計測にも使用できるような構成と するのが好ましい。
前記第 1の実施の形態の構成において、 超音波送受信手段 2 0、 2 1を介して 計測流路 1 8内の流体の流速を計測する。 即ち、 超音波が伝搬する時間を計時手 段 2 2で計測し、 この時間値を基に計時手段 2 2は流路 1 7全体の平均流速と見 倣す数値を計算する。 例えば、 計時手段 2 2は、 上流側の超音波送受信手段 2 0 からの伝搬時間と下流側からの伝搬時間の逆数差から算出する方法により、 計測 流路 1 8の流体流速の値を求める。 そして、 推測手段 2 3は、 この流速値から、 あらかじめ検定して求めておいた流量変換定数によって流路 1 7の全体を流れる 流量を推測し総流量を求めることとしている。
第 1の実施の形態に係る流れ計測装置では、 流路 1 7内をマトリクス状に区画 して、 その一部にて計測流路 1 8を形成しているので、 装置全体が非常に小さく 構成され得る。
また、 1つの計測流路 1 8で計測するので、 計測に要する電力を少なく抑える ことができる。 更に、 第 1の実施の形態の流れ計測装置では、 流路切換えなどの 手段を含まないので、 切換え作用を行う遮断弁なども不必要であり、 この結果、 電力使用を抑制することができる。 これらのことから、 電気容量の小さい電池 2 4を使用することができ、 屋外など電源が供給されていないような場所にも本発 明に係る流れ計測装置を設置することができる。
また、 流路 1 7を複数の小流路 2 9にマトリクス状に分割して、 その一つを計 測流路 1 8として設定していることから、 大きな面積の流路を一対の超音波送受 信手段で計測するよりも、 計測精度が向上し、 精度の高い平均流速および総流量 を推測することができる。
さらに加えて、 計測流路 1 8以外の小流路 2 9のなるベく多くが、 この計測流 路 1 8とほぼ同等の断面積となるように区画されることが好ましい。 けだし、 計 測流路 1 8での計測値が全休をより適切に代表する計測データとなり、 従って一 層計測精度が向上するからである。 更に、 小流路 2 9を略正方形状とすれば、 各 流路により均等に流体が流れるようになるため、 代¾流路として計測流路 1 8を 計測すれば、 全体の流量を精度よく推測することができるようになる。
なお、 前記のように略正方形状で小流路 2 9に区画すると、 流路 1 7周縁の一 部で半端な微小流路が発生することがある。 その場合、 その部分を区画せずに、 図 3に示すように近接する小流路と結合して一つの小流路 2 9 aとしてもよい。 整流手段 2 5は、 その下流側近傍の流速分布を横断面上の位置に拘わらず略均 等化する手段である。 整流手段 2 5は、 例えば、 格子状の流れ抵抗体であればよ い。 整流手段 2 5は計測流路 1 8の上流側に配置されており、 各小流路 2 9はそ の均等な流速分布を備える流れを分割して受けることで、 各小流路 2 9には均等 な流速の流体が流れることになる。
また、 前記各仕切板 3 0を計測流路 1 8と同じ長さとすることは、 上流側の流 れを各小流路 2 9においてほぼ均等な流速で流すことに寄与する。
従って、 計測流路 1 8内にも、 均等な流速の流体の分割された一部が流入する c 流入する流れは、 全体の流れを適切に代表する流れと言えるので、 計測流路 1 8 の計測値を流路 1 7の代表値とすることが適切であると言える。 即ち、 整流手段 2 5を設けることは、 推測の精度を向上し得ることになる。
整流手段 2 5の下流側端から小流路 2 9までの距離は、 整流手段 2 5の格子幅 の数倍程度に設定するのが好ましい。
なお、 前記整流手段 2 5は、 例えば格子状の流れ抵抗体であると述べたが、 目 の細かい金網であってもよい。 また、 格子状の流れ抵抗体と金網とを組み合せた ものであってもよい。
計測流路 1 8は、 複数の仕切板 3 0を利用して形成されるため、 流路 1 7の中 央位置でも安定して保持されることができる。
一方、 計測流路 1 8を流路 1 7のほぼ中央に配置することで、 安定した流速 (分布) の流れを計測することができ、 従って高い計測精度で計測することがで きる。
しかも、 l-測流路 1 8を流路 1 7内の略中央部に内蔵することで、 外部の環境 の影響を少なくすることができる。 例えば、 外部の温度変化に対しても計測流路 1 8は影響をあまり受けず、 安定した精度の高い計測を行うことができる。
内蔵している超音波送受信^段 2 0、 2 1の配線 2 7を仕切板 3 0に沿って配 線することが好ましい。 そうすると、 超音波送受信手段 2 0、 2 1を配置する際 に、 流体の流れに極力妨げを与えないからである。
第 1の実施の形態に係る流れ計測装置において、 流路 1 7の横断面が円形状で あるから、 ガス管などの既設配管との接続が容易である。 それと共に、 計測流路 1 8そのものは矩形であるから、 流速分布の影響を少なくして計測することがで き、 計測精度の向上が図れる。
ところで、 超音波送受信手段 2 0、 2 1を配置した部分では、 流れが乱れる可 能性があるので、 当該超音波送受信手段 2 0、 2 1の収納部を (例えば、 適切な 充填部材により) 閉塞した状態にしてもよい (図 6、 図 7参照) 。 但し、 このと き、 流路 1 7'全体の断面積が実質的に減少するので、 下流において圧力損失が生 じることがある。 その圧力損失に対 '処するために、 このような場合には、 図 1に 示される流路 1 7の内壁のようなフラットな流路壁面ではなく、 特に整流手段 2 5の直ぐ上流にて次第に横断面積が拡大するような傾斜が備わる管壁の冓成にす ればよい。 第 2の実施の形態
図 4は、 本発明の第 2の実施の形態に係る流れ計測装置の流路縦断面図とプロ ック図である。 図 5は、 本発明の第 2の実施の形態に係る流れ計測装置の流路横 断面図である。 (1 ) は (後で説明する) 偏向手段部分での横断面図であり、 ( 2 ) は (1 ) の横断面の逆 (裏) の方向から見た横断面図である。 第 2の実施 の形態に係る流れ計測装置は、 第 1の実施の形態に係る流れ計測装 Sと略同様で ある。 従って、 同一部位には同一符号を付して説明を省略する。
第 2の実施の形態では、 図 1に示される整流手段 2 5の代わりに、 固定翼 2 5 aを含む偏向手段が設定されている。 図 5に示すように、 偏向手段には、 旋回方 向に流れを導く固定翼 2 5 aが設けられている。 なお、 固定 ¾ 2 5 aの表裏面は 曲面で構成されているのが好ましい。
前述のように、 流れ計測装置による圧力損失を低減するため、 流れ計測装置の 流入口付近で管断面積が徐々に拡大するように設計することがある。 その場合、 特定の流速時に流れが流路壁面に付着して流速分布が不均一になりやすいことが 指摘されている。
そこで、 図 4のように、 旋回方向に流れを導く固定翼 2 5 aを含む偏向手段 (図 5参照) を流路に設けると、 特定の流速時に流れが流路壁面に付着して流速 分布が不均一になることが、 防止される。 従って、 第 2の実施の形態に係る流れ 計測装置を用いれば、 広い流量範囲にわたって安定して精度よく計測 ·推測する ことができる。 第 3の実施の形態
図 6は、 本発明の第 3の実施の形態に係る流れ計測装置の流路縦断面図とプロ ヅク図である。 図 7は、 本発明の第 3の実施の形態に係る流れ計測装置の流路横 断面図である。 第 3の突施の形態に係る流れ計測装置は、 第 1の実施の形態に係 る流れ計測装置と略同様である。 従って、 同一部位には同一符号を付して説明を 省略する。
図 6と図 7に示される第 3の実施の形態に係る流れ計測装置において、 計測流 路 1 8の上流側の流入口付近に、 第 2の整流手段 3 1が配置されている。 ここで、 超音波送受信手段 2 0、 2 1は、 収納部 3 2に収納されており、 この収納部 3 2 には流体が流入しないようにされている (例えば、 適切な充填部材により隙間が 埋められている) 。 収納部 3 2の外側には勿論、 小流路 3 3が存在する。
前記のように計測流路 1 8の流入部に第 2の整流^段 3 1を配置すると、 計測 流路 1 8内の流速分布がより一層均一になされ、 流路 1 Ίの平均流速が確実に測 定され得ることになる。 したがって、 全体の総流量の推測も高精度の下で行われ ることとなる。
また、 第 2の整流乎段 3 1の流れ抵抗と、 計測流路 1 8周辺の小流路 3 3の流 れ抵抗とのバランスをとることで、 低流燈時から大流量時にわたって推測に用い る流量変換定数をほぼ一定値とすることができる。
すなわち、 小流量時には、 流路の中央部の流速が速く周辺が遅くなるので、 ど うしても計測流路 1 8へ速い流速が流入しがちであるが、 第 2の整流手段 3 1が 抵抗になって流れ込みを抑制し、 結局、 計測流路 1 8と周辺の小流路 3 3とに同 等の流速の流体が流れることになる。 また、 大流量時には、 第 2の整流手段 3 1の抵抗により流れが周囲に偏りがち であるとも言えるが、 周囲の小流路 3 3の ®積が収納部 3 2によって小さくされ ているので、 その偏りが抑制され得ることになり、 結局、 計測流路 1 8に相当虽 の流体が流れ込んでくることになる。
よって、 小流量から大流還までの幅広い流量範囲にわたって、 小流路 3 3と計 測流路 1 8の流速バランスをほぼ均等に保つことができるので、 流量変換定数を ほぼ一定値としても構わないことになる。
このように、 流量変換定数を一定値としても構わないのであれば、 流量変換定 数を流量ごとに調整する必要がなくなり、 従って演算が軽減され消費電力が低減 される。 また、 流量変換定数を一定値としても構わないということは、 流体の種 類による影響が小さいということであり、 即ち、 空気やガスの違いによる流 a変 換定数を用意する必要がないという効果に繋がるということになる。
なお、 第 1の実施の形態で説明した整流手段 2 5を取付け、 その整流格子 2 5 の格子の大きさに分布を持たせることで流速分布をコントロールし、 計測流路 1 8に流れ込む流速をほぼ一定にするようにコントロールすることもできる。 即ち、 例えば、 整流手段 2 5の中心部分に間隔のやや狭い格子を配置し、 周縁部分に間 隔のやや広い格子を配置すれば、 中心部分の流速分布を相対的に遅く周縁部分の 流速を相対的に速く調整できる。 第 2の実施の形態で説明した偏向手段を取り付 け、 その固定翼 2 5 aの枚数や形状を調整することで、 流速分布をコントロール するようにしてもよい。 産業上の利用の可能性
以上のように、 本発明に係る流れ計測装置は、 流路内に区画形成された計測流 路での計測で全体の流れを推測するようにしたので、 計測部の小型、 コンパクト 化が促進されるとともに、 消費電力も大いに低減することができるもので、 ガス のような気体流体から液体流体まで多用途計測に適用できる。

Claims

請 求 の 範 囲
1 . 流路内に区画形成された計測流路と、 前記計測流路を流れる流体の流速を 計測するために配設された少なくとも一対の超音波送受信手段と、 前記超音波送 受信手段による計測結果に基づき計測流路を含む流路全体の流体の平均流速およ び総流量を推測する推測手段とを具備した流れ計測装置。
2 . 前記流路を複数の小流路に分割し、 これら小流路の一つを前記計測流路に 設定した請求項 1に記載の流れ計測装置。
3 . 前記小流路がマトリクス状に分割された請求項 2に記載の流れ計測装置。
4 . 前記流路の中心領域に前記計測流路を位置させた請求項 1〜 3のうちのい ずれか 1項に記載の流れ計測装置。
5 . 前記超音波送受信手段間の超音波伝搬時間を計測する計時手段およびこの 計時手段からの出力に基づいて流体の平均流速および総流量を推測する前記推測 手段を流路外に配置し、 前記計時手段と前記超音波送受信手段とを連絡する配線 を複数の前記小流路に分割する仕切板に沿って導いた請求項 2 ~ 4のうちのいず れか 1項に記載の流れ計測装置。
6 . 前記流路の前記計測流路ょり上流側に流体の整流を行う整流手段を配置し た請求項 1〜 5のうちのいずれか 1項に記載の流れ計測装置。
7 . 前記計測流路の流入口側に流体の整流を行う第 2の整流手段を配置した請 求項 6に記載の流れ計測装置。
8 . 前記流路の横断面形状を円形状に、 前記計測流路の横断面形状を矩形形状 に、 それぞれ形成した請求項 1〜 7のうちいずれか 1項に記載の流れ計測装置。
9 . f 池を電源とする請求項 1〜 8のうちいずれか 1項に記載の流れ計測装置 c
1 0 . 前記小流路の横断面形状を略正方形状とした請求項 2または請求項 3に 記載の流れ計測装置。
1 1 . 前記整流手段の代わりに偏向手段を設け、 前記偏向手段は、 旋回方向に 流れを導く固定翼を含む請求項 6に記載の流れ計測装置。
PCT/JP2004/010452 2003-07-15 2004-07-15 流れ計測装置 WO2005005932A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005511622A JP4578406B2 (ja) 2003-07-15 2004-07-15 流れ計測装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003274688 2003-07-15
JP2003-274688 2003-07-15

Publications (1)

Publication Number Publication Date
WO2005005932A1 true WO2005005932A1 (ja) 2005-01-20

Family

ID=34056083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010452 WO2005005932A1 (ja) 2003-07-15 2004-07-15 流れ計測装置

Country Status (4)

Country Link
JP (1) JP4578406B2 (ja)
CN (1) CN100374827C (ja)
TW (1) TWI336769B (ja)
WO (1) WO2005005932A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011053081A (ja) * 2009-09-02 2011-03-17 Panasonic Corp 流体の流れ計測装置
WO2012014632A1 (ja) * 2010-07-26 2012-02-02 オムロン株式会社 流量測定用構造体および流量測定装置
JP2012247425A (ja) * 2011-05-27 2012-12-13 Krohne Ag 流量測定装置のための補助装置
JP2014215061A (ja) * 2013-04-23 2014-11-17 パナソニック株式会社 流量計測装置
DE102013009347A1 (de) * 2013-06-04 2014-12-04 Hydrometer Gmbh Durchflussmesser
EP2908103A4 (en) * 2012-10-10 2015-10-28 Panasonic Ip Man Co Ltd FLOWMETERS
EP2375224B1 (de) * 2010-03-18 2016-02-10 SICK Engineering GmbH Ultraschallmessvorrichtung und Verfahren zur Messung der Strömungsgeschwindigkeit eines Fluids
EP2988103A1 (de) * 2014-08-20 2016-02-24 Landis+Gyr GmbH Durchflussmesser mit einem in ein gehäuse eingesetzten messeinsatz
WO2016206773A1 (de) * 2015-06-24 2016-12-29 Diehl Metering Gmbh Durchflusszähler mit messkanal und nebenkanälen
EP3677877A1 (de) * 2019-01-02 2020-07-08 Engelmann Sensor GmbH Messrohr und ultraschall-durchflussmengenmesser

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5682156B2 (ja) * 2010-06-24 2015-03-11 パナソニックIpマネジメント株式会社 超音波式流量計測装置
CN102032932B (zh) * 2010-10-26 2012-09-05 周岳建 一种超声波流量计
JP2014092467A (ja) * 2012-11-05 2014-05-19 Panasonic Corp 流量計測装置
DE102017002086A1 (de) 2017-03-03 2018-09-06 Man Truck & Bus Ag Kraftfahrzeug-Rohrleitung mit einem Mischelement aus einer Drahtstruktur
US11662242B2 (en) 2018-12-31 2023-05-30 Rain Bird Corporation Flow sensor gauge
CN110646043A (zh) * 2019-11-04 2020-01-03 中国计量科学研究院 一种低声道数的气体超声流量测量方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003161651A (ja) * 2001-11-27 2003-06-06 Mitsubishi Heavy Ind Ltd 音波式計測装置
JP2003185477A (ja) * 2001-12-21 2003-07-03 Yazaki Corp 流量計
JP2003194605A (ja) * 2001-12-28 2003-07-09 Matsushita Electric Ind Co Ltd 超音波流量計測装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001336962A (ja) * 2000-05-30 2001-12-07 Hitachi Ltd 空気流量測定装置に用いられる樹脂整流格子
KR100495970B1 (ko) * 2000-10-10 2005-06-17 마쯔시다덴기산교 가부시키가이샤 유량 계측 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003161651A (ja) * 2001-11-27 2003-06-06 Mitsubishi Heavy Ind Ltd 音波式計測装置
JP2003185477A (ja) * 2001-12-21 2003-07-03 Yazaki Corp 流量計
JP2003194605A (ja) * 2001-12-28 2003-07-09 Matsushita Electric Ind Co Ltd 超音波流量計測装置

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011053081A (ja) * 2009-09-02 2011-03-17 Panasonic Corp 流体の流れ計測装置
EP2375224B1 (de) * 2010-03-18 2016-02-10 SICK Engineering GmbH Ultraschallmessvorrichtung und Verfahren zur Messung der Strömungsgeschwindigkeit eines Fluids
WO2012014632A1 (ja) * 2010-07-26 2012-02-02 オムロン株式会社 流量測定用構造体および流量測定装置
JP2012026930A (ja) * 2010-07-26 2012-02-09 Omron Corp 流量測定用構造体および流量測定装置
CN102959364A (zh) * 2010-07-26 2013-03-06 欧姆龙株式会社 流量测量结构及流量测量装置
CN102959364B (zh) * 2010-07-26 2016-10-19 欧姆龙株式会社 流量测量结构及流量测量装置
US9103706B2 (en) 2010-07-26 2015-08-11 Omron Corporation Flow measurement structure and flow measurement device
JP2012247425A (ja) * 2011-05-27 2012-12-13 Krohne Ag 流量測定装置のための補助装置
EP2908103A4 (en) * 2012-10-10 2015-10-28 Panasonic Ip Man Co Ltd FLOWMETERS
US9453748B2 (en) 2012-10-10 2016-09-27 Panasonic Intellectual Property Management Co., Ltd. Flow meter device
JP2014215061A (ja) * 2013-04-23 2014-11-17 パナソニック株式会社 流量計測装置
US9222811B2 (en) 2013-06-04 2015-12-29 Diehl Meterming Gmbh Flowmeter
DE102013009347A1 (de) * 2013-06-04 2014-12-04 Hydrometer Gmbh Durchflussmesser
EP2988103A1 (de) * 2014-08-20 2016-02-24 Landis+Gyr GmbH Durchflussmesser mit einem in ein gehäuse eingesetzten messeinsatz
CN105387898A (zh) * 2014-08-20 2016-03-09 兰吉尔有限公司 具有插入到壳体中的测量插件的流量计
CN105387898B (zh) * 2014-08-20 2019-04-05 兰吉尔有限公司 具有插入到壳体中的测量插件的流量计
WO2016206773A1 (de) * 2015-06-24 2016-12-29 Diehl Metering Gmbh Durchflusszähler mit messkanal und nebenkanälen
US10527476B2 (en) 2015-06-24 2020-01-07 Diehl Metering Gmbh Ultrasonic flow meter having a main channel and at least one secondary channel
EP3677877A1 (de) * 2019-01-02 2020-07-08 Engelmann Sensor GmbH Messrohr und ultraschall-durchflussmengenmesser

Also Published As

Publication number Publication date
CN100374827C (zh) 2008-03-12
TWI336769B (en) 2011-02-01
JPWO2005005932A1 (ja) 2006-08-24
TW200508574A (en) 2005-03-01
JP4578406B2 (ja) 2010-11-10
CN1816735A (zh) 2006-08-09

Similar Documents

Publication Publication Date Title
WO2005005932A1 (ja) 流れ計測装置
US8701501B2 (en) Ultrasonic flowmeter
RU2598976C1 (ru) Система и способ для ультразвукового измерения с использованием фитинга диафрагменного расходомера
JP5510133B2 (ja) 超音波式ガスメータ
WO2012063437A1 (ja) 超音波流量計測装置
JP5728639B2 (ja) 超音波流量計
JP6375519B2 (ja) ガスメータ
JP3511959B2 (ja) 流入・流出対称型流量計
JP2781063B2 (ja) フルイディック流量計
CN103674146A (zh) 一种基于超声流量计的质量流量计
JP2013057613A (ja) 超音波流量計
CN112097843B (zh) 一种基于超声换能器的高灵敏度超声流量计及其方法
Yu et al. Design and simulation of an ultrasonic flow meter for thin pipe
CN209102162U (zh) 一种多流道超声波燃气表
CN107490406B (zh) 一种超声涡街流量计
CN106872078B (zh) 一种用于超声波热量表的双声道管体
JP2000065613A (ja) 超音波流量計
EP3798582A1 (en) Ultrasonic flowmeter and fluid pipeline
JP2003307445A (ja) 超音波流量計測装置
CN218646376U (zh) 超声波计量装置
RU115467U1 (ru) Датчик ультразвукового расходомера
JP2004191103A (ja) 整圧器および流量計測方法
JPH11281437A (ja) 流量計の脈動吸収構造
JP4396246B2 (ja) 流量計測装置
JP2021124358A (ja) 超音波流量計

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20048185318

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005511622

Country of ref document: JP

122 Ep: pct application non-entry in european phase