WO2017148625A1 - Procédé et dispositif de diagnostic de position de rotor dans un entraînement à moteur électrique - Google Patents

Procédé et dispositif de diagnostic de position de rotor dans un entraînement à moteur électrique Download PDF

Info

Publication number
WO2017148625A1
WO2017148625A1 PCT/EP2017/051532 EP2017051532W WO2017148625A1 WO 2017148625 A1 WO2017148625 A1 WO 2017148625A1 EP 2017051532 W EP2017051532 W EP 2017051532W WO 2017148625 A1 WO2017148625 A1 WO 2017148625A1
Authority
WO
WIPO (PCT)
Prior art keywords
bridge
signals
cosn
cosp
signal processing
Prior art date
Application number
PCT/EP2017/051532
Other languages
German (de)
English (en)
Inventor
Walter Hirning
Vitali Haag
Original Assignee
Robert Bosch Automotive Steering Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Automotive Steering Gmbh filed Critical Robert Bosch Automotive Steering Gmbh
Publication of WO2017148625A1 publication Critical patent/WO2017148625A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/08Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for safeguarding the apparatus, e.g. against abnormal operation, against breakdown
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24457Failure detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction
    • G01D5/2448Correction of gain, threshold, offset or phase control

Definitions

  • the invention relates to a method for rotor position diagnosis in an electric motor drive according to the preamble of claim 1 and an apparatus for performing the method according to the preamble of the independent claim.
  • the knowledge of the absolute angular position of the rotor, the rotor position, is required.
  • the rotor position can by means of suitable sensors, such as. B. absolute or incremental resolution encoders are detected.
  • a method and a device for detecting the rotor position of an electrical machine are known.
  • a sensor unit which has a plurality of magnetoresistive sensor elements, which are connected to form two Wheatstone bridges.
  • Each bridge supplies sinusoidal measurement signals, with the measurement signals of one bridge being 90 degrees out of phase with the measurement signals of the other bridge. Therefore, one bridge is called a sine bridge and the other bridge a cosine bridge.
  • sensor elements in particular AMR (Anisotropic Magneto Resistance) or GMR (Giant Magneto Resistance) elements are used.
  • a method and a device for rotor position determination in an electric motor drive wherein for determining the rotor position, one on the rotor or on an associated Shaft-mounted sensor unit is provided which has a plurality of magnetoresistive sensor elements (eg GMR), which are interconnected to form at least two full-bridge measuring bridge circuits, the full bridges provide at least two mutually phase-shifted measurement signals (cos, sin) for signal processing.
  • GMR magnetoresistive sensor elements
  • the invention is based on the object to provide a method and apparatus for rotor position diagnosis, which allows a clear and timely error detection.
  • the object is achieved by a method having the features of claim 1 and by a device having the features of the independent claim.
  • the invention is based on the recognition that through the differentiation a clear and timely fault diagnosis, e.g. is made difficult or even impossible by means of radius diagnosis, which is explained with reference to the attached FIGS.
  • FIG. 1 shows a conventional arrangement of two measuring bridge circuits designed as full bridges VB and VB ', each full bridge having four magnetoresistive sensor elements TMR, here in the form of four TMRs each. Sensor elements.
  • FIG. 1 shows the course of the generated sensor signals via the rotation of a magnet, that is to say the angle-dependent signal characteristics.
  • the two half bridges H1 and H2 of the first (upper) full bridge VB supply two cosine half-bridge signals cos1 and cos2.
  • the two half bridges of the second (lower) full bridge VB ' provide two sine half-bridge signals sin' and sin2 '.
  • a normalized cosine signal cos # is generated by the usual differentiation or signal processing for signal processing (area II) for the first full bridge VB and a normalized sine signal sin # for the second full bridge VB '. generated.
  • the invention is based on the finding that in each case two half-bridge signals are lost and this in turn makes it more difficult to identify errors clearly and in good time via a radius diagnosis. Because in traditional systems, certain errors can only be detected using additional hardware (HW) patterns and / or software (SW) patterns.
  • HW patterns are obtained e.g. by shorting a half-bridge signal to ground (GND) or to the supply voltage by means of transistors.
  • SW patterns are obtained, for example, in the case of RPS (Rotor Position Sensor) by e.g. an engine torque reduction according to a specific comparison logic with subsequent RPS signal evaluation.
  • the radius can also be determined, for example, in the context of the application of the so-called Cordic algorithm. Ideally, the radius R should be constant and move in a circular orbit concentric with the zero point. However, since the analog signals change slightly due to the sensors, the system and environmental conditions (temperature, humidity, aging ...), the radius R is not always on the ideal circular path (dashed line), but deviates slightly from it. Therefore, in practice, tolerance limits are set, namely, a lower limit LL for the inner limit circle and an upper limit HL for the outer limit circle. The radius R should always be within this tolerance range (band).
  • a method for rotor position diagnosis in an electromotive drive is now provided, which can be realized effectively and inexpensively.
  • a rotor position diagnosis is made possible without relying on the help of HW pattern and / or SW pattern.
  • an apparatus for carrying out the method is proposed.
  • the invention can be used in all areas of electric motor drives, but especially in electric motor driven steering systems for vehicles, i. in so-called electric power steering systems.
  • the invention is defined by a method having the features of claim 1 and by a device having the features of the independent claim.
  • a method and a device for rotor position diagnosis in an electromotive drive are further developed or supplemented such that for the detection of errors occurring in the measurement signals those two half-bridge signals supplied by the two half bridges of the same full bridge (sine bridge or cosine bridge) be combined and evaluated in the signal processing.
  • the two half-bridge signals are combined by summation into a sum signal, preferably one of the following formulas, to determine an offset value:
  • sinOFF is the offset value
  • sinP is the positive half-bridge signal
  • sinN is the negative half-bridge signal
  • X and Y are weighting factors.
  • the offset values cosOFF and sinOFF are calculated for both bridges, whereby a complex error detection can then be carried out, which makes it possible to calculate the displacements both with respect to the cos component and the sin component, e.g. in the circle, to recognize immediately.
  • TMR sensor elements or AMR sensor elements are preferably used as magnetoresistive sensor elements.
  • exactly two measuring bridge circuits serving as full bridges are formed, which supply at least two measuring signals (cos, sin) phase-shifted by 90 degrees to one another as full-bridge signals for the signal processing.
  • the device according to the invention has the sensor unit S and a signal processing unit connected thereto, which processes the sensor signals according to the method.
  • Fig. 1 illustrates the known structure of a sensor unit with two full bridges and the sensor signals generated therefrom;
  • Fig. 2 illustrates meaning and purpose of a radius diagnosis
  • Fig. 3 illustrates the problem of an occurring offset error
  • Fig. 4 illustrates the combination of
  • Half-bridge signals for determining an offset value.
  • the behavior shown in Fig. 3 may e.g. occur when a half-bridge signal changes in offset, e.g. may occur due to a shunt after the supply voltage or coming from the measuring or sensor element itself. Points A and B, where the vertex intersects the upper limit HL of the tolerance band.
  • the respective half-bridge signals e.g. of the
  • Half bridges HB1 and HB2 of the upper full bridge VB (in this case the cosine bridge in FIG. 1), compared or calculated with one another:
  • CosOFF is the offset value.
  • the values X and Y can be variable and, for example, each have the value "1".
  • FIG. 4 illustrates the advantageous methodology of the invention
  • the hitherto customary radius diagnosis can be extended by an offset diagnosis as described above.
  • specific error cases as set out above, can then be recognized immediately and reliably.
  • the invention can be used in diagnosis and control units for any type of electric drives, in which a sensor, such as TRM sensor, sine and cosine signals as measurement signals for the position and movement of the rotor determined.
  • a preferred one Field of application of the invention is the automotive sector and in particular the control of electric drives in power steering systems (electric steering).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

L'invention concerne un procédé et un dispositif de diagnostic de la position du rotor d'un entraînement à moteur électrique qui comporte une unité de détection (S), disposée sur le rotor ou sur un arbre relié à celui-ci, pour déterminer la position du rotor, laquelle unité de détection comporte une pluralité d'éléments de détection magnéto-résistifs (TMR) qui sont interconnectés pour former au moins deux circuits en pont de mesure servant de ponts intégraux (VB, VB') et délivrant au moins deux signaux de mesure (cos, sin), déphasés les uns par rapport aux autres, pour effectuer un traitement du signal. Pour détecter les erreurs se produisant dans les signaux de mesure, deux signaux de demi-pont (cosP, cosN), délivrés par les demi-ponts (HB1, HB2) du même pont intégral (VB), sont combinés entre eux et évalués dans le traitement de signal.
PCT/EP2017/051532 2016-02-29 2017-01-25 Procédé et dispositif de diagnostic de position de rotor dans un entraînement à moteur électrique WO2017148625A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016103518.1 2016-02-29
DE102016103518.1A DE102016103518A1 (de) 2016-02-29 2016-02-29 Verfahren und Vorrichtung zur Rotorlagendiagnose in einem elektromotorischen Antrieb

Publications (1)

Publication Number Publication Date
WO2017148625A1 true WO2017148625A1 (fr) 2017-09-08

Family

ID=57890823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/051532 WO2017148625A1 (fr) 2016-02-29 2017-01-25 Procédé et dispositif de diagnostic de position de rotor dans un entraînement à moteur électrique

Country Status (2)

Country Link
DE (1) DE102016103518A1 (fr)
WO (1) WO2017148625A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11231297B2 (en) 2020-01-09 2022-01-25 Robert Bosch Gmbh Providing availability of rotary position sensor information after hardware failures

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021205125A1 (de) 2021-05-20 2022-11-24 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Überwachung eines Zustands eines Sensormagneten einer Lenkvorrichtung
CN113295881A (zh) * 2021-06-17 2021-08-24 工业互联网创新中心(上海)有限公司 一种高精度通用型工业焊机送丝速度测量装置和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1271093A2 (fr) * 2001-06-27 2003-01-02 Philips Corporate Intellectual Property GmbH Ajustement d'un palpeur d'angle magnéto-résistif
DE10250319A1 (de) 2002-10-29 2003-10-30 Bosch Gmbh Robert Einrichtung zur Erfassung der Rotation einer Welle und GMR-Schichtsystem
US20110087456A1 (en) * 2009-10-09 2011-04-14 Denso Corporation Rotation angle detection device and electric power steering system
US20130264915A1 (en) * 2010-12-28 2013-10-10 Hitachi Automotive Systems, Ltd. Magnetic Field Angle Measurement Apparatus, Rotation Angle Measurement Apparatus, and Rotation Machine, System, Vehicle, and Vehicle Drive Apparatus Each Using Same Rotation Angle Measurement Apparatus
EP2752645A2 (fr) * 2013-01-08 2014-07-09 Jtekt Corporation Système de détection d'anomalie pour capteur d'angle de rotation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4292571B2 (ja) * 2003-03-31 2009-07-08 株式会社デンソー 磁気センサの調整方法及び磁気センサの調整装置
JP5156671B2 (ja) * 2009-02-27 2013-03-06 株式会社日立製作所 磁界検出装置および計測装置
JP5375796B2 (ja) * 2010-11-05 2013-12-25 株式会社デンソー 回転角検出装置、および、これを用いた電動パワーステアリング装置
JP6083428B2 (ja) * 2014-12-16 2017-02-22 トヨタ自動車株式会社 車両の電動パワーステアリング装置
US9625281B2 (en) * 2014-12-23 2017-04-18 Infineon Technologies Ag Fail-safe operation of an angle sensor with mixed bridges having separate power supplies
DE102014119531B4 (de) * 2014-12-23 2019-06-27 Infineon Technologies Ag Sensorschaltung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1271093A2 (fr) * 2001-06-27 2003-01-02 Philips Corporate Intellectual Property GmbH Ajustement d'un palpeur d'angle magnéto-résistif
DE10250319A1 (de) 2002-10-29 2003-10-30 Bosch Gmbh Robert Einrichtung zur Erfassung der Rotation einer Welle und GMR-Schichtsystem
US20110087456A1 (en) * 2009-10-09 2011-04-14 Denso Corporation Rotation angle detection device and electric power steering system
US20130264915A1 (en) * 2010-12-28 2013-10-10 Hitachi Automotive Systems, Ltd. Magnetic Field Angle Measurement Apparatus, Rotation Angle Measurement Apparatus, and Rotation Machine, System, Vehicle, and Vehicle Drive Apparatus Each Using Same Rotation Angle Measurement Apparatus
EP2752645A2 (fr) * 2013-01-08 2014-07-09 Jtekt Corporation Système de détection d'anomalie pour capteur d'angle de rotation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11231297B2 (en) 2020-01-09 2022-01-25 Robert Bosch Gmbh Providing availability of rotary position sensor information after hardware failures

Also Published As

Publication number Publication date
DE102016103518A1 (de) 2017-08-31

Similar Documents

Publication Publication Date Title
DE102016102927B4 (de) Sensorfehlererfassung
DE102011081389B4 (de) Drehfeldsensor
DE102009042473B4 (de) Verfahren zur Auswertung von Signalen eines Winkelsensors
EP1193472B1 (fr) Procédé et appareil pour la détermination de la position absolue des capteurs de déplacements et d'angles
DE68917191T2 (de) Gerät zur Drehmomentdetektion mit Fehlersignal.
DE102016102929B4 (de) Sensorfehlererfassung
DE102011083249A1 (de) Drehfeldsensor
DE112017001473T5 (de) Drehdetektionsvorrichtung
DE102011055000A1 (de) Drehwinkelerfassungseinrichtung und elektrische Lenkhilfevorrichtung, welche dieselbe verwendet
WO2009068695A1 (fr) Arrangement de détection de l'angle de direction à mesure absolue
EP3884239B1 (fr) Capteur d'angle avec aimant multipole pour la direction d'un véhicule automobile
DE102017116297A1 (de) Winkelsensor und Winkelsensorsystem
EP3721175B1 (fr) Systeme de capteur permettant de determiner au moins une propriete de rotation d'un element tournant autour d'au moins un axe de rotation
DE102017111979A1 (de) Winkelsensor, Korrekturverfahren zur Verwendung mit dem Winkelsensor und Winkelsensorsystem
WO2017148625A1 (fr) Procédé et dispositif de diagnostic de position de rotor dans un entraînement à moteur électrique
DE112017005343T5 (de) Elektrisches Servolenksystem
DE102005052261A1 (de) Schaltung und Verfahren zur Bestimmung defekter Sensorelemente einer Sensoranordnung
DE102009055275A1 (de) Sensoranordnung zur kombinierten Drehzahl-Drehmoment-Erfassung
DE102013225930A1 (de) Verfahren zum Erfassen eines an einer Welle anliegenden Drehmoments
EP1853927B1 (fr) Detecteur de mouvement equipé d'un circuit de surveillance d'un encodeur et procede correspondent de surveillance d'un encodeur
EP3833936B1 (fr) Système capteur pour déterminer au moins une caractéristique de rotation d'un élément rotatif
EP1511973B1 (fr) Procede et ensemble de detection du mouvement d'un element
DE19947761A1 (de) Verfahren und Schaltungsanordnung zur Feststellung einer Richtung eines äußeren magnetischen Feldes
DE102012223581A1 (de) Vorrichtung und Verfahren zum Überwachen von Signalpegeln
DE102009047633A1 (de) Verfahren und Vorrichtungen zur Störfeldkompensation von Sensorsignalen in einer elektrischen Hilfskraftlenkung

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17701488

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17701488

Country of ref document: EP

Kind code of ref document: A1