WO2018214977A1 - 移动物体及其定位方法、自动工作系统、存储介质 - Google Patents

移动物体及其定位方法、自动工作系统、存储介质 Download PDF

Info

Publication number
WO2018214977A1
WO2018214977A1 PCT/CN2018/088518 CN2018088518W WO2018214977A1 WO 2018214977 A1 WO2018214977 A1 WO 2018214977A1 CN 2018088518 W CN2018088518 W CN 2018088518W WO 2018214977 A1 WO2018214977 A1 WO 2018214977A1
Authority
WO
WIPO (PCT)
Prior art keywords
moving object
signal
positioning signal
positioning
current
Prior art date
Application number
PCT/CN2018/088518
Other languages
English (en)
French (fr)
Inventor
周昶
谭一云
邵勇
刘芳世
何明明
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810163178.6A external-priority patent/CN110197519A/zh
Priority claimed from CN201810173597.8A external-priority patent/CN110221330A/zh
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Priority to EP18806939.7A priority Critical patent/EP3591421A4/en
Priority to CN201880002313.7A priority patent/CN109313253A/zh
Priority to US16/612,596 priority patent/US11378979B2/en
Publication of WO2018214977A1 publication Critical patent/WO2018214977A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/0278Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/006Control or measuring arrangements
    • A01D34/008Control or measuring arrangements for automated or remotely controlled operation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/08Position of single direction-finder fixed by determining direction of a plurality of spaced sources of known location
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0088Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D2101/00Lawn-mowers

Definitions

  • the present invention relates to moving objects, and more particularly to a method for positioning a moving object, a moving object using the method, and an automatic working system and a storage medium.
  • the base station may be a self-built base station or a shared base station. However, no matter which base station is used, the base station needs to be purchased and installed for the home user, which is costly and difficult. Therefore, it is necessary to improve the existing automatic lawn mower and positioning methods to reduce costs.
  • the present invention provides a method for realizing self-mobile device positioning without a base station.
  • a method for positioning a moving object comprising the steps of:
  • the reference positioning signal is obtained by collecting the moving object directly from the satellite.
  • the method further includes the steps of:
  • the reference point position is a charging station position or a calibration point with a fixed reference coordinate set in a working area of the moving object.
  • the method for obtaining the reference positioning signal includes:
  • S1 selecting the acquired satellite signal at the latest time before the current positioning signal as a reference positioning signal
  • the reference positioning signal is used as a reference positioning signal for subsequent solution processing; if the selected reference positioning signal does not satisfy the solution condition, the satellite signal of the most recent time is selected. As a reference positioning signal, and repeat step S2;
  • Step S3 is repeated until a reference positioning signal that meets the solution condition is obtained.
  • the solution condition is that the number of shared satellites reaches a set threshold value of the solved satellite number.
  • the solution condition is that the number of shared satellites reaches a set threshold value of the solved satellite, and the signal quality of the satellite signal reaches a set signal to noise ratio threshold.
  • the method for positioning the moving object further includes:
  • the moving object When the error evaluation result satisfies the error condition, the moving object returns to the reference point to reacquire the initial reference positioning signal.
  • the reference point position is a charging station position or a calibration point with a fixed reference coordinate set in a working area of the moving object.
  • the error condition is that the working time of the moving object reaches the set total working time threshold.
  • the error condition is that the selected reference positioning signal does not satisfy the solution condition.
  • the number of shared satellites reaches the set threshold of the number of solved satellites.
  • the number of shared satellites reaches the set threshold of the number of solved satellites, and the signal quality of the satellite signal reaches the set signal-to-noise ratio threshold.
  • a plurality of calibration points are disposed in the working area of the moving object, and the plurality of calibration points have known fixed reference coordinates with each other, and the moving object is calibrated when the moving object moves to the calibration point position.
  • the location information of the point is used as the current location information.
  • the positioning method of the moving object further includes:
  • the position information of the moving object is determined in conjunction with the positioning sensor in response to the signal strength of the satellite signal being less than a predetermined threshold.
  • the positioning sensor comprises an inertial navigation device, or a laser radar, or a carrierless communication device.
  • the method for positioning the moving object further includes compensating for position information, and the method for compensating includes the steps of:
  • the first location information of the current positioning signal meets the preset condition, the first location information of the current positioning signal is compensated according to the second location information of the reference positioning signal.
  • the preset condition includes: the first precision value of the current positioning signal is smaller than the first preset precision threshold.
  • the preset condition includes: a difference between the first location information and the second location information is greater than a preset threshold.
  • the number of the reference positioning signals is at least two, and the first position information of the current positioning signal is compensated according to the second position information of the reference positioning signal, including:
  • the first location information of the current positioning signal is compensated according to the first running track information, including:
  • the method for compensating further includes:
  • the method for positioning the moving object further includes determining a direction of the moving object, and the method for determining a direction of the moving object includes the following steps:
  • Determining an orientation of the moving object based on the first position data, the second position data, and the predetermined angle.
  • the first antenna is disposed at a front portion of the body of the moving object
  • the second antenna is disposed at a rear portion of the body of the moving object.
  • first antenna and the second antenna are both disposed on a central axis of a fuselage of the moving object.
  • the position data of the antenna is acquired by a satellite positioning system in combination with an inertial navigation device.
  • the method for determining a direction of the moving object further includes:
  • the orientation of the moving object is determined in conjunction with an angle sensor.
  • the method for determining a direction of the moving object further includes:
  • the orientation sensor In response to the signal strength of the satellite signal being less than a predetermined threshold, the orientation sensor is coupled to determine the orientation of the moving object.
  • the angle sensor comprises a compass, or a gyroscope.
  • a moving object comprising:
  • a first signal acquisition module configured to acquire a current positioning signal of the moving object during the moving process, and a reference positioning signal of the moving object before the current positioning signal
  • a solution processing module configured to perform error processing on the reference positioning signal and the current positioning signal to obtain error data, and the reference positioning signal and the current positioning signal in which the solution processing is performed have a shared satellite signal;
  • a location determining module configured to determine current location information of the mobile object according to the error data and location information of the reference positioning signal.
  • the reference positioning signal is obtained by collecting the moving object directly from the satellite.
  • the moving object includes:
  • the reference point position determining module is configured to determine a reference coordinate of the reference point position, and the first signal acquiring module acquires a positioning signal of the moving object at the reference point position, and uses the positioning signal as the first reference positioning signal.
  • the reference point position is a charging station position or a calibration point with a fixed reference coordinate set in a working area of the moving object.
  • the moving object includes:
  • solution condition determination module configured to:
  • the reference positioning signal is used as a reference positioning signal for subsequent solution processing; if the selected reference positioning signal does not satisfy the solution condition, the satellite signal of the most recent time is selected as a reference. Positioning the signal and repeatedly determining whether the selected reference positioning signal satisfies the solution condition, repeating this step until a reference positioning signal meeting the solution condition is obtained.
  • the solution condition is that the number of shared satellites reaches a set threshold value of the solved satellite number.
  • the solution condition is that the number of shared satellites reaches a set threshold value of the solved satellite, and the signal quality of the satellite signal reaches a set signal to noise ratio threshold.
  • the moving object further includes an error evaluation module, and the error evaluation module is configured to:
  • the moving object When the error evaluation result satisfies the error condition, the moving object returns to the reference point to reacquire the initial reference positioning signal.
  • the reference point position is a charging station position or a calibration point with a fixed reference coordinate set in a working area of the moving object.
  • the error condition is that the working time of the moving object reaches the set total working time threshold.
  • the error condition is that the selected reference positioning signal does not satisfy the solution condition.
  • the solution condition is that the number of shared satellites reaches a set threshold value of the solved satellite number.
  • the solution condition is that the number of shared satellites reaches a set threshold value of the solved satellite, and the signal quality of the satellite signal reaches a set signal to noise ratio threshold.
  • a plurality of calibration points are disposed in the working area of the moving object, and the plurality of calibration points have known fixed reference coordinates with each other, and the moving object is calibrated when the moving object moves to the calibration point position.
  • the location information of the point is used as the current location information.
  • the moving object further includes:
  • a signal strength determining module configured to determine whether a signal strength of the satellite signal is less than a predetermined threshold
  • the position determining module is configured to determine position information of the moving object in combination with a positioning sensor in response to a signal strength of the satellite signal being less than a predetermined threshold.
  • the positioning sensor comprises an inertial navigation device, or a laser radar, or a carrierless communication device.
  • the moving object further includes:
  • a first determining module configured to determine location information of the current positioning signal as the first location information, and determine location information of the reference positioning signal and serve as second location information;
  • the compensation module is configured to compensate the first position information of the current positioning signal according to the second position information of the reference positioning signal when the first position information of the current positioning signal satisfies a preset condition.
  • the preset condition includes: the first precision value of the current positioning signal is smaller than the first preset precision threshold.
  • the preset condition includes: a difference between the first location information and the second location information is greater than a preset threshold.
  • the number of the reference positioning signals is at least two, and the moving object includes:
  • a determining submodule configured to determine, according to the second location information of the at least two reference positioning signals, the running track information of the moving object as the first running track information
  • the compensation submodule is configured to compensate the first position information of the current positioning signal according to the first running trajectory information.
  • compensation submodule is specifically configured to:
  • the moving object further includes:
  • a second signal acquisition module configured to acquire a second positioning signal that is subsequently acquired by the current positioning signal
  • a second determining module configured to determine a second precision value of the second positioning signal, and determine running track information between the compensated current positioning signal and the second positioning signal as the second running track information ;
  • the compensation module is further configured to perform smoothing filtering processing on the first running track information and the second running track information when the second precision value is greater than or equal to a second preset precision threshold.
  • the second precision value is smaller than the second preset precision threshold, the second running track information is updated according to the first running track information.
  • the moving object further includes:
  • a first location acquiring module configured to acquire first location data of the first antenna from a first antenna that receives a satellite signal, where the first antenna is disposed on the moving object;
  • a second location acquiring module configured to acquire second location data of the second antenna from a second antenna that receives a satellite signal, where the second antenna is disposed on the moving object, and the first antenna is configured a predetermined angle between a wiring direction of the second antenna and an orientation of the moving object;
  • a direction determining module configured to determine an orientation of the moving object based on the first location data, the second location data, and the predetermined angle.
  • the first antenna is disposed at a front portion of the body of the moving object
  • the second antenna is disposed at a rear portion of the body of the moving object.
  • first antenna and the second antenna are both disposed on a central axis of a fuselage of the moving object.
  • the position data of the antenna is acquired by a satellite positioning system in combination with an inertial navigation device.
  • the direction determining module is configured to determine an orientation of the moving object in combination with an angle sensor.
  • a signal strength determining module configured to determine whether a signal strength of the satellite signal is less than a predetermined threshold
  • the direction determining module is configured to determine an orientation of the moving object in conjunction with the angle sensor in response to a signal strength of the satellite signal being less than a predetermined threshold.
  • the angle sensor comprises a compass, or a gyroscope.
  • An automatic working system comprising:
  • a moving object as claimed in any of the preceding claims which moves and operates within a defined working area.
  • a computer readable storage medium having stored thereon a computer program operable to perform a method of locating a moving object as described in any one of the above, when the computer program instructions are executed by a computing device.
  • An electronic device comprising:
  • a memory for storing computer executable instructions
  • a processor configured to execute the computer-executable instructions stored in the memory to perform the positioning method of the moving object according to any one of the preceding claims.
  • the present invention obtains the error data by using the reference positioning signal before the current positioning signal and obtains the current location information based on the error data and the position information of the reference positioning signal, and does not utilize the self-built base station or the shared base station.
  • the satellite signal received in real time at the current moment is processed to obtain the current location information. Therefore, according to the present invention, the self-built base station or the shared base station can be cancelled, the user installation is simplified, and the cost is greatly reduced.
  • a signal compensation method and device, a storage medium and a computer program product in a map generation process are provided.
  • an object of the present invention is to provide a signal compensation method in a map generation process, which can effectively reduce the influence of the obstruction in the map generation process and improve the map generation effect.
  • Another object of the present invention is to provide a signal compensation apparatus in a map generation process.
  • Another object of the present invention is to provide a non-transitory computer readable storage medium.
  • Another object of the present invention is to provide a computer program product.
  • a signal compensation method in a map generation process includes: determining a current positioning signal in generating a map to a moving object, and collecting a reference before the current positioning signal. a positioning signal; determining location information of the current positioning signal as the first location information, and determining location information of the reference positioning signal as second location information; the first location information of the current positioning signal satisfies When the condition is set, the first position information of the current positioning signal is compensated according to the second position information of the reference positioning signal.
  • the signal compensation method in the map generation process proposed by the first aspect of the present invention determines the current positioning signal by determining the current positioning signal in the process of generating a map to the moving object and the reference positioning signal collected before the current positioning signal.
  • the location information is used as the first location information
  • the location information of the reference positioning signal is determined and used as the second location information.
  • the second location information is compared according to the reference positioning signal. The first position information of the current positioning signal is compensated, which can effectively reduce the influence of the obstruction in the map generation process and improve the map generation effect.
  • the preset condition includes: the first precision value of the current positioning signal is smaller than the first preset precision threshold.
  • the preset condition includes: a difference between the first location information and the second location information is greater than a preset threshold.
  • the number of the reference positioning signals is at least two, and the first position information of the current positioning signal is compensated according to the second position information of the reference positioning signal, including:
  • the first location information of the current positioning signal is compensated according to the first running track information, including:
  • the signal compensation method in the map generation process further includes:
  • the signal compensation apparatus in the map generation process of the second aspect of the present invention includes: a first determining module, configured to determine a current positioning signal in generating a map to a moving object, and in the current And a second determining module, configured to determine location information of the current positioning signal and as the first location information, and determine location information of the reference positioning signal and serve as the second location information.
  • the compensation module is configured to compensate the first position information of the current positioning signal according to the second position information of the reference positioning signal when the first position information of the current positioning signal satisfies a preset condition.
  • the signal compensating device in the map generating process determines the current positioning signal by determining the current positioning signal in the process of generating a map to the moving object and the reference positioning signal collected before the current positioning signal.
  • the location information is used as the first location information
  • the location information of the reference positioning signal is determined and used as the second location information.
  • the second location information is compared according to the reference positioning signal. The first position information of the current positioning signal is compensated, which can effectively reduce the influence of the obstruction in the map generation process and improve the map generation effect.
  • the preset condition includes: the first precision value of the current positioning signal is smaller than the first preset precision threshold.
  • the preset condition includes: a difference between the first location information and the second location information is greater than a preset threshold.
  • the compensation module includes:
  • a determining submodule configured to determine, according to the second location information of the at least two reference positioning signals, the running track information of the moving object as the first running track information
  • the compensation submodule is configured to compensate the first position information of the current positioning signal according to the first running trajectory information.
  • compensation submodule is specifically configured to:
  • the signal compensation device in the map generation process further includes:
  • the second signal acquiring module is configured to acquire a second positioning signal that is subsequently acquired by the current positioning signal
  • a second determining module configured to determine a second precision value of the second positioning signal, and determine running track information between the compensated current positioning signal and the second positioning signal as the second running track information ;
  • the compensation module is further configured to perform smoothing filtering processing on the first running track information and the second running track information when the second precision value is greater than or equal to a second preset precision threshold.
  • the second precision value is smaller than the second preset precision threshold, the second running track information is updated according to the first running track information.
  • a non-transitory computer readable storage medium when an instruction in the storage medium is executed by a processor of a mobile terminal, enables the mobile terminal to perform a map generation a signal compensation method in process, the method comprising: determining a current positioning signal in generating a map to a moving object, and a reference positioning signal acquired before the current positioning signal; determining location information of the current positioning signal And as the first location information, and determining the location information of the reference positioning signal as the second location information; when the first location information of the current positioning signal meets the preset condition, according to the second reference signal The location information compensates for the first location information of the current positioning signal.
  • the non-transitory computer readable storage medium determines the current positioning signal by determining a current positioning signal during the process of generating a map to the moving object, and a reference positioning signal acquired before the current positioning signal.
  • the location information is used as the first location information
  • the location information of the reference positioning signal is determined and used as the second location information.
  • the second location information is compared according to the reference positioning signal. The first position information of the current positioning signal is compensated, which can effectively reduce the influence of the obstruction in the map generation process and improve the map generation effect.
  • a computer program product when an instruction in the computer program product is executed by a processor, performs a signal compensation method in a map generation process, and the method includes: Determining a current positioning signal in the process of generating a map to the moving object, and a reference positioning signal acquired before the current positioning signal; determining position information of the current positioning signal as the first position information, and determining the reference The position information of the positioning signal is used as the second position information; when the first position information of the current positioning signal satisfies the preset condition, the first position of the current positioning signal is determined according to the second position information of the reference positioning signal Information is compensated.
  • the computer program product determines the position information of the current positioning signal by determining the current positioning signal in the process of generating a map to the moving object and the reference positioning signal collected before the current positioning signal. First position information, and determining position information of the reference positioning signal as the second position information, when the first position information of the current positioning signal satisfies the preset condition, according to the second position information of the reference positioning signal, the current positioning signal.
  • the compensation of a position information can effectively reduce the influence of the obstruction during the map generation process and improve the map generation effect.
  • a method of determining a direction from a mobile device is provided.
  • one problem to be solved by the present invention is to determine the direction from the mobile device as it moves from the mobile device.
  • a method for determining a direction of a mobile device comprising: acquiring first location data of the first antenna from a first antenna that receives a satellite signal, the first antenna being disposed on the self-mobile device; receiving a satellite signal from Obtaining second position data of the second antenna, the second antenna is disposed on the self-mobile device, and a connection direction of the first antenna and the second antenna is opposite to the self a predetermined angle between moving directions of the mobile device; and determining a moving direction of the self-mobile device based on the first location data, the second location data, and the predetermined angle.
  • the first antenna is disposed at a front portion of the body of the self-mobile device
  • the second antenna is disposed at a rear portion of the body of the self-mobile device.
  • first antenna and the second antenna are both disposed on a central axis of the body of the self-moving device.
  • the position data of the antenna is acquired by a satellite positioning system in combination with an inertial navigation device.
  • the angle of movement of the self-moving device is determined in conjunction with the angle sensor.
  • the angle sensor comprises a compass, or a gyroscope.
  • a self-moving device comprising: a first location acquiring unit, configured to acquire first location data of the first antenna from a first antenna that receives a satellite signal, where the first antenna is disposed on the self-mobile device; a second location acquiring unit, configured to acquire second location data of the second antenna from a second antenna that receives a satellite signal, where the second antenna is disposed on the self-mobile device, and the first antenna and the location a predetermined angle between a connection direction of the second antenna and a moving direction of the self-moving device; and a direction determining unit configured to determine based on the first position data, the second position data, and the predetermined angle The direction of movement of the self-mobile device.
  • the first antenna is disposed at a front portion of the body of the self-mobile device
  • the second antenna is disposed at a rear portion of the body of the self-mobile device.
  • first antenna and the second antenna are both disposed on a central axis of the body of the self-moving device.
  • the position data of the antenna is acquired by a satellite positioning system in combination with an inertial navigation device.
  • the direction determining unit is configured to determine a moving direction of the self-mobile device in combination with an angle sensor.
  • the self-mobile device further includes: a signal strength determining unit, configured to determine whether a signal strength of the satellite signal is less than a predetermined threshold; and the direction determining unit is configured to respond to a signal strength of the satellite signal being less than a predetermined threshold, The moving direction of the self-mobile device is determined in conjunction with the angle sensor.
  • the angle sensor comprises a compass, or a gyroscope.
  • An automated working system comprising the self-moving device of any of the above, moving and working within a map-defined work area.
  • An electronic device comprising: a memory for storing computer executable instructions; and a processor for executing the memory executable computer executable instructions to perform the direction determining method of the mobile device according to any one of the above .
  • a computer readable storage medium having stored thereon computer program instructions operable to perform the direction determining method of the self-moving device of any of the above, when the computer program instructions are executed by a computing device.
  • a method for determining a direction of a mobile device comprising: acquiring, at a first time, a location data of the first antenna from a first antenna that receives a satellite signal, the first antenna being disposed on the self-mobile device; Obtaining another location data of the first antenna from the first antenna, the second time being later than the first time; and acquiring two locations based on at least the first time and the second time The data is direction fitted to determine the direction of movement of the self-mobile device.
  • the acquisition frequency of the location data is 1 Hz to 100 Hz.
  • the position data of the antenna is acquired by a satellite positioning system in combination with an inertial navigation device.
  • the angle of movement of the self-moving device is determined in conjunction with the angle sensor.
  • the angle sensor comprises a compass, or a gyroscope.
  • a self-mobile device comprising: a location acquiring unit, configured to acquire, at a first time, a location data of the first antenna from a first antenna that receives a satellite signal, where the first antenna is disposed on the self-mobile device
  • the location obtaining unit is further configured to acquire another location data of the first antenna from the first antenna at a second time, the second time being later than the first time
  • a direction determining unit configured to: A direction fitting is performed based on the two position data acquired at least the first time and the second time to determine a moving direction of the self-mobile device.
  • the acquisition frequency of the location data is 1 Hz to 100 Hz.
  • the position data of the antenna is acquired by a satellite positioning system in combination with an inertial navigation device.
  • the direction determining unit is configured to determine a moving direction of the self-mobile device in combination with an angle sensor.
  • a signal strength determining unit is configured to determine whether a signal strength of the satellite signal is less than a predetermined threshold; and the direction determining unit is configured to combine the angle sensor in response to a signal strength of the satellite signal being less than a predetermined threshold Determining the direction of movement of the self-mobile device.
  • the angle sensor comprises a compass, or a gyroscope.
  • An automated working system comprising the self-moving device of any of the above, moving and working within a map-defined work area.
  • An electronic device comprising: a memory for storing computer executable instructions; and a processor for executing the memory executable computer executable instructions to perform the direction determining method of the mobile device according to any one of the above .
  • a computer readable storage medium having stored thereon computer program instructions operable to perform a direction determining method of a self-moving device as described in any one of the above, when the computer program instructions are executed by a computing device.
  • the present invention has an advantageous effect that by determining the moving direction of the self-moving device using the position data, the moving direction of the self-moving device can be accurately determined. Further, the position data is combined with the output of the angle sensor to determine the moving direction of the mobile device. On the one hand, the position data can be used to correct the error of the sensor, and on the other hand, the navigation can be continued when the satellite signal difference or the positioning signal accuracy is low.
  • FIG. 1 is a schematic view of an automatic working system in a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram of working in a work area when the mobile device is a smart lawn mower according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an automatic working system including two sub-working areas in accordance with an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the composition of a mobile station according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart diagram of a positioning method of a self-mobile device according to a first embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a regression mode of a self-mobile device according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a regression mode of a self-mobile device according to an embodiment of the present invention.
  • FIG. 8 is a schematic flow chart of a signal compensation method according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a scene for signal compensation according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of position information of signal compensation in an embodiment of the present invention.
  • FIG. 11 is a schematic flow chart of a signal compensation method according to another embodiment of the present invention.
  • FIG. 12 is a schematic flow chart of a signal compensation method according to another embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a running track after smoothing filtering processing according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of an updated operation track in an embodiment of the present invention.
  • FIG. 15 is a schematic flowchart of a method for determining a direction of a self-mobile device according to an embodiment of the present invention.
  • FIG. 16 is a schematic flowchart of a method for determining a direction of a mobile device according to an embodiment of the present invention.
  • Figure 17 is a block diagram showing the structure of a moving object in accordance with an embodiment of the present invention.
  • Figure 18 is a block diagram showing the structure of a signal compensating apparatus according to an embodiment of the present invention.
  • Figure 19 is a block diagram showing the structure of a signal compensating apparatus according to another embodiment of the present invention.
  • FIG. 20 is a schematic block diagram of a self-mobile device according to an embodiment of the present invention.
  • FIG. 21 is a schematic block diagram of an electronic device according to an embodiment of the present invention.
  • FIG. 22 is a schematic flow chart of a signal compensation method in a map generation process according to a second embodiment of the present invention.
  • FIG. 23 is a schematic flow chart of a signal compensation method in a map generation process according to another embodiment of the present invention.
  • FIG. 24 is a schematic structural diagram of a signal compensation apparatus in a map generation process according to an embodiment of the present invention.
  • FIG. 25 is a schematic structural diagram of a signal compensation apparatus in a map generation process according to another embodiment of the present invention.
  • Figure 26 is a schematic diagram of an automatic working system in accordance with an embodiment of the present invention.
  • Figure 27 is a schematic view showing the structure of an automatic lawn mower according to an embodiment of the present invention.
  • FIG. 28 is a schematic structural diagram of a navigation module according to an embodiment of the present invention.
  • FIG. 29 is a schematic diagram of the composition of a navigation module according to an embodiment of the present invention.
  • FIG. 30 is a schematic flowchart of a method for determining a direction of a mobile device according to an embodiment of the present invention.
  • FIG. 31 is a schematic flowchart of a method for determining a direction of a mobile device according to an embodiment of the present invention.
  • Figure 32 is a schematic block diagram of a self-mobile device in accordance with an embodiment of the present invention.
  • a solution processing module 303 a location determining module 510, and a first location acquiring module
  • a self-moving device for walking and working within a predetermined work area.
  • error data refers to an error message obtained after analysis based on two sets of satellite signals having a shared satellite number, which is used for subsequent positioning of a moving object.
  • Error evaluation refers to the evaluation of the accuracy of the position information of the moving object during the movement of the moving object, the accuracy or error rate of the positioning is analyzed, and the moving object is prevented from continuing to move in the wrong direction by the error evaluation.
  • the automatic working system 100 in the embodiment of the present invention includes a self-mobile device.
  • Mobile devices can move and work within the work area defined by the map.
  • the self-moving device is an automatic lawn mower 1.
  • the self-mobile device may also be an unattended device such as an automatic cleaning device, an automatic watering device, an automatic snow sweeper, and the like.
  • the automatic lawn mower 1 includes a housing 3, a moving module 5, a task execution module 7, an energy module, a control module, and the like.
  • the automatic lawn mower 1 is operated at the lawn 6.
  • the moving module 5 includes a crawler or a wheel set and is driven by a drive motor to drive the automatic mower 1 to move.
  • the task execution module 7 includes a cutting assembly mounted to the bottom of the housing 3 and driven by a cutting motor to perform a mowing operation in rotation. Perform mowing work.
  • the energy module includes a battery pack (not shown) that provides power for the movement and operation of the automatic mower 1.
  • the control module is electrically connected to the mobile module 5, the task execution module 7 and the energy module, and controls the mobile module to drive the automatic mower 1 to move, and controls the task execution module to perform work tasks.
  • the automated working system is used to operate in a predetermined working area.
  • the working area includes at least two sub-working areas separated from each other, namely, area C and area D.
  • a boundary 8 is formed between the work area and the non-work area, and there may be obstacles in the work area, such as trees and pits.
  • the automatic working system 100 further includes a charging station 2 for replenishing the automatic lawn mower 1.
  • the charging station 2 can be placed in an open place beside the house 4.
  • the charging station 2 can also be arranged in the working area or on the boundary of the working area.
  • the automatic working system 100 includes a navigation module for outputting the current position of the automatic lawn mower.
  • the navigation module includes a mobile station 9.
  • the mobile station 9 is electrically coupled to the control module for storing and processing the satellite signals obtained by the automatic mower 1 so that the automatic mower 1 can move and operate within the work area.
  • the mobile station 9 is configured to receive satellite signals, including satellite angles, clocks, and the like.
  • the satellite signal can be a GPS signal, or it can be a signal such as Galileo or Beidou, or several signals can be used at the same time.
  • the satellite signal is a differential GPS (DGPS) signal.
  • DGPS differential GPS
  • the mobile station 9 includes a casing 27; a GPS antenna 29 receives a GPS positioning signal; and a GPS card 31 processes the received GPS positioning signal.
  • the mobile station 9 integrates an inertial navigation device (not shown), and the inertial navigation device outputs inertial navigation data.
  • the mobile station 9 can use only the GPS positioning signal to navigate, or can use the GPS positioning signal and the inertial navigation data to be tuned by the positioning signal to navigate, or when the GPS signal is weak, it can also use only inertial navigation. Data to navigate.
  • the mobile station 9 also includes an indicator (not shown) that outputs an indication of whether the differential GPS signal at the current location is good.
  • the mobile station 9 is detachably connected to the casing 3 of the automatic mower 1.
  • the mobile station 9 includes a first interface (not shown) that is coupled to the housing of the automatic mower 1.
  • the mobile station 9 is mounted to the casing 3 of the automatic mower 1 when the automatic mower 1 is in operation.
  • the mobile station 9 outputs the current position coordinates of the automatic mower 1, and the control module is based on automatic cutting.
  • the current position of the lawnmower 1 controls the movement and operation of the automatic mower 1.
  • the mobile station outputs a control command to the control module based on the current position coordinates.
  • the mobile station 9 includes an independent power module 37, and the mobile station 9 can work independently when separated from the casing 3 of the automatic lawn mower 1.
  • the mobile station 9 and the housing 3 of the automatic lawn mower 1 may be non-detachable connections, and if it is a positioning during operation of the mobile device, the mobile station 9 and the housing of the automatic lawn mower 1 3 Whether it is detachable does not affect the positioning.
  • the mobile station 9 obtains the error data by using the reference positioning signal before the current positioning signal and obtains the current location information based on the error data and the position information of the reference positioning signal, and does not use the self-built base station or the shared base station to receive the current time in real time.
  • the satellite signal is processed to obtain the current location information, so based on the invention, the self-built base station or the shared base station can be eliminated, the user installation is simplified, and the cost is greatly reduced.
  • the positioning method of the self-mobile device that does not set the self-built base station or the shared base station is configured as an example from the positioning device of the mobile device.
  • the positioning device from the mobile device in this embodiment may be disposed in the server, or may be disposed in the mobile station, which is not limited in this embodiment of the present application.
  • the electronic device is, for example, a personal computer (PC), a cloud device or a mobile device, a mobile device such as a smart phone, or a tablet computer.
  • PC personal computer
  • cloud device or a mobile device
  • mobile device such as a smart phone
  • tablet computer a tablet computer
  • the executive body of the embodiment of the present application may be, for example, a central processing unit (CPU) in a server or an electronic device in hardware, and may be, for example, a server or a background management in an electronic device. Service, no restrictions on this.
  • CPU central processing unit
  • FIG. 5 is a schematic flow chart of a method for positioning a moving object according to a first embodiment of the present invention. As shown in FIG. 5, the method for positioning the moving object includes the following steps:
  • S101 Acquire a current positioning signal of the moving object during the moving process, and a reference positioning signal of the moving object before the current positioning signal.
  • the mobile object may be, for example, the mobile station 9 or the self-mobile device itself in which the mobile station 9 is installed, which is not limited thereto.
  • the current positioning signal may be a current positioning signal during the working process of the moving object, or may be a current positioning signal during the process of generating the map.
  • the generated map can be used as a working area of a moving object, and there is no limitation thereto. It can be understood that the manner of generating the map may be, for example, the user circled the working area of the moving object on the Google map, and the mobile station 9 is integrated with the self-mobile device, and the moving object is a self-mobile device. The mobile device runs a circle along the working area. For example, if the self-moving device is an automatic lawn mower, the user can push the automatic lawn mower to operate, the user remotely controls the automatic lawn mower to operate, and the automatic lawn mower follows the movement of the user. The automatic mower is automatically operated, etc., and there is no limitation on this.
  • the mobile station 9 is disposed separately from the automatic mower, and the moving object is the mobile station 9.
  • the user handheld mobile station 9 runs a circle along the working area, and generates a map according to the positioning signal data collected during the operation of the mobile station 9.
  • the reference positioning signal is obtained by the mobile object directly from the satellite, instead of the synchronous satellite signal transmitted by the self-built base station or the shared base station.
  • the reference positioning signal may be one or more.
  • the method further comprises the step of: determining the reference position position reference. Coordinate; obtain a positioning signal of the moving object at the position of the reference point, and use the positioning signal as the first reference positioning signal.
  • the reference point position is a charging station position or a calibration point having a fixed reference coordinate set in a working area of the moving object.
  • the reference positioning signal of the reference point position can be obtained by directly recognizing that the moving object has reached the reference point by charging docking. If the reference point is another calibration point, you can confirm it by setting the marker signal, such as a magnetic field or image.
  • the moving object is described as a self-moving device.
  • the reference positioning signal may select a satellite signal obtained by acquiring a reference point at a preset reference point.
  • the reference point described herein is the charging station position or a calibration point with a fixed reference coordinate set in the working area of the mobile device.
  • an automatic lawn mower is taken as an example, and a charging station or a calibration point having a fixed reference coordinate is used as a virtual base station point, because the charging station or the calibration point having a fixed reference coordinate can be regarded as one does not change.
  • the physical location, so the charging station or calibration point with a fixed reference coordinate is used as a virtual base station point.
  • the automatic mower 1 since the automatic mower 1 starts from the charging station every time and will eventually receive the charging station, it can be considered that the charging station is a physical position that does not change, so the charging station is regarded as a Virtual base station point.
  • the automatic mower 1 stores the satellite signal received at the current charging station position as virtual base station data in the mobile station 9 as a reference positioning signal.
  • the satellite signal received at the current calibration point position is saved as virtual base station data in the mobile station 9 as a reference positioning. signal.
  • the moving object is described as a self-moving device.
  • the reference positioning signal includes multiple
  • the first reference positioning signal is obtained by acquiring the satellite signal of the reference point at the preset reference point
  • the other reference positioning signals are the automatic lawn mower 1
  • the satellite signal storage of the specific location acquired during the movement is obtained, that is, the satellite signal acquired and stored in the moving range before the current position of the automatic lawn mower 1.
  • the method for acquiring the reference positioning signal includes: S1: selecting the acquired satellite signal at the latest time before the current positioning signal as the reference positioning signal; S2: determining whether the selected reference positioning signal satisfies the solving condition S3: if the selected reference positioning signal satisfies the solution condition, the reference positioning signal is used as a reference positioning signal for subsequent solution processing; if the selected reference positioning signal does not satisfy the solution condition, then the satellite at the most recent time is selected The signal is used as a reference positioning signal, and step S2 is repeated; S4: Step S3 is repeated until a reference positioning signal meeting the solution condition is obtained.
  • the solution condition is that the number of shared satellites reaches a set threshold value of the solved satellite number. further.
  • the solution condition is that the number of shared satellites reaches a set threshold value of the solved satellite, and the signal quality of the satellite signal reaches a set signal to noise ratio threshold.
  • the moving object preferentially selects the reference positioning signal that is closest to the time and meets the solution requirements for the solution processing.
  • the charging station or the calibration point having a fixed reference coordinate is preferably set in a relatively open environment, and a relatively good satellite signal can be received.
  • the above virtual base station data may be the obtained original satellite signal, or may be the processed satellite signal, and the original satellite signal or the processed satellite signal does not affect the later signal processing.
  • the mobile object is described as the mobile station 9.
  • the reference positioning signal can select the satellite signal obtained by acquiring the reference point at the preset reference point.
  • the reference point described herein is the charging station position or a calibration point with a fixed reference coordinate set in the working area of the mobile device.
  • the user starts from the charging station and saves the satellite signal received at the current charging station position as virtual base station data in the mobile station 9 as a reference positioning signal.
  • the user starts from the calibration point and saves the satellite signal received at the current calibration point position as virtual base station data in the mobile station 9 as a reference positioning signal.
  • the mobile object is described as the mobile station 9.
  • the reference positioning signal includes multiple
  • the first reference positioning signal is obtained by acquiring the satellite signal of the reference point at the preset reference point, and the other reference positioning signals are moved by the user handheld mobile station 9.
  • the satellite signal storage of the specific location acquired in the process is obtained, that is, the satellite signal acquired and stored in the moving range before the current position of the mobile station 9.
  • the user can directly walk to the calibration point position and use the position coordinates of the calibration point as the current position coordinates, which can improve the positioning accuracy and improve the accuracy of generating the map.
  • S102 Perform error processing on the reference positioning signal and the current positioning signal to obtain error data, and the reference positioning signal and the current positioning signal that are subjected to the solution processing have a shared satellite signal.
  • the solution processing cannot be performed, and if the shared object is still unable to obtain the shared satellite signal under the preset condition, the mobile object moves.
  • the object needs to go back to the reference point to get a new reference positioning signal.
  • the moving object is a self-moving device, the self-moving device can return to the reference point position by itself.
  • the moving object is the mobile station 9, the user needs to be reminded to return to the reference point, and the way of reminding the user can be alarm or shutdown.
  • the preset condition may be a preset time when the shared satellite is lost or a time when the solution cannot be performed.
  • a solution satellite number threshold is pre-set. For the case where there is only one reference positioning signal, when the number of shared satellites reaches the set number of solved satellites, the reference positioning signal and the current positioning signal perform a solution process. When the number of shared satellites does not reach the set threshold of the number of solved satellites, if the shared satellite signal is still not available under the preset conditions as the moving object moves, the moving object returns to the reference point to acquire a new reference positioning signal. .
  • the number of solved satellites is at least 7-8. If the number of satellites is too small, the solution information cannot be solved to obtain the position information. Of course, the number of solved satellites is not too much. Too much computing power requirements for mobile devices will increase, and the cost will also increase. increase. In one embodiment, the number of solved satellites is 13-14, and the number of satellites in the range satisfies the solution requirements and the hardware and software supported computing power of the general mobile device can solve the satellite operation without requiring high cost. .
  • the reference positioning signal selected for the solution processing is the satellite signal acquired before the current time and closest to the current time, and the reference positioning signal with a large number of shared satellites is preferentially selected for the solution processing. . Specifically, when the number of shared satellites between the reference positioning signal at the time closest to the current time and the satellite signal at the current time reaches the set number of solved satellites, the reference positioning signal and the The current positioning signal is subjected to the solution processing. Conversely, if the set number of solved satellites is not reached, the other reference positioning signals are selected for the time to perform the analysis of the shared satellite number until the set number of solved satellites is reached. The reference position signal of the threshold exists and then the solution processing is performed.
  • the moving object If the moving object still cannot obtain the shared satellite signal under the preset conditions, the moving object returns to the reference point to acquire a new reference positioning signal. After the moving object goes out to work, the satellite signal received by the mobile station 9 in real time and the reference positioning signal received by the virtual base station (ie, the charging station or the calibration point with fixed reference coordinates) are solved to obtain a high-precision positioning data. . After returning to the reference point, the satellite signal of the stored virtual base station is cleared, and the satellite signal of the virtual base station at that time is recorded as the reference positioning signal until the next work.
  • the satellite signal received by the mobile station 9 in real time and the reference positioning signal received by the virtual base station ie, the charging station or the calibration point with fixed reference coordinates
  • the solution condition is that the number of shared satellites reaches a set threshold value of the solved satellite number.
  • the signal quality of the satellite signal itself also needs to meet certain requirements, so the further solution condition is: the number of shared satellites reaches the set threshold of the number of solved satellites, and the signal of the satellite signal The quality reaches the set signal-to-noise ratio threshold.
  • the positioning method of the moving object further includes: performing error evaluation on current position information of the moving object obtained by the processing; and, when the error evaluation result satisfies an error condition, the moving object returns to the reference point to reacquire the initial reference positioning signal. .
  • the moving object returns to the reference point and reacquires the initial reference positioning signal, all non-current positioning signals saved by the moving object are cleared.
  • the reference point position is a charging station position or a calibration point having a fixed reference coordinate set in a working area of the moving object.
  • the error condition is that the working time of the moving object reaches the set total working time threshold.
  • the error condition may also be that the selected reference positioning signal does not satisfy the solution condition, wherein the solution condition is that the number of shared satellites reaches a set threshold value of the solved satellite number. Further, the solution condition is that the number of shared satellites reaches a set threshold value of the solved satellite, and the signal quality of the satellite signal reaches a set signal-to-noise ratio threshold.
  • the method for setting an error condition may be set by using the following method.
  • the method for setting the error threshold may be: a time range value of the moving object leaving the reference point, the reference The time range value, the predetermined working time range value, and the time range value of the shared satellite that cannot be solved by the positioning signal and the current positioning signal.
  • the method for setting the error threshold may be: a time range value of the reference positioning signal and the current positioning signal that cannot be solved, a time range value of the shared satellite, and the like.
  • a plurality of calibration points having fixed reference coordinates are provided in the working area of the moving object, and the plurality of the calibration points have a mutual Known fixed reference coordinates, when the moving object moves to the calibration point position, the moving object uses the position information of the calibration point as the current position information.
  • the calibration point A and the calibration point B shown in FIG. 3 when the moving object moves to the calibration point position, the moving object uses the position information of the calibration point as the current position information, and thus, the position coordinates of the moving object can be corrected.
  • These marks can be RFID or Hall sensors, etc., by manually or automatically marking the fixed calibration points to obtain a fixed reference coordinate (for example, if the charging station is at (0,0) point, the physical calibration point is (x, y) point), each time the moving object goes to the physical calibration points, the coordinates of the physical calibration point are directly taken as the current coordinates.
  • the positional coordinates of the moving object may be further determined in conjunction with a positioning sensor such as an inertial navigation device, or a laser radar, or a carrierless communication device.
  • a positioning sensor such as an inertial navigation device, or a laser radar, or a carrierless communication device.
  • the method further includes: determining location information of the moving object in conjunction with the positioning sensor.
  • the signal strength of the satellite signal may be first determined, and the position information of the moving object is determined in conjunction with the positioning sensor if the signal strength is less than a predetermined threshold, that is, the signal is not good.
  • the method further includes: determining whether a signal strength of the satellite signal is less than a predetermined threshold; and determining the moving object in combination with a positioning sensor in response to a signal strength of the satellite signal being less than a predetermined threshold Location information.
  • the moving object can construct a work area map and improve the work efficiency by optimizing the partition mode.
  • the specific implementation step is to divide the work area into a plurality of sub-areas, and the working mode of each area is: before the moving object works, the satellite signal received at the current reference point, such as the charging station position, is saved as virtual base station data in the mobile station 9
  • the mobile object saves all the satellite signals received during the work, and all the satellite signals can be used as the virtual base station data for calculation, by using the current satellite signal and the virtual base station data received by the mobile station 9 in real time (
  • the satellite signal including the charging station and other satellite signals received and stored before the current time in the working process are processed to obtain a high-precision positioning data.
  • the moving object is a self-mobile device
  • One type is a radio line or a closed line for the charging station, and the mobile device returns to the line by calculating the shortest path and then docking.
  • the mobile device since the mobile device first goes to the nearest calibration point B and then moves from calibration point B to calibration point A, there are two path choices, and the appropriate path is selected according to the need to correct the docking.
  • the base station may not be set, and the current positioning signal may not be corrected by using the satellite signal obtained by the base station in real time.
  • the purpose of setting up the base station is to provide observations of some satellites of the mobile station in real time, and the mobile station uses the differential correction technique to calculate the current position information of the moving object through its own observation value.
  • the error in a relatively short period of time is relatively small, so that the moving object can be made.
  • the satellite signal is collected at a reference point with a good signal, and the reference point is used as a virtual base station, and the satellite signal of the reference point is used as a satellite signal of the short-time virtual base station to perform differential correction calculation, and the receiving station is removed from the reference point.
  • High precision positioning At the same time, during the movement of the moving object, since the moving object has stored all the satellite signals and corresponding position information in the moving process, the position information of the current time is calculated by using the satellite signal before the current time and the position information corresponding to the satellite signal. In this way, the base station construction and communication link are reduced, and the cost is greatly reduced.
  • the invention obtains the error data by using the reference positioning signal before the current positioning signal and obtains the current position information based on the error data and the position information of the reference positioning signal, and does not utilize the self-built base station or the shared base station to receive the real-time information at the current time.
  • the satellite signal is processed to obtain the current location information, so based on the invention, the self-built base station or the shared base station can be eliminated, the user installation is simplified, and the cost is greatly reduced.
  • the positioning method of the moving object of the present invention further comprises compensating current position information of the moving object obtained by the processing, and the method for compensating comprises the steps of obtaining:
  • S201 Acquire a current positioning signal from the mobile device during the moving process, and a reference positioning signal from the mobile device before the current positioning signal.
  • FIG. 9 is a schematic diagram of a scene for signal compensation in an embodiment of the present invention, including an obstruction 10 and a work area 11 , and the obstruction 10 may be For example, a water tower, bushes, buildings, and the like.
  • the position information for example, position coordinates
  • FIG. 10 is a schematic diagram of position information of signal compensation in an embodiment of the present invention, including a position information module 12 of an area corresponding to an obstruction.
  • the position information of the positioning signal is greatly offset. Therefore, the present invention implements The example proposes to compensate the signal under the above circumstances, which can effectively improve the positioning effect or the map generation effect during the moving process.
  • a current positioning signal in a process of moving a working object or actually generating a map, and a reference positioning signal collected before a current positioning signal, and a quantity of reference positioning signals are first determined.
  • the execution process of the embodiment may be real-time, or every preset time interval, and if it is real-time, the current positioning signal in the working process of the moving object is determined in real time during the working process of the moving object, if Every preset time interval, the current positioning signal during the working process of the moving object is determined every preset time interval.
  • determining the current positioning signal in the process of generating the map to the moving object in real time if every preset time interval, determining the moving object at every preset time interval
  • the current positioning signal during the generation of the map is not limited.
  • FIG. 10 further includes three reference positioning signals 13 and a current positioning signal 14. It can be understood that the current positioning signal 14 is continuously updated over time until the moving object is completed or the map is generated. After completion, the positioning signal determined at the current time point can be used as the current positioning signal.
  • S202 Determine location information of the current positioning signal as the first location information, and determine location information of the reference positioning signal as the second location information.
  • the first location information/second location information may be, for example, location coordinates. According to the working principle of the mobile station 9, it may be collected in real time during the working process of the mobile object or during the operation of the user handheld mobile station 9 along the working area.
  • the location information of the current positioning signal which may be referred to as first location information
  • acquires location information of the reference positioning signal which may be referred to as second location information.
  • the implementation is simple, the data collection is simple, and the existing data is utilized. The device is able to collect this data, so it does not cost too much hardware.
  • the preset condition includes: the first precision value of the current positioning signal is smaller than the first preset precision threshold; or the difference between the first location information and the second location information is greater than a preset threshold. Specifically, first, according to the first precision value of the current positioning signal is smaller than the first preset precision threshold, and then determining that the preset condition is met according to the difference between the first location information and the second location information being greater than a preset threshold.
  • the first preset precision threshold and the preset threshold may be set by the user according to actual application requirements, or may be preset by a factory program of the signal compensation device in the map generation process, which is not limited.
  • the accuracy measurement algorithm in the related art may be used to determine the accuracy value of the current positioning signal, and the precision value may be referred to as a first precision value, which is not limited thereto.
  • the first location information of the current positioning signal when detecting that the first location information of the current positioning signal meets the preset condition, the first location information of the current positioning signal is compensated according to the second location information of the reference positioning signal, otherwise, the triggering is not performed.
  • Signal compensation can avoid unnecessary memory resource consumption caused by trigger signal compensation and improve compensation efficiency.
  • the running track information of the moving object may be determined according to the second position information of the at least two reference positioning signals and used as the first running track information, and the first position information of the current positioning signal is compensated according to the first running track information.
  • the second position information of each of the three reference positioning signals 13 may be first determined (ie, , position coordinates), determining the running track information of the moving object (the running track information may be represented by a line connecting the three reference positioning signals 13 in FIG. 10), and the running track information may be referred to as the first running track information.
  • the position information of the current positioning signal 14 can be compensated by referring to the previous first running track information, which can effectively guarantee the reference value of the signal compensation reference data, thereby improving the signal compensation. The accuracy.
  • the first position information of the current positioning signal is compensated according to the second position information of the reference positioning signal, which can effectively Reduce the impact of obstructions during map generation and improve map generation.
  • FIG. 11 is a schematic flow chart of a signal compensation method according to another embodiment of the present invention.
  • the method includes:
  • S401 Acquire a current positioning signal during moving of the moving object, and a reference positioning signal acquired before the current positioning signal.
  • the embodiment determines the current positioning signal in the moving process of the moving object, and the moving process may be a working process or a map generating process, and a reference positioning signal collected before the current positioning signal, and the reference positioning signal
  • the number is at least two, and the execution process of the present invention may be real time, or every predetermined time interval.
  • FIG. 10 further includes three reference positioning signals 13 and a current positioning signal 14, an arrow 15, and a second positioning signal 16 (the second positioning signal 16 is a positioning signal subsequently acquired by the current positioning signal 14), It can be understood that, as time goes by, the current positioning signal 14 is continuously updated until the work is completed or the map is generated, and the positioning signal determined at the current time point can be used as the current positioning signal.
  • S402 Determine location information of the current positioning signal as the first location information, and determine location information of the reference positioning signal as the second location information.
  • the first location information/second location information may be, for example, location coordinates. According to the working principle of the mobile station, the current location may be collected in real time during the operation of the mobile device or during the operation of the handheld mobile station along the working area. Position information of the positioning signal, which may be referred to as first position information, and acquires position information of the reference positioning signal, which may be referred to as second position information.
  • S403 Determine whether the first location information of the current positioning signal meets the preset condition, and if yes, perform S405 and subsequent steps, otherwise, execute S404.
  • the preset condition includes: the first precision value of the current positioning signal is smaller than the first preset precision threshold; or the difference between the first location information and the second location information is greater than a preset threshold. Specifically, first, according to the first precision value of the current positioning signal is smaller than the first preset precision threshold, and then determining that the preset condition is met according to the difference between the first location information and the second location information being greater than a preset threshold.
  • the first preset precision threshold and the preset threshold may be set by the user according to actual application requirements, or may be preset by a factory program of the signal compensation device, which is not limited thereto.
  • S405 Determine, according to the second position information of the at least two reference positioning signals, the running track information of the moving object as the first running track information.
  • the three reference positioning signals 13 and the current positioning signal 14, the arrow 15, and the second positioning signal 16 (the second positioning signal 16 is a positioning signal subsequently acquired by the current positioning signal 14)
  • the second position information ie, position coordinates
  • the three reference positioning signals 13 are represented by lines, and the running track information may be referred to as first running track information.
  • the position information of the current positioning signal 14 can be compensated by referring to the previous first running track information, which can effectively guarantee the reference value of the signal compensation reference data, thereby improving the signal compensation. The accuracy.
  • S406 Determine a target position of the current positioning signal according to the first running trajectory information.
  • the position where the current positioning signal should appear along the first running track information may be determined according to the first running track information, and the position is taken as the target position.
  • the position information of the positioning signal at the boundary of the working area has a rule to follow, and is not likely to be a random position information, so
  • the target position of the current positioning signal may be determined according to the previous running track information.
  • the position corresponding to the position information of the current positioning signal 14 can be adjusted to the target position along the direction of the arrow 15, which is located on the extension line of the first running track direction in FIG. 10 is shown in the dotted line).
  • the line and the dashed line in the above FIG. 10 are not necessarily a straight line. Specifically, it may be a smooth line, and the compensated position signal can be smoothly transitioned, and the generated map is reduced as much as possible. Positioning error.
  • the signal compensation is implemented according to the location information, the implementation is simple, the data collection is simple, and the data can be collected by using the existing device, so that no excessive hardware cost is consumed.
  • the first position information of the current positioning signal meets the preset condition
  • the first position information of the current positioning signal is compensated according to the second position information of the reference positioning signal; otherwise, the signal compensation is not triggered, and the The necessary trigger signal compensates for the memory resource consumption caused by the compensation, and improves the compensation efficiency.
  • the position information of the current positioning signal can be compensated by referring to the previous running track information, which can effectively guarantee the reference value of the signal compensation reference data. It can effectively reduce the impact caused by obstructions during the working process of the mobile device or during the map generation process, and improve the map generation effect.
  • FIG. 12 is a schematic flow chart of a signal compensation method in a map generation process according to another embodiment of the present invention.
  • the method may further include:
  • S501 Acquire a second positioning signal that is subsequently acquired by the current positioning signal.
  • the positioning signal subsequently acquired by the current positioning signal 14 may be referred to as a second positioning signal.
  • the positioning signals at the plurality of different time points compensated may be used as the current positioning signal after the compensation, refer to FIG. 10 above. It is assumed that there are three current positioning signals corresponding to three different time points, and the positioning signals subsequently acquired by the three current positioning signals can be used as the second positioning signal.
  • S502 Determine a second precision value of the second positioning signal, and determine running track information between the compensated current positioning signal and the second positioning signal as the second running track information.
  • the accuracy measurement algorithm in the related art may be used to determine the accuracy value of the second positioning signal, and the precision value may be referred to as a second precision value, which is not limited thereto.
  • the running track information between the compensated current positioning signal and the second positioning signal is determined.
  • S503 Perform smoothing filtering processing on the first running track information and the second running track information if the second precision value is greater than or equal to the second preset precision threshold.
  • FIG. 13 is a schematic diagram of a running track after smoothing filtering in an embodiment of the present invention
  • FIG. 14 is a schematic diagram of an updated running track in the embodiment of the present invention
  • FIG. 13 includes three reference positioning signals. 61 and three different positioning points corresponding to the compensated positioning signal 62 and three second positioning signals 63 (the three second positioning signals 63 are three different time points corresponding to the compensated positioning signal 62 subsequent acquisition of the positioning Signal)
  • FIG. 14 includes three reference positioning signals 71 and three compensated positioning signals 72 corresponding to three different time points, and three second positioning signals 73 (the three second positioning signals 73 correspond to three different time points)
  • the compensated positioning signal 72 is subsequently acquired by the positioning signal).
  • the second preset precision threshold may be set by the user according to actual application requirements, or may be preset by a factory program of the signal compensation device in the map generation process, which is not limited.
  • the second positioning signal when the second precision value is greater than or equal to the second preset precision threshold, the second positioning signal may be determined to be a high-precision signal, and at this time, the second positioning signal may not be compensated for by the signal.
  • the smoothing filtering process is performed on the first running track information and the second running track information.
  • the second precision value when the second precision value is less than the second preset precision threshold, determining that the second positioning signal is a low-precision signal, at this time, The second running track information is updated according to the first running track information. Specifically, one of the compensated positioning signals corresponding to the three different time points may be used as a high-precision signal.
  • the second running track information subsequent to the high-precision signal is offset according to the first running track information, as shown in FIG. 14 above.
  • the positioning signal of the obstructing object is generally offset to the outside of the working area. Therefore, in the embodiment of the present invention, the positional coordinate of the positioning signal is offset to the working area, and the working area is shifted to the working area.
  • the internal offset can prevent the automatic mower from driving out of the working area, and therefore, the embodiment of the present invention can perform signal compensation in combination with reality.
  • the user in the process of generating a map, the user can observe the generated map in real time during the process of recording the positioning signal, that is, the generated map can be partially displayed over time. And signal compensation in real time.
  • a reminder module may be set in the mobile station 9 to remind the user of the current positioning signal quality status, so that the user can adjust the behavior in the process of generating the map according to the current positioning signal quality status, for example, The signal runs in a good direction, abandoning the area and route affected by the occlusion, or the generated map can be perfected by manual editing, which is not limited.
  • the second positioning signal acquired by the current positioning signal is obtained, the second precision value of the second positioning signal is determined, and the running track information between the compensated current positioning signal and the second positioning signal is determined.
  • the second running track information if the second precision value is greater than or equal to the second preset precision threshold, the first running track information and the second running track information are smoothed and filtered, if the second precision value is less than the second pre- The precision threshold is set, and the second running track information is updated according to the first running track information, so that the compensated position signal can be smoothly transitioned, and the positioning error of the generated map is reduced as much as possible.
  • the method for locating the moving object further includes determining the direction of the moving object.
  • the moving object is mainly referred to from the mobile device, and the direction determining method of the embodiment of the present invention is described below by the mobile device.
  • the traditional direction determination method is mainly to directly measure the direction by using a sensor.
  • the direction of the angle can be obtained by using a gyroscope or the like to determine the direction, but the problem is that the error is easily accumulated.
  • the angle can be directly obtained by using a compass or the like, but it is easily affected by the environment, and the compass or the like has an inherent error.
  • the direction determining method from the mobile device determines the direction by the position information.
  • FIG. 15 is a schematic flowchart of a method for determining a direction of a self-mobile device according to an embodiment of the invention.
  • the method for determining a direction of a mobile device according to an embodiment of the present invention includes: S110, acquiring first location data of the first antenna from a first antenna that receives a satellite signal, where the first antenna is disposed on the self-mobile device S120: acquiring second location data of the second antenna from a second antenna that receives a satellite signal, where the second antenna is disposed on the self-mobile device, and the first antenna and the second antenna are a connection direction having a predetermined angle with a moving direction of the self-moving device; and S130, determining a moving direction of the self-mobile device based on the first position data, the second position data, and the predetermined angle.
  • two antennas are provided from the mobile device. That is, in the direction determining method from the mobile device according to an embodiment of the present invention, the moving direction of the self-moving device is determined by the position of the two antennas mounted on the mobile device. In this way, the above-mentioned error problem caused by the use of the sensor can be avoided, thereby accurately determining the moving direction of the mobile device.
  • the first antenna and the second antenna are preferably separated from each other by a certain distance. That is, in the direction determining method of the mobile device according to the embodiment of the present invention, the first antenna is disposed at a front portion of the body of the self-mobile device, and the second antenna is disposed at the self-moving The rear of the fuselage of the device.
  • the first antenna and the second antenna may also be installed at other locations on the self-mobile device as long as the distance between the first antenna and the second antenna is sufficient to determine the direction.
  • a connection direction of the first antenna and the second antenna may be at a predetermined angle with a moving direction of the self-moving device, such that by determining a connection direction of the first antenna and the second antenna And determining, according to the predetermined angle, a moving direction of the self-mobile device.
  • the predetermined angle may also be zero degrees, that is, the connection direction of the first antenna and the second antenna may be consistent with the moving direction of the self-mobile device.
  • the first antenna and the second antenna may both be disposed on a central axis of the body of the self-mobile device.
  • the direction determining method from the mobile device can output the moving direction of the self-moving device in real time.
  • the position data of the antenna is acquired by a differential satellite positioning system.
  • the location data of the first antenna and the second antenna are acquired by the mobile device via a differential GPS signal.
  • the inertial navigation device can be further integrated.
  • the position data of the antenna is acquired by the differential satellite positioning system in conjunction with the inertial navigation device.
  • the moving direction of the mobile device may be further determined in conjunction with an angle sensor such as a compass, a gyroscope or the like.
  • the method further includes: determining the moving direction of the self-moving device by combining the angle sensor.
  • the signal strength of the satellite signal may be first determined, and the direction of movement of the mobile device is determined in conjunction with the angle sensor if the signal strength is less than a predetermined threshold, ie, the signal is not good.
  • the method further includes: determining whether the signal strength of the satellite signal is less than a predetermined threshold; and determining the moving direction of the mobile device in combination with the angle sensor in response to the signal strength of the satellite signal being less than a predetermined threshold .
  • the angle sensor includes a compass, a gyroscope, and the like.
  • the location data of the different time points may also be fitted to determine the moving direction of the mobile device.
  • the direction determining method includes: S210, acquiring, at a first time, a location data of the first antenna from a first antenna that receives a satellite signal, the first An antenna is disposed on the self-mobile device; S220, acquiring another location data of the first antenna from the first antenna at a second time, the second time being later than the first time; S230, based on At least the two position data acquired at the first time and the second time are direction-fitted to determine a moving direction of the self-mobile device.
  • the directions are fitted in conjunction with two positions on the time axis (before and after the movement).
  • the acquisition frequency of the position data is 1 Hz to 100 Hz.
  • the acquisition frequency of the position data is 5 Hz.
  • the position data of the antenna is acquired by a differential satellite positioning system in combination with an inertial navigation device.
  • the moving direction of the self-moving device is determined in conjunction with the angle sensor.
  • the angle sensor includes a compass, or a gyroscope.
  • the direction fitting may be performed only from the position of the mobile device obtained by the single antenna.
  • the direction of movement from the mobile device can be accurately determined. Further, the position data is combined with the output of the angle sensor to determine the moving direction of the mobile device. On the one hand, the position data can be used to correct the error of the sensor, and on the other hand, the navigation can be continued when the satellite signal difference or the positioning signal accuracy is low.
  • Figure 17 is a block diagram showing the structure of a moving object in accordance with an embodiment of the present invention. As shown in Figure 17, the moving object includes:
  • the first signal acquisition module 301 is configured to acquire a current positioning signal of the moving object during the moving process, and a reference positioning signal of the moving object before the current positioning signal;
  • the solution processing module 302 is configured to perform error processing on the reference positioning signal and the current positioning signal to obtain error data, and the reference positioning signal and the current positioning signal in which the solution processing is performed have a shared satellite signal;
  • the location determining module 303 is configured to determine current location information of the mobile object according to the error data and location information of the reference positioning signal.
  • the reference positioning signal is obtained by collecting the moving object directly from the satellite.
  • the moving object includes: a reference point position determining module, configured to determine a reference coordinate of the reference point position, the first signal acquiring module acquiring a positioning signal of the moving object at the reference point position, and using the positioning signal as the first reference positioning signal .
  • the reference point position is a charging station position or a calibration point having a fixed reference coordinate set in a working area of the moving object.
  • the moving object includes: a solution condition determining module, wherein the solution condition determining module is configured to: determine whether the selected reference positioning signal satisfies a solution condition; if the selected reference positioning signal satisfies a solution condition, the reference position is The signal is used as a reference positioning signal for subsequent solution processing; if the selected reference positioning signal does not satisfy the solution condition, the satellite signal at the most recent time is selected as the reference positioning signal and it is repeatedly determined whether the selected reference positioning signal satisfies the solution condition, Repeat this step until a reference positioning signal that meets the solution conditions is obtained.
  • the solution condition is: the number of shared satellites reaches a set threshold value of the solved satellite number. Further, the solution condition is: the number of shared satellites reaches a set threshold value of the solved satellite number, and the signal quality of the satellite signal reaches Set the signal to noise ratio threshold.
  • the reference positioning signal and the current positioning signal that perform the solution processing have a shared satellite signal.
  • the reference positioning signal and the current positioning signal perform a solution process.
  • the moving object further includes an error evaluation module, configured to: perform error evaluation on current position information of the processed moving object; and when the error evaluation result satisfies an error condition, the moving object returns to the reference point to reacquire the initial Reference positioning signal.
  • the reference point is a charging station location or a calibration point having a fixed reference coordinate set in the working area of the mobile device.
  • the error condition is that the working time of the moving object reaches the set total working time threshold.
  • the error condition may also be that the selected reference positioning signal does not satisfy the solution condition.
  • the solution condition is: the number of shared satellites reaches a set threshold value of the solved satellite number. Further, the solution condition is: the number of shared satellites reaches a set threshold value of the solved satellite number, and the signal of the satellite signal The quality reaches the set signal-to-noise ratio threshold.
  • the working area of the moving object is provided with a plurality of calibration points, and the plurality of calibration points have known fixed reference coordinates with each other, and when the moving object moves to the calibration point position, the moving object will position the calibration point.
  • Information as current location information is provided.
  • the moving object further includes:
  • a signal strength determining module configured to determine whether a signal strength of the satellite signal is less than a predetermined threshold
  • the position determining module is configured to determine position information of the moving object in combination with a positioning sensor in response to a signal strength of the satellite signal being less than a predetermined threshold.
  • the positioning sensor comprises an inertial navigation device, or a laser radar, or a carrierless communication device.
  • FIG. 18 is a schematic structural diagram of a signal compensation apparatus according to an embodiment of the present invention. As shown in FIG. 18, the signal compensation apparatus 800 includes:
  • the first signal acquisition module 801 is configured to determine a current positioning signal during the process of generating a map to the moving object, and a reference positioning signal acquired before the current positioning signal.
  • the first determining module 802 is configured to determine location information of the current positioning signal as the first location information, and determine location information of the reference positioning signal and serve as the second location information.
  • the compensation module 803 is configured to compensate the first position information of the current positioning signal according to the second position information of the reference positioning signal when the first position information of the current positioning signal satisfies the preset condition.
  • the preset condition includes: the first precision value of the current positioning signal is smaller than the first preset precision threshold; or the difference between the first location information and the second location information is greater than a preset threshold. Specifically, first, according to the first precision value of the current positioning signal is smaller than the first preset precision threshold, and then determining that the preset condition is met according to the difference between the first location information and the second location information being greater than a preset threshold.
  • the number of reference positioning signals is at least two, and the compensation module 803 includes:
  • the determining submodule 8031 is configured to determine, according to the second location information of the at least two reference positioning signals, the running track information of the moving object as the first running track information.
  • the compensation sub-module 8032 is configured to compensate the first position information of the current positioning signal according to the first running track information.
  • the compensation submodule 8032 is specifically configured to:
  • the position corresponding to the first position information of the current positioning signal is directly adjusted to the target position.
  • the signal compensation apparatus 800 further includes:
  • the second signal acquisition 804 is configured to acquire a second positioning signal that is subsequently acquired by the current positioning signal.
  • the second determining module 805 is configured to determine a second precision value of the second positioning signal, and determine the running track information between the compensated current positioning signal and the second positioning signal as the second running track information.
  • the compensation module 803 is further configured to perform smoothing filtering processing on the first running track information and the second running track information when the second precision value is greater than or equal to the second preset precision threshold, where the second precision value is less than the second preset When the threshold is accurate, the second running track information is updated according to the first running track information.
  • the position information of the current positioning signal is determined and used as the first Position information, and determining position information of the reference positioning signal as the second position information, when the first position information of the current positioning signal satisfies the preset condition, the first position of the current positioning signal according to the second position information of the reference positioning signal.
  • FIG. 20 is a schematic block diagram of a self-mobile device according to an embodiment of the present invention when the mobile object is a self-mobile device.
  • the self-mobile device according to the embodiment of the present invention includes: a first location acquiring module 510, configured to acquire first location data of the first antenna from a first antenna that receives a satellite signal, the first An antenna is disposed on the self-mobile device; a second location acquiring module 520 is configured to acquire second location data of the second antenna from a second antenna that receives a satellite signal, where the second antenna is set in the self-moving a predetermined angle between the connection direction of the first antenna and the second antenna and the moving direction of the self-moving device; and a direction determining module 530, configured to: based on the first location data, The second location data and the predetermined angle determine a direction of movement of the self-mobile device.
  • the first antenna is disposed at a front portion of the body of the self-mobile device, and the second antenna is disposed at a rear portion of the body of the self-mobile device.
  • the first antenna and the second antenna are both disposed on a central axis of the body of the self-mobile device.
  • location data of the antenna is acquired by a differential satellite positioning system.
  • the position data of the antenna is acquired by a differential satellite positioning system in conjunction with an inertial navigation device.
  • the direction determining unit is configured to determine a moving direction of the self-mobile device in conjunction with an angle sensor.
  • the self-mobile device further includes: a signal strength determining unit configured to determine whether a signal strength of the satellite signal is less than a predetermined threshold; and the direction determining unit is configured to respond to the satellite signal The signal strength is less than a predetermined threshold, and the angle sensor is used to determine the direction of movement of the self-mobile device.
  • the angle sensor includes a compass, a gyroscope.
  • the direction of movement from the mobile device can be accurately determined. Further, the position data is combined with the output of the angle sensor to determine the moving direction of the mobile device. On the one hand, the position data can be used to correct the error of the sensor, and on the other hand, the navigation can be continued when the satellite signal difference or the positioning signal accuracy is low.
  • a self-mobile device includes: a location acquisition module, configured to acquire, at a first time, a location data of the first antenna from a first antenna that receives a satellite signal, where An antenna is disposed on the self-mobile device; the location obtaining module is further configured to acquire another location data of the first antenna from the first antenna at a second time, the second time being later than the a first time; a direction determining module, configured to perform direction fitting based on the two location data acquired by the at least the first time and the second time to determine a moving direction of the self-mobile device.
  • the acquisition frequency of the position data is 1 Hz to 100 Hz.
  • the acquisition frequency of the location data is 5 Hz.
  • the position data of the antenna is acquired by a satellite positioning system in combination with an inertial navigation device.
  • the direction determining unit is configured to determine a moving direction of the self-mobile device in conjunction with an angle sensor.
  • the self-mobile device comprising a signal strength determining unit for determining whether a signal strength of the satellite signal is less than a predetermined threshold; and the direction determining unit is configured to respond to a signal strength of the satellite signal being less than a predetermined threshold
  • the angle sensor determines a direction of movement of the self-mobile device.
  • the angle sensor comprises a compass, or a gyroscope.
  • the present invention also proposes an automatic working system comprising a moving object or a self-moving device as described above, moving and working within a map-defined work area.
  • the self-mobile device is an automatic lawn mower.
  • the automatic working system is an automatic lawn mower.
  • the present invention further provides a computer readable storage medium operable to perform a positioning method from a mobile device when the computer program instructions are executed by a computing device, the method comprising:
  • the computer readable storage medium enables a terminal to perform a signal compensation method when the instructions in the storage medium are executed by a processor of the terminal, the signal compensation method comprising:
  • the first location information of the current positioning signal meets the preset condition, the first location information of the current positioning signal is compensated according to the second location information of the reference positioning signal.
  • the computer readable storage medium in this embodiment determines the current positioning signal by determining a current positioning signal during the working process of the moving object or in generating a map for the moving object, and a reference positioning signal collected before the current positioning signal.
  • the position information is used as the first position information
  • the position information of the reference positioning signal is determined and used as the second position information.
  • the second position information according to the reference positioning signal is used to The first position information of the positioning signal is compensated, which can effectively reduce the influence of the obstruction during the working process of the moving object or during the map generation process, and improve the map generation effect.
  • a computer readable storage medium having stored thereon computer program instructions that, when executed by a processor, cause the processor to perform the above-described "positioning method of a moving object” and “signal compensation method” and “direction” in the present specification
  • the computer readable storage medium can employ any combination of one or more readable mediums.
  • the readable medium can be a readable signal medium or a readable storage medium.
  • a readable storage medium may include, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any combination of the above. More specific examples (non-exhaustive lists) of readable storage media include: electrical connections with one or more wires, portable disks, hard disks, random access memory (RAM), read only memory (ROM), erasable Programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the foregoing.
  • the present invention further provides a computer program product for performing a method of locating a moving object when instructions in the computer program product are executed by a processor, the method comprising:
  • the computer program product when an instruction in a computer program product is executed by a processor, performs a signal compensation method, the method comprising:
  • the first location information of the current positioning signal meets the preset condition, the first location information of the current positioning signal is compensated according to the second location information of the reference positioning signal.
  • the computer program product in this embodiment determines the position information of the current positioning signal and determines the position information as the first position information by determining the current positioning signal in the process of generating the map to the moving object and the reference positioning signal collected before the current positioning signal. And determining the position information of the reference positioning signal and serving as the second position information, when the first position information of the current positioning signal satisfies the preset condition, performing the first position information of the current positioning signal according to the second position information of the reference positioning signal Compensation can effectively reduce the impact of obstructions during map generation and improve map generation.
  • a computer program product comprising computer program instructions that, when executed by a processor, cause the processor to perform the "positioning method of moving object” and “signal compensation method” and “direction determining method” portions of the above description of the specification
  • the steps in all methods of "positioning method of moving object” and “signal compensation method” and “direction determining method” according to various embodiments of the present invention are described.
  • the computer program product can program program code for performing the operations of the embodiments of the present application in any combination of one or more programming languages, including an object oriented programming language, such as Java, C++, etc. Also included are conventional procedural programming languages such as the "C" language or similar programming languages.
  • the program code can execute entirely on the user computing device, partially on the user device, as a stand-alone software package, partially on the remote computing device on the user computing device, or entirely on the remote computing device or server. Execute on.
  • an electronic device including:
  • a memory for storing computer executable instructions
  • a processor configured to execute the computer-executable instructions stored in the memory to perform the positioning method of the self-mobile device, the method comprising:
  • the electronic device the processor is configured to execute the computer-executable instructions stored in the memory to perform the signal compensation method, and the signal compensation method comprises:
  • the first location information of the current positioning signal meets the preset condition, the first location information of the current positioning signal is compensated according to the second location information of the reference positioning signal.
  • the electronic device may be an electronic device integrated in a mobile station from a mobile device, or a stand-alone device independent of the mobile station, the stand-alone device may be in communication with the mobile station to implement a self-mobile device in accordance with an embodiment of the present invention.
  • Direction determination method may be an electronic device integrated in a mobile station from a mobile device, or a stand-alone device independent of the mobile station, the stand-alone device may be in communication with the mobile station to implement a self-mobile device in accordance with an embodiment of the present invention.
  • Direction determination method may be an electronic device integrated in a mobile station from a mobile device, or a stand-alone device independent of the mobile station, the stand-alone device may be in communication with the mobile station to implement a self-mobile device in accordance with an embodiment of the present invention.
  • FIG. 21 is a schematic block diagram of an electronic device according to an embodiment of the present invention.
  • electronic device 600 includes one or more processors 610 and memory 620.
  • Processor 610 can be a central processing unit (CPU) or other form of processing unit with data processing capabilities and/or instruction execution capabilities, and can control other components in electronic device 600 to perform desired functions.
  • CPU central processing unit
  • Processor 610 can be a central processing unit (CPU) or other form of processing unit with data processing capabilities and/or instruction execution capabilities, and can control other components in electronic device 600 to perform desired functions.
  • Memory 620 can include one or more computer program products, which can include various forms of computer readable storage media, such as volatile memory and/or nonvolatile memory.
  • the volatile memory may include, for example, a random access memory (RAM) and/or a cache or the like.
  • the nonvolatile memory may include, for example, a read only memory (ROM), a hard disk, a flash memory, or the like.
  • One or more computer program instructions may be stored on the computer readable storage medium, and the processor 610 may execute the program instructions to implement a positioning failure alarm from a mobile device of various embodiments of the invention described above. Methods and/or other desired functions.
  • Various contents such as position data of the antenna, an installation position of the antenna with respect to the self-mobile device, and the like can also be stored in the computer readable storage medium.
  • electronic device 600 may also include an input device 630 and an output device 640 that are interconnected by a bus system and/or other form of connection mechanism (not shown).
  • the input device 630 can be for receiving user input.
  • the output device 640 can directly output various information to the outside or control the mobile station to transmit signals.
  • electronic device 600 may also include any other suitable components depending on the particular application.
  • the traditional automatic lawn mower recognizes the working area by laying a boundary line along the boundary of the working area, or by laying a boundary line along the periphery of the obstacle, and transmitting an electrical signal to generate an electromagnetic field, and the sensor on the automatic mower detects the electromagnetic field signal. , to determine that it is located in or outside the area defined by the boundary line. In this way, the boundary line of the cloth is troublesome and affects the appearance of the lawn.
  • a method of establishing a work area map may be adopted, and one method of establishing the work area map is to record the boundary of the work area and the obstacle and the like. Coordinates, establish a coordinate system, and generate a map of the work area. When the automatic working system is working, it is judged whether the automatic mower is in a safe working area by comparing the position and map of the automatic mower.
  • an obstruction which may be, for example, a water tower, a bush, a building, or the like.
  • the signal receiving condition of the occluded area is poor, and the position information (for example, the position coordinate) of the positioning signal recorded by the positioning device may be greatly offset. Therefore, it is necessary to compensate the signal under the above circumstances.
  • the second embodiment provides a signal compensation method, and the signal compensation method of the second embodiment is different from the first embodiment in that the second embodiment includes a base station, and performs signal compensation based on the synchronous satellite signal transmitted by the base station, and the specific embodiment Described as follows.
  • the automatic working system includes a self-moving device, autonomously moves within a defined working area, and positions the mobile station, and the mobile station moves and collects the location point information of the working area by moving along the boundary of the working area. To generate a map.
  • the self-moving device can be an unattended device such as an automatic lawn mower, an automatic cleaning device, an automatic watering device, an automatic snow sweeper, and the like.
  • the automated working system may further include a base station.
  • the base station and the mobile station both receive satellite signals, and the base station sends a positioning correction signal to the mobile station, thereby implementing differential satellite positioning.
  • the base station and the mobile station can receive a Global Position System (GPS) positioning signal to implement a Differential Global Positioning System (DGPS) positioning, or the base station and the mobile station can also receive Galileo satellite navigation.
  • GPS Global Position System
  • DGPS Differential Global Positioning System
  • Galileo satellite navigation Galileo satellite navigation.
  • the positioning signals of the system, the Beidou satellite navigation system, and the Global Navigation Satellite System (GLONASS) are not limited in the embodiment of the present invention.
  • An embodiment of the present invention receives an example of a GPS positioning signal by a base station and a mobile station.
  • the base station may include a satellite signal receiver for receiving a GPS positioning signal transmitted by the satellite, and a signal processor configured to generate a positioning correction signal according to the positioning signal received by the satellite signal receiver; the wireless data transmission module And for transmitting a positioning correction signal to the mobile station; and an indicator for outputting an indication of whether the satellite signal of the current location is good.
  • the wireless data transmission module may include a radio station and a radio antenna. Further, in order to ensure reliability between the base station and the mobile station when transmitting over a long distance, the wireless data transmission module may further include Sub-1G, WIFI, 2G/3G/ 4G/5G module, no restrictions on this.
  • the base station may be disposed at the charging station and integrated with the charging station, so that the base station can be powered by the charging station.
  • the base station can also be provided separately from the charging station, for example, it can be placed at a location such as a roof that can better receive satellite signals.
  • the mobile station may also include a housing; a satellite signal receiver for receiving a GPS positioning signal transmitted by the satellite; a signal processor for processing the positioning signal received by the satellite signal receiver; and a wireless data transmission module for receiving the base station The transmitted position correction signal, wherein the wireless data transmission module can include a radio and a radio antenna; and an indicator for outputting a good indication of whether the satellite signal at the current location is good.
  • the mobile station may further integrate an inertial navigation device, and the inertial navigation device is configured to output inertial navigation data.
  • the mobile station can use only the GPS positioning signal to navigate, or can use the GPS positioning signal and the inertial navigation data to coordinate the positioning signal to navigate, or when the GPS signal is weak, it can also use only inertial navigation. Data to navigate. Errors in inertial navigation data accumulate over time.
  • the mobile station can be detachably coupled to the housing of the mobile device.
  • the mobile station can include a first interface that is coupled to the housing of the mobile device.
  • the mobile station is mounted to the housing of the self-mobile device when the mobile device is in operation.
  • an electrical connection with the control module of the self-mobile device can be implemented, and the mobile station outputs the current position coordinates of the mobile device, so that the control module can control the current position according to the self-mobile device.
  • the mobile station outputs a control command based on the current location coordinates, and the control module from the mobile device controls movement or operation from the mobile device based on the control command.
  • the mobile station may include an independent power module, and the mobile station may work independently when separated from the casing of the mobile device.
  • FIG. 22 is a schematic flow chart of a signal compensation method in a map generation process according to an embodiment of the present invention.
  • the mobile station generates a map by moving along the boundary of the work area and collecting the moved position point information.
  • This embodiment is exemplified by the signal compensation method in the map generation process being configured as a signal compensation device in the map generation process.
  • the signal compensation device in the map generation process in this embodiment may be set in the server, or may be set in the mobile station, which is not limited in this embodiment of the present application.
  • the electronic device is, for example, a personal computer (PC), a cloud device or a mobile device, a mobile device such as a smart phone, or a tablet computer.
  • PC personal computer
  • cloud device or a mobile device
  • mobile device such as a smart phone
  • tablet computer a tablet computer
  • the executive body of the embodiment of the present application may be, for example, a central processing unit (CPU) in a server or an electronic device in hardware, and may be, for example, a server or a background management in an electronic device. Service, no restrictions on this.
  • CPU central processing unit
  • the embodiment of the present application is exemplified by setting a signal compensation device in the map generation process in the mobile station.
  • the method includes:
  • S310 Determine a current positioning signal in generating a map to the moving object, and a reference positioning signal acquired before the current positioning signal.
  • the moving object therein can be, for example, a mobile station, and no limitation is imposed thereon.
  • the generated map can be used as a working area of a moving object, and there is no limitation thereto.
  • the way to generate the map may be, for example, the user circled the working area of the automatic lawn mower on the Google map; the mobile station is integrated with the automatic lawn mower, and the automatic lawn mower runs along the working area.
  • the user can drive the automatic mower operation, the user remotely controls the automatic mower operation, the automatic mower follows the user's movement track, and the automatic mower automatically runs, etc., which is not limited.
  • the mobile station is separated from the automatic lawn mower, and the user handheld mobile station runs one circle along the working area, and the map is generated according to the positioning signal data collected during the operation of the mobile station, and no limitation is imposed thereon. .
  • FIG. 9 is a schematic diagram of a scene for signal compensation according to an embodiment of the present invention, which includes an obstruction 10 and a working area 11, which may be, for example, a water tower, a bush, or a building. Things and so on.
  • a working area 11 of the moving object when the working area 11 of the moving object is in close proximity to the covering 10, the occluded area signal reception condition is poor, and the position information (for example, position coordinates) of the positioning signal recorded by the mobile station may be as shown in FIG.
  • FIG. 10 is a schematic diagram of position information of a signal compensation according to an embodiment of the present invention, including a position information module 12 corresponding to an obstruction. As can be seen, the position information of the positioning signal is greatly offset.
  • the embodiment of the invention proposes to compensate the signal in the above situation, and can effectively improve the map generation effect.
  • the embodiment first determines the current positioning signal in the process of generating a map to the moving object, and the reference positioning signal collected before the current positioning signal, the number of the reference positioning signals is at least two, the implementation
  • the execution process of the example may be real-time, or every preset time interval. If it is real-time, the current positioning signal in the process of generating a map to the moving object is determined in real time during the process of the user holding the mobile station running along the working area. If it is every preset time interval, the current positioning signal in the process of generating a map to the moving object is determined every preset time interval, which is not limited.
  • FIG. 10 further includes three reference positioning signals 13 and a current positioning signal 14. It can be understood that the current positioning signal 14 is continuously updated over time until the map is generated, and the current time point can be The positioning signal determined above is used as the current positioning signal.
  • S320 Determine location information of the current positioning signal as the first location information, and determine location information of the reference positioning signal as the second location information.
  • the first location information/second location information may be, for example, location coordinates. According to the working principle of the mobile station, the location information of the current positioning signal may be collected in real time during the operation of the user handheld mobile station along the working area.
  • the location information may be referred to as first location information, and location information of the reference location signal may be acquired, and the location information may be referred to as second location information.
  • the implementation is simple, the data collection is simple, and the existing data is utilized. The device is able to collect this data, so it does not cost too much hardware.
  • the preset condition includes: the first precision value of the current positioning signal is smaller than the first preset precision threshold; or the difference between the first location information and the second location information is greater than a preset threshold. Specifically, first, according to the first precision value of the current positioning signal is smaller than the first preset precision threshold, and then determining that the preset condition is met according to the difference between the first location information and the second location information being greater than a preset threshold.
  • the first preset precision threshold and the preset threshold may be set by the user according to actual application requirements, or may be preset by a factory program of the signal compensation device in the map generation process, which is not limited.
  • the accuracy measurement algorithm in the related art may be used to determine the accuracy value of the current positioning signal, and the precision value may be referred to as a first precision value, which is not limited thereto.
  • the first location information of the current positioning signal when detecting that the first location information of the current positioning signal meets the preset condition, the first location information of the current positioning signal is compensated according to the second location information of the reference positioning signal, otherwise, the triggering is not performed.
  • Signal compensation can avoid unnecessary memory resource consumption caused by trigger signal compensation and improve compensation efficiency.
  • the running track information of the moving object may be determined according to the second position information of the at least two reference positioning signals and used as the first running track information, and the first position information of the current positioning signal is compensated according to the first running track information.
  • the second position information of each of the three reference positioning signals 13 may be first determined (ie, The position coordinates) determine the running track information of the moving object (the running track information may be represented by a line connecting the three reference positioning signals 13 in FIG. 10), and the running track information may be referred to as the first running track information.
  • the position information of the current positioning signal 14 can be compensated by referring to the previous first running track information, which can effectively guarantee the reference value of the signal compensation reference data, thereby improving the signal compensation. The accuracy.
  • the first position information of the current positioning signal is compensated according to the second position information of the reference positioning signal, which can effectively Reduce the impact of obstructions during map generation and improve map generation.
  • FIG. 23 is a schematic flow chart of a signal compensation method in a map generation process according to another embodiment of the present invention.
  • the method includes:
  • S410 Determine a current positioning signal in generating a map to the moving object, and a reference positioning signal acquired before the current positioning signal.
  • the embodiment determines the current positioning signal in the process of generating a map to the moving object, and the reference positioning signal collected before the current positioning signal, the number of the reference positioning signals is at least two, and the present invention
  • the execution process can be in real time, or every preset time interval.
  • FIG. 10 further includes three reference positioning signals 13 and a current positioning signal 14, an arrow 15, and a second positioning signal 16 (the second positioning signal 16 is a positioning signal acquired by the current positioning signal 14), which can be understood.
  • the current positioning signal 14 is continuously updated until the map is generated, and the positioning signal determined at the current time point can be used as the current positioning signal.
  • S420 Determine location information of the current positioning signal as the first location information, and determine location information of the reference positioning signal as the second location information.
  • the first location information/second location information may be, for example, location coordinates. According to the working principle of the mobile station, the location information of the current positioning signal may be collected in real time during the operation of the user handheld mobile station along the working area.
  • the location information may be referred to as first location information, and location information of the reference location signal may be acquired, and the location information may be referred to as second location information.
  • the preset condition includes: the first precision value of the current positioning signal is smaller than the first preset precision threshold; or the difference between the first location information and the second location information is greater than a preset threshold. Specifically, first, according to the first precision value of the current positioning signal is smaller than the first preset precision threshold, and then determining that the preset condition is met according to the difference between the first location information and the second location information being greater than a preset threshold.
  • the first preset precision threshold and the preset threshold may be set by the user according to actual application requirements, or may be preset by a factory program of the signal compensation device in the map generation process, which is not limited.
  • S450 Determine, according to the second position information of the at least two reference positioning signals, the running track information of the moving object as the first running track information.
  • the signal compensation process is performed by three reference positioning signals 13 and a current positioning signal 14, an arrow 15, and a second positioning signal 16 (the second positioning signal 16 is a positioning signal subsequently acquired by the current positioning signal 14).
  • the second position information (ie, position coordinates) of each of the three reference positioning signals 13 may be first determined to determine the running track information of the moving object (the running track information may be connected by three in FIG. 3) The lines of the reference positioning signal 13 are indicated), and the running track information may be referred to as first running track information.
  • the position information of the current positioning signal 14 can be compensated by referring to the previous first running track information, which can effectively guarantee the reference value of the signal compensation reference data, thereby improving the signal compensation. The accuracy.
  • S460 Determine a target position of the current positioning signal according to the first running trajectory information.
  • the position where the current positioning signal should appear along the first running track information may be determined according to the first running track information, and the position is taken as the target position.
  • the position information of the positioning signal at the boundary of the working area has a rule to follow, and is not likely to be a random position information. Therefore, in the embodiment of the present invention, The target position of the current positioning signal can be determined based on the previous running track information.
  • the position corresponding to the position information of the current positioning signal 14 can be adjusted along the direction of the arrow 15 to the target position, which is located on the extension line of the first running track direction in FIG. 10 (FIG. 10). As indicated by the dotted line).
  • the line and the dashed line in FIG. 3 are not necessarily a straight line. Specifically, it may be a smooth line, and the compensated position signal can smoothly transition, and the generated map is reduced as much as possible. Positioning error.
  • the signal compensation is implemented according to the location information, the implementation is simple, the data collection is simple, and the data can be collected by using the existing device, so that no excessive hardware cost is consumed.
  • the first position information of the current positioning signal meets the preset condition
  • the first position information of the current positioning signal is compensated according to the second position information of the reference positioning signal; otherwise, the signal compensation is not triggered, and the The necessary trigger signal compensates for the memory resource consumption caused by the compensation, and improves the compensation efficiency.
  • the position information of the current positioning signal can be compensated by referring to the previous running track information, which can effectively guarantee the reference value of the signal compensation reference data. It can effectively reduce the impact of obstructions in the map generation process and improve the map generation effect.
  • FIG. 12 is a schematic flow chart of a signal compensation method in a map generation process according to another embodiment of the present invention.
  • the method may further include:
  • S501 Acquire a second positioning signal that is subsequently acquired by the current positioning signal.
  • the positioning signal subsequently acquired by the current positioning signal 14 may be referred to as a second positioning signal.
  • the positioning signals at the plurality of different time points compensated may be used as the current positioning signal after the compensation, refer to FIG. 10 above. It is assumed that there are three current positioning signals corresponding to three different time points, and the positioning signals subsequently acquired by the three current positioning signals can be used as the second positioning signal.
  • S502 Determine a second precision value of the second positioning signal, and determine running track information between the compensated current positioning signal and the second positioning signal as the second running track information.
  • the accuracy measurement algorithm in the related art may be used to determine the accuracy value of the second positioning signal, and the precision value may be referred to as a second precision value, which is not limited thereto.
  • the running track information between the compensated current positioning signal and the second positioning signal is determined.
  • S503 Perform smoothing filtering processing on the first running track information and the second running track information if the second precision value is greater than or equal to the second preset precision threshold.
  • FIG. 13 is a schematic diagram of a running track after smoothing filtering in an embodiment of the present invention
  • FIG. 14 is a schematic diagram of an updated running track in the embodiment of the present invention
  • FIG. 13 includes three reference positioning signals. 61 and three different positioning points corresponding to the compensated positioning signal 62, three second positioning signals 63 (three second positioning signals 63, three different time points corresponding to the compensated positioning signal 62 subsequently collected Positioning signal),
  • FIG. 14 includes three reference positioning signals 71 and three compensated positioning signals 72 corresponding to three different time points, and three second positioning signals 73 (three second positioning signals 73 are three different times)
  • the corresponding positioning signal of the compensated positioning signal 72 corresponding to the point is).
  • the second preset precision threshold may be set by the user according to actual application requirements, or may be preset by a factory program of the signal compensation device in the map generation process, which is not limited.
  • the second positioning signal when the second precision value is greater than or equal to the second preset precision threshold, the second positioning signal may be determined to be a high-precision signal, and at this time, the second positioning signal may not be compensated for by the signal.
  • the smoothing filtering process is performed on the first running track information and the second running track information.
  • the second precision value when the second precision value is less than the second preset precision threshold, determining that the second positioning signal is a low-precision signal, at this time, The second running track information is updated according to the first running track information. Specifically, one of the compensated positioning signals corresponding to the three different time points may be used as a high-precision signal.
  • the second running track information subsequent to the high-precision signal is offset according to the first running track information, as shown in FIG. 14 above.
  • the positioning signal of the obstructing object is generally offset to the outside of the working area. Therefore, in the embodiment of the present invention, the positional coordinate of the positioning signal is offset to the working area, and the working area is shifted to the working area.
  • the internal offset can prevent the automatic mower from driving out of the working area, and therefore, the embodiment of the present invention can perform signal compensation in combination with reality.
  • the user can observe the generated map in real time during the process of recording the positioning signal, that is, the generated map can be partially displayed over time, and the signal compensation can be performed in real time. .
  • a reminder module may be set in the mobile station, which is used to remind the user of the current positioning signal quality status, so that the user can adjust the behavior in the process of generating the map according to the current positioning signal quality condition, for example, a signal to the signal. Run in a good direction, abandon the area and route affected by the occlusion, or you can improve the generated map by manual editing, which is not limited.
  • the second positioning signal acquired by the current positioning signal is obtained, the second precision value of the second positioning signal is determined, and the running track information between the compensated current positioning signal and the second positioning signal is determined.
  • the second running track information if the second precision value is greater than or equal to the second preset precision threshold, the first running track information and the second running track information are smoothed and filtered, if the second precision value is less than the second pre- The precision threshold is set, and the second running track information is updated according to the first running track information, so that the compensated position signal can be smoothly transitioned, and the positioning error of the generated map is reduced as much as possible.
  • FIG. 24 is a schematic structural diagram of a signal compensation apparatus in a map generation process according to an embodiment of the present invention.
  • the signal compensation device 900 includes:
  • the first determining module 901 is configured to determine a current positioning signal in generating a map to the moving object, and a reference positioning signal acquired before the current positioning signal.
  • the second determining module 902 is configured to determine location information of the current positioning signal as the first location information, and determine location information of the reference positioning signal and serve as the second location information.
  • the compensation module 903 is configured to compensate the first position information of the current positioning signal according to the second position information of the reference positioning signal when the first position information of the current positioning signal satisfies the preset condition.
  • the preset condition includes: the first precision value of the current positioning signal is smaller than the first preset precision threshold; or the difference between the first location information and the second location information is greater than a preset threshold. Specifically, first, according to the first precision value of the current positioning signal is smaller than the first preset precision threshold, and then determining that the preset condition is met according to the difference between the first location information and the second location information being greater than a preset threshold.
  • the number of reference positioning signals is at least two, and the compensation module 903 includes:
  • the determining submodule 9031 is configured to determine, according to the second location information of the at least two reference positioning signals, the running track information of the moving object as the first running track information.
  • the compensation sub-module 9032 is configured to compensate the first position information of the current positioning signal according to the first running track information.
  • the compensation submodule 9032 is specifically configured to:
  • the position corresponding to the first position information of the current positioning signal is directly adjusted to the target position.
  • the apparatus 900 further includes:
  • the obtaining module 904 is configured to acquire a second positioning signal that is subsequently acquired by the current positioning signal.
  • the third determining module 905 is configured to determine a second precision value of the second positioning signal, and determine the running track information between the compensated current positioning signal and the second positioning signal as the second running track information.
  • the compensation module 903 is further configured to perform smoothing filtering processing on the first running track information and the second running track information when the second precision value is greater than or equal to the second preset precision threshold, where the second precision value is less than the second preset When the threshold is accurate, the second running track information is updated according to the first running track information.
  • the first position information of the current positioning signal is compensated according to the second position information of the reference positioning signal, which can effectively Reduce the impact of obstructions during map generation and improve map generation.
  • the present invention also provides a non-transitory computer readable storage medium, which enables a terminal to perform a signal compensation method in a map generation process when instructions in the storage medium are executed by a processor of the terminal, Methods include:
  • the first location information of the current positioning signal When the first location information of the current positioning signal satisfies the preset condition, the first location information of the current positioning signal is compensated according to the second location information of the reference positioning signal.
  • the non-transitory computer readable storage medium in this embodiment determines the location information of the current positioning signal by determining a current positioning signal in the process of generating a map to the moving object, and a reference positioning signal collected before the current positioning signal. As the first location information, and determining location information of the reference positioning signal and serving as the second location information, when the first location information of the current positioning signal meets the preset condition, the current location signal is used according to the second location information of the reference positioning signal. The first position information is compensated, which can effectively reduce the influence of the obstruction during the map generation process and improve the map generation effect.
  • the present invention also provides a computer program product, when a command in a computer program product is executed by a processor, performing a signal compensation method in a map generation process, the method comprising:
  • the first position information of the current positioning signal When the first position information of the current positioning signal satisfies the preset condition, the first position information of the current positioning signal is compensated according to the second position information of the reference positioning signal.
  • the computer program product in this embodiment determines the position information of the current positioning signal and determines the position information as the first position information by determining the current positioning signal in the process of generating the map to the moving object and the reference positioning signal collected before the current positioning signal. And determining the position information of the reference positioning signal and serving as the second position information, when the first position information of the current positioning signal satisfies the preset condition, performing the first position information of the current positioning signal according to the second position information of the reference positioning signal Compensation can effectively reduce the impact of obstructions during map generation and improve map generation.
  • portions of the invention may be implemented in hardware, software, firmware or a combination thereof.
  • multiple steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware, as in another embodiment, it can be implemented by any one or combination of the following techniques well known in the art: having logic gates for implementing logic functions on data signals. Discrete logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), etc.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as separate products, may also be stored in a computer readable storage medium.
  • the above mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the traditional automatic lawn mower recognizes the working area by laying a boundary line along the boundary of the working area, or by laying a boundary line along the periphery of the obstacle, and transmitting an electrical signal to generate an electromagnetic field, and the sensor on the automatic mower detects the electromagnetic field signal. , to determine that it is located in or outside the area defined by the boundary line.
  • a method of establishing a work area map may be adopted, and one method of establishing the work area map is to record the boundary of the work area and the obstacle and the like. Coordinates, establish a coordinate system, and generate a map of the work area. When the automatic working system is working, it is judged whether the automatic mower is in a safe working area by comparing the position and map of the automatic mower.
  • the third embodiment provides a method for determining a direction from a mobile device, and the method for determining a direction of the mobile device according to the third embodiment is different from the first embodiment in that the navigation module of the third embodiment includes a base station, and the specific embodiment Described as follows.
  • FIG 26 is a schematic illustration of an automated working system 810 in accordance with one embodiment of the present invention.
  • the automated working system includes self-mobile devices.
  • the self-moving device is an automatic lawn mower 817.
  • the self-mobile device may also be an unattended device such as an automatic cleaning device, an automatic watering device, an automatic snow sweeper, and the like.
  • the automated working system 810 also includes a charging station 818 for refueling the automatic lawn mower 817.
  • the automatic working system 810 includes a navigation module for outputting the current position of the automatic lawn mower.
  • the navigation module includes a base station 811 and a mobile station 812.
  • the automatic working system is used to operate in a predetermined working area.
  • the working area includes at least two sub-working areas separated from each other, and the sub-working area is connected by the passage 813.
  • a boundary 814 is formed between the work area and the non-work area, and the work area includes obstacles 815 and 816, and the obstacle includes trees, pits, and the like.
  • the structure of the automatic lawn mower 817 in this embodiment is as shown in FIG.
  • the automatic lawn mower 817 includes a housing 8171, a moving module, a task execution module, an energy module, a control module, and the like.
  • the moving module includes a crawler belt 8172 that is driven by a drive motor to drive the automatic lawn mower 817 to move.
  • the task execution module includes a cutting assembly 8173 that performs mowing work.
  • the energy module includes a battery pack (not shown) that provides power for the movement and operation of the automatic lawn mower 817.
  • the control module is electrically connected to the mobile module, the task execution module and the energy module, and the control mobile module drives the automatic lawn mower 817 to move, and controls the task execution module to perform the work task.
  • the composition of the navigation module in this embodiment is as shown in FIGS. 28 and 29.
  • the navigation module includes a base station 811 and a mobile station 812. Both the base station 811 and the mobile station 812 receive satellite signals, and the base station 811 transmits a positioning correction signal to the mobile station 812 to implement differential satellite positioning.
  • the base station 811 and the mobile station 812 receive the GPS positioning signal to implement differential GPS positioning.
  • base station 811 and mobile station 812 may also receive positioning signals such as Galileo satellite navigation systems, or Beidou satellite navigation systems, or GLONASS.
  • the base station 811 includes a GPS antenna 19, and receives a GPS positioning signal; the GPS card 21 processes the received GPS positioning signal and generates a positioning correction signal; and the communication module 23 sets the positioning correction signal.
  • the signal is transmitted to the mobile station 812.
  • the communication module 23 includes a radio station and a radio antenna 25; the base station further includes an indicator (not shown) that can output an indication of whether the satellite signal at the current location is good.
  • the base station 811 is disposed at the charging station 818 and integrated with the charging station 818. In other embodiments, the base station 811 can also be provided separately from the charging station 818, for example, at a location such as a roof that can better receive satellite signals.
  • the mobile station 812 includes a housing 27, a GPS antenna 29 that receives a GPS positioning signal, a GPS board 31 that processes the received GPS positioning signal, and a communication module 33 that receives the base station 811.
  • the positioning correction signal, the communication module 33 includes a radio and radio antenna 35.
  • the mobile station 812 integrates an inertial navigation device (not shown), and the inertial navigation device outputs inertial navigation data.
  • the mobile station 812 can use only the GPS positioning signal to navigate, or can use the GPS positioning signal and the inertial navigation data to be tuned by the positioning signal to navigate, or when the GPS signal is weak, it can also use only inertial navigation. Data to navigate.
  • the mobile station 812 also includes an indicator (not shown) that outputs an indication of whether the differential GPS signal at the current location is good.
  • the mobile station 812 is detachably coupled to the housing 8171 of the automatic lawn mower 817.
  • Mobile station 812 includes a first interface (not shown) that is coupled to the housing of automatic lawn mower 817.
  • the mobile station 812 is mounted to the housing 8171 of the automatic lawn mower 817 while the automatic mower 817 is in operation.
  • the mobile station 812 When the mobile station 812 is connected to the housing 8171 of the automatic lawn mower 817, electrical connection with the control module of the automatic lawn mower 817 can be realized, the mobile station 812 outputs the current position coordinates of the automatic lawn mower 817, and the control module is based on automatic cutting.
  • the current position of the lawnmower 817 controls the movement and operation of the automatic mower 817.
  • the mobile station outputs a control command to the control module based on the current position coordinates.
  • the mobile station 812 includes a separate power module 37 that can operate independently when separated from the housing 8171 of the automatic lawn mower 817.
  • the traditional direction determination method is mainly to directly measure the direction by using a sensor.
  • the direction of the angle can be obtained by using a gyroscope or the like to determine the direction, but the problem is that the error is easily accumulated.
  • the angle can be directly obtained by using a compass or the like, but it is easily affected by the environment, and the compass or the like has an inherent error.
  • the direction determining method from the mobile device determines the direction by the position information.
  • FIG. 30 is a schematic flowchart of a method for determining a direction of a self-mobile device according to an embodiment of the invention.
  • the method for determining a direction of a mobile device according to an embodiment of the present invention includes: S701, acquiring first location data of the first antenna from a first antenna that receives a satellite signal, where the first antenna is set in On the self-mobile device; S702, acquiring second location data of the second antenna from a second antenna that receives a satellite signal, where the second antenna is disposed on the self-mobile device, and the first antenna is a predetermined angle between a connection direction of the second antenna and a moving direction of the self-moving device; and S703, determining the self based on the first location data, the second location data, and the predetermined angle The direction of movement of the mobile device.
  • the moving direction of the self-moving device is determined by the position of the two antennas mounted on the mobile device. In this way, the above-mentioned error problem caused by the use of the sensor can be avoided, thereby accurately determining the moving direction of the mobile device.
  • the first antenna and the second antenna are preferably separated from each other by a certain distance. That is, in the direction determining method of the mobile device according to the embodiment of the present invention, the first antenna is disposed at a front portion of the body of the self-mobile device, and the second antenna is disposed at the self-moving The rear of the fuselage of the device.
  • the first antenna and the second antenna may also be installed at other locations on the self-mobile device as long as the distance between the first antenna and the second antenna is sufficient to determine the direction.
  • a connection direction of the first antenna and the second antenna may be at a predetermined angle with a moving direction of the self-moving device, such that by determining a connection direction of the first antenna and the second antenna And determining, according to the predetermined angle, a moving direction of the self-mobile device.
  • the predetermined angle may also be zero degrees, that is, the connection direction of the first antenna and the second antenna may be consistent with the moving direction of the self-mobile device.
  • the first antenna and the second antenna may both be disposed on a central axis of the body of the self-mobile device.
  • the direction determining method from the mobile device can output the moving direction of the self-moving device in real time.
  • the position data of the antenna is acquired by a differential satellite positioning system.
  • the location data of the first antenna and the second antenna are acquired by the mobile device via a differential GPS signal.
  • the inertial navigation device can be further integrated.
  • the position data of the antenna is acquired by the differential satellite positioning system in conjunction with the inertial navigation device.
  • the moving direction of the mobile device may be further determined in conjunction with an angle sensor such as a compass, a gyroscope or the like.
  • the method further includes: determining the moving direction of the self-moving device by combining the angle sensor.
  • the signal strength of the satellite signal may be first determined, and the direction of movement of the mobile device is determined in conjunction with the angle sensor if the signal strength is less than a predetermined threshold, ie, the signal is not good.
  • the method further includes: determining whether the signal strength of the satellite signal is less than a predetermined threshold; and determining the moving direction of the mobile device in combination with the angle sensor in response to the signal strength of the satellite signal being less than a predetermined threshold .
  • the angle sensor includes a compass, a gyroscope, and the like.
  • the location data of the different time points may also be fitted to determine the moving direction of the mobile device.
  • the direction determining method includes: S601, acquiring, at a first time, a location data of the first antenna from a first antenna that receives a satellite signal, the first An antenna is disposed on the self-mobile device; S602, acquiring another location data of the first antenna from the first antenna at a second time, the second time being later than the first time; S603, based on At least the two position data acquired at the first time and the second time are direction-fitted to determine a moving direction of the self-mobile device.
  • the directions are fitted in conjunction with two positions on the time axis (before and after the movement).
  • the acquisition frequency of the position data is 1 Hz to 100 Hz.
  • the acquisition frequency of the position data is 5 Hz.
  • the position data of the antenna is acquired by a differential satellite positioning system in combination with an inertial navigation device.
  • the moving direction of the self-moving device is determined in conjunction with the angle sensor.
  • the angle sensor includes a compass, or a gyroscope.
  • the direction fitting may be performed only from the position of the mobile device obtained by the single antenna.
  • Figure 32 is a schematic block diagram of a self-mobile device in accordance with an embodiment of the present invention.
  • the self-mobile device includes: a first location acquiring unit 710, configured to acquire first location data of the first antenna from a first antenna that receives a satellite signal, the first An antenna is disposed on the self-mobile device; a second location acquiring unit 720 is configured to acquire second location data of the second antenna from a second antenna that receives a satellite signal, where the second antenna is set in the self-moving a predetermined angle between the connection direction of the first antenna and the second antenna and the moving direction of the self-moving device; and a direction determining unit 730, configured to: based on the first location data, The second location data and the predetermined angle determine a direction of movement of the self-mobile device.
  • the first antenna is disposed at a front of the fuselage of the self-mobile device, and the second antenna is disposed at a rear of the fuselage of the self-mobile device.
  • the first antenna and the second antenna are both disposed on a central axis of the body of the self-mobile device.
  • location data for the antenna is acquired by a differential satellite positioning system.
  • the position data of the antenna is acquired by a differential satellite positioning system in conjunction with an inertial navigation device.
  • the direction determining unit is configured to determine a moving direction of the self-moving device in conjunction with an angle sensor.
  • the self-mobile device 700 further includes: a signal strength determining unit configured to determine whether a signal strength of the satellite signal is less than a predetermined threshold; and the direction determining unit is configured to respond to the satellite The signal strength of the signal is less than a predetermined threshold, and the angle sensor is used to determine the direction of movement of the self-mobile device.
  • the angle sensor includes a compass, a gyroscope.
  • a self-mobile device includes: a location acquiring unit, configured to acquire, at a first time, a location data of the first antenna from a first antenna that receives a satellite signal, where An antenna is disposed on the self-mobile device; the location obtaining unit is further configured to acquire another location data of the first antenna from the first antenna at a second time, the second time being later than the a first time; a direction determining unit configured to perform direction fitting based on the two location data acquired by the at least the first time and the second time to determine a moving direction of the self-mobile device.
  • the acquisition frequency of the position data is 1 Hz to 100 Hz.
  • the acquisition frequency of the location data is 5 Hz.
  • the position data of the antenna is acquired by a satellite positioning system in combination with an inertial navigation device.
  • the direction determining unit is configured to determine a moving direction of the self-mobile device in conjunction with an angle sensor.
  • the self-mobile device comprising a signal strength determining unit for determining whether a signal strength of the satellite signal is less than a predetermined threshold; and the direction determining unit is configured to respond to a signal strength of the satellite signal being less than a predetermined threshold
  • the angle sensor determines a direction of movement of the self-mobile device.
  • the angle sensor comprises a compass, or a gyroscope.
  • An embodiment of the invention further relates to an automated working system comprising a self-mobile device as described above that moves and operates within a map-defined work area.
  • the self-mobile device is an automatic lawn mower.
  • the automatic working system is an automatic lawn mower.
  • An embodiment of the invention further relates to an electronic device comprising: a memory for storing computer executable instructions; and a processor for executing the computer executable instructions stored by the memory to perform self-moving as described above The direction of the device is determined.
  • An embodiment of the invention further relates to a computer readable storage medium having stored thereon computer program instructions operable to perform a direction determination method for a self-mobile device as described above when the computer program instructions are executed by a computing device .
  • the beneficial effect of the embodiment of the present invention is that by using the location data to determine the moving direction of the mobile device, the moving direction of the mobile device can be accurately determined. Further, the position data is combined with the output of the angle sensor to determine the moving direction of the mobile device. On the one hand, the position data can be used to correct the error of the sensor, and on the other hand, the navigation can be continued when the satellite signal difference or the positioning signal accuracy is low.
  • the electronic device may be an electronic device integrated in a mobile station from a mobile device, or a stand-alone device independent of the mobile station, the stand-alone device may be in communication with the mobile station to implement a self-mobile device in accordance with an embodiment of the present invention.
  • Direction determination method may be an electronic device integrated in a mobile station from a mobile device, or a stand-alone device independent of the mobile station, the stand-alone device may be in communication with the mobile station to implement a self-mobile device in accordance with an embodiment of the present invention.
  • FIG. 21 is a schematic block diagram of an electronic device according to an embodiment of the present invention.
  • electronic device 600 includes one or more processors 610 and memory 620.
  • Processor 610 can be a central processing unit (CPU) or other form of processing unit with data processing capabilities and/or instruction execution capabilities, and can control other components in electronic device 600 to perform desired functions.
  • CPU central processing unit
  • Processor 610 can be a central processing unit (CPU) or other form of processing unit with data processing capabilities and/or instruction execution capabilities, and can control other components in electronic device 600 to perform desired functions.
  • Memory 620 can include one or more computer program products, which can include various forms of computer readable storage media, such as volatile memory and/or nonvolatile memory.
  • the volatile memory may include, for example, a random access memory (RAM) and/or a cache or the like.
  • the nonvolatile memory may include, for example, a read only memory (ROM), a hard disk, a flash memory, or the like.
  • One or more computer program instructions may be stored on the computer readable storage medium, and the processor 610 may execute the program instructions to implement a positioning failure alarm from a mobile device of various embodiments of the invention described above. Methods and/or other desired functions.
  • Various contents such as position data of the antenna, an installation position of the antenna with respect to the self-mobile device, and the like can also be stored in the computer readable storage medium.
  • electronic device 600 may also include an input device 630 and an output device 640 that are interconnected by a bus system and/or other form of connection mechanism (not shown).
  • the input device 630 can be for receiving user input.
  • the output device 640 can directly output various information to the outside or control the mobile station to transmit signals.
  • electronic device 600 may also include any other suitable components depending on the particular application.
  • embodiments of the present application can also be a computer program product comprising computer program instructions that, when executed by a processor, cause the processor to perform the "exemplary direction determination" described above in this specification.
  • the computer program product can program program code for performing the operations of the embodiments of the present application in any combination of one or more programming languages, including an object oriented programming language, such as Java, C++, etc. Also included are conventional procedural programming languages such as the "C" language or similar programming languages.
  • the program code can execute entirely on the user computing device, partially on the user device, as a stand-alone software package, partially on the remote computing device on the user computing device, or entirely on the remote computing device or server. Execute on.
  • embodiments of the present application can also be a computer readable storage medium having stored thereon computer program instructions that, when executed by a processor, cause the processor to perform the "exemplary direction determination method" described above in this specification.
  • the computer readable storage medium can employ any combination of one or more readable mediums.
  • the readable medium can be a readable signal medium or a readable storage medium.
  • a readable storage medium may include, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any combination of the above. More specific examples (non-exhaustive lists) of readable storage media include: electrical connections with one or more wires, portable disks, hard disks, random access memory (RAM), read only memory (ROM), erasable Programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the foregoing.
  • portions of the invention may be implemented in hardware, software, firmware or a combination thereof.
  • multiple steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware, as in another embodiment, it can be implemented by any one or combination of the following techniques well known in the art: having logic gates for implementing logic functions on data signals. Discrete logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), etc.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as stand-alone products, may also be stored in a computer readable storage medium.
  • the above mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Environmental Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Game Theory and Decision Science (AREA)
  • Medical Informatics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Navigation (AREA)

Abstract

一种自移动设备(1)的定位方法,包括以下步骤:获取自移动设备在移动过程中的当前定位信号,以及自移动设备在所述当前定位信号之前的参考定位信号;对所述参考定位信号和所述当前定位信号进行解算处理获得误差数据;根据所述误差数据及所述参考定位信号的位置信息处理获得自移动设备的当前位置信息。通过利用当前定位信号之前的参考定位信号获取误差数据并基于该误差数据及该参考定位信号的位置信息处理获得当前位置信息,并未利用自建基站或共享基站在当前时刻实时收到的卫星信号进行处理而获得当前位置信息,该方法可取消自建基站或共享基站,简化用户安装,大幅降低成本。

Description

移动物体及其定位方法、自动工作系统、存储介质 技术领域
本发明涉及移动物体,尤其的,涉及一种移动物体的定位方法,采用该方法的移动物体和自动工作系统及存储介质。
背景技术
随着计算机技术和人工智能技术的不断进步,类似于智能机器人的自动行走设备已经开始慢慢的走进人们的生活。三星、伊莱克斯等公司均开发了全自动吸尘器并已经投入市场。这种全自动吸尘器通常体积小巧,集成有环境传感器、自驱系统、吸尘系统、电池和充电系统,能够无需人工操控,自行在室内巡航,在能量低时自动返回充电站,对接并充电,然后继续巡航吸尘。同时,哈斯科瓦纳等公司开发了类似的智能割草机,其能够自动在用户的草坪中割草、充电,无需用户干涉。由于这种自动割草系统一次设置之后就无需再投入精力管理,将用户从清洁、草坪维护等枯燥且费时费力的家务工作中解放出来,因此受到极大欢迎。
现有的自动割草机一般应用于面积较大的工作区域,如1000平方米。在常规的自动割草机定位中,都需要采用基站和接收站两套系统,基站的目的是实时提供接收站一些卫星的观测值,接收站通过自己的观测值,采用RTK技术计算定位数据,通过数据的差分修正来实现高精度定位,获得自动割草机的位置坐标,这种技术可以实现稳定、长期的高精度绝对定位。基站可以是自建基站,也可以是共享基站。但是,不管采用哪种基站,对于家庭用户来说,基站需要购买、安装,成本高,难度大。因此有必要对现有的自动割草机及定位方式进行改进,降低成本。
发明内容
针对现有技术存在的不足,本发明提供一种在没有基站的情况下实现自移动设备定位的方法。
一种移动物体的定位方法,其包括以下步骤:
获取移动物体在移动过程中的当前定位信号,以及移动物体在所述当前定位信号之前的参考定位信号;
对所述参考定位信号和所述当前定位信号进行解算处理获得误差数据,进行解算处理的所述参考定位信号和所述当前定位信号存在共用卫星信号;
根据所述误差数据及所述参考定位信号的位置信息处理获得移动物体的当前位置信息。
进一步的,所述参考定位信号为移动物体直接从卫星采集获得。
进一步的,在获取移动物体在移动过程中的当前定位信号以及移动物体在所述当前定位信号之前的参考定位信号的步骤之前,还包括步骤:
确定参考点位置的参考坐标;
获取移动物体在参考点位置的定位信号,将该定位信号作为首个参考定位信号。
进一步的,所述参考点位置为充电站位置或者移动物体的工作区域内设定的具有固定的参考坐标的校准点。
进一步的,获取参考定位信号的方法包括:
S1:选择当前定位信号之前最近时刻的已获取的卫星信号作为参考定位信号;
S2:判断选择的参考定位信号是否满足解算条件;
S3:若选择的参考定位信号满足解算条件,则将该参考定位信号作为后续解算处理的参考定位信号;若选择的参考定位信号不满足解算条件,则选择再前最近时刻的卫星信号作为参考定位信号,并重复步骤S2;
S4:重复步骤S3直至获得符合解算条件的参考定位信号。
进一步的,所述解算条件为:共用卫星数量达到设定的解算卫星数阈值。
进一步的,所述解算条件为:共用卫星数量达到设定的解算卫星数阈值,且卫星信号的信号质量达到设定的信号噪声比阈值。
进一步的,所述移动物体的定位方法还包括:
对处理获得的移动物体的当前位置信息进行误差评估;和
当误差评估结果满足误差条件时,移动物体返回参考点重新获取初始的参考定位信号。
进一步的,所述参考点位置为充电站位置或者移动物体的工作区域内设定的具有固定的参考坐标的校准点。
进一步的,所述误差条件为:移动物体的工作时间达到设定的总工作时间阈值。
进一步的,所述误差条件为:选择的参考定位信号不满足解算条件。
进一步的,所述解算条件为:
共用卫星数量达到设定的解算卫星数阈值。
进一步的,所述解算条件为:
共用卫星数量达到设定的解算卫星数阈值,且卫星信号的信号质量达到设定的信号噪声比阈值。
进一步的,移动物体的工作区域内设置有多个校准点,多个所述校准点相互之间具有已知的固定的参考坐标,当移动物体移动到校准点位置时,所述移动物体将校准点的位置信息作为当前位置信息。
进一步的,所述移动物体的定位方法进一步包括:
确定所述卫星信号的信号强度是否小于预定阈值;和
响应于所述卫星信号的信号强度小于预定阈值,结合定位传感器确定所述移动物体的位置信息。
进一步的,所述定位传感器包括惯性导航装置、或激光雷达、或无载波通信装置。
进一步的,所述移动物体的定位方法还包括对位置信息进行补偿,所述补偿的方法包括步骤:
确定所述当前的定位信号的位置信息并作为第一位置信息,并确定所述参考定位信号的位置信息并作为第二位置信息;
在所述当前定位信号的第一位置信息满足预设条件时,根据所述参考定位信号的第二位置信息对所述当前定位信号的第一位置信息进行补偿。
进一步的,所述预设条件包括:所述当前的定位信号的第一精度值小于第一预设精度阈值。
进一步的,所述预设条件包括:所述第一位置信息和所述第二位置信息之间的差值大于预设阈值。
进一步的,所述参考定位信号的数量为至少两个,所述根据所述参考定位信号的第二位置信息对所述当前定位信号的第一位置信息进行补偿,包括:
根据至少两个的参考定位信号的第二位置信息确定所述移动物体的运行轨迹信息并作为第一运行轨迹信息;
根据所述第一运行轨迹信息对所述当前定位信号的第一位置信息进行补偿。
进一步的,所述根据所述第一运行轨迹信息对所述当前定位信号的第一位置信息进行补偿,包括:
根据所述第一运行轨迹信息确定所述当前定位信号的目标位置;
直接将所述当前定位信号的第一位置信息对应的位置,调整为所述目标位置。
进一步的,所述补偿的方法还包括:
获取在所述当前定位信号后续所采集的第二定位信号;
确定所述第二定位信号的第二精度值,并确定所述补偿后的当前定位信号和所述第二定位信号之间的运行轨迹信息并作为第二运行轨迹信息;
若所述第二精度值大于或者等于第二预设精度阈值,则对所述第一运行轨迹信息和所述第二运行轨迹信息进行平滑滤波处理;
若所述第二精度值小于所述第二预设精度阈值,则根据所述第一运行轨迹信息对所述第二运行轨迹信息进行更新。
进一步的,所述移动物体的定位方法还包括对移动物体的方向进行确定,所述移动物体的方向确定方法包括步骤:
从接收卫星信号的第一天线获取所述第一天线的第一位置数据,所述第一天线设置在所述移动物体上;
从接收卫星信号的第二天线获取所述第二天线的第二位置数据,所述第二天线设置在所述移动物体上,且所述第一天线与所述第二天线的连线方向与所述移动物体的朝向之间具有预定角度;以及
基于所述第一位置数据、所述第二位置数据和所述预定角度确定所述移动物体的朝向。
进一步的,所述第一天线设置在所述移动物体的机身前部,且所述第二天线设置在所述移动物体的机身后部。
进一步的,所述第一天线和所述第二天线均设置在所述移动物体的机身的中轴线上。
进一步的,通过卫星定位系统结合惯性导航装置获取所述天线的位置数据。
进一步的,所述移动物体的方向确定方法进一步包括:
结合角度传感器确定所述移动物体的朝向。
进一步的,所述移动物体的方向确定方法进一步包括:
确定所述卫星信号的信号强度是否小于预定阈值;和
响应于所述卫星信号的信号强度小于预定阈值,结合角度传感器确定所述 移动物体的朝向。
进一步的,所述角度传感器包括罗盘、或陀螺仪。
一种移动物体,其包括:
第一信号获取模块,用于获取移动物体在移动过程中的当前定位信号,以及移动物体在所述当前定位信号之前的参考定位信号;
解算处理模块,用于对所述参考定位信号和所述当前定位信号进行解算处理获得误差数据,进行解算处理的所述参考定位信号和所述当前定位信号存在共用卫星信号;
位置确定模块,用于根据所述误差数据及所述参考定位信号的位置信息确定移动物体的当前位置信息。
进一步的,所述参考定位信号为移动物体直接从卫星采集获得。
进一步的,所述移动物体包括:
参考点位置确定模块,用于确定参考点位置的参考坐标,所述第一信号获取模块获取移动物体在参考点位置的定位信号,将该定位信号作为首个参考定位信号。
进一步的,所述参考点位置为充电站位置或者移动物体的工作区域内设定的具有固定的参考坐标的校准点。
进一步的,所述移动物体包括:
解算条件判断模块,所述解算条件判断模块用于:
判断选择的参考定位信号是否满足解算条件;
若选择的参考定位信号满足解算条件,则将该参考定位信号作为后续解算处理的参考定位信号;若选择的参考定位信号不满足解算条件,则选择再前最近时刻的卫星信号作为参考定位信号并重复判断选择的参考定位信号是否满足解算条件,重复本步骤直至获得符合解算条件的参考定位信号。
进一步的,所述解算条件为:共用卫星数量达到设定的解算卫星数阈值。
进一步的,所述解算条件为:共用卫星数量达到设定的解算卫星数阈值,且卫星信号的信号质量达到设定的信号噪声比阈值。
进一步的,所述移动物体还包括误差评估模块,所述误差评估模块用于:
对处理获得的移动物体的当前位置信息进行误差评估;和
当误差评估结果满足误差条件时,移动物体返回参考点重新获取初始的参考定位信号。
进一步的,所述参考点位置为充电站位置或者移动物体的工作区域内设定的具有固定的参考坐标的校准点。
进一步的,所述误差条件为:移动物体的工作时间达到设定的总工作时间阈值。
进一步的,所述误差条件为:选择的参考定位信号不满足解算条件。
进一步的,所述解算条件为:共用卫星数量达到设定的解算卫星数阈值。
进一步的,所述解算条件为:共用卫星数量达到设定的解算卫星数阈值,且卫星信号的信号质量达到设定的信号噪声比阈值。
进一步的,移动物体的工作区域内设置有多个校准点,多个所述校准点相互之间具有已知的固定的参考坐标,当移动物体移动到校准点位置时,所述移动物体将校准点的位置信息作为当前位置信息。
进一步的,所述移动物体还包括:
信号强度判定模块,用于确定所述卫星信号的信号强度是否小于预定阈值;和
所述位置确定模块用于响应于所述卫星信号的信号强度小于预定阈值,结合定位传感器确定所述移动物体的位置信息。
进一步的,所述定位传感器包括惯性导航装置、或激光雷达、或无载波通信装置。
进一步的,所述移动物体还包括:
第一确定模块,用于确定所述当前的定位信号的位置信息并作为第一位置信息,并确定所述参考定位信号的位置信息并作为第二位置信息;
补偿模块,用于在所述当前定位信号的第一位置信息满足预设条件时,根据所述参考定位信号的第二位置信息对所述当前定位信号的第一位置信息进行补偿。
进一步的,所述预设条件包括:所述当前的定位信号的第一精度值小于第一预设精度阈值。
进一步的,所述预设条件包括:所述第一位置信息和所述第二位置信息之间的差值大于预设阈值。
进一步的,所述参考定位信号的数量为至少两个,所述移动物体包括:
确定子模块,用于根据至少两个的参考定位信号的第二位置信息确定所述移动物体的运行轨迹信息并作为第一运行轨迹信息;
补偿子模块,用于根据所述第一运行轨迹信息对所述当前定位信号的第一位置信息进行补偿。
进一步的,所述补偿子模块,具体用于:
根据所述第一运行轨迹信息确定所述当前定位信号的目标位置;
直接将所述当前定位信号的第一位置信息对应的位置,调整为所述目标位置。
进一步的,所述移动物体还包括:
第二信号获取模块,用于获取在所述当前定位信号后续所采集的第二定位信号;
第二确定模块,用于确定所述第二定位信号的第二精度值,并确定所述补偿后的当前定位信号和所述第二定位信号之间的运行轨迹信息并作为第二运行轨迹信息;
所述补偿模块,还用于在所述第二精度值大于或者等于第二预设精度阈值时,对所述第一运行轨迹信息和所述第二运行轨迹信息进行平滑滤波处理,在所述第二精度值小于所述第二预设精度阈值时,根据所述第一运行轨迹信息对所述第二运行轨迹信息进行更新。
进一步的,所述移动物体还包括:
第一位置获取模块,用于从接收卫星信号的第一天线获取所述第一天线的第一位置数据,所述第一天线设置在所述移动物体上;
第二位置获取模块,用于从接收卫星信号的第二天线获取所述第二天线的第二位置数据,所述第二天线设置在所述移动物体上,且所述第一天线与所述第二天线的连线方向与所述移动物体的朝向之间具有预定角度;以及
方向确定模块,用于基于所述第一位置数据、所述第二位置数据和所述预定角度确定所述移动物体的朝向。
进一步的,所述第一天线设置在所述移动物体的机身前部,且所述第二天线设置在所述移动物体的机身后部。
进一步的,所述第一天线和所述第二天线均设置在所述移动物体的机身的中轴线上。
进一步的,通过卫星定位系统结合惯性导航装置获取所述天线的位置数据。
进一步的,所述方向确定模块用于结合角度传感器确定所述移动物体的朝向。
进一步的,进一步包括:
信号强度判定模块,用于确定所述卫星信号的信号强度是否小于预定阈值;和
所述方向确定模块用于响应于所述卫星信号的信号强度小于预定阈值,结合所述角度传感器确定所述移动物体的朝向。
进一步的,所述角度传感器包括罗盘、或陀螺仪。
一种自动工作系统,其包括:
如上述任意一项所述的移动物体,在限定的工作区域内移动和工作。
一种计算机可读存储介质,其上存储有计算机程序,当所述计算机程序指令被计算装置执行时,可操作来执行如上述任意一项所述的移动物体的定位方法。
一种计算机程序产品,当所述计算机程序产品中的指令由处理器执行时,执行一种移动物体的定位方法,所述方法包括:
获取移动物体在移动过程中的当前定位信号,以及移动物体在所述当前定位信号之前的参考定位信号;
对所述参考定位信号和所述当前定位信号进行解算处理获得误差数据;
根据所述误差数据及所述参考定位信号的位置信息处理获得移动物体的当前位置信息。
一种电子设备,包括:
存储器,用于存储计算机可执行指令;和
处理器,用于执行所述存储器存储的计算机可执行指令,以执行如上述任意一项所述的移动物体的定位方法。
与现有技术相比,本发明通过利用当前定位信号之前的参考定位信号获取误差数据并基于该误差数据及该参考定位信号的位置信息处理获得当前位置信息,并未利用自建基站或共享基站在当前时刻实时收到的卫星信号进行处理而获得当前位置信息,所以基于本发明可以取消自建基站或共享基站,简化用户安装,大幅降低成本。
提供一种地图生成过程中的信号补偿方法、装置及存储介质、计算机程序产品。
为此,本发明的一个目的在于提出一种地图生成过程中的信号补偿方法,能够有效减弱地图生成过程中遮挡物所造成的影响,提升地图生成效果。
本发明的另一个目的在于提出一种地图生成过程中的信号补偿装置。
本发明的另一个目的在于提出一种非临时性计算机可读存储介质。
本发明的另一个目的在于提出一种计算机程序产品。
为达到上述目的,本发明第一方面实施例提出的地图生成过程中的信号补偿方法,包括:确定在对移动物体生成地图过程中当前定位信号,以及在所述当前定位信号之前所采集的参考定位信号;确定所述当前的定位信号的位置信息并作为第一位置信息,并确定所述参考定位信号的位置信息并作为第二位置信息;在所述当前定位信号的第一位置信息满足预设条件时,根据所述参考定位信号的第二位置信息对所述当前定位信号的第一位置信息进行补偿。
本发明第一方面实施例提出的地图生成过程中的信号补偿方法,通过确定在对移动物体生成地图过程中当前定位信号,以及在当前定位信号之前所采集的参考定位信号,确定当前的定位信号的位置信息并作为第一位置信息,并确定参考定位信号的位置信息并作为第二位置信息,在当前定位信号的第一位置信息满足预设条件时,根据参考定位信号的第二位置信息对当前定位信号的第一位置信息进行补偿,能够有效减弱地图生成过程中遮挡物所造成的影响,提升地图生成效果。
进一步的,所述预设条件包括:所述当前的定位信号的第一精度值小于第一预设精度阈值。
进一步的,所述预设条件包括:所述第一位置信息和所述第二位置信息之间的差值大于预设阈值。
进一步的,所述参考定位信号的数量为至少两个,所述根据所述参考定位信号的第二位置信息对所述当前定位信号的第一位置信息进行补偿,包括:
根据至少两个的参考定位信号的第二位置信息确定所述移动物体的运行轨迹信息并作为第一运行轨迹信息;
根据所述第一运行轨迹信息对所述当前定位信号的第一位置信息进行补偿。
进一步的,所述根据所述第一运行轨迹信息对所述当前定位信号的第一位置信息进行补偿,包括:
根据所述第一运行轨迹信息确定所述当前定位信号的目标位置;
直接将所述当前定位信号的第一位置信息对应的位置,调整为所述目标位置。
进一步的,地图生成过程中的信号补偿方法还包括:
获取在所述当前定位信号后续所采集的第二定位信号;
确定所述第二定位信号的第二精度值,并确定所述补偿后的当前定位信号和所述第二定位信号之间的运行轨迹信息并作为第二运行轨迹信息;
若所述第二精度值大于或者等于第二预设精度阈值,则对所述第一运行轨迹信息和所述第二运行轨迹信息进行平滑滤波处理;
若所述第二精度值小于所述第二预设精度阈值,则根据所述第一运行轨迹信息对所述第二运行轨迹信息进行更新。
为达到上述目的,本发明第二方面实施例提出的地图生成过程中的信号补偿装置,包括:第一确定模块,用于确定在对移动物体生成地图过程中当前定位信号,以及在所述当前定位信号之前所采集的参考定位信号;第二确定模块,用于确定所述当前的定位信号的位置信息并作为第一位置信息,并确定所述参考定位信号的位置信息并作为第二位置信息;补偿模块,用于在所述当前定位信号的第一位置信息满足预设条件时,根据所述参考定位信号的第二位置信息对所述当前定位信号的第一位置信息进行补偿。
本发明第二方面实施例提出的地图生成过程中的信号补偿装置,通过确定在对移动物体生成地图过程中当前定位信号,以及在当前定位信号之前所采集的参考定位信号,确定当前的定位信号的位置信息并作为第一位置信息,并确定参考定位信号的位置信息并作为第二位置信息,在当前定位信号的第一位置信息满足预设条件时,根据参考定位信号的第二位置信息对当前定位信号的第一位置信息进行补偿,能够有效减弱地图生成过程中遮挡物所造成的影响,提升地图生成效果。
进一步的,所述预设条件包括:所述当前的定位信号的第一精度值小于第一预设精度阈值。
进一步的,所述预设条件包括:所述第一位置信息和所述第二位置信息之间的差值大于预设阈值。
进一步的,所述参考定位信号的数量为至少两个,所述补偿模块,包括:
确定子模块,用于根据至少两个的参考定位信号的第二位置信息确定所述移动物体的运行轨迹信息并作为第一运行轨迹信息;
补偿子模块,用于根据所述第一运行轨迹信息对所述当前定位信号的第一位置信息进行补偿。
进一步的,所述补偿子模块,具体用于:
根据所述第一运行轨迹信息确定所述当前定位信号的目标位置;
直接将所述当前定位信号的第一位置信息对应的位置,调整为所述目标位置。
进一步的,所述的地图生成过程中的信号补偿装置,还包括:
第二信号获取模块用于获取在所述当前定位信号后续所采集的第二定位信号;
第二确定模块,用于确定所述第二定位信号的第二精度值,并确定所述补偿后的当前定位信号和所述第二定位信号之间的运行轨迹信息并作为第二运行轨迹信息;
所述补偿模块,还用于在所述第二精度值大于或者等于第二预设精度阈值时,对所述第一运行轨迹信息和所述第二运行轨迹信息进行平滑滤波处理,在所述第二精度值小于所述第二预设精度阈值时,根据所述第一运行轨迹信息对所述第二运行轨迹信息进行更新。
为达到上述目的,本发明第三方面实施例提出的非临时性计算机可读存储介质,当所述存储介质中的指令由移动终端的处理器被执行时,使得移动终端能够执行一种地图生成过程中的信号补偿方法,所述方法包括:确定在对移动物体生成地图过程中当前定位信号,以及在所述当前定位信号之前所采集的参考定位信号;确定所述当前的定位信号的位置信息并作为第一位置信息,并确定所述参考定位信号的位置信息并作为第二位置信息;在所述当前定位信号的第一位置信息满足预设条件时,根据所述参考定位信号的第二位置信息对所述当前定位信号的第一位置信息进行补偿。
本发明第三方面实施例提出的非临时性计算机可读存储介质,通过确定在对移动物体生成地图过程中当前定位信号,以及在当前定位信号之前所采集的参考定位信号,确定当前的定位信号的位置信息并作为第一位置信息,并确定参考定位信号的位置信息并作为第二位置信息,在当前定位信号的第一位置信息满足预设条件时,根据参考定位信号的第二位置信息对当前定位信号的第一位置信息进行补偿,能够有效减弱地图生成过程中遮挡物所造成的影响,提升地图生成效果。
为达到上述目的,本发明第四方面实施例提出的计算机程序产品,当所述计算机程序产品中的指令由处理器执行时,执行一种地图生成过程中的信号补偿方法,所述方法包括:确定在对移动物体生成地图过程中当前定位信号,以及在所述当前定位信号之前所采集的参考定位信号;确定所述当前的定位信号 的位置信息并作为第一位置信息,并确定所述参考定位信号的位置信息并作为第二位置信息;在所述当前定位信号的第一位置信息满足预设条件时,根据所述参考定位信号的第二位置信息对所述当前定位信号的第一位置信息进行补偿。
本发明第四方面实施例提出的计算机程序产品,通过确定在对移动物体生成地图过程中当前定位信号,以及在当前定位信号之前所采集的参考定位信号,确定当前的定位信号的位置信息并作为第一位置信息,并确定参考定位信号的位置信息并作为第二位置信息,在当前定位信号的第一位置信息满足预设条件时,根据参考定位信号的第二位置信息对当前定位信号的第一位置信息进行补偿,能够有效减弱地图生成过程中遮挡物所造成的影响,提升地图生成效果。
提供一种自移动设备的方向确定方法。
为克服现有技术的缺陷,本发明所要解决的一个问题是,在自移动设备移动时确定自移动设备的方向。
本发明解决现有技术问题所采用的技术方案是:
一种自移动设备的方向确定方法,包括:从接收卫星信号的第一天线获取所述第一天线的第一位置数据,所述第一天线设置在所述自移动设备上;从接收卫星信号的第二天线获取所述第二天线的第二位置数据,所述第二天线设置在所述自移动设备上,且所述第一天线与所述第二天线的连线方向与所述自移动设备的移动方向之间具有预定角度;以及基于所述第一位置数据、所述第二位置数据和所述预定角度确定所述自移动设备的移动方向。
进一步的,所述第一天线设置在所述自移动设备的机身前部,且所述第二天线设置在所述自移动设备的机身后部。
进一步的,所述第一天线和所述第二天线均设置在所述自移动设备的机身的中轴线上。
进一步的,通过卫星定位系统结合惯性导航装置获取所述天线的位置数据。
进一步的,结合角度传感器确定所述自移动设备的移动方向。
进一步的,确定所述卫星信号的信号强度是否小于预定阈值;和响应于所述卫星信号的信号强度小于预定阈值,结合角度传感器确定所述自移动设备的移动方向。
进一步的,所述角度传感器包括罗盘、或陀螺仪。
一种自移动设备,包括:第一位置获取单元,用于从接收卫星信号的第一天线获取所述第一天线的第一位置数据,所述第一天线设置在所述自移动设备上;第二位置获取单元,用于从接收卫星信号的第二天线获取所述第二天线的第二位置数据,所述第二天线设置在所述自移动设备上,且所述第一天线与所述第二天线的连线方向与所述自移动设备的移动方向之间具有预定角度;以及方向确定单元,用于基于所述第一位置数据、所述第二位置数据和所述预定角度确定所述自移动设备的移动方向。
进一步的,所述第一天线设置在所述自移动设备的机身前部,且所述第二天线设置在所述自移动设备的机身后部。
进一步的,所述第一天线和所述第二天线均设置在所述自移动设备的机身的中轴线上。
进一步的,通过卫星定位系统结合惯性导航装置获取所述天线的位置数据。
进一步的,所述方向确定单元用于结合角度传感器确定所述自移动设备的移动方向。
进一步的,自移动设备进一步包括:信号强度判定单元,用于确定所述卫星信号的信号强度是否小于预定阈值;和所述方向确定单元用于响应于所述卫星信号的信号强度小于预定阈值,结合所述角度传感器确定所述自移动设备的移动方向。
进一步的,所述角度传感器包括罗盘、或陀螺仪。
一种自动工作系统,包括上述任意一项所述的自移动设备,在地图限定的工作区域内移动和工作。
一种电子设备,包括:存储器,用于存储计算机可执行指令;和处理器,用于执行所述存储器存储的计算机可执行指令,以执行上述任意一项所述的自移动设备的方向确定方法。
一种计算机可读存储介质,其上存储有计算机程序指令,当所述计算机程序指令被计算装置执行时,可操作来执行上述任意一项所述的自移动设备的方向确定方法。
一种自移动设备的方向确定方法,包括:在第一时间从接收卫星信号的第一天线获取所述第一天线的一位置数据,所述第一天线设置在所述自移动设备上;在第二时间从所述第一天线获取所述第一天线的另一位置数据,所述第二时间晚于所述第一时间;基于至少所述第一时间和第二时间获取的两个位置数 据进行方向拟合,以确定所述自移动设备的移动方向。
进一步的,所述位置数据的获取频率为1Hz到100Hz。
进一步的,通过卫星定位系统结合惯性导航装置获取所述天线的位置数据。
进一步的,结合角度传感器确定所述自移动设备的移动方向。
进一步的,确定所述卫星信号的信号强度是否小于预定阈值;和响应于所述卫星信号的信号强度小于预定阈值,结合角度传感器确定所述自移动设备的移动方向。
进一步的,所述角度传感器包括罗盘、或陀螺仪。
一种自移动设备,包括:位置获取单元,用于在第一时间从接收卫星信号的第一天线获取所述第一天线的一位置数据,所述第一天线设置在所述自移动设备上;所述位置获取单元还用于在第二时间从所述第一天线获取所述第一天线的另一位置数据,所述第二时间晚于所述第一时间;方向确定单元,用于基于至少所述第一时间和第二时间获取的两个位置数据进行方向拟合,以确定所述自移动设备的移动方向。
进一步的,所述位置数据的获取频率为1Hz到100Hz。
进一步的,通过卫星定位系统结合惯性导航装置获取所述天线的位置数据。
进一步的,所述方向确定单元用于结合角度传感器确定所述自移动设备的移动方向。
进一步的,包括信号强度判定单元,用于确定所述卫星信号的信号强度是否小于预定阈值;和所述方向确定单元用于响应于所述卫星信号的信号强度小于预定阈值,结合所述角度传感器确定所述自移动设备的移动方向。
进一步的,所述角度传感器包括罗盘、或陀螺仪。
一种自动工作系统,包括上述任意一项所述的自移动设备,在地图限定的工作区域内移动和工作。
一种电子设备,包括:存储器,用于存储计算机可执行指令;和处理器,用于执行所述存储器存储的计算机可执行指令,以执行上述任意一项所述的自移动设备的方向确定方法。
一种计算机可读存储介质,其上存储有计算机程序指令,当所述计算机程序指令被计算装置执行时,可操作来执行如上述中任意一项所述的自移动设备的方向确定方法。
与现有技术相比,本发明的有益效果是:通过使用位置数据确定自移动设 备的移动方向,可以准确地确定自移动设备的移动方向。进一步的,通过位置数据结合角度传感器的输出确定自移动设备的移动方向,一方面能够利用位置数据校正传感器的误差,另一方面能够在卫星信号差或定位信号精度低时持续导航。
附图说明
以上所述的本发明解决的技术问题、技术方案以及有益效果可以通过下面的能够实现本发明的较佳的具体实施例的详细描述,同时结合附图描述而清楚地获得。
附图以及说明书中的相同的标号和符号用于代表相同的或者等同的元件。
图1为本发明第一实施例中自动工作系统的示意图。
图2为本发明一实施例中自移动设备为智能割草机时在工作区域内工作的示意图。
图3为本发明一实施例中自动工作系统包括两个子工作区域的示意图。
图4为本发明一实施例的移动站的组成示意图。
图5为本发明第一实施例的自移动设备的定位方法的流程示意图。
图6为本发明一实施例中自移动设备的回归方式示意图。
图7为本发明一实施例中自移动设备的回归方式示意图。
图8是本发明一实施例提出的信号补偿方法的流程示意图。
图9为本发明实施例中信号补偿的场景示意图。
图10为本发明实施例中信号补偿的位置信息示意图。
图11是本发明另一实施例提出的信号补偿方法的流程示意图。
图12是本发明另一实施例提出的信号补偿方法的流程示意图。
图13为本发明实施例中平滑滤波处理后的运行轨迹示意图。
图14为本发明实施例中更新后的运行轨迹示意图。
图15为本发明实施例的自移动设备的方向确定方法的示意性流程图。
图16为本发明一实施例的自移动设备的方向确定方法的示意性流程图。
图17是本发明一实施例的移动物体的结构示意图。
图18是本发明一实施例的信号补偿装置的结构示意图。
图19是本发明另一实施例的信号补偿装置的结构示意图。
图20为本发明一实施例的自移动设备的示意性框图。
图21为本发明一实施例的电子设备的示意性框图。
图22是本发明第二实施例提出的地图生成过程中的信号补偿方法的流程示意图。
图23是本发明另一实施例提出的地图生成过程中的信号补偿方法的流程示意图。
图24是本发明一实施例提出的地图生成过程中的信号补偿装置的结构示意图。
图25是本发明另一实施例提出的地图生成过程中的信号补偿装置的结构示意图。
图26为本发明的一实施例的自动工作系统示意图。
图27为本发明的一实施例的自动割草机结构示意图。
图28为本发明的一实施例的导航模块的组成示意图。
图29为本发明的一实施例的导航模块的组成示意图。
图30为本发明一实施例的自移动设备的方向确定方法的示意性流程图。
图31为本发明一实施例的自移动设备的方向确定方法的示意性流程图
图32为本发明一实施例的自移动设备的示意性框图。
其中,
100、810、自动工作系   700、自移动设备          1、817、自动割草机
2、818、充电站         3、8171、壳体            5、移动模块
7、任务执行模块        8、边界                  9、812、移动站
10、挡物               11、工作区域             12、位置信息模块
13、61、71、参考定位   14、72、当前定位信号     15、箭头
信号
16、63、73、第二定位   811、基站                19、29、GPS天线
信号
21、31、GPS板卡        23、33通讯模块           25、35、电台及电台天线
27、8171、壳体         37、电源模块             301、第一信号获取模块
302、解算处理模块      303、位置确定模块        510、第一位置获取模块
520、第二位置获取模块  530、方向确定模块        600、电子设备
610、处理器            620、存储器              630、输入装置
640、输出装置          800、900、信号补偿装置   801、第一信号获取模块
802、901、第一确定模  803、903、补偿模块       8031、9031、确定子模块
8032、9032、补偿子模  804、第二信号获取        805、902、第二确定模块
904、获取模块         905、第三确定模块        813、通道
814、边界             815、816、障碍           8172、履带
8173、切割组件        710、第一位置获取单元    720、第二位置获取单元
730、方向确定单元
具体实施方式
一种自移动设备,用于在预定的工作区域之中行走并进行工作。
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。相反,本发明的实施例包括落入所附加权利要求书的精神和内涵范围内的所有变化、修改和等同物。
在下面的实施例描述中,“误差数据”指的是根据两组具有共用卫星数的卫星信号进行分析后获得的误差电文,该误差电文用于后续对移动物体的定位。“误差评估”指的是在移动物体的移动过程中,对移动物体位置信息的准确度进行评估,分析定位的准确性或者误差率,通过误差评估避免移动物体一直沿着错误的方向继续移动。
第一实施例:
图1为本发明第一实施例的自动工作系统100的示意图。如图1所示,本发明实施例中自动工作系统100包括自移动设备。自移动设备可以在地图限定的工作区域内移动和工作。本实施例中,自移动设备为自动割草机1,在其他实施例中,自移动设备也可以为自动清洁设备、自动浇灌设备、自动扫雪机等适合无人值守的设备。
如图2所示,自动割草机1包括壳体3,移动模块5,任务执行模块7,能源模块,控制模块等。自动割草机1的工作地点为草坪6。其中,移动模块5包括履带或轮组,由驱动马达驱动以带动自动割草机1移动。任务执行模块7包括切割组件,安装于壳体3的底部,由切割马达驱动以旋转执行割草工作。执行割草工作。能源模块包括电池包(图未示),为自动割草机1的移动和工作 提供电能。控制模块与移动模块5、任务执行模块7和能源模块电连接,控制移动模块带动自动割草机1移动,并控制任务执行模块执行工作任务。
如图3所示,自动工作系统用于在预定的工作区域内工作,本一个实施例中,工作区域包括至少两个相互分离的子工作区域,即区域C和区域D。工作区域与非工作区域之间形成边界8,工作区域内可能会有障碍,比如树木、凹坑等。
如图1所示,自动工作系统100还包括充电站2,用于为自动割草机1补给电能。充电站2可以设置在房屋4旁边的空旷地方。充电站2还可以设在工作区域内或者设在工作区域的边界上。本实施例中,自动工作系统100包括导航模块,用于输出自动割草机的当前位置。具体的,导航模块包括移动站9。
移动站9与控制模块电连接,用来存储和处理自动割草机1获得的卫星信号,使得自动割草机1能够在工作区域内移动并工作。本实施例中,移动站9用以接收卫星信号,卫星信号包括卫星角度、时钟等。卫星信号可以为GPS信号,也可以为伽利略、北斗等信号,或同时使用几种信号。具体的,本实施例中,卫星信号为差分GPS(DGPS)信号。
如图4所示,本实施例中,移动站9包括壳体27;GPS天线29,接收GPS定位信号;GPS板卡31,处理接收到的GPS定位信号。本实施例中,移动站9集成了惯性导航装置(图未示),惯性导航装置输出惯性导航数据。移动站9工作时,可以只利用GPS定位信号来导航,也可以利用GPS定位信号与惯性导航数据经融合处理后的定位信号来导航,或者,在GPS信号弱的时候,也可以只利用惯性导航数据来导航。移动站9还包括指示器(图未示),输出当前位置的差分GPS信号是否良好的指示。
本实施例中,移动站9与自动割草机1的壳体3可拆卸的连接。移动站9包括与自动割草机1的壳体连接的第一接口(图未示)。自动割草机1工作时移动站9安装于自动割草机1的壳体3。移动站9与自动割草机1的壳体3连接时,可实现与自动割草机1的控制模块的电连接,移动站9输出自动割草机1的当前位置坐标,控制模块根据自动割草机1的当前位置控制自动割草机1的移动和工作。或者,移动站根据当前位置坐标输出控制指令给控制模块。需要说明的是,本发明实施例中,移动站9包括独立的电源模块37,移动站9与自动割草机1的壳体3分离时,可以独立工作。在其他实施例中,移动站9与自动割草机1的壳体3可以为不可拆卸的连接,如果是自移动设备工作过程中的 定位,则移动站9与自动割草机1的壳体3是否可拆卸并不影响定位。
移动站9通过利用当前定位信号之前的参考定位信号获取误差数据并基于该误差数据及该参考定位信号的位置信息处理获得当前位置信息,并未利用自建基站或共享基站在当前时刻实时收到的卫星信号进行处理而获得当前位置信息,所以基于本发明可以取消自建基站或共享基站,简化用户安装,大幅降低成本。
本实施例以该不设置自建基站或共享基站的自移动设备的定位方法被配置为自移动设备的定位装置中来举例说明。
本实施例中自移动设备的定位装置可以设置在服务器中,或者也可以设置在移动站中,本申请实施例对此不作限制。
其中,电子设备例如为个人电脑(Personal Computer,PC),云端设备或者移动设备,移动设备例如智能手机,或者平板电脑等。
需要说明的是,本申请实施例的执行主体,在硬件上可以例如为服务器或者电子设备中的中央处理器(Central Processing Unit,CPU),在软件上可以例如为服务器或者电子设备中的后台管理服务,对此不作限制。
图5是本发明第一实施例的移动物体的定位方法的流程示意图,如图5所示,该移动物体的定位方法包括步骤:
S101:获取移动物体在移动过程中的当前定位信号,以及移动物体在所述当前定位信号之前的参考定位信号。
其中,移动物体可以例如为移动站9或者是安装有移动站9的自移动设备本身,对此不作限制。
其中,该当前定位信号可以是移动物体工作过程中的当前定位信号,也可以是生成地图过程中的当前定位信号。其中生成的地图可以作为移动物体的工作区域,对此不作限制。可以理解的是,生成地图的方式可以例如,用户在Google地图上圈出移动物体的工作区域,移动站9与自移动设备一体化设置,移动物体为自移动设备。自移动设备沿着工作区域运行一圈,例如如果自移动设备为自动割草机,可以是用户推动自动割草机运行,用户遥控自动割草机运行,自动割草机跟随用户移动的轨迹,自动割草机自动运行等,对此不作限制。
在一个实施例中,移动站9与自动割草机分离设置,移动物体为移动站9。用户手持移动站9沿着工作区域运行一圈,根据移动站9运行过程中采集到的定位信号数据,生成地图。
其中,所述参考定位信号为移动物体直接从卫星采集获得,而非是自建基站或共享基站传输的同步卫星信号。参考定位信号可以是一个,也可以是多个。
为了获得初始的首个参考定位信号,在获取移动物体在移动过程中的当前定位信号以及移动物体在所述当前定位信号之前的参考定位信号的步骤之前,还包括步骤:确定参考点位置的参考坐标;获取移动物体在参考点位置的定位信号,将该定位信号作为首个参考定位信号。所述参考点位置为充电站位置或者移动物体的工作区域内设定的具有固定的参考坐标的校准点。
对于参考点位置的识别,如果参考点是充电站,可以直接通过充电对接识别移动物体已经到达参考点,可以获取参考点位置的参考定位信号。如果参考点是其他校准点,可以通过设置标记信号的方式进行确认,比如磁场或者图像等等。
以移动物体为自移动设备进行描述,当参考定位信号包括一个时,参考定位信号可以选择在预设的参考点获取参考点的卫星信号获得。对于自动割草机1而言,此处所述的参考点为充电站位置或者自移动设备的工作区域内设定的具有固定的参考坐标的校准点。对于其他自移动设备,不需要在工作区域内或者室外设置充电站的,以选定的具有固定的参考坐标的校准点或者某个具有固定坐标的物体或停靠点作为参考点。本发明实施例中,以自动割草机为例,将充电站或者具有固定的参考坐标的校准点作为虚拟基站点,因为充电站或者具有固定的参考坐标的校准点可以认为是一个不会变的物理位置,因此把充电站或者具有固定的参考坐标的校准点作为一个虚拟基站点。对于充电站为而言,因为自动割草机1每次都是从充电站出发,并且最后会对接到充电站,所以可以认为充电站是一个不会变的物理位置,因此把充电站作为一个虚拟基站点。自动割草机1每次工作前,把当时的充电站位置接收到的卫星信号作为虚拟基站数据保存在移动站9中,作为参考定位信号。对于具有固定的参考坐标的校准点而言,同样的,自动割草机1经过校准点时,把当时的校准点位置接收到的卫星信号作为虚拟基站数据保存在移动站9中,作为参考定位信号。
以移动物体为自移动设备进行描述,当参考定位信号包括多个时,首个参考定位信号为在预设的参考点获取参考点的卫星信号获得,其他参考定位信号为自动割草机1在移动过程中获取的具体位置的卫星信号存储获得,即自动割草机1当前位置之前移动范围内获取并存储的卫星信号。
当参考定位信号包括多个时,获取参考定位信号的方法包括:S1:选择当 前定位信号之前最近时刻的已获取的卫星信号作为参考定位信号;S2:判断选择的参考定位信号是否满足解算条件;S3:若选择的参考定位信号满足解算条件,则将该参考定位信号作为后续解算处理的参考定位信号;若选择的参考定位信号不满足解算条件,则选择再前最近时刻的卫星信号作为参考定位信号,并重复步骤S2;S4:重复步骤S3直至获得符合解算条件的参考定位信号。所述解算条件为:共用卫星数量达到设定的解算卫星数阈值。进一步的。所述解算条件为:共用卫星数量达到设定的解算卫星数阈值,且卫星信号的信号质量达到设定的信号噪声比阈值。从以上描述可知,移动物体优先选择时间最靠近的且符合解算要求的参考定位信号进行解算处理。
在本实施例中,要求充电站或者具有固定的参考坐标的校准点最好设在比较开阔的环境下,可以收到比较好的卫星信号。上述虚拟基站数据可以是获得的原始的卫星信号,也可以是经过处理后的卫星信号,不管是原始的卫星信号还是处理后的卫星信号,均不影响后期的信号处理。
以移动物体为移动站9进行描述,当参考定位信号包括一个时,参考定位信号可以选择在预设的参考点获取参考点的卫星信号获得。对于自动割草机1而言,此处所述的参考点为充电站位置或者自移动设备的工作区域内设定的具有固定的参考坐标的校准点。对于其他自移动设备,不需要在工作区域内或者室外设置充电站的,以选定的具有固定的参考坐标的校准点或者某个具有固定坐标的物体或停靠点作为参考点。本发明实施例中,以充电站为例,用户从充电站出发,并把当时的充电站位置接收到的卫星信号作为虚拟基站数据保存在移动站9中,作为参考定位信号。对于具有固定的参考坐标的校准点而言,同样的,用户从校准点出发,把当时的校准点位置接收到的卫星信号作为虚拟基站数据保存在移动站9中,作为参考定位信号。
以移动物体为移动站9进行描述,当参考定位信号包括多个时,首个参考定位信号为在预设的参考点获取参考点的卫星信号获得,其他参考定位信号为用户手持移动站9移动过程中获取的具体位置的卫星信号存储获得,即移动站9当前位置之前移动范围内获取并存储的卫星信号。
用户在行进过程中,用户可以直接行走到校准点位置并将校准点的位置坐标作为当前的位置坐标,如此可以提高定位精度,进而提升生成地图的准确度。
S102:对所述参考定位信号和所述当前定位信号进行解算处理获得误差数据,进行解算处理的所述参考定位信号和所述当前定位信号存在共用卫星信号。
其中,当所述参考定位信号和所述当前定位信号不存在共用卫星信号时,将无法进行解算处理,随着移动物体的移动如果在预设的条件下仍旧无法获得共用卫星信号时,移动物体需要重新回到参考点获取新的参考定位信号。如果移动物体是自移动设备,则自移动设备可以自行返回参考点位置,如果移动物体是移动站9,则需要提醒用户返回参考点,提醒用户的方式可以为报警或者停机等等。预设的条件可以为预设的丢掉共用卫星的时间或者无法进行解算的时间。
为了能够具有更好的定位效果,预设有解算卫星数阈值。对于参考定位信号只有一个的情况,当共用卫星数量达到设定的解算卫星数阈值时,所述参考定位信号和所述当前定位信号进行解算处理。当共用卫星数量没有达到设定的解算卫星数阈值时,随着移动物体的移动如果在预设的条件下仍旧无法获得共用卫星信号时,移动物体重新回到参考点获取新的参考定位信号。解算卫星数最少为7-8颗,卫星数太少将无法进行解算处理获取位置信息,当然,解算卫星数也不可太多,太多对移动设备的运算能力要求会增高,成本也会增加。在一个实施例中,解算卫星数为13-14颗,该范围内的卫星数满足解算要求且一般移动设备在不需要高成本的条件下的硬件和软件支持的运算能力能解决卫星运算。
对于参考定位信号具有多个的情况,选择进行解算处理的参考定位信号为当前时刻之前且距离当前时刻最近的时刻获取的卫星信号,并且优先选择共用卫星数量多的参考定位信号进行解算处理。具体的,当选择的当前时刻之前且距离当前时刻最近的时刻的参考定位信号与当前时刻的卫星信号之间的共用卫星数量达到设定的解算卫星数阈值时,所述参考定位信号和所述当前定位信号进行解算处理,相反,如果没有达到设定的解算卫星数阈值时,选择时间再往前的其他参考定位信号进行共用卫星数量分析,直到存在达到设定的解算卫星数阈值的参考定位信号存在,然后进行解算处理。如果移动物体在预设的条件下仍旧无法获得共用卫星信号时,移动物体重新回到参考点获取新的参考定位信号。移动物体出去工作后,将移动站9实时接收到的卫星信号和虚拟基站(即充电站或者具有固定的参考坐标的校准点)接收到的参考定位信号进行解算处理,得到一个高精度定位数据。当回到参考点后,将存储的虚拟基站的卫星信号清除,等到下次工作时再记录当时的虚拟基站的卫星信号作为参考定位信号。
所述解算条件为:共用卫星数量达到设定的解算卫星数阈值。另外,除了 卫星数的要求,对卫星信号本身的信号质量也需要满足一定的要求,所以进一步的所述解算条件为:共用卫星数量达到设定的解算卫星数阈值,且卫星信号的信号质量达到设定的信号噪声比阈值。
S103:根据所述误差数据及所述参考定位信号的位置信息处理获得移动物体的当前位置信息。
由于电离层、环境等还是会缓慢变化,移动物体工作时间长后,定位精度会慢慢下降。所以,需要对定位精度有一个误差评估,该误差评估可以根据地理位置、定位工作时间、当时的实际时间等信息来评判。所以,所述的移动物体的定位方法还包括:对处理获得的移动物体的当前位置信息进行误差评估;和,当误差评估结果满足误差条件时,移动物体返回参考点重新获取初始的参考定位信号。移动物体返回参考点重新获取初始的参考定位信号时,清除移动物体保存的所有非当前定位信号。所述参考点位置为充电站位置或者移动物体的工作区域内设定的具有固定的参考坐标的校准点。所述误差条件为:移动物体的工作时间达到设定的总工作时间阈值。所述误差条件还可以为:选择的参考定位信号不满足解算条件,其中,所述解算条件为:共用卫星数量达到设定的解算卫星数阈值。进一步的所述解算条件为:共用卫星数量达到设定的解算卫星数阈值,且卫星信号的信号质量达到设定的信号噪声比阈值。
总体来说,设定误差条件的方法可以采用下面的方法进行设定,如果移动物体为自移动设备,则设定误差阈值的方法可以为:移动物体离开参考点的时间范围值、所述参考定位信号和所述当前定位信号无法进行解算处理的时间范围值、规定的工作时间范围值、丢掉共用卫星的时间范围值。如果移动物体为移动站9,则设定误差阈值的方法可以为:所述参考定位信号和所述当前定位信号无法进行解算处理的时间范围值、丢掉共用卫星的时间范围值等等。
为了能够提高移动物体的工作效率及定位的准确度,在一个实施例中,在移动物体的工作区域内设置有多个具有固定的参考坐标的校准点,多个所述校准点相互之间具有已知的固定的参考坐标,当移动物体移动到校准点位置时,所述移动物体将校准点的位置信息作为当前位置信息。比如图3所示的校准点A和校准点B,当移动物体移动到校准点位置时,移动物体将校准点的位置信息作为当前位置信息,如此设置,可以对移动物体的位置坐标进行修正。这些标记可以采用RFID、霍尔传感器等方式,通过对该些固定校准点进行手动或自动标记,使其获得一个固定的参考坐标(比如充电站为(0,0)点的话,物理 校准点就是(x,y)点),每次当移动物体走到该些物理校准点时,直接将该物理校准点的坐标作为当前的坐标。
另外,在本发明移动物体的定位方法中,可以进一步结合定位传感器,例如惯性导航装置、或激光雷达、或无载波通信装置等确定移动物体的位置坐标。
也就是说,在上述自移动设备的定位方法中,进一步包括:结合定位传感器确定所述移动物体的位置信息。
具体来说,可以首先确定卫星信号的信号强度,并在信号强度小于预定阈值,即信号不好的情况下,结合定位传感器确定所述移动物体的位置信息。
即,在上述移动物体的定位方法中,进一步包括:确定所述卫星信号的信号强度是否小于预定阈值;和,响应于所述卫星信号的信号强度小于预定阈值,结合定位传感器确定所述移动物体的位置信息。
当用户家比较大时,移动物体可以构建出工作区域地图,通过优化分区方式来提高工作效率。具体的实施步骤是把工作区域分成多个子区域,每个区域的工作模式是:移动物体工作前,把当时的参考点,比如充电站位置接收到的卫星信号作为虚拟基站数据保存在移动站9中,移动物体出去工作后保存工作过程中收到的所有卫星信号,该些所有卫星信号均可作为虚拟基站数据进行计算使用,通过将移动站9实时接收到的当前卫星信号和虚拟基站数据(包括充电站处的卫星信号以及工作过程中当前时刻之前接收到并存储的其他卫星信号)进行解算处理,得到一个高精度定位数据。工作完后回到充电站重新修订虚拟基站数据,再到下一个区域工作。在任何一个子区域工作时,可以实时进行误差评估。对于子区域面积仍旧较大时,同样可以设置多个固定校准点对数据进行修正,得到更高精度定位数据。
如果移动物体为自移动设备,自移动设备的回归充电站的方式可以有多种,一种为充电站有Radio线或封闭线,自移动设备通过计算最短路径回到线上再对接。或者如图6及图7所示,在充电站前有校准点,机器先回到校准点,重新校正后再通过定位对接。图7中,自移动设备先前往最近的校准点B,然后从校准点B再移动到校准点A,可以有两条路径选择,根据校正对接的需要选择合适的路径。
本发明该实施例可以不设置基站,无需利用基站实时获得的卫星信号对当前定位信号进行修正处理。设置基站的目的是实时提供移动站一些卫星的观测值,移动站通过自己的观测值,采用差分修正技术计算移动物体当前的位置信 息。而本发明实施例,考虑到在短时间内,由于电离层、环境等的状态变化相对缓慢,认为在一个相对较短的时间内(估计一个小时内)的误差比较小,所以可以让移动物体在一个信号比较好的参考点采集卫星信号,同时把该参考点作为虚拟基站,把该参考点的卫星信号作为短时间虚拟基站的卫星信号来进行差分修正计算,得到接收站离开参考点后的高精度定位。同时在移动物体移动过程中,因为移动物体已经存储了移动过程中的所有卫星信号及对应的位置信息,接着利用当前时刻之前的卫星信号及卫星信号对应的位置信息计算获得当前时刻的位置信息,通过这种方式减少了基站建设及通讯链路,成本大大降低。
本发明通过利用当前定位信号之前的参考定位信号获取误差数据并基于该误差数据及该参考定位信号的位置信息处理获得当前位置信息,并未利用自建基站或共享基站在当前时刻实时收到的卫星信号进行处理而获得当前位置信息,所以基于本发明可以取消自建基站或共享基站,简化用户安装,大幅降低成本。
如图8所示,本发明移动物体的定位方法还包括对处理获得的移动物体的当前位置信息进行补偿,所述补偿的方法包括对获得的步骤:
S201:获取自移动设备在移动过程中的当前定位信号,以及自移动设备在所述当前定位信号之前的参考定位信号。
在自移动设备移动过程中或者实际生成地图的过程中,如图9所示,图9为本发明实施例中信号补偿的场景示意图,其中包括遮挡物10和工作区域11,该遮挡物10可以例如为一个水塔、灌木丛、建筑物等。在该种场景下,当自移动设备的工作区域11紧邻遮挡物10时,被遮挡的区域信号接收情况差,移动站记录的定位信号的位置信息(例如为,位置坐标)可能如图10所示,图10为本发明实施例中信号补偿的位置信息示意图,包括遮挡物对应区域的位置信息模块12,从中可以看出,定位信号的位置信息出现较大的偏移,因此,本发明实施例提出了在上述情况下对信号进行补偿,能够有效提升移动过程中的定位效果或地图生成效果。
本发明的一个实施例的具体执行的过程中,首先确定移动物体工作过程中或者实际生成地图的过程中的当前定位信号,以及在当前定位信号之前所采集的参考定位信号,参考定位信号的数量为至少两个,本实施例的执行过程为可以为实时,或者每隔预设时间间隔,若为实时,则在移动物体工作过程中,实时确定移动物体工作过程中的当前定位信号,若为每隔预设时间间隔,则每隔 预设时间间隔确定移动物体工作过程中的当前定位信号。或者在用户手持移动站沿着工作区域运行的过程中,实时确定在对移动物体生成地图过程中当前定位信号,若为每隔预设时间间隔,则每隔预设时间间隔确定在对移动物体生成地图过程中当前定位信号,对此不作限制。
如图10所示,图10中还包括三个参考定位信号13和当前定位信号14,可以理解的是,随着时间的推移,当前定位信号14在持续更新,直至移动物体工作完成或者地图生成完毕,可以将当前时间点上所确定得到的定位信号作为当前定位信号。
S202:确定当前的定位信号的位置信息并作为第一位置信息,并确定参考定位信号的位置信息并作为第二位置信息。
其中的第一位置信息/第二位置信息可以例如为位置坐标,根据移动站9的工作原理,可以是移动物体工作过程中或者在用户手持移动站9沿着工作区域运行过程中,实时地采集当前的定位信号的位置信息,该位置信息可以被称为第一位置信息,采集参考定位信号的位置信息,该位置信息可以被称为第二位置信息。
本发明实施例中通过确定在当前定位信号之前所采集的参考定位信号的位置信息,确定参考定位信号的位置信息,后续实现根据位置信息进行信号补偿,实现简单,数据采集较简便,利用已有设备即能够采集该数据,因此,不会耗费过多的硬件成本。
S203:在所述当前定位信号的第一位置信息满足预设条件时,根据所述参考定位信号的第二位置信息对所述当前定位信号的第一位置信息进行补偿。
可选地,预设条件包括:当前的定位信号的第一精度值小于第一预设精度阈值;或者第一位置信息和第二位置信息之间的差值大于预设阈值。具体的,首先根据当前的定位信号的第一精度值小于第一预设精度阈值,然后根据第一位置信息和第二位置信息之间的差值大于预设阈值,判断满足预设条件。
其中的第一预设精度阈值和预设阈值可以由用户根据实际应用需求进行设定,或者,也可以由地图生成过程中的信号补偿装置的出厂程序预先设定,对此不作限制。
本发明实施例在具体执行的过程中,可以采用相关技术中的精度测量算法,确定当前的定位信号的精度值,该精度值可以被称为第一精度值,对此不作限制。
本发明实施例中,在探测到当前定位信号的第一位置信息满足预设条件时,才根据参考定位信号的第二位置信息对当前定位信号的第一位置信息进行补偿,否则,不触发进行信号补偿,能够避免不必要的触发信号补偿所造成的内存资源消耗,提升补偿效率。
可选地,可以根据至少两个的参考定位信号的第二位置信息确定移动物体的运行轨迹信息并作为第一运行轨迹信息,根据第一运行轨迹信息对当前定位信号的第一位置信息进行补偿。
如图10所示,由其中的三个参考定位信号13和当前定位信号14,在信号补偿过程中,可以首先确定三个参考定位信号13中每个参考定位信号13的第二位置信息(即,位置坐标),确定出移动物体的运行轨迹信息(运行轨迹信息可以由连接图10中的三个参考定位信号13的线条表示),该运行轨迹信息可以被称为第一运行轨迹信息。
可以理解的是,假设需要对当前定位信号14进行信号补偿,则可以假设在当前定位信号14的位置坐标处,存在一个遮挡物,但是,在当前定位信号14之前采集的三个参考定位信号13的位置坐标处,并不存在遮挡物,因此,可以参考之前的第一运行轨迹信息对当前定位信号14的位置信息进行信号补偿,可以有效保障信号补偿参考数据的参考价值,因而,提升信号补偿的精准度。
本实施例中,通过确定在对移动物体生成地图过程中当前定位信号,以及在当前定位信号之前所采集的参考定位信号,确定当前的定位信号的位置信息并作为第一位置信息,并确定参考定位信号的位置信息并作为第二位置信息,在当前定位信号的第一位置信息满足预设条件时,根据参考定位信号的第二位置信息对当前定位信号的第一位置信息进行补偿,能够有效减弱地图生成过程中遮挡物所造成的影响,提升地图生成效果。
图11是本发明另一实施例提出的信号补偿方法的流程示意图。
参见图11,该方法包括:
S401:获取移动物体移动过程中的当前定位信号,以及在当前定位信号之前所采集的参考定位信号。
本发明实施例在具体执行的过程中,确定移动物体移动过程中的当前定位信号,移动过程可以为工作过程或者生成地图过程,以及在当前定位信号之前所采集的参考定位信号,参考定位信号的数量为至少两个,本发明的执行过程 为可以为实时,或者每隔预设时间间隔。
如图10所示,图10中还包括三个参考定位信号13和当前定位信号14、箭头15、第二定位信号16(第二定位信号16为当前定位信号14后续所采集的定位信号),可以理解的是,随着时间的推移,当前定位信号14在持续更新,直至工作完成或者地图生成完毕,可以将当前时间点上所确定得到的定位信号作为当前定位信号。
S402:确定当前的定位信号的位置信息并作为第一位置信息,并确定参考定位信号的位置信息并作为第二位置信息。
其中的第一位置信息/第二位置信息可以例如为位置坐标,根据移动站的工作原理,可以在自移动设备工作过程中或者用户手持移动站沿着工作区域运行过程中,实时地采集当前的定位信号的位置信息,该位置信息可以被称为第一位置信息,采集参考定位信号的位置信息,该位置信息可以被称为第二位置信息。
S403:判断当前定位信号的第一位置信息是否满足预设条件,若是,则执行S405及其后续步骤,否则,执行S404。
可选地,预设条件包括:当前的定位信号的第一精度值小于第一预设精度阈值;或者第一位置信息和第二位置信息之间的差值大于预设阈值。具体的,首先根据当前的定位信号的第一精度值小于第一预设精度阈值,然后根据第一位置信息和第二位置信息之间的差值大于预设阈值,判断满足预设条件。其中的第一预设精度阈值和预设阈值可以由用户根据实际应用需求进行设定,或者,也可以由信号补偿装置的出厂程序预先设定,对此不作限制。
S404:不触发对当前定位信号的第一位置信息进行补偿。
S405:根据至少两个的参考定位信号的第二位置信息确定移动物体的运行轨迹信息并作为第一运行轨迹信息。
如图10所示,由其中的三个参考定位信号13和当前定位信号14、箭头15、第二定位信号16(第二定位信号16为当前定位信号14后续所采集的定位信号),在信号补偿过程中,可以首先确定三个参考定位信号13中每个参考定位信号13的第二位置信息(即,位置坐标),确定出移动物体的运行轨迹信息(运行轨迹信息可以由连接图10中的三个参考定位信号13的线条表示),该运行轨迹信息可以被称为第一运行轨迹信息。
可以理解的是,假设需要对当前定位信号14进行信号补偿,则可以假设 在当前定位信号14的位置坐标处,存在一个遮挡物,但是,在当前定位信号14之前采集的三个参考定位信号13的位置坐标处,并不存在遮挡物,因此,可以参考之前的第一运行轨迹信息对当前定位信号14的位置信息进行信号补偿,可以有效保障信号补偿参考数据的参考价值,因而,提升信号补偿的精准度。
S406:根据第一运行轨迹信息确定当前定位信号的目标位置。
本发明的实施例中,可以根据第一运行轨迹信息确定出当前定位信号沿着该第一运行轨迹信息应该出现的位置,并将该位置作为上述的目标位置。
可以理解的是,由于移动物体移动过程中或者地图生成过程中边界数据的连贯性,处于工作区域边界的定位信号的位置信息有章可循,而并不大可能为一个随机的位置信息,因此,本发明实施例中可以根据之前的运行轨迹信息确定当前定位信号的目标位置。
S407:直接将当前定位信号的第一位置信息对应的位置,调整为目标位置。
如图10所示,可以将当前定位信号14的位置信息对应的位置,沿着箭头15的方向,调整为目标位置,该目标位置位于如图10中第一运行轨迹方向的延长线上(图10中虚线条所示)。
本发明实施例中上述图10中的线条和虚线条,并不一定是一条直线,具体的,可以为一条平滑的线条,实现补偿后的位置信号能够平滑过渡,尽可能地减小所生成地图的定位误差。
本实施例中,实现根据位置信息进行信号补偿,实现简单,数据采集较简便,利用已有设备即能够采集该数据,因此,不会耗费过多的硬件成本。在探测到当前定位信号的第一位置信息满足预设条件时,才根据参考定位信号的第二位置信息对当前定位信号的第一位置信息进行补偿,否则,不触发进行信号补偿,能够避免不必要的触发信号补偿所造成的内存资源消耗,提升补偿效率。可以参考之前的运行轨迹信息对当前定位信号的位置信息进行信号补偿,可以有效保障信号补偿参考数据的参考价值。能够有效减弱自移动设备工作过程中或者地图生成过程中遮挡物所造成的影响,提升地图生成效果。
图12是本发明另一实施例提出的地图生成过程中的信号补偿方法的流程示意图。
参见图12,在上述S203之后,该方法还可以包括:
S501:获取在当前定位信号后续所采集的第二定位信号。
参见上述图10中第二定位信号16,在当前定位信号14后续所采集的定位信号,可以被称为第二定位信号。本发明实施例中在对多个不同时间点上的定位信号进行补偿后,可以将所补偿的多个不同时间点上的定位信号均作为上述的补偿后的当前定位信号,参考上述图10,假设在对应三个不同的时间点,存在有三个当前定位信号,则可以将三个当前定位信号后续所采集的定位信号,作为第二定位信号。
S502:确定第二定位信号的第二精度值,并确定补偿后的当前定位信号和第二定位信号之间的运行轨迹信息并作为第二运行轨迹信息。
本发明实施例在具体执行的过程中,可以采用相关技术中的精度测量算法,确定第二定位信号的精度值,该精度值可以被称为第二精度值,对此不作限制。
而后,确定补偿后的当前定位信号和第二定位信号之间的运行轨迹信息。
S503:若第二精度值大于或者等于第二预设精度阈值,则对第一运行轨迹信息和第二运行轨迹信息进行平滑滤波处理。
S504:若第二精度值小于第二预设精度阈值,则根据第一运行轨迹信息对第二运行轨迹信息进行更新。
一并参见图13和图14,图13为本发明实施例中平滑滤波处理后的运行轨迹示意图,图14为本发明实施例中更新后的运行轨迹示意图,图13中包括三个参考定位信号61和三个不同时间点对应的补偿后的定位信号62、三个第二定位信号63(三个第二定位信号63为三个不同时间点对应的补偿后的定位信号62后续所采集的定位信号),图14中包括三个参考定位信号71和三个不同时间点对应的补偿后的定位信号72、三个第二定位信号73(三个第二定位信号73为三个不同时间点对应的补偿后的定位信号72后续所采集的定位信号)。
其中的第二预设精度阈值可以由用户根据实际应用需求进行设定,或者,也可以由地图生成过程中的信号补偿装置的出厂程序预先设定,对此不作限制。
本发明实施例中,在第二精度值大于或者等于第二预设精度阈值时,可以确定第二定位信号为高精度信号,此时,可以不再对该第二定位信号进行信号补偿,可以对第一运行轨迹信息和第二运行轨迹信息进行平滑滤波处理,参见上述图13,在第二精度值小于第二预设精度阈值时,确定第二定位信号为低精度信号,此时,可以根据第一运行轨迹信息对第二运行轨迹信息进行更新,具体地,可以将三个不同时间点对应的补偿后的定位信号之中,时间点最靠后的 一个定位信号作为高精度信号,该高精度信号后续的第二运行轨迹信息,按照第一运行轨迹信息进行偏移,参见上述图14。
本发明在实际地图生成过程中,存在遮挡物的定位信号一般向工作区域外部偏移,因此,本发明实施例中补偿后的定位信号,其位置坐标是向工作区域内部偏移,向工作区域内部偏移能够避免自动割草机驶出工作区域,因此,本发明实施例能够结合实际进行信号补偿。
进一步地,本发明实施例中对于生成地图而言,用户在记录定位信号的过程中,能够实时地观察到所生成的地图,即,可以对所生成的地图随着时间的推移进行局部显示,以及实时地进行信号补偿。
进一步地,本发明实施例中还可以在移动站9中设置提醒模块,用于提醒用户当前定位信号质量状况,使得用户可以根据当前定位信号质量状况,调整生成地图过程中的行为,例如,向信号好的方向运行,放弃被遮挡物影响的区域和路线,或者,也可以由人工编辑的方式完善所生成的地图,对此不作限制。
本实施例中,通过获取在当前定位信号后续所采集的第二定位信号,确定第二定位信号的第二精度值,并确定补偿后的当前定位信号和第二定位信号之间的运行轨迹信息并作为第二运行轨迹信息,若第二精度值大于或者等于第二预设精度阈值,则对第一运行轨迹信息和第二运行轨迹信息进行平滑滤波处理,若第二精度值小于第二预设精度阈值,则根据第一运行轨迹信息对第二运行轨迹信息进行更新,实现补偿后的位置信号能够平滑过渡,尽可能地减小所生成地图的定位误差。
所述移动物体的定位方法还包括对移动物体的方向进行确定,此时移动物体主要指自移动设备,下面以自移动设备对本发明实施例的方向确定方法进行描述。
在自移动设备的导航过程中,除了需要知道自移动设备自身的坐标以外,还需要知道自移动设备自身的方向。例如,回归时需要知道转向方向,偏离预设路径或者遇到边界时也需要知道转向方向。
传统的方向判断方法主要是通过使用传感器直接测量方向。例如,通过使用陀螺仪等可以获得角度的变化量,从而确定方向,但是,问题在于误差容易累积。或者,通过使用罗盘等可以直接获得角度,但是又容易受到环境影响,且罗盘等具有固有误差。
基于上述技术问题,根据本发明实施例的自移动设备的方向确定方法通过 位置信息来确定方向。
如图15所示,图15为根据本发明一实施例的自移动设备的方向确定方法的示意性流程图。根据本发明实施例的自移动设备的方向确定方法包括:S110,从接收卫星信号的第一天线获取所述第一天线的第一位置数据,所述第一天线设置在所述自移动设备上;S120,从接收卫星信号的第二天线获取所述第二天线的第二位置数据,所述第二天线设置在所述自移动设备上,且所述第一天线与所述第二天线的连线方向与所述自移动设备的移动方向之间具有预定角度;以及S130,基于所述第一位置数据、所述第二位置数据和所述预定角度确定所述自移动设备的移动方向。
该实施例中,自移动设备设置有两个天线。也就是说,在根据本发明实施例的自移动设备的方向确定方法中,通过自移动设备上安装的两个天线的位置来确定自移动设备的移动方向。这样,可以避免上述使用传感器带来的误差问题,从而准确地确定自移动设备的移动方向。
为了更准确地确定自移动设备的移动方向,所述第一天线和第二天线优选地彼此分开一定距离。也就是说,在根据本发明实施例的自移动设备的方向确定方法中,所述第一天线设置在所述自移动设备的机身前部,且所述第二天线设置在所述自移动设备的机身后部。当然,只要保证所述第一天线和所述第二天线之间的距离足够确定方向,所述第一天线和所述第二天线也可以安装在所述自移动设备上的其它位置。
另外,所述第一天线与所述第二天线的连线方向可以与所述自移动设备的移动方向呈预定角度,这样,通过确定所述第一天线与所述第二天线的连线方向,就可以进一步基于所述预定角度确定所述自移动设备的移动方向。当然,所述预定角度也可以是零度,也就是说,所述第一天线与所述第二天线的连线方向可以与所述自移动设备的移动方向一致。
在这种情况下,在根据本发明实施例的自移动设备的方向确定方法中,所述第一天线和所述第二天线可以均设置在所述自移动设备的机身的中轴线上。
这样,根据本发明实施例的自移动设备的方向确定方法可以实时地输出所述自移动设备的移动方向。
在根据本发明实施例的自移动设备的方向确定方法中,通过差分卫星定位系统获取所述天线的位置数据。
在一个实施例中,自移动设备通过差分GPS信号来获取所述第一天线和所 述第二天线的位置数据。
为了在卫星信号不好时辅助进行导航,可以进一步结合惯性导航装置。
也就是说,在根据本发明实施例的自移动设备的方向确定方法中,通过差分卫星定位系统结合惯性导航装置获取所述天线的位置数据。
另外,在根据本发明实施例的自移动设备的方向确定方法中,可以进一步结合角度传感器,例如罗盘、陀螺仪等确定自移动设备的移动方向。
也就是说,在上述自移动设备的方向确定方法中,进一步包括:结合角度传感器确定自移动设备的移动方向。
具体来说,可以首先确定卫星信号的信号强度,并在信号强度小于预定阈值,即信号不好的情况下,结合角度传感器确定自移动设备的移动方向。
即,在上述自移动设备的方向确定方法中,进一步包括:确定卫星信号的信号强度是否小于预定阈值;和,响应于卫星信号的信号强度小于预定阈值,结合角度传感器确定自移动设备的移动方向。
并且,在上述自移动设备的方向确定方法中,角度传感器包括罗盘、陀螺仪等。
本发明的一实施例中,在使用位置数据确定自移动设备的移动方向时,也可以通过对不同时间点的位置数据进行拟合,以确定自移动设备的移动方向。
也就是说,如图16所示,根据本发明实施例的方向确定方法包括:S210,在第一时间从接收卫星信号的第一天线获取所述第一天线的一位置数据,所述第一天线设置在所述自移动设备上;S220,在第二时间从所述第一天线获取所述第一天线的另一位置数据,所述第二时间晚于所述第一时间;S230,基于至少所述第一时间和第二时间获取的两个位置数据进行方向拟合,以确定所述自移动设备的移动方向。
在根据本发明实施例的自移动设备的方向确定方法中,结合时间轴上(移动前后)的两个位置来拟合方向。
也就是说,可以通过高精度坐标连续一段时间的多个数据,来对应时间轴进行方向拟合,从而确定自移动设备的移动方向。
在上述自移动设备的方向确定方法中,所述位置数据的获取频率为1Hz到100Hz。
在上述自移动设备的方向确定方法中,所述位置数据的获取频率为5Hz。
在上述自移动设备的方向确定方法中,通过差分卫星定位系统结合惯性导 航装置获取所述天线的位置数据。
在上述自移动设备的方向确定方法中,结合角度传感器确定所述自移动设备的移动方向。
在上述自移动设备的方向确定方法中,确定所述卫星信号的信号强度是否小于预定阈值;和响应于所述卫星信号的信号强度小于预定阈值,结合角度传感器确定所述自移动设备的移动方向。
在上述自移动设备的方向确定方法中,所述角度传感器包括罗盘、或陀螺仪。
在上述自移动设备的方向确定方法中,可以仅以单天线获得的自移动设备的位置来进行方向拟合。
通过使用位置数据确定自移动设备的移动方向,可以准确地确定自移动设备的移动方向。进一步的,通过位置数据结合角度传感器的输出确定自移动设备的移动方向,一方面能够利用位置数据校正传感器的误差,另一方面能够在卫星信号差或定位信号精度低时持续导航。
图17是本发明一实施例的移动物体的结构示意图。如图17所示,移动物体包括:
第一信号获取模块301,用于获取移动物体在移动过程中的当前定位信号,以及移动物体在所述当前定位信号之前的参考定位信号;
解算处理模块302,用于对所述参考定位信号和所述当前定位信号进行解算处理获得误差数据,进行解算处理的所述参考定位信号和所述当前定位信号存在共用卫星信号;
位置确定模块303,用于根据所述误差数据及所述参考定位信号的位置信息确定移动物体的当前位置信息。
所述参考定位信号为移动物体直接从卫星采集获得。
所述移动物体包括:参考点位置确定模块,用于确定参考点位置的参考坐标,所述第一信号获取模块获取移动物体在参考点位置的定位信号,将该定位信号作为首个参考定位信号。所述参考点位置为充电站位置或者移动物体的工作区域内设定的具有固定的参考坐标的校准点。
所述移动物体包括:解算条件判断模块,所述解算条件判断模块用于:判断选择的参考定位信号是否满足解算条件;若选择的参考定位信号满足解算条件,则将该参考定位信号作为后续解算处理的参考定位信号;若选择的参考定 位信号不满足解算条件,则选择再前最近时刻的卫星信号作为参考定位信号并重复判断选择的参考定位信号是否满足解算条件,重复本步骤直至获得符合解算条件的参考定位信号。所述解算条件为:共用卫星数量达到设定的解算卫星数阈值,进一步的,所述解算条件为:共用卫星数量达到设定的解算卫星数阈值,且卫星信号的信号质量达到设定的信号噪声比阈值。
从上述可知,进行解算处理的所述参考定位信号和所述当前定位信号存在共用卫星信号。当共用卫星数量达到设定的解算卫星数阈值时,所述参考定位信号和所述当前定位信号进行解算处理。
所述移动物体还包括误差评估模块,所述误差评估模块用于:对处理获得的移动物体的当前位置信息进行误差评估;和当误差评估结果满足误差条件时,移动物体返回参考点重新获取初始的参考定位信号。所述参考点为充电站位置或者自移动设备的工作区域内设定的具有固定的参考坐标的校准点。所述误差条件为:移动物体的工作时间达到设定的总工作时间阈值。所述误差条件还可以为:选择的参考定位信号不满足解算条件。其中,所述解算条件为:共用卫星数量达到设定的解算卫星数阈值,进一步的,所述解算条件为:共用卫星数量达到设定的解算卫星数阈值,且卫星信号的信号质量达到设定的信号噪声比阈值。
移动物体的工作区域内设置有多个校准点,多个所述校准点相互之间具有已知的固定的参考坐标,当移动物体移动到校准点位置时,所述移动物体将校准点的位置信息作为当前位置信息。
移动物体返回参考点重新获取初始的参考定位信号时,清除移动物体保存的所有非当前定位信号。
所述移动物体还包括:
信号强度判定模块,用于确定所述卫星信号的信号强度是否小于预定阈值;和
所述位置确定模块用于响应于所述卫星信号的信号强度小于预定阈值,结合定位传感器确定所述移动物体的位置信息。所述定位传感器包括惯性导航装置、或激光雷达、或无载波通信装置。
图18是本发明一实施例提出的信号补偿装置的结构示意图。如图18所示,该信号补偿装置800包括:
第一信号获取模块801,用于确定在对移动物体生成地图过程中当前定位 信号,以及在当前定位信号之前所采集的参考定位信号。
第一确定模块802,用于确定当前的定位信号的位置信息并作为第一位置信息,并确定参考定位信号的位置信息并作为第二位置信息。
补偿模块803,用于在当前定位信号的第一位置信息满足预设条件时,根据参考定位信号的第二位置信息对当前定位信号的第一位置信息进行补偿。
可选地,预设条件包括:当前的定位信号的第一精度值小于第一预设精度阈值;或者第一位置信息和第二位置信息之间的差值大于预设阈值。具体的,首先根据当前的定位信号的第一精度值小于第一预设精度阈值,然后根据第一位置信息和第二位置信息之间的差值大于预设阈值,判断满足预设条件。
可选地,一些实施例中,如图19所示,参考定位信号的数量为至少两个,补偿模块803,包括:
确定子模块8031,用于根据至少两个的参考定位信号的第二位置信息确定移动物体的运行轨迹信息并作为第一运行轨迹信息。
补偿子模块8032,用于根据第一运行轨迹信息对当前定位信号的第一位置信息进行补偿。
可选地,一些实施例中,补偿子模块8032,具体用于:
根据第一运行轨迹信息确定当前定位信号的目标位置;
直接将当前定位信号的第一位置信息对应的位置,调整为目标位置。
可选地,一些实施例中,如图19所示,该信号补偿装置800还包括:
第二信号获取804,用于获取在当前定位信号后续所采集的第二定位信号。
第二确定模块805,用于确定第二定位信号的第二精度值,并确定补偿后的当前定位信号和第二定位信号之间的运行轨迹信息并作为第二运行轨迹信息。
补偿模块803,还用于在第二精度值大于或者等于第二预设精度阈值时,对第一运行轨迹信息和第二运行轨迹信息进行平滑滤波处理,在第二精度值小于第二预设精度阈值时,根据第一运行轨迹信息对第二运行轨迹信息进行更新。
需要说明的是,前述图8-图14实施例中的信号补偿方法实施例的解释说明也适用于该实施例的信号补偿装置800,其实现原理类似,此处不再赘述。
本实施例中,通过确定移动物体工作过程中或者在对移动物体生成地图过程中当前定位信号,以及在当前定位信号之前所采集的参考定位信号,确定当前的定位信号的位置信息并作为第一位置信息,并确定参考定位信号的位置信 息并作为第二位置信息,在当前定位信号的第一位置信息满足预设条件时,根据参考定位信号的第二位置信息对当前定位信号的第一位置信息进行补偿,能够有效减弱移动过物体工作过程中或者地图生成过程中遮挡物所造成的影响,提升地图生成效果。
当移动物体为自移动设备时,图20为本发明一实施例的自移动设备的示意性框图。如图20所示,根据本发明实施例的自移动设备包括:第一位置获取模块510,用于从接收卫星信号的第一天线获取所述第一天线的第一位置数据,所述第一天线设置在所述自移动设备上;第二位置获取模块520,用于从接收卫星信号的第二天线获取所述第二天线的第二位置数据,所述第二天线设置在所述自移动设备上,且所述第一天线与所述第二天线的连线方向与所述自移动设备的移动方向之间具有预定角度;以及方向确定模块530,用于基于所述第一位置数据、所述第二位置数据和所述预定角度确定所述自移动设备的移动方向。
在一个示例中,在上述自移动设备中,所述第一天线设置在所述自移动设备的机身前部,且所述第二天线设置在所述自移动设备的机身后部。
在一个示例中,在上述自移动设备中,所述第一天线和所述第二天线均设置在所述自移动设备的机身的中轴线上。
在一个示例中,在上述自移动设备中,通过差分卫星定位系统获取所述天线的位置数据。
在一个示例中,在上述自移动设备中,通过差分卫星定位系统结合惯性导航装置获取所述天线的位置数据。
在一个示例中,在上述自移动设备中,所述方向确定单元用于结合角度传感器确定所述自移动设备的移动方向。
在一个示例中,在上述自移动设备中,进一步包括:信号强度判定单元,用于确定所述卫星信号的信号强度是否小于预定阈值;和,所述方向确定单元用于响应于所述卫星信号的信号强度小于预定阈值,结合角度传感器确定所述自移动设备的移动方向。
在一个示例中,在上述自移动设备中,所述角度传感器包括罗盘、陀螺仪。
通过使用位置数据确定自移动设备的移动方向,可以准确地确定自移动设备的移动方向。进一步的,通过位置数据结合角度传感器的输出确定自移动设备的移动方向,一方面能够利用位置数据校正传感器的误差,另一方面能够在 卫星信号差或定位信号精度低时持续导航。
这里,本领域技术人员可以理解,本实施例的自移动设备中的各个模块的其它细节与之前描述的本发明一实施例的自移动设备的方向确定方法中的相应细节完全相同,这里为了避免冗余便不再赘述。
同样,在另一方面,根据本发明实施例的自移动设备包括:位置获取模块,用于在第一时间从接收卫星信号的第一天线获取所述第一天线的一位置数据,所述第一天线设置在所述自移动设备上;所述位置获取模块还用于在第二时间从所述第一天线获取所述第一天线的另一位置数据,所述第二时间晚于所述第一时间;方向确定模块,用于基于至少所述第一时间和第二时间获取的两个位置数据进行方向拟合,以确定所述自移动设备的移动方向。
在上述自移动设备中,所述位置数据的获取频率为1Hz到100Hz。
在上述自移动设备中,所述位置数据的获取频率为5Hz。
在上述自移动设备中,通过卫星定位系统结合惯性导航装置获取所述天线的位置数据。
在上述自移动设备中,所述方向确定单元用于结合角度传感器确定所述自移动设备的移动方向。
在上述自移动设备中,包括信号强度判定单元,用于确定所述卫星信号的信号强度是否小于预定阈值;和所述方向确定单元用于响应于所述卫星信号的信号强度小于预定阈值,结合所述角度传感器确定所述自移动设备的移动方向。
在上述自移动设备中,所述角度传感器包括罗盘、或陀螺仪。
为了实现上述实施例,本发明还提出一种自动工作系统,其包括如上所述的移动物体或者自移动设备,在地图限定的工作区域内移动和工作。
在上述自动工作系统中,所述自移动设备是自动割草机。
在上述自动工作系统中,所述自动工作系统是自动割草机。
为了实现上述实施例,本发明还提出一种计算机可读存储介质,当所述计算机程序指令被计算装置执行时,可操作来执行一种自移动设备的定位方法,该方法包括:
获取移动物体在移动过程中的当前定位信号,以及移动物体在所述当前定位信号之前的参考定位信号;
对所述参考定位信号和所述当前定位信号进行解算处理获得误差数据;
根据所述误差数据及所述参考定位信号的位置信息处理获得移动物体的 当前位置信息。
该计算机可读存储介质当存储介质中的指令由终端的处理器执行时,使得终端能够执行一种信号补偿方法,该信号补偿方法包括:
获取移动物体在移动过程中的当前定位信号,以及移动物体在所述当前定位信号之前的参考定位信号;
确定所述当前的定位信号的位置信息并作为第一位置信息,并确定所述参考定位信号的位置信息并作为第二位置信息;
在所述当前定位信号的第一位置信息满足预设条件时,根据所述参考定位信号的第二位置信息对所述当前定位信号的第一位置信息进行补偿。
本实施例中的计算机可读存储介质,通过确定移动物体工作过程中或在对移动物体生成地图过程中当前定位信号,以及在当前定位信号之前所采集的参考定位信号,确定当前的定位信号的位置信息并作为第一位置信息,并确定参考定位信号的位置信息并作为第二位置信息,在当前定位信号的第一位置信息满足预设条件时,根据参考定位信号的第二位置信息对当前定位信号的第一位置信息进行补偿,能够有效减弱移动物体工作过程中或者地图生成过程中遮挡物所造成的影响,提升地图生成效果。
计算机可读存储介质,其上存储有计算机程序指令,所述计算机程序指令在被处理器运行时使得所述处理器执行本说明书上述“移动物体的定位方法”和“信号补偿方法”和“方向确定方法”部分中描述的根据本发明各种实施例“移动物体的定位方法”和“信号补偿方法”和“方向确定方法”的所有方法中的步骤。
所述计算机可读存储介质可以采用一个或多个可读介质的任意组合。可读介质可以是可读信号介质或者可读存储介质。可读存储介质例如可以包括但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。
为了实现上述实施例,本发明还提出一种计算机程序产品,当所述计算机程序产品中的指令由处理器执行时,执行一种移动物体的定位方法,所述方法 包括:
获取移动物体在移动过程中的当前定位信号,以及移动物体在所述当前定位信号之前的参考定位信号;
对所述参考定位信号和所述当前定位信号进行解算处理获得误差数据;
根据所述误差数据及所述参考定位信号的位置信息处理获得移动物体的当前位置信息。
该种计算机程序产品,当计算机程序产品中的指令被处理器执行时,执行一种信号补偿方法,方法包括:
获取移动物体在移动过程中的当前定位信号,以及移动物体在所述当前定位信号之前的参考定位信号;
确定所述当前的定位信号的位置信息并作为第一位置信息,并确定所述参考定位信号的位置信息并作为第二位置信息;
在所述当前定位信号的第一位置信息满足预设条件时,根据所述参考定位信号的第二位置信息对所述当前定位信号的第一位置信息进行补偿。
本实施例中的计算机程序产品,通过确定在对移动物体生成地图过程中当前定位信号,以及在当前定位信号之前所采集的参考定位信号,确定当前的定位信号的位置信息并作为第一位置信息,并确定参考定位信号的位置信息并作为第二位置信息,在当前定位信号的第一位置信息满足预设条件时,根据参考定位信号的第二位置信息对当前定位信号的第一位置信息进行补偿,能够有效减弱地图生成过程中遮挡物所造成的影响,提升地图生成效果。
计算机程序产品,其包括计算机程序指令,所述计算机程序指令在被处理器运行时使得所述处理器执行本说明书上述“移动物体的定位方法”和“信号补偿方法”和“方向确定方法”部分中描述的根据本发明各种实施例的“移动物体的定位方法”和“信号补偿方法”和“方向确定方法”所有方法中的步骤。
所述计算机程序产品可以以一种或多种程序设计语言的任意组合来编写用于执行本申请实施例操作的程序代码,所述程序设计语言包括面向对象的程序设计语言,诸如Java、C++等,还包括常规的过程式程序设计语言,诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。
为了实现上述实施例,本发明还提出一种电子设备,其包括:
存储器,用于存储计算机可执行指令;和
处理器,用于执行所述存储器存储的计算机可执行指令,以执行所述的自移动设备的定位方法,所述方法包括:
获取移动物体在移动过程中的当前定位信号,以及移动物体在所述当前定位信号之前的参考定位信号;
对所述参考定位信号和所述当前定位信号进行解算处理获得误差数据;
根据所述误差数据及所述参考定位信号的位置信息处理获得移动物体的当前位置信息。
该种电子设备,处理器用于执行所述存储器存储的计算机可执行指令,以执行所述的信号补偿方法,信号补偿方法包括:
获取移动物体在移动过程中的当前定位信号,以及移动物体在所述当前定位信号之前的参考定位信号;
确定所述当前的定位信号的位置信息并作为第一位置信息,并确定所述参考定位信号的位置信息并作为第二位置信息;
在所述当前定位信号的第一位置信息满足预设条件时,根据所述参考定位信号的第二位置信息对所述当前定位信号的第一位置信息进行补偿。
该电子设备可以是在自移动设备的移动站中集成的电子设备,或者与该移动站独立的单机设备,该单机设备可以与移动站进行通信,以实现根据本发明一实施例的自移动设备的方向确定方法。
图21为本发明一实施例的电子设备的示意性框图。
如图21所示,电子设备600包括一个或多个处理器610和存储器620。
处理器610可以是中央处理单元(CPU)或者具有数据处理能力和/或指令执行能力的其他形式的处理单元,并且可以控制电子设备600中的其他组件以执行期望的功能。
存储器620可以包括一个或多个计算机程序产品,所述计算机程序产品可以包括各种形式的计算机可读存储介质,例如易失性存储器和/或非易失性存储器。所述易失性存储器例如可以包括随机存取存储器(RAM)和/或高速缓冲存储器(cache)等。所述非易失性存储器例如可以包括只读存储器(ROM)、硬盘、闪存等。在所述计算机可读存储介质上可以存储一个或多个计算机程序指令,处理器610可以运行所述程序指令,以实现上文所述的本发明的各个实施例的自移动设备的定位故障报警方法以及/或者其他期望的功能。在所述计算机 可读存储介质中还可以存储诸如天线的位置数据、天线相对于自移动设备的安装位置等各种内容。
在一个示例中,电子设备600还可以包括:输入装置630和输出装置640,这些组件通过总线系统和/或其他形式的连接机构(未示出)互连。
例如,该输入装置630可以是用于接收用户输入。
该输出装置640可以直接向外部输出各种信息,或者控制移动站发送信号。
当然,为了简化,图21中仅示出了该电子设备600中与本申请有关的组件中的一些,省略了诸如总线、输入/输出接口等等的组件。除此之外,根据具体应用情况,电子设备600还可以包括任何其他适当的组件。
第二实施例:
传统的自动割草机识别工作区域的方法为,沿工作区域的边界布边界线,也可以沿障碍的外围布边界线,边界线传输电信号,产生电磁场,自动割草机上的传感器检测电磁场信号,判断自身位于边界线限定的区域内或外。这种方法,布边界线麻烦,且影响草坪美观。
为了使自动割草机能够识别工作区域,又能够免去布边界线的麻烦,可以采用建立工作区域地图的方法,其中一种建立工作区域地图的方法为,记录工作区域的边界和障碍等位置坐标,建立坐标系,生成工作区域地图。自动工作系统工作时,通过比较自动割草机的位置与地图,来判断自动割草机是否在安全的工作区域内。
在实际生成地图的过程中,可能会存在有遮挡物,该遮挡物可以例如为一个水塔、灌木丛、建筑物等。在该种场景下,当移动物体的工作区域紧邻遮挡物时,被遮挡的区域信号接收情况差,定位设备记录的定位信号的位置信息(例如为,位置坐标)可能出现较大的偏移,因此,有必要在上述情况下对信号进行补偿。
第二实施例提供了一种信号补偿方法,第二实施例的信号补偿方法与第一实施例的区别在于,第二实施例包括基站,基于基站传递的同步卫星信号进行信号补偿,具体实施例描述如下。
本发明实施例中,自动工作系统包括自移动设备,在限定的工作区域内自主移动,以及定位移动站,所述移动站通过沿所述工作区域的边界移动并采集工作区域的位置点信息,以生成地图。
其中,自移动设备可以为自动割草机、自动清洁设备、自动浇灌设备、自动扫雪机等适合无人值守的设备。
进一步地,自动工作系统还可以包括基站。其中,基站和移动站均接收卫星信号,基站向移动站发送定位修正信号,从而实现差分卫星定位。例如,基站和移动站可以接收全球定位系统(Global Position System,简称GPS)定位信号,实现差分全球定位系统(Differential Global Positioning System,简称DGPS)定位,或者,基站和移动站也可以接收伽利略卫星导航系统、北斗卫星导航系统、全球导航卫星系统(Global Navigation Satellite System,简称GLONASS)等定位信号,本发明实施例对此不作限制。
本发明实施例以基站和移动站接收GPS定位信号示例。
本发明实施例中,基站可以包括卫星信号接收器,用于接收卫星发送的GPS定位信号;信号处理器,用于根据卫星信号接收器接收到的定位信号,生成定位修正信号;无线数据传输模块,用于向移动站发送定位修正信号;指示器,用于输出当前位置的卫星信号是否良好的指示。
其中,无线数据传输模块可以包括电台及电台天线,进一步地,为了保证基站与移动站之间在远距离传输时的可靠性,无线数据传输模块还可以包括Sub-1G、WIFI、2G/3G/4G/5G模块,对此不作限制。
可选地,基站可以设置于充电站,与充电站一体,从而可以通过充电站为基站进行供电。当然,基站也可以与充电站分离设置,例如,可以设置在屋顶等能够更好的接收卫星信号的位置。
相应地,移动站也可以包括壳体;卫星信号接收器,用于接收卫星发送的GPS定位信号;信号处理器,处理卫星信号接收器接收到的定位信号;无线数据传输模块,用于接收基站发送的定位修正信号,其中,无线数据传输模块可以包括电台及电台天线;指示器,用于输出当前位置的卫星信号是否良好的指示。
本发明实施例中,移动站还可以集成惯导装置,惯导装置用于输出惯性导航数据。当移动站工作时,可以只利用GPS定位信号来导航,也可以利用GPS定位信号与惯性导航数据经融合处理后的定位信号来导航,或者,在GPS信号弱的时候,也可以只利用惯性导航数据来导航。惯性导航数据的误差会随时间累积。
本发明实施例中,移动站可以与自移动设备的壳体可拆卸的连接。具体地, 移动站可以包括与自移动设备的壳体连接的第一接口。当自移动设备在工作时,移动站安装于自移动设备的壳体。当移动站与自移动设备的壳体连接时,可实现与自移动设备的控制模块的电连接,移动站输出自移动设备的当前位置坐标,从而控制模块可以根据自移动设备的当前位置控制自移动设备的移动和工作。或者,移动站根据当前位置坐标输出控制指令,自移动设备的控制模块基于所述控制指令控制自移动设备移动或工作。
需要说明的是,本发明实施例中,移动站可以包括独立的电源模块,当移动站与自移动设备的壳体分离时,可以独立工作。
图22是本发明一实施例提出的地图生成过程中的信号补偿方法的流程示意图,移动站通过沿所述工作区域的边界移动并采集移动经过的位置点信息,以生成地图。
本实施例以该地图生成过程中的信号补偿方法被配置为地图生成过程中的信号补偿装置中来举例说明。
本实施例中地图生成过程中的信号补偿装置可以设置在服务器中,或者也可以设置在移动站中,本申请实施例对此不作限制。
其中,电子设备例如为个人电脑(Personal Computer,PC),云端设备或者移动设备,移动设备例如智能手机,或者平板电脑等。
需要说明的是,本申请实施例的执行主体,在硬件上可以例如为服务器或者电子设备中的中央处理器(Central Processing Unit,CPU),在软件上可以例如为服务器或者电子设备中的后台管理服务,对此不作限制。
本申请实施例以地图生成过程中的信号补偿装置设置在移动站中进行示例。
参见图22,该方法包括:
S310:确定在对移动物体生成地图过程中当前定位信号,以及在当前定位信号之前所采集的参考定位信号。
其中的移动物体可以例如为移动站,对此不作限制。
其中生成的地图可以作为移动物体的工作区域,对此不作限制。
可以理解的是,生成地图的方式可以例如,用户在Google地图上圈出自动割草机的工作区域;移动站与自动割草机一体化设置,自动割草机沿着工作区域运行一圈,例如可以是用户推动自动割草机运行,用户遥控自动割草机运行,自动割草机跟随用户移动的轨迹,自动割草机自动运行等,对此不作限制。
本发明实施例中以移动站与自动割草机分离设置,用户手持移动站沿着工作区域运行一圈,根据移动站运行过程中采集到的定位信号数据,生成地图进行示例,对此不作限制。
在实际生成地图的过程中,参见图9,图9为本发明实施例中信号补偿的场景示意图,其中包括遮挡物10和工作区域11,该遮挡物10可以例如为一个水塔、灌木丛、建筑物等。在该种场景下,当移动物体的工作区域11紧邻遮挡物10时,被遮挡的区域信号接收情况差,移动站记录的定位信号的位置信息(例如为,位置坐标)可能如图10所示,参见图10,图10为本发明实施例中信号补偿的位置信息示意图,包括存在遮挡物对应的位置信息模块12,从中可以看出,定位信号的位置信息出现较大的偏移,因此,本发明实施例提出了在上述情况下对信号进行补偿,能够有效提升地图生成效果。
本发明实施例在具体执行的过程中,首先确定在对移动物体生成地图过程中当前定位信号,以及在当前定位信号之前所采集的参考定位信号,参考定位信号的数量为至少两个,本实施例的执行过程为可以为实时,或者每隔预设时间间隔,若为实时,则在用户手持移动站沿着工作区域运行的过程中,实时确定在对移动物体生成地图过程中当前定位信号,若为每隔预设时间间隔,则每隔预设时间间隔确定在对移动物体生成地图过程中当前定位信号,对此不作限制。
参见图10,图10中还包括三个参考定位信号13和当前定位信号14,可以理解的是,随着时间的推移,当前定位信号14在持续更新,直至地图生成完毕,可以将当前时间点上所确定得到的定位信号作为当前定位信号。
S320:确定当前的定位信号的位置信息并作为第一位置信息,并确定参考定位信号的位置信息并作为第二位置信息。
其中的第一位置信息/第二位置信息可以例如为位置坐标,根据移动站的工作原理,可以在用户手持移动站沿着工作区域运行过程中,实时地采集当前的定位信号的位置信息,该位置信息可以被称为第一位置信息,采集参考定位信号的位置信息,该位置信息可以被称为第二位置信息。
本发明实施例中通过确定在当前定位信号之前所采集的参考定位信号的位置信息,确定参考定位信号的位置信息,后续实现根据位置信息进行信号补偿,实现简单,数据采集较简便,利用已有设备即能够采集该数据,因此,不会耗费过多的硬件成本。
S330:在当前定位信号的第一位置信息满足预设条件时,根据参考定位信号的第二位置信息对当前定位信号的第一位置信息进行补偿。
可选地,预设条件包括:当前的定位信号的第一精度值小于第一预设精度阈值;或者第一位置信息和第二位置信息之间的差值大于预设阈值。具体的,首先根据当前的定位信号的第一精度值小于第一预设精度阈值,然后根据第一位置信息和第二位置信息之间的差值大于预设阈值,判断满足预设条件。
其中的第一预设精度阈值和预设阈值可以由用户根据实际应用需求进行设定,或者,也可以由地图生成过程中的信号补偿装置的出厂程序预先设定,对此不作限制。
本发明实施例在具体执行的过程中,可以采用相关技术中的精度测量算法,确定当前的定位信号的精度值,该精度值可以被称为第一精度值,对此不作限制。
本发明实施例中,在探测到当前定位信号的第一位置信息满足预设条件时,才根据参考定位信号的第二位置信息对当前定位信号的第一位置信息进行补偿,否则,不触发进行信号补偿,能够避免不必要的触发信号补偿所造成的内存资源消耗,提升补偿效率。
可选地,可以根据至少两个的参考定位信号的第二位置信息确定移动物体的运行轨迹信息并作为第一运行轨迹信息,根据第一运行轨迹信息对当前定位信号的第一位置信息进行补偿。
如10所示,由其中的三个参考定位信号13和当前定位信号14,在信号补偿过程中,可以首先确定三个参考定位信号13中每个参考定位信号13的第二位置信息(即,位置坐标),确定出移动物体的运行轨迹信息(运行轨迹信息可以由连接图10中的三个参考定位信号13的线条表示),该运行轨迹信息可以被称为第一运行轨迹信息。
可以理解的是,假设需要对当前定位信号14进行信号补偿,则可以假设在当前定位信号14的位置坐标处,存在一个遮挡物,但是,在当前定位信号14之前采集的三个参考定位信号13的位置坐标处,并不存在遮挡物,因此,可以参考之前的第一运行轨迹信息对当前定位信号14的位置信息进行信号补偿,可以有效保障信号补偿参考数据的参考价值,因而,提升信号补偿的精准度。
本实施例中,通过确定在对移动物体生成地图过程中当前定位信号,以及 在当前定位信号之前所采集的参考定位信号,确定当前的定位信号的位置信息并作为第一位置信息,并确定参考定位信号的位置信息并作为第二位置信息,在当前定位信号的第一位置信息满足预设条件时,根据参考定位信号的第二位置信息对当前定位信号的第一位置信息进行补偿,能够有效减弱地图生成过程中遮挡物所造成的影响,提升地图生成效果。
图23是本发明另一实施例提出的地图生成过程中的信号补偿方法的流程示意图。
参见图23,该方法包括:
S410:确定在对移动物体生成地图过程中当前定位信号,以及在当前定位信号之前所采集的参考定位信号。
本发明实施例在具体执行的过程中,确定在对移动物体生成地图过程中当前定位信号,以及在当前定位信号之前所采集的参考定位信号,参考定位信号的数量为至少两个,本发明的执行过程为可以为实时,或者每隔预设时间间隔。
参见图10,图10中还包括三个参考定位信号13和当前定位信号14、箭头15、第二定位信号16(第二定位信号16为当前定位信号14后续所采集的定位信号),可以理解的是,随着时间的推移,当前定位信号14在持续更新,直至地图生成完毕,可以将当前时间点上所确定得到的定位信号作为当前定位信号。
S420:确定当前的定位信号的位置信息并作为第一位置信息,并确定参考定位信号的位置信息并作为第二位置信息。
其中的第一位置信息/第二位置信息可以例如为位置坐标,根据移动站的工作原理,可以在用户手持移动站沿着工作区域运行过程中,实时地采集当前的定位信号的位置信息,该位置信息可以被称为第一位置信息,采集参考定位信号的位置信息,该位置信息可以被称为第二位置信息。
S430:判断当前定位信号的第一位置信息是否满足预设条件,若是,则执行S450及其后续步骤,否则,执行S440。
可选地,预设条件包括:当前的定位信号的第一精度值小于第一预设精度阈值;或者第一位置信息和第二位置信息之间的差值大于预设阈值。具体的,首先根据当前的定位信号的第一精度值小于第一预设精度阈值,然后根据第一位置信息和第二位置信息之间的差值大于预设阈值,判断满足预设条件。其中的第一预设精度阈值和预设阈值可以由用户根据实际应用需求进行设定,或者, 也可以由地图生成过程中的信号补偿装置的出厂程序预先设定,对此不作限制。
S440:不触发对当前定位信号的第一位置信息进行补偿。
S450:根据至少两个的参考定位信号的第二位置信息确定移动物体的运行轨迹信息并作为第一运行轨迹信息。
参见图10,由其中的三个参考定位信号13和当前定位信号14、箭头15、第二定位信号16(第二定位信号16为当前定位信号14后续所采集的定位信号),在信号补偿过程中,可以首先确定三个参考定位信号13中每个参考定位信号13的第二位置信息(即,位置坐标),确定出移动物体的运行轨迹信息(运行轨迹信息可以由连接图3中的三个参考定位信号13的线条表示),该运行轨迹信息可以被称为第一运行轨迹信息。
可以理解的是,假设需要对当前定位信号14进行信号补偿,则可以假设在当前定位信号14的位置坐标处,存在一个遮挡物,但是,在当前定位信号14之前采集的三个参考定位信号13的位置坐标处,并不存在遮挡物,因此,可以参考之前的第一运行轨迹信息对当前定位信号14的位置信息进行信号补偿,可以有效保障信号补偿参考数据的参考价值,因而,提升信号补偿的精准度。
S460:根据第一运行轨迹信息确定当前定位信号的目标位置。
本发明的实施例中,可以根据第一运行轨迹信息确定出当前定位信号沿着该第一运行轨迹信息应该出现的位置,并将该位置作为上述的目标位置。
可以理解的是,由于地图生成过程中边界数据的连贯性,处于工作区域边界的定位信号的位置信息有章可循,而并不大可能为一个随机的位置信息,因此,本发明实施例中可以根据之前的运行轨迹信息确定当前定位信号的目标位置。
S470:直接将当前定位信号的第一位置信息对应的位置,调整为目标位置。
参见图10,可以将当前定位信号14的位置信息对应的位置,沿着箭头15的方向,调整为目标位置,该目标位置位于如图10中第一运行轨迹方向的延长线上(图10中虚线条所示)。
本发明实施例中上述图3中的线条和虚线条,并不一定是一条直线,具体的,可以为一条平滑的线条,实现补偿后的位置信号能够平滑过渡,尽可能地减小所生成地图的定位误差。
本实施例中,实现根据位置信息进行信号补偿,实现简单,数据采集较简 便,利用已有设备即能够采集该数据,因此,不会耗费过多的硬件成本。在探测到当前定位信号的第一位置信息满足预设条件时,才根据参考定位信号的第二位置信息对当前定位信号的第一位置信息进行补偿,否则,不触发进行信号补偿,能够避免不必要的触发信号补偿所造成的内存资源消耗,提升补偿效率。可以参考之前的运行轨迹信息对当前定位信号的位置信息进行信号补偿,可以有效保障信号补偿参考数据的参考价值。能够有效减弱地图生成过程中遮挡物所造成的影响,提升地图生成效果。
图12是本发明另一实施例提出的地图生成过程中的信号补偿方法的流程示意图。
参见图12,在上述S103之后,该方法还可以包括:
S501:获取在当前定位信号后续所采集的第二定位信号。
参见上述图10中第二定位信号16,在当前定位信号14后续所采集的定位信号,可以被称为第二定位信号。本发明实施例中在对多个不同时间点上的定位信号进行补偿后,可以将所补偿的多个不同时间点上的定位信号均作为上述的补偿后的当前定位信号,参考上述图10,假设在对应三个不同的时间点,存在有三个当前定位信号,则可以将三个当前定位信号后续所采集的定位信号,作为第二定位信号。
S502:确定第二定位信号的第二精度值,并确定补偿后的当前定位信号和第二定位信号之间的运行轨迹信息并作为第二运行轨迹信息。
本发明实施例在具体执行的过程中,可以采用相关技术中的精度测量算法,确定第二定位信号的精度值,该精度值可以被称为第二精度值,对此不作限制。
而后,确定补偿后的当前定位信号和第二定位信号之间的运行轨迹信息。
S503:若第二精度值大于或者等于第二预设精度阈值,则对第一运行轨迹信息和第二运行轨迹信息进行平滑滤波处理。
S504:若第二精度值小于第二预设精度阈值,则根据第一运行轨迹信息对第二运行轨迹信息进行更新。
一并参见图13和图14,图13为本发明实施例中平滑滤波处理后的运行轨迹示意图,图14为本发明实施例中更新后的运行轨迹示意图,图13中包括三个参考定位信号61和三个不同时间点对应的补偿后的定位信号62、三个第二定位信号63(三个第二定位信号63为,三个不同时间点对应的补偿后的定位 信号62后续所采集的定位信号),图14中包括三个参考定位信号71和三个不同时间点对应的补偿后的定位信号72、三个第二定位信号73(三个第二定位信号73为,三个不同时间点对应的补偿后的定位信号72后续所采集的定位信号)。
其中的第二预设精度阈值可以由用户根据实际应用需求进行设定,或者,也可以由地图生成过程中的信号补偿装置的出厂程序预先设定,对此不作限制。
本发明实施例中,在第二精度值大于或者等于第二预设精度阈值时,可以确定第二定位信号为高精度信号,此时,可以不再对该第二定位信号进行信号补偿,可以对第一运行轨迹信息和第二运行轨迹信息进行平滑滤波处理,参见上述图13,在第二精度值小于第二预设精度阈值时,确定第二定位信号为低精度信号,此时,可以根据第一运行轨迹信息对第二运行轨迹信息进行更新,具体地,可以将三个不同时间点对应的补偿后的定位信号之中,时间点最靠后的一个定位信号作为高精度信号,该高精度信号后续的第二运行轨迹信息,按照第一运行轨迹信息进行偏移,参见上述图14。
本发明在实际地图生成过程中,存在遮挡物的定位信号一般向工作区域外部偏移,因此,本发明实施例中补偿后的定位信号,其位置坐标是向工作区域内部偏移,向工作区域内部偏移能够避免自动割草机驶出工作区域,因此,本发明实施例能够结合实际进行信号补偿。
进一步地,本发明实施例中用户在记录定位信号的过程中,能够实时地观察到所生成的地图,即,可以对所生成的地图随着时间的推移进行局部显示,以及实时地进行信号补偿。
进一步地,本发明实施例中还可以在移动站中设置提醒模块,用于提醒用户当前定位信号质量状况,使得用户可以根据当前定位信号质量状况,调整生成地图过程中的行为,例如,向信号好的方向运行,放弃被遮挡物影响的区域和路线,或者,也可以由人工编辑的方式完善所生成的地图,对此不作限制。
本实施例中,通过获取在当前定位信号后续所采集的第二定位信号,确定第二定位信号的第二精度值,并确定补偿后的当前定位信号和第二定位信号之间的运行轨迹信息并作为第二运行轨迹信息,若第二精度值大于或者等于第二预设精度阈值,则对第一运行轨迹信息和第二运行轨迹信息进行平滑滤波处理,若第二精度值小于第二预设精度阈值,则根据第一运行轨迹信息对第二运行轨迹信息进行更新,实现补偿后的位置信号能够平滑过渡,尽可能地减小所生成地图的定位误差。
图24是本发明一实施例提出的地图生成过程中的信号补偿装置的结构示意图。
参见图24,该信号补偿装置900包括:
第一确定模块901,用于确定在对移动物体生成地图过程中当前定位信号,以及在当前定位信号之前所采集的参考定位信号。
第二确定模块902,用于确定当前的定位信号的位置信息并作为第一位置信息,并确定参考定位信号的位置信息并作为第二位置信息。
补偿模块903,用于在当前定位信号的第一位置信息满足预设条件时,根据参考定位信号的第二位置信息对当前定位信号的第一位置信息进行补偿。
可选地,预设条件包括:当前的定位信号的第一精度值小于第一预设精度阈值;或者第一位置信息和第二位置信息之间的差值大于预设阈值。具体的,首先根据当前的定位信号的第一精度值小于第一预设精度阈值,然后根据第一位置信息和第二位置信息之间的差值大于预设阈值,判断满足预设条件。
可选地,一些实施例中,参见图25,参考定位信号的数量为至少两个,补偿模块903,包括:
确定子模块9031,用于根据至少两个的参考定位信号的第二位置信息确定移动物体的运行轨迹信息并作为第一运行轨迹信息。
补偿子模块9032,用于根据第一运行轨迹信息对当前定位信号的第一位置信息进行补偿。
可选地,一些实施例中,补偿子模块9032,具体用于:
根据第一运行轨迹信息确定当前定位信号的目标位置;
直接将当前定位信号的第一位置信息对应的位置,调整为目标位置。
可选地,一些实施例中,参见图25,该装置900还包括:
获取模块904,用于获取在当前定位信号后续所采集的第二定位信号。
第三确定模块905,用于确定第二定位信号的第二精度值,并确定补偿后的当前定位信号和第二定位信号之间的运行轨迹信息并作为第二运行轨迹信息。
补偿模块903,还用于在第二精度值大于或者等于第二预设精度阈值时,对第一运行轨迹信息和第二运行轨迹信息进行平滑滤波处理,在第二精度值小于第二预设精度阈值时,根据第一运行轨迹信息对第二运行轨迹信息进行更新。
需要说明的是,前述图9-图10,图12-图14,图22-图25实施例中对地图 生成过程中的信号补偿方法实施例的解释说明也适用于该实施例的地图生成过程中的信号补偿装置900,其实现原理类似,此处不再赘述。
本实施例中,通过确定在对移动物体生成地图过程中当前定位信号,以及在当前定位信号之前所采集的参考定位信号,确定当前的定位信号的位置信息并作为第一位置信息,并确定参考定位信号的位置信息并作为第二位置信息,在当前定位信号的第一位置信息满足预设条件时,根据参考定位信号的第二位置信息对当前定位信号的第一位置信息进行补偿,能够有效减弱地图生成过程中遮挡物所造成的影响,提升地图生成效果。
为了实现上述实施例,本发明还提出一种非临时性计算机可读存储介质,当存储介质中的指令由终端的处理器执行时,使得终端能够执行一种地图生成过程中的信号补偿方法,方法包括:
确定在对移动物体生成地图过程中当前定位信号,以及在当前定位信号之前所采集的参考定位信号;
确定当前的定位信号的位置信息并作为第一位置信息,并确定参考定位信号的位置信息并作为第二位置信息;
在当前定位信号的第一位置信息满足预设条件时,根据参考定位信号的第二位置信息对当前定位信号的第一位置信息进行补偿。
本实施例中的非临时性计算机可读存储介质,通过确定在对移动物体生成地图过程中当前定位信号,以及在当前定位信号之前所采集的参考定位信号,确定当前的定位信号的位置信息并作为第一位置信息,并确定参考定位信号的位置信息并作为第二位置信息,在当前定位信号的第一位置信息满足预设条件时,根据参考定位信号的第二位置信息对当前定位信号的第一位置信息进行补偿,能够有效减弱地图生成过程中遮挡物所造成的影响,提升地图生成效果。
为了实现上述实施例,本发明还提出一种计算机程序产品,当计算机程序产品中的指令被处理器执行时,执行一种地图生成过程中的信号补偿方法,方法包括:
确定在对移动物体生成地图过程中当前定位信号,以及在当前定位信号之前所采集的参考定位信号;
确定当前的定位信号的位置信息并作为第一位置信息,并确定参考定位信号的位置信息并作为第二位置信息;
在当前定位信号的第一位置信息满足预设条件时,根据参考定位信号的第 二位置信息对当前定位信号的第一位置信息进行补偿。
本实施例中的计算机程序产品,通过确定在对移动物体生成地图过程中当前定位信号,以及在当前定位信号之前所采集的参考定位信号,确定当前的定位信号的位置信息并作为第一位置信息,并确定参考定位信号的位置信息并作为第二位置信息,在当前定位信号的第一位置信息满足预设条件时,根据参考定位信号的第二位置信息对当前定位信号的第一位置信息进行补偿,能够有效减弱地图生成过程中遮挡物所造成的影响,提升地图生成效果。
需要说明的是,在本发明的描述中,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品 销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。
第三实施例:
传统的自动割草机识别工作区域的方法为,沿工作区域的边界布边界线,也可以沿障碍的外围布边界线,边界线传输电信号,产生电磁场,自动割草机上的传感器检测电磁场信号,判断自身位于边界线限定的区域内或外。
这种方法的缺点为,布边界线麻烦,且影响草坪美观。
为了使自动割草机能够识别工作区域,又能够免去布边界线的麻烦,可以采用建立工作区域地图的方法,其中一种建立工作区域地图的方法为,记录工作区域的边界和障碍等位置坐标,建立坐标系,生成工作区域地图。自动工作系统工作时,通过比较自动割草机的位置与地图,来判断自动割草机是否在安全的工作区域内。
采用这种方法,需要具备导航功能,也就是说,除了需要知道自动割草机自身的坐标以外,还需要知道自动割草机自身的方向。因此,采用这种方法的另一个技术问题为,如何确定自动割草机的方向。
第三实施例提供了一种自移动设备的方向确定方法,第三实施例的自移动设备的方向确定方法与第一实施例的区别在于,第三实施例的导航模块包括基站,具体实施例描述如下。
自动工作系统概述
图26为本发明的一实施例的自动工作系统810示意图。自动工作系统包括自移动设备。本实施例中,自移动设备为自动割草机817,在其他实施例中,自移动设备也可以为自动清洁设备、自动浇灌设备、自动扫雪机等适合无人值守的设备。自动工作系统810还包括充电站818,用于为自动割草机817补给电能。本实施例中,自动工作系统810包括导航模块,用于输出自动割草机的当前位置。具体的,导航模块包括基站811和移动站812。
如图26所示,自动工作系统用于在预定的工作区域内工作,本实施例中,工作区域包括至少两个相互分离的子工作区域,子工作区域由通道813连通。工作区域与非工作区域之间形成边界814,工作区域内包括障碍815、816,障碍包括树木、凹坑等。
本实施例中的自动割草机817的结构如图27所示。自动割草机817包括壳体8171,移动模块,任务执行模块,能源模块,控制模块等。其中,移动模块包括履带8172,由驱动马达驱动以带动自动割草机817移动。任务执行模块包括切割组件8173,执行割草工作。能源模块包括电池包(图未示),为自动 割草机817的移动和工作提供电能。控制模块与移动模块、任务执行模块和能源模块电连接,控制移动模块带动自动割草机817移动,并控制任务执行模块执行工作任务。
本实施例中的导航模块的组成如图28及图29所示。导航模块包括基站811和移动站812。基站811和移动站812均接收卫星信号,基站811向移动站812发送定位修正信号,实现差分卫星定位。本实施例中,基站811和移动站812接收GPS定位信号,实现差分GPS定位。当然,在其他实施例中,基站811和移动站812也可以接收伽利略卫星导航系统、或北斗卫星导航系统、或GLONASS等定位信号。
如图29所示,本实施例中,基站811包括GPS天线19,接收GPS定位信号;GPS板卡21,处理接收到的GPS定位信号,并生成定位修正信号;通讯模块23,将定位修正信号发送给移动站812,本实施例中,通讯模块23包括电台及电台天线25;基站还包括指示器(图未示),指示器能够输出当前位置的卫星信号是否良好的指示。本实施例中,基站811设置于充电站818,与充电站818一体。在其他实施例中,基站811也可以与充电站818分离设置,例如,可以设置在屋顶等能够更好的接收卫星信号的位置。
如图28所示,本实施例中,移动站812包括壳体27;GPS天线29,接收GPS定位信号;GPS板卡31,处理接收到的GPS定位信号;通讯模块33,接收基站811发送的定位修正信号,通讯模块33包括电台及电台天线35。本实施例中,移动站812集成了惯性导航装置(图未示),惯性导航装置输出惯性导航数据。移动站812工作时,可以只利用GPS定位信号来导航,也可以利用GPS定位信号与惯性导航数据经融合处理后的定位信号来导航,或者,在GPS信号弱的时候,也可以只利用惯性导航数据来导航。移动站812还包括指示器(图未示),输出当前位置的差分GPS信号是否良好的指示。本实施例中,移动站812与自动割草机817的壳体8171可拆卸的连接。移动站812包括与自动割草机817的壳体连接的第一接口(图未示)。自动割草机817工作时移动站812安装于自动割草机817的壳体8171。移动站812与自动割草机817的壳体8171连接时,可实现与自动割草机817的控制模块的电连接,移动站812输出自动割草机817的当前位置坐标,控制模块根据自动割草机817的当前位置控制自动割草机817的移动和工作。或者,移动站根据当前位置坐标输出控制指令给控制模块。本实施例中,移动站812包括独立的电源模块37,移动站812 与自动割草机817的壳体8171分离时,可以独立工作。
示意性方向确定方法
在自移动设备的导航过程中,除了需要知道自移动设备自身的坐标以外,还需要知道自移动设备自身的方向。例如,回归时需要知道转向方向,偏离预设路径或者遇到边界时也需要知道转向方向。
传统的方向判断方法主要是通过使用传感器直接测量方向。例如,通过使用陀螺仪等可以获得角度的变化量,从而确定方向,但是,问题在于误差容易累积。或者,通过使用罗盘等可以直接获得角度,但是又容易受到环境影响,且罗盘等具有固有误差。
基于上述技术问题,根据本发明实施例的自移动设备的方向确定方法通过位置信息来确定方向。
图30为根据本发明一实施例的自移动设备的方向确定方法的示意性流程图。如图30所示,根据本发明实施例的自移动设备的方向确定方法包括:S701,从接收卫星信号的第一天线获取所述第一天线的第一位置数据,所述第一天线设置在所述自移动设备上;S702,从接收卫星信号的第二天线获取所述第二天线的第二位置数据,所述第二天线设置在所述自移动设备上,且所述第一天线与所述第二天线的连线方向与所述自移动设备的移动方向之间具有预定角度;以及S703,基于所述第一位置数据、所述第二位置数据和所述预定角度确定所述自移动设备的移动方向。
也就是说,在根据本发明实施例的自移动设备的方向确定方法中,通过自移动设备上安装的两个天线的位置来确定自移动设备的移动方向。这样,可以避免上述使用传感器带来的误差问题,从而准确地确定自移动设备的移动方向。
为了更准确地确定自移动设备的移动方向,所述第一天线和第二天线优选地彼此分开一定距离。也就是说,在根据本发明实施例的自移动设备的方向确定方法中,所述第一天线设置在所述自移动设备的机身前部,且所述第二天线设置在所述自移动设备的机身后部。当然,只要保证所述第一天线和所述第二天线之间的距离足够确定方向,所述第一天线和所述第二天线也可以安装在所述自移动设备上的其它位置。
另外,所述第一天线与所述第二天线的连线方向可以与所述自移动设备的移动方向呈预定角度,这样,通过确定所述第一天线与所述第二天线的连线方 向,就可以进一步基于所述预定角度确定所述自移动设备的移动方向。当然,所述预定角度也可以是零度,也就是说,所述第一天线与所述第二天线的连线方向可以与所述自移动设备的移动方向一致。
在这种情况下,在根据本发明实施例的自移动设备的方向确定方法中,所述第一天线和所述第二天线可以均设置在所述自移动设备的机身的中轴线上。
这样,根据本发明实施例的自移动设备的方向确定方法可以实时地输出所述自移动设备的移动方向。
在根据本发明实施例的自移动设备的方向确定方法中,通过差分卫星定位系统获取所述天线的位置数据。
在一个实施例中,自移动设备通过差分GPS信号来获取所述第一天线和所述第二天线的位置数据。
为了在卫星信号不好时辅助进行导航,可以进一步结合惯性导航装置。
也就是说,在根据本发明实施例的自移动设备的方向确定方法中,通过差分卫星定位系统结合惯性导航装置获取所述天线的位置数据。
另外,在根据本发明实施例的自移动设备的方向确定方法中,可以进一步结合角度传感器,例如罗盘、陀螺仪等确定自移动设备的移动方向。
也就是说,在上述自移动设备的方向确定方法中,进一步包括:结合角度传感器确定自移动设备的移动方向。
具体来说,可以首先确定卫星信号的信号强度,并在信号强度小于预定阈值,即信号不好的情况下,结合角度传感器确定自移动设备的移动方向。
即,在上述自移动设备的方向确定方法中,进一步包括:确定卫星信号的信号强度是否小于预定阈值;和,响应于卫星信号的信号强度小于预定阈值,结合角度传感器确定自移动设备的移动方向。
并且,在上述自移动设备的方向确定方法中,角度传感器包括罗盘、陀螺仪等。
本发明的一实施例中,在使用位置数据确定自移动设备的移动方向时,也可以通过对不同时间点的位置数据进行拟合,以确定自移动设备的移动方向。
也就是说,如图31所示,根据本发明实施例的方向确定方法包括:S601,在第一时间从接收卫星信号的第一天线获取所述第一天线的一位置数据,所述第一天线设置在所述自移动设备上;S602,在第二时间从所述第一天线获取所述第一天线的另一位置数据,所述第二时间晚于所述第一时间;S603,基于至 少所述第一时间和第二时间获取的两个位置数据进行方向拟合,以确定所述自移动设备的移动方向。
在根据本发明实施例的自移动设备的方向确定方法中,结合时间轴上(移动前后)的两个位置来拟合方向。
也就是说,可以通过高精度坐标连续一段时间的多个数据,来对应时间轴进行方向拟合,从而确定自移动设备的移动方向。
在上述自移动设备的方向确定方法中,所述位置数据的获取频率为1Hz到100Hz。
在上述自移动设备的方向确定方法中,所述位置数据的获取频率为5Hz。
在上述自移动设备的方向确定方法中,通过差分卫星定位系统结合惯性导航装置获取所述天线的位置数据。
在上述自移动设备的方向确定方法中,结合角度传感器确定所述自移动设备的移动方向。
在上述自移动设备的方向确定方法中,确定所述卫星信号的信号强度是否小于预定阈值;和响应于所述卫星信号的信号强度小于预定阈值,结合角度传感器确定所述自移动设备的移动方向。
在上述自移动设备的方向确定方法中,所述角度传感器包括罗盘、或陀螺仪。
在上述自移动设备的方向确定方法中,可以仅以单天线获得的自移动设备的位置来进行方向拟合。
示意性自移动设备和自动工作系统
图32为本发明一实施例的自移动设备的示意性框图。
如图32所示,根据本发明实施例的自移动设备包括:第一位置获取单元710,用于从接收卫星信号的第一天线获取所述第一天线的第一位置数据,所述第一天线设置在所述自移动设备上;第二位置获取单元720,用于从接收卫星信号的第二天线获取所述第二天线的第二位置数据,所述第二天线设置在所述自移动设备上,且所述第一天线与所述第二天线的连线方向与所述自移动设备的移动方向之间具有预定角度;以及方向确定单元730,用于基于所述第一位置数据、所述第二位置数据和所述预定角度确定所述自移动设备的移动方向。
在一个示例中,在上述自移动设备700中,所述第一天线设置在所述自移动设备的机身前部,且所述第二天线设置在所述自移动设备的机身后部。
在一个示例中,在上述自移动设备700中,所述第一天线和所述第二天线均设置在所述自移动设备的机身的中轴线上。
在一个示例中,在上述自移动设备700中,通过差分卫星定位系统获取所述天线的位置数据。
在一个示例中,在上述自移动设备700中,通过差分卫星定位系统结合惯性导航装置获取所述天线的位置数据。
在一个示例中,在上述自移动设备700中,所述方向确定单元用于结合角度传感器确定所述自移动设备的移动方向。
在一个示例中,在上述自移动设备700中,进一步包括:信号强度判定单元,用于确定所述卫星信号的信号强度是否小于预定阈值;和,所述方向确定单元用于响应于所述卫星信号的信号强度小于预定阈值,结合角度传感器确定所述自移动设备的移动方向。
在一个示例中,在上述自移动设备700中,所述角度传感器包括罗盘、陀螺仪。
这里,本领域技术人员可以理解,本实施例的自移动设备中的各个单元的其它细节与之前描述的本发明一实施例的自移动设备的方向确定方法中的相应细节完全相同,这里为了避免冗余便不再赘述。
同样,在另一方面,根据本发明实施例的自移动设备包括:位置获取单元,用于在第一时间从接收卫星信号的第一天线获取所述第一天线的一位置数据,所述第一天线设置在所述自移动设备上;所述位置获取单元还用于在第二时间从所述第一天线获取所述第一天线的另一位置数据,所述第二时间晚于所述第一时间;方向确定单元,用于基于至少所述第一时间和第二时间获取的两个位置数据进行方向拟合,以确定所述自移动设备的移动方向。
在上述自移动设备中,所述位置数据的获取频率为1Hz到100Hz。
在上述自移动设备中,所述位置数据的获取频率为5Hz。
在上述自移动设备中,通过卫星定位系统结合惯性导航装置获取所述天线的位置数据。
在上述自移动设备中,所述方向确定单元用于结合角度传感器确定所述自移动设备的移动方向。
在上述自移动设备中,包括信号强度判定单元,用于确定所述卫星信号的信号强度是否小于预定阈值;和所述方向确定单元用于响应于所述卫星信号的信号强度小于预定阈值,结合所述角度传感器确定所述自移动设备的移动方向。
在上述自移动设备中,所述角度传感器包括罗盘、或陀螺仪。
本发明一实施例进一步涉及一种自动工作系统,包括如上所述的自移动设备,在地图限定的工作区域内移动和工作。
在上述自动工作系统中,所述自移动设备是自动割草机。
在上述自动工作系统中,所述自动工作系统是自动割草机。
本发明一实施例进一步涉及一种电子设备,包括:存储器,用于存储计算机可执行指令;和,处理器,用于执行所述存储器存储的计算机可执行指令,以执行如上所述的自移动设备的方向确定方法。
本发明一实施例进一步涉及一种计算机可读存储介质,其上存储有计算机程序指令,当所述计算机程序指令被计算装置执行时,可操作来执行如上所述的自移动设备的方向确定方法。
与现有技术相比,本发明实施例的有益效果是:通过使用位置数据确定自移动设备的移动方向,可以准确地确定自移动设备的移动方向。进一步的,通 过位置数据结合角度传感器的输出确定自移动设备的移动方向,一方面能够利用位置数据校正传感器的误差,另一方面能够在卫星信号差或定位信号精度低时持续导航。
示例性电子设备
下面,参考图21来描述根据本发明一实施例的电子设备。该电子设备可以是在自移动设备的移动站中集成的电子设备,或者与该移动站独立的单机设备,该单机设备可以与移动站进行通信,以实现根据本发明一实施例的自移动设备的方向确定方法。
图21为本发明一实施例的电子设备的示意性框图。
如图21所示,电子设备600包括一个或多个处理器610和存储器620。
处理器610可以是中央处理单元(CPU)或者具有数据处理能力和/或指令执行能力的其他形式的处理单元,并且可以控制电子设备600中的其他组件以执行期望的功能。
存储器620可以包括一个或多个计算机程序产品,所述计算机程序产品可以包括各种形式的计算机可读存储介质,例如易失性存储器和/或非易失性存储器。所述易失性存储器例如可以包括随机存取存储器(RAM)和/或高速缓冲存储器(cache)等。所述非易失性存储器例如可以包括只读存储器(ROM)、硬盘、闪存等。在所述计算机可读存储介质上可以存储一个或多个计算机程序指令,处理器610可以运行所述程序指令,以实现上文所述的本发明的各个实施例的自移动设备的定位故障报警方法以及/或者其他期望的功能。在所述计算机可读存储介质中还可以存储诸如天线的位置数据、天线相对于自移动设备的安装位置等各种内容。
在一个示例中,电子设备600还可以包括:输入装置630和输出装置640,这些组件通过总线系统和/或其他形式的连接机构(未示出)互连。
例如,该输入装置630可以是用于接收用户输入。
该输出装置640可以直接向外部输出各种信息,或者控制移动站发送信号。
当然,为了简化,图21中仅示出了该电子设备600中与本申请有关的组件中的一些,省略了诸如总线、输入/输出接口等等的组件。除此之外,根据具体应用情况,电子设备600还可以包括任何其他适当的组件。
示例性计算机程序产品和计算机可读存储介质
除了上述方法和设备以外,本申请的实施例还可以是计算机程序产品,其包括计算机程序指令,所述计算机程序指令在被处理器运行时使得所述处理器执行本说明书上述“示例性方向确定方法”部分中描述的根据本发明各种实施例的自移动设备的方向确定方法中的步骤。
所述计算机程序产品可以以一种或多种程序设计语言的任意组合来编写用于执行本申请实施例操作的程序代码,所述程序设计语言包括面向对象的程序设计语言,诸如Java、C++等,还包括常规的过程式程序设计语言,诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。
此外,本申请的实施例还可以是计算机可读存储介质,其上存储有计算机程序指令,所述计算机程序指令在被处理器运行时使得所述处理器执行本说明书上述“示例性方向确定方法”部分中描述的根据本发明各种实施例的自移动设备的方向确定方法中的步骤。
所述计算机可读存储介质可以采用一个或多个可读介质的任意组合。可读介质可以是可读信号介质或者可读存储介质。可读存储介质例如可以包括但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或 部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。
尽管本说明书中仅描述和图示了本发明的几个实施例,但是本领域技术人员应该容易预见用于执行这里描述的功能/或者获得这里描述的结构的其它手段或结构,每个这样的变化或者修改都视为在本发明的范围内。

Claims (62)

  1. 一种移动物体的定位方法,其特征在于,包括以下步骤:
    获取移动物体在移动过程中的当前定位信号,以及移动物体在所述当前定位信号之前的参考定位信号;
    对所述参考定位信号和所述当前定位信号进行解算处理获得误差数据,进行解算处理的所述参考定位信号和所述当前定位信号存在共用卫星信号;
    根据所述误差数据及所述参考定位信号的位置信息处理获得移动物体的当前位置信息。
  2. 根据权利要求1所述的移动物体的定位方法,其特征在于,所述参考定位信号为移动物体直接从卫星采集获得。
  3. 根据权利要求1所述的移动物体的定位方法,其特征在于,在获取移动物体在移动过程中的当前定位信号以及移动物体在所述当前定位信号之前的参考定位信号的步骤之前,还包括步骤:
    确定参考点位置的参考坐标;
    获取移动物体在参考点位置的定位信号,将该定位信号作为首个参考定位信号。
  4. 根据权利要求3所述的移动物体的定位方法,其特征在于,所述参考点位置为充电站位置或者移动物体的工作区域内设定的具有固定的参考坐标的校准点。
  5. 根据权利要求1所述的移动物体的定位方法,其特征在于,获取参考定位信号的方法包括:
    S1:选择当前定位信号之前最近时刻的已获取的卫星信号作为参考定位信号;
    S2:判断选择的参考定位信号是否满足解算条件;
    S3:若选择的参考定位信号满足解算条件,则将该参考定位信号作为后续解算处理的参考定位信号;若选择的参考定位信号不满足解算条件,则选择再前最近时刻的卫星信号作为参考定位信号,并重复步骤S2;
    S4:重复步骤S3直至获得符合解算条件的参考定位信号。
  6. 根据权利要求5所述的移动物体的定位方法,其特征在于,所述解算条件为:共用卫星数量达到设定的解算卫星数阈值。
  7. 根据权利要求6所述的移动物体的定位方法,其特征在于,所述解算条件为:共用卫星数量达到设定的解算卫星数阈值,且卫星信号的信号质量达到设定的信号噪声比阈值。
  8. 根据权利要求1所述的移动物体的定位方法,其特征在于,所述移动物体的定位方法还包括:
    对处理获得的移动物体的当前位置信息进行误差评估;和
    当误差评估结果满足误差条件时,移动物体返回参考点重新获取初始的参考定位信号。
  9. 根据权利要求8所述的移动物体的定位方法,其特征在于,所述参考点位置为充电站位置或者移动物体的工作区域内设定的具有固定的参考坐标的校准点。
  10. 根据权利要求8所述的移动物体的定位方法,其特征在于,所述误差条件为:移动物体的工作时间达到设定的总工作时间阈值。
  11. 根据权利要求8所述的移动物体的定位方法,其特征在于,所述误差条件为:选择的参考定位信号不满足解算条件。
  12. 根据权利要求11所述的移动物体的定位方法,其特征在于,所述解算条件为:
    共用卫星数量达到设定的解算卫星数阈值。
  13. 根据权利要求12所述的移动物体的定位方法,其特征在于,所述解算条件为:
    共用卫星数量达到设定的解算卫星数阈值,且卫星信号的信号质量达到设定的信号噪声比阈值。
  14. 根据权利要求1所述的移动物体的定位方法,其特征在于,移动物体的工作区域内设置有多个校准点,多个所述校准点相互之间具有已知的固定的参考坐标,当移动物体移动到校准点位置时,所述移动物体将校准点的位置信息作为当前位置信息。
  15. 根据权利要求1所述的移动物体的定位方法,其特征在于,所述移动物体的定位方法进一步包括:
    确定所述卫星信号的信号强度是否小于预定阈值;和
    响应于所述卫星信号的信号强度小于预定阈值,结合定位传感器确定所述移动物体的位置信息。
  16. 根据权利要求15所述的移动物体的定位方法,其特征在于,所述定位传感器包括惯性导航装置、或激光雷达、或无载波通信装置。
  17. 根据权利要求1所述的移动物体的定位方法,其特征在于,所述移动物体的定位方法还包括对位置信息进行补偿,所述补偿的方法包括步骤:
    确定所述当前的定位信号的位置信息并作为第一位置信息,并确定所述参考定位信号的位置信息并作为第二位置信息;
    在所述当前定位信号的第一位置信息满足预设条件时,根据所述参考定位信号的第二位置信息对所述当前定位信号的第一位置信息进行补偿。
  18. 根据权利要求17所述的移动物体的定位方法,其特征在于,所述预设条件包括:所述当前的定位信号的第一精度值小于第一预设精度阈值。
  19. 根据权利要求17所述的移动物体的定位方法,其特征在于,所述预设条件包括:所述第一位置信息和所述第二位置信息之间的差值大于预设阈值。
  20. 根据权利要求17所述的移动物体的定位方法,其特征在于,所述参考定位信号的数量为至少两个,所述根据所述参考定位信号的第二位置信息对所述当前定位信号的第一位置信息进行补偿,包括:
    根据至少两个的参考定位信号的第二位置信息确定所述移动物体的运行轨迹信息并作为第一运行轨迹信息;
    根据所述第一运行轨迹信息对所述当前定位信号的第一位置信息进行补偿。
  21. 根据权利要求20所述的移动物体的定位方法,其特征在于,所述根据所述第一运行轨迹信息对所述当前定位信号的第一位置信息进行补偿,包括:
    根据所述第一运行轨迹信息确定所述当前定位信号的目标位置;
    直接将所述当前定位信号的第一位置信息对应的位置,调整为所述目标位置。
  22. 根据权利要求20所述的移动物体的定位方法,其特征在于,所述补偿的方法还包括:
    获取在所述当前定位信号后续所采集的第二定位信号;
    确定所述第二定位信号的第二精度值,并确定所述补偿后的当前定位信号和所述第二定位信号之间的运行轨迹信息并作为第二运行轨迹信息;
    若所述第二精度值大于或者等于第二预设精度阈值,则对所述第一运行轨迹信息和所述第二运行轨迹信息进行平滑滤波处理;
    若所述第二精度值小于所述第二预设精度阈值,则根据所述第一运行轨迹信息对所述第二运行轨迹信息进行更新。
  23. 根据权利要求1所述的移动物体的定位方法,其特征在于,所述移动物体的定位方法还包括对移动物体的方向进行确定,所述移动物体的方向确定方法包括步骤:
    从接收卫星信号的第一天线获取所述第一天线的第一位置数据,所述第一天线设置在所述移动物体上;
    从接收卫星信号的第二天线获取所述第二天线的第二位置数据,所述第二天线设置在所述移动物体上,且所述第一天线与所述第二天线的连线方向与所述移动物体的朝向之间具有预定角度;以及
    基于所述第一位置数据、所述第二位置数据和所述预定角度确定所述移动物体的朝向。
  24. 根据权利要求23所述的移动物体的定位方法,其特征在于,所述第一天线设置在所述移动物体的机身前部,且所述第二天线设置在所述移动物体的机身后部。
  25. 根据权利要求23所述的移动物体的定位方法,其特征在于,所述第一天线和所述第二天线均设置在所述移动物体的机身的中轴线上。
  26. 根据权利要求23所述的移动物体的定位方法,其特征在于,通过卫星定位系统结合惯性导航装置获取所述天线的位置数据。
  27. 根据权利要求23所述的移动物体的定位方法,其特征在于,所述移动物体的方向确定方法进一步包括:
    结合角度传感器确定所述移动物体的朝向。
  28. 根据权利要求27所述的移动物体的定位方法,其特征在于,所述移动物体的方向确定方法进一步包括:
    确定所述卫星信号的信号强度是否小于预定阈值;和
    响应于所述卫星信号的信号强度小于预定阈值,结合角度传感器确定所述移动物体的朝向。
  29. 根据权利要求27所述的移动物体的定位方法,其特征在于,所述角度传感器包括罗盘、或陀螺仪。
  30. 一种移动物体,其特征在于,包括:
    第一信号获取模块,用于获取移动物体在移动过程中的当前定位信号,以及移动物体在所述当前定位信号之前的参考定位信号;
    解算处理模块,用于对所述参考定位信号和所述当前定位信号进行解算处理获得误差数据,进行解算处理的所述参考定位信号和所述当前定位信号存在共用卫星信号;
    位置确定模块,用于根据所述误差数据及所述参考定位信号的位置信息确定移动物体的当前位置信息。
  31. 根据权利要求30所述的移动物体,其特征在于,所述参考定位信号为移动物体直接从卫星采集获得。
  32. 根据权利要求30所述的移动物体,其特征在于,所述移动物体包括:
    参考点位置确定模块,用于确定参考点位置的参考坐标,所述第一信号获取模块获取移动物体在参考点位置的定位信号,将该定位信号作为首个参考定位信号。
  33. 根据权利要求32所述的移动物体,其特征在于,所述参考点位置为充电站位置或者移动物体的工作区域内设定的具有固定的参考坐标的校准点。
  34. 根据权利要求30所述的移动物体,其特征在于,所述移动物体包括:
    解算条件判断模块,所述解算条件判断模块用于:
    判断选择的参考定位信号是否满足解算条件;
    若选择的参考定位信号满足解算条件,则将该参考定位信号作为后续解算处理的参考定位信号;若选择的参考定位信号不满足解算条件,则选择再前最近时刻的卫星信号作为参考定位信号并重复判断选择的参考定位信号是否满足解算条件,重复本步骤直至获得符合解算条件的参考定位信号。
  35. 根据权利要求34所述的移动物体,其特征在于,所述解算条件为:共用卫星数量达到设定的解算卫星数阈值。
  36. 根据权利要求35所述的移动物体,其特征在于,所述解算条件为:共用卫星数量达到设定的解算卫星数阈值,且卫星信号的信号质量达到设定的信号噪声比阈值。
  37. 根据权利要求30所述的移动物体,其特征在于,所述移动物体还包括误差评估模块,所述误差评估模块用于:
    对处理获得的移动物体的当前位置信息进行误差评估;和
    当误差评估结果满足误差条件时,移动物体返回参考点重新获取初始的参考定位信号。
  38. 根据权利要求37所述的移动物体,其特征在于,所述参考点位置为充电站位置或者移动物体的工作区域内设定的具有固定的参考坐标的校准点。
  39. 根据权利要求37所述的移动物体,其特征在于,所述误差条件为:移动物体的工作时间达到设定的总工作时间阈值。
  40. 根据权利要求37所述的移动物体,其特征在于,所述误差条件为:选择的参考定位信号不满足解算条件。
  41. 根据权利要求40所述的移动物体,其特征在于,所述解算条件为:共用卫星数量达到设定的解算卫星数阈值。
  42. 根据权利要求41所述的移动物体,其特征在于,所述解算条件为:共用卫星数量达到设定的解算卫星数阈值,且卫星信号的信号质量达到设定的信号噪声比阈值。
  43. 根据权利要求30所述的移动物体,其特征在于,移动物体的工作区域内设置有多个校准点,多个所述校准点相互之间具有已知的固定的参考坐标,当移动物体移动到校准点位置时,所述移动物体将校准点的位置信息作为当前位置信息。
  44. 根据权利要求30所述的移动物体,其特征在于,所述移动物体还包括:
    信号强度判定模块,用于确定所述卫星信号的信号强度是否小于预定阈值;和
    所述位置确定模块用于响应于所述卫星信号的信号强度小于预定阈值,结合定位传感器确定所述移动物体的位置信息。
  45. 根据权利要求44所述的移动物体,其特征在于,所述定位传感器包括惯性 导航装置、或激光雷达、或无载波通信装置。
  46. 根据权利要求30所述的移动物体,其特征在于,所述移动物体还包括:
    第一确定模块,用于确定所述当前的定位信号的位置信息并作为第一位置信息,并确定所述参考定位信号的位置信息并作为第二位置信息;
    补偿模块,用于在所述当前定位信号的第一位置信息满足预设条件时,根据所述参考定位信号的第二位置信息对所述当前定位信号的第一位置信息进行补偿。
  47. 如权利要求46所述的移动物体,其特征在于,其中,
    所述预设条件包括:所述当前的定位信号的第一精度值小于第一预设精度阈值。
  48. 如权利要求46所述的移动物体,其特征在于,其中,
    所述预设条件包括:所述第一位置信息和所述第二位置信息之间的差值大于预设阈值。
  49. 如权利要求46所述的移动物体,其特征在于,所述参考定位信号的数量为至少两个,所述移动物体包括:
    确定子模块,用于根据至少两个的参考定位信号的第二位置信息确定所述移动物体的运行轨迹信息并作为第一运行轨迹信息;
    补偿子模块,用于根据所述第一运行轨迹信息对所述当前定位信号的第一位置信息进行补偿。
  50. 如权利要求49所述的移动物体,其特征在于,所述补偿子模块,具体用于:
    根据所述第一运行轨迹信息确定所述当前定位信号的目标位置;
    直接将所述当前定位信号的第一位置信息对应的位置,调整为所述目标位置。
  51. 如权利要求49或50所述的移动物体,其特征在于,所述移动物体还包括:
    第二信号获取模块,用于获取在所述当前定位信号后续所采集的第二定位信号;
    第二确定模块,用于确定所述第二定位信号的第二精度值,并确定所述补偿后的当前定位信号和所述第二定位信号之间的运行轨迹信息并作为第二运行轨迹信息;
    所述补偿模块,还用于在所述第二精度值大于或者等于第二预设精度阈值 时,对所述第一运行轨迹信息和所述第二运行轨迹信息进行平滑滤波处理,在所述第二精度值小于所述第二预设精度阈值时,根据所述第一运行轨迹信息对所述第二运行轨迹信息进行更新。
  52. 根据权利要求30所述的移动物体,其特征在于,所述移动物体还包括:
    第一位置获取模块,用于从接收卫星信号的第一天线获取所述第一天线的第一位置数据,所述第一天线设置在所述移动物体上;
    第二位置获取模块,用于从接收卫星信号的第二天线获取所述第二天线的第二位置数据,所述第二天线设置在所述移动物体上,且所述第一天线与所述第二天线的连线方向与所述移动物体的朝向之间具有预定角度;以及
    方向确定模块,用于基于所述第一位置数据、所述第二位置数据和所述预定角度确定所述移动物体的朝向。
  53. 根据权利要求52所述的移动物体,其特征在于,所述第一天线设置在所述移动物体的机身前部,且所述第二天线设置在所述移动物体的机身后部。
  54. 根据权利要求52所述的移动物体,其特征在于,所述第一天线和所述第二天线均设置在所述移动物体的机身的中轴线上。
  55. 根据权利要求52所述的移动物体,其特征在于,通过卫星定位系统结合惯性导航装置获取所述天线的位置数据。
  56. 根据权利要求52所述的移动物体,其特征在于,所述方向确定模块用于结合角度传感器确定所述移动物体的朝向。
  57. 根据权利要求56所述的移动物体,其特征在于,进一步包括:
    信号强度判定模块,用于确定所述卫星信号的信号强度是否小于预定阈值;和所述方向确定模块用于响应于所述卫星信号的信号强度小于预定阈值,结合所述角度传感器确定所述移动物体的朝向。
  58. 根据权利要求56所述的移动物体,其特征在于,其中,所述角度传感器包括罗盘、或陀螺仪。
  59. 一种自动工作系统,其特征在于,包括:
    如权利要求30到58中任意一项所述的移动物体,在限定的工作区域内移动和工作。
  60. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,当所述计算机程序指令被计算装置执行时,可操作来执行如权利要求1到29中任意一项所述的移动物体的定位方法。
  61. 一种计算机程序产品,当所述计算机程序产品中的指令由处理器执行时,执行如权利要求1到29中任意一项所述的移动物体的定位方法。
  62. 一种电子设备,包括:
    存储器,用于存储计算机可执行指令;和
    处理器,用于执行所述存储器存储的计算机可执行指令,以执行如权利要求1到29中任意一项所述的移动物体的定位方法。
PCT/CN2018/088518 2017-05-26 2018-05-25 移动物体及其定位方法、自动工作系统、存储介质 WO2018214977A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18806939.7A EP3591421A4 (en) 2017-05-26 2018-05-25 MOBILE OBJECT AND CORRESPONDING POSITIONING PROCESS, AUTOMATED WORK SYSTEM AND INFORMATION SUPPORT
CN201880002313.7A CN109313253A (zh) 2017-05-26 2018-05-25 移动物体及其定位方法、自动工作系统、存储介质
US16/612,596 US11378979B2 (en) 2017-05-26 2018-05-25 Moving object and positioning method therefor, automated working system, and storage medium

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201710386643.8 2017-05-26
CN201710386643 2017-05-26
CN201810163178.6A CN110197519A (zh) 2018-02-26 2018-02-26 地图生成过程中的信号补偿方法、装置及存储介质
CN201810163178.6 2018-02-26
CN201810173597.8A CN110221330A (zh) 2018-03-02 2018-03-02 自移动设备及其方向确定方法、自动工作系统
CN201810173597.8 2018-03-02

Publications (1)

Publication Number Publication Date
WO2018214977A1 true WO2018214977A1 (zh) 2018-11-29

Family

ID=64396267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088518 WO2018214977A1 (zh) 2017-05-26 2018-05-25 移动物体及其定位方法、自动工作系统、存储介质

Country Status (4)

Country Link
US (1) US11378979B2 (zh)
EP (1) EP3591421A4 (zh)
CN (1) CN109313253A (zh)
WO (1) WO2018214977A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112578780A (zh) * 2019-09-29 2021-03-30 苏州宝时得电动工具有限公司 自移动设备及其控制方法、自动工作系统
CN112697133A (zh) * 2020-12-23 2021-04-23 南京苏美达智能技术有限公司 一种自行走设备的地图构建和定位方法
CN112702693A (zh) * 2020-12-23 2021-04-23 南京苏美达智能技术有限公司 一种自行走设备的地图构建方法及定位方法
CN113534826A (zh) * 2020-04-15 2021-10-22 苏州宝时得电动工具有限公司 自移动设备的姿态控制方法、装置及存储介质
CN113678083A (zh) * 2019-05-24 2021-11-19 株式会社尼罗沃克 产业机械系统、产业机械、管制装置、产业机械系统的控制方法以及产业机械系统的控制程序
EP3761142B1 (en) * 2019-07-02 2022-08-31 Stiga S.p.A. in breve anche St. S.p.A. Mobile device, method for estimating the uncertainty in the position of such a mobile device and method for estimating the orientation of such a mobile device
US20220408628A1 (en) * 2019-06-20 2022-12-29 Yanmar Power Technology Co., Ltd. Work Vehicle

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11334082B2 (en) * 2018-08-08 2022-05-17 The Toro Company Autonomous machine navigation and training using vision system
DE102019111315A1 (de) * 2019-05-02 2020-11-05 Horsch Leeb Application Systems Gmbh Autonome landwirtschaftliche Arbeitsmaschine und Verfahren zu deren Betrieb
CN112230256B (zh) * 2019-07-15 2024-04-09 苏州宝时得电动工具有限公司 自主机器人及其定位校准方法、装置和存储介质
GB2580991B (en) * 2019-07-22 2021-05-05 Kingdom Tech Ltd Robotic lawn mower control
CN112484710B (zh) * 2019-09-11 2023-05-26 杭州海康微影传感科技有限公司 目标定位方法、装置及设备、存储介质
CN114375676B (zh) * 2020-10-16 2023-04-21 南京泉峰科技有限公司 自移动设备及其控制方法和自移动工作系统
JP7409330B2 (ja) * 2021-01-28 2024-01-09 トヨタ自動車株式会社 自己位置推定精度検証方法、自己位置推定システム
US20220305658A1 (en) * 2021-03-29 2022-09-29 Husqvarna Ab Operation for a Robotic Work Tool
CN113475215B (zh) * 2021-06-19 2022-09-20 北京正兴鸿业金属材料有限公司 利用激光测距和定位控制的无人剪草机
CN113820658A (zh) * 2021-08-18 2021-12-21 上海闻泰电子科技有限公司 无线定位方法、装置、电子设备及存储介质
CN115309167B (zh) * 2022-09-16 2023-08-01 未岚大陆(北京)科技有限公司 自主移动设备及其控制方法和计算机可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030197638A1 (en) * 2002-04-19 2003-10-23 Enuvis, Inc. Compensation for frequency adjustment in mobile communication-positioning device with shared oscillator
US7266098B2 (en) * 2003-10-09 2007-09-04 Hitachi, Ltd. Wireless position measurement method and wireless position measurement system
CN101435861A (zh) * 2008-11-14 2009-05-20 深圳市普众通信技术有限公司 弱信号搜星环境下的gps信号处理方法
US20160363663A1 (en) * 2015-06-15 2016-12-15 Humatics Corporation High precision time of flight measurement system for industrial automation

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5548516A (en) * 1989-12-11 1996-08-20 Caterpillar Inc. Multi-tasked navigation system and method for an autonomous land based vehicle
US5490073A (en) * 1993-04-05 1996-02-06 Caterpillar Inc. Differential system and method for a satellite based navigation
JPH07230315A (ja) * 1994-02-16 1995-08-29 Fuji Heavy Ind Ltd 自律走行車の走行制御装置
JP3467136B2 (ja) * 1995-11-07 2003-11-17 富士重工業株式会社 自律走行車の走行制御装置
JP2000029521A (ja) * 1998-07-08 2000-01-28 Fuji Heavy Ind Ltd 自律走行方法及び自律走行車
JP2000029517A (ja) 1998-07-10 2000-01-28 Fuji Heavy Ind Ltd 自律走行車の走行制御装置
CN104137632B (zh) * 2012-02-29 2018-10-26 英特尔公司 基于社区校正和轨迹检测的位置偏差校正
CN106154296A (zh) * 2015-06-26 2016-11-23 安徽华米信息科技有限公司 一种路径轨迹的调整方法及装置
CN105467419A (zh) * 2015-12-31 2016-04-06 Tcl集团股份有限公司 定位方法及装置
CN106370182A (zh) * 2016-08-31 2017-02-01 北斗时空信息技术(北京)有限公司 一种个人组合导航方法
CN106338993A (zh) * 2016-10-11 2017-01-18 北京京东尚科信息技术有限公司 无人配送车以及无人配送车控制方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030197638A1 (en) * 2002-04-19 2003-10-23 Enuvis, Inc. Compensation for frequency adjustment in mobile communication-positioning device with shared oscillator
US7266098B2 (en) * 2003-10-09 2007-09-04 Hitachi, Ltd. Wireless position measurement method and wireless position measurement system
CN101435861A (zh) * 2008-11-14 2009-05-20 深圳市普众通信技术有限公司 弱信号搜星环境下的gps信号处理方法
US20160363663A1 (en) * 2015-06-15 2016-12-15 Humatics Corporation High precision time of flight measurement system for industrial automation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3591421A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113678083A (zh) * 2019-05-24 2021-11-19 株式会社尼罗沃克 产业机械系统、产业机械、管制装置、产业机械系统的控制方法以及产业机械系统的控制程序
CN113678083B (zh) * 2019-05-24 2024-05-21 株式会社尼罗沃克 产业机械系统、管制装置、产业机械系统的控制方法以及计算机可读的记录介质
US20220408628A1 (en) * 2019-06-20 2022-12-29 Yanmar Power Technology Co., Ltd. Work Vehicle
EP3987900A4 (en) * 2019-06-20 2023-06-21 Yanmar Power Technology Co., Ltd. COMMERCIAL VEHICLE
EP3761142B1 (en) * 2019-07-02 2022-08-31 Stiga S.p.A. in breve anche St. S.p.A. Mobile device, method for estimating the uncertainty in the position of such a mobile device and method for estimating the orientation of such a mobile device
CN112578780A (zh) * 2019-09-29 2021-03-30 苏州宝时得电动工具有限公司 自移动设备及其控制方法、自动工作系统
CN113534826A (zh) * 2020-04-15 2021-10-22 苏州宝时得电动工具有限公司 自移动设备的姿态控制方法、装置及存储介质
CN113534826B (zh) * 2020-04-15 2024-02-23 苏州宝时得电动工具有限公司 自移动设备的姿态控制方法、装置及存储介质
CN112697133A (zh) * 2020-12-23 2021-04-23 南京苏美达智能技术有限公司 一种自行走设备的地图构建和定位方法
CN112702693A (zh) * 2020-12-23 2021-04-23 南京苏美达智能技术有限公司 一种自行走设备的地图构建方法及定位方法
CN112697133B (zh) * 2020-12-23 2023-09-26 南京苏美达智能技术有限公司 一种自行走设备的地图构建和定位方法

Also Published As

Publication number Publication date
EP3591421A4 (en) 2020-12-02
US20210157334A1 (en) 2021-05-27
CN109313253A (zh) 2019-02-05
US11378979B2 (en) 2022-07-05
EP3591421A1 (en) 2020-01-08

Similar Documents

Publication Publication Date Title
WO2018214977A1 (zh) 移动物体及其定位方法、自动工作系统、存储介质
US11841710B2 (en) Automatic working system, self-moving device, and methods for controlling same
CN108226965B (zh) 自移动设备的定位故障处理方法、装置和电子设备
US10959371B2 (en) Automatic working system, self-moving device and control method thereof
US20220075376A1 (en) Returning method of self-moving device, self-moving device, storage medium, and server
US11076529B2 (en) Intelligent mowing system
WO2021058032A1 (zh) 地图建立方法、自移动设备、自动工作系统
US20200191973A1 (en) Navigation for a Robotic Work Tool
AU2019210641B2 (en) Lawn mower robot, system of lawn mower robot and control method of lawn mower robot system
US10136576B2 (en) Navigation for a robotic working tool
KR20190064252A (ko) 이동 로봇 및 그 제어방법
WO2021058030A1 (zh) 自移动设备及其控制方法、自动工作系统
EP4020112B1 (en) Robotic mower and control method thereof
CN113899376A (zh) 自移动设备地图生成方法、系统和自动工作系统
CN116295357A (zh) 地图更新方法、装置、自移动设备及计算机可读存储介质
CN114545916A (zh) 对象检测系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18806939

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018806939

Country of ref document: EP

Effective date: 20190930

NENP Non-entry into the national phase

Ref country code: DE