WO2017147949A1 - 一种电磁使能的主动式动压气体轴承 - Google Patents

一种电磁使能的主动式动压气体轴承 Download PDF

Info

Publication number
WO2017147949A1
WO2017147949A1 PCT/CN2016/076386 CN2016076386W WO2017147949A1 WO 2017147949 A1 WO2017147949 A1 WO 2017147949A1 CN 2016076386 W CN2016076386 W CN 2016076386W WO 2017147949 A1 WO2017147949 A1 WO 2017147949A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
elastic foil
foil
magnetic material
magnetic
Prior art date
Application number
PCT/CN2016/076386
Other languages
English (en)
French (fr)
Inventor
靳普
Original Assignee
至玥腾风科技投资集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 至玥腾风科技投资集团有限公司 filed Critical 至玥腾风科技投资集团有限公司
Priority to KR1020177029382A priority Critical patent/KR101905405B1/ko
Priority to US15/558,425 priority patent/US10520024B2/en
Priority to JP2017554041A priority patent/JP6351873B2/ja
Priority to EP16892140.1A priority patent/EP3273079B1/en
Publication of WO2017147949A1 publication Critical patent/WO2017147949A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0603Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0603Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
    • F16C32/0607Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being retained in a gap, e.g. squeeze film bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0629Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a liquid cushion, e.g. oil cushion
    • F16C32/0633Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a liquid cushion, e.g. oil cushion the liquid being retained in a gap
    • F16C32/0637Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a liquid cushion, e.g. oil cushion the liquid being retained in a gap by a magnetic field, e.g. ferrofluid bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/024Sliding-contact bearings for exclusively rotary movement for radial load only with flexible leaves to create hydrodynamic wedge, e.g. radial foil bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/048Active magnetic bearings for rotary movement with active support of two degrees of freedom, e.g. radial magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/043Sliding surface consisting mainly of ceramics, cermets or hard carbon, e.g. diamond like carbon [DLC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/20Application independent of particular apparatuses related to type of movement
    • F16C2300/22High-speed rotation

Definitions

  • the invention belongs to the technical field of high-speed oil-free lubricating support equipment, and particularly relates to an electromagnetically-driven active dynamic pressure gas bearing.
  • An electromagnetic bearing is a kind of bearing that uses electromagnetic force to stably suspend the rotor and can be controlled by the control system. It is also commonly referred to as an electromagnetic bearing or a magnetic suspension bearing.
  • the most commonly used type in the prior art is an active magnetic suspension bearing ( AMB).
  • AMB active magnetic suspension bearing
  • the electromagnetic bearing uses the magnetic force to suspend the shaft in a specific position in the space to realize the role of the traditional bearing. It avoids the direct contact between the rotor and the bearing, and does not require lubrication and sealing. It can completely eliminate wear and reduce power consumption; Sexuality can actively control the position of the rotor, and the stiffness and damping of the bearing can be adjusted through the control system; the electromagnetic bearing also has the advantages of long life, large operating temperature range and automatic balance.
  • the magnetic bearing system consists of four parts: the rotor, the sensor, the controller and the actuator.
  • the actuators include electromagnets and power amplifiers.
  • Gas bearing is a relatively mature one in suspension bearing technology. It has good adaptability and can be operated for a long time under high temperature, high speed and high pollution conditions. It does not need oil lubrication, so the structure is simple. Gas is used as the lubricating medium, so its bearing capacity is low under low-speed operation of the rotor, and the damping and rigidity are relatively low, resulting in poor thermal shutdown performance. In addition, during the starting and stopping phases, the gas bearing is started and stopped during the rotor. When the rotational speed drops, resulting in insufficient air pressure in the shaft and insufficient supporting force, the bearing may be inevitably worn.
  • the prior art gas-magnetic hybrid bearing basically adds another complete set of magnetic bearings and magnetic bearings to the structure and function of a complete set of static pressure gas bearings, which usually only improves the rotation. Precision purpose. The characteristics of production and maintenance costs and structural complexity have to be greatly increased, making it only a high-cost concept prototype in the laboratory, which cannot be used in large-scale industrial applications.
  • the object of the present invention is to provide an electromagnetically-actuated active dynamic pressure gas bearing, which has a simple structure and low precision, adopts a gas-magnetic hybrid bearing structure, has an adjustable magnetic flat foil and a low-cost pressure sensor.
  • the utility model solves the problems that the existing dynamic pressure gas bearing is in operation, the low bearing capacity is low, the bearing disturbance is eccentric, and the lubrication airflow leaks and is difficult to control.
  • a specific technical solution of the present invention is an electromagnetically actuated active dynamic pressure gas bearing comprising an electromagnetic bearing and an elastic foil bearing nested between the electromagnetic bearing and the rotor shaft, characterized in that the elastic foil
  • the bearing comprises a top elastic foil and a bottom elastic foil, the top elastic foil being a non-magnetic material, and a plurality of independent magnetic material regions are distributed on the surface of the top elastic foil.
  • the magnetic material region is a strip-shaped magnetic material region or a point-shaped magnetic material region, and a plurality of strip-shaped magnetic material regions or point-shaped magnetic material regions are evenly distributed, and the strip-shaped magnetic material region has a longitudinal direction Parallel to the axial direction of the rotor shaft.
  • the top elastic foil is a flat foil
  • the bottom elastic foil is a wave foil
  • the flat foil is made of a stainless steel strip of non-magnetic material
  • the top elastic foil The surface is covered with a plurality of separate magnetic material regions and covered with a ceramic coating.
  • the invention further comprises an elastic foil bearing seat, a bearing housing and a pressure sensor, the electromagnetic bearing being located between the elastic foil bearing seat and the bearing housing, wherein the elastic foil bearing seat is used for mounting the bottom layer elasticity The foil, the probe of the pressure sensor passes through the elastic foil bearing seat for measuring the gas pressure at the bottom elastic foil.
  • the electromagnetic bearing comprising a magnetic pole and a coil wound on the magnetic pole, the magnetic pole having a plurality of magnetic poles mounted between the elastic foil bearing seat and the bearing housing
  • the circumferential direction of the gas bearing is uniform, one end of the magnetic pole is directed to the axis of the rotor shaft, and the left end cover and the right end cover are located at both ends of the elastic foil bearing seat and the bearing housing to press the magnetic pole.
  • pressure sensors which are located in the middle of the gas bearing and are distributed along the circumferential direction of the gas bearing.
  • the magnetic poles have eight, and each magnetic pole is laminated with silicon steel sheets.
  • the elastic foil bearing seat, the left end cover and the right end cover are made of a hard aluminum material.
  • a plurality of magnetic material regions are arranged on the top foil, and the top foil is moderately deformed by the attraction of the magnetic poles of the electromagnetic bearing, thereby improving the maximum pressure on the lubricating film side of the bearing and preventing leakage of the lubricating gas flow, thereby improving the rotor against disturbance eccentricity.
  • the ability to hit the wall thus also improving the bearing capacity of the bearing;
  • the electromagnetic bearing and the gas bearing adopt a nested parallel structure, which shortens the axial length of the gas-magnetic bearing, simplifies the structure, has high integration, and improves the comprehensive performance of the bearing;
  • the electromagnetic bearing cooperates with the gas bearing to improve the dynamic performance and stability of the bearing under high-speed operation
  • the gas bearing of the invention has the advantages of simple structure, simple operation, low precision requirement, strong practicability and low economic cost.
  • Figure 1 is a front elevational view of the electromagnetically actuated active dynamic pressure gas bearing of the present invention
  • Figure 2 is a cross-sectional view taken along line A-A of Figure 1;
  • Figure 3 is an enlarged view of B in Figure 2;
  • FIG. 4 is a schematic exploded view of a top foil having a strip-shaped magnetic material of an electromagnetically-enabled active dynamic pressure gas bearing of the present invention
  • Figure 5 is a schematic exploded view of a top foil having a point-like magnetic material of an electromagnetically-enabled active dynamic pressure gas bearing of the present invention
  • Figure 6 is a schematic view showing the deformation of the top foil of the electromagnetically actuated active dynamic pressure gas bearing of the present invention.
  • an electromagnetically-actuated active dynamic pressure gas bearing of the present invention comprises an electromagnetic bearing 1, an elastic foil bearing 3 nested between the electromagnetic bearing 1 and the rotor shaft 2, and an elastic foil.
  • a bearing block 4 a bearing housing 5, a pressure sensor 6, a left end cover 7 and a right end cover 8, characterized in that the elastic foil bearing 3 comprises a top elastic foil 31 and a bottom elastic foil 32,
  • the top elastic foil 31 is a non-magnetic material, and a plurality of independent magnetic material regions are distributed on the surface of the top elastic foil 31.
  • the electromagnetic bearing 1 is located between the elastic foil bearing housing 4 and the bearing housing 5, and the elastic foil bearing housing 4 is used for mounting the bottom elastic foil 32, and the probe of the pressure sensor 6 passes through the elastic
  • the foil bearing block 4 is used to measure the gas pressure at the bottom elastic foil 32.
  • the pressure sensor 6 has eight, located in the middle of the gas bearing, and is distributed along the circumferential direction of the gas bearing.
  • the pressure sensor 6 includes a pressure sensor cover 61 and a pressure sensor probe 62.
  • the electromagnetic bearing 1 includes a magnetic pole 11 and a coil 12 wound around the magnetic pole 11.
  • the magnetic poles 11 have eight, and each magnetic pole 11 is formed by laminating silicon steel sheets.
  • the magnetic pole 11 is mounted between the elastic foil bearing housing 4 and the bearing housing 5, and is distributed along the circumferential direction of the gas bearing.
  • One end of the magnetic pole 11 is directed to the axis of the rotor shaft 2, and the left end cover 7 and the right end cover 8 are located.
  • Elastic foil Both ends of the bearing housing 4 and the bearing housing 5 press the magnetic pole 11 together.
  • the material of the elastic foil bearing block 4, the left end cover 7 and the right end cover 8 is a non-magnetic hard aluminum material.
  • the magnetic material region distributed on the surface of the top elastic foil 31 is a strip-shaped magnetic material region or a dot-shaped magnetic material region, and a plurality of strip-shaped magnetic material regions or point-shaped magnetic material regions are evenly distributed.
  • the longitudinal direction of the strip-shaped magnetic material region is parallel to the axial direction of the rotor shaft 2. If the entire top elastic foil 31 completely covers the magnetic material, the complexity of the force of the throttle plate when the magnetic force is controlled is greatly increased. If the flexibility of the top elastic foil 31 is insufficient, the problem of curvature following deformation is liable to occur.
  • the top elastic foil 31 is a flat foil
  • the bottom elastic foil 32 is a wave foil
  • the flat foil is made of a stainless steel strip of non-magnetic material
  • the top elastic foil 31 After the surface is covered with a plurality of independent magnetic material regions, it is covered with a ceramic coating.
  • the top elastic foil 31 can also be sintered into a thin plate using ceramic nano-fine powder of 40% zirconia + 30% alpha alumina + 30% magnesium aluminate spinel.
  • the electromagnetic bearing 1 can obtain a signal of an increase in the air pressure transmitted from the pressure sensor 6, and start the intervention work.
  • the electromagnetic bearing 1 does not completely directly apply magnetic force to the rotor shaft 2 to suspend it, but uses a magnetic force to actively push the top elastic foil 31 upward to actively raise the lower chamber pressure.
  • the force adapted to the weight of the load on the rotor shaft 2, automatically redistributes the pressure of the airflow in all directions within the bearing.
  • the electromagnetic bearing 1 stops working unless a new disturbance occurs.
  • the rotor shaft 2 may quickly approach the top elastic foil 31. If the gas bearing fails to respond in time, it may cause the local gas flow rate to approach or even reach the speed of sound due to the transient gap being too small, thus causing the shock wave to generate a self-excitation phenomenon. The generation of shock waves can cause local gas flow to be disturbed and confusing.
  • the velocity of the fluid changes between sonic and subsonic, its pressure drops stepwise. At this time, the principle of fluid dynamics is opposite to the usual case, and the smaller the flow gap between the surface of the rotor shaft 2 and the top elastic foil 31, the lower the pressure. In this case, the top elastic foil 31 is required to actively "avoid" the surface of the rotor shaft 2, creating a larger flow gap to maintain the air velocity as much as possible in the subsonic range to maintain its normal fluid pressure.
  • the difference in magnetic force between the two ends is used to generate a magnetic difference, thereby pulling the rotor shaft 2 to return to the normal gap between the top elastic foil 31, thereby returning the gas bearing airflow and working conditions back to equilibrium.
  • the same situation occurs if the traditional gas-magnetic hybrid bearing with low process requirements (large gap) occurs, the gas bearing will be continuously pressed by the gas pressure difference to the side of the bushing due to the loss of adaptive adjustment capability, and the electromagnetic The bearing creates a magnetic force that attempts to "pull" the rotor.
  • the two bearings form a mutual confrontation.
  • the dynamic pressure type gas bearing of the present invention also needs to retain a set of displacement sensors. Because the dynamic pressure gas bearing does not have the assistance of an external air source, it is necessary to generate a gas source by its own structure. Therefore, such a gas-magnetic hybrid bearing based on a dynamic pressure gas bearing often needs to retain the ability of "starting from 0" and "hot stop". That is, when the rotor speed is low or is about to stop, the gas source pressure of the gas bearing is very low, and the weight of the rotor cannot be completely loaded, and serious wear is likely to occur at this time. Therefore, this stage requires the intervention of the displacement sensor, and actively uses the electromagnetic bearing to temporarily lift the rotor. When the rotor speed rises to meet the gas bearing load condition or has fallen to the ideal working condition near the completion of the stop, the other working state is switched.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Support Of The Bearing (AREA)

Abstract

一种电磁使能的主动式动压气体轴承,包括电磁轴承(1)以及嵌套在电磁轴承(1)和转子轴(2)之间的弹性箔片轴承(3),弹性箔片轴承(3)包括顶层弹性箔片(31)和底层弹性箔片(32),顶层弹性箔片(31)为非导磁材料,在顶层弹性箔片(31)的表面分布有多个各自独立的磁性材料区域。电磁使能的主动式动压气体轴承结构简单、精度要求不高,采用气磁混合轴承结构,具有可调的磁性平箔片和低成本的压力传感器,解决了现有动压气体轴承在工作中,存在的低速承载力低、轴承扰动偏心而使润滑气流泄漏而难以控制的问题。

Description

一种电磁使能的主动式动压气体轴承
相关申请
本申请主张于2016年3月4日提交的、名称为“一种电磁使能的主动式动压气体轴承”的中国发明专利申请:201610125381.5的优先权。
技术领域
本发明属于高速无油润滑支承设备技术领域,特别涉及一种电磁使能的主动式动压气体轴承。
背景技术
电磁轴承是利用电磁力使转子稳定悬浮起来并且可以由控制系统控制其轴心位置的一种轴承,通常也可称为电磁轴承或磁悬浮轴承,现有技术中最常用的类型是主动磁悬浮轴承(AMB)。电磁轴承是利用磁力的作用是转轴悬浮在空间特定位置,实现传统轴承的作用,他避免了转子与轴承的直接接触,也无需润滑和密封,可以完全消除磨损,降低功耗;其具有可控性,可以对转子的位置进行主动控制,并且通过控制系统可以调整轴承的刚度和阻尼;电磁轴承还具有寿命长、工作温度范围大、自动平衡等优点。磁轴承系统由转子、传感器、控制器和执行器四大部分组成,其中执行机构包括电磁铁和功率放大器等。
从磁轴承自身的发展上看,还存在不少缺陷,如磁轴承运转的所有核心数据与响应都来自于转子的位置,但现有的用于确定转子参考位置的传感器通常容易受到临近电磁铁磁场的干扰,传感器信号的错误经常是导致磁轴承突发损毁性故障的主要原因;由于材料的磁饱和性和电磁发热等原因,电磁轴承的承载能力有限。
气体轴承是悬浮轴承技术中较为成熟的一种,具有良好的自适应性,可以在高温、高速和高污染条件下长期运行,无需供油润滑,因此结构简单。采用气体作为润滑介质,因此其在转子低速运转状态下承载能力比较低,并且阻尼和刚度也相对比较低,造成热停车性能差;另外,在起动和停机阶段,气体轴承由于在转子启停时转速下降,导致轴内气压不足、支撑力不够的情况下,会导致轴承出现不可避免的磨损。在通常情况下气体轴承的急停车或快速启停都需要额外的气源进行辅助,且每重复起停一次,都一定会相应地折损一定量的使用寿命,同时造成可靠性的下降;由于气体轴承对结构的加工精度和材料的要求都非常高,故而限制了气体轴承的应用与发展,是其无法低成本、高可靠性地普及到各个行业应用中的主要原因之一。
现有技术中的气磁混合轴承基本上只是在一套完整的静压气体轴承的结构和功能基础上增加了另一套完整的磁轴承并在磁轴承,通常这种做法只能以提高回转精度目的。其生产维护成本和结构复杂性等特征反而要因此大幅上升,使其仅为在实验室里的高价概念样机,无法大规模工业应用。
为弥补现有气磁混合轴承的不足,希望有一种新的气磁混合轴承,其磁轴承的工作主要用于校准轴承与转子之间的参考位置,当气体轴承质量或精度不佳的情况下导致的震动或来自外界的扰动使转子与轴套间的“触壁”即将发生时,可由磁轴承主动地将转子牵引回位,避免轴间接触的发生,预防“抱轴”事故。能够采用低成本传感器,降低电磁电扰动,提高控制效率。一方面可以提高对磁轴承系统的阻尼、刚度、承载力,另一方面又可以克服气体轴承难以控制的缺点。
发明内容
本发明的发明目的是提供一种电磁使能的主动式动压气体轴承,其结构简单、精度要求不高,采用气磁混合轴承结构,具有可调的磁性平箔片和低成本的压力传感器,解决了现有动压气体轴承在工作中,存在的低速承载力低、轴承扰动偏心而使润滑气流泄漏而难以控制的问题。
本发明的具体技术方案是一种电磁使能的主动式动压气体轴承,包括电磁轴承以及嵌套在电磁轴承和转子轴之间的弹性箔片轴承,其特征在于,所述的弹性箔片轴承包括顶层弹性箔片和底层弹性箔片,所述的顶层弹性箔片为非导磁材料,在顶层弹性箔片的表面分布有多个各自独立的磁性材料区域。
更进一步地,所述的磁性材料区域为条状磁性材料区域或点状磁性材料区域,多个条状磁性材料区域或点状磁性材料区域均匀分布,所述的条状磁性材料区域的长度方向与转子轴的轴线方向平行。
更进一步地,所述的顶层弹性箔片为平箔片,所述的底层弹性箔片为波箔片,所述的平箔片由非导磁材料的不锈钢带制成,在顶层弹性箔片的表面遮喷多个各自独立的磁性材料区域后,用陶瓷涂层覆盖。
更进一步地,还包括弹性箔片轴承座、轴承壳体和压力传感器,所述的电磁轴承位于弹性箔片轴承座和轴承壳体之间,所述的弹性箔片轴承座用于安装底层弹性箔片,所述的压力传感器的探头穿过弹性箔片轴承座用于测量底层弹性箔片处的气体压力。
更进一步地,还包括左端盖和右端盖,所述的电磁轴承包括磁极和缠绕在磁极上的线圈,所述的磁极有多个,安装在弹性箔片轴承座和轴承壳体之间,沿气体轴承的周向匀布,所述的磁极的一端指向转子轴的轴线,所述的左端盖和右端盖位于弹性箔片轴承座和轴承壳体两端,将磁极压紧。
更进一步地,所述的压力传感器有8个,位于气体轴承的中部,沿气体轴承的周向匀布,所述的磁极有8个,每个磁极为硅钢片叠压而成。
更进一步地,所述的弹性箔片轴承座、左端盖和右端盖的材料为硬铝材料。
本发明的有益效果是本发明的电磁使能的主动式动压气体轴承与现有技术相比,具有如下优点:
1)顶层箔片上设置有多个磁性材料区域,通过电磁轴承的磁极的吸引使顶层箔片适度变形,提高轴承中润滑气膜一侧的最高压力和防止润滑气流泄漏,提高转子抗受扰动偏心撞壁的能力,从而也提高了轴承的承载能力;
2)采用成本较低的压力传感器采集气体压力变化,通过简单的控制规律控制顶层箔片的变形,可提供较高转子阻尼,并提高了转子稳定性。在这样的简化控制下,轴承加工精度要求不高;
3)电磁轴承与气体轴承采用嵌套的并联式结构,缩短了气磁轴承的轴向长度,简化了结构,集成度高,提高了轴承的综合性能;
4)电磁轴承与气体轴承协同工作,改善了轴承在高速运转状态下的动态性能和稳定性;
5)轴承在低速时,动压气膜沿未建立,用电磁轴承使转子起浮,提高了气体轴承的低速性能;
本发明的气体轴承结构简单,操作简便,精度要求不高,实用性强,经济成本低。
附图说明
图1为本发明的电磁使能的主动式动压气体轴承的正视图;
图2为图1中A-A剖视图;
图3为图2中B放大图;
图4为本发明的电磁使能的主动式动压气体轴承的具有条形磁性材料的顶层箔片展开示意图;
图5为本发明的电磁使能的主动式动压气体轴承的具有点状磁性材料的顶层箔片展开示意图;
图6为本发明的电磁使能的主动式动压气体轴承的顶层箔片变形示意图。
具体实施方式
下面结合说明书附图对本发明的技术方案作进一步地描述。
如图1-2所示,本发明的一种电磁使能的主动式动压气体轴承,包括电磁轴承1、嵌套在电磁轴承1与转子轴2之间的弹性箔片轴承3、弹性箔片轴承座4、轴承壳体5、压力传感器6、左端盖7和右端盖8,其特征在于,所述的弹性箔片轴承3包括顶层弹性箔片31和底层弹性箔片32,所述的顶层弹性箔片31为非导磁材料,在顶层弹性箔片31的表面分布有多个各自独立的磁性材料区域。
所述的电磁轴承1位于弹性箔片轴承座4和轴承壳体5之间,所述的弹性箔片轴承座4用于安装底层弹性箔片32,所述的压力传感器6的探头穿过弹性箔片轴承座4用于测量底层弹性箔片32处的气体压力。所述的压力传感器6有8个,位于气体轴承的中部,沿气体轴承的周向匀布。所述的压力传感器6包括压力传感器盖61和压力传感器探头62。
所述的电磁轴承1包括磁极11和缠绕在磁极11上的线圈12,所述的磁极11有8个,每个磁极11为硅钢片叠压而成。磁极11安装在弹性箔片轴承座4和轴承壳体5之间,沿气体轴承的周向匀布,所述的磁极11的一端指向转子轴2的轴线,所述的左端盖7和右端盖8位于弹性箔 片轴承座4和轴承壳体5两端,将磁极11压紧。
所述的弹性箔片轴承座4、左端盖7和右端盖8的材料为非磁性的硬铝材料。
如图4-5所示,所述的顶层弹性箔片31的表面分布的磁性材料区域为条状磁性材料区域或点状磁性材料区域,多个条状磁性材料区域或点状磁性材料区域均匀分布,所述的条状磁性材料区域的长度方向与转子轴2的轴线方向平行。若整张顶层弹性箔片31完全覆盖磁性材料,则会大幅增加磁力加以控制时节流器薄板受力情况的复杂程度。若顶层弹性箔片31的柔性不足,则容易出现曲率随动变形的问题。
所述的顶层弹性箔片31为平箔片,所述的底层弹性箔片32为波箔片,所述的平箔片由非导磁材料的不锈钢带制成,在顶层弹性箔片31的表面遮喷多个各自独立的磁性材料区域后,用陶瓷涂层覆盖。顶层弹性箔片31也可以使用40%氧化锆+30%α氧化铝+30%铝酸镁尖晶石的陶瓷纳米微粉烧结制成薄板。
如图6所示,现实中转子轴2的截面不可能是一个理想圆,当不圆度在旋转过程中影响了气膜的压力时,气体轴承中的顶层弹性箔片31下移,下腔压力变大而上腔压力减小。
为降低转子轴精度而使轴承间隙增加后,转子轴2不圆度对气膜压力和分布的影响则也相应下降。所以当这种提高轴承间隙的动压气体轴承达到足够的转速完成开机并达到平衡态后,与间隙较小的轴承相比其轴承刚度和承载能力均有所下降。这时需要引入磁轴承的来弥补这一点。
当载荷负载在转子轴2上并使转子轴2逐渐下降接近顶层弹性箔片31时,电磁轴承1可以获得压力传感器6传来的气压增大的信号,开始介入工作。电磁轴承1并不完全是直接将磁力作用于转子轴2上使其悬浮,而是使用磁力将顶层弹性箔片31主动向上推动使之主动提高下腔压 力,适应转子轴2上负载的重量,自动重新分配轴承内各个方向上气流的压力。当转子轴2到达新的平衡位置时,电磁轴承1即停止工作,除非新的扰动发生。
当有外部冲击扰动发生时,转子轴2可能快速地接近顶层弹性箔片31。若此时气体轴承未能及时作出响应,则有可能导致因瞬时间隙过小使局部气体流速接近甚至达到音速,从而引发激波产生气锤自激现象发生。激波的产生会导致局部气体流动发生扰动和混乱,当流体速度在音速到亚音速之间变化时其压力呈阶梯式显著下降。这时流体动力的原理则与通常情况相反,转子轴2表面与顶层弹性箔片31间的流动间隙越小,压力反而越低。这种情况下则需要顶层弹性箔片31主动“避让”转子轴2的表面,制造出更大的流动间隙以使气流速度尽可能维持在亚音速区间,以维护其正常的流体压力。
在这种超出气体轴承自身的补偿能力的工况下,若想使气体轴承继续正常工作,就需要引入一个外力来重新调整顶层弹性箔片31与转子轴2之间的相对位置。相当于需要利用电磁轴承1的作用“强拉开”狭窄处转子轴2与顶层弹性箔片31之间的间隙。这时,则需要控制该方向上两端的磁极以相同的极性励磁。即间隙小的方向产生吸力,用于回吸顶层弹性箔片31,间隙大的方向上产生的吸力用于拉回转子轴2。利用两端磁力作用距离的差产生磁力差,以此拉动转子轴2恢复与顶层弹性箔片31之间的正常间隙,从而使气体轴承的气流和工况重新回到平衡状态。同等的情况如果发生在低工艺要求(间隙较大)的传统气磁混合轴承上,则会产生气体轴承由于失去自适应调节能力而使转子不断被气体压差压向轴套一侧,而电磁轴承则产生磁力试图“拉住”转子。两个轴承之间形成了互相的对抗。而此种情况下论轴承刚度往往是气体轴承比较强,故导致出现两套轴承体系之间不断“拉锯”产生大幅抖动、或“相持不 下”无法使转子轴恢复到正常工作状态,一直互相“僵着”等一系列严重影响轴承工作和性能的问题。
本发明的动压式气体轴承还需保留一套位移传感器。因为动压气体轴承没有外来气源的辅助,需要靠自身结构产生气源。所以这种以动压气体轴承为基础的气磁混合轴承往往需要保留“0起步”和“热车急停”的能力。即当转子转速很低或即将停车时,气体轴承的气源压力很低,无法完全负载转子的重量,这时则容易发生严重的磨损。所以这个阶段需要位移传感器的介入,主动使用电磁轴承将转子暂时托起,待转子转速上升至满足气体轴承载荷工况或已经下降到接近完成停车的理想工况后再切换其它工作状态。

Claims (7)

  1. 一种电磁使能的主动式动压气体轴承,包括电磁轴承(1)以及嵌套在电磁轴承(1)和转子轴(2)之间的弹性箔片轴承(3),其特征在于,所述的弹性箔片轴承(3)包括顶层弹性箔片(31)和底层弹性箔片(32),所述的顶层弹性箔片(31)为非导磁材料,在顶层弹性箔片(31)的表面分布有多个各自独立的磁性材料区域。
  2. 如权利要求1所述的一种电磁使能的主动式动压气体轴承,其特征在于,所述的磁性材料区域为条状磁性材料区域或点状磁性材料区域,多个条状磁性材料区域或点状磁性材料区域均匀分布,所述的条状磁性材料区域的长度方向与转子轴(2)的轴线方向平行。
  3. 如权利要求2所述的一种电磁使能的主动式动压气体轴承,其特征在于,所述的顶层弹性箔片(31)为平箔片,所述的底层弹性箔片(32)为波箔片,所述的平箔片由非导磁材料的不锈钢带制成,在顶层弹性箔片(31)的表面遮喷多个各自独立的磁性材料区域后,用陶瓷涂层覆盖。
  4. 如权利要求1-3任一一项所述的一种电磁使能的主动式动压气体轴承,其特征在于,还包括弹性箔片轴承座(4)、轴承壳体(5)和压力传感器(6),所述的电磁轴承(1)位于弹性箔片轴承座(4)和轴承壳体(5)之间,所述的弹性箔片轴承座(4)用于安装底层弹性箔片(32),所述的压力传感器(6)的探头穿过弹性箔片轴承座(4)用于测量底层弹性箔片(32)处的气体压力。
  5. 如权利要求4所述的一种电磁使能的主动式动压气体轴承,其特征在于,还包括左端盖(7)和右端盖(8),所述的电磁轴承(1)包括磁极(11)和缠绕在磁极(11)上的线圈(12),所述的磁极(11)有多个,安装在弹性箔片轴承座(4)和轴承壳体(5)之间,沿气体轴承的 周向匀布,所述的磁极(11)的一端指向转子轴(2)的轴线,所述的左端盖(7)和右端盖(8)位于弹性箔片轴承座(4)和轴承壳体(5)两端,将磁极(11)压紧。
  6. 如权利要求5所述的一种电磁使能的主动式动压气体轴承,其特征在于,所述的压力传感器(6)有8个,位于气体轴承的中部,沿气体轴承的周向匀布,所述的磁极(11)有8个,每个磁极(11)为硅钢片叠压而成。
  7. 如权利要求6所述的一种电磁使能的主动式动压气体轴承,其特征在于,所述的弹性箔片轴承座(4)、左端盖(7)和右端盖(8)的材料为硬铝材料。
PCT/CN2016/076386 2016-03-04 2016-03-15 一种电磁使能的主动式动压气体轴承 WO2017147949A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177029382A KR101905405B1 (ko) 2016-03-04 2016-03-15 전자기 이네이블 능동형 동압 기체 베어링
US15/558,425 US10520024B2 (en) 2016-03-04 2016-03-15 Electromagnetically enabled active dynamic pressure gas bearing
JP2017554041A JP6351873B2 (ja) 2016-03-04 2016-03-15 電磁イネーブル能動型動圧気体軸受
EP16892140.1A EP3273079B1 (en) 2016-03-04 2016-03-15 Electromagnetically enabled active dynamic pressure gas bearing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610125381.5A CN105545956B (zh) 2016-03-04 2016-03-04 一种电磁使能的主动式动压气体轴承
CN201610125381.5 2016-03-04

Publications (1)

Publication Number Publication Date
WO2017147949A1 true WO2017147949A1 (zh) 2017-09-08

Family

ID=55825390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/076386 WO2017147949A1 (zh) 2016-03-04 2016-03-15 一种电磁使能的主动式动压气体轴承

Country Status (6)

Country Link
US (1) US10520024B2 (zh)
EP (1) EP3273079B1 (zh)
JP (1) JP6351873B2 (zh)
KR (1) KR101905405B1 (zh)
CN (1) CN105545956B (zh)
WO (1) WO2017147949A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108868911A (zh) * 2018-01-12 2018-11-23 至玥腾风科技投资集团有限公司 一种发电系统及其控制方法
CN111431326A (zh) * 2020-03-13 2020-07-17 江苏理工学院 一种螺纹配合夹持式保护轴承装置
CN115126778A (zh) * 2022-06-15 2022-09-30 北京航空航天大学 一种动静压混合式箔片气体轴承

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108869541B (zh) * 2018-01-12 2024-04-02 刘慕华 一种径向轴承、转子系统及径向轴承的控制方法
CN108869540B (zh) * 2018-01-12 2024-06-25 刘慕华 一种推力轴承、转子系统及推力轴承的控制方法
CN108868893B (zh) * 2018-01-12 2024-04-02 刘慕华 一种转子系统及其控制方法和燃气轮机发电机组及其控制方法
CN108869558B (zh) * 2018-01-12 2024-04-02 刘慕华 一种轴承、转子系统及轴承的控制方法
CN110552960B (zh) * 2018-06-01 2024-05-17 刘慕华 一种推力轴承、转子系统及推力轴承的控制方法
CN110966094B (zh) * 2018-09-30 2024-04-02 刘慕华 一种转子系统及其控制方法和燃气轮机发电机组及其控制方法
CN109026397A (zh) * 2018-10-21 2018-12-18 至玥腾风科技投资集团有限公司 轴承润滑系统和微型燃气轮机发电机组
KR102097347B1 (ko) * 2019-07-16 2020-04-06 주식회사 뉴로스 에어 포일 저널 베어링
CN111102293A (zh) * 2020-01-18 2020-05-05 湖南大学 主被动磁气混合轴承
CN111457010B (zh) * 2020-03-24 2021-07-23 北京科技大学 一种磁气混合轴承
CN113266643B (zh) * 2021-05-18 2022-08-26 山东大学威海工业技术研究院 一种径轴一体化磁气混合轴承及其制作方法与应用
US11809839B2 (en) 2022-01-18 2023-11-07 Robert Lyden Computer language and code for application development and electronic and optical communication

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040066991A1 (en) * 2002-10-03 2004-04-08 R & D Dynamics Corporation High load capacity foil thrust bearings
US20080310779A1 (en) * 2007-06-18 2008-12-18 Agrawal Giridhari L Restrained, reverse multi-pad bearing assembly
CN101403414A (zh) * 2008-10-23 2009-04-08 西安交通大学 一种带预紧的电磁-弹性箔片气体组合轴承
CN101799044A (zh) * 2010-03-08 2010-08-11 西安交通大学 一种串联排列的电磁-弹性箔片混合轴承
CN101881300A (zh) * 2010-03-05 2010-11-10 西安交通大学 一种镶嵌式的电磁-弹性箔片气体混合轴承
CN205388095U (zh) * 2016-03-04 2016-07-20 至玥腾风科技投资有限公司 一种电磁使能的主动式动压气体轴承

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5519274A (en) * 1994-09-07 1996-05-21 Rotodynamics-Seal Research, Inc. Magnetically active foil bearing
US5714818A (en) * 1994-10-18 1998-02-03 Barber-Colman Company Backup bearing for magnetic bearings
WO1997002437A1 (en) * 1995-06-30 1997-01-23 Alliedsignal Inc. Hybrid foil/magnetic bearing
JPH0942289A (ja) * 1995-07-24 1997-02-10 Mechanical Technol Inc ハイブリッド磁気/ホイル・ガス・ベアリング
US6024491A (en) * 1998-09-25 2000-02-15 Williams International Company, L.L.C. Air bearing
US6469411B2 (en) * 2000-12-15 2002-10-22 Magnetal Ab Compliant foil fluid film bearing with eddy current damper
JP2003074550A (ja) * 2001-09-05 2003-03-12 Mitsubishi Heavy Ind Ltd フォイルガス軸受
JP2004084877A (ja) * 2002-08-28 2004-03-18 Honda Motor Co Ltd フォイル軸受け
US20060208589A1 (en) * 2004-08-16 2006-09-21 Foshage Gerald K Integrated magnetic/foil bearing and methods for supporting a shaft journal using the same
KR100600668B1 (ko) * 2004-10-18 2006-07-13 한국과학기술연구원 다공성 포일을 갖는 공기 포일 베어링
KR100655366B1 (ko) * 2005-07-04 2006-12-08 한국과학기술연구원 내열, 내마모, 저마찰 특성을 가지는 코팅제 및 이의코팅방법
CN1730959A (zh) * 2005-08-19 2006-02-08 南京航空航天大学 磁气混合轴承及弹性箔片制作方法
JP2008151209A (ja) * 2006-12-15 2008-07-03 Jtekt Corp 磁気軸受装置
CN100588846C (zh) * 2007-05-30 2010-02-10 哈尔滨工业大学 可调悬臂式动压气体弹性箔片轴承
CN101225853B (zh) * 2008-02-01 2010-06-02 西安交通大学 一种具有稳定性自适应调节功能的动压气体弹性箔片轴承
US9291815B2 (en) * 2012-05-07 2016-03-22 Panasonic Intellectual Property Management Co., Ltd. Optical reflection element
US20150362012A1 (en) * 2012-11-02 2015-12-17 Yury Ivanovich Ermilov Foil bearing assembly
CN103256080A (zh) * 2013-05-02 2013-08-21 北京化工大学 一种带密封功能的电磁控制器
JP2015090165A (ja) * 2013-11-05 2015-05-11 トヨタ自動車株式会社 電動機
CN103867571B (zh) * 2014-01-21 2017-07-25 中南林业科技大学 具有轴向可变刚度和粘弹性结构的动压气体径向轴承
HUE046304T2 (hu) * 2015-05-19 2020-02-28 Lifeng Luo Hornyolt típusú, dinamikus nyomású gázzal kent radiális csapágy

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040066991A1 (en) * 2002-10-03 2004-04-08 R & D Dynamics Corporation High load capacity foil thrust bearings
US20080310779A1 (en) * 2007-06-18 2008-12-18 Agrawal Giridhari L Restrained, reverse multi-pad bearing assembly
CN101403414A (zh) * 2008-10-23 2009-04-08 西安交通大学 一种带预紧的电磁-弹性箔片气体组合轴承
CN101881300A (zh) * 2010-03-05 2010-11-10 西安交通大学 一种镶嵌式的电磁-弹性箔片气体混合轴承
CN101799044A (zh) * 2010-03-08 2010-08-11 西安交通大学 一种串联排列的电磁-弹性箔片混合轴承
CN205388095U (zh) * 2016-03-04 2016-07-20 至玥腾风科技投资有限公司 一种电磁使能的主动式动压气体轴承

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108868911A (zh) * 2018-01-12 2018-11-23 至玥腾风科技投资集团有限公司 一种发电系统及其控制方法
CN108868911B (zh) * 2018-01-12 2024-03-19 刘慕华 一种发电系统及其控制方法
CN111431326A (zh) * 2020-03-13 2020-07-17 江苏理工学院 一种螺纹配合夹持式保护轴承装置
CN111431326B (zh) * 2020-03-13 2022-05-13 江苏理工学院 一种螺纹配合夹持式保护轴承装置
CN115126778A (zh) * 2022-06-15 2022-09-30 北京航空航天大学 一种动静压混合式箔片气体轴承
CN115126778B (zh) * 2022-06-15 2023-09-12 北京航空航天大学 一种动静压混合式箔片气体轴承

Also Published As

Publication number Publication date
EP3273079A1 (en) 2018-01-24
JP6351873B2 (ja) 2018-07-04
KR20180008412A (ko) 2018-01-24
JP2018513324A (ja) 2018-05-24
CN105545956B (zh) 2019-05-14
EP3273079A4 (en) 2018-10-03
CN105545956A (zh) 2016-05-04
US10520024B2 (en) 2019-12-31
EP3273079B1 (en) 2019-08-14
US20190120292A1 (en) 2019-04-25
KR101905405B1 (ko) 2018-10-08

Similar Documents

Publication Publication Date Title
WO2017147949A1 (zh) 一种电磁使能的主动式动压气体轴承
Breńkacz et al. Research and applications of active bearings: A state-of-the-art review
CN108869540B (zh) 一种推力轴承、转子系统及推力轴承的控制方法
EP0875685B1 (en) Combined externally pressurized gas-magnetic bearing assembly and spindle device utilizing the same
CN205388095U (zh) 一种电磁使能的主动式动压气体轴承
CN104896101B (zh) 一种波箔型箔片端面气膜密封结构
JP7052048B2 (ja) ロータシステム及びその制御方法並びにガスタービン発電機ユニット及びその制御方法
CN108869558B (zh) 一种轴承、转子系统及轴承的控制方法
CN102927124B (zh) 一种多层鼓泡箔片径向动压气体轴承
CN104913064B (zh) 一种悬臂型箔片端面气膜密封结构
WO2019137025A1 (zh) 一种径向轴承、转子系统及径向轴承的控制方法
CN208935164U (zh) 一种转子系统
CN101275605A (zh) 一种油膜厚度可调的静压轴承及其调节方法
WO2019137024A1 (zh) 一种推力轴承、转子系统及推力轴承的控制方法
CN110552746A (zh) 一种转子系统和燃气轮机发电机组
CN207906280U (zh) 一种具有厚顶层箔片结构的止推箔片动压空气轴承
CN105605097A (zh) 机械可调间隙半主动径向滑动轴承
CN110276136B (zh) 一种止推板、止推板设计方法及空气静压轴承
Yang et al. Dynamic characteristics of hybrid foil-magnetic bearings (HFMBs) concerning eccentricity effect
JP4706523B2 (ja) 燃料電池用圧縮機
CN110925309A (zh) 一种气膜形状主动控制的气浮轴承
CN109404059B (zh) 一种端柱面结合的双作用柔性支承干气密封装置
CN210195825U (zh) 一种端柱面结合的双作用柔性支承干气密封装置
CN203627389U (zh) 一种带电磁补偿的恒力输出气浮装置
CN108868911B (zh) 一种发电系统及其控制方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20177029382

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017554041

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE