WO2017148438A1 - 精确定位系统及其基站及自移动机器人系统 - Google Patents

精确定位系统及其基站及自移动机器人系统 Download PDF

Info

Publication number
WO2017148438A1
WO2017148438A1 PCT/CN2017/075624 CN2017075624W WO2017148438A1 WO 2017148438 A1 WO2017148438 A1 WO 2017148438A1 CN 2017075624 W CN2017075624 W CN 2017075624W WO 2017148438 A1 WO2017148438 A1 WO 2017148438A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
base station
communication module
control module
positioning system
Prior art date
Application number
PCT/CN2017/075624
Other languages
English (en)
French (fr)
Inventor
谭一云
邵勇
周昶
刘芳世
何明明
吴双龙
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Publication of WO2017148438A1 publication Critical patent/WO2017148438A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • G01S19/41Differential correction, e.g. DGPS [differential GPS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0045Transmission from base station to mobile station
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the invention relates to a precise positioning system for an outdoor robot, in particular to a precise positioning system for an outdoor robot using satellite positioning technology.
  • the invention also relates to a base station for precise positioning of an outdoor robot.
  • the invention also relates to a self-mobile robot system for precise positioning using satellite positioning technology.
  • Patent US6445983 discloses an autonomous navigation system, a robot system capable of switching between a visual navigation mode and a GPS navigation mode, and reveals a comprehensive application of a GPS system, a gyroscope system, and a vision system.
  • Patent US7840352 discloses an automatic navigation system that discloses and protects a comprehensive system of GPS navigation, inertial navigation and visual navigation. GPS positioning techniques are used in both patents, but all attempt to obtain accurate positioning information from the data output by the GPS device.
  • GPS positioning data contains inevitable errors, including system errors such as satellite and receiver clock differences, ephemeris errors, ionospheric and tropospheric delay errors, and random errors associated with the receiver itself. Therefore, based on the individual GPS positioning data can only achieve positioning accuracy of 1-5 meters or more, it is for this reason that the automatic navigation system must include other positioning navigation methods to compensate for the inaccuracy of GPS positioning data.
  • ground differential correction positioning principle to assist in correcting the inaccuracy of GPS positioning data.
  • the positioning system using the ground differential correction positioning principle can improve the positioning accuracy to the decimeter level.
  • a positioning system using a ground differential correction positioning principle generally includes a base station and a mobile station.
  • the base station can be fixedly set at a certain preset location outdoors, and receive the radio frequency signal transmitted by the satellite positioning system to provide a reference for the positioning of the mobile station.
  • the mobile station is disposed on the mobile robot, receives the radio frequency signal transmitted by the satellite positioning system and the reference data of the base station, and obtains accurate positioning information relative to the location of the base station.
  • the premise that the positioning system using the ground differential correction positioning principle can work normally is that the base station and the mobile station must at least jointly receive the radio frequency signals transmitted by a predetermined number of identical satellites in the satellite positioning system. When the number of the same satellites in the satellite positioning system received by the base station and the mobile station does not satisfy the predetermined number, the base station cannot provide sufficient reference data for the mobile station, and the positioning system adopting the ground differential correction positioning principle fails.
  • the outdoor robot uses a smart lawn mower as an example.
  • the intelligent lawn mower moves and self-operates on the lawn around the house.
  • the house is usually a two-story building with a height range of 5 to 8 meters and a charging station for powering the intelligent mower within 1 meter of the house.
  • the receiving angle at which the base station can receive the satellite signal is always occluded, resulting in a decrease in the probability that the number of stars in the mobile station and the base station reaches a predetermined number.
  • the receiving angle at which the mobile station can receive satellite signals is also blocked. At this point, the mobile station and the base station can easily reach the predetermined number of stars, and the intelligent lawn mower cannot use the ground differential correction positioning principle to obtain accurate positioning information.
  • Another problem is that in order to realize the function of preventing the outgoing line within the limited range of the outdoor robot, it is necessary to position the outdoor robot.
  • the charging station of the outdoor robot is connected to the outdoor robot, and the charging station and the outdoor robot are also connected with the satellite to obtain respective position information, and the charging station transmits the position information to the outdoor robot, and the outdoor robot can calculate the self.
  • a DGPS (Differential Global Positioning System) base station and a DGPS mobile station are respectively provided on the charging station and the outdoor robot for communication.
  • the existing communication method when the outdoor robot travels near the obstacle, the communication signal It is greatly weakened, and the positioning accuracy of the outdoor robot will be greatly reduced.
  • the outdoor robot is equipped with a satellite navigation device, and the satellite navigation device can usually locate and guide the outdoor robot to perform work tasks.
  • the positioning coordinates generated by the satellite signal received by the satellite navigation device alone may be greatly deviated due to the error of the satellite itself and the error caused by the propagation path, which may cause the path to shift when performing the work task, thereby reducing the work efficiency. Therefore, a base station is usually disposed near the boundary line of the outdoor robot, and the base station can calculate a corresponding deviation correction number according to the received satellite navigation signal, and the satellite navigation device of the outdoor robot can improve the positioning accuracy when receiving the deviation correction number. Sex.
  • setting the base station does not guarantee that the correction number can be accurately transmitted to the outdoor robot, especially when there is an obstacle between the outdoor robot and the base station, such as a physical obstacle such as a tree.
  • the technical problem to be solved by the present invention is to ensure that the number of stars shared by the mobile station and the base station reaches a predetermined number, and that the ground differential correction positioning is always effective.
  • an accurate positioning system for an outdoor robot comprising: a base station, including a first antenna, a first control module, and a first communication module;
  • the first antenna is communicatively coupled to the first control module, the first communication module is communicatively coupled to the first control module, and the mobile station disposed on the robot includes a second antenna, a second control module, and a second communication a module, the second antenna is communicatively coupled to the second control module, and the second communication module is communicatively coupled to the second control module;
  • the first antenna receives a radio frequency signal transmitted by a satellite positioning system, the first The control module receives the radio frequency signal received by the first antenna, processes and generates positioning reference data, and transmits the positioning reference data to the first communication module, where the first communication module transmits the positioning reference data to The mobile station;
  • the second communication module receives the positioning reference data, and transmits the positioning reference data to the second control module
  • the second antenna receives the radio frequency signal transmitted by
  • the radio frequency signal obtains the precise positioning data of the mobile station according to a predetermined algorithm; wherein the base station includes an antenna position adjusting device, and the antenna position adjusting device adjustably sets a position of the first antenna, so that the robot is at During the movement of at least a majority of the locations in the outdoor work area, the second antenna of the mobile station and the first antenna of the base station collectively receive the number of satellites in the satellite positioning system greater than or equal to a predetermined number.
  • the predetermined number includes 4 or more.
  • the predetermined number is 6.
  • the base station includes a base station body and an antenna component that are separated from each other, the base station body includes the first control module and a first communication module, and the antenna component includes a casing and the first antenna, and the An antenna is electrically connected to the first control module by a cable.
  • the antenna position adjusting device comprises a mounting seat, the mounting seat being connected to the housing, the mounting seat mounting the first antenna in a set position.
  • the mount comprises at least one of a suction cup structure, a hanger structure, a snap structure, and a screw fixing structure.
  • the antenna position adjusting device is a telescopic rod, and one end of the telescopic rod is connected to the casing, and the other end is connected to the base station body.
  • the telescopic rod is provided with a height adjustment structure, and the height adjustment structure adjustably sets the height of the telescopic rod.
  • the maximum height of the telescopic rod is greater than or equal to 0.5 meters.
  • the base station includes an antenna position indicating device
  • the antenna position indicating device includes an information prompting unit for reminding the user, when the first antenna does not satisfy a preset number of stars that are co-stars with the second antenna.
  • the information prompting unit outputs prompt information for prompting the user to change the location of the base station or the first antenna.
  • the prompt information comprises an acoustic signal, an optical signal or a text signal.
  • the text signal comprises an ideal height value of the first antenna or/and an ideal horizontal distance value of the first antenna distance signal shielding body.
  • the base station is integrated on a charging station that provides electrical energy to the outdoor robot.
  • the second control module sets a differential positioning algorithm, and the differential positioning algorithm calculates and obtains high-precision positioning data of the mobile station relative to the base station.
  • the outdoor robot is a smart lawn mower.
  • the satellite positioning system comprises one of a GPS system, a Beidou navigation system, a GLONASS system, a GALILEO system, or a combination of any of the plurality.
  • the satellites jointly received by the first antenna and the second antenna comprise satellites in different types of positioning systems.
  • the mobile station has a farthest distance from the base station of 100 kilometers or less.
  • the base station includes an energy module, and the energy module provides energy to the base station.
  • the technical solution adopted to solve the above technical problem is: a self-mobile robot system, comprising: a self-moving robot and a precise positioning system of any one of the above-mentioned outdoor robots.
  • the technical solution adopted to solve the above technical problem is: a base station for precise positioning of an outdoor robot, the base station comprising: a first antenna, a first control module, and a first communication module;
  • the first antenna is communicatively coupled to the first control module, and the first communication module is communicatively coupled to the first control module;
  • the first antenna receives a radio frequency signal transmitted by a satellite positioning system, and the first control module Receiving the radio frequency signal, processing to generate positioning reference data, and transmitting the positioning reference data to the first communication module, where the first communication module transmits the positioning reference data to a mobile station;
  • the base station includes a base station body and an antenna assembly that are separated from each other, the base station body includes the first control module and the first communication module, and the antenna assembly includes a housing and the first antenna disposed in the housing
  • the first antenna and the first control module are electrically connected by a cable;
  • the base station further includes a mount connected to the housing, the mount A first antenna attached to the set position.
  • a self-mobile robot system comprising: a self-mobile robot; a mobile station disposed on the self-mobile robot, The mobile station includes a second antenna, a second control module, and a second communication module; the second antenna is communicatively coupled to the second control module, and the second communication module is communicatively coupled to the second control module; the base station.
  • the technical solution adopted to solve the above technical problem is: a base station for precise positioning of an outdoor robot, the base station comprising: a first antenna, a first control module, and a first communication module;
  • the first antenna is communicatively coupled to the first control module, and the first communication module is communicatively coupled to the first control module;
  • the first antenna receives a radio frequency signal transmitted by a satellite positioning system, and the first control module Receiving the radio frequency signal, processing to generate positioning reference data, and transmitting the positioning reference data to the first communication module, where the first communication module transmits the positioning reference data to a mobile station;
  • the base station includes a base station body and an antenna assembly that are separated from each other, the base station body includes the first control module and the first communication module, and the antenna assembly includes a housing and the first antenna disposed in the housing
  • the first antenna is electrically connected to the first control module by a cable;
  • the base station further includes a telescopic rod, and one end of the telescopic rod is connected to the housing
  • a self-mobile robot system comprising: a self-mobile robot; a mobile station disposed on the self-mobile robot, The mobile station includes a second antenna, a second control module, and a second communication module; the second antenna is communicatively coupled to the second control module, and the second communication module is communicatively coupled to the second control module; the base station.
  • the technical solution adopted to solve the above technical problem is: a base station for precise positioning of an outdoor robot, the base station comprising: a first antenna, a first control module, and a first communication module
  • the first antenna is communicatively coupled to the first control module
  • the first communication module is communicatively coupled to the first control module
  • the first antenna receives a radio frequency signal transmitted by a satellite positioning system, the first control Receiving, by the module, the radio frequency signal, processing, generating positioning reference data, and transmitting the positioning reference data to the first communication module, where the first communication module transmits the positioning reference data to a mobile station
  • the base station An antenna position indicating device is provided, the antenna position indicating device includes an information prompting unit for reminding a user, when the first antenna does not satisfy a preset condition, the information prompting unit outputs a reminding user to change the base station or the The prompt information of the first antenna position.
  • the prompt information comprises an acoustic signal, an optical signal or a text signal.
  • the preset condition includes a desired height of the first antenna or a shortest distance of the first antenna from the signal shielding body.
  • the preset condition includes that the number of satellites received by the first antenna is greater than or equal to a preset number.
  • a self-mobile robot system comprising: a self-mobile robot; a mobile station disposed on the self-mobile robot, The mobile station includes a second antenna, a second control module, and a second communication module; the second antenna is communicatively coupled to the second control module, and the second communication module is communicatively coupled to the second control module; the base station.
  • the present invention has the beneficial effects that the antenna position adjusting device adjustably sets the position of the first antenna of the base station, so that the number of the base stations and the mobile station is greater than or equal to a predetermined number to ensure the ground. Differential correction positioning is always effective.
  • the antenna position indicating device is used in the present invention. When the first antenna does not meet the preset condition, the antenna position indicating device outputs prompt information, which effectively reminds the user to set the position of the first antenna, so that the number of stars in the base station and the mobile station is greater than Equal to the predetermined number to ensure that the ground differential correction positioning is always valid.
  • the present invention further provides a precise positioning system comprising a base station and a mobile station, wherein the base station is provided with a first control module, a first communication module and a third communication module, the first communication module and the third communication Modules are each connected to the first control module, and the mobile station is provided with a second control module, a second communication module communicatively coupled to the first communication module, and a communication connection with the third communication module a fourth communication module, wherein the second control module is connected to the second communication module and the fourth communication module, and the communication connection between the fourth communication module and the third communication module and the second communication module
  • the communication connection with the first communication module is selectively turned on, or the communication connection of the fourth communication module and the third communication module is intermittently turned on, and the second communication module and the first The communication connection of the communication module is continuously turned on.
  • the first communication module and the second communication module are a first type of wireless communication module, and the third communication module and the fourth communication module are different in communication mode from the first type of wireless communication module.
  • the second type of wireless communication module is a first type of wireless communication module.
  • the first communication module and the second communication module are radio station communication modules.
  • the third communication module and the fourth communication module are a mobile cellular network communication module, a Bluetooth communication module, a wifi communication module or a radio frequency communication module.
  • the first control module includes a first control switch
  • the second control module includes a second control switch
  • the first control switch is connected to the third communication module for controlling the third communication module.
  • the second control module is connected to the fourth communication module and used to control the opening and closing of the fourth communication module.
  • the first control module and the second control module are further configured to determine whether communication between the first communication module and the second communication module is stable, when the first communication module and the second When the communication of the communication module is unstable, the first control switch turns on the third communication module, and the second control switch turns on the fourth communication module.
  • the first control module and the second control module are further configured to correct positioning coordinates of the mobile station when communication between the first communication module and the second communication module is unstable.
  • the first communication module comprises a first communication antenna
  • the second communication module comprises a second communication antenna
  • the first communication module is a radio station transmitter
  • the second communication module is a radio station receiver
  • the third communication module and the fourth communication module are both mobile communication modules.
  • the mobile station is provided in an outdoor robot, and the base station is provided in a charging station that charges the outdoor robot.
  • the positioning system includes a plurality of the mobile stations, and the first communication module of the base station and the second communication module of each of the mobile stations are respectively communicably connected, and the three The communication module is communicatively coupled to the fourth communication module of each of the mobile stations.
  • the present invention also provides an automatic working system including an outdoor robot and the positioning system according to any one of the above, wherein the mobile station of the positioning system is provided to the outdoor robot.
  • the automatic working system includes a plurality of the outdoor robots, and the mobile stations on the plurality of outdoor robots are respectively communicably connected to the base station of the positioning system.
  • the automatic working system further includes a charging station, and the base station of the positioning system is disposed at the charging station.
  • the invention further provides an outdoor robot, wherein the outdoor robot is provided with a mobile station, the mobile station comprises a second control module, a second communication module and a fourth communication module, wherein the second control module is connected to the The second communication module and the fourth communication module, the second communication module and the fourth communication module are selectively operated to implement a communication connection with the base station, or the second communication module is continuously operated, and the The four communication modules work intermittently.
  • the second communication module is a radio station communication module
  • the fourth communication module is a mobile cellular network communication module, a Bluetooth communication module, a wifi communication module or a radio frequency communication module.
  • the second control module includes a second control switch for controlling opening and closing of the fourth communication module.
  • the second communication module comprises a second communication antenna.
  • the present invention also provides a navigation system including a base station and an outdoor robot movable in a work area, the outdoor robot being equipped with a satellite navigation device, and further comprising: a signal disposed between the outdoor robot and the base station a repeater for receiving a deviation correction number sent by the base station and transmitting the deviation correction number to the satellite navigation device; the satellite navigation device is configured to: according to the deviation after receiving the deviation correction number The correction number controls the movement of the outdoor robot.
  • a signal repeater is arranged between the working area and the base station, and the correction number generated by the base station can be sent to the outdoor robot via the signal repeater, so that the outdoor robot receives the correction number in time and accurately locates its own positioning coordinate. , move according to the specified path, avoid path errors and improve mowing efficiency.
  • the base station includes: a signal receiving module, configured to receive a satellite signal; a calculating module, configured to calculate a corresponding offset correction number according to the satellite signal received by the signal receiving module; and a signal sending module, configured to: The deviation correction number is sent out.
  • the signal repeater includes: a relay receiving module, configured to receive a deviation correction number sent by the signal sending module; and a signal amplifying module, configured to perform, by the relay receiving module, the signal that includes the deviation correction number Amplification; and a forwarding module for forwarding the deviation correction number.
  • a relay receiving module configured to receive a deviation correction number sent by the signal sending module
  • a signal amplifying module configured to perform, by the relay receiving module, the signal that includes the deviation correction number Amplification
  • a forwarding module for forwarding the deviation correction number.
  • the satellite navigation device includes: a navigation receiving module, configured to receive a deviation correction number sent by the forwarding module; and a positioning module, configured to locate a position coordinate of the outdoor robot according to the deviation correction number; and a control module, And configured to control the outdoor robot movement according to the position coordinate.
  • a navigation receiving module configured to receive a deviation correction number sent by the forwarding module
  • a positioning module configured to locate a position coordinate of the outdoor robot according to the deviation correction number
  • a control module And configured to control the outdoor robot movement according to the position coordinate.
  • the satellite signals include a GPS signal and a Beidou navigation signal, a Galileo signal in Europe, a Glonass signal in Russia, and the like.
  • the signal repeater is disposed in the working area.
  • the signal repeater is located between the satellite navigation device and a base station.
  • the altitude of the base station is higher than the altitude of the satellite navigation device.
  • the base station has a fixed location.
  • FIG. 1 is a block diagram of a precision positioning system of the present invention.
  • FIG. 2 is a schematic diagram of an application scenario of the precise positioning system shown in FIG. 1.
  • FIG. 3 is a schematic diagram of a base station module of a first embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an arrangement scenario of a base station in the embodiment shown in FIG.
  • FIG. 5 is a block diagram of a mounting structure of an embodiment of the present invention and its connection relationship with other modules.
  • FIG. 6 is a schematic diagram showing an arrangement scenario of a base station according to a second embodiment of the present invention.
  • Figure 7 is a schematic view showing the structure of the mounting bracket of the embodiment shown in Figure 6.
  • FIG. 8 is a schematic diagram showing an arrangement scenario of a base station according to a third embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a base station module according to a fourth embodiment of the present invention.
  • FIG. 10 is a schematic diagram of an arrangement scenario of a base station in the embodiment shown in FIG. 9.
  • Figure 11 is a block diagram showing a base station module of a fifth embodiment of the present invention.
  • Figure 12 is a block diagram showing a base station module of a sixth embodiment of the present invention.
  • Figure 13 is a schematic view of a seventh embodiment of the present invention.
  • Figure 14 is a partial structural view of the positioning system shown in Figure 13;
  • Figure 15 is a flow chart showing a positioning method of the positioning system of the seventh embodiment of the present invention.
  • Figure 16 is a schematic view of a ninth embodiment of the present invention.
  • the precise positioning system includes a base station 100 and a mobile station 200.
  • the base station 100 receives the radio frequency signals transmitted by the satellite positioning systems (S 1 , S 2 , S 3 ... S n ), and transmits the radio frequency signal processing to generate positioning reference data for transmission to the mobile station 200.
  • the mobile station 200 receives the radio frequency signals transmitted by the satellite positioning systems (S 1 , S 2 , S 3 ... S n ) and the positioning reference data transmitted by the base station 100, and processes and obtains the precise positioning data of the mobile station.
  • the base station 100 includes a first antenna 110, a first communication module 120, and a first control module 130.
  • the first control module 130 is communicatively coupled to the first antenna 110 and the first communication module 120, respectively.
  • the first antenna 110 is configured to receive a radio frequency signal transmitted by a satellite positioning system (S 1 , S 2 , S 3 ... S n ) and transmit it to the first control module 130.
  • the first control module 130 generates positioning reference data based on the received radio frequency signal processing.
  • the first control module 130 wirelessly transmits the positioning reference data to the mobile station 200 through the first communication module 120.
  • the mobile station 200 includes a second antenna 210, a second communication module 220, and a second control module 230.
  • the second control module 230 is communicatively coupled to the second antenna 210 and the second communication module 220, respectively.
  • the mobile station 200 receives the radio frequency signals transmitted by the satellite positioning systems (S 1 , S 2 , S 3 ... S n ) through the second antenna 210 and transmits them to the second control module 230.
  • the mobile station 200 receives the positioning reference data transmitted by the base station 100 through the second communication module 220 and transmits the positioning reference data to the second control module 230.
  • the second control module 230 obtains the precise positioning data of the mobile station 200 according to the positioning parameter data and the radio frequency signal received by the second antenna 210 according to a predetermined algorithm.
  • the predetermined algorithm is a differential positioning algorithm commonly used in DGPS systems, such as a pseudorange positioning algorithm and a carrier phase positioning algorithm.
  • the 2 is a schematic diagram of an application scenario of the precise positioning system shown in FIG. 1.
  • the precise positioning system is applied to the positioning scene of the outdoor robot 400.
  • the outdoor robot 400 is specifically a self-moving and self-working robot such as a smart lawn mower, a smart sprinkler, and a smart multi-function mobile platform.
  • the mobile station 200 is disposed on the outdoor robot 400, following the outdoor robot 400 for accurately positioning the position of the outdoor robot 400.
  • the base station 100 can be fixedly disposed at a certain position within the work area 3 of the outdoor robot 400.
  • the farthest distance of the mobile station 200 from the base station 100 is less than or equal to 100 kilometers during the movement of the outdoor robot 400 in the work area.
  • the outdoor robot 400 is specifically a smart lawn mower
  • the working area 3 is specifically a garden area of the user.
  • the precise positioning system is mainly used to assist the intelligent lawn mower to locate in the courtyard area, and the intelligent lawn mower can recognize the boundary of the courtyard area, and the intelligent lawn mower can implement the path-related functions such as path planning in the courtyard area.
  • the courtyard area there are usually signal shielding bodies 1 such as houses, trees, bushes, etc., thereby affecting the signal receiving range of the base station 100 or/and the mobile station 200 to the satellite positioning system, which is inherent to the mobile station 200 or/and the base station 100.
  • the satellite receiving angle forms an occlusion or partial occlusion.
  • a house that is common in a courtyard area is used as the signal shielding body 1 as an example.
  • the first antenna 110 has a fixed receiving angle, and the satellites S 1 , S 2 , S 3 ... S n in the satellite positioning system are only within the receiving angle range of the first antenna 110, and the first antenna 110 can receive the Receives radio frequency signals transmitted by satellites within an angular range.
  • base station 100 also includes antenna position adjustment means 140.
  • the antenna position adjusting device 140 adjustably sets the position of the first antenna 110. By the adjustment of the antenna position adjusting device 140, the occlusion of the signal receiving range of the first antenna 110 to the satellite positioning system by the signal shielding body 1 can be avoided, thereby causing the outdoor robot 400 to move in most positions in the working area 3.
  • the second antenna 210 of the mobile station 200 and the first antenna 110 of the base station 100 collectively receive the number of satellites in the satellite positioning system greater than or equal to a predetermined number.
  • the satellite positioning system includes one or any combination of the US system GPS (Global Positioning System), the Russian system GLONASS (Global Orbiting Navigation Satellite System), the European GALILEO (Galileo System) or the Chinese Beidou system.
  • the co-star of the signals received by the first antenna 110 and the second antenna 210 may be radio frequency signals transmitted by any one of the satellites of the satellite positioning system.
  • the second antenna 210 of the mobile station 200 and the first antenna 110 of the base station 100 collectively receive at least four satellites in the satellite positioning system, preferably six in total.
  • the working system of the outdoor robot 400 is typically equipped with a charging station that provides electrical power to the outdoor robot 400 in the courtyard area.
  • a charging station that provides electrical power to the outdoor robot 400 in the courtyard area.
  • the charging station is usually disposed within 1 meter or less near the house.
  • the base station 100 in order to solve the energy demand of the base station 100, the base station 100 is disposed at the charging station.
  • the charging station provides the energy requirements of the base station 100.
  • the energy demand of the mobile station 200 is provided by the outdoor robot 400
  • the energy unit carried is provided.
  • the first control module 130 can be integrated onto a control module on the charging station; the first communication module 120 can be shared with the wireless communication module of the charging station.
  • the antenna position adjusting device 140 specifically includes a mount 141.
  • the base station 100 includes an antenna assembly 103, a mount 141 connected to the antenna assembly 103 for fixing the position of the antenna assembly 103, a base station body 101 disposed separately from the antenna assembly 103, and a cable 150 connected between the antenna assembly 103 and the base station body 101.
  • the antenna assembly 103 includes a first antenna 110 and a housing 112 that is disposed within the housing 112.
  • the mount 141 is coupled to the housing 112 for adjusting the position of the first antenna 110.
  • the base station body 101 includes a first control module 130 and a first communication module 120.
  • the first antenna 110 and the first control module 130 are electrically connected by a cable 150.
  • the cable 150 has an interference-resistant shielding layer. The specific length of the cable 150 depends on the specific distance of the first antenna 110 from the base station body 101.
  • FIG. 4 is a schematic diagram of an arrangement scenario of a base station in the embodiment shown in FIG.
  • the base station body 101 is disposed at a charging station, and the antenna assembly 103 is mounted to a set position of the signal shielding body 1 through a mount 141.
  • the set position can be changed correspondingly, and only the receiving angle range of the first antenna 110 is no longer blocked by the signal shielding body 1.
  • the set position is located at the top of the signal shielding body 1, that is, the roof of the house.
  • Fig. 5 is a block diagram showing the structure of the mount structure and its connection relationship with other modules according to an embodiment of the present invention.
  • the mount 141 includes a mounting unit 1411, and a docking unit 1413 connected to the mounting unit 1411.
  • the mounting unit 1411 is mainly used for mating to the signal shielding body 1.
  • the specific structure is a common mounting structure, such as a suction cup structure, a hanger structure, a snap structure, a screw fixing structure or other structures that can be installed at a fixed position.
  • the cradle unit 1413 is mainly used as an intermediate bridge, and is connected to the mounting unit 1411 and the housing 112 in which the first antenna 110 is disposed.
  • the specific structure of the seating unit 1413 can be adaptively changed depending on the mounting structure.
  • the first antenna 110 is mounted in the set position by the mount 141 such that the signal shielding body 1 no longer obscures the receiving range of the first antenna 110.
  • the scheme effectively improves the co-star probability between the mobile station 200 and the base station 100, so that the number of co-stars of the two can reach a predetermined number, thereby satisfying the co-star condition required by the differential positioning algorithm, and improving the reliability of the high-precision positioning system. Sex and precision Sex.
  • FIG. 6 is a schematic diagram showing an arrangement scenario of the base station 100 according to the second embodiment of the present invention, which differs from the first embodiment in that the set position is located outside the wall of the signal shielding body 1, that is, on the outer wall of the house.
  • the housing 112 includes a mounting bracket 610. One end of the mounting bracket 610 is connected to the mounting base 141, and the other end is connected to the first antenna 110, so that the first antenna 110 extends outward and upward from the outside of the wall to make the first antenna 110 The range of the receiving angle is not blocked by the signal shielding body 1.
  • the mounting bracket 610 is fixed to one end of the mounting base 141, and specifically, is fixed by the bracket wall fixing piece 620.
  • the mounting bracket 610 includes an outwardly extending first portion 611 and an upwardly extending second portion 612 that is L-shaped.
  • the mounting bracket 610 also includes an adjustment mechanism 613 that is rotated relative to the first portion 611 by the adjustment mechanism 613.
  • the adjustment mechanism 613 is a bracket movable joint, and the first portion 611 of the mounting bracket 610 is fixed to the wall by the bracket wall fixing piece 620 and extends to the outside of the housing.
  • the second portion 612 of the mounting bracket 610 is coupled to the first antenna 110, and the second portion 612 is rotatable relative to the first portion 611 by the bracket movable joint.
  • the first antenna 110 can be adjusted.
  • the receiving angle is such that the installation of the first antenna 110 is more flexible and can adapt to the signal shielding body 1 of different shapes.
  • the mounting bracket 610 includes at least two sub-brackets that are connected end to end. Specifically, the mounting bracket 610 includes two L-shaped sub-brackets, namely a first sub-bracket 614 and a second sub-bracket 615, which can be interconnected by a mating structure 616.
  • the plurality of sub-bracket interconnections enable the first antenna 110 to further extend outward and upward to enable better reception of satellite signals.
  • the antenna position adjusting device 140 specifically includes a telescopic rod 143.
  • the telescopic rod 143 adjusts its height in a telescopic manner.
  • the base station 100 includes an antenna assembly 103, a base station body 101 disposed separately from the antenna assembly 103, a telescopic rod 143 physically connected between the antenna assembly 103 and the base station body 101, and a cable electrically connected between the antenna assembly 103 and the base station body 101.
  • the antenna assembly 103 includes a first antenna 110 and a housing 112 that is disposed within the housing 112.
  • the base station body 101 includes a first control module 130 and a first communication module 120.
  • the first antenna 110 and the first control module 130 are electrically connected by a cable 150.
  • One end of the telescopic rod 143 is connected to the housing 112, and the other end is connected to the base station body 101.
  • the antenna position adjusting device 140 further includes a height adjusting mechanism 145.
  • the height adjustment mechanism 145 is connected to the telescopic rod 143, and is adjustable The height of the telescopic rod 143 is set in the ground.
  • the telescopic rod 143 may specifically be a multi-joint rod structure, a multi-sleeve sleeve structure or other highly variable structural rods.
  • the height adjustment mechanism 145 can be a nut locking structure, a male and female locking engagement structure, or other adjustable locking structure.
  • FIG. 10 is a schematic diagram of an arrangement scenario of a base station in the embodiment shown in FIG. 9.
  • the base station body 101 and the antenna assembly 103 are both disposed at a charging station.
  • the telescopic rod 143 can be set to a desired height according to the height h1 of the signal shielding body 1, the receiving angle ⁇ of the first antenna, and the horizontal distance d1 of the base station body 101 from the signal shielding body 1.
  • the height of the telescopic rod 143 is set to h2 as described above, so that the signal shielding body 1 can no longer shield the receiving angle range of the first antenna 110.
  • the maximum height of the telescopic rod 143 is greater than or equal to 0.5 meters, and specifically may be 7 meters, 10 meters, or the like.
  • the antenna assembly 103 when the height of the telescopic rod 143 is fixed, can be set to an ideal horizontal distance from the signal shielding body according to the height h1 of the signal shielding body 1 and the receiving angle ⁇ of the first antenna.
  • the antenna assembly 103 is set to an ideal horizontal distance position greater than or equal to d1 according to the above formula, so that the signal shielding body 1 can no longer obscure the receiving angle range of the first antenna 110.
  • FIG. 11 is a block diagram showing a base station module of a fifth embodiment of the present invention.
  • the base station 100 further includes an energy module 160.
  • the energy module 160 addresses the energy requirements of the base station 100.
  • the energy module 160 can be a solar energy converter that receives the solar energy and converts the solar energy into the energy required by the base station 100.
  • the energy module 160 can also be a battery, such as a portable power device such as a nickel-cadmium battery, a lithium battery, or a dry battery.
  • the energy module 160 can include both a solar energy converter and a portable power device.
  • the base station 100 has its own energy supply module.
  • the base station 100 does not need to be separated by the antenna component and the base station body in the embodiment shown in FIG. 3 to FIG. 5, and the base station 100 shown in FIG. 11 can be integrally designed.
  • the integrated base station 100 is mounted by an antenna position adjusting device 140 to a position other than the charging station.
  • the base station 100 is separately designed by the antenna component and the base station body.
  • the base station body 101 is no longer limited by the energy requirement provided by the charging station, and the base station body 101 can be disposed outside the charging station. position.
  • the base station 100 is disposed at the set position of the signal shielding body 1 by the antenna position adjusting device 140. Referring to the embodiment of FIG. 3 and FIG. 4, the base station 100 is mounted to the signal shielding body through the mount 141. The setting position of 1. The specific selection rules for setting the location are as described above.
  • the base station 100 is not limited by the energy supply, and its position in the work area is more flexible, and may be a certain position away from the signal shielding body 1.
  • FIG. 12 is a block diagram showing a base station module of a sixth embodiment of the present invention.
  • the base station 100 includes a first antenna 110, a first communication module 120, a first control module 130, and an antenna position display device 170.
  • the antenna position display device 170 includes an information prompting unit for reminding the user. When the position of the first antenna 110 does not satisfy the preset condition, the information prompting unit outputs a prompt indicating to prompt the user to change the position of the base station or the first antenna position. information.
  • the preset condition may specifically be the ideal height of the first antenna 110.
  • the base station 100 includes a height sensor for detecting the actual height of the first antenna 110.
  • the first control module 130 presets an ideal height value or an ideal height value range or a preset ideal height calculation formula, and compares whether the actual height meets the ideal height value or the ideal height value range. When the comparison result is not satisfied, the information prompting unit outputs the prompt information. .
  • the preset condition may specifically be an ideal horizontal distance of the first antenna 110 from the signal shielding body 1 .
  • the base station 100 includes a horizontal distance sensor for detecting the actual horizontal distance of the first antenna 110 from the signal shielding body 1.
  • the first control module 130 presets an ideal horizontal distance value or an ideal horizontal distance value range or a preset ideal horizontal distance calculation formula, and compares whether the actual horizontal distance meets an ideal horizontal distance value or an ideal horizontal distance value. When the comparison result is not satisfied, the information
  • the prompting unit outputs a prompt message.
  • the preset condition may specifically be the number of satellites in the satellite positioning system that the first antenna 110 can receive. When the number of satellites is less than the preset number, the information prompting unit outputs the prompt information.
  • the prompt information output by the information prompting unit may be an acoustic signal, an optical signal or a text signal or a combination of the three.
  • the antenna position display device 170 can remind the user whether the position set by the first antenna 110 is appropriate by issuing a prompt message. When the reception angle of the first antenna 110 is blocked by the signal shielding body 1 and the probability of the number of stars shared by the mobile station and the base station is easily reduced, the antenna position display device 170 issues a prompt message.
  • the prompt information is a text signal
  • the text signal includes an ideal height value of the first antenna 110 or an ideal horizontal distance of the first antenna 110 from the signal shielding body. The user can select the installation location of the first antenna 110 or the base station 100 according to the content displayed by the text signal.
  • the base station 100 is provided with an embodiment of an antenna position indicating device, which can be combined with an embodiment in which the base station 100 is provided with an antenna position adjusting device and an embodiment in which the base station 100 is provided with an energy module, to form a corresponding new embodiment. Due to the installation principle and structure of the new embodiment, the structure and principle of the prompt information are similar to the above-mentioned separate embodiments, and will not be further described herein.
  • the positioning system in the seventh embodiment of the present invention includes a base station 100 and a mobile station 200.
  • the base station 100 is provided with a first control module 130, a first communication module 120, and a third communication module 320.
  • a communication module 120 and a third communication module 320 are both connected to the first control module 130.
  • the mobile station 200 is provided with a second control module 230, a second communication module 220 communicatively coupled to the first communication module 120, and a third communication.
  • the fourth communication module 420 is connected to the fourth communication module 420, and the second control module 230 is connected to the second communication module 220 and the fourth communication module 420, and the communication connection between the fourth communication module 420 and the third communication module 320 and the second communication module.
  • the communication connection with the first communication module 120 is selectively turned on, or the communication connection of the fourth communication module 420 and the third communication module 320 is intermittently turned on, and the communication of the second communication module 220 with the first communication module 120 is performed.
  • the connection is continuously turned on to determine the location of the mobile station 200.
  • the base station 100 and the mobile station 200 acquire coordinate information from the satellite, and connect the communication between the first communication module 120 and the second communication module 220 or the third communication module 320 and the fourth communication module 420.
  • the mobile station 200 obtains the coordinate information of the base station 100, and obtains the precise coordinates of the mobile station 200 by calculation to achieve positioning.
  • the first control module 130 and the second control module 230 can be a PLC or a single chip microcomputer, and can calculate the precise coordinates of the mobile station 200 through the second control module 230; specifically, the base station 100 is a DGPS base station, and the mobile station 200 is a DGPS. Mobile station.
  • the corresponding communication method can be used according to the actual situation to ensure Communication quality can improve positioning accuracy.
  • the base station 100 further includes a first positioning module that acquires the foregoing coordinate information of the base station 100
  • the mobile station 200 further includes a second positioning module that acquires the coordinate information of the mobile station 200.
  • the first positioning module and the second positioning module are both GPS modules to acquire coordinate information of the base station 100 and the mobile station 200 respectively, and the coordinate information of the base station 100 is sent to the mobile through the first communication module 120 or the third communication module 320. Station 200.
  • the first communication module 120 and the second communication module 220 are the first type of wireless communication module, and the third communication module 320 and the fourth communication module 420 are different in communication mode from the second type of the wireless communication module.
  • Class wireless communication module Specifically, the first communication module 120 and the second communication module 220 are radio station communication modules; the third communication module 320 and the fourth communication module 420 are a mobile cellular network communication module, a Bluetooth communication module, a wifi communication module, or a radio frequency communication module.
  • the third communication module 320 and the fourth communication module 420 may be 2G, 3G or 4G mobile communication modules.
  • the positioning system adopts a radio station communication mode in normal communication.
  • the communication of the radio station is unstable due to the signal shielding body 1 or the like, the communication can be switched to the mobile cellular network communication, which not only reduces the communication cost but also improves the positioning accuracy.
  • the manufacturer or distributor of the intelligent lawn mower can provide the communication network of the non-radio station in which the second type of wireless communication module communicates, so that the base station 100 located under the communication network can communicate with the mobile station 200 through the third communication.
  • Module 320 and fourth communication module 420 implement communication.
  • the first control module 130 includes a first control switch
  • the second control module 230 includes a second control switch.
  • the first control switch is coupled to the third communication module 320 for controlling the opening of the third communication module 320.
  • the second control module 230 is connected to the fourth communication module 420 and is used to control the opening and closing of the fourth communication module 420.
  • the first control switch turns on the third communication module 320
  • the second control switch is turned on
  • the fourth communication module 420 is connected to the third communication module.
  • the first control switch turns off the third communication module 320
  • the second control switch turns off the fourth communication module 420 and the third communication module 320 Communication is broken.
  • the first control switch and the second control switch can also open the third communication module 320 and the fourth
  • the first communication module 120 and the second communication module 220 are respectively turned off at the same time as the communication module 420, and the first communication module 120 and the second communication module 220 are respectively turned on while the third communication module 320 and the fourth communication module 420 are closed. It can be understood that the first communication module 120 and the second communication module 220 can also never be turned off.
  • the first control module 130 and the second control module 230 are further configured to determine whether the communication between the first communication module 120 and the second communication module 220 is stable.
  • the first control module 130 can be connected to the first communication module 120
  • the second control module 230 can be connected to the second communication module 220.
  • the first communication module 120 does not sense the second
  • the first control module 130 and the second control module 230 determine that the communication is unstable, and the first control switch and the second control switch can be controlled at this time.
  • the third communication module 320 and the fourth communication module 420 are respectively turned on.
  • the first control module 130 and the second control module 230 are further configured to correct the positioning coordinates of the mobile station 200 when the communication between the first communication module 120 and the second communication module 220 is unstable.
  • the first communication module 120 includes a first communication antenna 121
  • the second communication module 220 includes a second communication antenna 221.
  • the first communication module 120 is a radio station transmitter and the second communication module 220 is a radio station receiver.
  • the third communication module 320 and the fourth communication module 420 are both a mobile cellular network communication module, a Bluetooth communication module, a wifi communication module, or a radio frequency communication module, and communicate through a network of non-radio stations. More specifically, the third communication module 320 and the fourth communication module 420 are both 2G, 3G or 4G mobile cellular network communication modules including a SIM card.
  • the first communication module 120 transmits a radio station signal through the first communication antenna 121
  • the second communication module 220 receives the radio station signal through the second communication antenna 221
  • the mobile station 200 passes the first communication module 120 and the second communication module.
  • the radio station signal positioning when the mobile station 200 arrives at the position with the signal shielding body 1, the radio station signal is attenuated severely or blocked, and the radio station signal received by the second communication module 220 is unstable or does not receive the radio station signal. The positioning of the mobile station 200 is inaccurate.
  • the first control switch and the second control switch respectively open the third communication module 320 and the fourth communication module 420, and communicate by means of 2G, 3G or 4G network communication, and move to The positioning coordinates of the station 200 are corrected to improve the positioning accuracy.
  • the first control switch and the second control switch respectively turn off the third communication module 320 and the fourth communication module 420.
  • the third communication module 320 can also include a third communication antenna
  • the fourth communication module 420 can also include a fourth communication antenna.
  • the third communication module 320 transmits a signal through the third communication antenna
  • the fourth communication module 420 receives the signal through the fourth communication antenna.
  • the positioning system includes a plurality of mobile stations 200, and the first communication module 120 of the base station 100 is separately communicatively coupled to the second communication module 220 of each mobile station 200, and the third communication module 320 of the base station 100 and each The fourth communication modules 420 of the mobile stations 200 are respectively communicatively coupled.
  • users in a certain range for example, one cell
  • mobile stations 200 of multiple users are respectively connected to the base station 100, so that one base station 100 cooperates with multiple mobile stations 200 to perform positioning. Reduce the cost of the entire positioning system.
  • the mobile station 200 is provided in the outdoor mobile robot 400, and the base station 100 of the positioning system is provided in a charging station for charging the outdoor mobile robot 400.
  • the outdoor mobile robot 400 may be a smart lawn mower.
  • the present invention also provides an automatic working system including an outdoor mobile robot 400 and the above-described positioning system, and the mobile station 200 of the positioning system is provided in the outdoor mobile robot 400.
  • the automated working system may include a plurality of outdoor mobile robots 400, and the mobile stations 200 on the plurality of outdoor mobile robots 400 are in communication with the base station 100 of the positioning system, respectively.
  • users in a certain range for example, one cell
  • mobile stations 200 of outdoor mobile robots 400 of multiple users are respectively connected to the base station 100 to realize one base station 100 and multiple outdoor mobiles simultaneously.
  • the robot 400 cooperates to position, reducing the cost of the entire automated working system.
  • the automated working system further includes a charging station, and the base station 100 of the positioning system is located at the charging station.
  • the present invention also provides an outdoor mobile robot 400.
  • the outdoor mobile robot 400 is provided with the mobile station 200.
  • the mobile station 200 includes a second control module 230, a second communication module 220, and a fourth communication module 420.
  • the second control module 230 The second communication module 220 and the fourth communication module 420 are connected to each other to implement a communication connection with the base station 100. Or the second communication module 220 operates continuously, and the fourth communication module 420 operates intermittently.
  • the corresponding communication method can be used according to actual conditions to ensure communication quality and improve positioning accuracy.
  • the mobile station 200 further includes a second positioning module that acquires the above coordinate information of the mobile station 200.
  • the second positioning module is a GPS module to acquire coordinate information of the mobile station 200.
  • the second communication module 220 is a radio station communication module
  • the fourth communication module 420 is a communication module such as a mobile cellular network communication module, a Bluetooth communication module, a wifi communication module, or a radio frequency communication module.
  • the fourth communication module 420 can be 2G, 3G or 4G mobile communication.
  • the positioning system adopts a radio station communication mode in normal communication.
  • the communication of the radio station is unstable due to the signal shielding body 1 or the like, the communication can be switched to the mobile cellular network communication, which not only reduces the communication cost but also improves the positioning accuracy.
  • the second control module 230 includes a second control switch for controlling the opening and closing of the fourth communication module 420. Specifically, when the communication of the second communication module 220 is unstable, the second control switch turns on the fourth communication module 420 to work.
  • the second control module 230 is further configured to determine whether the communication of the second communication module 220 is stable. Specifically, when the second communication module 220 does not sense the signal, or the signal is weak, the second control module 230 determines that the communication is unstable. At this time, the second control switch can be controlled to open the fourth communication module 420.
  • the second control module 230 is further configured to correct the positioning coordinates of the mobile station 200 when the communication of the second communication module 220 is unstable.
  • the second communication module 220 includes a second communication antenna 221.
  • the second communication module 220 is a radio station receiver.
  • the fourth communication module 420 is a mobile communication module.
  • the present invention also provides a positioning method of a positioning system, where the positioning system includes a base station.
  • the mobile station 200 is provided with a first communication module 120 and a third communication module 320.
  • the mobile station 200 is provided with a second communication module 220 and a fourth communication module 420.
  • the positioning method of the positioning system includes:
  • the first communication module 120 and the second communication module 220 are opened to communicate with the base station 100 and the mobile station 200;
  • S1200 Determine whether the communication between the first communication module 120 and the second communication module 220 is stable.
  • step S1300 the third communication module 320 and the fourth communication module 420 are turned on to communicatively connect the base station 100 and the mobile station 200.
  • the positioning method of the positioning system further includes step S1400 and step S1500 after step S1300, and step S1400 is to determine whether the communication between the first communication module 120 and the second communication module 220 is stable; if not, return to S1400, and if yes, execute Step S1500:
  • the third communication module 320 and the fourth communication module 420 are turned off, and the base station 100 and the mobile station 200 are communicably connected by using the first communication module 120 and the second communication module 220.
  • step S1300 the positioning coordinates of the mobile station 200 are corrected when the third communication module 320 and the fourth communication module 420 are turned on.
  • step S1300 further includes: closing the first communication module 120 and the second communication module 220.
  • the first communication module 320 and the fourth communication module 420 may be turned off, and the first communication module 120 and the second communication module 220 may not be closed. .
  • the present invention also provides a positioning system of the eighth embodiment.
  • the positioning system differs from the positioning system of the seventh embodiment in that it does not include the first communication module 120 and the second communication module 220. That is, the positioning system includes the base station 100 and the mobile station 200.
  • the base station 100 is provided with a first control module 130 and a third communication module 320.
  • the third communication module 320 is connected to the first control module 130, and the mobile station 200 is provided.
  • the second control module 230 is connected to the third communication module 420 communicably connected to the third communication module 320.
  • the second control module 230 is connected to the fourth communication module 420, and the fourth communication module 420 is connected to the third communication module 320.
  • the location of the mobile station 200 is determined.
  • the base station 100 and the mobile station 200 acquire coordinate information from the satellite, and by connecting the third communication module 320 with the fourth communication module 420, the mobile station 200 obtains the coordinate information of the base station 100.
  • the accurate coordinates of the mobile station 200 are obtained by calculation to achieve positioning.
  • the first control module 130 and the second control module 230 can be a PLC or a single chip microcomputer, and can calculate the precise coordinates of the mobile station 200 through the second control module 230; specifically, the base station 100 is a DGPS base station, and the mobile station 200 is a DGPS. Mobile station.
  • the third communication module 320 and the fourth communication module 420 are communication modules such as a mobile cellular network communication module, a Bluetooth communication module, a wifi communication module, or a radio frequency communication module. More specifically, the third communication module 320 and the fourth communication module 420 may be 2G, 3G or 4G mobile communication. In this embodiment, since the third communication module 320 and the fourth communication module 420 adopt 2G, 3G or 4G mobile communication, the transmission distance is long, the obstacle penetration ability is strong, and the positioning accuracy can be ensured even if an obstacle is encountered.
  • the third communication module 320 may include a third communication antenna
  • the fourth communication module 420 may include a fourth communication antenna.
  • the third communication module 320 transmits a signal through the third communication antenna
  • the fourth communication module 420 receives the signal through the fourth communication antenna.
  • the positioning system includes a plurality of mobile stations 200, and the third communication module 320 of the base station 100 is in communication connection with the fourth communication module 420 of each mobile station 200, respectively.
  • the mobile station 200 is provided in the outdoor mobile robot 400, and the base station 100 of the positioning system is provided in a charging station for charging the outdoor mobile robot 400.
  • the outdoor mobile robot 400 may be a smart lawn mower.
  • the present invention also provides an automatic working system of another embodiment, which includes an outdoor mobile robot 400 and a positioning system of the eighth embodiment, and the mobile station 200 of the positioning system is provided in the outdoor mobile robot 400.
  • the automated working system may include a plurality of outdoor mobile robots 400, and the mobile stations 200 on the plurality of outdoor mobile robots 400 are in communication with the base station 100 of the positioning system, respectively.
  • the automated working system further includes a charging station, and the base station 100 of the positioning system is located at the charging station.
  • the present invention further provides an outdoor mobile robot 400 of another embodiment.
  • the outdoor mobile robot 400 is provided with a mobile station 200.
  • the mobile station 200 includes a second control module 230 and a fourth communication module 420, and the second control module 230 is connected to the fourth.
  • the communication module 420, the fourth communication module 420 is in communication with the base station 100.
  • the fourth communication module 420 is a mobile cellular network communication module and a Bluetooth communication module. Communication module such as block, wifi communication module or radio communication module. More specifically, the fourth communication module 420 can be 2G, 3G or 4G mobile communication. In this embodiment, since the fourth communication module 420 adopts 2G, 3G or 4G mobile communication, the transmission distance is long, the obstacle penetration ability is strong, and the positioning accuracy can be ensured even if an obstacle is encountered.
  • the fourth communication module 420 can include a fourth communication antenna. In operation, the fourth communication module 420 receives the signal through the fourth communication antenna.
  • the navigation system of the present embodiment includes a base station 100 and an outdoor mobile robot 400 movable in a work area (i.e., within the boundary line 300), and the outdoor mobile robot 400 is equipped with a satellite.
  • the navigation device, wherein the navigation system further comprises:
  • a signal repeater 500 disposed between the outdoor mobile robot 400 and the base station 100, configured to receive the offset correction number sent by the base station 100 and send the deviation correction number to the satellite navigation device;
  • the satellite navigation device is configured to control the movement of the intelligent mower according to the deviation correction number after receiving the deviation correction number.
  • a signal repeater is arranged between the working area and the base station, and the correction number generated by the base station can be sent to the intelligent lawn mower via the signal repeater, so that the intelligent lawn mower can receive the correction number in time and accurately locate its own Position coordinates and move according to the specified path to avoid path errors and improve mowing efficiency.
  • the signal repeater 500 can be disposed within the working area (boundary line 300), typically a signal repeater is located between the satellite navigation device and the base station, and between the signal repeater and the satellite navigation device, the signal repeater and There is no obstacle between the base stations to ensure that the signal repeater 500 can stably receive the signal transmitted by the base station 100, and can stably transmit a stable signal to the outdoor mobile robot 400.
  • the base station 100 includes: a signal receiving module, configured to receive a satellite signal; a calculating module, configured to calculate a corresponding offset correction number according to the satellite signal received by the signal receiving module; and a signal sending module, configured to send the deviation correction number .
  • a signal receiving module configured to receive a satellite signal
  • a calculating module configured to calculate a corresponding offset correction number according to the satellite signal received by the signal receiving module
  • a signal sending module configured to send the deviation correction number .
  • the altitude of the base station is higher than the altitude of the satellite navigation device, and the base station has a fixed position.
  • the signal repeater 500 functions to forward the signal transmitted by the base station to the intelligent lawn mower, and can transmit the signal containing the correction number sent by the base station to the navigation receiving module of the intelligent lawn mower without loss.
  • the signal relay The device includes: a relay receiving module, configured to receive a deviation correction number sent by the signal sending module; a signal amplifying module, configured to amplify the signal including the deviation correction number received by the relay receiving module; and a forwarding module, configured to The correction number is forwarded out.
  • the satellite navigation device of the intelligent lawn mower After receiving the correction number, the satellite navigation device of the intelligent lawn mower needs to accurately locate its own coordinate position according to the correction number, so that the intelligent lawn mower can accurately move and improve the mowing efficiency.
  • the satellite navigation device includes: a navigation receiving module. The method is configured to receive the deviation correction number sent by the forwarding module, the positioning module is configured to locate the position coordinate of the intelligent lawn mower according to the deviation correction number, and the control module is configured to control the movement of the intelligent lawn mower according to the position coordinate.
  • the satellite signal may be a GPS positioning signal, a Beidou navigation signal, a European Galileo signal, a Russian Glonass signal, and the like.
  • the present invention is not limited to the specific embodiment structures, and the structures and methods based on the inventive concept are all within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)

Abstract

本发明涉及一种室外机器人的高精度定位系统,包括:基站和设置在机器人上的移动站。基站包括第一天线、第一控制模块和第一通信模块;基站通过第一天线接收卫星定位系统所发射的射频信号,且生成定位参考数据传输给移动站。移动站通过第二天线接收卫星定位系统所发射的射频信号,且接收基站所传输的定位参考数据,从而获得移动站的精确定位数据。基站还包括天线位置调整装置,天线位置调整装置可调整地设定第一天线的位置。基站还包括天线位置指示装置,用于提示第一天线理想安装位置或理想高度。本发明的有益效果是:使得移动站和基站共星数量大于等于预定数量,提高高精度定位系统工作的可靠性。

Description

精确定位系统及其基站及自移动机器人系统 技术领域
本发明涉及一种室外机器人的精确定位系统,尤其涉及一种利用卫星定位技术进行室外机器人的精确定位系统。
本发明还涉及一种用于室外机器人精确定位的基站。
本发明还涉及一种利用卫星定位技术进行精确定位的自移动机器人系统。
背景技术
目前,随着科技的发展,室外机器人的应用越来越广泛。如智能割草机可以自动地帮助人们维护草坪,将人们从草坪维护的枯燥且费时费力的家务工作中解放出来,因此受到极大欢迎。室外机器人执行功能任务过程中,无需用户的操作,这就要求室外机器人有很好地定位功能,使其能够在工作区域内自移动。
为了解决室外机器人定位问题,本领域技术人员做过多方尝试。专利US6445983,公开一种自主导航系统,能在视觉导航模式和GPS导航模式间切换的机器人系统,揭示了GPS系统,陀螺仪系统,视觉系统的综合运用。专利US7840352公开一种自动导航系统,揭示并保护了GPS导航,惯性导航和视觉导航的综合系统。在这两个专利中都使用GPS定位技术,但是都试图从GPS装置输出的数据中得到准确的定位信息。但是,GPS定位数据包含了难以避免的误差,其中包括系统误差,比如卫星和接收机的时钟差,星历误差,电离层和对流层延迟误差等,还包括跟接收机本身有关的随即误差。因此,基于单独的GPS定位数据只能达到1-5米以上的定位精度,正是这样的原因,自动导航系统都必须包括其他的定位导航方式来弥补GPS定位数据的不准确。
采用其他的定位导航方式,势必需要增加室外机器人系统的定位成本。而且,由于采用不同的定位导航方式,所得到的数据需要进行融合以实现互补。在现有技术水平下,较好的融合算法的研发和实现还是一个难题。
因此,目前很多室外移动机器人采用地面差分修正定位原理来协助修正GPS定位数据的不准确性。采用地面差分修正定位原理的定位系统,可以将定位精度提高至分米级。
采用地面差分修正定位原理的定位系统,一般包括基站和移动站。基站可固定设置在室外的某一预设地点,接收卫星定位系统所发射的射频信号,为移动站的定位提供参考。移动站设置在移动机器人上,接收卫星定位系统所发射的射频信号和基站的参考数据,获得相对基站位置的精确定位信息。
采用地面差分修正定位原理的定位系统能够正常工作的前提是,基站和移动站必须至少共同接收卫星定位系统中的预定数量的相同卫星所发射的射频信号。当基站与移动站所接收的卫星定位系统中的相同卫星数量不满足预定数量时,基站无法为移动站提供足够的参考数据,采用地面差分修正定位原理的定位系统就发生失效。
由于室外存在许多建筑物、树木、高大的障碍物等情况,移动站或基站所能接收卫星信号的接收角度会被遮挡,导致在室外的某些位置,移动站和基站无法实现共星数量达到预定数量。室外机器人以智能割草机为例,智能割草机在房屋四周的草坪上自移动和自工作。房屋通常为两层建筑楼,高度范围为5米到8米,在房屋周边1米范围内设有为智能割草机提供电能的充电站。当基站设置在充电站上时,基站所能接收卫星信号的接收角度就会一直被遮挡,从而导致移动站和基站共星数量达到预定数量的概率降低。当移动站运动至房屋或其他障碍物附近时,移动站所能接收卫星信号的接收角度也会被遮挡。此时,移动站和基站就很容易无法达到共星的预定数量,智能割草机就无法利用地面差分修正定位原理获得精准的定位信息。
因此,在采用地面差分修正定位原理的室外机器人精准定位系统中,如何保障移动站和基站共星的数量达到预定数量,确保地面差分修正定位始终有效,成为目前亟需解决的技术问题。
另一个问题为,为了实现室外机器人限定范围内防止出线的功能,需要对室外机器人进行定位。通常,使室外机器人的充电站和室外机器人通讯连接,充电站和室外机器人还与卫星通讯连接以获得各自的位置信息,充电站将该位置信息发送给室外机器人,室外机器人可通过计算得出自己的精确坐标,确定其是否超出限定范围。充电站和室外机器人上分别设有DGPS(Differential Global Positioning System,即差分全球定位系统)基站和DGPS移动站实现通讯。然而,现有的通讯方式,当室外机器人行驶到障碍物附近时,通讯信号 大大减弱,这时室外机器人的定位精度将大大降低。
另一个问题为,室外机器人安装有卫星导航装置,通常卫星导航装置可以定位并引导室外机器人执行工作任务。但单独的卫星导航装置其接收的卫星信号产生的定位坐标因卫星本身的误差、传播途径产生的误差会出现较大偏差,在执行工作任务时会导致路径发生偏移,从而降低工作效率。为此,通常在室外机器人的边界线附近设置有基站,基站可根据接收的卫星导航信号计算出对应的偏差修正数,室外机器人的卫星导航装置在接收到此偏差修正数时可以提高定位的准确性。但是,设置基站并不能保证修正数可以被准确的发送至室外机器人,尤其是当室外机器人与基站之间有障碍物时,比如树木等有形障碍物。
发明内容
本发明所要解决的技术问题是,保障移动站和基站共星的数量达到预定数量,确保地面差分修正定位始终有效。
本发明的一种实施例中,解决上述技术问题所采用的技术方案是:一种室外机器人的精确定位系统,包括:基站,包括第一天线、第一控制模块和第一通信模块;所述第一天线通信连接所述第一控制模块,所述第一通信模块通信连接所述第一控制模块;设置于所述机器人上的移动站,包括第二天线、第二控制模块和第二通信模块;所述第二天线通信连接所述第二控制模块,所述第二通信模块通信连接所述第二控制模块;所述第一天线接收卫星定位系统所发射的射频信号,所述第一控制模块接收所述第一天线接收到的射频信号、处理生成定位参考数据,且将所述定位参考数据传输给所述第一通信模块,所述第一通信模块将所述定位参考数据传输给所述移动站;所述第二通信模块接收所述定位参考数据,并将所述定位参考数据传输给所述第二控制模块,所述第二天线接收卫星定位系统所发射的射频信号且将所接收的射频信号传输给所述第二控制模块,所述第二控制模块根据所述定位参考数据和所述第二天线接收的射频信号按照预定算法获得所述移动站的精确定位数据;其中,所述基站包括天线位置调整装置,所述天线位置调整装置可调整地设定所述第一天线的位置,使得所述机器人在室外的工作区域内至少大部分位置移动的过程中,所述移动站的第二天线和所述基站的第一天线共同接收所述卫星定位系统中的卫星数量大于等于预定数量。
优选的,所述预定数量包括大于等于4。
优选的,所述预定数量为6。
优选的,所述基站包括相互分离的基站本体和天线组件,所述基站本体包括所述第一控制模块和第一通信模块,所述天线组件包括壳体和所述第一天线,所述第一天线与所述第一控制模块由电缆电性连接。
优选的,所述天线位置调整装置包括安装座,所述安装座与所述壳体连接,所述安装座将所述第一天线安装于设定的位置。
优选的,所述安装座包括吸盘结构、挂架结构、卡扣结构、螺钉固定结构中的至少一种。
优选的,所述天线位置调整装置为伸缩杆,所述伸缩杆一端连接所述壳体、另一端连接至所述基站本体。
优选的,所述伸缩杆设有高度调节结构,所述高度调节结构可调节地设定所述伸缩杆的高度。
优选的,所述伸缩杆的最大高度大于等于0.5米。
优选的,所述基站包括天线位置指示装置,所述天线位置指示装置包括用于提醒用户的信息提示单元,在所述第一天线不满足与所述第二天线达到共星的预设数量时,所述信息提示单元输出提醒用户改变所述基站或所述第一天线位置的提示信息。
优选的,所述提示信息包括声信号、光信号或文字信号。
优选的,所述文字信号包括所述第一天线的理想高度值或/和所述第一天线距离信号遮蔽体的理想水平距离值。
优选的,所述基站集成在为所述室外机器人提供电能的充电站上。
优选的,所述第二控制模块设置差分定位算法,由所述差分定位算法计算获知所述移动站相对所述基站的高精度定位数据。
优选的,所述室外机器人为智能割草机。
优选的,所述卫星定位系统包括GPS系统、北斗导航系统、GLONASS系统、GALILEO系统中的一种或任意多种的组合。
优选的,所述第一天线和所述第二天线所共同接收的卫星包括不同种类定位系统中的卫星。
优选的,所述移动站距离所述基站的最远距离小于等于100千米。
优选的,所述基站包括能量模块,所述能量模块为所述基站提供能量。
本发明的一种实施例中,解决上述技术问题所采用的技术方案是:一种自移动机器人系统,其特征在于,包括自移动机器人和上述任意一个所述的室外机器人的精确定位系统。
本发明的一种实施例中,解决上述技术问题所采用的技术方案是:一种用于室外机器人精确定位的基站,所述基站包括:第一天线、第一控制模块和第一通信模块;所述第一天线通信连接所述第一控制模块,所述第一通信模块通信连接所述第一控制模块;所述第一天线接收卫星定位系统所发射的射频信号,所述第一控制模块接收所述射频信号、处理生成定位参考数据,且将所述定位参考数据传输所述第一通信模块,所述第一通信模块将所述定位参考数据传输给移动站;其中,所述基站包括相互分离的基站本体和天线组件,所述基站本体包括所述第一控制模块和所述第一通信模块,所述天线组件包括壳体以及设置在所述壳体内的所述第一天线,所述第一天线与所述第一控制模块由电缆电性连接;所述基站还包括与所述壳体连接的安装座,所述安装座将所述第一天线安装于设定的位置。
本发明的一种实施例中,解决上述技术问题所采用的技术方案是:一种自移动机器人系统,其特征在于,包括:自移动机器人;设置于所述自移动机器人上的移动站,所述移动站包括第二天线、第二控制模块和第二通信模块;所述第二天线通信连接所述第二控制模块,所述第二通信模块通信连接所述第二控制模块;上述基站。
本发明的一种实施例中,解决上述技术问题所采用的技术方案是:一种用于室外机器人精确定位的基站,所述基站包括:第一天线、第一控制模块和第一通信模块;所述第一天线通信连接所述第一控制模块,所述第一通信模块通信连接所述第一控制模块;所述第一天线接收卫星定位系统所发射的射频信号,所述第一控制模块接收所述射频信号、处理生成定位参考数据,且将所述定位参考数据传输所述第一通信模块,所述第一通信模块将所述定位参考数据传输给移动站;其中,所述基站包括相互分离的基站本体和天线组件,所述基站本体包括所述第一控制模块和所述第一通信模块,所述天线组件包括壳体以及设置在所述壳体内的所述第一天线,所述第一天线与所述第一控制模块由电缆电性连接;所述基站还包括伸缩杆,所述伸缩杆一端连接所述壳体、另一端连接至所述基站本体,所述伸缩杆用于调整所述第一天线的高度位置。
本发明的一种实施例中,解决上述技术问题所采用的技术方案是:一种自移动机器人系统,其特征在于,包括:自移动机器人;设置于所述自移动机器人上的移动站,所述移动站包括第二天线、第二控制模块和第二通信模块;所述第二天线通信连接所述第二控制模块,所述第二通信模块通信连接所述第二控制模块;上述基站。
本发明的一种实施例中,解决上述技术问题所采用的技术方案是:一种用于室外机器人精确定位的基站,所述基站包括:包括第一天线、第一控制模块和第一通信模块;所述第一天线通信连接所述第一控制模块,所述第一通信模块通信连接所述第一控制模块;所述第一天线接收卫星定位系统所发射的射频信号,所述第一控制模块接收所述射频信号、处理生成定位参考数据,且将所述定位参考数据传输所述第一通信模块,所述第一通信模块将所述定位参考数据传输给移动站;其中,所述基站包括天线位置指示装置,所述天线位置指示装置包括用于提醒用户的信息提示单元,在所述第一天线不满足预设条件时,所述信息提示单元输出提醒用户改变所述基站或所述第一天线位置的提示信息。
优选的,所述提示信息包括声信号、光信号或文字信号。
优选的,所述预设条件包括所述第一天线的理想高度或者所述第一天线距离信号遮蔽体的最短距离。
优选的,所述预设条件包括所述第一天线所接收到的卫星数量大于等于预设数量。
本发明的一种实施例中,解决上述技术问题所采用的技术方案是:一种自移动机器人系统,其特征在于,包括:自移动机器人;设置于所述自移动机器人上的移动站,所述移动站包括第二天线、第二控制模块和第二通信模块;所述第二天线通信连接所述第二控制模块,所述第二通信模块通信连接所述第二控制模块;上述基站。
与现有技术相比,本发明的有益效果是:本发明采用天线位置调整装置可调整地设定基站的第一天线的位置,使得基站和移动站共星的数量大于等于预定数量,确保地面差分修正定位始终有效。本发明采用天线位置指示装置,在第一天线不满足预设条件时,天线位置指示装置输出提示信息,有效地提醒用户设定第一天线的位置,使得使得基站和移动站共星的数量大于等于预定数量,确保地面差分修正定位始终有效。
本发明还提供:一种精确定位系统,包括基站和移动站,所述基站上设有第一控制模块、第一通信模块和第三通信模块,所述第一通信模块和所述第三通信模块均连接于所述第一控制模块,所述移动站上设有第二控制模块、与所述第一通信模块通信连接的第二通信模块和与所述第三通信模块通信连接的第 四通信模块,所述第二控制模块均连接于所述第二通信模块和所述第四通信模块,所述第四通信模块与所述第三通信模块的通信连接及所述第二通信模块与所述第一通信模块的通信连接择一地接通,或者所述第四通信模块与所述第三通信模块的通信连接间断地接通,且所述第二通信模块与所述第一通信模块的通信连接连续接通。
优选的,所述第一通信模块和所述第二通信模块为第一类无线通信模块,所述第三通信模块与所述第四通信模块为通信方式异于第一类无线通信模块的第二类无线通信模块。
优选的,所述第一通信模块和所述第二通信模块为无线电电台通信模块。
优选的,所述第三通信模块与所述第四通信模块为移动蜂窝网络通信模块、蓝牙通信模块、wifi通信模块或射频通信模块。
优选的,所述第一控制模块包括第一控制开关,所述第二控制模块包括第二控制开关,所述第一控制开关连接于所述第三通信模块用于控制所述第三通信模块的开启和关闭,所述第二控制模块连接于所述第四通信模块并用于控制所述第四通信模块的开启和关闭。
优选的,所述第一控制模块和所述第二控制模块还用于判断所述第一通信模块与所述第二通信模块的通信是否稳定,当所述第一通信模块与所述第二通信模块的通信不稳定时,所述第一控制开关开启所述第三通信模块,第二控制开关开启所述第四通信模块。
优选的,所述第一控制模块和所述第二控制模块还用于在所述第一通信模块与所述第二通信模块的通信不稳定时,对所述移动站的定位坐标进行校正。
优选的,所述第一通信模块包括第一通信天线,所述第二通信模块包括第二通信天线。
优选的,所述第一通信模块为无线电电台发射器,所述第二通信模块为无线电电台接收器;所述第三通信模块和所述第四通信模块均为移动通信模块。
优选的,所述移动站设于室外机器人,所述基站设于为所述室外机器人充电的充电站。
优选的,所述定位系统包括多个所述移动站,所述基站的所述第一通信模块与每个所述移动站的所述第二通信模块分别通信连接,所述基站的所述第三 通信模块与每个所述移动站的所述第四通信模块分别通信连接。
本发明还提供:一种自动工作系统,其包括室外机器人和上述任一项所述的定位系统,所述定位系统的所述移动站设于所述室外机器人。
优选的,所述自动工作系统包括多个所述室外机器人,多个所述室外机器人上的所述移动站分别与所述定位系统的所述基站通信连接。
优选的,所述自动工作系统还包括充电站,所述定位系统的所述基站设于所述充电站。
本发明还提供:一种室外机器人,所述室外机器人上设有移动站,所述移动站包括第二控制模块、第二通信模块和第四通信模块,所述第二控制模块均连接于所述第二通信模块和所述第四通信模块,所述第二通信模块和所述第四通信模块择一工作实现与基站的通信连接,或者所述第二通信模块连续工作,且所述第四通信模块间断工作。
优选的,所述第二通信模块为无线电电台通信模块,所述第四通信模块为移动蜂窝网络通信模块、蓝牙通信模块、wifi通信模块或射频通信模块。
优选的,所述第二控制模块包括第二控制开关,用于控制所述第四通信模块的开启和关闭。
优选的,所述第二通信模块包括第二通信天线。
本发明还提供:一种导航系统,包括基站和可在工作区域内移动的室外机器人,所述室外机器人安装有卫星导航装置,还包括:设置于所述室外机器人与所述基站之间的信号中继器,用于接收所述基站发送的偏差修正数并将所述偏差修正数发送至所述卫星导航装置;所述卫星导航装置用于在接收到所述偏差修正数后根据所述偏差修正数控制所述室外机器人的移动。
以上所述导航系统,在工作区域与基站之间设置信号中继器,基站产生的修正数可经信号中继器发送至室外机器人,使室外机器人及时接收修正数,准确定位其自身的定位坐标,按照指定的路径移动,避免路径误差并提高割草效率。
优选的,所述基站包括:信号接收模块,用于接收卫星信号;计算模块,用于根据所述信号接收模块接收的卫星信号计算对应的偏差修正数;以及信号发送模块,用于将所述偏差修正数发送出去。
优选的,所述信号中继器包括:中转接收模块,用于接收信号发送模块发送的偏差修正数;信号放大模块,用于将所述中转接收模块接收的包含所述偏差修正数的信号进行放大;及转发模块,用于将偏差修正数转发出去。
优选的,所述卫星导航装置包括:导航接收模块,用于接收所述转发模块发送的偏差修正数;定位模块,用于根据所述偏差修正数定位所述室外机器人的位置坐标;控制模块,用于根据所述位置坐标控制所述室外机器人移动。
优选的,所述卫星信号包括GPS信号和北斗导航信号、欧洲的Galileo信号、俄罗斯的Glonass信号等。
优选的,所述信号中继器设置于所述工作区域内。
优选的,所述信号中继器位于所述卫星导航装置和基站之间。
优选的,所述基站的海拔高度高于所述卫星导航装置的海拔高度。
优选的,所述基站具有固定的位置。
附图说明
以上所述的本发明的目的、技术方案以及有益效果可以通过下面附图实现:
图1是本发明的精确定位系统的模块示意图。
图2是图1所示精确定位系统应用场景示意图。
图3是本发明的第一实施例的基站模块示意图。
图4是图3所示实施例的基站的布置场景示意图。
图5是本发明的一实施例的安装座结构模块图及其与其他模块的连接关系示意图
图6是本发明的第二实施例的基站的布置场景示意图。
图7是图6所示实施例的安装支架结构示意图。
图8是本发明的第三实施例的基站的布置场景示意图。
图9是本发明的第四实施例的基站模块示意图。
图10是图9所示实施例的基站的布置场景示意图。
图11是本发明的第五实施例的基站模块示意图。
图12是本发明的第六实施例的基站模块示意图。
图13是本发明的第七实施例的示意图;
图14是图13所示定位系统的部分结构示意图;
图15是本发明的第七实施例的定位系统的定位方法的流程图。
图16是本发明的第九实施例的示意图。
具体实施方式
图1是本发明的精确定位系统的模块示意图。如图1所示,精确定位系统包括基站100和移动站200。基站100接收卫星定位系统(S1、S2、S3…Sn)所发射的射频信号,并且将该射频信号处理生成定位参考数据传输给移动站200。移动站200接收卫星定位系统(S1、S2、S3…Sn)所发射的射频信号和基站100所传输的定位参考数据,处理并获得移动站的精确定位数据。
在本实施例中,基站100包括第一天线110、第一通信模块120、第一控制模块130。第一控制模块130分别与第一天线110和第一通信模块120通信连接。第一天线110用于接收卫星定位系统(S1、S2、S3…Sn)所发射的射频信号,并且传输给第一控制模块130。第一控制模块130基于所接收的射频信号处理生成定位参考数据。第一控制模块130通过第一通信模块120将定位参考数据无线传输给移动站200。
移动站200包括第二天线210、第二通信模块220、第二控制模块230。第二控制模块230分别与第二天线210和第二通信模块220通信连接。移动站200通过第二天线210接收卫星定位系统(S1、S2、S3…Sn)所发射的射频信号,并且传输给第二控制模块230。移动站200通过第二通信模块220接收基站100所传输的定位参考数据并且传输给第二控制模块230。第二控制模块230根据定位参数数据和第二天线210所接收的射频信号按照预定算法处理获得移动站200的精确定位数据。预定算法为DGPS系统中常用的差分定位算法,具体如伪距定位算法、载波相位定位算法等。
图2是图1所示精确定位系统应用场景示意图。在本实施例中,精确定位系统应用于室外机器人400的定位场景。室外机器人400具体为智能割草机、智能洒水车、智能多功能移动平台等自移动和自工作机器人。移动站200设置在室外机器人400上,跟随室外机器人400移动,用于精确定位室外机器人400的位置。基站100可固定设置在室外机器人400的工作区域3内的某一位置。在本实施例中,为了确保定位系统的高精度,室外机器人400在工作区域内移动的过程中,移动站200离基站100的最远距离小于等于100千米。在本实施 例中,室外机器人400具体为一智能割草机、工作区域3具体为用户的庭院区域。精确定位系统主要用于辅助智能割草机在庭院区域内进行定位,进而智能割草机能够识别庭院区域的边界、智能割草机能够在庭院区域内实施路径规划等与定位相关的功能。在庭院区域内,通常存在房屋、树木、灌木丛等信号遮蔽体1,从而影响基站100或/和移动站200对卫星定位系统的信号接收范围,对移动站200或/和基站100所固有的卫星接收角度形成遮挡或部分遮挡。在本发明中,以庭院区域中常见的房屋作为信号遮蔽体1为例进行阐述。
第一天线110具有固定的接收角度,卫星定位系统中的卫星S1、S2、S3…Sn只有运行至第一天线110的接收角度范围之内,第一天线110才能接收到处于该接收角度范围之内的卫星所发射的射频信号。继续参考图1和图2。在该实施例中,基站100还包括天线位置调整装置140。天线位置调整装置140可调整地设置第一天线110的位置。通过天线位置调整装置140的调整,可避免信号遮蔽体1对第一天线110对卫星定位系统中的信号接收范围的遮挡情况,从而使得室外机器人400在工作区域3内的大部分位置移动的过程中,移动站200的第二天线210和基站100的第一天线110共同接收卫星定位系统中的卫星数量大于等于预定数量。
卫星定位系统包括美国系统GPS(全球定位系统),俄罗斯系统GLONASS(全球轨道导航卫星系统),欧洲的GALILEO(伽利略系统)或中国的北斗系统中的一种或者任意多种的组合。在本发明的实施例中,第一天线110和第二天线210所接收信号的共星可以为上述卫星定位系统中任意一个相同卫星所发射的射频信号。
在该实施例中,移动站200的第二天线210和基站100的第一天线110共同接收卫星定位系统中的卫星数量至少大于等于4颗,优选的共星数量为6颗。
继续参考图2,在该实施例中,室外机器人400的工作系统一般在庭院区域配备为室外机器人400提供电能的充电站。正常庭院场景中,由于充电站的电源一般需要从用户房屋牵出,为了避免牵过长的电源线所引入的麻烦,充电站通常设置在房屋附近1米左右或之内。
在本实施例中,为了解决基站100的能量需求,基站100设置在充电站处。充电站提供基站100的能量需求。移动站200的能量需求由室外机器人400所 携带的能量单元提供。在基站100设置在充电站处的实施例中,第一控制模块130可以集成至充电站上的控制模块上;第一通信模块120可以与充电站的无线通信模块共用。
图3是本发明的第一实施例的基站模块示意图。如图3所示,在该实施例中,天线位置调整装置140具体包括安装座141。基站100包括天线组件103,与天线组件103连接且用于固定天线组件103位置的安装座141,与天线组件103分离设置的基站本体101,连接于天线组件103与基站本体101之间的电缆150。在该实施例中,天线组件103包括第一天线110和壳体112,第一天线110设置在壳体112内。安装座141与壳体112连接,用于调整第一天线110的位置。基站本体101包括第一控制模块130和第一通信模块120。第一天线110和第一控制模块130通过电缆150电性连接。优选的,电缆150具有抗干扰的屏蔽层。电缆150的具体长度视第一天线110离基站本体101的具体距离而定。
图4是图3所示实施例的基站的布置场景示意图。如图4所示,基站本体101设置在充电站处,天线组件103通过安装座141安装至信号遮蔽体1的设定位置处。根据天线组件103的自身高度及信号遮蔽体1的具体情形,设定位置可相应性地变化,只需第一天线110的接收角度范围不再受到信号遮蔽体1的遮挡即可。在该实施例中,设定位置位于信号遮蔽体1的顶部,即房屋的屋顶。
图5是本发明的一实施例的安装座结构模块图及其与其他模块的连接关系示意图。如图5所示,安装座141包括安装单元1411,以及与安装单元1411相连的座连单元1413。安装单元1411主要用于配接至信号遮蔽体1上,具体结构为常见的安装结构,如吸盘结构、挂架结构、卡扣结构、螺钉固定结构或其他可以进行固定位置安装的结构。座连单元1413主要作为中间桥梁,连接安装单元1411和内设第一天线110的壳体112。座连单元1413的具体结构可根据安装结构不同而适应性地变化。
在该实施例中,通过安装座141将第一天线110安装在设定位置,使得信号遮蔽体1不再对第一天线110的接收范围造成遮蔽。该方案有效地提高了移动站200和基站100之间的共星概率,使得两者的共星数量能够达到预定数量,从而满足差分定位算法所需的共星条件,提高高精度定位系统的可靠性和精确 性。
图6是本发明的第二实施例的基站100的布置场景示意图,与第一实施例的差异在于,设定位置位于信号遮蔽体1的墙体外侧,即房屋的外墙上。壳体112包括安装支架610,安装支架610的一端与安装座141连接,另一端与第一天线110连接,使第一天线110由墙体外侧向外且向上延伸,以使第一天线110的接收角度范围不受到信号遮蔽体1的遮挡。
本实施例中,安装支架610连接安装座141的一端固定,具体的,由支架墙体固定片620固定。安装支架610包括向外延伸的第一部分611和向上延伸的第二部分612,呈L型。安装支架610还包括调节机构613,第二部分612通过调节机构613相对第一部分611转动。具体参考图7,调节机构613为支架活动关节,安装支架610的第一部分611由支架墙体固定片620固定于墙体,向房屋外侧延伸。安装支架610的第二部分612连接第一天线110,第二部分612可通过支架活动关节相对第一部分611转动,通过调节第二部分612相对第一部分611的倾斜角度,可调节第一天线110的接收角度,如此使得第一天线110的安装更灵活,能够适应不同形状的信号遮蔽体1。
如图8所示,本发明的第三实施例中,安装支架610包括至少两个子支架,子支架首尾相连。具体的,安装支架610包括两个L型的子支架,即第一子支架614和第二子支架615,子支架之间能够通过配接结构616互连。多个子支架互连使得第一天线110能够进一步向外且向上延伸,从而能够更好的接收卫星信号。
图9是本发明的第四实施例的基站模块示意图。在该实施例中,天线位置调整装置140具体包括伸缩杆143。伸缩杆143可伸缩地调整自身高度。基站100包括天线组件103,与天线组件103分离设置的基站本体101,物理连接于天线组件103和基站本体101之间的伸缩杆143,电性连接于天线组件103与基站本体101之间的电缆150。天线组件103包括第一天线110和壳体112,第一天线110设置在壳体112内。基站本体101包括第一控制模块130和第一通信模块120。第一天线110和第一控制模块130通过电缆150电性连接。伸缩杆143一端连接壳体112,另一端连接基站本体101。优选的,天线位置调整装置140还包括高度调节机构145。高度调节机构145与伸缩杆143连接,可调 节地设定伸缩杆143的高度。伸缩杆143具体可以为多连接杆结构、多伸缩套杆结构或其他高度可变的结构杆。高度调节机构145可以为螺母锁紧结构、凸凹锁定配合结构或其他可调节锁紧结构。
图10是图9所示实施例的基站的布置场景示意图。如图10所示,基站本体101和天线组件103都设置在充电站处。根据信号遮蔽体1的高度h1、第一天线的接收角度α以及基站本体101距离信号遮蔽体1的水平距离d1,伸缩杆143可设定至理想高度。具体的计算公式如下所示:h2=h1-d1*cotβ,其中β=(180°-α)/2。伸缩杆143的高度按照上述设置成h2,则可使得信号遮蔽体1不再对第一天线110的接收角度范围造成遮蔽。优选的,伸缩杆143的最大高度大于等于0.5米,具体可以为7米、10米等。
在另一实施例中,在伸缩杆143的高度固定时,根据信号遮蔽体1的高度h1、第一天线的接收角度α,天线组件103可以设置至离信号遮蔽体的理想水平距离。具体的计算公式如下所示:d1=(h1-h2)*cotβ,其中β=(180°-α)/2。天线组件103按照上述公式设定至大于等于d1的理想水平距离位置处,则可使得信号遮蔽体1不再对第一天线110的接收角度范围造成遮蔽。
图11是本发明的第五实施例的基站模块示意图。如图11所示,在该实施例中,基站100还包括能源模块160。能源模块160解决基站100的能量需求。能源模块160可以为太阳能转换器,通过接收太阳能并且将太阳能转换成基站100所需的能量。能量模块160也可为电池,如镍镉电池、锂电池、干电池等便携式电能设备。当然,能源模块160可以同时包括太阳能转换器、便携式电能设备。
在该实施例中,基站100具备自己的能源提供模块。基站100无需如图3至图5所示实施例通过天线组件和基站本体进行分离式设计,如图11所示的基站100可以整体式设计。整体式基站100由天线位置调整装置140安装至充电站以外的位置。如图3至图5所示实施例,通过天线组件和基站本体进行分离式设计的基站100,基站本体101不再受限于由充电站提供能量需求,基站本体101可以设置在充电站以外的位置。
具体地,基站100通过天线位置调整装置140设置在信号遮蔽体1的设定位置处。参考图3和图4实施例,基站100通过安装座141安装至信号遮蔽体 1的设定位置。设定位置具体的选择规则如同上文所述。
具体地,参考上述天线组件103的理想水平距离设置的实施例,基站100在无伸缩杆143或伸缩杆143高度固定时,基站100可采用计算公式d1=(h1-h2)*cotβ,其中β=(180°-α)/2,设定在离信号遮蔽体1的理想水平距离处。当然,在该实施例中,基站100已不受能源提供的限制,其设定在工作区域的位置更加灵活,可以为远离信号遮蔽体1的某一位置。
图12是本发明的第六实施例的基站模块示意图。基站100包括第一天线110、第一通讯模块120、第一控制模块130和天线位置显示装置170。天线位置显示装置170包括用于提醒用户的信息提示单元,在第一天线110的位置不满足预设条件时,信息提示单元输出提醒用户改变所述基站位置或所述第一天线位置的提示示信息。
预设条件具体可以为第一天线110的理想高度。基站100包括高度传感器,用于检测第一天线110的实际高度。第一控制模块130预设理想高度值或理想高度值范围或者预设理想高度计算公式,比较实际高度是否符合理想高度值或理想高度值范围,当比较结果不满足时,信息提示单元输出提示信息。
预设条件具体可以为第一天线110距离信号遮蔽体1的理想水平距离。基站100包括水平距离传感器,用于检测第一天线110离信号遮蔽体1的实际水平距离。第一控制模块130预设理想水平距离值或理想水平距离值范围或者预设理想水平距离计算公式,比较实际水平距离是否符合理想水平距离值或理想水平距离值,当比较结果不满足时,信息提示单元输出提示信息。
预设条件具体可以为第一天线110所能接收到卫星定位系统中卫星的个数。当卫星的个数不足预设数量时,信息提示单元输出提示信息。
信息提示单元输出的提示信息可以为声信号、光信号或者文字信号或者三者组合。天线位置显示装置170通过发出提示信息可以提醒用户第一天线110所设置的位置是否合适。当第一天线110的接收角度被信号遮蔽体1遮挡,容易降低移动站和基站共星数量的概率时,天线位置显示装置170发出提示信息。当提示信息为文字信号时,文字信号包括第一天线110的理想高度值或者第一天线110距离信号遮蔽体的理想水平距离。用户可按照文字信号所显示的内容,选取第一天线110或者基站100的安装位置。
基站100设有天线位置指示装置的实施例,可以与本文所述基站100设有天线位置调整装置的实施例和基站100设有能源模块的实施例,结合形成相应新的实施例。由于新的实施例的安装原理及结构,提示信息结构及原理与上文单独的实施例类似,本文不再赘述。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在两者之间的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在两者之间的元件。
请参阅图13和图14,本发明第七实施例中的定位系统包括基站100和移动站200,基站100上设有第一控制模块130、第一通信模块120和第三通信模块320,第一通信模块120和第三通信模块320均连接于第一控制模块130,移动站200上设有第二控制模块230、与第一通信模块120通信连接的第二通信模块220和与第三通信模块320通信连接的第四通信模块420,第二控制模块230均连接于第二通信模块220和第四通信模块420,第四通信模块420与第三通信模块320的通信连接及第二通信模块220与第一通信模块120的通信连接择一地接通,或者第四通信模块420与第三通信模块320的通信连接间断地接通,且第二通信模块220与第一通信模块120的通信连接连续接通,以确定移动站200的位置。该定位系统在定位过程中,基站100和移动站200从卫星获取坐标信息,并通过将第一通信模块120与第二通信模块220或第三通信模块320与第四通信模块420的通信连接,移动站200获得基站100的坐标信息,并通过计算得到移动站200的精确坐标,实现定位。具体地,第一控制模块130和第二控制模块230可为PLC或单片机,并可通过第二控制模块230计算移动站200的精确坐标;具体地,基站100为DGPS基站,移动站200为DGPS移动站。
本定位系统中,由于可选择第四通信模块420与第三通信模块320的通信连接或第二通信模块220与第一通信模块120的通信连接,因此可根据实际情况使用相应的通信方式,保证通信质量,可提高定位精度。
在本实施例中,基站100还包括获取基站100的上述坐标信息的第一定位模块,移动站200还包括获取移动站200的上述坐标信息的第二定位模块。具 体地,第一定位模块和第二定位模块均为GPS模块,以分别获取基站100和移动站200的坐标信息,基站100的坐标信息通过第一通信模块120或第三通信模块320发送给移动站200。
在本实施例中,第一通信模块120和第二通信模块220为第一类无线通信模块,第三通信模块320与第四通信模块420为通信方式异于第一类无线通信模块的第二类无线通信模块。具体地,第一通信模块120和第二通信模块220为无线电电台通信模块;第三通信模块320与第四通信模块420为移动蜂窝网络通信模块、蓝牙通信模块、wifi通信模块或射频通信模块等通信模块。具体地,第三通信模块320与第四通信模块420可为2G、3G或4G移动通信模块。由于无线电电台通信的方式进行数据传输时,在空旷的环境下进行小范围大量数据传输时具有成本低的优点,但无线电电台信号传输时遇到信号遮蔽体1会衰减,基站100与移动站200的通信由于信号衰减的原因导致数据通信不稳定,导致定位精度降低,而移动通信传输距离远,障碍物穿透能力强,但大量数据传输时成本较高。本定位系统在正常通信时采用无线电电台通信模式,当无线电电台通信因信号遮蔽体1等原因通信不稳定时,可切换为移动蜂窝网络通信,既降低了通信成本,又提高了定位精度。
可以理解,智能割草机的生产商或经销商可提供上述第二类无线通信模块实现通信的非无线电电台的通信网络,使得位于该通信网络下的基站100能够与移动站200通过第三通信模块320和第四通信模块420实现通信。
在本实施例中,第一控制模块130包括第一控制开关,第二控制模块230包括第二控制开关,第一控制开关连接于第三通信模块320用于控制第三通信模块320的开启和关闭,第二控制模块230连接于第四通信模块420并用于控制第四通信模块420的开启和关闭。具体地,当第一通信模块120与第二通信模块220的通信不稳定时,第一控制开关开启第三通信模块320,第二控制开关开启和第四通信模块420使其与第三通信模块320通信连接;当第一通信模块120与第二通信模块220的通信稳定时,第一控制开关关闭第三通信模块320,第二控制开关关闭第四通信模块420使其与第三通信模块320通信断开。可以理解,第一控制开关和第二控制开关还可在开启第三通信模块320和第四 通信模块420的同时分别关闭第一通信模块120与第二通信模块220,在关闭第三通信模块320和第四通信模块420的同时分别开启第一通信模块120与第二通信模块220。可以理解,第一通信模块120与第二通信模块220也可始终不关闭。
在本实施例中,第一控制模块130和第二控制模块230还用于判断第一通信模块120与第二通信模块220的通信是否稳定。具体地,第一控制模块130可连接于第一通信模块120,第二控制模块230可连接于第二通信模块220,当第一通信模块120(或第二通信模块220)感应不到第二通信模块220(或第一通信模块120)的信号,或信号较弱时,第一控制模块130和第二控制模块230判断通信不稳定,此时即可控制第一控制开关和第二控制开关分别开启第三通信模块320和第四通信模块420。
在本实施例中,第一控制模块130和第二控制模块230还用于在第一通信模块120与第二通信模块220的通信不稳定时,对移动站200的定位坐标进行校正。
请参阅图14,在本实施例中,第一通信模块120包括第一通信天线121,第二通信模块220包括第二通信天线221。具体地,第一通信模块120为无线电电台发射器,第二通信模块220为无线电电台接收器。具体地,第三通信模块320和第四通信模块420均为移动蜂窝网络通信模块、蓝牙通信模块、wifi通信模块或射频通信模块,通过非无线电电台的网络进行通信。更具体地,第三通信模块320和第四通信模块420均为2G、3G或4G移动蜂窝网络通信模块,其包括SIM卡。工作时,第一通信模块120通过第一通信天线121发送无线电电台信号,第二通信模块220通过第二通信天线221接收该无线电电台信号,移动站200通过第一通信模块120和第二通信模块220根据该无线电电台信号定位,当移动站200到达有信号遮蔽体1的位置时,无线电电台信号衰减严重或被阻隔,第二通信模块220接收的无线电电台信号不稳定或接收不到无线电电台信号,导致移动站200的定位不精确,这时,第一控制开关和第二控制开关分别开启第三通信模块320和第四通信模块420,通过2G、3G或4G网络通信的方式通信,对移动站200的定位坐标进行校正,提高定位精度。当第 二通信模块220接收到正常的无线电电台信号时,第一控制开关和第二控制开关分别关闭第三通信模块320和第四通信模块420。
可以理解,第三通信模块320也可包括第三通信天线,第四通信模块420也可包括第四通信天线。工作时,第三通信模块320通过第三通信天线发送信号,第四通信模块420通过第四通信天线接收信号。
在另一实施例中,定位系统包括多个移动站200,基站100的第一通信模块120与每个移动站200的第二通信模块220分别通信连接,基站100的第三通信模块320与每个移动站200的第四通信模块420分别通信连接。具体地,在一定范围内(例如一个小区)的用户共用同一个基站100,多个用户的移动站200分别与该基站100通信连接,实现一个基站100同时与多个移动站200配合进行定位,降低了整个定位系统的成本。
在本实施例中,移动站200设于室外移动机器人400,定位系统的基站100设于用于为室外移动机器人400充电的充电站。具体地,室外移动机器人400可为智能割草机。
本发明还提供一种自动工作系统,其包括室外移动机器人400和上述定位系统,定位系统的移动站200设于室外移动机器人400。
在另一实施例中,自动工作系统可包括多个室外移动机器人400,多个室外移动机器人400上的移动站200分别与定位系统的基站100通信连接。具体地,在一定范围内(例如一个小区)的用户共用同一个基站100,多个用户的室外移动机器人400的移动站200分别与该基站100通信连接,实现一个基站100同时与多个室外移动机器人400配合进行定位,降低了整个自动工作系统的成本。
在另一实施例中,自动工作系统还包括充电站,定位系统的基站100设于充电站。
本发明还提供一种室外移动机器人400,室外移动机器人400上设有上述移动站200,移动站200包括第二控制模块230、第二通信模块220和第四通信模块420,第二控制模块230均连接于第二通信模块220和第四通信模块420,第二通信模块220和第四通信模块420择一工作实现与基站100的通信连接, 或者第二通信模块220连续工作,且第四通信模块420间断工作。
本室外移动机器人400中,由于可选择第四通信模块420或第二通信模块220工作,因此可根据实际情况使用相应的通信方式,保证通信质量,可提高定位精度。
在本实施例中,移动站200还包括获取移动站200的上述坐标信息的第二定位模块。具体地,第二定位模块为GPS模块,以获取移动站200的坐标信息。
本实施例中,第二通信模块220为无线电电台通信模块,第四通信模块420为移动蜂窝网络通信模块、蓝牙通信模块、wifi通信模块或射频通信模块等通信模块。具体地,第四通信模块420可为2G、3G或4G移动通信。由于无线电通信的方式进行数据传输时,在空旷的环境下进行小范围大量数据传输时具有成本低的优点,但无线电电台信号传输时遇到信号遮蔽体1会衰减,基站100与移动站200的通信由于信号衰减的原因导致数据通信不稳定,导致定位精度降低,而移动通信传输距离远,障碍物穿透能力强,但大量数据传输时成本较高。本定位系统在正常通信时采用无线电电台通信模式,当无线电电台通信因信号遮蔽体1等原因通信不稳定时,可切换为移动蜂窝网络通信,既降低了通信成本,又提高了定位精度。
本实施例中,第二控制模块230包括第二控制开关,用于控制第四通信模块420的开启和关闭。具体地,第二通信模块220的通信不稳定时,第二控制开关开启第四通信模块420工作。
在本实施例中,第二控制模块230还用于判断第二通信模块220的通信是否稳定。具体地,第二通信模块220感应不到信号,或信号较弱时,第二控制模块230判断通信不稳定,此时即可控制第二控制开关开启第四通信模块420。
在本实施例中,第二控制模块230还用于在第二通信模块220的通信不稳定时,对移动站200的定位坐标进行校正。
在本实施例中,第二通信模块220包括第二通信天线221。具体地,第二通信模块220为无线电电台接收器。具体地,第四通信模块420为移动通信模块。
请参阅图15,本发明还提供一种定位系统的定位方法,定位系统包括基站 100和移动站200,基站100上设有第一通信模块120和第三通信模块320,移动站200上设有第二通信模块220和第四通信模块420,该定位系统的定位方法包括:
S1100,开启第一通信模块120和第二通信模块220通信连接基站100和移动站200;
S1200,判断第一通信模块120和第二通信模块220的通信是否稳定;
若是,返回步骤S1200;若否,执行步骤S1300:开启第三通信模块320和第四通信模块420通信连接基站100和移动站200。
进一步地,该定位系统的定位方法还包括步骤S1300之后的步骤S1400和步骤S1500,步骤S1400为判断第一通信模块120和第二通信模块220的通信是否稳定;若否,返回S1400,若是,执行步骤S1500:关闭第三通信模块320和第四通信模块420,采用第一通信模块120和第二通信模块220通信连接基站100和移动站200。
进一步地,在步骤S1300中,开启第三通信模块320和第四通信模块420时对所述移动站200的定位坐标进行校正。
进一步地,S1300步骤还包括:关闭第一通信模块120和第二通信模块220。当然,由于第一通信模块120和第二通信模块220的通信成本并不高,因此开启第三通信模块320和第四通信模块420的同时也可不关闭第一通信模块120和第二通信模块220。
本发明还提供第八实施例的定位系统,在第八实施例中,定位系统与第七实施例中的定位系统的区别在于,其不包括第一通信模块120和第二通信模块220。也就是说,定位系统包括基站100和移动站200,基站100上设有第一控制模块130和第三通信模块320,第三通信模块320连接于第一控制模块130,移动站200上设有第二控制模块230和与第三通信模块320通信连接的第四通信模块420,第二控制模块230连接于第四通信模块420,第四通信模块420与第三通信模块320的通信连接,以确定移动站200的位置。该定位系统在定位过程中,基站100和移动站200从卫星获取坐标信息,并通过将第三通信模块320与第四通信模块420的通信连接,移动站200获得基站100的坐标信息, 并通过计算得到移动站200的精确坐标,实现定位。具体地,第一控制模块130和第二控制模块230可为PLC或单片机,并可通过第二控制模块230计算移动站200的精确坐标;具体地,基站100为DGPS基站,移动站200为DGPS移动站。
在本实施例中,第三通信模块320与第四通信模块420为移动蜂窝网络通信模块、蓝牙通信模块、wifi通信模块或射频通信模块等通信模块。更具体地,第三通信模块320与第四通信模块420可为2G、3G或4G移动通信。本实施例中,由于第三通信模块320与第四通信模块420采用2G、3G或4G移动通信,传输距离远,障碍物穿透能力强,即使遇到障碍物也能保证定位精度。
本实施例中,第三通信模块320可包括第三通信天线,第四通信模块420可包括第四通信天线。工作时,第三通信模块320通过第三通信天线发送信号,第四通信模块420通过第四通信天线接收信号。
在本实施例中,定位系统包括多个移动站200,基站100的第三通信模块320与每个移动站200的第四通信模块420分别通信连接。
在本实施例中,移动站200设于室外移动机器人400,定位系统的基站100设于用于为室外移动机器人400充电的充电站。具体地,室外移动机器人400可为智能割草机。
本发明还提供另一实施例的自动工作系统,其包括室外移动机器人400和第八实施例的定位系统,定位系统的移动站200设于室外移动机器人400。
在另一实施例中,自动工作系统可包括多个室外移动机器人400,多个室外移动机器人400上的移动站200分别与定位系统的基站100通信连接。
在另一实施例中,自动工作系统还包括充电站,定位系统的基站100设于充电站。
本发明还提供另一实施例的室外移动机器人400,室外移动机器人400上设有移动站200,移动站200包括第二控制模块230和第四通信模块420,第二控制模块230连接于第四通信模块420,第四通信模块420与基站100的通信连接。
在本实施例中,第四通信模块420为移动蜂窝网络通信模块、蓝牙通信模 块、wifi通信模块或射频通信模块等通信模块。更具体地,第四通信模块420可为2G、3G或4G移动通信。本实施例中,由于第四通信模块420采用2G、3G或4G移动通信,传输距离远,障碍物穿透能力强,即使遇到障碍物也能保证定位精度。
本实施例中,第四通信模块420可包括第四通信天线。工作时,第四通信模块420通过第四通信天线接收信号。
如图16所示,本发明第九实施例中,本实施例的导航系统包括基站100和可在工作区域内(即边界线300内)移动的室外移动机器人400,室外移动机器人400安装有卫星导航装置,其中,导航系统还包括:
设置于室外移动机器人400与基站100之间的信号中继器500,用于接收基站100发送的偏差修正数并将偏差修正数发送至卫星导航装置;
卫星导航装置用于在接收到偏差修正数后根据偏差修正数控制智能割草机的移动。
以上导航系统,在工作区域与基站之间设置信号中继器,基站产生的修正数可经信号中继器发送至智能割草机,使智能割草机及时接收修正数,准确定位其自身的定位坐标,按照指定的路径移动,避免路径误差并提高割草效率。
信号中继器500可以设置在工作区域(边界线300)内,通常信号中继器位于所述卫星导航装置和基站之间,且信号中继器与卫星导航装置之间、信号中继器与基站之间均没有障碍物,以保障信号中继器500可以稳定地接收基站100发送的信号,并可稳定地向室外移动机器人400发送稳定的信号。
其中,基站100包括有:信号接收模块,用于接收卫星信号;计算模块,用于根据信号接收模块接收的卫星信号计算对应的偏差修正数;以及信号发送模块,用于将偏差修正数发送出去。通常,为便于偏差修正数的发送,基站的海拔高度高于卫星导航装置的海拔高度,且基站具有固定的位置。
信号中继器500起到将基站发射的信号转发至智能割草机的作用,可以将基站发送的包含修正数的信号无损地发送至智能割草机的导航接收模块,为此,信号中继器包括:中转接收模块,用于接收信号发送模块发送的偏差修正数;信号放大模块,用于将中转接收模块接收的包含所述偏差修正数的信号进行放大;及转发模块,用于将偏差修正数转发出去。
智能割草机的卫星导航装置在接收到修正数后,需要根据修正数准确定位自身的坐标位置,使智能割草机准确移动,提高割草效率,为此,卫星导航装置包括:导航接收模块,用于接收转发模块发送的偏差修正数;定位模块,用于根据偏差修正数定位智能割草机的位置坐标;控制模块,用于根据位置坐标控制智能割草机移动。
本实施例中,卫星信号可以为GPS信号、北斗导航信号、欧洲的Galileo信号、俄罗斯的Glonass信号等等导航定位信号。
本发明不局限于所举的具体实施例结构,基于本发明构思的结构和方法均属于本发明保护范围。

Claims (41)

  1. 一种室外机器人的精确定位系统,包括:
    基站,包括第一天线、第一控制模块和第一通信模块;所述第一天线通信连接所述第一控制模块,所述第一通信模块通信连接所述第一控制模块;
    设置于所述机器人上的移动站,包括第二天线、第二控制模块和第二通信模块;所述第二天线通信连接所述第二控制模块,所述第二通信模块通信连接所述第二控制模块;
    所述第一天线接收卫星定位系统所发射的射频信号,所述第一控制模块接收所述第一天线接收到的射频信号、处理生成定位参考数据,且将所述定位参考数据传输给所述第一通信模块,所述第一通信模块将所述定位参考数据传输给所述移动站;
    所述第二通信模块接收所述定位参考数据,并将所述定位参考数据传输给所述第二控制模块,所述第二天线接收卫星定位系统所发射的射频信号且将所接收的射频信号传输给所述第二控制模块,所述第二控制模块根据所述定位参考数据和所述第二天线接收的射频信号按照预定算法获得所述移动站的精确定位数据;
    其特征在于,所述基站包括天线位置调整装置,所述天线位置调整装置可调整地设定所述第一天线的位置,使得所述机器人在室外的工作区域内至少大部分位置移动的过程中,所述移动站的第二天线和所述基站的第一天线共同接收所述卫星定位系统中的卫星数量大于等于预定数量。
  2. 根据权利要求1所述的室外机器人的精确定位系统,其特征在于,所述预定数量包括大于等于4。
  3. 根据权利要求2所述的室外机器人的精确定位系统,其特征在于,所述预定数量为6。
  4. 根据权利要求1所述的室外机器人的精确定位系统,其特征在于,所述基站包括相互分离的基站本体和天线组件,所述基站本体包括所述第一控制模块和第一通信模块,所述天线组件包括壳体和所述第一天线,所述第一天线与所述第一控制模块由电缆电性连接。
  5. 根据权利要求4所述的室外机器人的精确定位系统,其特征在于,所述天线位置调整装置包括安装座,所述安装座与所述壳体连接,所述安装座将所述第一天线安装于设定的位置。
  6. 根据权利要求5所述的室外机器人的精确定位系统,其特征在于,所述设定 的位置包括墙体外侧。
  7. 根据权利要求6所述的室外机器人的精确定位系统,其特征在于,所述壳体包括安装支架,所述安装支架的一端与所述安装座连接,另一端与所述第一天线连接,使所述第一天线由墙体外侧向外且向上延伸。
  8. 根据权利要求7所述的室外机器人的精确定位系统,其特征在于,所述安装支架包括至少两个子支架,所述子支架首尾相连。
  9. 根据权利要求7所述的室外机器人的精确定位系统,其特征在于,所述安装支架包括向外延伸的第一部分和向上延伸的第二部分,以及调节机构,所述第二部分通过所述调节机构相对所述第一部分转动。
  10. 根据权利要求7所述的室外机器人的精确定位系统,其特征在于,所述安装支架连接安装座的一端固定。
  11. 根据权利要求7所述的室外机器人的精确定位系统,其特征在于,所述安装支架呈L型。
  12. 根据权利要求5所述的室外机器人的精确定位系统,其特征在于,所述安装座包括吸盘结构、挂架结构、卡扣结构、螺钉固定结构中的至少一种。
  13. 根据权利要求4所述的室外机器人的精确定位系统,其特征在于,所述天线位置调整装置为伸缩杆,所述伸缩杆一端连接所述壳体、另一端连接至所述基站本体。
  14. 根据权利要求13所述的室外机器人的精确定位系统,其特征在于,所述伸缩杆设有高度调节结构,所述高度调节结构可调节地设定所述伸缩杆的高度。
  15. 根据权利要求13所述的室外机器人的精确定位系统,其特征在于,所述伸缩杆的最大高度大于等于0.5米。
  16. 根据权利要求1所述的室外机器人的精确定位系统,其特征在于,所述基站包括天线位置指示装置,所述天线位置指示装置包括用于提醒用户的信息提示单元,在所述第一天线不满足与所述第二天线达到共星的预设数量时,所述信息提示单元输出提醒用户改变所述基站位置或所述第一天线位置的提示信息。
  17. 根据权利要求16所述的室外机器人的精确定位系统,其特征在于,所述提示信息包括声信号、光信号或文字信号。
  18. 根据权利要求17所述的室外机器人的精确定位系统,其特征在于,所述文字信号包括所述第一天线的理想高度值或/和所述第一天线距离信号遮蔽体的理想水平距离值。
  19. 根据权利要求1所述的室外机器人的精确定位系统,其特征在于,所述基站 集成在为所述室外机器人提供电能的充电站上。
  20. 根据权利要求1所述的室外机器人的精确定位系统,其特征在于,所述第二控制模块设置差分定位算法,由所述差分定位算法计算获知所述移动站相对所述基站的高精度定位数据。
  21. 根据权利要求1所述的室外机器人的精确定位系统,其特征在于,所述室外机器人为智能割草机。
  22. 根据权利要求1所述的室外机器人的精确定位系统,其特征在于,所述卫星定位系统包括GPS系统、北斗导航系统、GLONASS系统、GALILEO系统中的一种或任意多种的组合。
  23. 根据权利要求22所述的室外机器人的精确定位系统,其特征在于,所述第一天线和所述第二天线所共同接收的卫星包括不同种类定位系统中的卫星。
  24. 根据权利要求1所述的室外机器人的精确定位系统,其特征在于,所述移动站距离所述基站的最远距离小于等于100千米。
  25. 根据权利要求1所述的室外机器人的精确定位系统,其特征在于,所述基站包括能量模块,所述能量模块为所述基站提供能量。
  26. 一种自移动机器人系统,其特征在于,包括自移动机器人和根据权利要求1-25中任意一个所述的室外机器人的精确定位系统。
  27. 一种用于室外机器人精确定位的基站,所述基站包括:
    第一天线、第一控制模块和第一通信模块;所述第一天线通信连接所述第一控制模块,所述第一通信模块通信连接所述第一控制模块;
    所述第一天线接收卫星定位系统所发射的射频信号,所述第一控制模块接收所述射频信号、处理生成定位参考数据,且将所述定位参考数据传输所述第一通信模块,所述第一通信模块将所述定位参考数据传输给移动站;
    其特征在于,所述基站包括相互分离的基站本体和天线组件,所述基站本体包括所述第一控制模块和所述第一通信模块,所述天线组件包括壳体以及设置在所述壳体内的所述第一天线,所述第一天线与所述第一控制模块由电缆电性连接;所述基站还包括与所述壳体连接的安装座,所述安装座将所述第一天线安装于设定的位置。
  28. 根据权利要求27所述的室外机器人精确定位的基站,其特征在于,所述设定的位置包括墙体外侧。
  29. 根据权利要求28所述的室外机器人精确定位的基站,其特征在于,所述壳体包括安装支架,所述安装支架的一端与所述安装座连接,另一端与所述第一 天线连接,使所述第一天线由墙体外侧向外且向上延伸。
  30. 根据权利要求29所述的室外机器人精确定位的基站,其特征在于,所述安装支架包括至少两个子支架,所述子支架首尾相连。
  31. 根据权利要求29所述的室外机器人精确定位的基站,其特征在于,所述安装支架包括向外延伸的第一部分和向上延伸的第二部分,以及调节机构,所述第二部分通过所述调节机构相对所述第一部分转动。
  32. 根据权利要求29所述的室外机器人精确定位的基站,其特征在于,所述安装支架连接安装座的一端固定。
  33. 根据权利要求29所述的室外机器人精确定位的基站,其特征在于,所述安装支架呈L型。
  34. 一种自移动机器人系统,其特征在于,包括:
    自移动机器人;
    设置于所述自移动机器人上的移动站,所述移动站包括第二天线、第二控制模块和第二通信模块;所述第二天线通信连接所述第二控制模块,所述第二通信模块通信连接所述第二控制模块;
    根据权利要求27-33任一项所述的基站。
  35. 一种用于室外机器人精确定位的基站,所述基站包括:
    包括第一天线、第一控制模块和第一通信模块;所述第一天线通信连接所述第一控制模块,所述第一通信模块通信连接所述第一控制模块;
    所述第一天线接收卫星定位系统所发射的射频信号,所述第一控制模块接收所述射频信号、处理生成定位参考数据,且将所述定位参考数据传输所述第一通信模块,所述第一通信模块将所述定位参考数据传输给移动站;
    其特征在于,所述基站包括相互分离的基站本体和天线组件,所述基站本体包括所述第一控制模块和所述第一通信模块,所述天线组件包括壳体以及设置在所述壳体内的所述第一天线,所述第一天线与所述第一控制模块由电缆电性连接;所述基站还包括伸缩杆,所述伸缩杆一端连接所述壳体、另一端连接至所述基站本体,所述伸缩杆用于调整所述第一天线的高度位置。
  36. 一种自移动机器人系统,其特征在于,包括:
    自移动机器人;
    设置于所述自移动机器人上的移动站,所述移动站包括第二天线、第二控制模块和第二通信模块;所述第二天线通信连接所述第二控制模块,所述第二通信模块通信连接所述第二控制模块;
    根据权利要求35所述的基站。
  37. 一种用于室外机器人精确定位的基站,所述基站包括:
    第一天线、第一控制模块和第一通信模块;所述第一天线通信连接所述第一控制模块,所述第一通信模块通信连接所述第一控制模块;
    所述第一天线接收卫星定位系统所发射的射频信号,所述第一控制模块接收所述射频信号、处理生成定位参考数据,且将所述定位参考数据传输所述第一通信模块,所述第一通信模块将所述定位参考数据传输给移动站;
    其特征在于,所述基站包括天线位置指示装置,所述天线位置指示装置包括用于提醒用户的信息提示单元,在所述第一天线不满足预设条件时,所述信息提示单元输出提醒用户改变所述基站位置或所述第一天线位置的提示信息。
  38. 根据权利要求37所述的室外机器人的精确定位系统,其特征在于,所述提示信息包括声信号、光信号或文字信号。
  39. 根据权利要求37所述的室外机器人的精确定位系统,其特征在于,所述预设条件包括所述第一天线的理想高度或者所述第一天线距离信号遮蔽体的理想距离。
  40. 根据权利要求37所述的室外机器人的精确定位系统,其特征在于,所述预设条件包括所述第一天线所接收到的卫星数量大于等于预设数量。
  41. 一种自移动机器人系统,其特征在于,包括:
    自移动机器人;
    设置于所述自移动机器人上的移动站,所述移动站包括第二天线、第二控制模块和第二通信模块;所述第二天线通信连接所述第二控制模块,所述第二通信模块通信连接所述第二控制模块;
    根据权利要求37-40中任意一项所述的基站。
PCT/CN2017/075624 2016-03-03 2017-03-03 精确定位系统及其基站及自移动机器人系统 WO2017148438A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201610120894.7 2016-03-03
CN201610120894 2016-03-03
CN201610415853 2016-06-13
CN201610415853.0 2016-06-13
CN201610637524.0 2016-08-05
CN201610637524 2016-08-05

Publications (1)

Publication Number Publication Date
WO2017148438A1 true WO2017148438A1 (zh) 2017-09-08

Family

ID=59742537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/075624 WO2017148438A1 (zh) 2016-03-03 2017-03-03 精确定位系统及其基站及自移动机器人系统

Country Status (2)

Country Link
CN (2) CN207037101U (zh)
WO (1) WO2017148438A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107957587A (zh) * 2017-12-01 2018-04-24 华南农业大学 一种多路差分多模卫星导航定位方法及装置
CN109659666A (zh) * 2019-01-29 2019-04-19 深圳市集众思创科技有限公司 智能天线
CN110120577A (zh) * 2019-05-21 2019-08-13 中国联合网络通信集团有限公司 天线的安装装置及安装方法
CN115854953A (zh) * 2022-12-14 2023-03-28 河北省送变电有限公司 一种基于组合导航的弧垂测量系统及测量方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207037101U (zh) * 2016-03-03 2018-02-23 苏州宝时得电动工具有限公司 精确定位系统及基站及自移动机器人系统
EP3557355B1 (en) * 2016-12-15 2023-07-12 Positec Power Tools (Suzhou) Co., Ltd State detection method for an automatic working system and mobile station
CN109874110B (zh) * 2017-12-04 2021-02-23 深圳市微能信息科技有限公司 一种自动除草方法、系统及除草机
CN108040582A (zh) * 2018-01-26 2018-05-18 武汉理工大学 一种基于dgps的自动循迹电动割草机
JP6879957B2 (ja) * 2018-02-08 2021-06-02 ヤンマーパワーテクノロジー株式会社 基準局装置
CN109116398A (zh) * 2018-07-10 2019-01-01 北京木业邦科技有限公司 作业数据获取方法、装置、电子设备及存储介质
CN109932732A (zh) * 2019-04-01 2019-06-25 交通运输部长江通信管理局 利用ais和无线公网接收北斗差分信息的方法和装置
CN110289868B (zh) * 2019-05-17 2021-07-02 广州科语机器人有限公司 定位机构
CN112230256B (zh) * 2019-07-15 2024-04-09 苏州宝时得电动工具有限公司 自主机器人及其定位校准方法、装置和存储介质
CN110539304A (zh) * 2019-08-28 2019-12-06 南京市晨枭软件技术有限公司 一种移动机器人的定位系统及其定位方法
US11693123B2 (en) * 2019-10-22 2023-07-04 Neutron Holdings, Inc. Leveraging operations depots for antenna placement to gather phase and position data
WO2021135714A1 (zh) * 2020-01-02 2021-07-08 苏州宝时得电动工具有限公司 自主机器人的基准站共享方法、系统及存储介质
CN212969077U (zh) * 2020-05-26 2021-04-13 纳恩博(北京)科技有限公司 充电桩
CN114252888A (zh) * 2020-09-23 2022-03-29 苏州宝时得电动工具有限公司 自主机器人、基站选址方法、装置和存储介质
CN113945956A (zh) * 2021-10-15 2022-01-18 北京路凯智行科技有限公司 车载定位系统以及包括其的矿山车辆

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100283674A1 (en) * 2009-05-05 2010-11-11 Kirk Geoffrey R Tilt compensation for gnss antenna
CN101989363A (zh) * 2009-07-30 2011-03-23 中国商用飞机有限责任公司 用于对数字飞行数据进行处理的系统和方法
CN102509509A (zh) * 2011-10-09 2012-06-20 西安煤航信息产业有限公司 基于cors系统的地下管线定位方法
CN102819028A (zh) * 2012-08-31 2012-12-12 北京航天计量测试技术研究所 一种差分gps定向方位引入方法
CN103200459A (zh) * 2013-02-28 2013-07-10 深圳创维数字技术股份有限公司 一种调整天线位置的方法及数字电视终端
CN104822100A (zh) * 2015-05-13 2015-08-05 苏州携旅网络技术有限公司 一种具有高举式天线的通信机箱
CN204596936U (zh) * 2015-04-21 2015-08-26 冯赵 一种可自动调节方位的gnss天线支架
CN204720557U (zh) * 2015-05-29 2015-10-21 中国电子科技集团公司第五十四研究所 一种对称三自由度冗余驱动并联式天线结构系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2469487Y (zh) * 2000-04-26 2002-01-02 寰波科技股份有限公司 一种无线信号应用装置的信号接收器的结构
CN103235595B (zh) * 2013-04-27 2016-03-16 湖南科技大学 一种室外微小型地面群机器人控制系统及控制方法
CN203872366U (zh) * 2014-06-18 2014-10-08 浙江省舟山市英特讯信息科技有限公司 一种可移动式自供能基站
CN207037101U (zh) * 2016-03-03 2018-02-23 苏州宝时得电动工具有限公司 精确定位系统及基站及自移动机器人系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100283674A1 (en) * 2009-05-05 2010-11-11 Kirk Geoffrey R Tilt compensation for gnss antenna
CN101989363A (zh) * 2009-07-30 2011-03-23 中国商用飞机有限责任公司 用于对数字飞行数据进行处理的系统和方法
CN102509509A (zh) * 2011-10-09 2012-06-20 西安煤航信息产业有限公司 基于cors系统的地下管线定位方法
CN102819028A (zh) * 2012-08-31 2012-12-12 北京航天计量测试技术研究所 一种差分gps定向方位引入方法
CN103200459A (zh) * 2013-02-28 2013-07-10 深圳创维数字技术股份有限公司 一种调整天线位置的方法及数字电视终端
CN204596936U (zh) * 2015-04-21 2015-08-26 冯赵 一种可自动调节方位的gnss天线支架
CN104822100A (zh) * 2015-05-13 2015-08-05 苏州携旅网络技术有限公司 一种具有高举式天线的通信机箱
CN204720557U (zh) * 2015-05-29 2015-10-21 中国电子科技集团公司第五十四研究所 一种对称三自由度冗余驱动并联式天线结构系统

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107957587A (zh) * 2017-12-01 2018-04-24 华南农业大学 一种多路差分多模卫星导航定位方法及装置
CN107957587B (zh) * 2017-12-01 2023-05-09 华南农业大学 一种多路差分多模卫星导航定位方法及装置
CN109659666A (zh) * 2019-01-29 2019-04-19 深圳市集众思创科技有限公司 智能天线
CN110120577A (zh) * 2019-05-21 2019-08-13 中国联合网络通信集团有限公司 天线的安装装置及安装方法
CN115854953A (zh) * 2022-12-14 2023-03-28 河北省送变电有限公司 一种基于组合导航的弧垂测量系统及测量方法
CN115854953B (zh) * 2022-12-14 2023-10-31 河北省送变电有限公司 一种基于组合导航的弧垂测量系统及测量方法

Also Published As

Publication number Publication date
CN107153211A (zh) 2017-09-12
CN207037101U (zh) 2018-02-23

Similar Documents

Publication Publication Date Title
WO2017148438A1 (zh) 精确定位系统及其基站及自移动机器人系统
EP3557355B1 (en) State detection method for an automatic working system and mobile station
CN107950506B (zh) 移动装置、基于移动装置的喷洒控制方法及装置
US20110022238A1 (en) Gnss control system and method for irrigation and related applications
US10136576B2 (en) Navigation for a robotic working tool
EP3444636B1 (en) Differential global positioning system and a positioning method therefor
WO2018214977A1 (zh) 移动物体及其定位方法、自动工作系统、存储介质
EP2580810B1 (en) Antenna orientation determination
US20130207840A1 (en) System and method for estimating indoor location using satellite signal generation device
CN108575095B (zh) 自移动设备及其定位系统、定位方法和控制方法
EP3084542B1 (en) System and method for navigating a robotic working tool.
WO2007076152A3 (en) Wireless mobile terminal using sensors for controlling autonomous and assisted gps modes
US20120050104A1 (en) Gnss smart antenna and receiver system with weatherproof enclosure
CN103901456A (zh) 一种gps终端室内定位系统和方法
CN110244769B (zh) 离线作业方法和装置
EP3827286A1 (en) Position determination method and device based on pose data
CN106918832A (zh) 一种基于北斗定位的智能卫星接收方法
CN206293620U (zh) 基于北斗定位的智能卫星接收天线
CN107607933A (zh) 一种基于俯仰角迭代的远程无人机高精度定位方法
CN111885483B (zh) 一种自行走设备精确定位的方法及系统
CN210534587U (zh) 离线作业系统
CN202550072U (zh) 一种含“无罗经信号输入”模式的动中通天线控制系统
CN113251994A (zh) 动中通相控阵天线发射指向检测装置及其检测方法
KR101874570B1 (ko) 지상원점 기준의 실시간 고정밀 공간정보 계측 지원시스템
CN112946703B (zh) 农作业车辆定位系统

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759289

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17759289

Country of ref document: EP

Kind code of ref document: A1