WO2017149564A1 - 細胞増殖法を用いた循環腫瘍細胞の検出・分離取得方法 - Google Patents

細胞増殖法を用いた循環腫瘍細胞の検出・分離取得方法 Download PDF

Info

Publication number
WO2017149564A1
WO2017149564A1 PCT/JP2016/001172 JP2016001172W WO2017149564A1 WO 2017149564 A1 WO2017149564 A1 WO 2017149564A1 JP 2016001172 W JP2016001172 W JP 2016001172W WO 2017149564 A1 WO2017149564 A1 WO 2017149564A1
Authority
WO
WIPO (PCT)
Prior art keywords
ctc
cells
cancer
circulating
circulating tumor
Prior art date
Application number
PCT/JP2016/001172
Other languages
English (en)
French (fr)
Inventor
康生 梅津
Original Assignee
康生 梅津
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to SG11201807509PA priority Critical patent/SG11201807509PA/en
Priority to CN201680085362.2A priority patent/CN109073626A/zh
Priority to AU2016395556A priority patent/AU2016395556B2/en
Priority to RU2018134324A priority patent/RU2707083C1/ru
Application filed by 康生 梅津 filed Critical 康生 梅津
Priority to KR1020187028402A priority patent/KR20180114209A/ko
Priority to BR112018017204A priority patent/BR112018017204A2/pt
Priority to PCT/JP2016/001172 priority patent/WO2017149564A1/ja
Priority to US16/080,862 priority patent/US20190049456A1/en
Priority to EP16892410.8A priority patent/EP3406714A1/en
Priority to JP2016519396A priority patent/JP6173577B1/ja
Priority to NZ745735A priority patent/NZ745735A/en
Priority to CA3049519A priority patent/CA3049519A1/en
Priority to TW106106897A priority patent/TWI618931B/zh
Publication of WO2017149564A1 publication Critical patent/WO2017149564A1/ja
Priority to IL261398A priority patent/IL261398B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0693Tumour cells; Cancer cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • G01N33/57488Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites involving compounds identifable in body fluids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0018Culture media for cell or tissue culture
    • C12N5/0037Serum-free medium, which may still contain naturally-sourced components
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0081Purging biological preparations of unwanted cells
    • C12N5/0093Purging against cancer cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0693Tumour cells; Cancer cells
    • C12N5/0694Cells of blood, e.g. leukemia cells, myeloma cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0693Tumour cells; Cancer cells
    • C12N5/0695Stem cells; Progenitor cells; Precursor cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • G01N33/491Blood by separating the blood components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5091Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing the pathological state of an organism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/02Atmosphere, e.g. low oxygen conditions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2523/00Culture process characterised by temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/34Purifying; Cleaning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer

Definitions

  • the present invention relates to human biological tissue, that is, circulating body fluid typified by peripheral blood, or tumor (cancer) cells that enter the circulating body fluid from various internal organs such as bone marrow and spleen through this body fluid.
  • the present invention relates to a method for detecting / separating circulating tumor cells (CirculatingumTumorsCells: CTC) and circulating tumor (cancer) stem cells (Circulating Tumor Stem Cells: CTSC), particularly in a biological circulating body fluid such as blood and lymph.
  • the present invention relates to providing a method for detecting / separating and obtaining circulating tumor cells (CTC) and circulating tumor stem cells (CTSC) that can be detected / separated and acquired.
  • CTC circulating tumor cells
  • CTC circulating tumor stem cells
  • Cancer diseases are at the top of mortality from diseases in developed countries. In particular, in Japan, although there is a downward trend in statistics such as age-adjusted morbidity and mortality, the degree of contribution to cancer development and death of chronic diseases such as aging and diabetes is high. One person is affected by cancer, and one in three people die of cancer (Estimated using the method by Wum LM et al., Estimating lifetime and age-conditional probabilities of developing cancer, Lifetime Data Anal., 1998, 4: 169-186.).
  • the proliferated cancer cells are bound by an adhesion factor to form a tumor tissue.
  • the cancer cells are not limited to the primary lesion, but are released from the primary lesion due to abnormalities or disappearance of adhesion factors, and the connective tissue, blood vessels, and lymphatic vessel walls surrounding the cancer cells are decomposed in the blood, Infiltrate into the lymph.
  • Cancer cells that have infiltrated into the body fluid circulate in the body as circulating tumor cells (CTC) together with blood circulating in the body and lymph fluid.
  • CTC circulating tumor cells
  • the CTC is transported to other tissues and organs by circulation of blood and the like, and enters the other tissues and organs from blood vessels and the like, newly synthesizes an adhesion factor, and settles to form a metastatic focus. Circulation in the body and formation of metastasis of CTC are considered to be a mechanism of cancer metastasis and are considered to be involved in cancer recurrence and metastasis.
  • CTC analysis is extremely important as a means for that. It is attracting attention as a major factor. CTC analysis is also considered important in predicting cancer recurrence and evaluating cancer treatment effects, and has been reported to be an effective means for predicting prognosis and determining treatment effects.
  • CTC circulating in blood etc. has a very low presence level, and the half-life of cancer cells circulating in blood is as short as 1 to 24 hours. It is extremely difficult to detect CTCs present in body fluids. For example, the separation of CTC from peripheral blood is inefficient, and the 2012 World Collaborative Research 19 report (J Translational-medicine 2012, 10: 138: 1-20.) It has been reported that 1/10 8 , that is, only one can be taken from 100 ml of blood. In terms of an adult with a body weight of 60 kg, this means that even if a total amount of about 5 liters (5000 ml) of whole peripheral blood is collected, only a very small number of CTCs can be collected with an extremely low probability of 50. This fact has been the biggest impediment to CTC research (J Translational-medicine 2012, 10: 138: 1-20.).
  • CTC detection / measurement technology has been improved, and detection sensitivity and measurement accuracy have been improved by the advancement of detection / measurement technology, and only a few hundred thousand to 100 million mononuclear cells in blood can be detected. It has become possible to specifically detect several cancer cells. And it has come to be accepted as a test that can provide clinical information such as prognosis prediction and treatment effect determination in metastatic cancers such as breast cancer, colon cancer, and prostate cancer.
  • US FDA Food and Drug Administration
  • the current CTC detection / measurement technology has to be a detection / measurement technology limited to a specific CTC, such as when a target cancer cell has been identified, and there is a wide range. No CTC detection / measurement technology applicable to cancer cells has been found yet.
  • an immunomagnetic separation detection method As a method for detecting CTC that is widely used at present, an immunomagnetic separation detection method is known (Proc. Natl. Acad. Sci, USA, 95: 4589-4594,1998; WO99 / 41613; Special Table 2002). No. 503814).
  • This method uses magnetic beads to which a monoclonal antibody against epithelial cancer cell epithelial cell adhesion molecule (Epithelial cell adhesion molecule: EpCAM, "CD326”) is immobilized, and CTC epithelial cell adhesion molecule (EpCAM) in a sample is obtained.
  • EpCAM epithelial cell adhesion molecule
  • an immunomagnetic target CTC derived from a body fluid is labeled with a fluorescent chromophore, and the labeled cells are subjected to Time-delayed integrating in which a beam homogenizer is introduced.
  • a method and apparatus for quickly and accurately detecting rare CTCs in blood by scanning and acquiring two-dimensionally distributed images of CTCs by imaging (TDI) technology are disclosed.
  • JP 2007-178193 A and JP 2012-103077 A disclose cancer cells captured on magnetic beads immobilized by an epithelial cell surface antigen (EpCAM) specific antibody, and the surface antigen.
  • EpCAM epithelial cell surface antigen
  • FISH fluorescent in ⁇ situ hybridization
  • JP-A-2014-105159 discloses the concentration of CTC using magnetic beads immobilized with a monoclonal antibody (first antibody) against human-derived epithelial cell adhesion molecule (EpCAM), and different epitopes specifically.
  • a monoclonal antibody first antibody
  • EpCAM human-derived epithelial cell adhesion molecule
  • second antibody fluorescently labeled anti-EpCAM monoclonal antibody
  • ⁇ iCeap method is disclosed in Japanese Patent Application Laid-Open No.
  • cytokeratin (CK) marker that is a specific marker for epithelial cells and Wright-Giemsa dye.
  • CK cytokeratin
  • Wright-Giemsa dye a cytological dye that identifies CTCs by nuclear-to-cytoplasmic ratio. Cormorants method is disclosed.
  • JP-A-2014-39480 provides a culture surface containing a urokinase (urokinase-type plasminogen activator: uPA) -specific fluorescent substrate for the detection of EpCAM-negative CTCs.
  • a method of separating and recovering CTC by detecting a signal derived from a urokinase-specific substrate by seeding and incubating a blood sample on the surface is disclosed.
  • CTC cell markers cell surface specific antigens
  • monoclonal antibodies that specifically bind to the cell antigens.
  • the CTC detection / measurement technology can be applied when a target cancer such as breast cancer, colon cancer, prostate cancer, etc. has been identified.
  • a target cancer such as breast cancer, colon cancer, prostate cancer, etc.
  • a method for detecting and measuring CTC a method for detecting CTC without using a CTC cell marker (specific antigen on the cell surface) or a monoclonal antibody that specifically binds to the cell antigen is also disclosed.
  • CTC contained in a blood sample is captured by a size-selective microcavity array having fine through-holes with controlled hole diameter, number of holes, and arrangement for CTC capture.
  • CTC concentration from blood, CTC staining and washing processes are consistently performed within one device, and CTC detection and detection can be performed quickly using an automated fluorescent microscope.
  • a measurement method is disclosed.
  • Japanese Patent Laid-Open No. 2013-36818 discloses that a body fluid containing tumor cells is made of polyester fiber, polypropylene fiber or the like having a density of 2.0 ⁇ 10 4 to 1.9 ⁇ 10 5 and a fiber diameter of 1 ⁇ m to 15 ⁇ m.
  • a blood cell separator made of a molded non-woven fabric, tumor cells and leukocytes and platelets are captured, and the fraction rich in tumor cells in the captured body fluid is obtained from physiological saline, buffer solution, dextran, etc.
  • a method of separating and recovering using the separated liquid is disclosed.
  • Japanese Patent Application Laid-Open No. 2014-224800 has a main body and a cover that form a gap, and the gap forms a separation element that separates the inlet region and the outlet region of the gap. Defining a channel with the surface of the gap and, for particles passing through the channel, by blocking the passage of smaller particles and the passage of larger particles, CTCs that are larger particles and blood spheres that are smaller particles A separation method, such as CTC, for separating the components is disclosed. These CTC separation / detection methods physically separate and detect CTCs present in body fluids, and specifically bind to CTC cell markers (cell surface specific antigens) and the cell antigens.
  • CTC cell markers cell surface specific antigens
  • Acquiring cancer cells including CTC, is an indispensable factor for cancer research, especially for cancer diagnosis, diagnosis and prognosis, and selection of effective cancer chemotherapy.
  • cancer immunotherapy the acquisition of cancer cells is a key technology for vaccine development, and in personalized medicine, it is the key to further custom-made vaccine development.
  • individual cell immune cell transfer therapy it is also used as a stimulant for the induction of killer cells, which are responsible for the specific cytotoxic response to the patient's own cancer, or when the cytotoxicity of induced killer cells is measured. It is also indispensable as an autologous cancer target cell.
  • cancer cells can only be obtained from biopsies or surgical materials that are highly invasive operations on the living body and accompanied by certain risks such as promoting metastasis and seeding. It did not exist. Therefore, avoiding these risks and developing a safe, simple, and short-term CTC isolation method from peripheral blood, for example, is extremely important for basic and clinical cancer research. It contributes and has important significance for CTC separation acquisition.
  • Cancer has been shown to be mainly hematogenous rather than lymphogenic (Cancer (Res. 11, 648-651,1951; CANCER JULY-AUGUST, Vol.13: 674-676, 1960), despite the lapse of more than 50 years, until now, no method has been developed for stably collecting cancer cells from peripheral blood.
  • a method for a specific subject as described above, a method for examining the presence or absence of cancer by detecting and amplifying a very small amount of cell fragments derived from cancer cells in peripheral blood with an antibody is known. It was done. However, this method is a means that can be applied only to cancer cells that have already identified a substance that is a target for antibody binding.
  • CTC detection / separation acquisition is extremely important. Detects and separates CTCs and CTSCs present in trace amounts in biological circulating body fluids such as blood and lymph, even when the tumor cells cannot be identified as any cancer cells. The method has not been developed. Therefore, it is safe and simple to use CTCs and CTSCs that are present in minute amounts from biological circulating body fluids such as blood and lymph, for example, blood such as peripheral blood, even for cancer cells for which cancer has not been identified. Developing a method for reliable and stable detection / separation is an extremely important issue in the basic and clinical response of cancer.
  • An object of the present invention is to identify CTC (circulating tumor cells) and CTSC (circulating tumor stem cells), which are present in trace amounts in biological circulating body fluids such as blood and lymph, as to which cancer cells the tumor cells are.
  • CTC circulating tumor cells
  • CTSC circulating tumor stem cells
  • the present inventor has identified CTCs and CTSCs present in minute amounts in biological circulating body fluids such as blood and lymph even in a state where the tumor cells cannot be identified as any cancer cells.
  • CTC and / or CTC and / or CTSC detection / separation acquisition methods that can be reliably and stably detected / separated / acquired even in a minute amount in the biological circulatory fluid have been studied.
  • CTC and / or CTC using a culture solution comprising a serum-free medium for CTC and / or CTSC (circulating tumor cells and / or circulating tumor stem cells) for the detection / separation acquisition step
  • CTC and / or CTSC slightly present in the sample can be amplified and reliably and stably detected. It found that it is possible to obtain separated, thereby completing the present invention.
  • the present invention comprises a method for detecting / separating and obtaining CTC and / or CTSC in a biological circulating body fluid using a cell proliferation method, which comprises the following processing steps (1) to (4): (1) a first step of pretreating a sample from a biological circulation fluid to obtain a mononuclear cell phase; (2) Second step of preparing a well plate in which a culture solution comprising a serum-free medium for CTC and / or CTSC growth is injected into a well plate, seeding and incubating the mononuclear cells obtained in the first step , (3) a third step of removing the culture solution from the plate well obtained by incubation in the second step; (4) A fourth step of detecting or separating and acquiring adherent tumor cells attached to the plate well after the third step.
  • the CTC and / or CTSC detection / separation acquisition method using the cell proliferation method of the present invention amplifies CTC and / or CTSC slightly present in the sample, such as circulating body fluid, and reliably and stably detects and Can be obtained separately.
  • a biological circulating body fluid can be used as a sample.
  • a sample from the biological circulating body fluid a blood sample from peripheral blood is most easily used.
  • an operable sample it can be cited as an effective sample.
  • the first step is to pre-process the sample from the biological circulation body fluid.
  • a treatment for removing liquid components contained in body fluids and non-cellular components such as blood cells can be mentioned.
  • the second step of seeding and incubating the mononuclear cells obtained in the first step is performed on the well plate without CTC and / or CTSC proliferation.
  • a well plate into which a culture medium comprising a serum medium is injected is prepared, and the mononuclear cells obtained in the first step are seeded and incubated.
  • the culture medium comprising the serum-free medium for CTC and / or CTSC proliferation include a culture medium based on the AIM-V culture medium which is a serum-free medium for cell proliferation.
  • the culture solution By using the culture solution, it is possible to proliferate CTC and / or CTSC in a short period of time in the incubation step in the method for detecting / separating CTC and / or CTSC in biological circulating body fluid using cell proliferation method, CTCs and / or CTSCs present in trace amounts in the medium can be proliferated and amplified so that detection and separation can be reliably and stably obtained.
  • the culture medium based on the AIM-V culture medium include AIM-V culture liquid, or AIM-V culture liquid, subject's autoserum, AB serum derived from healthy subjects, and palmitic acid (Palmitic Acid) or its A culture solution to which one or two or more selected from salts is added can be used.
  • the incubation conditions in the second step can be suitably determined as appropriate for the growth temperature and growth period, but optimally, 37 ° C. and 3 to 7 days are the reference conditions for the growth temperature and growth period. As can be done. Further, as a condition of incubating in the second step can be carried out in an incubator adjusted to 5% CO 2 condition.
  • the culture solution composed of a serum-free medium for CTC and / or CTSC proliferation used in the CTC and / or CTSC detection / separation acquisition method of the present invention is a culture solution based on an AIM-V culture solution.
  • the culture medium based on the AIM-V culture medium the AIM-V culture liquid itself can be used as the basic medium.
  • palmitic acid (Palmitic acid) or a salt thereof is added to the AIM-V culture solution, Therefore, a more efficient and stable CTC and / or CTSC detection / separation effect can be obtained.
  • palmitic acid or a salt thereof can be mentioned as an additive component that enables safe and stable detection and separation of CTC and / or CTSC.
  • the third step of removing the culture medium from the plate well obtained by incubation in the second step is obtained by incubating in a well plate for a predetermined time.
  • the treatment comprises removing the culture solution from the obtained culture by an appropriate means.
  • the fourth step of detecting or separating and acquiring the adherent tumor cells attached to the plate well is: The adhering tumor cells adhering to the plate well are detected as they are using a detection means such as microscopic examination, dye staining, antigen-antibody staining, or the adhering tumor cells adhering to the plate well are separated. And obtained as cancer cells for various detections.
  • RPMI-1640 which is a standard culture medium for peripheral blood mononuclear cells
  • AIM-V serum-free medium
  • FBS 5% calf serum
  • AS autologous Serum
  • palmiticin is used as a new CTC separation and acquisition factor in order to avoid an increase in patient burden due to the collection of autologous serum and to eliminate the influence of changes in serum components for each medical condition of the subject.
  • Various candidates including acids (Palmitic Acid), LPS, Con A, PHA, IL-1 ⁇ and IL-1 ⁇ were examined, and the most safe and efficient factor was searched.
  • the effect of CTC induction was also observed in LPS, but LPS is a highly toxic substance. Therefore, in view of the purpose of various research after CTC separation and clinical development of technology, Was determined to be inappropriate for safety, and was excluded in subsequent experiments.
  • AIM-V culture solution or AIM-V culture solution is selected from autologous serum of subjects, AB serum from healthy individuals, and palmitic acid (Palmitic acid) or salts thereof.
  • the present invention has been completed by demonstrating that the culture solution added with 1 or 2 or more, particularly, the culture solution added with palmitic acid or its salt is useful. .
  • Method for detecting / separating and obtaining circulating tumor cells and / or circulating tumor stem cells in a biological circulating body fluid comprising the following processing steps (1) to (4): (1) a first step of pretreating a sample from a biological circulation fluid to obtain a mononuclear cell phase; (2) Prepare a well plate into which a culture solution composed of circulating tumor cells and / or serum-free medium for circulating tumor stem cells is injected, and inoculate and incubate the mononuclear cells obtained in the first step.
  • a culture solution comprising circulating tumor cells and / or serum-free medium for circulating tumor stem cells for seeding and incubating the mononuclear cells obtained in the first step is AIM-V.
  • a culture solution based on the AIM-V culture solution for seeding and incubating the mononuclear cells obtained in the first step is AIM-V culture solution or AIM-
  • the culture medium is a culture medium in which one or more selected from autologous serum of a subject, AB serum derived from a healthy subject, and palmitic acid or a salt thereof are added to a V culture medium.
  • the present invention relates to a state in which circulating tumor cells and circulating tumor stem cells present in trace amounts in biological circulating body fluids such as blood and lymph cannot be identified as any cancer cell, and biological circulating body fluids Provided is a CTC detection / separation acquisition method capable of reliably and stably detecting / separating / acquiring even a minute amount.
  • the CTC detection / separation acquisition method of the present invention enables not only CTC but also CTSC detection / separation, and provides an effective means for basic elucidation of cancer and clinical response. To do.
  • CTCs can be efficiently and stably sorted according to the present invention provides the possibility of technological progress in cancer research.
  • CTSCs especially cancer cells
  • peripheral blood or the like which has been a major cause of delays in CTC research.
  • the technology of the present invention has created a foundation for dramatically promoting CTC research. According to the present invention, it is possible to proceed with basic and clinical research of CTC, and it can be expected that the development of CTC control technology will be boosted.
  • FIG. 1 shows the results of a CTC acquisition test using an AIM-V culture solution and an RPMI-1640 culture solution as a culture solution in a selection test of an efficient culture solution for acquiring cancer cells (CTC). It is a figure which shows the result (photograph) observed by 1.
  • Figure (1-a) shows the results of CTC acquisition using the AIM-V culture medium
  • Figure (1-b) shows the results of CTC acquisition using the RPMI-1640 culture medium.
  • FIG. 2 is a graph showing the morphology of CTCs cultured and obtained with the AIM-V culture medium alone in the test for confirming the morphological change of cancer cells (CTC) obtained with the CTC proliferation culture medium in the examples of the present invention.
  • FIG. 3 shows a test for confirming the morphological change of cancer cells (CTC) obtained with the culture solution for CTC proliferation in the example of the present invention, “PalmiticVAcid ( ⁇ 1conc.) In AIM-V culture solution”. It is a figure which shows the microscope image of CTC which culture
  • FIG. 4 shows a test for confirming the morphological change of cancer cells (CTC) obtained with the culture solution for CTC proliferation in the example of the present invention, “PalmiticVAcid ( ⁇ 4conc.) In AIM-V culture solution”. It is a figure which shows the microscope image of CTC which culture
  • FIG. 5 is a graph showing the morphological change of cancer cells (CTC) obtained with the CTC proliferation culture solution in the example of the present invention, obtained by culturing with “AIM-V + 5% Auto ⁇ Serum culture solution”. It is a figure which shows the microscope image of CTC which was culture
  • FIG. 6 shows a test for confirming the morphological change of cancer cells (CTC) obtained with the culture solution for CTC proliferation in the example of the present invention under the condition of “AIM ⁇ V + 5% Auto Serum + Palmitic Acid ( ⁇ 1conc.) It is a figure which shows the microscope image of CTC which culture
  • FIG. 7 shows a test for confirming the morphological change of cancer cells (CTC) obtained with the CTC growth medium in the example of the present invention under the condition of “AIM ⁇ V + 5% Auto Serum + Palmitic Acid ( ⁇ 4 conc.) It is a figure which shows the microscope image of CTC which culture
  • FIG. 8 shows an example of the present invention, in the confirmation and identification test using the cell membrane antigen of CTC isolated and obtained from the peripheral blood of the patient in the “confirmation and identification of CTC using the membrane antigen CD44”.
  • FIG. 6 is a diagram showing a micrograph (a) and a fluorescence micrograph (b) of a CTC obtained separately from vagina.
  • FIG. 9 shows an example of the present invention, in the “confirmation and identification of CTC using membrane antigen CD44” in the confirmation and identification test using the cell membrane antigen of CTC isolated and obtained from the peripheral blood of the patient. . K.
  • FIG. 10 shows the results of the confirmation and identification of CTC using the cell membrane antigen of CTC isolated and obtained from the patient's peripheral blood in the example of the present invention, in “Confirmation and identification of CTC using membrane antigen CD44”.
  • . H. Gastric Ca. ⁇ : gastric cancer: liver meta. It is a diagram showing a micrograph (a) and a fluorescence micrograph (b) of a CTC obtained separately from liver metastasis.
  • FIG. 11 shows an example of the present invention in the “confirmation and identification of CTC using membrane antigen CD44” in the confirmation and identification test using the cell membrane antigen of CTC isolated and obtained from the peripheral blood of the patient in the Example of the present invention.
  • FIG. 12 shows an example of the present invention, in the “confirmation and identification of CTC using membrane antigen CD44” in the confirmation and identification test using the cell membrane antigen of CTC isolated and obtained from the peripheral blood of the patient in the example of the present invention. . K.
  • FIG. 13 shows an example of the present invention, in the “confirmation and identification of CTC using membrane antigen CD44” in the confirmation and identification test using the cell membrane antigen of CTC isolated and obtained from the peripheral blood of the patient in the example of the present invention. .
  • O. It is a figure which shows the microscope picture (a) and fluorescence microscope picture (b) of CTC isolate
  • FIG. 14 shows an example of the present invention, in the “confirmation and identification of CTC using membrane antigen CD44” in the confirmation and identification test using the cell membrane antigen of CTC isolated and obtained from the peripheral blood of the patient.
  • Y. It is a figure which shows the microscope picture (a) and fluorescence microscope picture (b) of CTC isolate
  • FIG. 15 shows the results of the confirmation and identification test using the cell membrane antigen of CTC isolated and obtained from the patient's peripheral blood in the example of the present invention, in “Confirmation and identification of CTC using membrane antigen CD44”. . H.
  • FIG. 16 shows the results of the confirmation and identification of CTC using cell membrane antigen of CTC isolated and obtained from the patient's peripheral blood in the example of the present invention, in “Confirmation and identification of CTC using membrane antigen CD45”. .
  • Y It is a figure which shows the microscope picture (a) and fluorescence microscope picture (b) of CTC isolate
  • FIG. 17 shows the results of the confirmation and identification of CTC using the membrane antigen CD45 of the CTC isolated and obtained from the peripheral blood of the patient in the example of the present invention in the “confirmation and identification of CTC using the membrane antigen CD45”.
  • Y. It is a figure which shows the microscope picture (a) and fluorescence microscope picture (b) of CTC isolate
  • FIG. 18 is a diagram showing a case in which the patient: Y in the “confirmation and identification of CTC using membrane antigen CD45” in the confirmation and identification test using the cell membrane antigen of CTC isolated and obtained from the peripheral blood of the patient in the example of the present invention. . H.
  • FIG. 19 shows an example of the present invention, in the “confirmation and identification of CTC using membrane antigen CD47” in the confirmation and identification test using the cell membrane antigen of CTC isolated and obtained from the peripheral blood of the patient in the Example of the present invention. . N. It is a figure which shows the microscope picture (a) and fluorescence micrograph (b) of CTC which were isolate
  • FIG. 20 shows an example of the patient: S in the “confirmation and identification of CTC using membrane antigen CD47” in the confirmation and identification test using the cell membrane antigen of CTC isolated and obtained from the peripheral blood of the patient in the example of the present invention.
  • K. It is a figure which shows the microscope picture (a) and fluorescence microscope picture (b) of CTC which were isolate
  • FIG. 21 shows an example of the present invention, in the “confirmation and identification of CTC using membrane antigen CD47” in the confirmation and identification test using the cell membrane antigen of CTC isolated and obtained from the peripheral blood of the patient. . O.
  • FIG. 22 shows an example of the present invention, in the “confirmation and identification of CTC using membrane antigen CD47” in the confirmation and identification test using the cell membrane antigen of CTC isolated and obtained from the peripheral blood of the patient in the Example of the present invention. . Y. It is a figure which shows the microscope picture (a) and fluorescence microscope picture (b) of CTC isolate
  • FIG. 23 shows the results of the confirmation and identification of CTC using the cell membrane antigen of CTC isolated and obtained from the peripheral blood of the patient in the example of the present invention, in “Confirmation and identification of CTC using membrane antigen CD47”.
  • FIG. 24 shows the results of the confirmation and identification of the CTC using the cell membrane antigen of CTC isolated and obtained from the patient's peripheral blood in the example of the present invention, in the “confirmation and identification of CTC using the membrane antigen CKII”. . Y.
  • FIG. 25 shows the results of “Confirmation and identification of CTC using membrane antigen CKII” in the confirmation and identification test using the cell membrane antigen of CTC isolated and obtained from the peripheral blood of the patient in the example of the present invention. . H. It is a figure which shows the microscope picture (a) and fluorescence microscope picture (b) of CTC isolate
  • FIG. 26 shows the results of “Confirmation and identification of CTC using membrane antigen EpCAM” in the confirmation and identification test using the cell membrane antigen of CTC isolated and obtained from the peripheral blood of the patient in the example of the present invention.
  • Y It is a figure which shows the microscope picture (a) and fluorescence microscope picture (b) of CTC isolate
  • FIG. 27 is an image of a micrograph (non-fluorescent light emission image) of cells remaining in the CTC transplanted group in the “test for confirming tumorigenicity or long-term survival of CTC in nude mice” in the Example of the present invention.
  • FIG. 5 is a view showing a photograph of a fluorescent antibody microscope (fluorescence emission image) using the membrane antigen CD45.
  • (27-a) and (27-b) represent patient H.P. Y.
  • FIG. 28 is an image of a micrograph (non-fluorescent light emission image) of cells remaining in the CTC transplanted group in the “test for confirming tumorigenicity or long-term survival of CTC in nude mice” in the Example of the present invention.
  • FIG. 5 is a view showing a photograph of a fluorescent antibody microscope (fluorescence emission image) using the membrane antigen CD45.
  • (28-a) and (28-b) represent patient K. H.
  • FIG. 29 is an image of a micrograph (non-fluorescent light emission image) of cells remaining in the CTC transplanted group in the “test for confirming tumorigenicity or long-term survival of CTC in nude mice” in Examples of the present invention.
  • FIG. 5 is a view showing a photograph of a fluorescent antibody microscope (fluorescence emission image) using the membrane antigen CD45.
  • (29-a) and (29-b) represent patient H. Y.
  • FIG. 30 is an image of a micrograph (non-fluorescent light emission image) of cells remaining in the CTC transplanted group in the “test for confirming tumorigenicity or long-term survival of CTC in nude mice” in the Example of the present invention.
  • FIG. 5 is a view showing a photograph of a fluorescent antibody microscope (fluorescence emission image) using the membrane antigen CD45.
  • (30-a) and (30-b) represent patient K. H. Of micrographs (Control) of cells remaining in the CTC transplantation group when CTC (KH-1) separated from the sample from the sample was transplanted to “Nude2-2”, and fluorescent antibody microscope (fluorescence emission image) Show photos.
  • FIG. 31 shows a microscope for “normal small intestine tissue cells” of a control nude mouse not transplanted with CTC in the “test for confirming tumorigenicity or long-term survival of CTC in nude mice” in the Examples of the present invention.
  • FIG. 32 shows growth of CTC cells using the established cancer cell line (UTC-8) as a sample in the detection test (I) of CD47 positive cells (CTSC) using the established cancer cell line (UTC-8). It is the photograph which displayed the result of having detected this antigen positive cell by CD47 antigen on a cell membrane after acquisition with the microscope image of non-fluorescent dye staining, and the CD47 positive cell image by fluorescent dye staining method.
  • FIG. 33 shows growth of CTC cells using the established cancer cell line (UTC-8) as a sample in the detection test (II) of CD47 positive cells (CTSC) using the established cancer cell line (UTC-8). It is the photograph which displayed the result of having detected this antigen positive cell by CD47 antigen on a cell membrane after acquisition with the microscope image of non-fluorescent dye staining, and the CD47 positive cell image by fluorescent dye staining method.
  • (33-a) shows a microscopic image of non-fluorescent dye staining
  • (33-b) shows a CD47 positive cell image by fluorescent dye staining.
  • the present invention comprises a method for detecting / separating and obtaining CTC and / or CTSC in a biological circulatory fluid using a proliferation method including the following processing steps (1) to (4): (1) a first step of pretreating a sample from a biological circulation fluid to obtain a mononuclear cell phase; (2) Second step of preparing a well plate in which a culture solution comprising a serum-free medium for CTC and / or CTSC growth is injected into a well plate, seeding and incubating the mononuclear cells obtained in the first step , (3) a third step of removing the culture solution from the plate well obtained by incubation in the second step; (4) A fourth step of detecting or separating and acquiring adherent tumor cells attached to the plate well after the third step.
  • a biological circulating body fluid can be used as a sample.
  • a sample from the biological circulating body fluid a blood sample from peripheral blood is most easily used.
  • an operable sample it can be cited as an effective sample.
  • organs isolated from the circulation of blood and body fluids cannot exist in one solid in the living body. Even if the presence of cancer cannot be predicted macroscopically, CTCs and / or CTSCs from all organs can be collected. For example, we succeeded in isolating human-derived CTC by transplanting human-derived CTC subcutaneously or intradermally in nude mice, removing the spleen three months later, and performing separation from peripheral blood. ing.
  • the first step includes a step of pretreating a sample from the biological circulatory fluid to obtain a mononuclear cell phase.
  • This step can include a treatment for removing a non-cellular component such as a liquid component and blood cells contained in the biological circulation fluid by pretreating a sample from the biological circulation fluid.
  • the treatment for removing liquid components and non-cell components such as blood cells contained in the biological circulatory fluid is not particularly limited, and a known method can be used.
  • a method of separating and removing red blood cells and white blood cells by centrifugation for blood samples, a method of separating and removing red blood cells and white blood cells by centrifugation (centrifugation method), and a method of separating and removing red blood cells and white blood cells using density of cells (density gradient) Centrifugation method), blood cell separation method using a difference in cell size (separation method using a filter), and the like.
  • a particularly preferable method is a density gradient centrifugation method. In that case, specifically, the processing conditions of the Ficoll isopark density gradient centrifugation method can be mentioned.
  • AIM-V A culture solution based on the culture solution can be used as the culture solution comprising CTC and / or a serum-free medium for CTSC proliferation used for incubation in the second step.
  • the AIM-V culture medium has been developed as a growth medium for T cells and the like, but the culture liquid itself can be obtained from commercially available products.
  • the second step in the method for detecting / separating and obtaining CTC and / or CTSC in the biological circulatory fluid of the present invention will be described.
  • AIM-V which is a serum-free medium for cell proliferation
  • a well plate into which a culture solution based on the culture solution is injected is prepared, and the mononuclear cells obtained in the first step are seeded and incubated.
  • the culture medium based on the AIM-V culture medium is selected from AIM-V culture liquid or AIM-V culture liquid from subject autologous serum, AB serum derived from healthy subjects, and palmitic acid or a salt thereof. 1 or 2 or more can be used.
  • the incubation conditions in the second step can be appropriately set according to the situation, but preferably, the incubation is performed under conditions of 5% CO 2 and 37 ° C. for 3 to 7 days in the incubation. it can. Particularly preferably, 5% CO 2, 37 °C , incubated in conditions of 7 days, can be carried out under conditions of cultivation temperature and culture period.
  • the third step comprises a step of removing the culture solution from the plate well obtained by incubation in the second step.
  • the removal of the culture solution from the plate well can be performed by an appropriate means.
  • the fourth step detects adherent tumor cells attached to the plate well after the third step, or It consists of the steps of obtaining separately.
  • the adherent tumor cells attached to the plate well can be directly applied to the detection means by using a detection means such as a speculum, dye staining, antigen, antibody staining and the like.
  • the adherent tumor cells attached to the plate well can be separated and obtained as cancer cells for various detections.
  • the cancer cells obtained by separation and acquisition are used for cancer clarification, clinical evaluation, clinical diagnosis, treatment, prognostic evaluation and determination, etc. It can be provided as a cancer cell sample for research for application.
  • the cells separated and acquired in the present invention are cancer cells can be confirmed by selecting a plurality of appropriate ones from the following criteria. For example, (1) to (5), (7), and (9) can be selected and determined.
  • at least one of 24 types of markers that are generally regarded as tumor markers, such as CA19-9, should show a positive reaction compared to the control group.
  • Total RNA is purified from the cells, subjected to genetic analysis, and the expression of cancer-related genes and cancer stem cell genes is recognized predominantly.
  • CTC efficiently separated / detected from peripheral blood that can be operated most easily can be obtained after the separation / detection results before and after cancer therapy. It can be used as an index for comparative evaluation of effects, and can contribute to prognostic evaluation.
  • the method of the present invention enables highly efficient separation and acquisition of CTCs, the development of new therapeutic techniques and the like can be promoted, such as the development of effective drugs for the cancer. . That is, according to the present invention, it is possible to obtain CTC with high efficiency for any cancer or unspecified cancer, thereby enabling early detection of cancer and analysis and evaluation of prognosis.
  • sample collection Blood collection
  • a disposable 30 ml blood collection syringe containing an appropriate amount of the anticoagulant sodium heparin (0.05 ml) was prepared, and the same 30 ml blood collection syringe for obtaining serum without heparin sodium was prepared. This was inserted into each insertion port of an L-shaped 180 ° three-way stopcock, and appropriate ones of 18, 21, 24, and a gauge winged needle were connected to the blood vessel side to prepare for blood collection. 30 ml of each blood was collected and the following separation operation was performed.
  • sample purification blood cell separation
  • For serum collection attach a needle to a blood collection syringe, leave it at 37 ° C in a 5% CO 2 incubator for 1 hour, and then centrifuge at 4 ° C, 3,000 rpm (800G) for 30 minutes. did.
  • the top static was autoserum (AS) and stored in a cold place at 4 ° C. 3.
  • heparin blood collection tubes aiming at separation of peripheral blood mononuclear cells (PBMCs) were well mixed by rolling the blood collection tube well after blood collection.
  • PBMCs peripheral blood mononuclear cells
  • PBMCs were collected by aspiration, (-) PBS was added, and then centrifugation was performed at 4 ° C., 1200 rpm (270 G) for 15 minutes. This was repeated twice, and after removing the static state, a culture solution (RPMI-1640, AIM-V) suitable for the planned experimental conditions was added and used for the following experiments.
  • PBMCs (Incubation in culture) 4).
  • the resulting PBMCs adjusted to I ⁇ 10 4 / 100 ⁇ l, 96 well plates (BDFalcon Co., 96 Well, Clear, Tissue Culture Treated Plate, Flat Bottom), or 384 well plates (BD Falcon Co. Ltd., 384 well, Clear, Tissue Culture Treated Plate, and one group 3 wells of the experimental conditions based on the experimental design to each well of the Flat Bottom), 1 ⁇ 10 4 / 100 ⁇ l (/ well / 96 well plate or 1x10 4 / 25 ⁇ l / well / 384 well plate) and inoculated the cells.
  • RPMI-1640 serum-free medium AIM-V culture solution
  • CMI isolation and acquisition As for the culture solution, the serum-free medium AIM-V culture solution (hereinafter referred to as RPMI-1640), which is a standard culture solution of peripheral blood mononuclear cells, is referred to as CMI isolation and acquisition.
  • RPMI-1640 serum-free medium AIM-V culture solution
  • AS autologous serum
  • AB type serum AB type serum
  • LPS is a highly toxic substance, so it is considered in view of various research after CTC separation and the development of clinical application technology. For example, it was judged that the reagent was inappropriate for safety, and it was decided to exclude it in the subsequent experiments. As a result, it was confirmed that the addition of AIM-V medium and palmitic acid gave the best results for stable CTC fractionation.
  • test sample 8 was a sample provided from a terminal cancer patient such as tongue cancer, mandibular malignant tumor, malignant lymphoma, breast cancer, lung cancer, stomach cancer, prostate cancer, or uterine sarcoma provided by a hospital.
  • a terminal cancer patient such as tongue cancer, mandibular malignant tumor, malignant lymphoma, breast cancer, lung cancer, stomach cancer, prostate cancer, or uterine sarcoma provided by a hospital.
  • a terminal cancer patient such as tongue cancer, mandibular malignant tumor, malignant lymphoma, breast cancer, lung cancer, stomach cancer, prostate cancer, or uterine sarcoma provided by a hospital.
  • ⁇ Test medium> The following culture solutions were prepared and used as the test culture solution. (1) RPMI-1640 + 5% FBS (2) RPMI-1640 + 5% Auto Serum (autoserum) (3) AIM-V (serum-free medium alone) (4) AIM-V + 5% FBS (5) AIM-V + 5% Auto Serum (autologous serum)
  • Example 2 ⁇ Experiment method> Using the culture solution, according to the experimental method described in Example 1, cancer cell (CTC) acquisition efficiency (cancer cell detection accuracy) in each culture solution was tested.
  • CTC cancer cell
  • RPMI-1640 is used as a culture medium, and this culture medium is divided into a calf serum (FBS) addition group and an autoserum (Auto Serum) addition group. The collected samples were examined for their ability to induce CTC.
  • FBS calf serum
  • Auto Serum Auto Serum
  • RPMI-1640 added with palmitic acid is used as a common culture solution, and the culture solution is added to a calf serum (FBS) addition group and autoserum (Auto Serum). It divided into the addition group, and the presence or absence of the CTC induction ability was examined about the sample extract
  • FBS calf serum
  • Auto Serum autoserum
  • RPMI-1640 is divided into two groups, calf serum (FBS) added group and autoserum (Auto Serum) added group, and the presence or absence of CTC inducing ability of samples collected from 6 cancer patients investigated.
  • FBS calf serum
  • Auto Serum Auto Serum
  • Test 4 Examination of CTC inducing ability of the culture solution obtained by adding FBS to the AIM-V culture solution
  • FBS calf serum
  • a common culture medium is a culture medium in which patient serum (Auto Serum) is added to the AIM-V culture medium, and a group in which palmitic acid is added to the culture medium is prepared, and a group in which no palmitic acid is added. The CTC induction ability was compared and examined.
  • FIG. 1 shows the results (photographs) observed with a fluorescence microscope of the CTC acquisition test using the AIM-V culture solution and the RPMI-1640 culture solution examined in Test 1 and Test 2 above.
  • Figure (1-a) shows the results of CTC acquisition using the AIM-V culture medium
  • Figure (1-b) shows the results of CTC acquisition using the RPMI-1640 culture medium.
  • ⁇ Test medium The following culture solutions were prepared and used as the test culture solution.
  • AIM-V (serum-free medium) (2) AS (Auto Serum) (3) LPS (Lipopolysaccharide) (4) IL-1 ⁇ (Interleukin 1 ⁇ ) (5) IL-1 ⁇ (Interleukin 1 ⁇ ) (6) Palmitic Acid
  • Example 2 Using the culture solution, according to the experimental method described in Example 1, the prepared cancer patient peripheral blood mononuclear cells (PBMCs) are seeded in each well, and the cancer cell (CTC) acquisition efficiency (g The effect of additives on the detection accuracy of cancer cells was tested.
  • PBMCs peripheral blood mononuclear cells
  • CTC cancer cell
  • AIM-V culture medium AIM-V: Group A
  • AS autoserum
  • AIM-V + AS Group B
  • LPS Lipopolysaccharide
  • a group (AIM-V + AS: Group B) based on an AIM-V culture medium (AIM-V: Group A), to which AS (autoserum) was added, and IL-1 ⁇ (Interleukin 1 ⁇ )
  • the basic concentration was 1 conc.
  • each group (Group GH, GD) was prepared by adding concentrations of 0.1 conc. To 100 conc. And the CTC fractionation effect between those groups was examined.
  • a group based on AIM-V culture medium A group based on AIM-V culture medium (AIM-V: Group A), to which AS (autoserum) was added (AIM-V + AS: Group B), and IL-1 ⁇ (Interleukin 1 ⁇ )
  • the basic concentration was 1 conc.
  • each group Group GH, GD was prepared by adding concentrations of 0.1 conc. To 100 conc. And the CTC fractionation effect between those groups was examined.
  • AIM-V culture medium AIM-V: Group A
  • AS autoserum
  • AIM-V + AS Group B
  • Palmitic Acid to these groups with a basic concentration of 1 conc.
  • Group G, H AIM-V culture medium
  • AS autoserum
  • Group B Palmitic Acid + AS
  • the purpose of the experiment is to examine the presence or absence of morphologically different expression of CTC cells due to the difference of each growth condition.
  • (A) and (b) are the same for different patients, even if they are from different patients. It is for verifying that the same cell morphology is exhibited under the culture conditions.
  • the concentration of palmitic acid was in accordance with Table 12 below.
  • FIG. 2 (2-a; 2-b) shows fluorescence microscope images of CTCs cultured and obtained with the AIM-V culture medium alone.
  • FIG. 2 (2-a; 2-b) shows fluorescence microscope images of CTCs cultured and obtained with the AIM-V culture medium alone.
  • FIG. 3 shows a fluorescence microscope image of CTC obtained by adding AIM-V culture medium + Palmitic Acid ( ⁇ 1 concentration) and culturing.
  • AIM-V culture medium + Palmitic Acid ⁇ 1 concentration
  • FIG. 4 (4-a; 4-b) shows fluorescence microscope images of CTCs obtained by adding AIM-V culture medium + Palmitic Acid ( ⁇ 4 concentration) and culturing.
  • FIG. 4-b shows fluorescence microscope images of CTCs obtained by adding AIM-V culture medium + Palmitic Acid ( ⁇ 4 concentration) and culturing.
  • the nuclear component and the nucleus in the cytoplasm A marked increase in the granular component and a deep dyeing are observed.
  • FIG. 5 shows fluorescence microscope images of CTCs obtained by culturing in AIM-V + 5% Auto Serum culture solution.
  • FIG. 5 shows fluorescence microscope images of CTCs obtained by culturing in AIM-V + 5% Auto Serum culture solution.
  • no abnormalities in the size or dark staining of cells, cytoplasmic nuclei and granule components are observed.
  • FIG. 6 shows fluorescence microscope images of CTCs obtained by culturing in an AIM-V + 5% Auto Serum + Palmitic Acid ( ⁇ 1 concentration) culture solution.
  • FIG. 6 shows fluorescence microscope images of CTCs obtained by culturing in an AIM-V + 5% Auto Serum + Palmitic Acid ( ⁇ 1 concentration) culture solution.
  • CTC cell morphology obtained by culturing with AIM-V + 5% Auto Serum + Palmitic Acid ( ⁇ 1 concentration) culture medium abnormally sized or densely stained parts of cells, cytoplasmic nucleus and granule components are seen. Absent.
  • FIG. 7 (7-a; 7-b) shows fluorescence microscope images of CTCs obtained by culturing in an AIM-V + 5% Auto Serum + Palmitic Acid ( ⁇ 4 concentration) culture solution.
  • FIG. 7-a shows fluorescence microscope images of CTCs obtained by culturing in an AIM-V + 5% Auto Serum + Palmitic Acid ( ⁇ 4 concentration) culture solution.
  • FIG. 7-a shows fluorescence microscope images of CTCs obtained by culturing in an AIM-V + 5% Auto Serum + Palmitic Acid ( ⁇ 4 concentration) culture solution.
  • FIG. 7-a shows fluorescence microscope images of CTCs obtained by culturing in an AIM-V + 5% Auto Serum + Palmitic Acid ( ⁇ 4 concentration) culture solution.
  • FIG. 7-a shows fluorescence microscope images of CTCs obtained by culturing in an AIM-V + 5% Auto Serum + Palmitic Acid ( ⁇ 4 concentration) culture solution.
  • FIG. 7-a shows fluor
  • CTC obtained by adding an AIM-V culture solution or an additive component such as Auto Serum and / or Palmitic Acid to the culture solution.
  • CTC can be obtained reliably and effectively by proliferating and acquiring CTC using the growth medium, and at that time, it is possible to acquire and proliferate without causing morphological change in CTC cell morphology. It was confirmed that. That is, when proliferating and acquiring CTC (CTSC), it is important not to induce artificial changes in the acquired cell morphology in order to confirm the properties and characteristics of CTC.
  • each ( Figure-a) is a photograph image by a CTC microscope
  • each ( Figure-b) is a photograph image by a fluorescence microscope stained with a membrane surface antigen. Show.
  • ⁇ Antigen staining method For the antigen staining method, a sample was prepared according to the following procedure using FITIC (fluorescein isothiocyanate) label, and stained, examined, observed and photographed.
  • FITIC fluorescein isothiocyanate
  • FIGS. 8 to 10 show images of CTC micrographs obtained from peripheral blood of (Gastric Ca .: gastric cancer: liver meta. Liver metastasis) and fluorescent antibody microscopes using membrane antigen CD44.
  • FIGS. 8-a to 10-a show micrograph images
  • FIGS. 8-b to 10-b show fluorescent antibody micrographs.
  • FIGS. 11 to 13 show images of CTC micrographs obtained from peripheral blood of (Lung Ca. lung cancer) and fluorescent antibody microscopes using membrane antigen CD44.
  • FIGS. 12-a to 13-a show micrograph images
  • FIGGS. 12-b to 13-b show photographs of fluorescent antibody microscopes.
  • the CTCs obtained from the above patients (2) to (3) were stained with CD44, and an image of the micrograph and a photo of the fluorescent antibody microscope were obtained. It was confirmed that the obtained CTC was a CTC of the above cancer.
  • FIGS. 14 to 15 show images of CTC micrographs obtained from peripheral blood of (Lung Ca. lung cancer) and fluorescent antibody microscopes using membrane antigen CD44.
  • FIGS. 14-a to 15-a show micrograph images
  • FIGS. 14-b to 15-b show photographs of fluorescent antibody microscopes.
  • the CTC obtained from the above patients (1) to (2) was stained with CD44, and an image of a micrograph and a photograph of a fluorescent antibody microscope were obtained. It was confirmed that the obtained CTC was a CTC of the above cancer.
  • FIGS. 16 to 18 show images of CTC micrographs obtained from peripheral blood of (Lung Ca. lung cancer) and fluorescent antibody microscopes using membrane antigen CD45.
  • FIGS. 16-a to 18-a show micrograph images
  • FIGS. 16-b to 18-b show photographs of a fluorescent antibody microscope.
  • the CTCs obtained from the above patients (1) to (2) showed staining with CD45, and an image of a micrograph and a photograph of a fluorescent antibody microscope were obtained. It was confirmed that the obtained CTC was a CTC of the above cancer.
  • CTSC CTC
  • FIGS. 19 to 23 show images of CTC micrographs obtained from peripheral blood of (Lung Ca. ⁇ lung cancer) and fluorescent antibody microscopes using membrane antigen CD47.
  • FIGS. 19-a to 23-a show micrograph images
  • FIGS. 19-b to 23-b show photographs of a fluorescent antibody microscope. As shown in the photographs (FIGS.
  • the CTCs obtained from the above patients (1) to (5) showed staining with CD47, and an image of a micrograph and a photograph of a fluorescent antibody microscope were obtained. It was confirmed that the obtained CTC was a CTC of the above cancer.
  • the arrow indicates CD47 positive CTSC.
  • CTSCs indicated by white arrows are CD47-positive CTSCs in cancer cells grown and cultured as CTCs (CTSCs), and are shown to be observed regardless of cell size or size. ing. That is, it was confirmed that CD47-positive CTSCs are not cells having a fixed shape and size but have various variations.
  • FIGS. 24 to 25 show images of CTC micrographs obtained from peripheral blood of (Lung Ca. ⁇ ⁇ lung cancer) and fluorescent antibody microscopes using the membrane antigen CKII.
  • FIGS. 24-a to 25-a show micrograph images
  • FIGGs. 24-b to 25-b show photographs of fluorescent antibody microscopes.
  • the CTC obtained from the above patients (1) to (2) showed staining with CKII, and an image of the micrograph and a photograph of the fluorescent antibody microscope were obtained. It was confirmed that the obtained CTC was a CTC of the above cancer.
  • FIG. 26 shows an image of a photomicrograph of CTC obtained from peripheral blood of (Breast Ca. breast cancer) and a photo of a fluorescent antibody microscope using the membrane antigen EpCAM.
  • FIG. 26-a shows an image of a photomicrograph
  • FIG. 26-b shows a photo of a fluorescent antibody microscope.
  • the CTC obtained from the patient showed very few cells expressing EpCAM on the cell membrane.
  • Example group A For two nude mice (Nude1-1; Nude1-2), “Nude1-1” had CTC (HY-1) and “Nude1-2” had CTC ( 1 ⁇ 10 6 of KH-1) was implanted subcutaneously in the back of nude mice, and the presence or absence of tumorigenicity was examined for 3 months during the entire observation period. After the period, peripheral blood and spleen of the nude mouse were collected, and CTC was separated and cultured. For cells remaining in the proliferating CTC transplanted group, the survival of the transplanted CTC was examined by staining with non-fluorescent emission (Control) and fluorescent antibody method using membrane surface CD45 antigen. , CTC remaining was confirmed.
  • Example group B For two nude mice (Nude2-1; Nude2-2), “Nude2-1” had CTC (HY-1) and “Nude2-2” had CTC ( KH-1) was transplanted 1 ⁇ 10 6 subcutaneously in the back of nude mice, and the same amount of cells was transplanted intraperitoneally. As in the case of the experimental group A, for the cells remaining in the proliferating CTC transplant group, it was confirmed that the surviving cells were transplanted CTCs.
  • FIGS. 27 to 30 show micrographs (non-fluorescence emission images) of cells remaining in the CTC transplanted group and fluorescence antibody microscopes (fluorescence emission images) using the membrane antigen CD45.
  • (27-a) and (27-b) are photomicrographs (Control) of cells remaining in the CTC transplant group when CTC (HY-1) is transplanted to “Nude1-1”
  • (28-a) and (28-b) are photographs of fluorescent antibody microscopes (fluorescence emission images) that remain in the CTC transplantation group when CTC (KH-1) is transplanted to “Nude1-2”.
  • the microphotograph (Control) and the fluorescent antibody microscope (fluorescence emission image) photograph of the cell which is present are shown.
  • (29-a) and (29-b) are photomicrographs (Control) of cells remaining in the CTC transplantation group when CTC (HY-1) is transplanted to “Nude2-1”, and The photographs of fluorescent antibody microscopes (fluorescence emission images), (30-a) and (30-b), remained in the CTC transplantation group when CTC (KH-1) was transplanted to “Nude2-2”.
  • the microphotograph (Control) and the fluorescent antibody microscope (fluorescence emission image) photograph of the cell which is present are shown.
  • the cells remaining in the CTC transplanted group are stained with the membrane antigen CD45, which is consistent with the micrograph image and remain in the CTC transplanted group.
  • a micrograph image (31-a) of normal small intestinal tissue cells and a photomicrograph image (31-b) of the cells by CD45 staining are shown. As shown in FIG. 31, no staining by CD45 was shown in normal small intestine tissue cells.
  • CSC CD47 positive cells
  • UTC-8 National Institute of Advanced Industrial Science and Technology, Patented Material Deposit Center deposit number: FERM BP-08611
  • CSC CD47 positive cells
  • ⁇ Test method> Using an established cancer cell line (UTC-8) as a sample, CTC cells were proliferated and obtained by the method of Example 1, and then the antigen-positive cells were detected by CD47 antigen on the cell membrane. The results were displayed as a non-fluorescent dye stained microscopic image and a CD47 positive cell image by fluorescent dye staining.
  • results are shown in FIG.
  • (32-a) shows a microscope image of non-fluorescent dye staining
  • (32-b) shows a CD47 positive cell image obtained by the fluorescent dye staining method.
  • thick arrows ( ⁇ ) indicate CT47 positive for CD47
  • double-ended arrows ( ⁇ ⁇ ) indicate CTC cancer cells with different sizes and shapes of CD47 non-positive cells.
  • Example 12 In the same manner as in Example 12, using an established cancer cell line (UTC-8) as a sample, CTC cells were proliferated by the method of Example 1, and then the CD47 antigen on the cell membrane was used to detect the antigen-positive cells. Detection was performed. The results were displayed as a non-fluorescent dye stained microscopic image and a CD47 positive cell image by fluorescent dye staining.
  • results are shown in FIG.
  • (33-a) shows a microscopic image of non-fluorescent dye staining
  • (33-b) shows a CD47 positive cell image by fluorescent dye staining.
  • thick arrows ( ⁇ ) indicate CT47 positive for CD47
  • double-ended arrows ( ⁇ ⁇ ) indicate CTC cancer cells with different sizes and shapes of CD47 non-positive cells.
  • the cancer cells were irregularly shaped, showing no vertical and left-right symmetry, from morphological shapes, round shapes, spindle shapes, and the like.
  • the CD47 positive CTSC was also found to have a unique shape with irregular protrusions protruding like dendritic cells, and the features of the morphology were clearly confirmed.
  • the present invention relates to biological tumors such as blood and lymph that are present in trace amounts of circulating tumor cells and circulating tumor stem cells in a state where the tumor cells cannot be identified as any cancer cell,
  • a CTC detection / separation acquisition method capable of reliably and stably detecting / separating and acquiring even a minute amount in a circulating body fluid.
  • the CTC detection / separation acquisition method of the present invention enables not only CTC but also CTSC detection / separation, and provides an effective means for basic elucidation of cancer and clinical response. To do.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Hematology (AREA)
  • Microbiology (AREA)
  • Oncology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Hospice & Palliative Care (AREA)
  • Ecology (AREA)
  • Biophysics (AREA)
  • Physiology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

血液やリンパ液のような生体循環体液中に、微量に存在する循環腫瘍細胞及び循環腫瘍幹細胞を、当該腫瘍細胞がいかなるがんの細胞か特定できていない状態、かつ、生体循環体液中に微量に存在する状態においても、確実かつ安定的に検出・分離取得することが可能なCTCの検出・分離取得方法を提供することを課題とし、以下の(1)~(4)の処理ステップを含む、生体循環体液中のCTC及び/又はCTSCの検出・分離取得方法により該課題を解決する:(1)生体循環体液からの試料を前処理し、単核球相を得る第1のステップ;(2)ウェルプレートに、循環腫瘍細胞及び/又は循環腫瘍幹細胞増殖用無血清培地からなる培養液を注入したウェルプレートを用意し、第1のステップで得た単核球を播種し、インキュベートする第2のステップ;(3)第2のステップでインキュベーションして得たプレートウェルから、培養液を除去する第3のステップ;(4)第3のステップの後、プレートウェルに付着した付着性腫瘍細胞を検出するか、或いは、分離取得する第4のステップ。

Description

細胞増殖法を用いた循環腫瘍細胞の検出・分離取得方法
 本発明は、ヒト生体組織、すなわち末梢血を代表とする循環体液、或いは、この体液を介して骨髄、脾臓などをはじめとする体内各種臓器から循環体液に侵入してくる腫瘍(がん)細胞である循環腫瘍細胞(Circulating Tumor Cells:CTC)及び循環腫瘍(がん)幹細胞(Circulating Tumor  Stem Cells:CTSC)を検出・分離取得する方法に関し、特に、血液やリンパ液のような生体循環体液中に、微量に存在する循環腫瘍細胞及び循環腫瘍幹細胞を、当該腫瘍細胞がいかなるがんの細胞か特定できていない状態においても、かつ、生体循環体液中に微量に存在する状態においても、確実かつ安定的に検出・分離取得することが可能な循環腫瘍細胞(CTC)及び循環腫瘍幹細胞(CTSC)の検出・分離取得方法を提供することに関する。(なお、以下の説明において、循環腫瘍細胞(CTC)及び循環腫瘍幹細胞(CTSC)を区別して説明をする必要がある場合を除いて、「循環腫瘍細胞(CTC)」と記載し、該「循環腫瘍細胞(CTC)」には、「循環腫瘍幹細胞(CTSC)」も含まれる意味で説明する。)
 がん疾患は、先進国において、疾病による死亡率の上位にある。特に、日本国においては、年齢調整罹患率、同死亡率などの統計では減少傾向がみられるとはいえ、高齢化や糖尿病などの慢性疾患のがん発生・死亡に対する寄与度が高く、今や二人に一人の確率でがんに罹患し、三人に一人が、がん死するなど極めて憂慮すべき状況となっている(Estimated using the method by Wum LM et al., Estimating lifetime and age-conditional probabilities of developing cancer, Lifetime Data Anal., 1998, 4 : 169-186.)。
 一方で、これらがん疾患に対する対処については、その治療技術の開発に対する注力により、各種のがん治療方法においてその進展がみられている。がん治療の三大療法としての手術療法、化学療法、放射線療法、そして近年注目されている免疫療法などの進歩はそれなりに目覚ましい成果を得ている。しかし、いまだに、術後再発、所属リンパ節転移、遠隔転移などが十分制御できず、その対策が焦眉の急となっている。また、近年、がん組織の切除に成功しても、術後に再発転移する場合が見出されており、該術後に再発転移する要因として、がん幹細胞の存在が極めて重要であることも分ってきている(Breast Cancer Res Treat 2010, 124:403-412.;New Engl. J Med 2004, 351:781-791.;Clin Cancer Res 2008, 14:6302-6309.;J. Clin Oncol 2008, 26:3213-3221.)。そして、このメカニズムの中心に、体内を循環しているCTCが、この再発・転移に関与していることが明らかになってきた(Clin Cancer Res 2008, 14:7004-7010.;Proc (Bayl Univ Med Cent) 2008, 21:127-132.)。
 ヒト生体組織、なかんずく各種体内諸臓器に発生したがん細胞・組織(以下、白血病を含め悪性腫瘍全般を指すものとする。)は、白血病を除き、原発巣(がん発生の場所)において、増殖したがん細胞は接着因子によって結合して腫瘍組織を形成する。しかし、該がん細胞は、原発巣にとどまらず、接着因子の異常や消失により、原発巣から遊離し、がん細胞周囲の結合組織や、血管、リンパ管壁を分解し、血液中や、リンパ液中に浸潤する。該体液中に浸潤したがん細胞は、体内を循環している血液や、リンパ液と共に、循環腫瘍細胞(Circulating Tumor Cells:CTC)として体内を循環する。該CTCが、血液等の循環により他の組織や臓器に運ばれ、他の組織や臓器において、血管等からはいだし、新たに接着因子を合成し、定着して転移巣を形成する。このCTCの、体内の循環、転移巣の形成が、がんの転移のメカニズムと考えられ、がんの再発・転移に関与していると考えられている。
 がんの診断や治療の確立において、原発巣に発生したがんの特定や病態についての情報を、がんの他組織や臓器への転移が起こる前に早期に得ることは、がんの診断や治療を有効に行うために極めて重要な要因であり、がんの他組織や臓器への転移を防止するための有力な情報となるものであり、そのための手段として、CTCの解析が極めて重要なファクターとして、注目されている。また、CTCの解析は、がんの再発予測やがん治療効果の評価においても重要と考えられ、予後の予測や治療効果の判定にも有効な手段となることが報告されている。
 しかしながら、血液中等で循環しているCTCは、その存在レベルが非常に低く、また、血中を循環しているがん細胞の半減期は1~24時間というように短い時間であるため、循環体液中に存在するCTCを検出することは極めて難しい状況にある。例えば、末梢血からのCTCの分離は効率が悪く、CTCに関して、2012年世界共同研究19施設の報告(J Translational-medicine 2012, 10:138:1-20.)でも、血中単核球から1/10、すなわち血液100mlから僅かに1個しか分取することができないことが報告されている。これは60kg体重の成人で換算すると、全末梢血約5リットル(5000ml)を全量採血しても50個という極めて低確率で、しかも極めて少数のCTCしか分取できないということになる。この事実がCTC研究の最大の阻害要因となってきた(J Translational-medicine 2012, 10:138:1-20.)。
 近年、CTCの検出・測定技術の進展が図られ、検出・測定技術の進歩により、検出感度や、測定精度の向上が図られ、血液の10万個から1億個の単核細胞中にわずか数個存在するがん細胞を特異的に検出することが可能となってきた。そして、乳がん、大腸がん、前立腺がんなどの転移性がんにおける予後予測や、治療効果判定といった臨床情報が得られる検査として認められるようになってきた。また、米国FDA(食品医薬品局)は、乳がん、大腸がん、前立腺がんについてのCTCの臨床的有用性を認め体外診断薬として認可するに至っている。しかしながら、現状のCTCの検出・測定技術は、対象とするがん細胞が特定できている場合等、特定のCTCに限定された検出・測定技術にならざるを得ない理由があり、広範のがん細胞に適用できるCTCの検出・測定技術はいまだに見いだせていない。
 現在広く利用されているCTCの検出方法としては、免疫磁気的分離検出方法が知られている(Proc. Natl. Acad. Sci, USA,95:4589-4594,1998;WO99/41613;特表2002-503814号公報)。この方法は、上皮がん細胞の上皮細胞接着分子(Epithelial cell adhesion molecule:EpCAM、“CD326”)に対するモノクローナル抗体を固定化した磁気ビーズを用い、試料中のCTCの上皮細胞接着分子(EpCAM)を標的として結合させ、該磁気的に標識化したCTCを、磁気的濃縮により、富化することにより、試料中に微量に含まれるCTCを検出する方法である。この免疫磁気的分離検出方法を応用して、各種のCTCの検出方法も開示されている。
 例えば、WO2007/133465(特表2009-537021号公報)には、体液由来の免疫磁気的標的CTCを、蛍光発色団で標識し、該標識化した細胞を、ビームホモジナイザーを導入したTime-delayed integrating imaging (TDI)技術によって、二次元的に分布したCTCのイメージをスキャンして獲得することにより、血液中の希少なCTCを迅速かつ正確に検出する方法及びそのための装置が開示されている。また、特開2007-178193号公報、特開2012-103077号公報には、上皮細胞表面抗原(EpCAM)特異的抗体によって不動化した磁気ビーズ上に捕捉されたがん細胞を、該表面抗原とは別の上皮特異的表面抗原(サイトケラチン)に対する蛍光標識抗体で蛍光染色し、該蛍光染色された細胞数を計数するとともに、蛍光インサイチューハイブリダイゼーション法(fluorescent in situ hybridization, FISH)による発がん遺伝子とハイブリダイズする蛍光標識DNAプローブを用いた細胞核の染色を組み合わせて、蛍光染色された細胞数を計数と蛍光染色された細胞中の遺伝子を同時に検出する方法が開示されている。
 また、特開2014-105159号公報には、ヒト由来上皮細胞接着分子(EpCAM)に対するモノクロナール抗体(第1の抗体)を固定化した磁気ビーズを用いたCTCの濃縮と、異なるエピトープを特異的に認識する蛍光標識した抗EpCAMモノクロナール抗体(第2の抗体)と、細胞核の染色法を用い、細胞の生存能力を維持したままCTCの検出・定量の分析を行う方法(intact CTC enumeration and analysis procedure: iCeap法)が、特開2014-112094号公報には、上皮細胞に特異的なマーカーであるサイトケラチン(CK)マーカーと、ライト・ギムザ(Wright-Giemsa)染料のような、形態、寸法又は核対細胞質の比によってCTCを同定する細胞学的染料である第2のマーカーを用いてCTCの同定及び特徴付けを行う方法が開示されている。
 更に、特開2014-39480号公報には、EpCAMネガティブなCTCの検出のために、ウロキナーゼ(ウロキナーゼ型プラスミノーゲン活性化因子:uPA)特異的蛍光基質を含有する培養面を用意し、該培養面で血液サンプルを播種、インキュベートすることにより、ウロキナーゼ特異的基質由来のシグナルを検出してCTCを分離、回収する方法が開示されている。このように、従来より、CTCの検出については、CTCの細胞マーカー(細胞表面の特異的抗原)や、該細胞抗原に特異的に結合するモノクロナール抗体等を用いてCTCを検出する各種の検出方法が開示されているが、該CTCの検出・測定技術は、乳がん、大腸がん、前立腺がんなどのような対象とするがんが特定できている場合に適用することが可能であるという制約がある。したがって、対象とするがん細胞が特定できていない場合の、広範のがんに対しても、該がんのCTCを、効果的に検出・測定する技術はいまだに見いだせていない。
 一方で、CTCの検出・測定方法において、CTCの細胞マーカー(細胞表面の特異的抗原)や、該細胞抗原に特異的に結合するモノクロナール抗体等を用いずに、CTCを検出する方法も開示されている。例えば、特開2011-163830号公報には、CTC捕捉用の孔径、孔数、配置が制御された微細貫通孔を有するサイズ選択マイクロキャビティアレイによって、血液試料中に含まれるCTCを捕捉することが可能なマイクロ流体デバイスにより、血液からのCTCの濃縮と、CTCの染色や洗浄のプロセスを一つのデバイス内で一貫して行い、自動化蛍光顕微鏡などを用いて迅速にCTCを計数するCTCの検出・測定方法が開示されている。また、特開2013-36818号公報には、腫瘍細胞を含む体液を、密度が2.0×10~1.9×10、繊維径が1μm~15μmであるポリエステル繊維、ポリプロピレン繊維等で成形された不織布からなる血球分離材と接触させることにより、腫瘍細胞と白血球及び血小板を捕捉し、該捕捉した体液中の腫瘍細胞が豊富な分画を、生理食塩水、緩衝液、デキストラン等からなる分離液を用いて分離・回収する方法が開示されている。
 更に、特開2014-224800号公報には、間隙を形成する本体とカバーとを有し、該間隙は、間隙の注入口領域及び排出口領域を分離する分離エレメントを形成し、該分離エレメントは、間隙の表面と共にチャネルを画成し、該チャネルを通過する粒子について、より小さな粒子の通過と、より大きな粒子の通過の阻止によって、より大きな粒子であるCTCと、より小さな粒子である血液球を分離するCTC等の分離方法が開示されている。これらのCTCの分離・検出方法は、体液中に存在するCTCを物理的に分離・検出するものであり、CTCの細胞マーカー(細胞表面の特異的抗原)や、該細胞抗原に特異的に結合するモノクロナール抗体等を用いるものでないことから、対象とするがん細胞が特定できていないがんに対しても、該がんのCTCの分離・検出に適用することが可能であるが、体液中に微量なレベルで存在するCTCを上記のような方法で、確実に分離・検出することは難しいという問題がある。
 CTCを含めて、がん細胞の獲得は、がん研究、とりわけがんの遺伝子解析に基く、診断や予後判定、効果的ながん化学療法の選択などに欠かせないファクターとなる。また、がん免疫療法においては、がん細胞の獲得は、ワクチン開発、個別化医療においては更にオーダーメイドのワクチン開発の要となる技術である。更に、個別医療の免疫細胞移入療法においては、患者本人のがんに対する特異的細胞障害反応の担い手であるキラー細胞の誘導にも刺激物質とし、或いは誘導したキラー細胞の細胞障害性を測定する際の自己がん標的細胞としても欠かせないものである。また、近年、術後に再発転移する要因としてその存在が注目されているがん幹細胞の獲得は、現在、焦眉の急となっているがん幹細胞研究とその制御技術の開発にとって画期的な手段を提供するものとなる。
 これまで、医療現場において、がん細胞の取得には、生検や、手術材料から獲得する、生体に対し侵襲性の強い操作とそれに伴う転移促進・播種などの一定の危険性を伴う方法しか存在していなかった。したがって、これらのリスクを回避して、例えば、末梢血等から、安全、簡便、そして短期間でのCTCの分離取得法を開発することは、がんの基礎的研究及び臨床的研究に極めて大きな貢献するものであり、CTC分離取得の重要な意義をもつものである。
 がんの転移が、主に、リンパ行性ではなく、血行性に起こることが示されてから(Cancer Res. 11, 648-651,1951;CANCER JULY-AUGUST, Vol.13: 674-676, 1960)、50年以上の年月がたっているにもかかわらず、現在まで、末梢血からがん細胞を安定的に採取する方法は開発されていなかった。特定な対象に対する方法として、上記のように、末梢血中に存在するがん細胞由来のごく微量の細胞フラグメントを抗体で検出・増幅して、がんの存在の有無を検討する方法は、知られていた。しかし、該方法は既に抗体の結合目標となる物質を特定できているがん細胞にのみ適用可能な手段であった。したがって、その遊離物質が未知のがん細胞に関しては、適用不可能な手段であった。また、これと同じことは、がん細胞由来の遺伝子フラグメントをPCRにより増幅し、がんの有無を検討する方法にも言える。すなわち、既に判明している遺伝子部分を増幅することで、がん細胞の有無を判定するわけで、未知の遺伝子を使用し、がん化している細胞には適用できない弱点がある。一方で、この弱点を克服する方法として、がん細胞の取得を生検や手術材料から獲得する生体侵襲を伴う方法が考えられるが、該がん細胞の取得は、原発巣からの生検或いは手術採取は可能で、許されるとしても、転移巣からの採取は、がん細胞の更なる播種を招く恐れがあり、倫理的にも許されるものではない。また、がんが特定されていない初期のがんに対しては、対応することが不可能である。
 以上のようながん細胞の検出・分離取得に対する医療現場のニーズの下で、CTCの検出・分離取得によるがん細胞の検出・分離取得は、極めて重要な意義を持っているが、現状では、血液やリンパ液のような生体循環体液中に、微量に存在するCTCやCTSCを、当該腫瘍細胞がいかなるがんの細胞か特定できていない状態においても、確実かつ安定的に検出・分離取得する方法は開発できていない。したがって、血液やリンパ液のような生体循環体液、例えば、末梢血のような血液から、微量に存在するCTCやCTSCを、がんが特定されていないがん細胞に対しても、安全、簡便で、確実かつ安定的に検出・分離取得する方法を開発することは、がんの基礎的、臨床的対応において、極めて重要な課題となっている。
特開2007-178193号公報。 特開2011-163830号公報。 特開2012-103077号公報。 特開2013-36818号公報。 特開2014-39480号公報。 特開2014-105159号公報。 特開2014-112094号公報。 特開2014-224800号公報。 特表2002-503814号公報。 特表2009-537021号公報。 WO99/41613。 WO2007/133465。
Estimated using the method by Wum LM et al., Estimating lifetime and age-conditional probabilities of developing cancer, Lifetime Data Anal., 1998, 4 : 169-186. Breast Cancer Res Treat 2010, 124:403-412. New Engl. J Med 2004, 351:781-791. Clin Cancer Res 2008, 14:6302-6309 . J. Clin Oncol 2008, 26:3213-3221. Clin Cancer Res 2008, 14:7004-7010. Proc (Bayl Univ Med Cent) 2008, 21:127-132. J Translational-medicine 2012, 10:138:1-20. Proc. Natl. Acad. Sci, USA,95:4589-4594,1998. Cancer Res. 11, 648-651,1951. CANCER JULY-AUGUST, Vol.13: 674-676, 1960.
 本発明の課題は、血液やリンパ液のような生体循環体液中に、微量に存在するCTC(循環腫瘍細胞)及びCTSC(循環腫瘍幹細胞)を、当該腫瘍細胞がいかなるがんの細胞か特定できていない状態においても、かつ、生体循環体液中に微量に存在する状態においても、確実かつ安定的に検出・分離取得することが可能なCTC及び/又はCTSCの検出・分離取得方法を開発することにある。
発明を解決するための手段
 本発明者は、上記課題を解決すべく、血液やリンパ液のような生体循環体液中に、微量に存在するCTC及びCTSCを、当該腫瘍細胞がいかなるがんの細胞か特定できていない状態においても、かつ、生体循環体液中に微量に存在する状態においても、確実かつ安定的に検出・分離取得することが可能なCTC及びCTSCの検出・分離取得方法について、鋭意検討する中で、CTC及び/又はCTSCの検出・分離取得方法において、その検出・分離取得のステップに、CTC及び/又はCTSC(循環腫瘍細胞及び/又は循環腫瘍幹細胞)増殖用無血清培地からなる培養液を用いたCTC及び/又はCTSCの増殖ステップを設けることにより、試料中に僅かに存在するCTC及び/又はCTSCを増幅し、確実かつ安定的に検出・分離取得することが可能であることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下の(1)~(4)の処理ステップを含む、細胞増殖法を用いた生体循環体液中のCTC及び/又はCTSCの検出・分離取得方法からなる:
(1)生体循環体液からの試料を前処理し、単核球相を得る第1のステップ、
(2)ウェルプレートに、CTC及び/又はCTSC増殖用無血清培地からなる培養液を注入したウェルプレートを用意し、第1のステップで得た単核球を播種し、インキュベートする第2のステップ、
(3)第2のステップでインキュベーションして得たプレートウェルから、培養液を除去する第3のステップ、
(4)第3のステップの後、プレートウェルに付着した付着性腫瘍細胞を検出するか、或いは、分離取得する第4のステップ。
 本発明の細胞増殖法を用いたCTC及び/又はCTSCの検出・分離取得方法により、循環体液等の、試料中に僅かに存在するCTC及び/又はCTSCを増幅し、確実かつ安定的に検出・分離取得することができる。本発明のCTC及び/又はCTSCの検出・分離取得方法においては、生体循環体液を試料として行うことができるが、該生体循環体液からの試料としては、末梢血からの血液試料を、最も簡単に操作できる試料として、なおかつ、有効な試料として挙げることができる。
 本発明のCTC及び/又はCTSCの検出・分離取得方法において、第一のステップである、生体循環体液からの単核球相を得るステップは、生体循環体液からの試料を前処理し、生体循環体液に含まれる液体成分及び血球等の非細胞成分の除去のための処理を挙げることができる。
 本発明のCTC及び/又はCTSCの検出・分離取得方法において、第1のステップで得た単核球を播種し、インキュベートする第2のステップは、ウェルプレートに、CTC及び/又はCTSC増殖用無血清培地からなる培養液を注入したウェルプレートを用意し、第1のステップで得た単核球を播種し、インキュベートすることからなる。該CTC及び/又はCTSC増殖用無血清培地からなる培養液としては、細胞増殖用無血清培地であるAIM-V培養液を基本とする培養液を挙げることができる。該培養液を用いることにより、細胞増殖法を用いた生体循環体液中のCTC及び/又はCTSCの検出・分離取得方法におけるインキュベーションステップにおいて、CTC及び/又はCTSCの短期間の増殖を可能とし、試料中に微量に存在するCTC及び/又はCTSCを増殖・増幅して、確実かつ安定的に検出・分離取得することを可能とする。該AIM-V培養液を基本とする培養液としては、AIM-V培養液、或いは、AIM-V培養液に、被験者の自己血清、健常人由来のAB血清及びパルミチン酸(Palmitic Acid)又はその塩から選択される1又は2以上を添加した培養液を用いることができる。第2のステップにおけるインキュベートの条件は、その増殖温度及び増殖期間について、適宜、適合した条件を定めることができるが、最適には、37℃、3~7日間を増殖温度及び増殖期間の基準条件として行うことができる。また、第2のステップにおけるインキュベートの条件として、5%COに調整されたインキュベーター内条件で行うことができる。
 すなわち、本発明のCTC及び/又はCTSCの検出・分離取得方法において用いられる、CTC及び/又はCTSC増殖用無血清培地からなる培養液は、AIM-V培養液を基本とする培養液を用いることができるが、該AIM-V培養液を基本とする培養液としては、基本培地として、AIM-V培養液自体を用いることができる。また、該AIM-V培養液に、被験者の自己血清、健常人由来のAB血清及びパルミチン酸(Palmitic Acid)又はその塩から選択される1又は2以上を添加した培養液を用いることにより、CTCの誘導効果を上げることができ、より効率の良い、安定したCTC及び/又はCTSCの検出・分離効果を得ることができる。特に、パルミチン酸(Palmitic Acid)又はその塩は、安全かつ安定的にCTC及び/又はCTSCの検出・分離を可能とする添加成分として挙げることができる。
 本発明のCTC及び/又はCTSCの検出・分離取得方法において、第2のステップでインキュベーションして得たプレートウェルから、培養液を除去する第3のステップは、ウェルプレートで所定時間インキュベートして得られた培養物から、適宜手段で、培養液を除去する処理からなる。また、本発明のCTC及び/又はCTSCの検出・分離取得方法において、第3のステップの後、プレートウェルに付着した付着性腫瘍細胞を検出するか、或いは、分離取得する第4のステップは、プレートウェルに付着した付着性腫瘍細胞を、検鏡、染料染色、抗原-抗体染色、等の検出手段を用いて、そのまま検出するか、或いは、プレートウェルに付着した付着性腫瘍細胞を、分離して、各種検出用のがん細胞として取得することからなる。
 本発明のCTC及び/又はCTSCの検出・分離取得方法の構築の経緯について説明すれば、生体循環体液中に、微量に存在するCTC及び/又はCTSCを確実かつ安定的に検出・分離取得するには、試料中に微量に存在するCTC及び/又はCTSCを、短期間のうちに効果的に増殖し、増幅することが必要となる。そして、該細胞増殖法を用いたCTC及び/又はCTSCの検出・分離取得方法を構築するためには、CTC及びCTSCの増殖を可能とする、CTC及び/又はCTSC増殖用無血清培地を探索することが課題となる。そこで、本発明者は本発明の課題を解決すべく鋭意検討する中で、CTCの分離、取得について、末梢血単核球の標準的培養液であるRPMI-1640培養液(RPMI-1640)を基準に無血清培地AIM-V培養液(AIM-V)と比較した。すなわち、これら培養液に、それぞれ5%の児牛血清(FBS)又は末梢血提供者の自己血清(Autologous Serum:AS)を添加培養し、それら各培養液間のCTC分離、取得の有無及び効果を検討した。その結果、CTC及び/又はCTSCの分離、取得には、AIM-Vが有用で、また、AS添加がその効果を増強することを実証した。
 更に、上記培養液の結果を基礎に、自己血清採取による患者負担の増加を回避し、なおかつ、被験者の病状毎の血清成分の変動の影響を排除するため、新たなCTCの分離取得因子としてパルミチン酸(Palmitic Acid)を含む各種の候補、LPS、Con A、PHA、IL-1α、IL-1βを検討し、最も安全かつ効率の良い因子の探索を実施した。この検討経過でLPSにもCTCの誘導効果は観察されたが、LPSは極めて強い毒性を持つ物質であることから、CTC分離後の各種研究、臨床応用の技術開発という目的から鑑みれば、試薬としては安全上不適切であると判断し、以後の実験では除外することとした。その結果、CTC取得にとって、その供給や性質(他に感染させてはならないウイルスキャリヤー等)上、不安定要因である自己血清を排除しても、安全かつ安定的にCTCを分散することができる新規因子として、パルミチン酸(Palmitic Acid)が極めて有用であることを実証した。以上から、CTCの安定した分取には、AIM-V培養液、或いは、AIM-V培養液に、被験者の自己血清、健常人由来のAB血清及びパルミチン酸(Palmitic Acid)又はその塩から選択される1又は2以上を添加した培養液、その中でも特に、パルミチン酸(Palmitic Acid)又はその塩を添加した培養液が有用であることを実証し、本発明を完成するに至ったものである。
 すなわち具体的には本発明は、次の請求項からなる。
[1]以下の(1)~(4)の処理ステップを含む、生体循環体液中の循環腫瘍細胞及び/又は循環腫瘍幹細胞の検出・分離取得方法:
(1)生体循環体液からの試料を前処理し、単核球相を得る第1のステップ、
(2)ウェルプレートに、循環腫瘍細胞及び/又は循環腫瘍幹細胞増殖用無血清培地からなる培養液を注入したウェルプレートを用意し、第1のステップで得た単核球を播種し、インキュベートする第2のステップ、
(3)第2のステップでインキュベーションして得たプレートウェルから、培養液を除去する第3のステップ、
(4)第3のステップの後、プレートウェルに付着した付着性腫瘍細胞を検出するか、或いは、分離取得する第4のステップ。
[2]第2のステップで、第1のステップで得た単核球を播種し、インキュベートするための循環腫瘍細胞及び/又は循環腫瘍幹細胞増殖用無血清培地からなる培養液が、AIM-V培養液を基本とする培養液であることを特徴とする前記[1]に記載の生体循環体液中の循環腫瘍細胞及び/又は循環腫瘍幹細胞の検出・分離取得方法。
[3]第2のステップで、第1のステップで得た単核球を播種し、インキュベートするためのAIM-V培養液を基本とする培養液が、AIM-V培養液、或いは、AIM-V培養液に、被験者の自己血清、健常人由来のAB血清及びパルミチン酸又はその塩から選択される1又は2以上を添加した培養液であることを特徴とする前記[1]又は[2]に記載の生体循環体液中の循環腫瘍細胞及び/又は循環腫瘍幹細胞の検出・分離取得方法。
[4]生体循環体液からの試料が、末梢血からの血液試料であることを特徴とする、前記[1]~[3]のいずれかに記載の生体循環体液中の循環腫瘍細胞及び/又は循環腫瘍幹細胞の検出・分離取得方法。
[5]第1のステップの生体循環体液からの試料の前処理が、生体循環体液に含まれる液体成分及び非細胞成分の除去であることを特徴とする前記[1]~[3]のいずれかに記載の生体循環体液中の循環腫瘍細胞及び/又は循環腫瘍幹細胞の検出・分離取得方法。
[6]第2のステップにおけるインキュベートが、37℃、3~7日間を増殖温度及び増殖期間の基準条件として行われることを特徴とする前記[1]~[5]のいずれかに記載の生体循環体液中の循環腫瘍細胞及び/又は循環腫瘍幹細胞の検出・分離取得方法。
[7]第2のステップにおけるインキュベートが、5%COに調整されたインキュベーター内で行われることを特徴とする前記[6]に記載の生体循環体液中の循環腫瘍細胞及び/又は循環腫瘍幹細胞の検出・分離取得方法。
 本発明は、血液やリンパ液のような生体循環体液中に、微量に存在する循環腫瘍細胞及び循環腫瘍幹細胞を、当該腫瘍細胞がいかなるがんの細胞か特定できていない状態、かつ、生体循環体液中に微量に存在する状態においても、確実かつ安定的に検出・分離取得することが可能なCTCの検出・分離取得方法を提供する。本発明のCTCの検出・分離取得法は、CTCのみならず、CTSCの検出・分離を可能とするものであり、がんの基礎的な解明や、臨床的な対応に、有力な手段を提供する。
 すなわち、本発明によって、CTCの効率的かつ安定的分取が可能となったことは、がんの研究において画期的な進展の可能性を与える。これまで、がん細胞なかんずくCTSCを末梢血等から効率的かつ安定的に検出、分離・分取できなかったことがCTC研究の遅延の主要な原因であった。このことに鑑みれば、本発明の技術により、CTC研究が飛躍的に促進される基盤ができたことになる。本発明により、CTCの基礎的、臨床的研究を進めることが可能で、CTCの制御技術の開発に弾みをつけることが期待できる。
 本発明を使用した基礎的研究が進めば、CTCの細胞学的な多様な側面を遺伝学的に実態としての遺伝子などの物質レベルで検討することが可能となる。これにより、その増殖制御に関わる新規薬剤や、免疫学的にはCTCの殺細胞性抗体などの新規薬剤開発に展望が開ける。また、臨床的にも、がん患者のステージ分類との比較、組織学的分類との比較、更には、得られた各種指標との相関性の追求が可能となる。更に、治療効果との関連性なども明らかにできることから、これまでになかった診断、治療、予後の評価判定に関しても、強固な科学的基盤を確立することが期待できる。したがって、本発明は、がんの基礎的解明、臨床的応用などの研究開発に極めて多大な貢献をなすものである。
図1は、がん細胞(CTC)取得に効率的な培養液の選定試験において、培養液として、AIM-V培養液及びRPMI-1640培養液を用いたCTC取得試験で得られたものを顕微鏡で観察した結果(写真)を示す図である。図(1-a)は、AIM-V培養液を用いたCTC取得の結果を、図(1-b)は、RPMI-1640培養液を用いた場合のCTC取得の結果を示す。 図2は、本発明の実施例における、CTC増殖用培養液で得られたがん細胞(CTC)の形態変化の確認の試験において、「AIM-V培養液単独で培養・取得したCTCの形態変化の観察」の結果について、培養・取得したCTCの顕微鏡画像を示す図である。図中、(2-a)、(2-b)は、異なる患者のCTCについて検討した結果(異なる患者からのがん細胞(CTC)の顕微鏡写真)を示したものである。 図3は、本発明の実施例における、CTC増殖用培養液で得られたがん細胞(CTC)の形態変化の確認の試験において、「AIM-V培養液に、Palmitic Acid(×1conc.)を添加培養し、取得したCTCの形態変化の観察」の結果について、培養・取得したCTCの顕微鏡画像を示す図である。図中、(3-a)、(3-b)は、異なる患者のCTCについて検討した結果(異なる患者からのがん細胞(CTC)の顕微鏡写真)を示したものである。 図4は、本発明の実施例における、CTC増殖用培養液で得られたがん細胞(CTC)の形態変化の確認の試験において、「AIM-V培養液に、Palmitic Acid(×4conc.)を添加培養し、取得したCTCの形態変化の観察」の結果について、培養・取得したCTCの顕微鏡画像を示す図である。図中、(4-a)、(4-b)は、異なる患者のCTCについて検討した結果(異なる患者からのがん細胞(CTC)の顕微鏡写真)を示したものである。 図5は、本発明の実施例における、CTC増殖用培養液で得られたがん細胞(CTC)の形態変化の確認の試験において、「AIM-V+5%Auto Serum培養液にて培養し、取得したCTCの形態変化の観察」の結果について、培養・取得したCTCの顕微鏡画像を示す図である。図中、(5-a)、(5-b)は、異なる患者のCTCについて検討した結果(異なる患者からのがん細胞(CTC)の顕微鏡写真)を示したものである。 図6は、本発明の実施例における、CTC増殖用培養液で得られたがん細胞(CTC)の形態変化の確認の試験において、「AIM-V+5%Auto Serum+Palmitic Acid(×1conc.)条件下の培養液にて培養し、取得したCTCの形態変化の観察」の結果について、培養・取得したCTCの顕微鏡画像を示す図である。図中、(6-a)、(6-b)は、異なる患者のCTCについて検討した結果(異なる患者からのがん細胞(CTC)の顕微鏡写真)を示したものである。 図7は、本発明の実施例における、CTC増殖用培養液で得られたがん細胞(CTC)の形態変化の確認の試験において、「AIM-V+5%Auto Serum+Palmitic Acid(×4conc.)条件下の培養液にて培養し、取得したCTCの形態変化の観察」の結果について、培養・取得したCTCの顕微鏡画像を示す図である。図中、(7-a)、(7-b)は、異なる患者のCTCについて検討した結果(異なる患者からのがん細胞(CTC)の顕微鏡写真)を示したものである。 図8は、本発明の実施例における、患者末梢血から分離取得したCTCの細胞膜抗原を用いた確認及び同定の試験における、「膜抗原CD44を用いたCTCの確認及び同定」において、患者: K.H.(Gastric Ca. :胃がん:liver meta.肝転移) から分離取得したCTCの顕微鏡写真(a)及び蛍光顕微鏡写真(b)を示す図である。 図9は、本発明の実施例における、患者末梢血から分離取得したCTCの細胞膜抗原を用いた確認及び同定の試験における、「膜抗原CD44を用いたCTCの確認及び同定」において、患者:T.K.(Tongue Ca. 舌がん) から分離取得したCTCの顕微鏡写真(a)及び蛍光顕微鏡写真(b)を示す図である。 図10は、本発明の実施例における、患者末梢血から分離取得したCTCの細胞膜抗原を用いた確認及び同定の試験における、「膜抗原CD44を用いたCTCの確認及び同定」において、患者:K.H.(Gastric Ca. :胃がん:liver meta.肝転移 から分離取得したCTCの顕微鏡写真(a)及び蛍光顕微鏡写真(b)を示す図である。 図11は、本発明の実施例における、患者末梢血から分離取得したCTCの細胞膜抗原を用いた確認及び同定の試験における、「膜抗原CD44を用いたCTCの確認及び同定」において、患者:T.K.(Tongue Ca. 舌がん)から分離取得したCTCの顕微鏡写真(a)及び蛍光顕微鏡写真(b)を示す図である。 図12は、本発明の実施例における、患者末梢血から分離取得したCTCの細胞膜抗原を用いた確認及び同定の試験における、「膜抗原CD44を用いたCTCの確認及び同定」において、患者:S.K.(Kerato-cystic Ca. 角化嚢胞がん)から分離取得したCTCの顕微鏡写真(a)及び蛍光顕微鏡写真(b)を示す図である。 図13は、本発明の実施例における、患者末梢血から分離取得したCTCの細胞膜抗原を用いた確認及び同定の試験における、「膜抗原CD44を用いたCTCの確認及び同定」において、患者:S.O.(Lung Ca. 肺がん)から分離取得したCTCの顕微鏡写真(a)及び蛍光顕微鏡写真(b)を示す図である。 図14は、本発明の実施例における、患者末梢血から分離取得したCTCの細胞膜抗原を用いた確認及び同定の試験における、「膜抗原CD44を用いたCTCの確認及び同定」において、患者:H.Y.(Breast Ca. 乳がん)から分離取得したCTCの顕微鏡写真(a)及び蛍光顕微鏡写真(b)を示す図である。 図15は、本発明の実施例における、患者末梢血から分離取得したCTCの細胞膜抗原を用いた確認及び同定の試験における、「膜抗原CD44を用いたCTCの確認及び同定」において、患者:Y.H.(Lung Ca. 肺がん)から分離取得したCTCの顕微鏡写真(a)及び蛍光顕微鏡写真(b)を示す図である。 図16は、本発明の実施例における、患者末梢血から分離取得したCTCの細胞膜抗原を用いた確認及び同定の試験における、「膜抗原CD45を用いたCTCの確認及び同定」において、患者:H.Y.(Breast Ca. 乳がん)から分離取得したCTCの顕微鏡写真(a)及び蛍光顕微鏡写真(b)を示す図である。 図17は、本発明の実施例における、患者末梢血から分離取得したCTCの細胞膜抗原を用いた確認及び同定の試験における、「膜抗原CD45を用いたCTCの確認及び同定」において、患者:H.Y.(Breast Ca. 乳がん)から分離取得したCTCの顕微鏡写真(a)及び蛍光顕微鏡写真(b)を示す図である。 図18は、本発明の実施例における、患者末梢血から分離取得したCTCの細胞膜抗原を用いた確認及び同定の試験における、「膜抗原CD45を用いたCTCの確認及び同定」において、患者:Y.H.(Lung Ca. 肺がん)から分離取得したCTCの顕微鏡写真(a)及び蛍光顕微鏡写真(b)を示す図である。 図19は、本発明の実施例における、患者末梢血から分離取得したCTCの細胞膜抗原を用いた確認及び同定の試験における、「膜抗原CD47を用いたCTCの確認及び同定」において、患者:G.N.(Breast Ca. 乳がん:multiple metastasis多発転移性)から分離取得したCTCの顕微鏡写真(a)及び蛍光顕微鏡写真(b)を示す図である。 図20は、本発明の実施例における、患者末梢血から分離取得したCTCの細胞膜抗原を用いた確認及び同定の試験における、「膜抗原CD47を用いたCTCの確認及び同定」において、患者:S.K.(Kerato-cystic Ca. 角化嚢胞がん)から分離取得したCTCの顕微鏡写真(a)及び蛍光顕微鏡写真(b)を示す図である。 図21は、本発明の実施例における、患者末梢血から分離取得したCTCの細胞膜抗原を用いた確認及び同定の試験における、「膜抗原CD47を用いたCTCの確認及び同定」において、患者:S.O.(Lung Ca. 肺がん)から分離取得したCTCの顕微鏡写真(a)及び蛍光顕微鏡写真(b)を示す図である。 図22は、本発明の実施例における、患者末梢血から分離取得したCTCの細胞膜抗原を用いた確認及び同定の試験における、「膜抗原CD47を用いたCTCの確認及び同定」において、患者:H.Y.(Breast Ca. 乳がん)から分離取得したCTCの顕微鏡写真(a)及び蛍光顕微鏡写真(b)を示す図である。 図23は、本発明の実施例における、患者末梢血から分離取得したCTCの細胞膜抗原を用いた確認及び同定の試験における、「膜抗原CD47を用いたCTCの確認及び同定」において、患者:Y.H.(Lung Ca. 肺がん)から分離取得したCTCの顕微鏡写真(a)及び蛍光顕微鏡写真(b)を示す図である。 図24は、本発明の実施例における、患者末梢血から分離取得したCTCの細胞膜抗原を用いた確認及び同定の試験における、「膜抗原CKII を用いたCTCの確認及び同定」において、患者:H.Y.(Breast Ca. 乳がん)から分離取得したCTCの顕微鏡写真(a)及び蛍光顕微鏡写真(b)を示す図である。 図25は、本発明の実施例における、患者末梢血から分離取得したCTCの細胞膜抗原を用いた確認及び同定の試験における、「膜抗原CKIIを用いたCTCの確認及び同定」において、患者:Y.H.(Lung Ca. 肺がん)から分離取得したCTCの顕微鏡写真(a)及び蛍光顕微鏡写真(b)を示す図である。 図26は、本発明の実施例における、患者末梢血から分離取得したCTCの細胞膜抗原を用いた確認及び同定の試験における、「膜抗原EpCAM を用いたCTCの確認及び同定」において、患者:H.Y.(Breast Ca. 乳がん)から分離取得したCTCの顕微鏡写真(a)及び蛍光顕微鏡写真(b)を示す図である。 図27は、本発明の実施例における、「ヌードマウスにおけるCTCの造腫瘍性又は長期生存の確認の試験」において、CTC移植群に残存している細胞の顕微鏡写真(非蛍光発光像)の像と、膜抗原CD45を用いた蛍光抗体顕微鏡(蛍光発光像)の写真を示す図である。図中、(27-a)、(27-b)は、患者H.Y.からの試料から分離したCTC(HY-1)を「Nude1-1」に移植した場合のCTC移植群に残存している細胞の顕微鏡写真(Control)、及び、蛍光抗体顕微鏡(蛍光発光像)の写真を示す。 図28は、本発明の実施例における、「ヌードマウスにおけるCTCの造腫瘍性又は長期生存の確認の試験」において、CTC移植群に残存している細胞の顕微鏡写真(非蛍光発光像)の像と、膜抗原CD45を用いた蛍光抗体顕微鏡(蛍光発光像)の写真を示す図である。図中、(28-a)、(28-b)は、患者K.H.からの試料から分離したCTC(KH-1)を「Nude1-2」に移植した場合のCTC移植群に残存している細胞の顕微鏡写真(Control)、及び、蛍光抗体顕微鏡(蛍光発光像)の写真を示す。 図29は、本発明の実施例における、「ヌードマウスにおけるCTCの造腫瘍性又は長期生存の確認の試験」において、CTC移植群に残存している細胞の顕微鏡写真(非蛍光発光像)の像と、膜抗原CD45を用いた蛍光抗体顕微鏡(蛍光発光像)の写真を示す図である。図中、(29-a)、(29-b)は、患者H.Y.からの試料から分離したCTC(HY-1)を「Nude2-1」に移植した場合のCTC移植群に残存している細胞の顕微鏡写真(Control)、及び、蛍光抗体顕微鏡(蛍光発光像)の写真を示す。 図30は、本発明の実施例における、「ヌードマウスにおけるCTCの造腫瘍性又は長期生存の確認の試験」において、CTC移植群に残存している細胞の顕微鏡写真(非蛍光発光像)の像と、膜抗原CD45を用いた蛍光抗体顕微鏡(蛍光発光像)の写真を示す図である。図中、(30-a)、(30-b)は、患者K.H.からの試料から分離したCTC(KH-1)を「Nude2-2」に移植した場合のCTC移植群に残存している細胞の顕微鏡写真(Control)、及び、蛍光抗体顕微鏡(蛍光発光像)の写真を示す。 図31は、本発明の実施例における、「ヌードマウスにおけるCTCの造腫瘍性又は長期生存の確認の試験」において、CTCを移植していない対照群ヌードマウスの「正常小腸組織細胞」についての顕微鏡写真の像(a)と、膜抗原CD45を用いた蛍光抗体顕微鏡の写真(b)とを示す図である。 図32は、樹立がん細胞株(UTC-8)を用いたCD47陽性細胞(CTSC)の検出試験(I)において、樹立がん細胞株(UTC-8)を試料として用い、CTC細胞を増殖取得後、細胞膜上のCD47抗原により、該抗原陽性細胞の検出を行った結果を非蛍光色素染色の顕微鏡像、及び、蛍光色素染色法によるCD47陽性細胞像で表示した写真である。図32中、(32-a)は、非蛍光色素染色の顕微鏡像を、(32-b)は、蛍光色素染色法によるCD47陽性細胞像を示す。 図33は、樹立がん細胞株(UTC-8)を用いたCD47陽性細胞(CTSC)の検出試験(II)において、樹立がん細胞株(UTC-8)を試料として用い、CTC細胞を増殖取得後、細胞膜上のCD47抗原により、該抗原陽性細胞の検出を行った結果を非蛍光色素染色の顕微鏡像、及び、蛍光色素染色法によるCD47陽性細胞像で表示した写真である。図33中、(33-a)は、非蛍光色素染色の顕微鏡像を、(33-b)は、蛍光色素染色法によるCD47陽性細胞像を示す。
 本発明は、以下の(1)~(4)の処理ステップを含む増殖法を用いた生体循環体液中のCTC及び/又はCTSCの検出・分離取得方法からなる:
(1)生体循環体液からの試料を前処理し、単核球相を得る第1のステップ、
(2)ウェルプレートに、CTC及び/又はCTSC増殖用無血清培地からなる培養液を注入したウェルプレートを用意し、第1のステップで得た単核球を播種し、インキュベートする第2のステップ、
(3)第2のステップでインキュベーションして得たプレートウェルから、培養液を除去する第3のステップ、
(4)第3のステップの後、プレートウェルに付着した付着性腫瘍細胞を検出するか、或いは、分離取得する第4のステップ。
 本発明のCTC及び/又はCTSCの検出・分離取得方法においては、生体循環体液を試料として行うことができるが、該生体循環体液からの試料としては、末梢血からの血液試料を、最も簡単に操作できる試料として、なおかつ、有効な試料として挙げることができる。CTC及び/又はCTSCの検出・分離取得のための生体循環体液からの試料の採取に関しては、生体において、血液、体液の循環から孤立した臓器は一固体内には存在し得えず、そこに肉眼的にがんの存在を予測できなくても、すべての臓器からのCTC及び/又はCTSCが分取可能である。例えば、ヌードマウスの背部皮下や皮内にヒト由来のCTCを移植し、3か月後に脾臓を摘出、末梢血からの分離操作を実施することで、ヒト由来のCTCを分離することに成功している。
 本発明の生体循環体液中のCTC及び/又はCTSCの検出・分離取得方法において、第1のステップは、生体循環体液からの試料を前処理し、単核球相を得るステップからなる。該ステップは、生体循環体液からの試料を前処理し、生体循環体液に含まれる液体成分及び血球等の非細胞成分の除去のための処理を挙げることができる。該生体循環体液に含まれる液体成分及び血球等の非細胞成分の除去のための処理は、特に限定されず、公知の方法を用いることができる。例えば、血液試料においては、遠心分離により、血液中の赤血球、白血球を分離除去する方法(遠心分離法)、細胞の密度を利用して、血液中の赤血球、白血球を分離除去する方法(密度勾配遠心法)、細胞のサイズの差を用いた血球の分離方法(フィルターを用いた分離法)等が挙げられるが、特に、好ましい方法としては、密度勾配遠心法を挙げることができる。その場合に、具体的には、ファイコール・アイソパーク密度勾配遠心分離法の処理条件を挙げることができる。
 本発明の生体循環体液中のCTC及び/又はCTSCの検出・分離取得方法において、第2のステップにおいて、インキュベートに用いるCTC及び/又はCTSC増殖用無血清培地からなる培養液としては、AIM-V培養液を基本とする培養液を用いることができる。AIM-V培養液は、T細胞等の増殖用培地として開発されたものであるが、該培養液自体は、市販のものから入手することができる。本発明の生体循環体液中のCTC及び/又はCTSCの検出・分離取得方法における第2のステップについて説明すれば、第2のステップは、ウェルプレートに、細胞増殖用無血清培地であるAIM-V培養液を基本とする培養液を注入したウェルプレートを用意し、第1のステップで得た単核球を播種し、インキュベートするステップからなる。該AIM-V培養液を基本とする培養液としては、AIM-V培養液、或いは、AIM-V培養液に、被験者の自己血清、健常人由来のAB血清及びパルミチン酸又はその塩から選択される1又は2以上を添加した培養液を用いることができる。第2のステップにおけるインキュベートの条件は、状況に合わせて適宜設定することができるが、好ましくは、インキュベート内、5%COの条件下で、37℃、3~7日間の条件で行うことができる。特に好ましくは、5%CO、37℃、7日間のインキュベート内条件、培養温度、及び培養期間の条件で行うことができる。
 本発明の生体循環体液中のCTC及び/又はCTSCの検出・分離取得方法において、第3のステップは、第2のステップでインキュベーションして得たプレートウェルから、培養液を除去するステップからなる。プレートウェルからの培養液の除去は、適宜の手段により行うことができる。
 本発明の生体循環体液中のCTC及び/又はCTSCの検出・分離取得方法において、第4のステップは、第3のステップの後、プレートウェルに付着した付着性腫瘍細胞を検出するか、或いは、分離取得するステップからなる。該第4のステップにおいて、プレートウェルに付着した付着性腫瘍細胞は、検鏡、染料染色、抗原、抗体染色、等の検出手段を用いて、そのまま検出手段に付することができる。また、プレートウェルに付着した付着性腫瘍細胞を、分離して、各種検出用のがん細胞として取得することができる。
 本発明の生体循環体液中のCTC及び/又はCTSCの検出・分離取得方法において、分離取得されたがん細胞は、がんの診断、治療、予後の評価判定等、がんの解明、臨床的応用などのための研究用のがん細胞試料として、提供することができる。
 本発明で分離し、取得した細胞が、がん細胞であることの証明は、以下の基準から複数適当なものを選択し、確認することができる。例えば、(1)~(5)、(7)、(9)を選択し決定することができる。
 (確認基準)
(1)接触阻止現象が見られないこと。
(2)軟寒天内コロニー形成能を示すこと(当該方法は、浮遊性細胞に適用する方法である。)
(3)顕微鏡下で細胞の体積に比し異常な染色体の形態と容積が見られること。
(4)継代培養下分裂回数がヒト正常細胞では限界とされるヘイフリック限界の約50回以上の分裂能を示すこと、すなわち仮に一週間に2~3回分裂するとして約半年間以上の間、継代培養し、永久増殖能・不死化を示すこと。
(遺伝学的、血清学的には)
(5)すでに判明しているがん幹細胞CTSCの細胞表面マーカーであるCD44、CD45、CD47、CKII、EpCAM等、抗原を単独或いは複数有すること。
(6)当該細胞の培養液中に、頭径部・食道扁平上皮がんではSCC、肺がんではCA125、乳がんではCA15-3、肺がんではAFP、CEA、すい臓がんではCEA、CA19-9、大腸がんではCA19-9など、一般的に腫瘍マーカーとされる24種類のマーカーのうち、少なくとも一つ以上が対照群に比べて陽性反応を示すこと。
(7)当該細胞から、TotalRNAを精製し、遺伝子解析にかけ、がん関連遺伝子及びがん幹細胞遺伝子の発現が優位に認められること。
(取得細胞の造腫瘍性を観察するために)
(8)分離・取得したがん細胞のDNAを精製し、NIH3T3細胞に導入するとNIH3T3細胞の接触阻止現象が消失し、形態学的にがん細胞形質を発現することが観察されること。
(9)免疫不全ヌードマウス又はスキッドマウスに当該細胞を移植した時、移植細胞が造腫瘍性を示すこと。更に増殖した組織を再培養するとその組織細胞が増殖すること。
 上記のとおり、本発明の方法により、例えば、ヒト生体組織の代表として、最も簡便に操作できる末梢血から効率的に分離・検出したCTCは、その分離・検出結果をがん療法の実施前後の効果の比較評価の指標として用いることができ、また、予後の評価に資することができる。また、本発明の方法により、CTCの高効率な分離取得が可能となったことにより、当該がんに対する有効な薬剤などの開発のように、新規な治療技術等の開発を促進することができる。すなわち、本発明により、いかなるがんか、不特定のがんに対しても、CTCの高効率な分離取得が可能となったことにより、がんの早期発見や、予後の分析評価を可能とすることのみならず、安定的に得られたCTCの数的、形態的推移をもとに治療前後の評価の指標を確立し、CTCを制御する薬剤の開発や治療方法の開発を促進することができる。更に、基礎的、臨床的なCTC研究の安定的基盤を確立するための材料として、利用することができる。
 以下、実施例を挙げて本発明を更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
[実験方法]:
本発明の実施例においては、以下の実験方法にしたがった。すなわち、実験試料(血液提供した各種がん患者からの末梢血)を以下の手順で、すべて無菌的に処理した。なお、あらかじめ、各協力施設からの情報で、HBV、HCVなどの各種ウイルス感染のある場合は、その処理は非感染群とは別個に試験し、医療廃棄物処理専門業者による適正な医療廃棄物処理を実施した。
 (試料の採取:採血)
1.適量の抗凝固剤ヘパリンナトリウム(0.05ml)入りのディスポーザブル30ml採血用注射器を用意し、また、ヘパリンナトリウムの入っていない血清入手用の同30ml採血注射器を用意した。これをL型180°三方活栓の各挿入口に、18、21、24、ゲージ翼状針の適当なものを血管側に結合、採血の準備をした。血液は各々30ml採血し、以下の分離操作を実施した。
 (試料の精製:血球分離)
2.血清採取は、採血注射筒に針を装着の上、37℃、5%COインキュベータ内で、1時間静置処理し、その後4℃、3,000回転(800G)、30分間遠心分離を実施した。上静を自己血清(AS)とし、4℃で冷所保存した。
3.一方、末梢血単核球(PBMCs)分離を目指すヘパリン採血管は、採血後よく採血管をローリングさせ、十分に混和した。その後、同量の(-)PBSを入れ混和、血液粘度を低下させた後、予め用意したファイコール・アイソパーク(F/I)密度勾配遠心分離剤を5ml注入した15mlチューブに各5mlずつF/Iに混和しないように、ゆっくりとF/I上面に注ぎ、静置した。これを、4℃、3,000回転(1710G)で、30分遠心分離し、F/Iと血漿との境界に単核球層を得た。これからPBMCsを吸引採取し、(-)PBSを加えたのち、4℃、1200回転(270G)、15分間遠心分離を実施した。これを二度繰り返し、上静を除去後、予定した実験条件に適合する培養液(RPMI-1640、AIM-V)を加え、以下の実験に使用した。
 (培養液中インキュベート)
4.得られたPBMCsを、I×10/100μlとなるように調整し、96穴プレート(BDFalcon社製、96 Well, Clear, Tissue Culture Treated Plate, Flat Bottom)、又は、384穴プレート(BD Falcon社製、384 Well, Clear, Tissue Culture Treated Plate, Flat Bottom)の各ウェルに実験計画に基き実験条件の1グループ3ウェルとし、1×10/100μl(/well / 96 well plate or 1x104/25μl/well/384 well plate )ずつ注入し、細胞の播種を終えた。培養液単独の場合は、そのウェルに更に100μlの当該培養液を注入し、5%ASのグループ、又は各種添加薬剤(LPS、IL-1α、IL-1β、パルミチン酸(Palmitic Acid))の使用グループに関しては、計画に従って濃度の配分が行われるように、100μlの溶液をそれぞれ用意し、注入した。全培養液量を200μl/ウェルとして、37℃、5%CO条件下のインキュベーターに、所定時間、静置培養し、実験を開始した。
 (培養液の除去:付着性細胞の検出)
5.培養開始1週間後、各ウェルから培養液を吸引除去し、そこに(-)PBSを100μlずつ注入し、よくウェル内を洗浄した後、廃棄し、この操作を二度繰り返した。その後、再度(-)PBSを100μl注入し、顕微鏡にて各ウェル中の付着性細胞をその形態学的特徴(大きさ、形状、細胞内顆粒の存在様式など)から正常PBMCsを分別し、算出した。
 1グループ3ウェルの細胞数を算出後、その平均値と標準誤差(Average± SE)を算出した。[これらの実験は、約2年間にわたり、同一患者等において複数回実施し、病期(Stage I~IV)や病状(悪化、改善傾向)の変化にもかかわらず、がんが存在している限り、それらデータで、取得CTCs数の減少がみられるものの、常に全体として、薬剤に対する反応としては再現性を持ち、同一傾向を示すことを確認し、正式データとして採用した。(各種データ参照)もちろん、がんが治癒したとみなされる段階の患者においては、この処理による付着性がん細胞の検出は、1個以下になることも判明した。また、健常人と考えられるものからは、該付着性細胞は検出されなかった。]
 (蛍光染色によるCTSCの検出)
6.あらかじめ当該処理により得られた付着細胞をCTC(CTSC)の表面抗源とされるCD44、CD45、CD47、CKII、EpCAMなどの特異抗体で結合させ、その後FITC結合合二次抗体で染色し、蛍光顕微鏡で観察した。その結果、当該処理で取得した付着性細胞が、CTC(CTSC)であることを実証した(染色像参照)。
 (使用薬剤の誘導効果の検討)
7.各種培養条件を設定し、使用薬剤のCTC(CTSC)誘導効果について検討した。使用した各種薬剤濃度などに関しては、結果の表(Table)の中に記載した。
 (1)「培養液、添加薬剤の検討I」:
培養液については、CTCの分離取得について、末梢血単核球の標準的培養液であるRPMI-1640培養液(以下、RPMI-1640と記載)を基準に無血清培地AIM-V培養液(以下AIM-Vと記載)と比較した。すなわち、これら培養液にそれぞれ5%の児牛血清(FBS)又は末梢血提供者の自己血清(Autologous Serum:AS)又はAB型血清を添加培養し、それら各培養液間のCTC分離、取得の有無及び効果を検討した。その結果として、CTCの分取にはAIM-Vが有用で、また、AS添加がその効果を増強すること、AB型血清はAS血清より若干効果が減弱することなどを実証した。
 (2)「培養液、添加薬剤の検討II」:
更に、上記培養液の結果を基礎に、自己血清採取による患者負担の増加を回避し、尚かつ被験者の病状毎の血清成分の変動の影響を排除し、真に担癌患者血清でないのか否かが判然としないなど、AB型血清の持つ本質的不安定性を除去するため、新たなCTC分離取得因子としてパルミチン酸(Palmitic Acid)を含む各種添加成分(LPS、ConA、PHA、IL-1α、IL-1β)の候補を検討し、最も安全かつ効率の良い因子の探索を実施した。この検討経過で、LPSにもCTC誘導効果は若干観察されることもあったが、LPSは極めて強い毒性を持つ物質であるから、CTC分離後の各種研究、臨床応用の技術開発という目的から鑑みれば、試薬としては安全上不適切であると判断し以後の実験では、除外することにした。結果として、CTCの安定した分取には、AIM-V培養液とパルミチン酸(Palmitic Acid)添加が、最良の結果を得ることを確認した。
 (供試試料)
8.本発明の実験において、供試試料は、病院から提供された、舌癌、下顎悪性腫瘍、悪性リンパ腫、乳がん、肺がん、胃がん、前立腺がん、子宮肉腫などの末期がん患者から提供された試料を、供試試料として用いた。
 [がん細胞(CTC)取得に効率的な培養液の選定試験(I)]
 <供試培養液>
供試培養液として、以下の培養液を用意し、用いた。
(1)RPMI-1640+5%FBS
(2)RPMI-1640+5%Auto Serum(自己血清)
(3)AIM-V(無血清培地単独)
(4)AIM-V+5%FBS
(5)AIM-V+5%Auto Serum(自己血清)
 <実験方法>
上記培養液を用い、実施例1に記載の実験方法に従って、各培養液におけるがん細胞(CTC)取得効率(がん細胞検出精度)について試験した。
 (試験1:RPMI-1640を使用したCTC誘導能の検討)
培養液として、RPMI-1640を用い、これを共通の培養液として、該培養液を子牛血清(FBS)添加群と、自己血清(Auto Serum)添加群とに分け、がん患者6名より採取した試料につき、そのCTC誘導能の有無を検討した。
 <結果>
結果を、表1に示す。表に示されるように、RPMI-1640培養液では、自己血清添加群とFBS添加群間でのがん細胞取得効率に顕著な差は見られず、いずれも取得効率は低かった。
Figure JPOXMLDOC01-appb-T000001
 (試験2:RPMI-1640及びパルミチン酸(Plmitic Acid)を使用したCTC誘導能の検討)
培養液として、RPMI-1640にパルミチン酸(Plmitic Acid)を添加したものを使用し、これを共通の培養液として、該培養液を子牛血清(FBS)添加群と、自己血清(Auto Serum)添加群とに分け、がん患者6名より採取した試料につき、そのCTC誘導能の有無を検討した。
 <結果>
結果を、表2に示す。表に示されるように、RPMI-1640培養液にパルミチン酸(Plmitic Acid)を添加したものでは、自己血清添加群とFBS添加群との間で、(*)を除き、がん細胞取得効率に顕著な差は見られず、両方とも取得効率は低かった。
Figure JPOXMLDOC01-appb-T000002
 (試験3:RPMI-1640及びAIM-Vを使用したCTC誘導能の検討)
RPMI-1640培養液と、AIM-V培養液との間でのCTC誘導能の有無を比較検討した。RPMI-1640については、子牛血清(FBS)添加群と、自己血清(Auto Serum)添加群との2群に分けて、がん患者6名より採取した試料につき、そのCTC誘導能の有無を検討した。
 <結果>
結果を、表3に示す。表に示されるように、AIM-V培養液は、血清なしの単味で、子牛血清(FBS) 又は自己血清(Auto Serum)を添加したRPMI-1640培養液のいずれの培養液に比較して、高いがん細胞取得効率を示した。
Figure JPOXMLDOC01-appb-T000003
 (試験4:AIM-V培養液にFBSを添加した培養液のCTC誘導能の検討)
AIM-V培養液に子牛血清(FBS)を添加した条件でのCTC誘導能の有無を検討した。
 <結果>
結果を、表4に示す。表に示されるように、AIM-V培養液に子牛血清(FBS)を添加した群では、高いがん細胞取得効率を示したが、患者ソース間で、がん細胞取得効率に大きな違いが認められた。
Figure JPOXMLDOC01-appb-T000004
 (試験5、AIM-VにFBSを添加した培養液に、パルミチン酸(Plmitic Acid)を添加した培養液のCTC誘導能の検討)
AIM-V培養液に子牛血清(FBS)を添加した培養液を共通とし、該培養液にパルミチン酸(Plmitic Acid)添加群を作成し、パルミチン酸(Plmitic Acid)非添加群との間で、CTC誘導能を比較検討した。
 <結果>
結果を、表5に示す。表に示されるように、パルミチン酸(Plmitic Acid)非添加群では、試験4の場合と同様、患者間で、CTC取得効率の相違がみられたが、パルミチン酸(Plmitic Acid)非添加群で、CTC取得効率の悪かった患者ソースにおいても、パルミチン酸(Plmitic Acid)添加により(群)、CTC取得効率の改善、増強が認められた。
Figure JPOXMLDOC01-appb-T000005
 (試験6.AIM-V培養液単独と、AIM-Vに自己血清(Auto Serum)添加培養液のCTC誘導能の検討)
AIM-V培養液単独の群と、AIM-Vに患者の自己血清(Auto Serum)を添加した群を用意し、両培養液間のCTC誘導能の比較検討を行った。
 <結果>
結果を、表6に示す。表に示されるように、AIM-Vに患者の自己血清(Auto Serum)を添加した群では、(*)の場合を除き、大部分の患者ソースにおいて、CTC取得効率は向上した。いずれの場合も高いCTC取得効率が認められた。
Figure JPOXMLDOC01-appb-T000006
 (試験7.AIM-Vに自己血清(Auto Serum)を添加した培養液に、パルミチン酸(Plmitic Acid)を添加した培養液のCTC誘導能の検討)
AIM-V培養液に患者自己血清(Auto Serum)を添加した培養液を共通培養液とし、該培養液にパルミチン酸(Plmitic Acid)添加群を作成し、パルミチン酸(Plmitic Acid)非添加群との間で、CTC誘導能を比較検討した。
 <結果>
結果を、表7に示す。表に示されるように、AIM-V培養液に患者自己血清(Auto Serum)を添加した培養液の群に、パルミチン酸(Plmitic Acid)を添加した群と添加しなかった非添加群との間で、CTC取得効率において、対照的な二つの傾向が示された。すなわち、パルミチン酸非添加でCTC取得効率の高かった患者ソースでは、パルミチン酸(Plmitic Acid)添加で低下傾向を示した。一方、パルミチン酸非添加でCTC取得効率の低かった患者ソースでは、パルミチン酸(Plmitic Acid)添加でCTC取得効率の上昇が認められた。
Figure JPOXMLDOC01-appb-T000007
 (蛍光顕微鏡での観察)
上記試験1及び試験2で検討した、AIM-V培養液及びRPMI-1640培養液を用いたCTC取得試験で得られたものを蛍光顕微鏡で観察した結果(写真)を、図1に示す。図(1-a)は、AIM-V培養液を用いたCTC取得の結果を、図(1-b)は、RPMI-1640培養液を用いた場合のCTC取得の結果を示す。AIM-V培養液を用いた場合には、多数のCTC細胞が認められ、CTC誘導能が示されたが、RPMI-1640培養液を用いた場合には、CTC細胞は、認められなかった。
 (総合評価)
以上の試験結果から、以下の結論が得られた。
(i)RPMI-1640単独、及びRPMI-1640+5%Auto Serum(自己血清)添加の両グループでは、播種した末梢血由来単核球(PBMC)数(I×10/Well)の0.1%以上の単位で、CTCの誘導・分離・取得はできなかった。
(ii)AIM-V単独では、播種した末梢血由来単核球(PBMC)の0.1~0.2%の範囲で、CTCの誘導・分離・取得ができた。
(iii)AIM-V+5%Auto Serum(自己血清)添加グループでは、CTC取得率が、2.2~2.7%へと、AIM-V単独の場合の14倍から20倍へと増加した。
(iv)AIM-Vに50%の割合で、RPMI-1640を加えると、CTC取得率が、RPMI-1640+5%Auto Serum(自己血清)添加のグループと同一%へと低下した。
(v)上記(iv)の傾向は、RPMI-1640の25%添加、RPMI-1640の12.5%添加でも同様で、CTCの取得効果上昇は観察されなかった。
 この試験結果から、CTCの誘導・分離・取得に用いる培養液として、AIM-Vが有用であり、該培養液にAuto Serum(AS)を添加することにより、CTC取得効果を高めることができることが確認された。
 [がん細胞(CTC)取得に効率的な培養液の選定試験(II)-添加物の影響]
 <供試培養液>
供試培養液として、以下の培養液を用意し、用いた。
(1)AIM-V(無血清培地)
(2)AS(Auto Serum:自己血清)
(3)LPS(Lipopolysaccharide)
(4)IL-1α(Interleukin 1 α)
(5)IL-1β(Interleukin 1 β)
(6)Palmitic Acid
 <実験方法>
上記培養液を用い、実施例1に記載の実験方法に従って、用意したがん患者末梢血単核球(PBMCs)を各ウェルに播種し、各培養液におけるがん細胞(CTC)取得効率(がん細胞検出精度)における、添加物の影響について試験した。
 (試験8:AIM-V培養液におけるLPS 添加の影響)
AIM-V培養液(AIM-V:Group A)を基本とし、そこにAS(自己血清)を添加したグループ(AIM-V+AS:Group B)、更に、これらのグループにLPS(Lipopolysaccharide)を基本濃度を1conc. (Group E, F)とし、0.1conc.~100conc.の濃度をそれぞれ添加した各グループ(Group GH, GD)を作成した。そして、それらのグループ間でのCTC分取効果を検討した。
 <結果>
結果を、表8に示す。表に示されるように、AIM-V培養液にLPSを添加したグループでは、LPSの添加量が少ないグループで、AIM-V単独より効果はみられたが、AIM-V+ASグループのLPS添加群では、どのLPS濃度添加グループでも、CTC分取効率は激減した。
Figure JPOXMLDOC01-appb-T000008
 (試験9:AIM-V培養液におけるIL-1α 添加の影響)
AIM-V培養液(AIM-V:Group A)を基本とし、そこにAS(自己血清)を添加したグループ(AIM-V+AS:Group B)、更に、これらのグループにIL-1α(Interleukin 1α)を基本濃度を1conc. (Group E, F)とし、0.1conc.~100conc.の濃度をそれぞれ添加した各グループ(Group GH, GD)を作成した。そして、それらのグループ間でのCTC分取効果を検討した。
 <結果>
結果を、表9に示す。表に示されるように、AIM-V培養液にIL-1αを添加したグループでは、IL-1αの添加量の多賓に無関係にAIM-V単独と同等か、それ以下の効果しか認められなかった(Group C, E, G)。AIM-V+ASグループのIL-1α添加群では、どのIL-1α濃度添加グループでも、非添加群よりCTC取得効率は減少した。
Figure JPOXMLDOC01-appb-T000009
 (試験10:AIM-V培養液におけるIL-1β添加の影響)
AIM-V培養液(AIM-V:Group A)を基本とし、そこにAS(自己血清)を添加したグループ(AIM-V+AS:Group B)、更に、これらのグループにIL-1β(Interleukin 1β)を基本濃度を1conc. (Group E, F)とし、0.1conc.~100conc.の濃度をそれぞれ添加した各グループ(Group GH, GD)を作成した。そして、それらのグループ間でのCTC分取効果を検討した。
 <結果>
結果を、表10に示す。表に示されるように、AIM-V培養液にIL-1βを添加したグループでは、IL-1βの添加量に応じて、AIM-V単独と同等か、わずかに上回る程度の効果しか認められなかった(Group C, E, G)。AIM-V+ASグループのIL-1β添加群では、どのIL-1β濃度添加グループでも、非添加群と同等程度のCTC取得効率しか認められなかった。
Figure JPOXMLDOC01-appb-T000010
 (試験11:AIM-V培養液におけるPalmitic Acid 添加の影響)
AIM-V培養液(AIM-V:Group A)を基本とし、そこにAS(自己血清)を添加したグループ(AIM-V+AS:Group B)、更に、これらのグループにPalmitic Acid を基本濃度を1conc. (Group G, H)とし、0.25conc.~4conc.の濃度をそれぞれ添加した各グループ(Group KL, IJ, GH, EF, CD)を作成した。そして、それらのグループ間でのCTC分取効果を検討した。
 <結果>
結果を、表11に示す。表に示されるように、AIM-V培養液にPalmitic Acid を添加したグループでは、Palmitic Acid の添加量にほぼ無関係に、非添加群に比し2~3倍のCTC取得効率の上昇が確認された(Group C, E, G, I, K)。AIM-V+ASグループのPalmitic Acid添加群では、どのPalmitic Acid濃度添加グループでも、濃度依存性は見られず、非添加群と同程度かそれ以下のCTC取得効率しか認められなかった。
Figure JPOXMLDOC01-appb-T000011
 (総合評価)
以上の試験結果から、次の結論が得られた:AIM-V培養液に添加成分を添加することにより、CTC取得効果を高めることを検討し、新たなCTC分離取得因子としてパルミチン酸(Palmitic Acid)を含む各種添加成分(LPS、ConA、PHA、IL-1α、IL-1β)の候補を検討し、最も安全かつ効率の良い因子の探索を実施した結果、結果として、CTCの安定した分取には、AIM-V培養液にパルミチン酸(Palmitic Acid)を添加することが、最良の結果を得ることを確認した。なお、この検討経過で、LPSにもCTC誘導効果は若干観察されることもあったが、LPSは極めて強い毒性を持つ物質であるから、CTC分離後の各種研究、臨床応用の技術開発という目的から鑑みれば、試薬としては安全上不適切であると判断し、以後の実験では、除外することにした。
 [CTC増殖用培養液で得られたがん細胞(CTC)の形態変化の確認]
実施例1の試験方法により、実施例2でCTC増殖用培養液を用いて取得されたがん細胞(CTC)の形態変化について、顕微鏡画像により検証した。顕微鏡写真を図2~7に示す。各図中、(図-a)、(図-b)は、CTC細胞増殖実験における培養条件、すなわち、増殖用培養液と血清、又はパルミチン酸等の因子の有無や濃度などによる培養条件によるCTCの形態的な特徴を、異なる患者のCTCについて検討した結果(異なる患者からのがん細胞(CTC)の顕微鏡写真)を示す。該実験は、各増殖条件の違いによるCTC細胞の形態的相違発現の有無を検討することを目的とし、(a)、(b)は、異なる患者由来について、異なる患者由来であっても、同一培養条件では、同一の細胞形態を示すことを検証するためのものである。
 供試培養液の濃度において、パルミチン酸(Palmitic Acid)の濃度は、以下の表12にしたがった。
Figure JPOXMLDOC01-appb-T000012
 <1.AIM-培養液単独で培養・取得したCTCの形態変化の観察>
AIM-V培養液単独で培養・取得したCTCの蛍光顕微鏡画像を図2(2-a;2-b)に示す。AIM-V培養液単独で培養・取得したCTCの細胞形態において、細胞質内の核や顆粒成分に特に大きさの異常や濃染した部分は見当たらない。
 <2.AIM-V培養液に、Palmitic Acid(×1conc.)を添加培養し、取得したCTCの形態変化の観察>
AIM-V培養液+Palmitic Acid(×1濃度)を添加培養し、取得したCTCの蛍光顕微鏡画像を図3(3-a;3-b)に示す。AIM-V培養液+Palmitic Acid(×1濃度)を添加培養・取得したCTCの細胞形態において、細胞質内の核や顆粒成分に、Palmitic Acid非添加群の場合に比べて、やや核成分の増加がみられるものの、特に大きさの拡大や濃染した部分は見られなかった。
 <3.AIM-V培養液に、Palmitic Acid(×4conc.)を添加培養し、取得したCTCの形態変化の観察>
AIM-V培養液+Palmitic Acid(×4濃度)を添加培養し、取得したCTCの蛍光顕微鏡画像を図4(4-a;4-b)に示す。AIM-V培養液+Palmitic Acid(×4濃度)を添加培養・取得したCTCの細胞形態において、細胞の大きさの拡大、融合傾向がみられ(図4-b)、細胞質内の核や顆粒成分に、Palmitic Acid非添加群(図2-a;2-b)や、(×1濃度)添加群(図3-a;3-b)の場合に比べて、核成分や細胞質内の核や顆粒成分の顕著な増加や濃染が観察される。
 <4.AIM-V+5%Auto Serum培養液にて培養し、取得したCTCの形態変化の観察>
AIM-V+5%Auto Serum培養液にて培養し、取得したCTCの蛍光顕微鏡画像を図5(5-a;5-b)に示す。AIM-V+5%Auto Serum培養液にて培養し、取得したCTCの細胞形態において、細胞、細胞質内の核や顆粒成分に特に大きさの異常や濃染した部分は見られない。
 <5.AIM-V+5%Auto Serum+Palmitic Acid(×1conc.)条件下の培養液にて培養し、取得したCTCの形態変化の観察>
AIM-V+5%Auto Serum+Palmitic Acid(×1濃度)培養液にて培養し、取得したCTCの蛍光顕微鏡画像を図6(6-a;6-b)に示す。AIM-V+5%Auto Serum+Palmitic Acid(×1濃度)培養液にて培養し、取得したCTCの細胞形態において、細胞、細胞質内の核や顆粒成分に特に大きさの異常や濃染した部分は見られない。
 <6.AIM-V+5%Auto Serum+Palmitic Acid(×4conc.)条件下の培養液にて培養し、取得したCTCの形態変化の観察>
AIM-V+5%Auto Serum+Palmitic Acid(×4濃度)培養液にて培養し、取得したCTCの蛍光顕微鏡画像を図7(7-a;7-b)に示す。AIM-V+5%Auto Serum+Palmitic Acid(×4濃度)培養液にて培養し、取得したCTCの細胞形態において、細胞の大きさの拡大、融合傾向がみられ(図7-a)、細胞質内の核や顆粒成分にPalmitic Acid非添加群(図5-a;5-b)や、×1濃度添加群(図6-a;6-b)に比べて、核成分や細胞質内顆粒成分の顕著な増加や濃染が観察される。該形態変化は、Palmitic Acid(×4濃度)培養液の条件下で、CTC細胞の増殖・活性化により、核の異常増殖と細胞内小器官、エネルギー産生の主役であるミトコンドリア等を増加させると考えられ、その結果、顕微鏡像では、核酸や細胞内顆粒が増加し、核や細胞質が光の透過性を一層妨げ、濃染した状態が観察されると考えられる。
 (総合評価)
以上のCTC(CTSC)の形態変化の試験結果から、次の結論が得られた:AIM-V培養液或いは、該培養液にAuto Serum及び/又はPalmitic Acidのような添加成分を添加した、CTC増殖培養液を用いて、CTCを増殖取得することによりCTCを確実かつ効果的に取得することができ、その際に、CTCの細胞形態には形態変化を起こさずに、増殖取得することが可能であることが確認された。すなわち、CTC(CTSC)を増殖、取得する場合には、取得した細胞の形態には人工的変化を誘導しないことが、CTCの性質や特性を確認するために重要となり、したがって、CTCの形態や性状に特段の変化を誘導しない条件で、かつ、安定的にCTCを増殖、取得できる方法であることが求められる。上記実験結果からは、該条件を満たしつつ、確実にCTC(CTSC)を増殖、取得することができる方法であることが確認された。
 [取得したCTCの細胞膜抗原を用いた確認及び同定]
以下の実施例に示されるとおり、各患者末梢血から分離取得したCTCについて、膜表面のCD44、CD45、CD47、CKII、EpCAMの各抗原を用いて、蛍光抗体染色法により、確認及び同定を行った。各試験における結果の各図の写真において、各(図-a)は、CTCの顕微鏡による写真の像を、各(図-b)は、膜表面抗原を用いて染色した蛍光顕微鏡による写真像を示す。
 <抗原染色方法>
抗原染色の方法は、FITIC(fluorescein isothiocyanate) labelによる、以下の手順に従って、試料を調製し、染色、検鏡、観察・写真撮影した。
 (I.各種末梢血分離細胞の調製、及び、FITC label 一次抗体による抗原染色)
(1)付着細胞の酵素処理。(非付着細胞は(4)から開始する。)
(2)Trypsin EDTA処理。
(3)シングル細胞群に、5%FBS添加RPMI medium添加、酵素反応停止、吸引。
(4)遠心分離(1200~1500回転、4℃、7分)。
(5)4℃保冷下(-)PBSで洗浄・ボルテックス、遠心×2回。
(6)細胞数の計測・分注:1×10/100μl/TUBE。
(7)細胞の各チューブの周囲を遮光のためにアルミホイールで覆い、4℃保冷下に30分放置し、細胞の代謝活動を低下させる(表面抗原の細胞膜内外への運動・移動の阻止)。
(8)抗体の添加:1μg/2μl/1×10spin down cells(medium除去細胞群)4℃保冷下・遮光下で1時間染色。
(9)4℃保冷下、(-)PBSで洗浄・ボルテックス、遠心×2回:遠心分離(1200~1500回転、4℃、7分)。
(10)適量の(-)PBSを細胞に加え、スライドグラス又はプレートに添加し、検鏡する。
(11)蛍光顕微鏡にて観察・写真撮影。
 (II.各種末梢血分離細胞の調製、及び、各抗原に対する一次抗体染色、次いで、FITC label 二次抗体による抗原染色)
(1)付着細胞の酵素処理。(非付着細胞は(4)から開始する。)
(2)Trypsin EDTA処理。
(3)シングル細胞群に、5%FBS添加RPMI medium添加、酵素反応停止、吸引。
(4)遠心分離(1200~1500回転、4℃、7分)。
(5)4℃保冷下(-)PBSで洗浄・ボルテックス、遠心×2回。
(6)細胞数の計測・分注:1×10/100μl/TUBE。
(7)細胞の各チューブの周囲を遮光のためにアルミホイールで覆い、4℃保冷下に30分放置し、細胞の代謝活動を低下させる(表面抗原の細胞膜内外への運動・移動の阻止)。
(8)一次抗体の添加:1μg/2μl/1×10spin down cells(medium除去細胞群)4℃保冷下・遮光下で1時間染色。
(9)4℃保冷下、(-)PBSで洗浄・ボルテックス、遠心×2回:遠心分離(1200~1500回転、4℃、7分)。
(10)二次抗体の添加:1μg/2μl/1×10spin down cells(medium除去細胞群)4℃保冷下・遮光下で1時間染色。
(11)4℃保冷下、(-)PBSで洗浄・ボルテックス、遠心×2回:遠心分離(1200~1500回転、4℃、7分)。
(12)適量の(-)PBSを細胞に加え、スライドグラス又はプレートに添加し、検鏡する。
(13)蛍光顕微鏡にて観察・写真撮影。
 [膜抗原CD44を用いたCTCの確認及び同定]
実施例1の方法により、各患者の末梢血から取得したCTCについて、膜抗原CD44を用いて、該CTCの確認及び同定を行った。
 <膜抗原CD44を用いたCTCの確認及び同定(I)>
3人の患者:(1)K.H.(Gastric Ca. :胃がん:liver meta.肝転移)、(2)T.K.(Tongue Ca. 舌がん)、(3)K.H.(Gastric Ca. :胃がん:liver meta.肝転移)の末梢血から取得した、CTCの顕微鏡写真の像と、膜抗原CD44を用いた蛍光抗体顕微鏡の写真を図8~10に示す。(図8-a~10-a)は顕微鏡写真の像を、(図8-b~10-b)は、蛍光抗体顕微鏡の写真を示す。写真に示されるように、上記(1)~(3)の患者から取得されたCTCは、CD44による染色は示されなかった。
 <膜抗原CD44を用いたCTCの確認及び同定(II)>
3人の患者:(1)T.K.(Tongue Ca. 舌がん)、(2)S.K.(Kerato-cystic Ca. 角化嚢胞がん)(3)S.O.(Lung Ca. 肺がん)の末梢血から取得した、CTCの顕微鏡写真の像と、膜抗原CD44を用いた蛍光抗体顕微鏡の写真を図11~13に示す。(図12-a~13-a)は顕微鏡写真の像を、(図12-b~13-b)は、蛍光抗体顕微鏡の写真を示す。写真(図12~13)に示されるように、上記(2)~(3)の患者から取得されたCTCは、CD44による染色が示され、顕微鏡写真の像と、蛍光抗体顕微鏡の写真とが、一致し、取得したCTCが上記がんのCTCであることが確認された。
 <膜抗原CD44を用いたCTCの確認及び同定(III)>
2人の患者:(1)H.Y.(Breast Ca. 乳がん)、(2)Y.H.(Lung Ca. 肺がん)の末梢血から取得した、CTCの顕微鏡写真の像と、膜抗原CD44を用いた蛍光抗体顕微鏡の写真を図14~15に示す。(図14-a~15-a)は顕微鏡写真の像を、(図14-b~15-b)は、蛍光抗体顕微鏡の写真を示す。写真(図14~15)に示されるように、上記(1)~(2)の患者から取得されたCTCは、CD44による染色が示され、顕微鏡写真の像と、蛍光抗体顕微鏡の写真とが、一致し、取得したCTCが上記がんのCTCであることが確認された。
 [膜抗原CD45を用いたCTCの確認及び同定]
実施例1の方法により、各患者の末梢血から取得したCTCについて、膜抗原CD45を用いて、該CTCの確認及び同定を行った。
 2人の患者:(1)H.Y.(Breast Ca. 乳がん)、(2)Y.H.(Lung Ca. 肺がん)の末梢血から取得した、CTCの顕微鏡写真の像と、膜抗原CD45を用いた蛍光抗体顕微鏡の写真を図16~18に示す。(図16-a~18-a)は顕微鏡写真の像を、(図16-b~18-b)は、蛍光抗体顕微鏡の写真を示す。写真(図16~18)に示されるように、上記(1)~(2)の患者から取得されたCTCは、CD45による染色が示され、顕微鏡写真の像と、蛍光抗体顕微鏡の写真とが、一致し、取得したCTCが上記がんのCTCであることが確認された。CTC(CTSC)の顕微鏡写真中、CTSC細胞の存在を、矢印で示す。各写真グループ(写真1-3:図16~18)中、左の顕微鏡写真で見られるCTC(CTSC)のうち、右の蛍光顕微鏡像で見られるように、大部分の細胞がCD45陽性CTSC細胞であることを示している。両端矢印で示したように、それらCD45陽性CTSC細胞は、その形態も大きさも多様性を持ち、一つの指標で判別できる細胞でないことが明らかである。
 [膜抗原CD47を用いたCTCの確認及び同定]
実施例1の方法により、各患者の末梢血から取得したCTCについて、膜抗原CD47を用いて、該CTCの確認及び同定を行った。
 5人の患者:(1)G.N.(Breast Ca. 乳がん:multiple metastasis多発転移性)、(2)S.K.(Kerato-cystic Ca. 角化嚢胞がん)、(3)S.O.(Lung Ca. 肺がん)、(4)H.Y.(Breast Ca. 乳がん)、(5)Y.H.(Lung Ca. 肺がん)の末梢血から取得した、CTCの顕微鏡写真の像と、膜抗原CD47を用いた蛍光抗体顕微鏡の写真を図19~23に示す。(図19-a~23-a)は顕微鏡写真の像を、(図19-b~23-b)は、蛍光抗体顕微鏡の写真を示す。写真(図19~23)に示されるように、上記(1)~(5)の患者から取得されたCTCは、CD47による染色が示され、顕微鏡写真の像と、蛍光抗体顕微鏡の写真とが、一致し、取得したCTCが上記がんのCTCであることが確認された。各図の写真中、矢印はCD47陽性CTSCを示す。白の矢印で示されるCTSCは、CTC(CTSC)として増殖培養されているがん細胞において、CD47陽性CTSCを示すもので、細胞の大きさや形態の大小を問わずに観察されることが示されている。すなわち、CD47陽性CTSCは、決まった形態や大きさを有する細胞ではなく、様々なバリエーションを持つことが確認された。
 [膜抗原CKIIを用いたCTCの確認及び同定]
実施例1の方法により、各患者の末梢血から取得したCTCについて、膜抗原CKIIを用いて、該CTCの確認及び同定を行った。
 2人の患者:(1)H.Y.(Breast Ca. 乳がん)、(2)Y.H.(Lung Ca. 肺がん)の末梢血から取得した、CTCの顕微鏡写真の像と、膜抗原CKIIを用いた蛍光抗体顕微鏡の写真を図24~25に示す。(図24-a~25-a)は顕微鏡写真の像を、(図24-b~25-b)は、蛍光抗体顕微鏡の写真を示す。写真(図24~25)に示されるように、上記(1)~(2)の患者から取得されたCTCは、CKIIによる染色が示され、顕微鏡写真の像と、蛍光抗体顕微鏡の写真とが、一致し、取得したCTCが上記がんのCTCであることが確認された。
 [膜抗原EpCAMを用いたCTCの確認及び同定]
実施例1の方法により、各患者の末梢血から取得したCTCについて、膜抗原EpCAMを用いて、該CTCの確認及び同定を行った。
 患者:(1)H.Y.(Breast Ca. 乳がん)の末梢血から取得した、CTCの顕微鏡写真の像と、膜抗原EpCAMを用いた蛍光抗体顕微鏡の写真を図26に示す。(図26-a)は顕微鏡写真の像を、(図26-b)は、蛍光抗体顕微鏡の写真を示す。写真(図26)に示されるように、上記患者から取得されたCTCは、EpCAMを細胞膜上に発現する細胞は極めて少数しか認められなかった。
 [ヌードマウスにおけるCTCの造腫瘍性又は長期生存の検討]
実施例1の方法により、患者の末梢血から取得したCTCが、CTC細胞機能を保持するか否かを検討するために、該取得したCTCの造腫瘍性又は長期生存の確認を行った。
 <試験方法>
患者H.Y.(Breast Ca. 乳がん)からの試料から分離したCTC:CTC-HY-1(HY-1)と、患者K.H.(Gastric Ca. :胃がん:liver meta.肝転移) から分離したCTC:CTC-KH-1(KH-1)、を「実験群A」と、「実験群B」の二つの実験群に分け、以下のとおり、患者から増殖分離採取したCTCを移植した。
(実験群A):2匹のヌードマウス(Nude1-1;Nude1-2)に対して、「Nude1-1」には、CTC(HY-1)を、「Nude1-2」には、CTC(KH-1)をヌードマウスの背部皮下に1×10移植し、全観察期間三か月間造腫瘍性有無を検討した。期間後、当該ヌードマウスの末梢血と脾臓を採取し、CTCの分離、培養を実施した。増殖しているCTC移植群に残存している細胞につき、生残存が移植したCTCであることを、非蛍光発光増(Control)及び膜表面CD45抗原を用いた蛍光抗体法にて、染色検討し、CTC の残存を確認した。
(実験群B):2匹のヌードマウス(Nude2-1;Nude2-2)に対して、「Nude2-1」には、CTC(HY-1)を、「Nude2-2」には、CTC(KH-1)をヌードマウスの背部皮下に1×10移植し、同量の細胞を腹腔内にも移植した。実験群Aの場合と同様に、増殖しているCTC移植群に残存している細胞につき、生残存が移植したCTCであることを確認した。
 <結果>
CTC移植群に残存している細胞の顕微鏡写真(非蛍光発光像)の像と、膜抗原CD45を用いた蛍光抗体顕微鏡(蛍光発光像)の写真を図27~30に示す。図中、(27-a)、(27-b)は、CTC(HY-1)を「Nude1-1」に移植した場合のCTC移植群に残存している細胞の顕微鏡写真(Control)、及び、蛍光抗体顕微鏡(蛍光発光像)の写真を、(28-a)、(28-b)は、CTC(KH-1)を「Nude1-2」に移植した場合のCTC移植群に残存している細胞の顕微鏡写真(Control)、及び、蛍光抗体顕微鏡(蛍光発光像)の写真を示す。図中、(29-a)、(29-b)は、CTC(HY-1)を「Nude2-1」に移植した場合のCTC移植群に残存している細胞の顕微鏡写真(Control)、及び、蛍光抗体顕微鏡(蛍光発光像)の写真を、(30-a)、(30-b)は、CTC(KH-1)を「Nude2-2」に移植した場合のCTC移植群に残存している細胞の顕微鏡写真(Control)、及び、蛍光抗体顕微鏡(蛍光発光像)の写真を示す。写真(図27~30)に示されるように、CTC移植群に残存している細胞は、膜抗原CD45による染色が示され、顕微鏡写真の像と一致し、CTC移植群に残存している細胞が上記がんのCTCであることが確認された。参考として、正常小腸組織細胞の顕微鏡写真の像(31-a)と、該細胞のCD45染色による蛍光顕微鏡による写真の像(31-b)を示す。図31のとおり、正常小腸組織細胞においては、CD45による染色は全く示されなかった。
 [樹立がん細胞株(UTC-8)を用いたCD47陽性細胞(CTSC)の検出(I)]
既存の樹立がん細胞株(UTC-8:独立行政法人産業技術総合研究所、特許性物寄託センター寄託番号:FERM BP-08611)を用い、該樹立がん細胞株におけるCD47陽性細胞(CTSC)の検出について試験した。
 <試験方法>
樹立がん細胞株(UTC-8)を試料として用い、実施例1の方法により、CTC細胞を増殖取得後、細胞膜上のCD47抗原により、該抗原陽性細胞の検出を行った。結果を非蛍光色素染色の顕微鏡像、及び、蛍光色素染色法によるCD47陽性細胞像で表示した。
 結果を、図32に示す。図32中、(32-a)は、非蛍光色素染色の顕微鏡像を、(32-b)は、蛍光色素染色法によるCD47陽性細胞像を示す。図中、太い矢印(⇒)は、CD47陽性のCTSCを示し、両端矢印(←→)は、CD47非陽性の細胞の大きさも形態も異なるCTCがん細胞を示す。結果として、20年超に及び形態培養された大部分のがん細胞では、本顕微鏡の視野(×200倍)で見られるように、CD47陽性CTSCは極めて少数であることが観察された。また、がん細胞は形態状、円形や紡錘形、及びそれに近いものから、上下及び左右の対称性を示さない不規則な形態の細胞がほとんどであることも示された。一方、CD47陽性CTSCは、その形状は樹状細胞様に不規則な突起を張り出した特異な形状を呈していることが判明した。
 [樹立がん細胞株(UTC-8)を用いたCD47陽性細胞(CTSC)の検出(II)]
実施例12の場合と同様に、既存の樹立がん細胞株(UTC-8:FERM BP-08611)を用い、該樹立がん細胞株におけるCD47陽性細胞(CTSC)の検出について再度試験した。
 <試験方法>
実施例12の場合と同様に、樹立がん細胞株(UTC-8)を試料として用い、実施例1の方法により、CTC細胞を増殖取得後、細胞膜上のCD47抗原により、該抗原陽性細胞の検出を行った。結果を非蛍光色素染色の顕微鏡像、及び、蛍光色素染色法によるCD47陽性細胞像で表示した。
 結果を、図33に示す。図33中、(33-a)は、非蛍光色素染色の顕微鏡像を、(33-b)は、蛍光色素染色法によるCD47陽性細胞像を示す。図中、太い矢印(⇒)は、CD47陽性のCTSCを示し、両端矢印(←→)は、CD47非陽性の細胞の大きさも形態も異なるCTCがん細胞を示す。結果として、実施例12の場合と同様の結果が得られた。すなわち、当樹立がん細胞株(UTC-8)では、本顕微鏡の視野(×200倍)で見られるように、CD47陽性CTSCは極めて少数であることが観察された。また、がん細胞は形態状、円形や紡錘形、及びそれに近いものから、上下及び左右の対称性を示さない不規則な形態の細胞がほとんどであることも示された。一方、CD47陽性CTSCは、その形状は樹状細胞様に不規則な突起を張り出した特異な形状を呈していることも判明し、該形態の特徴が鮮明に確認された。
 本発明は、血液やリンパ液のような生体循環体液中に、微量に存在する循環腫瘍細胞及び循環腫瘍幹細胞を、当該腫瘍細胞がいかなるがんの細胞か特定できていない状態においても、かつ、生体循環体液中に微量に存在する状態においても、確実かつ安定的に検出・分離取得することが可能なCTCの検出・分離取得方法を提供する。本発明のCTCの検出・分離取得方は、CTCのみならず、CTSCの検出・分離を可能とするものであり、がんの基礎的な解明や、臨床的な対応に、有力な手段を提供する。

Claims (7)

  1.  以下の(1)~(4)の処理ステップを含む、生体循環体液中の循環腫瘍細胞及び/又は循環腫瘍幹細胞の検出・分離取得方法:
    (1)生体循環体液からの試料を前処理し、単核球相を得る第1のステップ、
    (2)ウェルプレートに、循環腫瘍細胞及び/又は循環腫瘍幹細胞増殖用無血清培地からなる培養液を注入したウェルプレートを用意し、第1のステップで得た単核球を播種し、インキュベートする第2のステップ、
    (3)第2のステップでインキュベーションして得たプレートウェルから、培養液を除去する第3のステップ、
    (4)第3のステップの後、プレートウェルに付着した付着性腫瘍細胞を検出するか、或いは、分離取得する第4のステップ。
  2.  第2のステップで、第1のステップで得た単核球を播種し、インキュベートするための循環腫瘍細胞及び/又は循環腫瘍幹細胞増殖用無血清培地からなる培養液が、AIM-V培養液を基本とする培養液であることを特徴とする請求項1に記載の生体循環体液中の循環腫瘍細胞及び/又は循環腫瘍幹細胞の検出・分離取得方法。
  3.  第2のステップで、第1のステップで得た単核球を播種し、インキュベートするためのAIM-V培養液を基本とする培養液が、AIM-V培養液、或いは、AIM-V培養液に、被験者の自己血清、健常人由来のAB血清及びパルミチン酸又はその塩から選択される1又は2以上を添加した培養液であることを特徴とする請求項1又は2に記載の生体循環体液中の循環腫瘍細胞及び/又は循環腫瘍幹細胞の検出・分離取得方法。
  4.  生体循環体液からの試料が、末梢血からの血液試料であることを特徴とする、請求項1~3のいずれかに記載の生体循環体液中の循環腫瘍細胞及び/又は循環腫瘍幹細胞の検出・分離取得方法。
  5.  第1のステップの生体循環体液からの試料の前処理が、生体循環体液に含まれる液体成分及び非細胞成分の除去であることを特徴とする請求項1~3のいずれかに記載の生体循環体液中の循環腫瘍細胞及び/又は循環腫瘍幹細胞の検出・分離取得方法。
  6.  第2のステップにおけるインキュベートが、37℃、3~7日間を増殖温度及び増殖期間の基準条件として行われることを特徴とする請求項1~5のいずれかに記載の生体循環体液中の循環腫瘍細胞及び/又は循環腫瘍幹細胞の検出・分離取得方法。
  7.  第2のステップにおけるインキュベートが、5%COに調整されたインキュベーター内で行われることを特徴とする請求項6に記載の生体循環体液中の循環腫瘍細胞及び/又は循環腫瘍幹細胞の検出・分離取得方法。
     
PCT/JP2016/001172 2016-03-03 2016-03-03 細胞増殖法を用いた循環腫瘍細胞の検出・分離取得方法 WO2017149564A1 (ja)

Priority Applications (14)

Application Number Priority Date Filing Date Title
BR112018017204A BR112018017204A2 (pt) 2016-03-03 2016-03-03 método para detectar ou separar/obter célula tumoral circulante empregando método de proliferação celular
AU2016395556A AU2016395556B2 (en) 2016-03-03 2016-03-03 Method for detecting or separating/obtaining circulating tumor cell employing cell proliferation method
RU2018134324A RU2707083C1 (ru) 2016-03-03 2016-03-03 Способ обнаружения или выделения/получения циркулирующей опухолевой клетки, использующий метод пролиферации клеток
US16/080,862 US20190049456A1 (en) 2016-03-03 2016-03-03 Method for detecting or separating/obtaining circulating tumor cell employing cell proliferation method
KR1020187028402A KR20180114209A (ko) 2016-03-03 2016-03-03 세포 증식법을 이용한 순환종양세포의 검출·분리취득방법
CN201680085362.2A CN109073626A (zh) 2016-03-03 2016-03-03 使用细胞增殖法的循环肿瘤细胞的检测·分离获取方法
PCT/JP2016/001172 WO2017149564A1 (ja) 2016-03-03 2016-03-03 細胞増殖法を用いた循環腫瘍細胞の検出・分離取得方法
SG11201807509PA SG11201807509PA (en) 2016-03-03 2016-03-03 Method for detecting or separating/obtaining circulating tumor cell employing cell proliferation method
EP16892410.8A EP3406714A1 (en) 2016-03-03 2016-03-03 Method for detecting or separating/obtaining circulating tumor cell employing cell proliferation method
JP2016519396A JP6173577B1 (ja) 2016-03-03 2016-03-03 細胞増殖法を用いた循環腫瘍細胞の検出・分離取得方法
NZ745735A NZ745735A (en) 2016-03-03 2016-03-03 Method for detecting or separating/obtaining circulating tumor cell employing cell proliferation method
CA3049519A CA3049519A1 (en) 2016-03-03 2016-03-03 Method for detecting or separating/obtaining circulating tumor cell employing cell proliferation method
TW106106897A TWI618931B (zh) 2016-03-03 2017-03-02 使用細胞增殖法之循環腫瘤細胞的檢測、分離取得方法
IL261398A IL261398B (en) 2016-03-03 2018-08-27 A method for identifying or separating/receiving a circulating cancer cell using a cell proliferation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/001172 WO2017149564A1 (ja) 2016-03-03 2016-03-03 細胞増殖法を用いた循環腫瘍細胞の検出・分離取得方法

Publications (1)

Publication Number Publication Date
WO2017149564A1 true WO2017149564A1 (ja) 2017-09-08

Family

ID=59505194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001172 WO2017149564A1 (ja) 2016-03-03 2016-03-03 細胞増殖法を用いた循環腫瘍細胞の検出・分離取得方法

Country Status (14)

Country Link
US (1) US20190049456A1 (ja)
EP (1) EP3406714A1 (ja)
JP (1) JP6173577B1 (ja)
KR (1) KR20180114209A (ja)
CN (1) CN109073626A (ja)
AU (1) AU2016395556B2 (ja)
BR (1) BR112018017204A2 (ja)
CA (1) CA3049519A1 (ja)
IL (1) IL261398B (ja)
NZ (1) NZ745735A (ja)
RU (1) RU2707083C1 (ja)
SG (1) SG11201807509PA (ja)
TW (1) TWI618931B (ja)
WO (1) WO2017149564A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021188578A1 (en) * 2020-03-16 2021-09-23 University Of Southern California Screening methods to identify small molecule compounds that promote or inhibit the growth of circulating tumor cells, and uses thereof
CN113088494B (zh) * 2021-04-13 2022-08-05 武汉大学 一种用于释放被红细胞仿生材料捕获的肿瘤细胞的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000508171A (ja) * 1996-04-05 2000-07-04 ザ・ジョンズ・ホプキンス・ユニバーシティ・スクール・オブ・メディシン 希少細胞の富化方法
JP2011510656A (ja) * 2008-01-29 2011-04-07 カリフォルニア インスティチュート オブ テクノロジー 細胞分離を行う精密濾過の方法及び装置
WO2013017282A1 (en) * 2011-08-02 2013-02-07 Roche Diagnostics Gmbh In vitro tumor metastasis model
JP2015524054A (ja) * 2012-05-24 2015-08-20 ラールスル 濾過を通して生物学的サンプルから抽出された又は単離された希少細胞の多重分析のための方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030190638A1 (en) * 1992-05-13 2003-10-09 Board Of Regents, The University Of Texas System Methods of screening for compounds that derepress or increase telomerase activity
WO1994017177A1 (en) * 1993-01-27 1994-08-04 Batle Luminetrics Enterprises, Inc. Methods and kits for determining effects of anti-cancer agents on cancer cells
CN103571792B (zh) * 2012-07-25 2015-11-18 中国科学院大连化学物理研究所 一种体外扩增肿瘤干细胞的方法
CN103352027A (zh) * 2013-05-07 2013-10-16 中国人民解放军第二军医大学 肿瘤干细胞的悬浮培养方法
CN104745531B (zh) * 2015-02-13 2017-10-27 河南大学 一种构建肿瘤多药耐药细胞模型的方法及通过该法建立的人乳腺癌多药耐药细胞株

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000508171A (ja) * 1996-04-05 2000-07-04 ザ・ジョンズ・ホプキンス・ユニバーシティ・スクール・オブ・メディシン 希少細胞の富化方法
JP2011510656A (ja) * 2008-01-29 2011-04-07 カリフォルニア インスティチュート オブ テクノロジー 細胞分離を行う精密濾過の方法及び装置
WO2013017282A1 (en) * 2011-08-02 2013-02-07 Roche Diagnostics Gmbh In vitro tumor metastasis model
JP2015524054A (ja) * 2012-05-24 2015-08-20 ラールスル 濾過を通して生物学的サンプルから抽出された又は単離された希少細胞の多重分析のための方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3406714A4 *
YU M ET AL.: "Ex vivo culture of circulating tumor cells for individualized testing of drug susceptibity", SCIENCE, vol. 345, no. 6193, 11 July 2014 (2014-07-11), pages 216 - 220, XP055513030 *

Also Published As

Publication number Publication date
BR112018017204A2 (pt) 2019-01-02
NZ745735A (en) 2020-01-31
EP3406714A4 (en) 2018-11-28
JP6173577B1 (ja) 2017-08-02
TW201732291A (zh) 2017-09-16
EP3406714A1 (en) 2018-11-28
RU2707083C1 (ru) 2019-11-22
AU2016395556B2 (en) 2018-10-04
KR20180114209A (ko) 2018-10-17
AU2016395556A1 (en) 2018-09-13
IL261398B (en) 2019-06-30
JPWO2017149564A1 (ja) 2018-03-08
SG11201807509PA (en) 2018-09-27
TWI618931B (zh) 2018-03-21
IL261398A (en) 2018-10-31
CN109073626A (zh) 2018-12-21
CA3049519A1 (en) 2017-09-08
US20190049456A1 (en) 2019-02-14

Similar Documents

Publication Publication Date Title
Sharma et al. Circulating tumor cell isolation, culture, and downstream molecular analysis
Hvichia et al. A novel microfluidic platform for size and deformability based separation and the subsequent molecular characterization of viable circulating tumor cells
CN105063165B (zh) 循环肿瘤细胞代谢活动检测方法和装置
KR101630110B1 (ko) 말초 순환 종양 세포 또는 희소 세포 분리용 디바이스 및 말초 순환 종양 세포 또는 희소 세포 분리 방법
Wu et al. Associations between the epithelial-mesenchymal transition phenotypes of circulating tumor cells and the clinicopathological features of patients with colorectal cancer
US20110195413A1 (en) Integrated Method for Enriching and Detecting Rare Cells from Biological Body Fluid Sample
CN105954246B (zh) 一种在人的生物液体样本中检测游离的稀有肿瘤细胞的方法和试剂盒
Tulley et al. Vita-Assay™ method of enrichment and identification of circulating cancer cells/circulating tumor cells (CTCs)
JP2016527907A (ja) 細胞への物質の選択的送達
Tadimety et al. Liquid biopsy on chip: a paradigm shift towards the understanding of cancer metastasis
CN109517895A (zh) 通过过滤从生物样品提取或分离罕见细胞的多种分析方法
JP2002536635A (ja) 体液から腫瘍細胞を濃縮するか又は除去する方法及びかかる目的に適したキット
WO2013063981A1 (zh) 鉴别从人或动物生物体液中富集的非血源性有核细胞的方法
Eliasova et al. Circulating tumor cells in different stages of colorectal cancer
CN107449713B (zh) 依赖于混合抗体的循环肿瘤细胞分选和富集的方法
Kim et al. A microchip filter device incorporating slit arrays and 3-D flow for detection of circulating tumor cells using CAV1-EpCAM conjugated microbeads
Batth et al. CTC analysis: an update on technological progress
CN106244553A (zh) 循环肿瘤细胞的分离和检测方法
JP6173577B1 (ja) 細胞増殖法を用いた循環腫瘍細胞の検出・分離取得方法
KR101922322B1 (ko) 말초 순환 암세포의 검출 방법 및 검출 장치
Liu et al. Utilizing matrigel transwell invasion assay to detect and enumerate circulating tumor cells
US9790464B2 (en) Cell culture medium
Wadenpohl et al. Economical large-scale purification of extracellular vesicles from urine
CN115896028B (zh) 分离循环肿瘤细胞用的试剂组合及其用途
CN111575385B (zh) Sb290157在卵巢上皮性癌疾病中的应用

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016519396

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016892410

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 261398

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2016892410

Country of ref document: EP

Effective date: 20180820

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018017204

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2016395556

Country of ref document: AU

Date of ref document: 20160303

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16892410

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112018017204

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180822

ENP Entry into the national phase

Ref document number: 3049519

Country of ref document: CA