WO2017148191A1 - 一种石膏板淀粉添加控制的方法及其系统 - Google Patents

一种石膏板淀粉添加控制的方法及其系统 Download PDF

Info

Publication number
WO2017148191A1
WO2017148191A1 PCT/CN2016/107846 CN2016107846W WO2017148191A1 WO 2017148191 A1 WO2017148191 A1 WO 2017148191A1 CN 2016107846 W CN2016107846 W CN 2016107846W WO 2017148191 A1 WO2017148191 A1 WO 2017148191A1
Authority
WO
WIPO (PCT)
Prior art keywords
starch
flow rate
control
starch solution
concentration
Prior art date
Application number
PCT/CN2016/107846
Other languages
English (en)
French (fr)
Inventor
杨小东
杨正波
张羽飞
Original Assignee
北新集团建材股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北新集团建材股份有限公司 filed Critical 北新集团建材股份有限公司
Publication of WO2017148191A1 publication Critical patent/WO2017148191A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/51Methods thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/53Mixing liquids with solids using driven stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/90Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with paddles or arms 
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/714Feed mechanisms for feeding predetermined amounts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/80Forming a predetermined ratio of the substances to be mixed
    • B01F35/83Forming a predetermined ratio of the substances to be mixed by controlling the ratio of two or more flows, e.g. using flow sensing or flow controlling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/80Forming a predetermined ratio of the substances to be mixed
    • B01F35/83Forming a predetermined ratio of the substances to be mixed by controlling the ratio of two or more flows, e.g. using flow sensing or flow controlling devices
    • B01F35/833Flow control by valves, e.g. opening intermittently
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/28Mixing cement, mortar, clay, plaster or concrete ingredients

Definitions

  • This application relates to, but is not limited to, solid material addition control techniques.
  • the existing addition method of starch is direct addition.
  • the addition amount of starch is generally 80kg/h to 150kg/h, and the average amount is about 40g per square meter of product. ⁇ 60g.
  • the inventors of the present application found that the direct addition of starch makes the distribution of starch in the slurry uneven, resulting in unstable bonding of the facing paper, low product quality, and increased production cost.
  • the amount of starch added in the molding process will directly affect the adhesion of the protective paper, and the bonding of the protective paper directly affects the key parameters such as the strength of the gypsum board. Therefore, the amount of starch added and the way of adding it are controlled. It has a crucial impact on the molding stage and the quality of the final gypsum board. At the same time, the amount of starch added is the largest compared to other additives produced by gypsum board. Therefore, in the case of strengthening the bonding of the facing paper, the amount of starch added in the production of gypsum board is reduced, and the weight of the gypsum board is reduced. It is beneficial to reduce production costs.
  • the application provides a method and system for controlling the addition of gypsum board starch, which can make the distribution of starch in the slurry more uniform, improve the product quality of the gypsum board, and reduce the amount of starch, thereby reducing the production cost.
  • An embodiment of the invention provides a method for controlling the addition of gypsum board starch, the method comprising:
  • the starch solution is mixed with clean water, and then injected into a mixer to mix with the slurry.
  • the premixing the starch with the clean water may include: stirring the added starch and the water in the container.
  • the premixing of the starch and the water can be automatically controlled as follows:
  • the liquid level and concentration of the starch solution are automatically controlled by adjusting the flow rate of the clear water and the flow rate of the starch, so that the liquid level and concentration of the starch solution are kept within the respective set control ranges.
  • the automatic control of the liquid level and concentration of the starch solution by adjusting the flow rate of fresh water and the flow rate of starch may include:
  • the automatic control may include:
  • the ratio of the starch solution flow rate to the clear water flow rate is controlled, and the starch solution flow rate is dominant, and the starch flow rate is the secondary ratio control.
  • the product of the detected value of the flow rate of the starch solution and the set second ratio is taken as a given value, and the detected value of the starch flow rate is a feedback value, and the starch flow rate is closed-loop controlled.
  • the automatic control may further include:
  • Disconnecting the flow rate of the starch solution and controlling the ratio of the starch flow rate to the secondary ratio, and controlling the ratio of the clear water flow rate to the starch flow rate as the secondary ratio, and the ratio of the clear water flow rate to the starch flow rate as the secondary ratio control includes: The product of the detected value of the clear water flow rate and the set third ratio is used as a given value, and the detected value of the starch flow rate is a feedback value, and the starch flow rate is closed-loop controlled.
  • the automatic control may further include:
  • the concentration of the starch solution exceeds the set control range and the liquid level remains within the set control range, maintaining the ratio of the flow rate of the starch solution to the main flow and the flow rate of the clean water is controlled, and the starch solution is disconnected.
  • the flow rate is dominated, the starch flow rate is a sub-ratio control, and the cascade control of the concentration of the starch solution and the starch flow rate is performed, and the cascade control may include:
  • the output of the concentration controller used for the outer loop control is a given value, and the detected value of the starch flow rate is a feedback value, and the starch flow rate is subjected to inner loop closed-loop control.
  • the clean water may be added to the container through a pipe, and the flow rate of the clean water is adjusted by controlling an opening degree of a control valve on the pipe;
  • the starch may be added to the container by a starch weighing device and the flow rate of the starch may be adjusted by controlling the weight of the starch delivered by the starch weighing device per unit time.
  • the starch may be used in an amount of from 30 g to 50 g per square meter of gypsum board product.
  • Another aspect of the present invention provides a gypsum board starch addition control system, and the paste board starch addition control system comprises:
  • a starch weighing transfer device for weighing and delivering starch into a container
  • a clear water transfer device for delivering clean water to the container
  • a densitometer for monitoring the density of the starch solution formed by mixing the starch and the clean water, and then calculating the concentration of the starch solution in the container by a controller
  • a level gauge for monitoring the level of the starch solution in the container
  • a controller for automatically controlling the liquid level and concentration of the starch solution by adjusting the flow rate of fresh water and the flow rate of the starch, so that the liquid level and concentration of the starch solution are kept within the respective control ranges .
  • the controller is configured to perform the automatic control, and the automatic control may include:
  • the closed loop automatic control of the liquid level of the starch solution is realized by adjusting the flow rate of the clean water
  • the controller can include:
  • a judging module configured to determine whether the liquid level and concentration of the starch solution are within respective control ranges
  • the first control module is configured to control the ratio of the flow rate of the starch solution to the main flow of the starch solution and the flow rate of the clear water flow when the liquid level and the concentration of the starch solution are kept within the respective control ranges, and the flow rate of the starch solution is mainly Starch flow is a secondary ratio control, including:
  • the product of the detected value of the flow rate of the starch solution and the set second ratio is taken as a given value, and the detected value of the starch flow rate is a feedback value, and the starch flow rate is closed-loop controlled.
  • the controller may further include:
  • the second control module is configured to control when the liquid level of the starch solution exceeds a set control range by:
  • the ratio control may include: taking the product of the detected value of the clean water flow rate and the set third ratio as a given value, and performing closed-loop control on the starch flow rate by using the detected value of the starch flow rate as a feedback value.
  • the controller may further include:
  • a third control module configured to maintain ratio control of the flow rate of the starch solution and the flow rate of the clean water flow when the concentration of the starch solution exceeds a set control range while the liquid level remains within the set control range Disconnecting the starch solution flow rate and the starch flow rate as a sub-ratio control, and changing to the cascading control of the concentration of the starch solution and the starch flow rate, the cascading control may include:
  • the output of the concentration controller used for the outer loop control is a given value, and the detected value of the starch flow rate is a feedback value, and the starch flow rate is subjected to inner loop closed-loop control.
  • the fresh water transfer device may be a pipe, the pipe may include a control valve for regulating a flow rate of the clean water by controlling an opening degree of a control valve on the pipe;
  • the flow rate of the starch is adjusted by controlling the weight of the starch delivered by the starch weighing device per unit time.
  • the starch may be used in an amount of from 30 g to 50 g per square meter of gypsum board product.
  • the embodiment of the invention comprises adding starch and fresh water to the container, premixing the starch and the clean water, and outputting the premixed starch solution from the container; mixing the starch solution with the clean water, and injecting into the mixer and mixing the slurry.
  • the method and system for controlling the addition of gypsum board starch according to the embodiment of the present invention is to realize the mixing of starch and water in advance, thereby enhancing the dispersing ability of starch in the slurry, and the starch distribution is more uniform, so the product quality of the gypsum board is also obtained. Upgrade. At the same time, the amount of starch is reduced, reducing production costs.
  • FIG. 1 is a schematic view showing the principle of a method for controlling the addition of a gypsum board starch according to an embodiment of the present invention
  • FIG. 2 is a schematic flow chart of a gypsum board starch addition control method according to an embodiment of the present invention
  • FIG. 3 is a schematic structural view of ratio control in a gypsum board starch addition control method according to an embodiment of the present invention
  • FIG. 4 is a schematic structural view showing liquid level control in a gypsum board starch addition control method according to an embodiment of the present invention
  • FIG. 5 is a schematic structural view of concentration control in a method for controlling starch addition in a gypsum board according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a method for controlling the addition of a gypsum board starch according to an embodiment of the present invention.
  • a method for controlling the addition of gypsum board starch according to an embodiment of the present invention includes:
  • the starch solution is mixed with clean water, and then injected into a mixer to mix with the slurry.
  • the premixing the starch with the fresh water comprises: stirring the added starch and the fresh water in the container.
  • the premixing of the starch and the water is carried out by the following automatic control:
  • the liquid level and concentration of the starch solution are automatically controlled by adjusting the flow rate of the clear water and the flow rate of the starch, so that the liquid level and concentration of the starch solution are kept within the respective set control ranges.
  • the automatic control of the liquid level and concentration of the starch solution by adjusting the flow rate of fresh water and the flow rate of starch includes:
  • the automatic control includes:
  • the ratio of the starch solution flow rate to the clear water flow rate is controlled, and the starch solution flow rate is dominant, and the starch flow rate is the secondary ratio control.
  • the product of the detected value of the flow rate of the starch solution and the set second ratio is taken as a given value, and the detected value of the starch flow rate is a feedback value, and the starch flow rate is closed-loop controlled.
  • the automatic control further includes:
  • Disconnecting the flow rate of the starch solution and controlling the ratio of the starch flow rate to the secondary ratio, and controlling the ratio of the clear water flow rate to the starch flow rate as the secondary ratio, and the ratio of the clear water flow rate to the starch flow rate as the secondary ratio control includes: The product of the detected value of the clear water flow rate and the set third ratio is used as a given value, and the detected value of the starch flow rate is a feedback value, and the starch flow rate is closed-loop controlled.
  • the automatic control further includes:
  • the concentration of the starch solution exceeds the set control range and the liquid level remains within the set control range, maintaining the ratio of the flow rate of the starch solution to the main flow and the flow rate of the clean water is controlled, and the starch solution is disconnected.
  • the flow rate is dominated, and the starch flow rate is a sub-ratio control, which is changed to a cascade control of the concentration of the starch solution and the starch flow rate, and the cascade control includes:
  • the output of the concentration controller used for the outer loop control is a given value, and the detected value of the starch flow rate is a feedback value, and the starch flow rate is subjected to inner loop closed-loop control.
  • the clean water is introduced into the container through a pipe, and the flow rate of the clean water is adjusted by controlling an opening degree of a control valve on the pipe;
  • the starch is added to the container by a starch weighing device and the flow rate of the starch is adjusted by controlling the weight of the starch delivered by the starch weighing device per unit time.
  • the starch is used in an amount of from 30 g to 50 g per square meter of gypsum board product.
  • Another aspect of the embodiment of the present invention provides a gypsum board starch addition control system, and the paste board starch addition control system comprises:
  • a starch weighing transfer device for weighing and delivering starch into a container
  • a clear water transfer device for delivering clean water to the container
  • a densitometer for monitoring the density of the starch solution formed by mixing the starch and the clean water, and then calculating the concentration of the starch solution in the container by a controller
  • a level gauge for monitoring the level of the starch solution in the container
  • a controller for automatically controlling the liquid level and concentration of the starch solution by adjusting the flow rate of fresh water and the flow rate of the starch, so that the liquid level and concentration of the starch solution are kept within the respective control ranges .
  • the controller performing the automatic control includes:
  • the controller includes:
  • a judging module configured to determine whether the liquid level and concentration of the starch solution are within respective control ranges
  • a first control module for maintaining the liquid level and concentration of the starch solution in respective controls within the range, the starch solution flow rate is dominant, the clean water flow rate is the secondary ratio control, and the starch solution flow rate is dominant, and the starch flow rate is the secondary ratio control, including:
  • the product of the detected value of the flow rate of the starch solution and the set second ratio is taken as a given value, and the detected value of the starch flow rate is a feedback value, and the starch flow rate is closed-loop controlled.
  • the controller further includes:
  • the second control module is configured to control when the liquid level of the starch solution exceeds a set control range by:
  • Disconnecting the flow rate of the starch solution and controlling the ratio of the starch flow rate to the secondary ratio, and controlling the ratio of the clear water flow rate to the starch flow rate as the secondary ratio, and the ratio of the clear water flow rate to the starch flow rate as the secondary ratio control includes: The product of the detected value of the clear water flow rate and the set third ratio is used as a given value, and the detected value of the starch flow rate is a feedback value, and the starch flow rate is closed-loop controlled.
  • the controller further includes:
  • a third control module configured to maintain ratio control of the flow rate of the starch solution and the flow rate of the clean water flow when the concentration of the starch solution exceeds a set control range while the liquid level remains within the set control range And disconnecting the starch solution flow rate and the starch flow rate as a sub-ratio control, performing cascading control on the concentration of the starch solution and the starch flow rate, the cascading control comprising:
  • the output of the concentration controller used for the outer loop control is a given value, and the detected value of the starch flow rate is a feedback value, and the starch flow rate is subjected to inner loop closed-loop control.
  • the fresh water transfer device is a pipe, the pipe includes a control valve, and the controller is configured to pass Controlling an opening of a control valve on the pipe to regulate the flow of the clean water;
  • the flow rate of the starch is adjusted by controlling the weight of the starch delivered by the starch weighing device per unit time.
  • the starch is used in an amount of from 30 g to 50 g per square meter of gypsum board product.
  • the method and system for controlling the addition of gypsum board starch in the embodiment of the invention are realized by mixing starch and water in advance, enhancing the dispersing ability of the starch in the slurry, and the starch distribution is more uniform, so the product quality of the gypsum board is also improved. . At the same time, the amount of starch is reduced, reducing production costs.
  • the starch to be added is stirred in a tank body with water in advance, and pre-mixing is completed to obtain a starch solution having a relatively high concentration, and the starch solution is mixed with clean water, and the mixing can be directly carried out in the pipeline, and then injected.
  • the mixer and slurry are mixed.
  • the dispersibility of the starch solution during agitation and mixing is much higher than that of starch. Therefore, the distribution of starch in the slurry is more uniform, and it is not necessary to add a large amount of starch.
  • the amount of starch in the product per square meter can be reduced to 30g to 50g, which greatly reduces the production cost; the amount of starch is reduced, and the starch distribution is more uniform, and the bonding of the protective paper will be more effective than the current stage. Better, so the quality of gypsum board products has also improved.
  • the starch scale and the control valve are respectively used to control the amount of starch and water added to the tank, and the liquid level in the tank is monitored by a liquid level gauge to ensure that the liquid level is not too high or too low, and the density meter is used.
  • the density of the starch solution is monitored, and the concentration of the starch solution in the tank is calculated to ensure the stability of the concentration of the starch solution in the tank.
  • the starch solution is mixed with the clean water after passing through the lower control valve, and then enters the mixer and the slurry is thoroughly mixed.
  • the slurry may contain other additives.
  • the embodiment of the invention can improve the quality of the gypsum board, reduce the unit cost of the gypsum board production, realize the fixed concentration mixing by the starch and the water in advance, and enhance the dispersing ability of the starch in the slurry, mainly by adjusting the starch feeding amount and the control valve.
  • the degree of opening controls the level and concentration of the starch solution in the tank while ensuring the flow rate of the starch solution.
  • the concentration of the output starch solution is maintained at a certain concentration.
  • the opening degree of the starch solution control valve is automatically set according to the production line speed.
  • the control valve of the clean water, the starch scale and the starch solution are ratio control.
  • the control valve of the clean water flowing into the tank is disconnected, and the liquid level feedback is controlled.
  • the starch scale is also disconnected from the starch solution, and is changed to the clean water control valve. Ratio control.
  • Controller It is a programmable logic controller (PLC), which is the core of system control. It can use the standby point of the PLC in the current stage to realize the control function and save costs.
  • PLC programmable logic controller
  • Starch scale The system starch scale can meet the needs, used to measure the weight of starch in unit time, the unit of measurement kg / h, by controlling the belt speed and / or belt load to control the amount of starch into the starch mixed tank.
  • the starch flow rate is the weight of the starch per unit time.
  • Density meter According to the cost and the actual application effect, the concentration meter is not directly used, but the density meter is selected to realize the function indirectly. Because the solution is a mixed solution of starch and water, the relationship between density and concentration is a function in a certain concentration range. Relational, so the concentration of the starch solution can be calculated from the density. The principle of the selected density meter is based on the differential pressure method based on the stable and accurate measurement of the distance between the two probes. Therefore, even if the static pressure is stable, the measurement accuracy can be ensured.
  • the main parameters of the density meter include: measurement accuracy up to 0.2%, measurement resolution 0.001g/cm 3 , range 0 ⁇ 3g/cm 3 , power supply 24Vdc, output signal 4mA ⁇ 20mA, etc.
  • the above parameters are in line with the requirements of the control system. .
  • Level gauge The function can be realized by using the commonly used single-flange liquid level transmitter. The main parameters are: measurement accuracy 0.1%, range 0 ⁇ 3m, power supply 24Vdc, output signal 4mA ⁇ 20mA.
  • the tank design needs to meet the demand of starch dosage.
  • the maximum dosage of starch is 50g/m 2 , the production line speed is 60m/min, and the dosage per minute is 3kg.
  • the tank body can be, for example, a cylindrical tank. The bottom surface has a diameter of 0.7m and a height of 0.8m.
  • the maximum capacity of the tank is 300L, the working capacity is 200L, the solution concentration is 15%, and the working capacity contains 30kg of starch. In the case of full working capacity, the addition is not continued.
  • the solution can continue to provide starch for ten minutes, and below the minimum level, it can still provide two minutes of starch usage.
  • a stirring impeller is installed in the lower part of the tank, and the stirring motor power is 5.5 kW.
  • Actuator For the control valve, the electric control valve can be selected specifically, and the solenoid valve is more specifically selected.
  • the current signal of 4 mA to 20 mA can be accepted, and the solenoid valve is opened by 0 to 100% according to the signal.
  • the solenoid valve can also feed back the position signal, and the feedback signal is a current output of 4 mA to 20 mA.
  • a system starch scale can be used as a starch weighing transfer device in a gypsum board starch addition control system, and other system weighing and conveying starch function replacement system starch scales can also be used.
  • the combined use of the densitometer and the controller enables real-time monitoring and adjustment of the concentration of the starch solution in the container, and for those skilled in the art, equipment capable of achieving the above functions, such as a concentration meter, can also be used as a replacement element for the gypsum board.
  • Starch addition control system enables real-time monitoring and adjustment of the concentration of the starch solution in the container, and for those skilled in the art, equipment capable of achieving the above functions, such as a concentration meter, can also be used as a replacement element for the gypsum board.
  • Starch addition control system Starch addition control system.
  • the embodiment of the invention comprises three flows of starch flow rate, clear water flow rate, starch solution flow rate, starch solution concentration and starch solution liquid level. Therefore, the system is a multiple input multiple output system.
  • the coupling relationship of the multiple input multiple output system is briefly analyzed below.
  • the liquid level and concentration in the tank are affected by three flow rates, namely starch flow rate Q 1 , clean water flow rate Q 2 , and starch solution flow rate Q, wherein the starch solution flow rate Q is set according to the production line speed, in order not to affect For normal production, it is considered that the flow rate Q of the starch solution is not adjustable.
  • the relative gain value ⁇ 11 is a ratio of p 11 and q 11 , and ⁇ 11 is calculated as:
  • the relative gain matrix of the system can be obtained as
  • the concentration C of the starch solution is relatively small (less than 20%)
  • the coupling of the two channels is weak, that is, the concentration of the starch solution C is controlled by U- precipitate , and the U- water is controlled to control the flow rate Q of the starch solution.
  • FIG. 2 is a schematic flow chart of a method for controlling the addition of a gypsum board starch according to an embodiment of the present invention.
  • the system first reads the liquid level of the starch solution to determine whether the liquid level is within the specified range. If it is out of range, the liquid level control is started, and the liquid level control liquid level is stabilized and returned to the operation; if the liquid level is normal , read the starch solution concentration data. Similarly, if the concentration exceeds the specified range, the concentration control is started, and the concentration control concentration is stabilized, and the operation is returned; when the liquid level and the concentration are both normal, the ratio control is started. Under normal circumstances, the system concentration and liquid level are within the allowable range, so the system is generally in the ratio control of the starch solution.
  • the liquid level is preferred because if the liquid level is too low, it will directly affect the normal operation of the production. If the liquid level is too high, liquid spillage may cause environmental pollution and equipment damage.
  • the concentration is considered, because the fluctuations in the concentration are generally small, and the fluctuation of the concentration does not cause the production to stop running, etc., which may cause the quality of the sheet to be unstable in a short time, but the stability can be quickly restored after the adjustment, therefore, the above is used. The control process can achieve good results.
  • the starch solution ratio is controlled as follows:
  • FIG 3 is a schematic structural view of a ratio control in a gypsum board starch addition control method according to an embodiment of the present invention, wherein the controller controls the control valve 1 and the control valve 2 to control the main flow and the secondary flow,
  • the transmitter can feed back the output of the primary and secondary objects. Specifically, the transmitter receives a flow signal from a flow detector such as a flow sensor and converts it into an electrical signal for feedback to the controller.
  • the double closed-loop ratio control system shown in Fig. 3 is a starch solution as the main object, the flow rate is the main flow, the clean water is the secondary object, the flow rate is the secondary flow, and K 1 is the actual proportioning coefficient.
  • the starch solution can be the main object, the flow rate of the starch solution is the main flow, the starch is the secondary object, the starch flow is the secondary flow, and the K 2 is used as the actual proportioning coefficient to realize the closed-loop control of the starch flow.
  • the detected value of the flow rate of the starch solution the value after the change of K 2 is taken as the given value of the closed loop control, and the actuator of the closed loop control may be the frequency converter of the conveying motor in the starch scale or the starch conveying system to realize the flow rate of the starch
  • the adjustment signal of the closed loop control may be a speed measurement signal to the transmitting motor.
  • the main flow control loop performs fixed value control to make the main flow set value stable, and the auxiliary flow control loop also adjusts with the main flow fluctuation.
  • the secondary flow control loop performs fixed value control, so that the secondary flow is always stable near the fixed value, and the primary flow control loop is not affected by the secondary flow fluctuation.
  • the main flow and the secondary flow fluctuation caused by the disturbance are respectively matched with the set values by the respective control loops, thereby ensuring that the ratio of the main and auxiliary material flows is constant.
  • the main flow control loop adjusts the main flow detection value to match the set value; meanwhile, according to the ratio of the main flow to the secondary flow and the new main flow reference value, the system gives the secondary flow control loop.
  • the input value When the main flow reference value is adjusted, the main flow control loop adjusts the main flow detection value to match the set value; meanwhile, according to the ratio of the main flow to the secondary flow and the new main flow reference value, the system gives the secondary flow control loop.
  • the input value is the input value.
  • the detection value of the sub-flow rate is matched with the input value by the adjustment control of the sub-flow control circuit, that is, the detected value of the sub-flow rate corresponds to the value after the main flow rate is changed, and the ratio of the main flow rate and the sub-flow rate is maintained.
  • main flow control loop is a certain value control system
  • secondary flow control loop is a follow-up control system
  • the fixed value control of the main flow overcomes the influence of interference on the main flow, so the main flow changes smoothly, the auxiliary flow will also be stable, and the total material flow of the system is stable, which better meets the production process requirements.
  • the main flow control loop changes the output value of the main flow to the new set value by adjusting the control, and the sub-flow will also change with the main flow according to the given ratio.
  • the main flow and the secondary flow can be adjusted synchronously as long as the given value of the primary flow control loop controller is changed, and the ratio of the primary flow to the secondary flow is maintained.
  • the amount of starch required in the embodiment of the present invention depends on the production process.
  • concentration of the starch solution, the starch flow rate and the flow rate of the clear water and the flow rate of the starch solution are controlled, so as to ensure the ratio of the starch flow rate and the clear water flow rate, and ensure that the concentration of the starch solution in the tank body is maintained at a stable level; Because of the ratio control with the flow rate of the starch solution, the starch flow rate and the clean water flow rate always follow the change, which ensures the stability of the liquid level in the tank.
  • the controller of the main/secondary flow control loop in FIG. 3 can be an industrial computer or a PLC, and there is no limitation thereto.
  • the ratio control of the clear water and the starch solution is taken as an example in FIG. 3, and the advantage is that on the one hand, the solution ratio can be stabilized, and on the other hand, the stability of each flow rate can be ensured.
  • the ratio control is a dynamic ratio. When the main flow changes, the secondary flow will follow the change.
  • the process ratio coefficient K Q 2 /Q, where Q 2 is the clean water flow rate and Q is the starch solution flow rate.
  • the influence of the measuring instrument should be considered. Taking the selected 4 mA to 20 mA meter as an example, the current current I is calculated as follows:
  • Q is the flow rate of the starch solution and Q max is the maximum flow rate of the starch solution.
  • Q 2 is the clear water flow rate
  • Q 2max is the clear water maximum flow rate. This gives the actual ratio K 1 required for operation in the program. Then the control current I 2 of the fresh water flow is
  • I 2 K 1 ⁇ (I-4) + 4.
  • the level control is as follows:
  • FIG. 4 is a schematic structural view of liquid level control in a gypsum board starch addition control method according to an embodiment of the present invention.
  • the control liquid level fluctuates, the control liquid level is within the specified range, the controlled variable is the tank liquid level, and the manipulated variable is the clean water flow.
  • the system is simplified into a sink system with simple structure and optional Single loop closed loop control.
  • the ratio of the clear water flow rate to the starch solution is controlled.
  • the starch flow has a limited influence on the liquid level
  • the clear water controller will reduce the flow rate of the clean water.
  • the concentration of the solution will increase; when the liquid level is too low, the concentration of the same starch solution will decrease.
  • the above mentioned level control takes precedence over concentration control, but controlling the concentration of the process is also an undesirable result. Therefore, the ratio of the starch flow rate to the flow rate of the starch solution is controlled, and the ratio of the clear water flow rate is controlled. This ensures that the water and the starch are always in a proportioned state, and the concentration of the starch solution is little affected, so that the liquid is achieved.
  • the control of the bit also has no effect on the concentration.
  • the concentration control is as follows:
  • FIG. 5 is a schematic structural diagram of concentration control in a gypsum board starch addition control method according to an embodiment of the present invention, and the concentration control process is sequentially implemented by a main controller, a sub controller, a starch scale, a sub-object, and a main object.
  • the main controller is a concentration controller
  • the sub controller is a starch flow controller
  • the output value of the concentration controller is taken as a given value of the starch flow controller
  • the transmitter 1 feeds back the output of the sub-object, the transmitter 2 Feedback the output of the main object. details as follows:
  • the concentration control mentioned in the liquid level control section does not affect the concentration control
  • the concentration control also does not affect the liquid level. Therefore, the flow of fresh water continues to be controlled by the ratio of the flow rate of the starch solution, thus ensuring the stability of the liquid level. set.
  • the flow of clear water is basically stable and is also conducive to the adjustment of the concentration of the starch solution.
  • the concentration is used as the controlled variable, but in the structure of the concentration control, the single-loop closed-loop control has the following two problems: the adjustment process of the starch scale requires a certain time. At the same time, there are certain fluctuations in the adjustment process, which will affect the concentration; at the same time, the mixing of the solution takes a certain time, so when the input changes, the output has a hysteresis. Therefore, the choice of cascade control is ideal.
  • the output value of the concentration controller is taken as the given value of the starch flow controller.
  • the two controllers have their own independent measurement inputs.
  • the concentration controller controls the given value of the starch flow controller to increase the starch flow rate. Increase, maintain the stability of the concentration; when the concentration is higher, the implementation is similar, the starch flow rate is reduced, and the concentration is maintained stable.
  • PID proportional-integral-derivative
  • the uniformity of starch distribution improves the stability of the bonding of the protective paper, the product qualification rate is increased by 0.2%, calculated at the price of 7 yuan per square meter, and the annual profit is:
  • the gypsum board starch addition control system is put into use in the 30 million square meter gypsum board production line, and the annual profit of a single production line can reach 1.62 million yuan.
  • the embodiment of the present invention realizes the premixing of the starch before entering the mixer by using the ratio control, the liquid level control and the concentration control, and at the same time, the liquid level of the starch solution in the mixing tank and the starch solution are well ensured. concentration.
  • the pre-mixing of starch and water improves the bonding effect between the facing paper and the board, reduces the production cost, and has significant economic benefits.
  • the gypsum board starch addition control method provided by the embodiment of the invention is simple and convenient to operate, and the starch and the water are mixed in advance, which can effectively control the addition of starch in the gypsum board, and enhance the dispersing ability of the starch in the slurry, so that the starch distribution is more Uniform, so the quality of the gypsum board has also improved. At the same time, the amount of starch is reduced, reducing production costs.
  • the gypsum board starch addition control system provided by the embodiment of the present invention effectively implements the gypsum board starch addition control method provided by the embodiment of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Accessories For Mixers (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)

Abstract

公开了一种石膏板淀粉添加控制的方法及系统。石膏板淀粉添加控制的方法包括:将淀粉与清水加入容器,对淀粉与清水进行预混合,从所述容器输出预混合后的淀粉溶液;将所述淀粉溶液与清水混合后,注入混合机与料浆混合。

Description

一种石膏板淀粉添加控制的方法及其系统 技术领域
本申请涉及但不限于固物料添加控制技术。
背景技术
在石膏板生产工艺中,为了提高护面纸的粘结情况,一般的做法是适当添加淀粉。
淀粉的现有添加方式为直接添加,例如在45m/min~60m/min的石膏板生产线中,淀粉的添加量一般为80kg/h~150kg/h,平均到每平米产品中,用量约为40g~60g。
发明概述
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请的发明人发现,直接添加淀粉的方式使得淀粉在料浆中的分布并不均匀,导致护面纸的粘结情况不稳定、产品质量低,增加了生产的成本。
此外,成型工艺的淀粉添加量也会直接影响护面纸的粘结好坏,而护面纸粘结好坏又直接影响石膏板的强度等关键参数,因此,淀粉添加量及添加方式的控制,对成型阶段以及最终石膏板的质量都有至关重要的影响。同时,相比石膏板生产的其他添加剂,淀粉的添加量是最大的,因此在强化护面纸粘结的情况下,降低淀粉在石膏板生产中的添加量,对于降低石膏板的单重,降低生产成本都是有益的。
本申请提供了一种石膏板淀粉添加控制的方法及其系统,可以使得淀粉在料浆中的分布更均匀,使石膏板的产品质量得到了提升,同时淀粉用量下降,降低了生产成本。
本发明实施例一方面提供一种石膏板淀粉添加控制的方法,该方法包括:
将淀粉与清水加入容器,对淀粉与清水进行预混合,从所述容器输出预混合后的淀粉溶液;以及
将所述淀粉溶液与清水混合后,注入混合机与料浆混合。
所述对淀粉与清水进行预混合可包括:在所述容器中,对加入的淀粉与清水进行搅拌。
所述对淀粉与清水进行预混合可进行以下自动控制:
通过对清水流量、淀粉流量的调节,实现对所述淀粉溶液的液位和浓度的自动控制,使得所述淀粉溶液的液位和浓度保持在各自设定的控制范围之内。
所述通过对清水流量、淀粉流量的调节,实现对所述淀粉溶液的液位和浓度的自动控制可包括:
通过对清水流量的调节,实现对所述淀粉溶液的液位的闭环自动控制;以及
通过对淀粉流量的调节,实现对所述淀粉溶液的浓度的闭环自动控制。
所述自动控制可包括:
当所述淀粉溶液的液位和浓度均保持在各自的控制范围之内时,进行淀粉溶液流量为主、清水流量为副的比值控制,及淀粉溶液流量为主、淀粉流量为副的比值控制,可包括:
根据生产线速度设定所述淀粉溶液流量的给定值,以所述淀粉溶液流量的检测值为反馈值,对所述淀粉溶液的流量进行闭环控制;
将所述淀粉溶液流量的检测值与设定的第一比值的积作为给定值,以所述清水流量的检测值为反馈值,对所述清水流量进行闭环控制;以及
将所述淀粉溶液流量的检测值与设定的第二比值的积作为给定值,以所述淀粉流量的检测值为反馈值,对所述淀粉流量进行闭环控制。
所述自动控制还可包括:
当所述淀粉溶液的液位超出设定的控制范围时,通过以下方式进行控制:
断开所述淀粉溶液流量为主、清水流量为副的比值控制;以设定的液位值为给定值,以所述容器中液体液位的检测值为反馈值,对所述清水流量进行液位控制;及
断开所述淀粉溶液流量为主、淀粉流量为副的比值控制,进行清水流量为主、淀粉流量为副的比值控制,所述清水流量为主、淀粉流量为副的比值控制包括:将所述清水流量的检测值与设定的第三比值的积作为给定值,以所述淀粉流量的检测值为反馈值,对所述淀粉流量进行闭环控制。
所述自动控制还可包括:
当所述淀粉溶液的浓度超出设定的控制范围而液位保持在设定的控制范围之内时,保持所述淀粉溶液流量为主、清水流量为副的比值控制,断开所述淀粉溶液流量为主、淀粉流量为副的比值控制,进行对所述淀粉溶液的浓度和淀粉流量的串级控制,所述串级控制可包括:
以设定的淀粉溶液的浓度值为给定值,以所述淀粉溶液的浓度的检测值为反馈值,对淀粉溶液的浓度进行外环控制;
以所述外环控制使用的浓度控制器的输出为给定值,以所述淀粉流量的检测值为反馈值,对淀粉流量进行内环闭环控制。
所述清水可通过管道加入所述容器,并通过控制所述管道上的控制阀的开度来调节所述清水的流量;并且
所述淀粉可通过淀粉称量设备加入所述容器,并通过控制所述淀粉称量设备单位时间内传送淀粉的重量来调节所述淀粉的流量。
所述淀粉在每平方米石膏板产品中的用量可以为30g至50g。
本发明实施例另一方面提供一种石膏板淀粉添加控制系统,所述膏板淀粉添加控制系统包括:
淀粉称量传送设备,用于将淀粉称量并传送到容器中;
清水传送设备,用于将清水传送到所述容器中;
密度计,用于监测由所述淀粉和所述清水混合形成的淀粉溶液的密度,进而由控制器计算得到所述容器内所述淀粉溶液的浓度;
液位计,用于监测所述容器内所述淀粉溶液的液位;以及
控制器,用于通过对清水流量、淀粉流量的调节,实现对所述淀粉溶液的液位和浓度的自动控制,使得所述淀粉溶液的液位和浓度保持在各自设定的控制范围之内。
所述控制器用于进行所述自动控制,所述自动控制可包括:
通过对清水流量的调节,实现对所述淀粉溶液的液位的闭环自动控制;
通过对淀粉流量的调节,实现对所述淀粉溶液的浓度的闭环自动控制。
所述控制器可包括:
判断模块,用于判断所述淀粉溶液的液位和浓度是否在各自的控制范围之内;
第一控制模块,用于当所述淀粉溶液的液位和浓度均保持在各自的控制范围之内时,进行淀粉溶液流量为主、清水流量为副的比值控制,及淀粉溶液流量为主、淀粉流量为副的比值控制,包括:
根据生产速度设定所述淀粉溶液流量的给定值,以所述淀粉溶液流量的检测值为反馈值,对所述淀粉溶液的流量进行闭环控制;
将所述淀粉溶液流量的检测值与设定的第一比值的积作为给定值,以所述清水流量的检测值为反馈值,对所述清水流量进行闭环控制;
将所述淀粉溶液流量的检测值与设定的第二比值的积作为给定值,以所述淀粉流量的检测值为反馈值,对所述淀粉流量进行闭环控制。
所述控制器还可包括:
第二控制模块,用于当所述淀粉溶液的液位超出设定的控制范围时,通过以下方式进行控制:
断开所述淀粉溶液流量为主、清水流量为副的比值控制;以设定的液位值为给定值,以所述容器中液体液位的检测值为反馈值,对所述清水流量进行液位控制;及
断开所述淀粉混合溶液流量为主、淀粉流量为副的比值控制,进行清水流量为主、淀粉流量为副的比值控制,所述清水流量为主、淀粉流量为副的 比值控制可包括:将所述清水流量的检测值与设定的第三比值的积作为给定值,以所述淀粉流量的检测值为反馈值,对所述淀粉流量进行闭环控制。
所述控制器还可包括:
第三控制模块,用于当所述淀粉溶液的浓度超出设定的控制范围而液位保持在设定的控制范围之内时,保持所述淀粉溶液流量为主、清水流量为副的比值控制,断开所述淀粉溶液流量为主、淀粉流量为副的比值控制,改为对所述淀粉溶液的浓度和淀粉流量的串级控制,所述串级控制可包括:
以设定的淀粉溶液的浓度值为给定值,以所述淀粉溶液的浓度的检测值为反馈值,对淀粉溶液的浓度进行外环控制;
以所述外环控制使用的浓度控制器的输出为给定值,以所述淀粉流量的检测值为反馈值,对淀粉流量进行内环闭环控制。
所述清水传送设备可以为管道,所述管道可包括控制阀,所述控制器用于通过控制所述管道上的控制阀的开度来调节所述清水的流量;并且
通过控制所述淀粉称量设备单位时间内传送淀粉的重量来调节所述淀粉的流量。
所述淀粉在每平方米石膏板产品中的用量可以为30g至50g。
本发明实施例包括将淀粉与清水加入容器,对淀粉与清水进行预混合,从所述容器输出预混合后的淀粉溶液;将所述淀粉溶液与清水混合后,注入混合机与料浆混合。由于本发明实施例的石膏板淀粉添加控制的方法及其系统是通过淀粉与水提前实现混合,增强了淀粉在料浆中的分散能力,淀粉分布更均匀,因此石膏板的产品质量也得到了提升。同时,淀粉用量下降,降低了生产成本。
本发明实施例的其它特征和优点将在随后的说明书中阐述。在阅读并理解了附图和详细描述后,可以明白其他方面。
附图简述
附图用来提供对本发明实施例的进一步理解,并且构成说明书的一部分,与下面的详细描述一起用于解释本发明实施例,并不构成对本发明实施例的 限制。
图1为本发明实施例的石膏板淀粉添加控制方法的原理示意图;
图2为本发明实施例的石膏板淀粉添加控制方法的流程示意图;
图3为本发明实施例的石膏板淀粉添加控制方法中比值控制的结构示意图;
图4为本发明实施例的石膏板淀粉添加控制方法中液位控制的结构示意图;以及
图5为本发明实施例的石膏板淀粉添加控制方法中浓度控制的结构示意图。
详细描述
以下对本发明实施例进行详细说明。应当理解的是,此处所描述的具体实施例仅用于说明和解释本申请,并不用于限制本申请。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
图1为本发明实施例的石膏板淀粉添加控制方法的原理示意图,如图1所示,本发明实施例一方面提供的一种石膏板淀粉添加控制的方法,所述方法包括:
将淀粉与清水加入容器,对淀粉与清水进行预混合,从所述容器输出预混合后的淀粉溶液;以及
将所述淀粉溶液与清水混合后,注入混合机与料浆混合。
所述对淀粉与清水进行预混合包括:在所述容器中,对加入的淀粉与清水进行搅拌。
所述对淀粉与清水进行预混合进行以下自动控制:
通过对清水流量、淀粉流量的调节,实现对所述淀粉溶液的液位和浓度的自动控制,使得所述淀粉溶液的液位和浓度保持在各自设定的控制范围之内。
所述通过对清水流量、淀粉流量的调节,实现对所述淀粉溶液的液位和浓度的自动控制包括:
通过对清水流量的调节,实现对所述淀粉溶液液位的闭环自动控制;以及
通过对淀粉流量的调节,实现对所述淀粉溶液浓度的闭环自动控制。
所述自动控制包括:
当所述淀粉溶液的液位和浓度均保持在各自的控制范围之内时,进行淀粉溶液流量为主、清水流量为副的比值控制,及淀粉溶液流量为主、淀粉流量为副的比值控制,包括:
根据生产线速度设定所述淀粉溶液流量的给定值,以所述淀粉溶液流量的检测值为反馈值,对所述淀粉溶液的流量进行闭环控制;
将所述淀粉溶液流量的检测值与设定的第一比值的积作为给定值,以所述清水流量的检测值为反馈值,对所述清水流量进行闭环控制;以及
将所述淀粉溶液流量的检测值与设定的第二比值的积作为给定值,以所述淀粉流量的检测值为反馈值,对所述淀粉流量进行闭环控制。
所述自动控制还包括:
当所述淀粉溶液的液位超出设定的控制范围时,通过以下方式进行控制:
断开所述淀粉溶液流量为主、清水流量为副的比值控制;以设定的液位值为给定值,以所述容器中液体液位的检测值为反馈值,对所述清水流量进行液位控制;及
断开所述淀粉溶液流量为主、淀粉流量为副的比值控制,进行清水流量为主、淀粉流量为副的比值控制,所述清水流量为主、淀粉流量为副的比值控制包括:将所述清水流量的检测值与设定的第三比值的积作为给定值,以所述淀粉流量的检测值为反馈值,对所述淀粉流量进行闭环控制。
所述自动控制还包括:
当所述淀粉溶液的浓度超出设定的控制范围而液位保持在设定的控制范围之内时,保持所述淀粉溶液流量为主、清水流量为副的比值控制,断开所述淀粉溶液流量为主、淀粉流量为副的比值控制,改为对所述淀粉溶液的浓度和淀粉流量的串级控制,所述串级控制包括:
以设定的淀粉溶液的浓度值为给定值,以所述淀粉溶液浓度的检测值为反馈值,对淀粉溶液的浓度进行外环控制;
以所述外环控制使用的浓度控制器的输出为给定值,以所述淀粉流量的检测值为反馈值,对淀粉流量进行内环闭环控制。
所述清水通过管道加入所述容器,并通过控制所述管道上的控制阀的开度来调节所述清水的流量;并且
所述淀粉通过淀粉称量设备加入所述容器,并通过控制所述淀粉称量设备单位时间内传送淀粉的重量来调节所述淀粉的流量。
所述淀粉在每平方米石膏板产品中的用量为30g至50g。
本发明实施例另一方面提供的一种石膏板淀粉添加控制系统,所述膏板淀粉添加控制系统包括:
淀粉称量传送设备,用于将淀粉称量并传送到容器中;
清水传送设备,用于将清水传送到所述容器中;
密度计,用于监测由所述淀粉和所述清水混合形成的淀粉溶液的密度,进而由控制器计算得到所述容器内所述淀粉溶液的浓度;
液位计,用于监测所述容器内所述淀粉溶液的液位;以及
控制器,用于通过对清水流量、淀粉流量的调节,实现对所述淀粉溶液的液位和浓度的自动控制,使得所述淀粉溶液的液位和浓度保持在各自设定的控制范围之内。
所述控制器进行所述自动控制包括:
通过对清水流量的调节,实现对所述淀粉溶液的液位的闭环自动控制;和
通过对淀粉流量的调节,实现对所述淀粉溶液的浓度的闭环自动控制。
所述控制器包括:
判断模块,用于判断所述淀粉溶液的液位和浓度是否在各自的控制范围之内;
第一控制模块,用于当所述淀粉溶液的液位和浓度均保持在各自的控制 范围之内时,进行淀粉溶液流量为主、清水流量为副的比值控制,及淀粉溶液流量为主、淀粉流量为副的比值控制,包括:
根据生产速度设定所述淀粉溶液流量的给定值,以所述淀粉溶液流量的检测值为反馈值,对所述淀粉溶液的流量进行闭环控制;
将所述淀粉溶液流量的检测值与设定的第一比值的积作为给定值,以所述清水流量的检测值为反馈值,对所述清水流量进行闭环控制;
将所述淀粉溶液流量的检测值与设定的第二比值的积作为给定值,以所述淀粉流量的检测值为反馈值,对所述淀粉流量进行闭环控制。
所述控制器还包括:
第二控制模块,用于当所述淀粉溶液的液位超出设定的控制范围时,通过以下方式进行控制:
断开所述淀粉溶液流量为主、清水流量为副的比值控制;以设定的液位值为给定值,以所述容器中液体液位的检测值为反馈值,对所述清水流量进行液位控制;及
断开所述淀粉溶液流量为主、淀粉流量为副的比值控制,进行清水流量为主、淀粉流量为副的比值控制,所述清水流量为主、淀粉流量为副的比值控制包括:将所述清水流量的检测值与设定的第三比值的积作为给定值,以所述淀粉流量的检测值为反馈值,对所述淀粉流量进行闭环控制。
所述控制器还包括:
第三控制模块,用于当所述淀粉溶液的浓度超出设定的控制范围而液位保持在设定的控制范围之内时,保持所述淀粉溶液流量为主、清水流量为副的比值控制,断开所述淀粉溶液流量为主、淀粉流量为副的比值控制,进行对所述淀粉溶液的浓度和淀粉流量的串级控制,所述串级控制包括:
以设定的淀粉溶液的浓度值为给定值,以所述淀粉溶液的浓度的检测值为反馈值,对淀粉溶液的浓度进行外环控制;
以所述外环控制使用的浓度控制器的输出为给定值,以所述淀粉流量的检测值为反馈值,对淀粉流量进行内环闭环控制。
所述清水传送设备为管道,所述管道包括控制阀,所述控制器用于通过 控制所述管道上的控制阀的开度来调节所述清水的流量;并且
通过控制所述淀粉称量设备单位时间内传送淀粉的重量来调节所述淀粉的流量。
所述淀粉在每平方米石膏板产品中的用量为30g至50g。
本发明实施例的石膏板淀粉添加控制的方法及其系统是通过淀粉与水提前实现混合,增强了淀粉在料浆中的分散能力,淀粉分布更均匀,因此石膏板的产品质量也得到了提升。同时,淀粉用量下降,降低了生产成本。
下面对本发明实施例的石膏板淀粉添加控制的方法及其系统的工作原理进行详细描述。
本发明实施例将要添加的淀粉预先在一罐体内与清水搅拌,完成预混合,得到浓度相对较高的淀粉溶液,再将该淀粉溶液与清水混合,该混合可以在管道中直接进行,然后注入混合机和料浆进行混合。淀粉溶液在搅拌混合过程中的分散性要远高于淀粉,因此,淀粉在料浆中的分布更均匀,也就不需要大量添加淀粉。该系统投入使用后,淀粉在每平方米产品中的用量可以降到30g至50g,大大降低了生产成本;淀粉用量下降了,并且淀粉分布更均匀,护面纸的粘结会比现阶段效果更好,因此石膏板的产品质量也得到了提升。
具体地,如图1所示,分别用淀粉秤和控制阀控制淀粉和清水加入罐体的量,用液位计监测罐体内液位,确保液位不会过高或者过低,用密度计监测淀粉溶液的密度,进而计算得到罐体中淀粉溶液的浓度,保证罐体中淀粉溶液浓度的稳定性。淀粉溶液经下方的控制阀流出与清水混合后,再进入混合机与料浆进行充分的混合。可选地,料浆可以包含其他添加剂。
本发明实施例可以提高石膏板质量、降低石膏板生产的单位成本,通过淀粉与水提前实现固定浓度的混合,增强淀粉在料浆中的分散能力,主要通过调节淀粉下料量和控制阀的开度,在保证淀粉溶液流量的情况下,实现对罐体中淀粉溶液的液位和浓度的控制。
本发明实施例的主要功能为:
实现淀粉的预混合,并通过淀粉溶液的浓度和淀粉流量的串级控制,保 持输出淀粉溶液浓度维持在一定浓度值。
根据生产线速度自动设定淀粉溶液控制阀的开度,正常生产过程中,清水的控制阀、淀粉秤与淀粉溶液均为比值控制。
当液位触发低限或者高限报警时,流入罐体的清水的控制阀断开比值控制,改由液位反馈控制,淀粉秤也断开与淀粉溶液的比值控制,改为与清水控制阀比值控制。
本发明实施例的设备及元器件如下:
1)控制器:为可编程逻辑控制器(PLC),是系统控制的核心,可以使用现阶段成型工段PLC的备用点来实现控制功能,节约成本。
2)淀粉秤:系统淀粉秤能够满足需要,用于计量单位时间内淀粉的重量,计量单位kg/h,通过控制皮带速度和/或皮带负载控制进入淀粉混合罐体中淀粉的量。淀粉流量即是单位时间淀粉的重量。
3)密度计:依据成本及实际应用效果等没有直接选用浓度计,而是选择密度计间接实现功能,因为溶液为淀粉和水混合溶液,在一定浓度范围内,密度和浓度的关系是成函数关系的,因此可以由密度计算得到淀粉溶液浓度。选用的密度计原理是建立在双探头的距离稳定可准确测量基础上的差压法,因此,即使不断搅动,只要静压是稳定的,就可以保证测量的准确。密度计的主要参数包括:测量精度最高可达到0.2%,测量分辨率0.001g/cm3,量程0~3g/cm3,电源24Vdc,输出信号4mA~20mA等,以上参数均符合控制系统的需求。
4)液位计:选用常用的单法兰液位变送器即可实现功能,主要参数:测量精度0.1%,量程0~3m,电源24Vdc,输出信号4mA~20mA等。
5)容器:为混合所用罐体,罐体设计需满足淀粉用量的需求,按淀粉最大用量50g/m2,生产线速度60m/min,每分钟的用量为3kg,罐体例如可为圆柱罐体,底面直径为0.7m,高为0.8m,罐体最大容量为300L,工作容量为200L,溶液浓度为15%,工作容量下包含淀粉量为30kg,在满工作容量的情况下,不继续添加溶液可继续提供淀粉十分钟,低于最低液位后,依然可提供两分钟的淀粉用量。如图1所示,罐体下部安装有搅动叶轮,搅拌电 机功率为5.5kw。
6)执行机构:为控制阀,具体可选用电动控制阀,更具体选用电磁阀,可接受4mA~20mA电流信号,并依据信号使电磁阀打开0~100%开度。电磁阀还可反馈位置信号,反馈信号为4mA~20mA的电流输出。
对于本发明实施例的设备及元器件的选用,应理解,对于本领域技术人员来说,在向浆料中控制添加淀粉的过程中,所使用的设备或元器件可以根据实际需求进行替换。
例如,如上所述,在石膏板淀粉添加控制系统中可使用系统淀粉秤作为淀粉称量传送设备,同时也可以选用其他具有称量和传送淀粉功能的设备替换系统淀粉秤。
密度计和控制器的共同使用实现了容器内淀粉溶液的浓度的实时监控和调整,而对于本领域技术人员来说,能够实现上述功能的设备,如浓度计也可以作为替换元件用于石膏板淀粉添加控制系统中。
因此,对于本领域技术人员来说,本说明书中石膏板淀粉添加控制系统所暗示的许多变化和可选择方案旨在被包括在本权利要求的范围内。
本发明实施例包含淀粉流量,清水流量,淀粉溶液流量三个输入和淀粉溶液浓度、淀粉溶液液位两个输出。因此,系统是一个多输入多输出系统,下面简要分析该多输入多输出系统的耦合关系。
如前所述,罐体内的液位和浓度受三个流量影响,即淀粉流量Q1,清水流量Q2,淀粉溶液流量Q,其中,淀粉溶液流量Q是根据生产线速度设置的,为了不影响正常生产,这里认为淀粉溶液流量Q是不可调的。因此,淀粉溶液流量Q=Q1+Q2=U+U,其中,U和U分别为淀粉流量设定值和清水流量设定值。混合罐体内的淀粉溶液浓度
Figure PCTCN2016107846-appb-000001
因此通过下式得出p11和q11分别为:
Figure PCTCN2016107846-appb-000002
Figure PCTCN2016107846-appb-000003
其中,相对增益值λ11为p11和q11的比值,计算得出λ11为:
Figure PCTCN2016107846-appb-000004
最后根据相对增益值λ11和相对增益矩阵的性质,可以求得系统的相对增益矩阵为
Figure PCTCN2016107846-appb-000005
也就是说,在淀粉溶液浓度C比较小(小于20%)的时候,两通道耦合较弱,即通过U来控制淀粉溶液浓度C,U来控制淀粉溶液流量Q是合理的。
从以上针对本系统耦合过程的分析,可知通过一个控制变量控制一个被控变量是可行的,同时给浓度和液位一个允许波动的范围,当其在范围内波动的时候,运用比值控制即可稳定实现控制效果,当超出允许范围时,再启动液位控制或者浓度控制。
图2为本发明实施例的石膏板淀粉添加控制方法的流程示意图。如图2所示,系统首先读取淀粉溶液液位高度,判断液位是否在规定范围内,如果超出范围,启动液位控制,液位控制液位稳定后,返回运行;若液位高度正常,则读取淀粉溶液浓度数据。同理,若浓度超出规定范围,启动浓度控制,浓度控制浓度稳定后,返回运行;当液位和浓度都正常时,则启动比值控制。一般情况下系统浓度和液位均处于允许范围,因此一般情况下系统处于淀粉溶液的比值控制。
优先考虑液位是因为若出现液位过低的情况,将直接影响生产的正常运转,若液位过高,液体溢出将可能造成环境的污染和设备的损坏。其次考虑浓度,因为浓度一般情况下波动均较小,而且浓度的波动,不会引起生产停止运行等情况,可能会造成短时间板材质量不稳,但调整后可快速回复稳定,因此,使用上述控制流程可实现良好效果。
淀粉溶液比值控制如下:
图3为本发明实施例的石膏板淀粉添加控制方法中比值控制的结构示意图,控制器分别控制控制阀1和控制阀2,实现对主流量以及副流量的控制, 变送器可以对主对象和副对象的输出进行反馈,具体地,变送器是接收流量检测器如流量传感器的流量信号,将其转换为电信号反馈给控制器。
其中,图3中所示为双闭环比值控制系统,是以淀粉溶液为主对象,其流量为主流量,清水为副对象,其流量为副流量,K1为实际配比系数。
同理,可以以淀粉溶液为主对象,淀粉溶液流量为主流量,以淀粉为副对象,淀粉流量为副流量,K2作为实际配比系数,实现对淀粉流量的闭环控制,该闭环的输入仍是淀粉溶液流量的检测值,经K2变动后的数值作为闭环控制的给定值,而该闭环控制的执行机构可以是淀粉秤或淀粉传送系统中传送电机的变频器以实现对淀粉流量的调节,该闭环控制的反馈信号可以是对传送电机的测速信号。
图3中所示双闭环比值控制系统的工作原理如下:
在双闭环比值控制系统工作时,当主流量受到干扰发生波动,则主流量控制回路对其进行定值控制,使主流量给定值稳定,同时副流量控制回路也会随主流量的波动进行调整;当副流量受到扰动发生波动时,副流量控制回路对其进行定值控制,使副流量始终稳定在定值附近,而主流量控制回路不受副流量波动的影响。
因此,因扰动而发生的主流量和副流量波动利用各自控制回路分别实现检测值与给定值吻合,从而保证主、副物料流量的比值恒定。
当调节主流量给定值时,主流量控制回路调节主流量检测值和给定值吻合;同时,根据主流量与副流量的比值及新的主流量给定值,系统给出副流量控制回路的输入值。
通过副流量控制回路的调节控制使副流量的检测值与该输入值吻合,即副流量的检测值与主流量变动后的数值相对应,保持主流量和副流量的比值不变。
可见主流量控制回路是一定值控制系统,而副流量控制回路是一个随动控制系统。
双闭环比值控制系统的突出优点如下:
(1)控制系统更为稳定
对主流量的定值控制克服了干扰对主流量的影响,因此主流量变化平稳,副流量也将平稳,进而系统的总物料流量稳定,更好地满足了生产工艺要求。
(2)系统更易于调节
当需要改变主流量的设定值时,主流量控制回路通过调节控制使主流量的输出值改变为新设定值,同时副流量也将随主流量按给定比值变化。
因此,当需要调整负荷时,只要改变主流量控制回路控制器的给定值,就可同步调整主流量和副流量,并保持主流量和副流量的比值不变。
在液位及浓度均在容许范围内的情况下,其他控制方法容易导致液位、浓度等的频繁波动,给生产过程和设备带来负担;而本发明实施例依据生产工艺所需的淀粉量以及淀粉溶液浓度,将淀粉流量和清水流量与淀粉溶液流量进行比值控制,这样,一方面保证了淀粉流量和清水流量的配比关系,保证罐体内的淀粉溶液浓度维持在稳定水平,另一方面,由于是与淀粉溶液流量进行比值控制,淀粉流量和清水流量始终跟随其变化,这就保证了罐体内液位的稳定。
图3中的主/副流量控制回路的控制器可以采用工控机或PLC,对此不作限制。
如图3所示,图3中以清水与淀粉溶液的比值控制为例,优势是一方面可以保证溶液配比的稳定,另一方面可以保证各个流量自身的稳定性。比值控制为动态配比,当主流量变化时,副流量均会跟随变化,
在比值控制中,工艺配比系数K=Q2/Q,其中Q2为清水流量,Q为淀粉溶液流量。在控制系统中,需考虑测量仪表的影响,以选用的4mA~20mA仪表为例,当前电流I的计算如下:
Figure PCTCN2016107846-appb-000006
其中,Q为淀粉溶液流量,Qmax为淀粉溶液最大流量。
那么实际配比系数K1
Figure PCTCN2016107846-appb-000007
由以上两式,可得:
Figure PCTCN2016107846-appb-000008
其中,Q2为清水流量,Q2max为清水最大流量。这样就获得了程序中运行所需的实际配比系数K1。则清水流量的控制电流I2
I2=K1×(I-4)+4。
液位控制如下:
图4为本发明实施例的石膏板淀粉添加控制方法中液位控制的结构示意图。在液位波动时,控制液位在规定范围,受控变量是罐体液位,操纵变量是清水流量,当只考虑液位与清水流量关系时,系统简化为一个水槽系统,结构简单,可以选用单回路闭环控制。
如图4所示,在液位控制中,清水流量断开与淀粉溶液的比值控制。这时淀粉流量虽然对液位影响有限,但若不断开淀粉流量与淀粉溶液流量的比值控制,淀粉继续维持原流量,那么当液位过高时,清水的控制器会减少清水的流量,此时溶液浓度就会增加;当液位过低时,同理淀粉溶液浓度会降低。上述提到液位控制优先于浓度控制,但控制过程影响浓度也是不希望的结果。因此,淀粉流量也断开与淀粉溶液流量的比值控制,改由清水流量进行比值控制,这就保证了清水和淀粉始终处于配比状态,对淀粉溶液浓度影响很小,这样既实现了对液位的控制,也没有对浓度产生影响。
浓度控制如下:
图5为本发明实施例的石膏板淀粉添加控制方法中浓度控制的结构示意图,依次经主控制器、副控制器、淀粉秤、副对象、主对象实现浓度控制过程。其中,主控制器为浓度控制器,副控制器为淀粉流量控制器;将浓度控制器的输出值作为淀粉流量控制器的给定值,变送器1反馈副对象的输出,变送器2反馈主对象的输出。具体如下:
根据上述分析,通过淀粉流量控制淀粉溶液浓度是理想的选择。如液位控制部分提到的液位控制不能影响浓度控制,浓度控制同样不能影响液位。因此,清水流量继续与淀粉溶液流量保持比值控制,这样就保证了液位的稳 定。同时,清水流量基本稳定也有利于对淀粉溶液浓度的调整。
如图5所示,如同液位控制的单回路闭环控制,采用浓度作为受控变量,但在浓度控制的结构中,单回路闭环控制存在如下两个问题:淀粉秤的调节过程需要一定的时间,同时调节过程中有一定的波动,将影响浓度;同时溶液的混合需要一定的时间,因此,当输入变化时,输出存在滞后。因此,选用串级控制较为理想。即将浓度控制器的输出值作为淀粉流量控制器的给定值,两个控制器有各自独立的测量输入,只有浓度控制器的给定是通过PLC由外部给定的,当淀粉溶液浓度较低时,PLC系统根据设定的比例积分微分(PID,Proportional-Integral-Derivative)整定值,自动的将信号指令发出,通过浓度控制器,将淀粉流量控制器的给定值升高,让淀粉流量升高,维持浓度的稳定;浓度较高时,实现方式是类似的,淀粉流量减小,维持浓度稳定。串级控制很好的解决了单回路闭环控制在浓度控制中存在的缺陷。
预计经济效益如下:
按每平米石膏板中淀粉使用量下降10g计算,年产3000万平米石膏板生产线,按每吨淀粉价格4000元计算,年节省成本:
10×3000÷1000000×4000=120万。
淀粉分布的均匀性提升了护面纸粘结的稳定性,产品合格率提升0.2%,按每平方米价格7元计算,年利润为:
0.2%×3000×7=42万。
因此,该石膏板淀粉添加控制系统的投入使用在3000万平米石膏板生产线,单条生产线年效益即可达到162万元。
综上所述,本发明实施例通过使用比值控制、液位控制、浓度控制实现了淀粉进入混合机前的预混合,同时很好的保证了混合罐体内的淀粉溶液液位高度和淀粉溶液的浓度。淀粉和清水的预混合提高了护面纸与板材的粘结效果,降低了生产成本,有着显著的经济效益。
本公开内容是本申请实施例的原则的示例,并非对本申请作出任何形式上或实质上的限定,或将本申请限定到具体的实施方案。对本领域的技术人员而言,很显然本申请实施例的技术方案的要素、方法和系统等,可以进行 变动、改变、改动、演变,而不背离如上所述的本申请的实施例、技术方案的,如权利要求中所定义的原理、精神和范围。这些变动、改变、改动、演变的实施方案均包括在本申请的等同实施例内,这些等同实施例均包括在本申请的由权利要求界定的范围内。虽然可以许多不同形式来使本申请实施例具体化,但此处详细描述的是本申请的一些实施方案。此外,本申请的实施例包括此处所述的各种实施方案的一些或全部的任意可能的组合,也包括在本申请的由权利要求界定的范围内。在本申请中或在任一个引用的专利、引用的专利申请或其它引用的资料中任何地方所提及的所有专利、专利申请和其它引用资料据此通过引用以其整体并入。
以上公开内容规定为说明性的而不是穷尽性的。对于本领域技术人员来说,本说明书会暗示许多变化和可选择方案。所有这些可选择方案和变化旨在被包括在本权利要求的范围内,其中术语“包括”意思是“包括,但不限于”。
在此完成了对本申请可选择的实施方案的描述。本领域技术人员可认识到此处所述的实施方案的其它等效变换,这些等效变换也为由附于本文的权利要求所包括。
工业实用性
本发明实施例提供的石膏板淀粉添加控制方法,操作简便,通过淀粉与水提前实现混合,可有效控制石膏板中淀粉的添加,并增强了淀粉在料浆中的分散能力,使淀粉分布更均匀,因此石膏板的产品质量也得到了提升。同时,淀粉用量下降,降低了生产成本。此外,本发明实施例提供的石膏板淀粉添加控制系统有效地实施本发明实施例提供的石膏板淀粉添加控制方法。

Claims (16)

  1. 一种石膏板淀粉添加控制的方法,所述方法包括:
    将淀粉与清水加入容器,对淀粉与清水进行预混合,从所述容器输出预混合后的淀粉溶液;以及
    将所述淀粉溶液与清水混合后,注入混合机与料浆混合。
  2. 根据权利要求1所述的方法,其中,所述对淀粉与清水进行预混合包括:在所述容器中,对加入的淀粉与清水进行搅拌。
  3. 根据权利要求1或2所述的方法,其中,所述对淀粉与清水进行预混合进行以下自动控制:
    通过对清水流量、淀粉流量的调节,实现对所述淀粉溶液的液位和浓度的自动控制,使得所述淀粉溶液的液位和浓度保持在各自设定的控制范围之内。
  4. 根据权利要求3所述的方法,其中,所述通过对清水流量、淀粉流量的调节,实现对所述淀粉溶液的液位和浓度的自动控制包括:
    通过对清水流量的调节,实现对所述淀粉溶液的液位的闭环自动控制;以及
    通过对淀粉流量的调节,实现对所述淀粉溶液的浓度的闭环自动控制。
  5. 根据权利要求3所述的方法,其中,所述自动控制包括:当所述淀粉溶液的液位和浓度均保持在各自的控制范围之内时,进行淀粉溶液流量为主、清水流量为副的比值控制和淀粉溶液流量为主、淀粉流量为副的比值控制,包括:
    根据生产线速度设定所述淀粉溶液流量的给定值,以所述淀粉溶液流量的检测值为反馈值,对所述淀粉溶液的流量进行闭环控制;
    将所述淀粉溶液流量的检测值与设定的第一比值的积作为给定值,以所述清水流量的检测值为反馈值,对所述清水流量进行闭环控制;以及
    将所述淀粉溶液流量的检测值与设定的第二比值的积作为给定值,以所述淀粉流量的检测值为反馈值,对所述淀粉流量进行闭环控制。
  6. 根据权利要求5所述的方法,其中,所述自动控制还包括:
    当所述淀粉溶液的液位超出设定的控制范围时,通过以下方式进行控制:
    断开所述淀粉溶液流量为主、清水流量为副的比值控制;以设定的淀粉溶液液位值为给定值,以所述容器中淀粉溶液液位的检测值为反馈值,对所述清水流量进行液位控制;及
    断开所述淀粉溶液流量为主、淀粉流量为副的比值控制,进行清水流量为主、淀粉流量为副的比值控制,所述清水流量为主、淀粉流量为副的比值控制包括:将所述清水流量的检测值与设定的第三比值的积作为给定值,以所述淀粉流量的检测值为反馈值,对所述淀粉流量进行闭环控制。
  7. 根据权利要求5所述的方法,其中,所述自动控制还包括:
    当所述淀粉溶液的浓度超出设定的控制范围而液位保持在设定的控制范围之内时,保持所述淀粉溶液流量为主、清水流量为副的比值控制,断开所述淀粉溶液流量为主、淀粉流量为副的比值控制,进行对所述淀粉溶液的浓度和所述淀粉流量的串级控制,所述串级控制包括:
    以设定的淀粉溶液的浓度值为给定值,以所述淀粉溶液的浓度的检测值为反馈值,对淀粉溶液的浓度进行外环控制;
    以所述外环控制使用的浓度控制器的输出为给定值,以所述淀粉流量的检测值为反馈值,对淀粉流量进行内环闭环控制。
  8. 根据权利要求1至7任一项所述的方法,其中,所述清水通过管道加入所述容器,并通过控制所述管道上的控制阀的开度来调节所述清水的流量;并且
    所述淀粉通过淀粉称量设备加入所述容器,并通过控制所述淀粉称量设备单位时间内传送淀粉的重量来调节所述淀粉的流量。
  9. 根据权利要求3至8任一项所述的方法,其特征在于,所述淀粉在每平方米石膏板产品中的用量为30g至50g。
  10. 一种石膏板淀粉添加控制系统,所述膏板淀粉添加控制系统包括:
    淀粉称量传送设备,用于将淀粉称量并传送到容器中;
    清水传送设备,用于将清水传送到所述容器中;
    密度计,用于监测由所述淀粉和所述清水混合形成的淀粉溶液的密度,进而由控制器计算得到所述容器内所述淀粉溶液的浓度;
    液位计,用于监测所述容器内所述淀粉溶液的液位;以及
    控制器,用于通过对清水流量、淀粉流量的调节,实现对所述淀粉溶液的液位和浓度的自动控制,使得所述淀粉溶液的液位和浓度保持在各自设定的控制范围之内。
  11. 根据权利要求10所述的石膏板淀粉添加控制系统,其中,所述控制器用于进行所述自动控制,所述自动控制包括:
    通过对清水流量的调节,实现对所述淀粉溶液的液位的闭环自动控制;和
    通过对淀粉流量的调节,实现对所述淀粉溶液的浓度的闭环自动控制。
  12. 根据权利要求10所述的石膏板淀粉添加控制系统,其中,所述控制器包括:
    判断模块,用于判断所述淀粉溶液的液位和浓度是否在各自的控制范围之内;
    第一控制模块,用于当所述淀粉溶液的液位和浓度均保持在各自的控制范围之内时,进行淀粉溶液流量为主、清水流量为副的比值控制和淀粉溶液流量为主、淀粉流量为副的比值控制,包括:
    根据生产速度设定所述淀粉溶液流量的给定值,以所述淀粉溶液流量的检测值为反馈值,对所述淀粉溶液的流量进行闭环控制;
    将所述淀粉溶液流量的检测值与设定的第一比值的积作为给定值,以所述清水流量的检测值为反馈值,对所述清水流量进行闭环控制;
    将所述淀粉溶液流量的检测值与设定的第二比值的积作为给定值,以所述淀粉流量的检测值为反馈值,对所述淀粉流量进行闭环控制。
  13. 根据权利要求12所述的石膏板淀粉添加控制系统,其中,所述控制器还包括:
    第二控制模块,用于当所述淀粉溶液的液位超出设定的控制范围时,通过以下方式进行控制:
    断开所述淀粉溶液流量为主、清水流量为副的比值控制;以设定的液位值为给定值,以所述容器中液体液位的检测值为反馈值,对所述清水流量进行液位控制;及
    断开所述淀粉混合溶液流量为主、淀粉流量为副的比值控制,进行清水流量为主、淀粉流量为副的比值控制,所述清水流量为主、淀粉流量为副的比值控制包括:将所述清水流量的检测值与设定的第三比值的积作为给定值,以所述淀粉流量的检测值为反馈值,对所述淀粉流量进行闭环控制。
  14. 根据权利要求12所述的石膏板淀粉添加控制系统,其中,所述控制器还包括:
    第三控制模块,用于当所述淀粉溶液的浓度超出设定的控制范围而液位保持在设定的控制范围之内时,保持所述淀粉溶液流量为主、清水流量为副的比值控制,断开所述淀粉溶液流量为主、淀粉流量为副的比值控制,进行对所述淀粉溶液的浓度和淀粉流量的串级控制,所述串级控制包括:
    以设定的淀粉溶液的浓度值为给定值,以所述淀粉溶液浓度的检测值为反馈值,对淀粉溶液的浓度进行外环控制;
    以所述外环控制使用的浓度控制器的输出为给定值,以所述淀粉流量的检测值为反馈值,对淀粉流量进行内环闭环控制。
  15. 根据权利要求10至14任一项所述的石膏板淀粉添加控制系统,其中,所述清水传送设备为管道,所述管道包括控制阀,所述控制器用于通过控制所述管道上的控制阀的开度来调节所述清水的流量,并且通过控制所述淀粉称量设备单位时间内传送淀粉的重量来调节所述淀粉的流量。
  16. 根据权利要求10至15任一项所述的石膏板淀粉添加控制系统,其中,所述淀粉在每平方米石膏板产品中的用量为30g至50g。
PCT/CN2016/107846 2016-03-04 2016-11-30 一种石膏板淀粉添加控制的方法及其系统 WO2017148191A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610125620.7 2016-03-04
CN201610125620.7A CN107149890B (zh) 2016-03-04 2016-03-04 一种石膏板淀粉添加控制方法及系统

Publications (1)

Publication Number Publication Date
WO2017148191A1 true WO2017148191A1 (zh) 2017-09-08

Family

ID=59742560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/107846 WO2017148191A1 (zh) 2016-03-04 2016-11-30 一种石膏板淀粉添加控制的方法及其系统

Country Status (2)

Country Link
CN (1) CN107149890B (zh)
WO (1) WO2017148191A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112033480A (zh) * 2020-08-13 2020-12-04 宁波北新建材有限公司 一种硫酸钾流量监控方法及监控装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114733422B (zh) * 2022-04-11 2023-05-12 宁波北新建材有限公司 一种辅料二次混合湿法添加系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5573333A (en) * 1994-08-22 1996-11-12 National Gypsum Company Demand responsive, continuous preparation of starch slurry for use in manufacturing gypsum products
CN1754857A (zh) * 2004-09-30 2006-04-05 北新集团建材股份有限公司 耐火石膏板及其制造方法
CN101367658A (zh) * 2007-08-15 2009-02-18 北新集团建材股份有限公司 耐潮耐火石膏板及其制备方法
CN101549980A (zh) * 2008-04-01 2009-10-07 北新集团建材股份有限公司 快速高效除甲醛纸面石膏板及其制备方法
CN102143830A (zh) * 2008-09-05 2011-08-03 美国石膏公司 用于石膏板生产的有效的湿淀粉制备系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1057852C (zh) * 1989-03-20 2000-10-25 株式会社日立制作所 过程控制装置及调整过程控制装置中控制器的工作参数的方法
CN201317869Y (zh) * 2008-11-20 2009-09-30 绍兴则圆自动控制设备有限公司 碱浓度自动控制装置
CN102318467B (zh) * 2011-07-25 2014-03-12 天津市水利科学研究院 环闭群流滴灌配制施肥系统的灌溉方法及营养液配制方法和施肥方法
WO2013061126A1 (en) * 2011-10-24 2013-05-02 Abb Research Ltd A method and a system for tuning multivariable pid controller

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5573333A (en) * 1994-08-22 1996-11-12 National Gypsum Company Demand responsive, continuous preparation of starch slurry for use in manufacturing gypsum products
CN1754857A (zh) * 2004-09-30 2006-04-05 北新集团建材股份有限公司 耐火石膏板及其制造方法
CN101367658A (zh) * 2007-08-15 2009-02-18 北新集团建材股份有限公司 耐潮耐火石膏板及其制备方法
CN101549980A (zh) * 2008-04-01 2009-10-07 北新集团建材股份有限公司 快速高效除甲醛纸面石膏板及其制备方法
CN102143830A (zh) * 2008-09-05 2011-08-03 美国石膏公司 用于石膏板生产的有效的湿淀粉制备系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112033480A (zh) * 2020-08-13 2020-12-04 宁波北新建材有限公司 一种硫酸钾流量监控方法及监控装置

Also Published As

Publication number Publication date
CN107149890A (zh) 2017-09-12
CN107149890B (zh) 2020-03-31

Similar Documents

Publication Publication Date Title
CN100371152C (zh) 人造板模糊自适应并行在线调施胶控制方法及控制系统
JP2022528029A (ja) 液体流量計のための較正方法
CN102063131B (zh) 一种用于烧结生产的自动混水控制系统
CN208323815U (zh) 一种混凝土运输车中混凝土坍落度实时监控调整装置
WO2017148191A1 (zh) 一种石膏板淀粉添加控制的方法及其系统
GB1568849A (en) Apparatus and method for concentration control of constituents
CN112339128A (zh) 一种智能制浆灌浆系统
CN111958833A (zh) 一种配方设定量互补调节系统及调节方法
CN201613043U (zh) 在线闭环测控pid调节系统加药装置
CN106017636A (zh) 电石原料精确配料控制系统及方法
CN113290695A (zh) 基于电流信号反馈的充填料浆浓度调控方法及系统
CN104338481A (zh) 浓溶液稀释装置和方法
US3163172A (en) Consistency measuring and control method and apparatus
CN204602115U (zh) 一种混凝土外加剂复配设备
CN207645874U (zh) 一种混凝自动加药控制系统
CN106696111B (zh) 一种用于硅酮胶连续生产的流量在线自动调节方法
CN203253406U (zh) 一种溶液混合输送泵站
CN202279787U (zh) 乳化炸药生产过程中的随动控制系统
CN104449786A (zh) 一种高固含量乳化沥青生产设备及自动化生产方法
CN211837440U (zh) 钛白粉连续分散装置
CN112638607B (zh) 用于生产泡沫建筑材料的设备
CN206538623U (zh) 抄前浆池上网浓度控制装置和流送设备
CN220149580U (zh) 一种淀粉乳调浆浓度控制系统
CN102166491B (zh) 一种连续自动化乳化系统及乳化方法
CN206607283U (zh) 一种烧结混合料中自动配加红泥的系统

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16892369

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16892369

Country of ref document: EP

Kind code of ref document: A1