WO2017145829A1 - 車輌制御システム - Google Patents

車輌制御システム Download PDF

Info

Publication number
WO2017145829A1
WO2017145829A1 PCT/JP2017/005037 JP2017005037W WO2017145829A1 WO 2017145829 A1 WO2017145829 A1 WO 2017145829A1 JP 2017005037 W JP2017005037 W JP 2017005037W WO 2017145829 A1 WO2017145829 A1 WO 2017145829A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
operation mode
vehicle control
gear ratio
vehicle
Prior art date
Application number
PCT/JP2017/005037
Other languages
English (en)
French (fr)
Inventor
前田 好彦
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2017145829A1 publication Critical patent/WO2017145829A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/182Selecting between different operative modes, e.g. comfort and performance modes
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a vehicle control system.
  • FIG. 1 is a diagram illustrating an example of a configuration of a vehicle control system according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example of a functional block configuration of the vehicle control device according to the first embodiment.
  • FIG. 3 is a diagram illustrating an example of the operation of the vehicle control device according to the first embodiment.
  • FIG. 4 is a diagram illustrating an example of a configuration of a vehicle control system according to the second embodiment.
  • the automatic operation mode requires safety because the information processing device (hereinafter referred to as “vehicle control device”) performs driving including acceleration operation of the vehicle.
  • vehicle control device performs driving including acceleration operation of the vehicle.
  • a PWM signal pulse width modulation signal
  • the inverter device 2 receives supply of DC power from the storage battery 1, generates three-phase AC power, and outputs it to the drive device 3.
  • a control signal for example, a PWM signal
  • a control signal for generating the three-phase AC power is input from the vehicle control device 6 to the switching elements that constitute the inverter device 2.
  • the speed reducer 4 is a transmission that reduces the rotational power transmitted from the drive device 3 to a predetermined rotational speed and transmits it to the axle 5.
  • the speed reducer 4 has an input shaft that receives the rotational power generated by the driving device 3, an output shaft that transmits the rotational power of the input shaft to the axle 5, and a gear that connects the input shaft and the output shaft.
  • the gear ratio of the gear can be switched by the clutch mechanism.
  • the speed reducer 4 is a gear having a gear ratio of “low speed gear” (a gear ratio indicates a large state, for example, a gear ratio in which the rotation speed of the output shaft is 10 to 1 with respect to the rotation speed of the input shaft); Assume that the gear has a gear ratio of “high-speed gear” (a gear ratio indicates a small state, for example, a gear ratio in which the rotational speed of the output shaft is 5 to 1 with respect to the rotational speed of the input shaft). And the reduction gear 4 becomes a structure which transmits the motive power from the drive device 3 to the axle shaft 5 with a torque converter system, for example.
  • the speed reducer 4 has only two stages, ie, a gear ratio of “low speed gear” and a gear ratio of “high speed gear”, but has a gear ratio of three or more stages. Of course.
  • the axle 5 rotates the drive wheels disposed at both ends to drive the vehicle.
  • the axle 5 is disposed on the rear side of the vehicle body, receives rotational power from the speed reducer 4 via a differential gear (differential gear), and rotates driving wheels.
  • the vehicle control device 6 includes a travel control unit 61, an operation mode switching unit 62, a gear change unit 63, and a limiting unit 64 (see FIG. 2).
  • the traveling control unit 61 performs arithmetic processing based on the information on the driving state of the vehicle, and controls the traveling speed of the vehicle including acceleration / deceleration and the traveling direction. For example, the traveling control unit 61 controls the rotational speed of the driving device 3 by controlling the PWM signal (pulse width modulation signal) output to the switching element that constitutes the inverter device 2, thereby controlling the traveling speed of the vehicle. ing.
  • PWM signal pulse width modulation signal
  • the restriction unit 64 restricts the driving state so that the vehicle travels in a state where the gear ratio of the reduction gear 4 is larger than the smallest gear ratio used in the manual operation mode in the automatic operation mode.
  • the smallest gear ratio used in the manual operation mode represents the gear ratio of the high speed gear.
  • the state where the gear ratio of the speed reducer 4 is larger than the smallest gear ratio used in the manual operation mode represents a state of a low speed gear, and when the rotational speed of the driving device 3 is increased, the traveling speed of the vehicle is hardly increased. Means state. That is, the restricting unit 64 prohibits traveling in a high-speed gear state in the automatic driving mode in preparation for an abnormality occurring in the vehicle control device 6 or the automatic driving control device 10 or the like.
  • the limiting unit 64 identifies the gear ratio of the speed reducer 4 based on the detection signal from the gear detection unit 4b.
  • the gear ratio of the speed reducer 4 is a high speed gear
  • the automatic operation is started from the manual operation mode.
  • the function is realized by prohibiting (disabling) switching to the mode.
  • vehicle control device 6 functions of the vehicle control device 6 are realized by the CPU executing a computer program.
  • transmission / reception of signals between the vehicle control device 6 and various sensors and the automatic driving control device 10 is performed by, for example, a CAN (Controller-Area-Network) communication protocol system via a signal line.
  • CAN Controller-Area-Network
  • the accelerator pedal 7 is a user interface for the driver to operate the traveling speed of the vehicle including acceleration / deceleration.
  • the depression amount of the accelerator pedal 7 is detected by a sensor, and the detection signal is output to the vehicle control device 6.
  • the accelerator pedal 7 has the same configuration as a well-known accelerator pedal mounted on a general vehicle.
  • the shift lever 8 is a user interface for the driver to change the range.
  • the lever position of the shift lever 8 is detected by a sensor, and the detection signal is output to the vehicle control device 6.
  • the shift lever 8 has the same configuration as a known shift lever mounted on a general vehicle. Here, it is assumed that the shift lever 8 is configured to be able to change the “reverse range”, “neutral range”, and “drive range”.
  • the automatic operation button 9 is a user interface that enables the driver to switch between the manual operation mode and the automatic operation mode.
  • the pressing state of the automatic driving button 9 is detected by a sensor, and the detection signal (automatic driving request signal) is output to the vehicle control device 6.
  • the automatic driving control device 10 is a control device that autonomously controls the traveling of the vehicle by outputting a driving command signal to the vehicle control device 6.
  • the automatic operation control device 10 periodically communicates with a GPS (Global Positioning System) satellite and an external server, acquires vehicle position information, ambient environment information, and the like from these and stores them in the storage unit. Further, the automatic driving control device 10 acquires a detection signal from a sensor such as a camera or a laser distance meter provided for recognizing the external environment around the vehicle, and stores it in the storage unit. Based on these pieces of information, the automatic driving control device 10 calculates a route for traveling to the target location, a traveling speed for traveling safely, and the like, generates a driving command signal, and sends it to the vehicle control device 6. Output.
  • the driving command signal is a signal for substituting the operation performed by the driver, such as adjustment of the depression amount of the accelerator pedal 7, brake control, control of the shift lever 8, steering control, and the like.
  • the indicator 11 displays the gear ratio state of the speed reducer 4 and the operation mode (automatic operation mode or manual operation mode) based on the information stored in the storage unit of the vehicle control device 6.
  • the driving state of the driver is visually recognized.
  • the gear change switch 12 is a user interface for changing the gear.
  • a pressing signal of the gear change switch 12 is output to the vehicle control device 6.
  • the gear changeover switch 12 is configured to be able to select two gears: a gear having a gear ratio of “low speed gear” (Low) and a gear having a gear ratio of “high speed gear” (High).
  • the driver when traveling in the manual operation mode, the driver operates the shift lever 8 to select “drive range”, select “low speed gear” of the gear change switch 12, and depress the accelerator pedal 7. Accelerate the vehicle. In order to perform further high speed travel, the driver can select “high speed gear” of the gear changeover switch 12 and depress the accelerator pedal 7 to perform high speed travel. Further, for example, in the case of reverse running (back) in the manual operation mode, the driver operates the shift lever 8 to select “reverse range” and to select “low speed gear” of the gear changeover switch 12. By depressing the accelerator pedal 7, the vehicle is driven in reverse. In order to perform further high speed travel, the driver can perform high speed reverse travel (back) by selecting “high speed gear” of the gear change switch 12 and depressing the accelerator pedal 7.
  • the automatic operation is performed when the automatic operation button 9 is pressed while the “neutral range” is selected by the shift lever 8 and the “low speed gear” of the gear change switch 12 is selected. Enables traveling.
  • the vehicle control device 6 determines whether or not the automatic driving request signal has been received according to the state of the register that stores the automatic driving request signal output from the sensor that detects the pressing state of the automatic driving button 9 (S1). ). When the automatic driving request signal is not received (S1: NO), the vehicle control device 6 continues the manual driving mode as it is (S3c).
  • the rotational speed generated by the drive device 3 can be limited to a value that does not exceed the upper limit value of the rotational speed of the permanent magnet type synchronous motor.
  • the upper limit value of the traveling speed of the vehicle can be limited to a physically small value in combination with the gear ratio of the speed reducer 4 being the low speed gear.
  • the vehicle control system operates as follows to prevent the gear ratio of the speed reducer 4 from traveling in a high-speed gear state in the automatic operation mode.
  • the vehicle control device 6 receives the automatic driving request signal from the automatic driving button 9 and issues an activation command to the automatic driving control device 10. Send a signal.
  • the switch circuit 10b opens the circuit according to the detection signal 4cs from the gear detection unit 4c and cuts off the power supply to the automatic operation control device 10.
  • the automatic operation control device 10 does not respond to the vehicle control device 6.
  • the restriction unit 64 may be configured to switch the gear ratio of the speed reducer 4 to the low speed gear when the manual operation mode is switched to the automatic operation mode.
  • the limiting unit 64 may be provided with a lock mechanism that prohibits the gear change from the low speed gear to the high speed gear side in the speed reducer 4 and operates the lock mechanism.
  • the manual transmission switching mode in which the gear switching instruction is performed manually is shown.
  • the gear switching instruction is issued. It is good also as a thing by the aspect of the automatic transmission switching system performed automatically.
  • the vehicle control system includes a driving mode switching unit 62 that switches between a manual driving mode in which a driver manually performs a driving operation including at least an acceleration operation and an automatic driving mode in which the driving operation is automatically performed, and an automatic driving mode. And a limiter 64 that limits the operating state so that the speed reducer travels in a state where the gear ratio is larger than the smallest gear ratio used in the manual operation mode.
  • a driving mode switching unit 62 that switches between a manual driving mode in which a driver manually performs a driving operation including at least an acceleration operation and an automatic driving mode in which the driving operation is automatically performed, and an automatic driving mode.
  • a limiter 64 that limits the operating state so that the speed reducer travels in a state where the gear ratio is larger than the smallest gear ratio used in the manual operation mode.
  • the limiting unit 64 may prohibit switching from the manual operation mode to the automatic operation mode.
  • the speed reducer 4 is switched to the low speed gear before switching from the manual operation mode to the automatic operation mode, so that the gear ratio of the speed reducer 4 is automatically operated in the state of the high speed gear. Can be reliably prevented.
  • the limiting unit 64 is provided in a gear detection unit 4c that detects the gear ratio of the speed reducer 4 and an electric circuit 10a that supplies power from the power source to the automatic driving control device 10 that controls the vehicle in the automatic driving mode. You may have the switch circuit 10b which interrupts
  • the vehicle control system may be mounted on a vehicle using a permanent magnet field motor as the drive device 3. That is, the driving device 3 may be a permanent magnet field motor. According to this vehicle control system, the upper limit value of the traveling speed of the vehicle can be physically limited.
  • the reduction gear 4 when it has a multi-stage gear ratio (for example, a 5-stage gear ratio), it can be used for all gear ratios in the manual operation mode and in the automatic operation mode.
  • a gear ratio larger than a predetermined gear ratio for example, a two-stage gear ratio of the largest gear ratio and the next largest gear ratio may be used.
  • the present disclosure is suitable for use in a vehicle control system mounted on a vehicle that travels by reducing the power generated by the drive device with a reduction gear.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

車輌制御システムは、駆動装置が生成する動力の回転速度を減速機で減じて走行する車輌に搭載される。当該車輌制御システムは、少なくとも加速操作を含む運転操作を運転者が手動で行う手動運転モードと、運転操作が自動で行われる自動運転モードとを切り替える運転モード切替部と、自動運転モードの際、減速機のギア比が手動運転モードで用いられる最も小さいギア比よりも大きい状態で走行するように運転状態を制限する制限部と、を有する。

Description

車輌制御システム
 本発明は、車輌制御システムに関する。
 近年の情報処理技術の進展に伴って、運転操作を運転者が手動で行う手動運転モードから、コンピュータが車輌の走行を自律的に制御する自動運転モードに切り替えることを可能とする車輌が登場している(例えば、特許文献1を参照)。
特開2015-153048号公報
 本発明は、手動運転モードの際に過度の制限を生じさせることなく、自動運転モードの際の安全性を確保しうる車輌制御システムを提供する。
 本発明の車輌制御システムは、駆動装置が生成する動力の回転速度を減速機で減じて走行する車輌に搭載される。車輌制御システムは、少なくとも加速操作を含む運転操作を運転者が手動で行う手動運転モードと、運転操作が自動で行われる自動運転モードとを切り替える運転モード切替部と、自動運転モードの際、減速機のギア比が手動運転モードで用いられる最も小さいギア比よりも大きい状態で走行するように運転状態を制限する制限部と、を有する。
 本発明によれば、手動運転モードの際に過度の制限を生じさせることなく、自動運転モードの際の安全性を確保することができる。
図1は、第1の実施の形態に係る車輌制御システムの構成の一例を示す図である。 図2は、第1の実施の形態に係る車輌制御装置の機能ブロックの構成の一例を示す図である。 図3は、第1の実施の形態に係る車輌制御装置の動作の一例を示す図である。 図4は、第2の実施の形態に係る車輌制御システムの構成の一例を示す図である。
 本発明の実施の形態の説明に先立ち、従来の技術における問題点を簡単に説明する。自動運転モードは、情報処理装置(以下、「車輌制御装置」と言う)が車輌の加速操作も含めて運転を行うものであるため、安全性が求められる。例えば、インバータ装置で駆動する駆動モータを動力とする車輌の場合において、誤演算、プログラムの誤動作、経年劣化等に起因して車輌制御装置が、当該インバータ装置に出力するPWM信号(パルス幅変調信号)のパルス幅や周期を誤ってしまった場合であっても、車輌の搭乗者や走行する車輌の周囲への被害を抑制するための仕組みが必要とされている。
 一方、手動運転モードにおいては、過度の制限を生じさせることなく、運転手の意図に基づく快適な運転を可能にすることが求められる。
 (第1の実施の形態)
 以下、図1、図2を参照して、第1の実施の形態に係る車輌制御システムの構成について説明する。本実施の形態に係る車輌制御システムは、自動運転モードの際、低速ギアでの走行に制限することによって、車輌の走行速度の異常な上昇を抑制する構成となっている。
 図1は、本実施の形態に係る車輌制御システムの構成の一例を示す図である。図2は、本実施の形態に係る車輌制御装置の機能ブロックの構成の一例を示す図である。
 本実施の形態に係る車輌制御システムを搭載する車輌は、蓄電池1、インバータ装置2、駆動装置(モーター)3、減速機4、車軸5、車輌制御装置(車輌ECU(Electronic Control Unit))6、アクセルペダル7、シフトレバー8、自動運転ボタン9、自動運転制御装置(自動運転ECU)10、インジケータ11、ギア切替スイッチ12を含んで構成される。
 ここでは、一対の蓄電池1、一対のインバータ装置2、一対の駆動装置3によって動力が生成されて、当該動力は減速機4で減速されて車軸5に伝達される構成となっている。尚、当該一対の蓄電池1、一対のインバータ装置2、一対の駆動装置3の一方側と他方側は、同様の制御がなされているため、以下では、それらを特に区別することなく説明する。また、本実施の形態では、一対の蓄電池1、一対のインバータ装置2、一対の駆動装置3で構成されるが、それぞれ1つずつのみの構成であっても良い。
 蓄電池1は、インバータ装置2に直流電力を供給する電源である。蓄電池1は、例えば、リチウムイオン二次電池等で構成される。
 インバータ装置2は、蓄電池1から直流電力の供給を受けて、三相交流の電力を生成し、駆動装置3に出力する。インバータ装置2を構成するスイッチング素子には、当該三相交流の電力を生成するための、制御信号(例えば、PWM信号)が車輌制御装置6から入力されている。
 駆動装置3は、インバータ装置2から三相交流の電力の供給を受けて、車輌を走行するための回転動力を生成する動力源である。そして、駆動装置3は、生成した回転動力を減速機4に伝達する。ここでは、駆動装置3として、車輌の走行速度の上限値を物理的に制限できることから、永久磁石式同期モータを用いている(詳細は後述する)。尚、永久磁石式同期モータは、回転子が永久磁石によって構成され、当該回転子が生成する界磁磁束に対して三相交流電力により固定子が生成する回転磁界を作用させることで、当該回転子に回転動力を発生させるものである。
 減速機4は、駆動装置3から伝達される回転動力を、所定の回転速度に減じて車軸5に伝達するトランスミッションである。減速機4は、駆動装置3が生成する回転動力を受ける入力軸と、当該入力軸の回転動力を車軸5に伝達する出力軸と、当該入力軸と当該出力軸を接続するギアとを有し、クラッチ機構によって当該ギアのギア比の切り替えが可能なように構成されている。ここでは、減速機4は、「低速ギア」のギア比(ギア比が大きい状態を表し、例えば、入力軸の回転数に対する出力軸の回転数が10対1となるギア比)のギアと、「高速ギア」のギア比(ギア比が小さい状態を表し、例えば、入力軸の回転数に対する出力軸の回転数が5対1となるギア比)のギアを有するものとする。そして、減速機4は、例えば、トルクコンバータ方式で、駆動装置3からの動力を車軸5に伝達する構成となっている。尚、ここでは、減速機4は「低速ギア」のギア比と「高速ギア」のギア比の2段階のみを有するものとしているが、3段階以上の多段階のギア比を有するものであっても勿論よい。
 又、減速機4は、アクチュエータ4aとギア検知部4bを有する構成となっている。アクチュエータ4aは、車輌制御装置6からの制御信号に応じて減速機4のギア比を切り替えるための駆動機構である。アクチュエータ4aは、例えば、ソレノイドバルブによって構成され、制御信号に応じて油圧を制御する。このような構成および制御により、アクチュエータ4aは、クラッチ機構を動作させ、減速機4のギア比を切り替える。又、ギア検知部4bは、減速機4のギアの位置を検知するセンサである。ギア検知部4bは、例えば、リミットスイッチやホール素子で構成される。そして、ギア検知部4bは、その検知信号を車輌制御装置6に出力し、車輌制御装置6に減速機4のギア比を識別させる。
 車軸5は、両端に配設された駆動輪を回転させて、車輌を走行させる。車軸5は、車体後方側に配設されており、差動歯車(デファレンシャルギア)を介して減速機4からの回転動力を受け、駆動輪を回転させている。
 車輌制御装置6は、車輌の運転状態を検知する各種センサからの検知信号を受信し、走行を制御する各構成部品が最適な状態となるように演算して、車輌の運転状態を統括制御する。尚、車輌の運転状態を検知する各種センサは、減速機4のギア、アクセルペダル7の踏み込み量、シフトレバー8のレバー位置、自動運転ボタン9、車輌の走行速度、ハンドルの操舵角、ブレーキペダルの踏み込み量等の状態を検知している。これらの各種センサから受信した検知信号は、AD変換(アナログ-デジタル変換)されて記憶部(図示せず)に格納されている。
 車輌制御装置6は、走行制御部61、運転モード切替部62、ギア変更部63、制限部64を含んで構成される(図2を参照)。
 走行制御部61は、上記した車輌の運転状態の情報に基づいて演算処理を行い、加減速を含む車輌の走行速度や、進行方向を制御する。走行制御部61は、例えば、インバータ装置2を構成するスイッチング素子に出力するPWM信号(パルス幅変調信号)を制御することで、駆動装置3の回転速度を制御し、車輌の走行速度を制御している。
 運転モード切替部62は、運転操作を運転者が手動で行う手動運転モードと、運転操作が自動で行われる自動運転モードとを切り替える。ここでは、運転モード切替部62は、運転者が自動運転ボタン9を押下した場合、自動運転制御装置10に対して起動指令信号を送信して自動運転制御装置10を起動するとともに、運転操作を不可とする(運転者が操作するアクセルペダル7やシフトレバー8からの信号を無効とする)。運転モード切替部62は、このことによって、自動運転モードと手動運転モードを切り替えるものとする。また、自動運転モードから手動運転モードへの切り替えは、自動運転モード状態で、再度、運転者が自動運転ボタン9を押下した場合、目的地付近に到着した場合、自動運転に支障が生じた場合などに手動運転モードへ切り替えても良い。
 ギア変更部63は、減速機4のアクチュエータ4aに移動指令信号を出力することによって、ギア比を変更させる。ここでは、ギア変更部63は、運転者がギア切替スイッチ12を操作して、ギア変更指示がなされた場合、減速機4のアクチュエータ4aを動作させて、減速機4のギア比を変更するものとする。
 制限部64は、自動運転モードの際、減速機4のギア比が手動運転モードで用いられる最も小さいギア比よりも大きい状態で走行するように運転状態を制限する。ここで、本実施の形態において、手動運転モードで用いられる最も小さいギア比とは、高速ギアのギア比を表す。減速機4のギア比が手動運転モードで用いられる最も小さいギア比よりも大きい状態とは、低速ギアの状態を表し、駆動装置3の回転速度が上昇した場合、車輌の走行速度が上昇しにくい状態を意味する。つまり、制限部64は、車輌制御装置6又は自動運転制御装置10等に異常が生じた場合に備えて自動運転モードの際には高速ギアの状態で走行することを禁止している。これにより、駆動装置3から予期せぬ高い回転動力が生成されたとしても、低速ギアにより高速状態になることを防止することができる。尚、ここでは、制限部64は、ギア検知部4bからの検知信号に基づいて、減速機4のギア比を識別し、減速機4のギア比が高速ギアの場合、手動運転モードから自動運転モードへの切り替えを禁止する(不可とする)ことによって、当該機能を実現している。
 尚、車輌制御装置6が有するこれらの機能は、CPUがコンピュータプログラムを実行することで実現されている。又、車輌制御装置6と、各種センサや自動運転制御装置10との信号の送受信は、例えば、信号線を介してCAN(Controller Area Network)通信プロトコル方式で行われるものとする。
 アクセルペダル7は、運転者が加減速を含む車輌の走行速度を操作するためのユーザインターフェイスである。アクセルペダル7の踏み込み量は、センサによって検知され、その検知信号は、車輌制御装置6に出力されている。当該アクセルペダル7は、一般的な車輌に搭載されている周知のアクセルペダルと同様の構成である。
 シフトレバー8は、運転者がレンジを変更するためのユーザインターフェイスである。シフトレバー8のレバー位置は、センサによって検知され、その検知信号は、車輌制御装置6に出力されている。当該シフトレバー8は、一般的な車輌に搭載されている周知のシフトレバーと同様の構成である。ここでは、シフトレバー8は、「リバースレンジ」、「ニュートラルレンジ」、「ドライブレンジ」を変更可能に構成されているものとする。
 自動運転ボタン9は、運転者が手動運転モードと自動運転モードとを切り替え可能にするためのユーザインターフェイスである。自動運転ボタン9の押下状態は、センサによって検知され、その検知信号(自動運転要求信号)は、車輌制御装置6に出力されている。
 自動運転制御装置10は、車輌制御装置6に対して運転指令信号を出力して、車輌の走行を自律的に制御する制御装置である。自動運転制御装置10は、定期的にGPS(Global Positioning System)衛星や外部サーバと通信して、これらから車輌の位置情報、周囲環境情報等を取得して、記憶部に格納する。又、自動運転制御装置10は、車輌周囲の外界の状態を認識するために設けられたカメラやレーザ距離計等のセンサからの検知信号を取得して、記憶部に格納する。そして、自動運転制御装置10は、これらの情報に基づいて、目標地点へ向かうためのルート、安全に走行するための走行速度等を演算し、運転指令信号を生成して、車輌制御装置6に対して出力している。尚、ここで、運転指令信号とは、アクセルペダル7の踏み込み量調整、ブレーキ制御、シフトレバー8の制御、ステアリング制御等、運転者が行う操作を代替するための信号である。
 インジケータ11は、車輌制御装置6の記憶部に格納されている情報に基づいて、減速機4のギア比の状態や運転モードの状態(自動運転モードか手動運転モードか)等を表示し、車輌の運転状態を運転者に視認させている。
 ギア切替スイッチ12は、ギアを変更するためのユーザインターフェイスである。ギア切替スイッチ12の押下信号は、車輌制御装置6に出力されている。ここでは、ギア切替スイッチ12は、「低速ギア」のギア比のギア(Low)と「高速ギア」のギア比のギア(High)の2つを選択可能に構成されているものとする。
 例えば、手動運転モードで走行する場合、運転者は、シフトレバー8を操作し、「ドライブレンジ」を選択し、ギア切替スイッチ12の「低速ギア」を選択して、アクセルペダル7を踏み込むことで車輌を加速させる。さらに高速走行を行いたい場合には、運転者は、ギア切替スイッチ12の「高速ギア」を選択し、アクセルペダル7を踏み込むことで高速走行を行うことが可能である。また、例えば、手動運転モードで逆走行(バック)する場合には、運転者は、シフトレバー8を操作し、「リバースレンジ」を選択し、ギア切替スイッチ12の「低速ギア」を選択して、アクセルペダル7を踏み込むことで車輌を逆走行させる。さらに高速走行を行いたい場合には、運転者は、ギア切替スイッチ12の「高速ギア」を選択し、アクセルペダル7を踏み込むことで高速な逆走行(バック)を行うことが可能である。
 一方、自動運転モードで走行する場合、シフトレバー8で「ニュートラルレンジ」が選択され、ギア切替スイッチ12の「低速ギア」が選択された状態で、自動運転ボタン9の押下された際に自動運転走行を可能とする。
 <車輌制御システムの動作>
 以下、図3を参照して、本実施の形態に係る車輌制御システムの動作の一例を説明する。
 図3は、運転モードを切り替える際の車輌制御装置6の動作の一例を示す図である。ここでは、車輌が手動運転モード状態から自動運転モードへ切り替える際の動作を示している。
 車輌制御装置6は、自動運転ボタン9の押下状態を検知するセンサから出力される自動運転要求信号を格納するレジスタの状態に応じて、自動運転要求信号を受信したか否かを判定する(S1)。そして、自動運転要求信号を受信していない場合(S1:NO)、車輌制御装置6は、そのまま、手動運転モードを継続する(S3c)。
 一方、自動運転要求信号を受信した場合(S1:YES)、制限部64に、自動運転モードへの切り替えを許可するか否か判定させる。この工程において、制限部64は、減速機4のギア比が低速ギアであるか否かを判定する(S2)。そして、低速ギアの場合(S2:YES)、制限部64は、自動運転モードに切り替えるべく、運転モード切替部62に手動運転モードから自動運転モードへの切替処理を実行させる(S3a)。
 その際、運転モード切替部62は、自動運転制御装置10に対して起動指令信号を送信し、自動運転制御装置10を起動するとともに、運転操作を不可とする(運転者が操作するアクセルペダル7やシフトレバー8からの信号を無効とする)。そして、自動運転制御装置10は、当該起動指令信号の受信に応じて、自動運転モードを実行するための処理を開始し、目標地点へ向かうためのルート、安全に走行するための走行速度等を逐次演算し、当該走行速度等に関する運転指令信号を生成して、車輌制御装置6に対して出力する。これによって、車輌制御装置6の走行制御部61は、当該運転指令信号のもと車輌の制御を開始し、自律的な運転が開始されることになる。
 一方、減速機4のギア比が低速ギアではない場合(S2:NO)、制限部64は、自動運転ボタン9からの自動運転要求信号を無効にして、そのまま、手動運転モードを継続させる(S3b)。このように、減速機4のギア比が高速ギアの場合、手動運転モードから自動運転モードへの切り替えを禁止することによって、減速機4のギア比が高速ギアの状態で自動運転されることが確実に防止されることになる。
 以上のように、本実施の形態に係る車輌制御システムによれば、自動運転モードの際、減速機4のギア比が低速ギアの状態で走行することになる。このため、仮に、車輌制御装置6や自動運転制御装置10が暴走して走行速度を異常に上昇させようとした場合であっても、その加速度を物理的に制限し、走行速度の上昇を抑制することができる。
 又、本実施の形態に係る車輌制御システムでは、駆動装置3として永久磁石式同期モータを用いることによって、車輌の走行速度の上限値を物理的に制限することを可能としている。具体的には、永久磁石式同期モータは、永久磁石によって界磁磁束を生成するため、永久磁石の有する固有の磁束密度の大きさに応じて、駆動装置3として発生しうる回転速度に上限値が規定されるという性質を持つ。つまり、仮に、車輌制御装置6や自動運転制御装置10が暴走してインバータ装置2から供給される三相交流電力の周波数を異常に上昇させようとした場合(走行速度を異常に上昇させようとした場合)でも、駆動装置3の発生する回転速度は、当該永久磁石式同期モータの回転速度の上限値を超えない値に制限することができる。そして、自動運転モードの際には、減速機4のギア比が低速ギアであることと相俟って、車輌の走行速度の上限値を物理的に小さい値に制限することが可能となる。
 (第2の実施の形態)
 次に、図4を参照して、第2の実施の形態に係る車輌制御システムについて説明する。
 図4は、本実施の形態に係る車輌制御システムの制限部の構成の一例を示す図である。図4では、上記した制限部64が、ギア検知部4cとスイッチ回路10bによってハードウェアの回路として構成されている点で、第1の実施の形態と相違する。尚、第1の実施の形態と共通する構成については、説明を省略する(以下、他の実施の形態についても同様)。
 ギア検知部4cは、第1の実施の形態のギア検知部4bと同様に、リミットスイッチやホール素子等で構成された減速機4のギアの位置を検知するセンサである。本実施の形態に係るギア検知部4cは、その検知信号4csをスイッチ回路10bに出力している。ここでは、ギア検知部4cの検知信号4csは、減速機4のギア比が高速ギアの場合にはローレベル出力となり、減速機4のギア比が低速ギアの場合にはハイレベル出力となるものとする。
 スイッチ回路10bは、電源から自動運転制御装置10に対して電力を供給する電路10aに設けられ、自動運転制御装置10への電力供給を制御する。スイッチ回路10bは、例えば、電磁継電器によって構成され、ギア検知部4cからの検知信号4csに応じて電路10aを開閉する。より詳細には、スイッチ回路10bは、検知信号4csが減速機4のギア比が高速ギアを示す場合(ローレベル出力の場合)、開路して自動運転制御装置10への電力供給を遮断する。
 本実施の形態に係る車輌制御システムは、一例として、次のように動作して、自動運転モードの際に減速機4のギア比が高速ギアの状態で走行することを防止する。自動運転ボタン9が押下された場合、第1の実施の形態と同様に、車輌制御装置6は、自動運転ボタン9から自動運転要求信号を受信して、自動運転制御装置10に対して起動指令信号を送信する。このとき、減速機4のギア比が高速ギアである場合、スイッチ回路10bは、ギア検知部4cからの検知信号4csに応じて開路して、自動運転制御装置10への電力供給を遮断することになり、自動運転制御装置10から車輌制御装置6に対して応答しない状態となる。この場合、車輌制御装置6は、手動運転モードから自動運転モードへ切り替えることはできないとして(タイムアウト)、自動運転ボタン9からの自動運転要求信号を無効にして、そのまま、手動運転モードを継続させる。尚、減速機4のギア比が低速ギアである場合は、第1の実施の形態と同様の処理によって、自動運転モードを開始することになる。
 以上のように、本実施の形態に係る車輌制御システムによれば、第1の実施の形態の場合と同様に、自動運転モードの際、常に、減速機4のギア比が低速ギアの状態で走行することになる。このため、仮に、車輌制御装置6や自動運転制御装置10が暴走して走行速度を異常に上昇させようとした場合であっても、その加速度を物理的に制限し、走行速度の上昇を抑制することができる。又、本実施の形態では、車輌制御装置6及び自動運転制御装置10を介在させないで、ハードウェアの回路構成として制限部64の機能を実現しているので、これらの制御装置が暴走して減速機4のギア比を切り替えることも防止することができる。
 (その他の実施の形態)
 上記第1の実施の形態および第2の実施の形態では、自動運転制御装置10の構成の一例として、当該自動運転制御装置10が運転指令信号(アクセルペダル7の踏み込み量調整、ブレーキ制御、シフトレバー8の操作)を生成して、当該運転指令信号を車輌制御装置6に対して出力することで自動運転モードにおける走行制御を行う態様を示した。しかし、これらの機能構成は、種々に変更可能である。例えば、自動運転制御装置10にも車輌制御装置6の走行制御部61の機能と同様の機能を設け、自動運転モードの際の車輌の制御は、自動運転制御装置10が、車輌制御装置6を介することなく、インバータ装置2等を直接制御する構成としてもよい。又、自動運転制御装置10は、車輌の加速操作(アクセルペダル7の踏み込み)等、一部の機能のみを運転者に代替するものであってもよい。
 又、上記第1の実施の形態および第2の実施の形態では、制限部64の構成の一例として、減速機4のギア比が高速ギアの場合、手動運転モードから自動運転モードへの切り替えを禁止する態様を示した。しかし、減速機4のギア比が高速ギアで自動運転が行われることを禁止することができれば、他の態様であってもよい。例えば、制限部64は、手動運転モードから自動運転モードに切り替えたときに、減速機4のギア比を低速ギアに切り替える構成としてもよい。又、制限部64は、低速ギアから高速ギア側へギアチェンジすることを禁止するロック機構を減速機4に設け、当該ロック機構を動作させるものであってもよい。但し、上記のように、減速機4のギア比が高速ギアの場合、手動運転モードから自動運転モードへの切り替えを禁止する態様とすることが、減速機4のギア比が高速ギアの状態で自動運転されることを確実に防止できる点で、より好適である。
 又、上記第1の実施の形態および第2の実施の形態では、ギアの切り替え指示を手動で行うマニュアルトランスミッション切替方式の態様を示したが、手動運転モードの際には、ギアの切り替え指示を自動で行うオートマチックトランスミッション切替方式の態様によるものとしてもよい。
 又、上記第1の実施の形態および第2の実施の形態では、駆動装置3の構成の一例として、永久磁石式同期モータを用いる態様を示したが、これに限らず、ガソリンエンジンや他の駆動モータを用いてもよい。尚、駆動装置3としてガソリンエンジンを用いる場合、車輌制御装置6は、インバータ装置2を制御する構成に代えて、ガソリンエンジンの有する点火装置や燃料噴射装置を制御する構成とすればよい。但し、上記したとおり、駆動装置3としては、走行速度の上限値を規定できる点で、永久磁石式同期モータがより好適である。
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
 本明細書および添付図面の記載により、少なくとも以下の事項が明らかとなる。
 駆動装置3が生成する動力の回転速度を減速機4で減じて走行する車輌に搭載される車輌制御システムを開示する。車輌制御システムは、少なくとも加速操作を含む運転操作を運転者が手動で行う手動運転モードと、運転操作が自動で行われる自動運転モードとを切り替える運転モード切替部62と、自動運転モードの際、減速機のギア比が手動運転モードで用いられる最も小さいギア比よりも大きい状態で走行するように運転状態を制限する制限部64と、を有する。この車輌制御システムによれば、自動運転モードの際、常に、減速機4のギア比が低速ギアの状態で走行することになる。このため、仮に、車輌制御装置6や自動運転制御装置10が暴走し、走行速度を異常に上昇させようとした場合であっても、その加速度及び走行速度を物理的に制限することができる。
 ここで、制限部64は、減速機4のギア比が所定のギア比よりも小さい場合、手動運転モードから自動運転モードへの切り替えを禁止するものであってもよい。この車輌制御システムによれば、手動運転モードから自動運転モードに切り替える前に、減速機4を低速ギアに切り替えることになるため、減速機4のギア比が高速ギアの状態で自動運転されることを確実に防止することができる。
 又、制限部64は、減速機4のギア比を検知するギア検知部4cと、電源から自動運転モードにおいて車輌を制御する自動運転制御装置10に対して電力を供給する電路10aに設けられ、ギア検知部4cからの検知信号に基づいて電路10aを遮断するスイッチ回路10bと、有するものであってもよい。この車輌制御システムによれば、減速機4のギア比が高速ギアの場合、自動運転制御装置10への電力供給が遮断されるため、これらの制御装置が暴走して減速機4のギア比を切り替えることも防止することができる。
 又、この車輌制御システムは、駆動装置3として永久磁石界磁式モータが用いられた車輌に搭載されるものであってもよい。すなわち、駆動装置3は、永久磁石界磁式モータであってもよい。この車輌制御システムによれば、車輌の走行速度の上限値を物理的に制限することができる。
 又、減速機4が多段階のギア比(例えば、5段階のギア比)を有するものである場合、手動運転モードの際には全てのギア比への使用を可能とし、自動運転モードの際には、所定のギア比よりも大きいギア比(例えば、最も大きいギア比と次ぎに大きいギア比の2段階のギア比)の使用を可能としても良い。
 本開示は、駆動装置が生成する動力を減速機で減じて走行する車輌に搭載される車輌制御システムに用いるに好適である。
 1 蓄電池
 2 インバータ装置
 3 駆動装置
 4 減速機
 4a アクチュエータ
 4b,4c ギア検知部
 5 車軸
 6 車輌制御装置
 61 走行制御部
 62 運転モード切替部
 63 ギア変更部
 64 制限部
 7 アクセルペダル
 8 シフトレバー
 9 自動運転ボタン
 10 自動運転制御装置
 10a 電路
 10b スイッチ回路
 11 インジケータ
 12 ギア切替スイッチ

Claims (5)

  1.  駆動装置が生成する動力の回転速度を減速機で減じて走行する車輌に搭載される車輌制御システムであって、
     少なくとも加速操作を含む運転操作を運転者が手動で行う手動運転モードと、前記運転操作が自動で行われる自動運転モードとを切り替える運転モード切替部と、
     前記自動運転モードの際、前記減速機のギア比が前記手動運転モードで用いられる最も小さいギア比よりも大きい状態で走行するように運転状態を制限する制限部と、
     を備える車輌制御システム。
  2.  前記制限部は、前記自動運転モードの際、前記減速機のギア比が所定のギア比よりも大きい状態で走行するように運転状態を制限する、
     請求項1に記載の車輌制御システム。
  3.  前記制限部は、現在の前記減速機のギア比が所定のギア比よりも小さい場合、前記手動運転モードから前記自動運転モードへの切り替えを禁止する、
     請求項2に記載の車輌制御システム。
  4.  前記制限部は、
     前記減速機のギア比を検知するギア検知部と、
     電源から前記自動運転モードにおいて車輌を制御する自動運転制御装置に対して電力を供給する電路に設けられ、前記ギア検知部からの検知信号に基づいて前記電路を遮断するスイッチ回路と、を有する、
     請求項3に記載の車輌制御システム。
  5.  前記駆動装置は、永久磁石界磁式モータである、
     請求項1から4までのいずれか一項に記載の車輌制御システム。
PCT/JP2017/005037 2016-02-22 2017-02-13 車輌制御システム WO2017145829A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-031137 2016-02-22
JP2016031137A JP2017153188A (ja) 2016-02-22 2016-02-22 車輌制御システム

Publications (1)

Publication Number Publication Date
WO2017145829A1 true WO2017145829A1 (ja) 2017-08-31

Family

ID=59685594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005037 WO2017145829A1 (ja) 2016-02-22 2017-02-13 車輌制御システム

Country Status (2)

Country Link
JP (1) JP2017153188A (ja)
WO (1) WO2017145829A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109324608A (zh) * 2018-08-31 2019-02-12 百度在线网络技术(北京)有限公司 无人车控制方法、装置、设备以及存储介质
CN115123286A (zh) * 2021-03-26 2022-09-30 武汉智行者科技有限公司 一种人工驾驶和自动驾驶档位信号的切换控制系统
WO2024066736A1 (zh) * 2022-09-30 2024-04-04 华为数字能源技术有限公司 一种电机控制模块的控制器、电机的控制方法及相关设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010014247A (ja) * 2008-07-07 2010-01-21 Aisin Aw Co Ltd 運転支援装置、運転支援方法および運転支援プログラム
JP2011050206A (ja) * 2009-08-28 2011-03-10 Mitsuba Corp 電動駆動装置
JP2011051554A (ja) * 2009-09-04 2011-03-17 Toyota Motor Corp ハイブリッド車両用モータ制御装置
JP2012148683A (ja) * 2011-01-19 2012-08-09 Kironii Sangyo Kk ハイブリッド車両用電動モータ駆動装置及び該装置を備えたハイブリッド車両
JP2015534518A (ja) * 2012-09-06 2015-12-03 ジャガー・ランド・ローバー・リミテッドJaguar Land Rover Limited 車両制御システム及び方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010014247A (ja) * 2008-07-07 2010-01-21 Aisin Aw Co Ltd 運転支援装置、運転支援方法および運転支援プログラム
JP2011050206A (ja) * 2009-08-28 2011-03-10 Mitsuba Corp 電動駆動装置
JP2011051554A (ja) * 2009-09-04 2011-03-17 Toyota Motor Corp ハイブリッド車両用モータ制御装置
JP2012148683A (ja) * 2011-01-19 2012-08-09 Kironii Sangyo Kk ハイブリッド車両用電動モータ駆動装置及び該装置を備えたハイブリッド車両
JP2015534518A (ja) * 2012-09-06 2015-12-03 ジャガー・ランド・ローバー・リミテッドJaguar Land Rover Limited 車両制御システム及び方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109324608A (zh) * 2018-08-31 2019-02-12 百度在线网络技术(北京)有限公司 无人车控制方法、装置、设备以及存储介质
US11320818B2 (en) 2018-08-31 2022-05-03 Apollo Intelligent Driving Technology (Beijing) Co., Ltd. Method, apparatus, device and storage medium for controlling unmanned vehicle
CN115123286A (zh) * 2021-03-26 2022-09-30 武汉智行者科技有限公司 一种人工驾驶和自动驾驶档位信号的切换控制系统
WO2024066736A1 (zh) * 2022-09-30 2024-04-04 华为数字能源技术有限公司 一种电机控制模块的控制器、电机的控制方法及相关设备

Also Published As

Publication number Publication date
JP2017153188A (ja) 2017-08-31

Similar Documents

Publication Publication Date Title
CN102883917B (zh) 车辆控制装置
US5568024A (en) Drive control system and method for battery car
US8862303B2 (en) Industrial vehicle
JPH0993714A (ja) 電気自動車の駆動装置
WO2017061197A1 (ja) 電動車の回生制動制御装置
EP2444275B1 (en) Motor torque control device
JPH0591601A (ja) 車両用電動機の制御装置
KR20130036744A (ko) 전동 차량의 백래시 조정 제어 장치
WO2017145829A1 (ja) 車輌制御システム
JP2004268753A (ja) 産業用車両の走行制御装置
JP2007238009A (ja) ハイブリッド電気自動車の制御装置
JP2016073061A (ja) 電気自動車の制御装置
JP2017169363A (ja) 車両の制御装置
JP2013146116A (ja) 電気自動車のコンデンサ電荷放電装置
KR101554806B1 (ko) 전기 기계를 포함하는 차량을 위한 방법
JP6658943B1 (ja) 車両の制御装置
JP5914298B2 (ja) 車両用制御装置
JP2012090396A (ja) 車両の駆動力制御装置
JP7459718B2 (ja) 電気自動車の制御装置
JP2009038898A (ja) 二次電池の劣化判定装置
KR101856789B1 (ko) Eps 시스템의 폴트 컨트롤러를 포함한 전동 지게차
JP4379822B2 (ja) 二次電池の劣化判定装置
JP2011061946A (ja) 電気自動車の車輪スリップ制御装置
US11815175B2 (en) Control device and control method of electric vehicle
JP2013224058A (ja) ハイブリッド車両の発進制御装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756270

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756270

Country of ref document: EP

Kind code of ref document: A1