WO2017146068A1 - アンテナ装置および位置検出システム - Google Patents

アンテナ装置および位置検出システム Download PDF

Info

Publication number
WO2017146068A1
WO2017146068A1 PCT/JP2017/006439 JP2017006439W WO2017146068A1 WO 2017146068 A1 WO2017146068 A1 WO 2017146068A1 JP 2017006439 W JP2017006439 W JP 2017006439W WO 2017146068 A1 WO2017146068 A1 WO 2017146068A1
Authority
WO
WIPO (PCT)
Prior art keywords
beacon
antenna device
modules
data
reception
Prior art date
Application number
PCT/JP2017/006439
Other languages
English (en)
French (fr)
Inventor
和典 池田
康治 冨満
Original Assignee
Necソリューションイノベータ株式会社
株式会社シスウェーブ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necソリューションイノベータ株式会社, 株式会社シスウェーブ filed Critical Necソリューションイノベータ株式会社
Priority to JP2018501716A priority Critical patent/JP6611218B2/ja
Publication of WO2017146068A1 publication Critical patent/WO2017146068A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/06Position of source determined by co-ordinating a plurality of position lines defined by path-difference measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path

Definitions

  • the present invention relates to an antenna device for receiving radio waves from a beacon attached to a person or an object, and a position detection system using the antenna device.
  • Bluetooth registered trademark
  • BLE Battery Energy
  • Bluetooth is one of the extended specifications of “Bluetooth”, which is a short-range wireless communication technology, and is called version 4.0.
  • BLE is independent of the specifications established in Bluetooth up to version 3.0, and enables communication with extremely low power.
  • BLE is a communication standard between two devices, a broadcast for unilaterally transmitting data from one specific device to another device, and a connection for transmitting / receiving data between the devices. Is defined. Further, in BLE, communication between devices is possible without performing pairing required until version 3.0.
  • BLE is expected to be used in fields not used in Bluetooth up to version 3.0.
  • a person or object position detection system using BLE has been proposed (see, for example, Non-Patent Document 1).
  • Non-Patent Document 1 includes a beacon, a plurality of receivers, and a computer connected to each receiver.
  • a beacon is attached to a person or an object to be detected, and transmits a BLE radio wave.
  • the receiver receives radio waves and transmits data specifying the intensity of the received radio waves to the computer.
  • the computer identifies the strength of the radio wave received by each receiver based on the data from each receiver, and further calculates the distance between each receiver and the beacon based on the identified strength. And a computer specifies the position of a beacon using the position of each receiver and the distance from each receiver to a beacon.
  • Non-Patent Document 1 As described above, according to the system disclosed in Non-Patent Document 1, it is possible to easily detect these positions simply by attaching a beacon to a person or an object to be detected.
  • the system disclosed in Non-Patent Document 1 is effective for confirming the location of employees and goods in buildings, airports, retail stores, and the like.
  • Non-Patent Document 1 the calculation of the distance between the receiver and the beacon is performed based on the intensity (reception sensitivity) of the received radio wave, so that the accuracy of position detection can be improved. There is a problem that it is difficult. The reason for this will be described below.
  • the phase of the reflected wave is exactly 180 degrees, the incident wave and the reflected wave cancel each other, and the signal is attenuated. Conversely, if the phases of the incident wave and the reflected wave match, the signal is amplified. And since the frequency of the radio wave used in BLE is 2.5 GHz, the wavelength is 120 cm. For this reason, when the receiver receives a reflected wave whose phase is different from the incident wave by (60 + n ⁇ 120) cm, the reception sensitivity is greatly attenuated. On the other hand, when the receiver receives a reflected wave whose phase is different from the incident wave by (n ⁇ 120) cm, the reception sensitivity is amplified. As a result, since the reception sensitivity results in a wave, it is difficult to estimate the distance only with the reception sensitivity.
  • Patent Documents 1 and 2 specify the direction of a radio wave transmitted from a mobile body by installing a multi-sector antenna having a plurality of antennas at a base station where a receiver is installed.
  • Technology is disclosed. According to the technique disclosed in Patent Document 1 or 2, it is considered that the accuracy of position detection can be improved as compared with the case where the system disclosed in Non-Patent Document 1 is used.
  • the multi-sector antennas used in Patent Documents 1 and 2 have a complicated structure and are very expensive. Therefore, when a multi-sector antenna is used in the position detection system, the introduction cost is greatly increased. In addition, the multi-sector antenna is large and requires a certain amount of site for installation. Therefore, it is difficult to introduce a position detection system using a multi-sector antenna into a building, an airport, a retail store, or the like.
  • An example of the object of the present invention is to provide an antenna device and a position detection system capable of solving the above-mentioned problems and improving the accuracy of detecting the position of a beacon while suppressing introduction cost and installation space.
  • an antenna device provides: Two or more receiving modules that receive radio waves of a specific wavelength from a beacon; A substrate for arranging the receiving modules on the same plane; A shielding member that shields the receiving modules from each other so that the incident direction of the radio wave is limited for each receiving module; It is characterized by having.
  • a position detection system includes: An antenna device that receives radio waves of a specific wavelength from a beacon attached to a moving body and generates data for specifying the position of the beacon; A server device that detects the position of the beacon based on the data generated by the antenna device; and The antenna device is Two or more receiving modules that receive the radio waves from a beacon that emits radio waves of a specific wavelength; A substrate for arranging the receiving modules on the same plane; A shielding member that shields the receiving modules from each other so that the incident direction of the radio wave is limited for each receiving module; A data generation unit that generates data for specifying the position of the beacon based on the reception sensitivity of the radio wave received by each of the reception modules and the position of each of the reception modules; It is characterized by that.
  • FIG. 1 is a perspective view showing a configuration of an antenna device according to Embodiment 1 of the present invention.
  • FIG. 2 is a perspective view showing the configuration of the position detection system according to Embodiment 1 of the present invention.
  • FIG. 3 is a flowchart showing the operation of the position detection system according to Embodiment 1 of the present invention.
  • FIG. 4 is a perspective view showing the configuration of the antenna device according to Embodiment 2 of the present invention.
  • FIG. 5 is a diagram for explaining the beacon azimuth specifying process by the antenna device according to the second embodiment of the present invention.
  • FIG. 6 is a perspective view showing the configuration of the position detection system according to Embodiment 2 of the present invention.
  • FIG. 7 is a diagram for explaining the position detection process of the server device according to the second embodiment of the present invention.
  • FIG. 8 is a block diagram illustrating an example of a computer that implements the server device according to Embodiments 1 and 2 of the present invention.
  • Embodiment 1 an antenna device and a position detection system according to Embodiment 1 of the present invention will be described with reference to FIGS.
  • FIG. 1 is a perspective view showing a configuration of an antenna device according to Embodiment 1 of the present invention.
  • the antenna device 10 in the present embodiment shown in FIG. 1 is a device that receives radio waves of a specific wavelength from a beacon and generates data for specifying the position of the beacon.
  • the antenna device 10 includes two or more receiving modules 11, a substrate 12, and a shielding member 13.
  • 14 is a data generation unit
  • 15 is a data transmission unit
  • 16 is a substrate, which will be described later.
  • the receiving module 11 is a module that receives radio waves of a specific wavelength from a beacon (not shown in FIG. 1).
  • the substrate 12 has the receiving modules 11 arranged on the same plane.
  • the shielding member 13 shields the receiving modules from each other so that the receiving direction of radio waves is limited for each receiving module 11.
  • the antenna device 10 is configured by arranging the plurality of receiving modules 11 on the substrate 12 and shielding them from each other, and has a simple structure.
  • the antenna device 10 can be easily downsized by this configuration. For this reason, according to this Embodiment, introduction cost and installation space can be reduced.
  • the incident direction of the radio wave that can be received by each receiving module 11 is limited by the shielding member 13, and the ratio of the receiving sensitivity between the receiving modules 11 varies depending on the position of the beacon. For this reason, since the position of the beacon can be specified using not only the magnitude of the reception sensitivity but also the ratio of the reception sensitivity, the accuracy of position detection is improved.
  • FIG. 2 is a perspective view showing the configuration of the position detection system according to Embodiment 1 of the present invention.
  • the position detection system 100 includes an antenna device 10 and a server device 20.
  • the position detection system 100 detects the position of the beacon 30 using BLE.
  • the position detection system 100 may use another wireless standard other than BLE.
  • the number of antenna devices 10 is one, but a plurality of antenna devices 10 may be used.
  • the beacon 30 is attached to a moving body (not shown in FIG. 2) and transmits radio waves having a specific wavelength.
  • the beacon 30 since BLE is utilized, the beacon 30 transmits the radio wave of BLE to which its own MAC address is added.
  • the number of beacons 30 is not particularly limited.
  • the moving object to which the beacon 30 is attached includes a person, an animal, and an object.
  • the thing may be a thing that can be self-propelled, or a thing that is carried by a person, an animal, or another thing that can self-propell.
  • examples of the goods include luggage handled at airports, shopping carts used at shopping centers, various products, and the like.
  • the position detection system 100 can detect the position of the shopper at the shopping center.
  • the antenna device 10 includes a data generation unit 14 and a data transmission unit 15 in addition to the reception module 11, the substrate 12, and the shielding member 13. ing.
  • the data generation unit 14 represents data for identifying the position of the beacon (hereinafter referred to as “position data”) based on the reception sensitivity of the radio wave received by each of the reception modules 11 and the position of each of the reception modules 11. ) Is generated.
  • the data generation unit 14 uses, as position data, data including reception sensitivity in each of the two reception modules 11, information indicating the position of each reception module, and the MAC address transmitted by the beacon 30. Generate. Moreover, the data generation part 14 is realizable with computers, such as a microcomputer, for example.
  • the data transmission unit 15 transmits the position data generated by the data generation unit 14 to the server device 30.
  • the data transmission unit 15 can be realized by, for example, a communication device that realizes data communication with the server device 20 by wire or wireless.
  • a communication device that realizes data communication with the server device 20 by a wireless LAN is used as the data transmission unit 15.
  • radio waves in the 2.5 GHz band are used in the same manner as in BLE, so that interference may occur.
  • the data generation unit 14 and the data transmission unit 15 are mounted on a substrate 16 different from the substrate 12 on which the reception module 11 is mounted, and a certain distance is secured between the substrate 12 and the substrate 16. Is done.
  • substrate 16 is suitably set so that interference may not arise.
  • the receiving module 11 is a BLE wireless module, and the number thereof is two.
  • the shielding member 13 is formed so that the incident direction of the radio wave in one receiving module 11 and the incident direction of the radio wave in the other receiving module 11 are opposite to each other.
  • the shielding member 13 is arranged so as to divide the two receiving modules 11. Therefore, due to the shielding member 13, only the radio wave emitted from the area A side is incident on one receiving module, and only the radio wave emitted from the area B side is incident on the other receiving module 11. .
  • the server device 20 receives the position data generated and transmitted from the antenna device 10. Then, the position of the beacon 30 is detected based on the position data received by the antenna device 10.
  • the server apparatus 20 calculates
  • FIG. 3 is a flowchart showing the operation of the position detection system according to Embodiment 1 of the present invention.
  • FIGS. 1 and 2 are referred to as appropriate.
  • the antenna device 10 receives radio waves from the beacon 30, periodically generates position data, and transmits it.
  • the server apparatus 20 acquires the position data transmitted from the antenna apparatus 10 (step A1).
  • the server device 20 detects the position of the beacon 30 based on the position data acquired in step A1 (step A2).
  • the server device 20 specifies the mobile object to which the beacon 30 is attached from the MAC address included in the position data. Further, the server device 20 obtains the ratio of both from the reception sensitivity of each receiving module 11 included in the position data, and determines the area where the beacon 30 exists from the obtained ratio and information indicating the position of each receiving module. Identify. In addition, the server device 20 calculates the distance from the beacon 30 to the antenna device 10 based on the reception sensitivity of each reception module 11.
  • the server device 20 transmits the detection result of the position of the beacon 30 to an external terminal device, another external server device, or the like (step A3). Thereby, the user can confirm the position of the moving body to which the beacon 30 is attached.
  • the server device 20 can be realized by installing a program for executing steps A1 to A3 shown in FIG. 3 in a computer and executing the program.
  • the program may be executed by a computer system constructed by a plurality of computers.
  • the antenna device 10 can be easily downsized, and the introduction cost and installation space can be reduced. Further, in this embodiment, since the BLE radio wave is used, the wavelength of the radio wave is short, and attenuation or amplification occurs and the situation is low. However, in the present embodiment, the position of the beacon 30 is determined using not only the magnitude of the reception sensitivity but also the ratio of the reception sensitivity, so the position of the beacon 30 is determined only by the magnitude of the reception sensitivity. Compared with the technique disclosed in Non-Patent Document 1 described above, the accuracy of position detection is improved.
  • Embodiment 2 Next, an antenna device and a position detection system according to Embodiment 2 of the present invention will be described with reference to FIGS.
  • FIG. 4 is a perspective view showing the configuration of the antenna device according to Embodiment 2 of the present invention.
  • the antenna device 40 according to the second embodiment is similar to the antenna device 10 shown in FIG. 1 in that the receiving module 41, the substrate 42, the shielding member 43, the data generation unit 44, And a data transmission unit 45.
  • the antenna device 40 includes three or more receiving modules 41, and is different from the antenna device 10 in the first embodiment in this respect.
  • the difference will be mainly described.
  • each receiving module 41 is arranged on the circumference of a virtual circle (not shown in FIG. 1) on the substrate 42. Further, the shielding member 43 is formed radially from the center of the virtual circle so that the receiving directions of the radio waves of the receiving modules 41 arranged on the circumference are different.
  • the shielding member 43 includes vertical members 43a to 43f arranged radially on the substrate 42 and ceiling members 43g to 43l.
  • Each receiving module 41 is disposed in a region between two vertical members, and the upper surface of each receiving module 41 is covered with ceiling members 43g to 43l.
  • the incident directions of the radio waves of the six receiving modules 41 are different from each other, and the incident areas of the radio waves are arranged on the circumference. Therefore, if the reception sensitivities of the six reception modules 41 are used, the direction in which the beacon 30 exists can be specified within a range of 360 degrees centering on the antenna device 40.
  • the data generation unit 44 determines the beacon direction with respect to a specific direction based on the reception sensitivity of the radio wave received by each reception module 41 and the positional relationship of each reception module 41. Is calculated. Then, the data generation unit 44 generates data specifying the calculated azimuth as the position data.
  • the data generation unit 44 selects the second and third reception modules having the highest reception sensitivity from among the top three reception modules 41, and compares the reception sensitivity ratio between the two. Ask for.
  • the data generation unit 44 includes a digital compass that detects a specific direction serving as a reference. Then, the data generation unit 44 calculates the beacon direction based on the absolute direction based on the obtained ratio and the specific direction (absolute direction) detected by the digital compass.
  • FIG. 5 is a diagram for explaining the beacon azimuth specifying process by the antenna device according to the second embodiment of the present invention.
  • the substrate 42 and the ceiling members 43g to 43l are not shown.
  • the radio wave transmitted by the beacon 30 is received by the receiving modules 41a to 41c among the receiving modules 41a to 41f.
  • the reception sensitivity is highest in the reception module 41c, and increases in the order of the reception modules 41a, 41b, and 41c.
  • the receiving module 41a has a receiving sensitivity with respect to the receiving sensitivity of the receiving module 41b.
  • the reception sensitivity ratio R ab is expressed by the following equation (1). Therefore, the azimuth ⁇ of the beacon is calculated from the following formula 2.
  • the direction of the reference line 47 is a specific direction detected by the digital compass. Sa is the reception sensitivity of the reception module 41a, and Sb is the reception sensitivity of the reception module 41b.
  • the data generation unit 44 calculates the azimuth ⁇ of the beacon using the above formulas 1 and 2. Also in the second embodiment, in order to prevent interference, the data generation unit 44 and the data transmission unit 45 are mounted on a substrate 46 different from the substrate 42 on which the reception module 41 is mounted. A certain distance is secured between the substrate 46 and the substrate 46.
  • FIG. 6 is a perspective view showing the configuration of the position detection system according to Embodiment 2 of the present invention.
  • the position detection system 200 also includes an antenna device 40 and a server device 50 in the same manner as the position detection system 100 shown in FIG. 2, and detects the position of the beacon 30. Execute.
  • the position detection system 200 according to the second embodiment differs from the position detection system 100 shown in FIG. 2 in that two or more antenna devices are used and the configuration of the antenna device 40.
  • the process in the server apparatus 50 differs from the process in the server apparatus 20 shown in FIG.
  • the difference will be mainly described.
  • the server device 50 acquires position data specifying the azimuth for the same beacon 30 from at least two antenna devices 40. Then, the server device 50 detects the position of the beacon 30 based on the acquired position data specifying the azimuth.
  • FIG. 7 is a diagram for explaining the position detection process of the server device according to the second embodiment of the present invention.
  • the beacon 30 and the antenna device 40 are each shown in a circle for the sake of explanation.
  • One antenna device 40 is indicated by a point A
  • the other antenna device 40 is indicated by a point B
  • the beacon 30 is indicated by a point C.
  • one antenna device 40 calculates ⁇ ac as the direction of the beacon 30 and the other antenna device 40 calculates ⁇ bc as the direction of the beacon 30.
  • ⁇ ac and ⁇ bc are angles based on the absolute direction as described above.
  • dAB is measured in advance.
  • D 1 represents the distance from the point A to the point C
  • d 2 represents the shortest distance from the extended line connecting the point A and the point B to the point C
  • d 3 represents the distance from the point B to the point C.
  • the coordinates of the point C are represented by (X c , Y c ) with the point A as the origin.
  • the server device 50 acquires the position data transmitted by each antenna device 40 and specifies ⁇ ac and ⁇ bc as the azimuth of the beacon 30 from the acquired position data. Then, the server device 50 calculates the coordinates (X c , Y c ) of the point C by applying the specified ⁇ ac and ⁇ bc to the following equations 3 to 12.
  • the server device 50 also executes processing along the flow shown in FIG. That is, also in the second embodiment, the server device 50 first acquires the position data, and then detects the position of the beacon. Also in the second embodiment, the position detection method is implemented by operating the server device 50.
  • the server device 50 can be realized by installing and executing a program for executing steps A1 to A3 shown in FIG. 3 in a computer. Also in the second embodiment, the program may be executed by a computer system constructed by a plurality of computers.
  • the position of the beacon is calculated only by the ratio of the reception sensitivity in the reception module. For this reason, according to the second embodiment, the accuracy of position detection is further improved.
  • FIG. 8 is a block diagram illustrating an example of a computer that implements the server device according to Embodiments 1 and 2 of the present invention.
  • the computer 110 includes a CPU 111, a main memory 112, a storage device 113, an input interface 114, a display controller 115, a data reader / writer 116, and a communication interface 117. These units are connected to each other via a bus 121 so that data communication is possible.
  • the CPU 111 performs various operations by developing the program (code) in the present embodiment stored in the storage device 113 in the main memory 112 and executing them in a predetermined order.
  • the main memory 112 is typically a volatile storage device such as a DRAM (Dynamic Random Access Memory).
  • the program in the present embodiment is provided in a state of being stored in a computer-readable recording medium 120. Note that the program in the present embodiment may be distributed on the Internet connected via the communication interface 117.
  • the storage device 113 includes a hard disk drive and a semiconductor storage device such as a flash memory.
  • the input interface 114 mediates data transmission between the CPU 111 and an input device 118 such as a keyboard and a mouse.
  • the display controller 115 is connected to the display device 119 and controls display on the display device 119.
  • the data reader / writer 116 mediates data transmission between the CPU 111 and the recording medium 120, and reads a program from the recording medium 120 and writes a processing result in the computer 110 to the recording medium 120.
  • the communication interface 117 mediates data transmission between the CPU 111 and another computer.
  • the recording medium 120 include general-purpose semiconductor storage devices such as CF (Compact Flash (registered trademark)) and SD (Secure Digital), magnetic storage media such as a flexible disk, or CD- Optical storage media such as ROM (Compact Disk Read Only Memory) are listed.
  • CF Compact Flash
  • SD Secure Digital
  • magnetic storage media such as a flexible disk
  • CD- Optical storage media such as ROM (Compact Disk Read Only Memory) are listed.
  • An antenna device comprising:
  • the number of the receiving modules is 3 or more; Each of the receiving modules is arranged on the circumference of a virtual circle in the substrate, The shielding member is formed radially from the center of the circle, The antenna device according to appendix 1.
  • An antenna device that receives radio waves of a specific wavelength from a beacon attached to a moving body and generates data for specifying the position of the beacon;
  • a server device that detects the position of the beacon based on the data generated by the antenna device; and
  • the antenna device is Two or more receiving modules that receive the radio waves from a beacon that emits radio waves of a specific wavelength;
  • a substrate for arranging the receiving modules on the same plane;
  • a shielding member that shields the receiving modules from each other so that the incident direction of the radio wave is limited for each receiving module;
  • a data generation unit that generates data for specifying the position of the beacon based on the reception sensitivity of the radio wave received by each of the reception modules and the position of each of the reception modules;
  • a position detection system characterized by that.
  • the number of the receiving modules is 3 or more; Each of the receiving modules is arranged on the circumference of a virtual circle in the substrate, The shielding member is formed radially from the center of the circle, The position detection system according to attachment 3.
  • the data generation unit calculates the azimuth of the beacon based on a specific direction based on the reception sensitivity of the radio wave received by each of the reception modules and the position of each of the reception modules, and as the data, Generate data specifying the calculated orientation,
  • the server device acquires data specifying the azimuth for the same beacon from at least two antenna devices, and detects the position of the beacon based on the acquired data specifying the azimuth.
  • the position detection system according to attachment 4.
  • the present invention is useful for detecting the position of luggage handled at airports, shopping carts used at shopping centers, and various products.
  • Antenna device (Embodiment 1) DESCRIPTION OF SYMBOLS 11 Reception module 12 Board

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

アンテナ装置10は、ビーコンからの特定の波長の電波を受信する2つ以上の受信モジュール11と、受信モジュール11それぞれを同一面上に配置する、基板12と、受信モジュール11毎に、電波の入射方向が制限されるように、受信モジュールそれぞれを互いに遮蔽する遮蔽部材13と、を備えている。

Description

アンテナ装置および位置検出システム
 本発明は、人又は物に取り付けられたビーコンからの電波を受信するためのアンテナ装置、及びこれを用いた位置検出システムに関する。
 「Bluetooth(登録商標) Low Energy(以下「BLE」と表記する。)」は、近距離無線通信技術である「Bluetooth」の拡張仕様の一つであり、バージョン4.0と呼ばれている。BLEは、バージョン3.0までのBluetoothで策定されている仕様から独立しており、極低電力での通信を可能としている。
 そして、BLEは、2つのデバイス間の通信規格として、特定の1つのデバイスから別のデバイスに対して一方的にデータを送信するためのブロードキャストと、デバイス間で相互にデータを送受信するためのコネクションとを定義している。また、BLEでは、バージョン3.0までで必要とされていたペアリングを行うことなく、デバイス間の通信が可能となる。
 このため、BLEは、バージョン3.0までのBluetoothで用いられなかった分野での利用が期待されている。例えば、BLEを利用した人又は物の位置検出システムが提案されている(例えば、非特許文献1参照)。
 非特許文献1に開示されたシステムは、ビーコンと、複数台の受信機と、各受信機に接続されたコンピュータとで構成されている。ビーコンは、検出対象となる人又は物に取り付けられ、BLEの電波を発信する。受信機は、ビーコンが受信エリア内に入ると、電波を受信し、受信した電波の強度を特定するデータを、コンピュータに送信する。
 コンピュータは、各受信機からのデータに基づいて、各受信機で受信した電波の強度を特定し、更に、特定した強度に基づいて、各受信機とビーコンとの距離を算出する。そして、コンピュータは、受信機それぞれの位置と、各受信機からビーコンまでの距離とを用いて、ビーコンの位置を特定する。
 このように、非特許文献1に開示されたシステムによれば、検出対象となる人又は物にビーコンを取り付けるだけで、簡単に、これらの位置を検出することができる。非特許文献1に開示されたシステムは、例えば、ビル、空港、小売店等における従業員及び物品の所在確認に有効である。
 しかしながら、非特許文献1に開示されたシステムでは、受信機とビーコンとの距離の算出は、受信電波の強度(受信感度)に基づいて行われているため、位置検出の精度を向上させることが難しいという問題がある。この理由について以下に述べる。
 例えば、反射波の位相がちょうど180度ずれると、入射波と反射波とは打ち消し合い、信号は減衰する。逆に、入射波と反射波との位相が合致した場合は、信号は増幅されてしまう。そして、BLEで使用する電波の周波数は2.5GHzであるので、波長は120cmとなる。このため、受信機が、入射波と位相が(60+n×120)cmだけ違う反射波を受信すると、受信感度は大きく減衰する。一方、受信機が、入射波と位相が(n×120)cm違う反射波を受信すると、受信感度は増幅することとなる。結果、受信感度は波を打つ結果となるので、受信感度だけで距離を推定するのは、難しくなる。
 これに対して、特許文献1及び2には、受信機が設置された基地局に、複数のアンテナを備えたマルチセクタアンテナを設置することによって、移動体から発信された電波の方向を特定する技術が開示されている。特許文献1または2に開示された技術によれば、非特許文献1に開示されたシステムを用いる場合よりも、位置検出の精度の向上が図られると考えられる。
特開2001-147262号公報 特開2013-195213号公報
"Blu-trail -Realtime Things Management",[online],jibemobile,[平成28年1月29日検索],インターネット<URL:http://www.jibemobile.jp/products/blu-trail/>
 しかしながら、上記特許文献1及び2で用いられるマルチセクタアンテナは、複雑な構造を備えており、非常に高価である。従って、位置検出システムにおいて、マルチセクタアンテナを用いた場合は、導入コストが大きく上昇してしまう。また、マルチセクタアンテナは大型であり、設置のためには、ある程度の敷地が必要となる。従って、マルチセクタアンテナを用いた位置検出システムを、ビル、空港、小売店等に導入することは困難である。
 本発明の目的の一例は、上記問題を解消し、導入コスト及び設置スペースを抑えつつ、ビーコンの位置検出の精度の向上を図り得る、アンテナ装置及び位置検出システムを提供することにある。
 上記目的を達成するため、本発明の一側面におけるアンテナ装置は、
 ビーコンからの特定の波長の電波を受信する2つ以上の受信モジュールと、
 前記受信モジュールそれぞれを同一面上に配置する、基板と、
 前記受信モジュール毎に、前記電波の入射方向が制限されるように、前記受信モジュールそれぞれを互いに遮蔽する遮蔽部材と、
を備えていることを特徴とする。
 また、上記目的を達成するため、本発明の一側面における位置検出システムは、
 移動体に取り付けられるビーコンからの特定の波長の電波を受信して、前記ビーコンの位置を特定するためのデータを生成する、アンテナ装置と、
 前記アンテナ装置で生成された前記データに基づいて、前記ビーコンの位置を検出する、サーバ装置と、を備え、
 前記アンテナ装置は、
特定の波長の電波を発するビーコンからの前記電波を受信する2つ以上の受信モジュールと、
前記受信モジュールそれぞれを同一面上に配置する、基板と、
前記受信モジュール毎に、前記電波の入射方向が制限されるように、前記受信モジュールそれぞれを互いに遮蔽する遮蔽部材と、
前記受信モジュールそれぞれによって受信された電波の受信感度と、前記受信モジュールそれぞれの位置とに基づいて、前記ビーコンの位置を特定するためのデータを生成する、データ生成部と、を備えている、
ことを特徴とする。
 以上のように本発明によれば、導入コスト及び設置スペースを抑えつつ、ビーコンの位置検出の精度の向上を図ることができる。
図1は、本発明の実施の形態1におけるアンテナ装置の構成を示す斜視図である。 図2は、本発明の実施の形態1における位置検出システムの構成を示す斜視図である。 図3は、本発明の実施の形態1における位置検出システムの動作を示すフロー図である。 図4は、本発明の実施の形態2におけるアンテナ装置の構成を示す斜視図である。 図5は、本発明の実施の形態2におけるアンテナ装置によるビーコンの方位の特定処理を説明するための図である。 図6は、本発明の実施の形態2における位置検出システムの構成を示す斜視図である。 図7は、本発明の実施の形態2におけるサーバ装置の位置検出処理を説明するための図である。 図8は、本発明の実施の形態1及び2におけるサーバ装置を実現するコンピュータの一例を示すブロック図である。
(実施の形態1)
 以下、本発明の実施の形態1におけるアンテナ装置及び位置検出システムについて、図1~図3を参照しながら説明する。
[システム構成]
 最初に、図1を用いて、本実施の形態1におけるアンテナ装置の構成について説明する。図1は、本発明の実施の形態1におけるアンテナ装置の構成を示す斜視図である。
 図1に示す本実施の形態におけるアンテナ装置10は、ビーコンからの特定の波長の電波を受信して、ビーコンの位置を特定するためのデータを生成する装置である。図1に示すように、アンテナ装置10は、2つ以上の受信モジュール11と、基板12と、遮蔽部材13とを備えている。なお、図1において、14はデータ生成部、15はデータ送信部、16は基板であるが、これらについては後述する。
 受信モジュール11は、ビーコン(図1において図示せず)からの特定の波長の電波を受信するモジュールである。基板12は、受信モジュール11それぞれを同一面上に配置している。遮蔽部材13は、受信モジュール11毎に、電波の入射方向が制限されるように、受信モジュールそれぞれを互いに遮蔽している。
 このように、本実施の形態1では、アンテナ装置10は、基板12上に複数の受信モジュール11を配置し、これらを互いに遮蔽することによって構成されており、簡単な構造を有している。また、この構成により、アンテナ装置10の小型化は容易である。このため、本実施の形態によれば、導入コスト及び設置スペースを低減することができる。
 更に、アンテナ装置10においては、遮蔽部材13により、各受信モジュール11が受信可能な電波の入射方向が制限されており、ビーコンの位置によって、受信モジュール11間の受信感度の比率が変化する。このため、受信感度の大きさだけではなく、受信感度の比率も用いてビーコンの位置を特定できるので、位置検出の精度が向上することになる。
 続いて、図2を用いて、本実施の形態1におけるアンテナ装置の構成に加えて、本実施の形態1における位置検出システムの構成について説明する。図2は、本発明の実施の形態1における位置検出システムの構成を示す斜視図である。
 図2に示すように、位置検出システム100は、アンテナ装置10と、サーバ装置20とを備えている。位置検出システム100は、本実施の形態1では、BLEを利用して、ビーコン30の位置検出を実行する。なお、位置検出システム100は、BLE以外の別の無線規格を利用していても良い。また、図2の例では、アンテナ装置10の個数は1つであるが、複数のアンテナ装置10が用いられていても良い。
 ビーコン30は、移動体(図2において図示せず)に取り付けられ、特定の波長の電波を発信する。本実施の形態1では、BLEが利用されるので、ビーコン30は、自身のMACアドレスを付加したBLEの電波を発信する。なお、ビーコン30の個数は特に限定されるものではない。
 ビーコン30が取り付けられる移動体としては、人、動物、及び物が挙げられる。また、物は、自走可能なものであっても良いし、人、動物、自走可能な別の物によって運ばれる物であっても良い。具体的には、物としては、空港等で扱われる荷物、ショッピングセンターで利用される買い物カート、各種の商品等が挙げられる。例えば、物が買い物カートであれば、位置検出システム100によって、ショッピングセンターにおける買物客の位置検出が可能となる。
 また、図1及び図2に示すように、本実施の形態1では、アンテナ装置10は、受信モジュール11、基板12、及び遮蔽部材13に加えて、データ生成部14とデータ送信部15も備えている。
 データ生成部14は、受信モジュール11それぞれによって受信された電波の受信感度と、受信モジュール11それぞれの位置とに基づいて、ビーコンの位置を特定するためのデータ(以下「位置データ」と表記する。)を生成する。
 本実施の形態1では、データ生成部14は、2つの受信モジュール11それぞれにおける受信感度と、各受信モジュールの位置を示す情報と、ビーコン30が送信したMACアドレスとを含むデータを、位置データとして生成する。また、データ生成部14は、例えば、マイコン等のコンピュータによって実現できる。
 データ送信部15は、データ生成部14によって生成された位置データを、サーバ装置30に送信する。データ送信部15は、例えば、有線または無線によりサーバ装置20とのデータ通信を実現する通信デバイスによって実現できる。
 具体的には、図1及び図2の例では、データ送信部15として、無線LANによって、サーバ装置20とのデータ通信を実現する通信デバイスが用いられている。但し、無線LANでも、BLEと同様に2.5GHz帯の電波が用いられるので、混信が発生する可能性がある。このため、データ生成部14及びデータ送信部15は、受信モジュール11が実装されている基板12とは別の基板16上に実装され、基板12と基板16との間には一定の距離が確保される。なお、基板12と基板16との間の距離は、混信が生じないように適宜設定される。
 また、本実施の形態1では、受信モジュール11は、BLE無線モジュールであり、その個数は2つである。遮蔽部材13は、一方の受信モジュール11における電波の入射方向と、他方の受信モジュール11における電波の入射方向とが相対するように形成されている。
 具体的には、遮蔽部材13は、2つの受信モジュール11を分断するように配置されている。よって、遮蔽部材13により、一方の受信モジュールには、領域A側から出射された電波のみが入射し、他方の受信モジュール11には、領域B側から出射された電波のみが入射することになる。
 また、サーバ装置20は、アンテナ装置10で生成され、それから送信されてきた位置データを受信する。そして、アンテナ装置10で受信した位置データに基づいて、ビーコン30の位置を検出する。
 具体的には、遮蔽部材13により、例えば、ビーコン30が領域A側にあるときには、領域A側にある受信モジュール11での受信感度が、領域B側にある受信モジュール11での受信感度よりも高くなる。また、位置データは、上述したように、各受信モジュール11における受信感度と、各受信モジュールの位置を示す情報と、ビーコン30が送信したMACアドレスとを含んでいる。このため、サーバ装置20は、位置データから、受信モジュール11間の受信感度の比率を求め、求めた比率と各受信モジュールの位置とから、ビーコン30が領域A及び領域Bのいずれの領域に存在しているかを特定する。また、サーバ装置20は、ビーコン30までの距離については、受信感度の大きさから計算する。
[システム動作]
 次に、本発明の実施の形態1における位置検出システム100の動作についてサーバ装置20を中心に図3を用いて説明する。図3は、本発明の実施の形態1における位置検出システムの動作を示すフロー図である。以下の説明においては、適宜図1及び図2を参酌する。
 まず、本実施の形態1においては、前提として、アンテナ装置10は、ビーコン30からの電波を受信して、定期的に、位置データを生成し、これを送信しているとする。
 そして、図3に示すように、サーバ装置20は、アンテナ装置10から送信されてきた位置データを取得する(ステップA1)。
 次に、サーバ装置20は、ステップA1で取得した位置データに基づいて、ビーコン30の位置を検出する(ステップA2)。
 具体的には、ステップA2では、サーバ装置20は、位置データに含まれるMACアドレスから、ビーコン30が取り付けられた移動体を特定する。更に、サーバ装置20は、位置データに含まれる各受信モジュール11の受信感度から、両者の比率を求め、求めた比率と、各受信モジュールの位置を示す情報とから、ビーコン30の存在する領域を特定する。また、サーバ装置20は、各受信モジュール11の受信感度に基づいて、ビーコン30からアンテナ装置10までの距離を計算する。
 その後、サーバ装置20は、ビーコン30の位置の検出結果を、外部の端末装置、外部の別のサーバ装置等に送信する(ステップA3)。これにより、ユーザは、ビーコン30が取り付けられた移動体の位置を確認することができる。
 また、本発明の実施の形態1では、コンピュータに、図3に示すステップA1~A3を実行させるプログラムをインストールし、これを実行することによって、サーバ装置20を実現することができる。また、本実施の形態1において、プログラムは、複数のコンピュータによって構築されたコンピュータシステムによって実行されても良い。
 以上のように、本実施の形態1によれば、アンテナ装置10を容易に小型化でき、導入コスト及び設置スペースを低減することができる。更に、本実施の形態でも、BLEの電波を利用するため、電波の波長は短く、減衰または増幅が生じ安い状況にある。しかし、本実施の形態では、ビーコン30の位置は、受信感度の大きさだけではなく、受信感度の比率も用いて決定されるので、受信感度の大きさだけでビーコン30の位置が決定される上述の非特許文献1に開示された技術に比べて、位置検出の精度は向上することになる。
(実施の形態2)
 次に、本発明の実施の形態2におけるアンテナ装置及び位置検出システムについて、図4~図7を参照しながら説明する。
[システム構成]
 最初に、図4を用いて、本実施の形態2におけるアンテナ装置の構成について説明する。図4は、本発明の実施の形態2におけるアンテナ装置の構成を示す斜視図である。
 図4に示すように、本実施の形態2におけるアンテナ装置40も、図1に示したアンテナ装置10と同様に、受信モジュール41と、基板42と、遮蔽部材43と、データ生成部44と、データ送信部45とを備えている。
 但し、本実施の形態2においては、アンテナ装置40は、3以上の受信モジュール41を備えており、この点で実施の形態1におけるアンテナ装置10と異なっている。以下、相違点を中心に説明する。
 本実施の形態2では、各受信モジュール41は、基板42において、仮想の円(図1において図示せず)の円周上に配置されている。更に、遮蔽部材43は、円周上に配置された受信モジュール41それぞれの電波の入射方向が異なるように、この仮想の円の中心から放射状に形成されている。
 具体的には、図4の例では、受信モジュール41は6個である。遮蔽部材43は、基板42上に放射状に配置された垂直部材43a~43fと、天井部材43g~43lとを備えている。各受信モジュール41は2つの垂直部材の間の領域に配置され、各受信モジュール41の上面は天井部材43g~43lによって覆われている。
 このため、6個の受信モジュール41それぞれの電波の入射方向は互いに異なり、それぞれの電波の入射領域が円周上に並ぶことになる。よって、6個の受信モジュール41の受信感度を用いれば、アンテナ装置40を中心とした360度の範囲で、ビーコン30が存在している方向を特定できることになる。
 また、本実施の形態では、データ生成部44は、各受信モジュール41によって受信された電波の受信感度と、受信モジュール41それぞれの位置関係とに基づいて、特定の方向を基準としたビーコンの方位を算出する。そして、データ生成部44は、位置データとして、算出した方位を特定するデータを生成する。
 具体的には、データ生成部44は、受信感度の高い上位3つの受信モジュール41の中から、そのうちの受信感度が2番目のものと3番目のものとを選択し、両者の受信感度の比を求める。また、データ生成部44は、本実施の形態2では、基準となる特定の方向を検出するデジタルコンパスを備えている。そして、データ生成部44は、求めた比と、デジタルコンパスによって検出された特定の方向(絶対方位)とに基づいて、絶対方位を基準としてビーコンの方位を算出する。
 ここで、データ生成部44による方位の特定処理について図5を用いて説明する。図5は、本発明の実施の形態2におけるアンテナ装置によるビーコンの方位の特定処理を説明するための図である。図5においては、基板42及び天井部材43g~43lについて図示を省略している。
 図5の例では、ビーコン30が発信した電波は、受信モジュール41a~41fのうち、受信モジュール41a~41cによって受信される。このとき、受信感度は、受信モジュール41cにおいて最も高く、受信モジュール41a、41b、41cの順で高くなる。
 そして、ビーコンの方位、即ち、受信モジュール41a~41fのレイアウト上の中心とビーコン30とを結ぶ線の基準線47からの角度を「θ」とすると、受信モジュール41bの受信感度に対する受信モジュール41aの受信感度の比Rabは、下記の数1によって表される。従って、ビーコンの方位θは、下記の数2から算出される。なお、基準線47の方向は、デジタルコンパスによって検出された特定の方向である。Saは受信モジュール41aの受信感度であり、Sbは受信モジュール41bの受信感度である。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 以上のように、データ生成部44は、上記数1及び数2を用いて、ビーコンの方位θを算出する。なお、本実施の形態2においても、混信を防ぐため、データ生成部44及びデータ送信部45は、受信モジュール41が実装されている基板42とは別の基板46上に実装され、基板42と基板46との間には一定の距離が確保されている。
 続いて、図6を用いて、本実施の形態2におけるアンテナ装置の構成に加えて、本実施の形態2における位置検出システムの構成について説明する。図6は、本発明の実施の形態2における位置検出システムの構成を示す斜視図である。
 図6に示すように、本実施の形態2における位置検出システム200も、図2に示した位置検出システム100と同様に、アンテナ装置40と、サーバ装置50とを備え、ビーコン30の位置検出を実行する。
 但し、本実施の形態2における位置検出システム200は、2つ以上のアンテナ装置が用いられる点と、アンテナ装置40の構成の点とで、図2に示した位置検出システム100と異なっている。このため、サーバ装置50における処理は、図2に示したサーバ装置20における処理と異なるものとなる。以下、相違点を中心に説明する。
 サーバ装置50は、本実施の形態2では、少なくとも2つのアンテナ装置40から、同一のビーコン30について、方位を特定する位置データを取得する。そして、サーバ装置50は、取得した方位を特定する位置データに基づいて、ビーコン30の位置を検出する。
 ここで、サーバ装置50によるビーコンの位置検出処理について図7を用いて説明する。図7は、本発明の実施の形態2におけるサーバ装置の位置検出処理を説明するための図である。図7の例では、説明のため、ビーコン30、アンテナ装置40は、それぞれ円形で示している。また、一方のアンテナ装置40を点Aで示し、他方のアンテナ装置40を点Bで示し、ビーコン30を点Cで示している。
 更に、一方のアンテナ装置40は、ビーコン30の方位としてθacを算出し、他方のアンテナ装置40は、ビーコン30の方位としてθbcを算出しているとする。θac及びθbcは、上述したように、絶対方位を基準とした角度である。更に、dABは、予め測定されているとする。また、dは点Aから点Cまでの距離を示し、dは点Aと点Bとを結ぶ線の延長線から点Cまでの最短距離を示し、dは点Bから点Cまでの距離を示し、更に点Cの座標は、点Aを原点として、(X、Y)で表されるとする。
 図7の例では、サーバ装置50は、各アンテナ装置40が送信した位置データを取得し、取得した位置データから、ビーコン30の方位としてθac及びθbcを特定する。そして、サーバ装置50は、特定したθac及びθbcを、下記の数3~数12に適用することによって点Cの座標(X、Y)を算出する。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
[システム動作]
 また、本実施の形態2において、サーバ装置50も、図3に示したフローに沿って処理を実行する。即ち、本実施の形態2においても、サーバ装置50は、まず、位置データを取得し、次に、ビーコンの位置を検出する。また、本実施の形態2においても、サーバ装置50を動作させることによって、位置検出方法が実施されることになる
 また、本実施の形態2においても、コンピュータに、図3に示すステップA1~A3を実行させるプログラムをインストールし、これを実行することによって、サーバ装置50を実現することができる。また、本実施の形態2においても、プログラムは、複数のコンピュータによって構築されたコンピュータシステムによって実行されても良い。
 以上のように本実施の形態2では、実施の形態1と異なり、受信モジュールにおける受信感度の比率のみで、ビーコンの位置が算出される。このため、本実施の形態2によれば、よりいっそう位置検出の精度が向上することとなる。
 ここで、サーバ装置を実現するコンピュータの物理構成について図を用いて説明する。図8は、本発明の実施の形態1及び2におけるサーバ装置を実現するコンピュータの一例を示すブロック図である。
 図8に示すように、コンピュータ110は、CPU111と、メインメモリ112と、記憶装置113と、入力インターフェイス114と、表示コントローラ115と、データリーダ/ライタ116と、通信インターフェイス117とを備える。これらの各部は、バス121を介して、互いにデータ通信可能に接続される。
 CPU111は、記憶装置113に格納された、本実施の形態におけるプログラム(コード)をメインメモリ112に展開し、これらを所定順序で実行することにより、各種の演算を実施する。メインメモリ112は、典型的には、DRAM(Dynamic Random Access Memory)等の揮発性の記憶装置である。また、本実施の形態におけるプログラムは、コンピュータ読み取り可能な記録媒体120に格納された状態で提供される。なお、本実施の形態におけるプログラムは、通信インターフェイス117を介して接続されたインターネット上で流通するものであっても良い。
 また、記憶装置113の具体例としては、ハードディスクドライブの他、フラッシュメモリ等の半導体記憶装置が挙げられる。入力インターフェイス114は、CPU111と、キーボード及びマウスといった入力機器118との間のデータ伝送を仲介する。表示コントローラ115は、ディスプレイ装置119と接続され、ディスプレイ装置119での表示を制御する。
 データリーダ/ライタ116は、CPU111と記録媒体120との間のデータ伝送を仲介し、記録媒体120からのプログラムの読み出し、及びコンピュータ110における処理結果の記録媒体120への書き込みを実行する。通信インターフェイス117は、CPU111と、他のコンピュータとの間のデータ伝送を仲介する。
 また、記録媒体120の具体例としては、CF(Compact Flash(登録商標))及びSD(Secure Digital)等の汎用的な半導体記憶デバイス、フレキシブルディスク(Flexible Disk)等の磁気記憶媒体、又はCD-ROM(Compact Disk Read Only Memory)などの光学記憶媒体が挙げられる。
 上述した実施の形態の一部又は全部は、以下に記載する(付記1)~(付記5)によって表現することができるが、以下の記載に限定されるものではない。
(付記1)
 ビーコンからの特定の波長の電波を受信する2つ以上の受信モジュールと、
 前記受信モジュールそれぞれを同一面上に配置する、基板と、
 前記受信モジュール毎に、前記電波の入射方向が制限されるように、前記受信モジュールそれぞれを互いに遮蔽する遮蔽部材と、
を備えていることを特徴とするアンテナ装置。
(付記2)
 前記受信モジュールの個数が3以上であり、
 前記受信モジュールそれぞれは、前記基板において、仮想の円の円周上に配置され、
 前記遮蔽部材は、前記円の中心から放射状に形成されている、
付記1に記載のアンテナ装置。
(付記3)
 移動体に取り付けられるビーコンからの特定の波長の電波を受信して、前記ビーコンの位置を特定するためのデータを生成する、アンテナ装置と、
 前記アンテナ装置で生成された前記データに基づいて、前記ビーコンの位置を検出する、サーバ装置と、を備え、
 前記アンテナ装置は、
特定の波長の電波を発するビーコンからの前記電波を受信する2つ以上の受信モジュールと、
前記受信モジュールそれぞれを同一面上に配置する、基板と、
前記受信モジュール毎に、前記電波の入射方向が制限されるように、前記受信モジュールそれぞれを互いに遮蔽する遮蔽部材と、
前記受信モジュールそれぞれによって受信された電波の受信感度と、前記受信モジュールそれぞれの位置とに基づいて、前記ビーコンの位置を特定するためのデータを生成する、データ生成部と、を備えている、
ことを特徴とする位置検出システム。
(付記4)
 前記受信モジュールの個数が3以上であり、
 前記受信モジュールそれぞれは、前記基板において、仮想の円の円周上に配置され、
 前記遮蔽部材は、前記円の中心から放射状に形成されている、
付記3に記載の位置検出システム。
(付記5)
 前記データ生成部が、前記受信モジュールそれぞれによって受信された電波の受信感度と、前記受信モジュールそれぞれの位置とに基づいて、特定の方向を基準とした前記ビーコンの方位を算出し、前記データとして、算出した前記方位を特定するデータを生成し、
 前記サーバ装置が、少なくとも2つの前記アンテナ装置から、同一の前記ビーコンについて、前記方位を特定するデータを取得し、取得した前記方位を特定するデータに基づいて、前記ビーコンの位置を検出する、
付記4に記載の位置検出システム。
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記実施の形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2016年2月22日に出願された日本出願特願2016-31264を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 以上のように本発明によれば、導入コスト及び設置スペースを抑えつつ、ビーコンの位置検出の精度の向上を図ることができる。本発明は、空港等で扱われる荷物、ショッピングセンターで利用される買い物カート、各種の商品等の位置検出に有用である。
 10 アンテナ装置(実施の形態1)
 11 受信モジュール
 12 基板
 13 遮蔽部材
 14 データ生成部
 15 データ送信部
 16 基板
 20 サーバ装置
 30 ビーコン
 40 アンテナ装置(実施の形態2)
 41 受信モジュール
 42 基板
 43 遮蔽部材
 44 データ生成部
 45 データ送信部
 46 基板
 47 基準線
 100 位置検出システム(実施の形態1)
 110 コンピュータ
 111 CPU
 112 メインメモリ
 113 記憶装置
 114 入力インターフェイス
 115 表示コントローラ
 116 データリーダ/ライタ
 117 通信インターフェイス
 118 入力機器
 119 ディスプレイ装置
 120 記録媒体
 121 バス
 200 位置検出システム(実施の形態2)

Claims (5)

  1.  ビーコンからの特定の波長の電波を受信する2つ以上の受信モジュールと、
     前記受信モジュールそれぞれを同一面上に配置する、基板と、
     前記受信モジュール毎に、前記電波の入射方向が制限されるように、前記受信モジュールそれぞれを互いに遮蔽する遮蔽部材と、
    を備えていることを特徴とするアンテナ装置。
  2.  前記受信モジュールの個数が3以上であり、
     前記受信モジュールそれぞれは、前記基板において、仮想の円の円周上に配置され、
     前記遮蔽部材は、前記円の中心から放射状に形成されている、
    請求項1に記載のアンテナ装置。
  3.  移動体に取り付けられるビーコンからの特定の波長の電波を受信して、前記ビーコンの位置を特定するためのデータを生成する、アンテナ装置と、
     前記アンテナ装置で生成された前記データに基づいて、前記ビーコンの位置を検出する、サーバ装置と、を備え、
     前記アンテナ装置は、
    特定の波長の電波を発するビーコンからの前記電波を受信する2つ以上の受信モジュールと、
    前記受信モジュールそれぞれを同一面上に配置する、基板と、
    前記受信モジュール毎に、前記電波の入射方向が制限されるように、前記受信モジュールそれぞれを互いに遮蔽する遮蔽部材と、
    前記受信モジュールそれぞれによって受信された電波の受信感度と、前記受信モジュールそれぞれの位置とに基づいて、前記ビーコンの位置を特定するためのデータを生成する、データ生成部と、を備えている、
    ことを特徴とする位置検出システム。
  4.  前記受信モジュールの個数が3以上であり、
     前記受信モジュールそれぞれは、前記基板において、仮想の円の円周上に配置され、
     前記遮蔽部材は、前記円の中心から放射状に形成されている、
    請求項3に記載の位置検出システム。
  5.  前記データ生成部が、前記受信モジュールそれぞれによって受信された電波の受信感度と、前記受信モジュールそれぞれの位置とに基づいて、特定の方向を基準とした前記ビーコンの方位を算出し、前記データとして、算出した前記方位を特定するデータを生成し、
     前記サーバ装置が、少なくとも2つの前記アンテナ装置から、同一の前記ビーコンについて、前記方位を特定するデータを取得し、取得した前記方位を特定するデータに基づいて、前記ビーコンの位置を検出する、
    請求項4に記載の位置検出システム。
PCT/JP2017/006439 2016-02-22 2017-02-21 アンテナ装置および位置検出システム WO2017146068A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018501716A JP6611218B2 (ja) 2016-02-22 2017-02-21 アンテナ装置および位置検出システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-031264 2016-02-22
JP2016031264 2016-02-22

Publications (1)

Publication Number Publication Date
WO2017146068A1 true WO2017146068A1 (ja) 2017-08-31

Family

ID=59686307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006439 WO2017146068A1 (ja) 2016-02-22 2017-02-21 アンテナ装置および位置検出システム

Country Status (2)

Country Link
JP (1) JP6611218B2 (ja)
WO (1) WO2017146068A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019174407A (ja) * 2018-03-29 2019-10-10 西日本電信電話株式会社 位置検出システム、受信システム、位置検出装置、受信方法、位置検出方法及びコンピュータプログラム
JP7540722B2 (ja) 2021-11-30 2024-08-27 オリオン機械株式会社 温度調整装置および温度調整システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198706U (ja) * 1986-06-06 1987-12-17
JPH01204505A (ja) * 1988-02-10 1989-08-17 Sumitomo Electric Ind Ltd 空中線
JPH02250503A (ja) * 1989-03-24 1990-10-08 Robotetsuku Kenkyusho:Kk 複合アンテナ
JPH088814A (ja) * 1994-06-23 1996-01-12 Nippon Motorola Ltd 移動無線通信方式
JPH09135115A (ja) * 1995-11-09 1997-05-20 Nippon Telegr & Teleph Corp <Ntt> アンテナ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198706U (ja) * 1986-06-06 1987-12-17
JPH01204505A (ja) * 1988-02-10 1989-08-17 Sumitomo Electric Ind Ltd 空中線
JPH02250503A (ja) * 1989-03-24 1990-10-08 Robotetsuku Kenkyusho:Kk 複合アンテナ
JPH088814A (ja) * 1994-06-23 1996-01-12 Nippon Motorola Ltd 移動無線通信方式
JPH09135115A (ja) * 1995-11-09 1997-05-20 Nippon Telegr & Teleph Corp <Ntt> アンテナ装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019174407A (ja) * 2018-03-29 2019-10-10 西日本電信電話株式会社 位置検出システム、受信システム、位置検出装置、受信方法、位置検出方法及びコンピュータプログラム
JP7540722B2 (ja) 2021-11-30 2024-08-27 オリオン機械株式会社 温度調整装置および温度調整システム

Also Published As

Publication number Publication date
JP6611218B2 (ja) 2019-11-27
JPWO2017146068A1 (ja) 2018-12-13

Similar Documents

Publication Publication Date Title
JP5399507B2 (ja) 円錐状の電磁波を放出するための無線アンテナ
TWI407132B (zh) 定位方法及無線通訊系統
US20160192147A1 (en) Heat map generation with peer-to-peer mobile device network
JP2006508345A (ja) 測距および測位方法および装置
JP6611218B2 (ja) アンテナ装置および位置検出システム
EP4152629A2 (en) Radio-frequency exposure beam management and selection in communications systems
CN112995888A (zh) 一种基于阵列天线的定位方法、系统、电子设备及存储介质
KR101283749B1 (ko) Ap의 위치정보를 이용한 측위 장치
Dong et al. Gpsmirror: Expanding accurate gps positioning to shadowed and indoor regions with backscatter
US20180191079A1 (en) Indoor positioning system utilizing beamforming with orientation- and polarization-independent antennas
US20240012125A1 (en) Electronic Devices with Angular Location Detection Capabilities
JP2006250635A (ja) 座標情報取得利用システム、座標情報取得利用システム用の受信端末、及び座標情報取得利用方法
KR102226690B1 (ko) 비콘 신호에 기반한 IoT 기기 위치 추정 방법 및 장치
US8686913B1 (en) Differential vector sensor
Nishikawa et al. A new position detection method using leaky coaxial cable
KR101949282B1 (ko) 멀티홉 시스템에서의 무선 위치 추정 방법
JP2011163948A (ja) 位置検知システムおよび方法
JP4568814B2 (ja) 位置検出システム
Pasku et al. Effects of antenna directivity on RF ranging when using space diversity techniques
WO2018070078A1 (ja) アンテナ、無線発信装置、および位置計測システム
JP2018004609A (ja) 無線通信端末の位置計測方法、および無線装置
JP5968844B2 (ja) 位置検知システム及び位置検知方法
JP2009204344A (ja) 無線システム
JP6311198B2 (ja) ホワイトスペース検出装置、ホワイトスペース検出方法、及びプログラム
CN109982306B (zh) 一种基于天线方向特性的定位方法、装置和系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018501716

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756506

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756506

Country of ref document: EP

Kind code of ref document: A1