WO2017145714A1 - 鉱油系基油、及び潤滑油組成物 - Google Patents

鉱油系基油、及び潤滑油組成物 Download PDF

Info

Publication number
WO2017145714A1
WO2017145714A1 PCT/JP2017/004089 JP2017004089W WO2017145714A1 WO 2017145714 A1 WO2017145714 A1 WO 2017145714A1 JP 2017004089 W JP2017004089 W JP 2017004089W WO 2017145714 A1 WO2017145714 A1 WO 2017145714A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
mineral
base oil
less
raw material
Prior art date
Application number
PCT/JP2017/004089
Other languages
English (en)
French (fr)
Inventor
憲寛 黒田
久夫 安西
健治 後藤
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to CN201780012973.9A priority Critical patent/CN108699469B/zh
Priority to US16/078,415 priority patent/US10647937B2/en
Priority to JP2018501113A priority patent/JP6905971B2/ja
Priority to EP17756156.0A priority patent/EP3421577A4/en
Publication of WO2017145714A1 publication Critical patent/WO2017145714A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • C10M101/02Petroleum fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M177/00Special methods of preparation of lubricating compositions; Chemical modification by after-treatment of components or of the whole of a lubricating composition, not covered by other classes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/015Distillation range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/065Saturated Compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/067Unsaturated Compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/069Linear chain compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/02Bearings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/042Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for automatic transmissions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/044Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for manual transmissions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/045Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for continuous variable transmission [CVT]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/08Hydraulic fluids, e.g. brake-fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/10Running-in-oil ; Grinding
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/12Gas-turbines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/135Steam engines or turbines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/14Electric or magnetic purposes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/22Metal working with essential removal of material, e.g. cutting, grinding or drilling
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/40Generators or electric motors in oil or gas winning field
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a mineral oil base oil, a lubricating oil composition using the mineral oil base oil, and a method of using the lubricating oil composition.
  • lubricating oil compositions used as drive system oils such as automatic transmission oil (ATF), continuously variable transmission oil (CVTF), shock absorber oil (SAF), engine oil, hydraulic fluid, etc. Accordingly, various characteristics are required. Since the characteristics of the lubricating oil composition are often greatly affected by the properties of the base oil used, the development of a base oil that can produce a lubricating oil composition that can exhibit the required characteristics is also widespread. Has been done.
  • Patent Document 1 discloses that the flash point is 170 ° C. or higher, the kinematic viscosity at 40 ° C. is 9.0 to 14.0 mm 2 / s, the viscosity index is 100 or more, and the 5% by volume distillation temperature in the distillation test is 310 ° C.
  • the hydrocarbon-based lubricating base oil having a pour point of ⁇ 30 ° C. or less and an aromatic content (% C A ) of 0.1 or less has been described.
  • the lubricating base oil maintains a conventional viscosity and has a high flash point
  • the lubricating oil composition used at high temperatures such as power steering oil and transmission oil for automobiles. It is said that it is suitable for a thing.
  • the lubricating base oil described in Patent Document 1 is a high viscosity base oil having a kinematic viscosity at 40 ° C. of 9.0 mm 2 / s or more, so that the fuel consumption performance is improved by reducing the viscosity of the lubricating oil composition. It is hard to say that it is a suitable base oil.
  • the present invention uses a mineral base oil that can easily produce a lubricating oil composition that has a high flash point and further improved fuel efficiency by further lowering the viscosity, and the mineral base oil. It is an object of the present invention to provide a lubricating oil composition and a method of using the lubricating oil composition.
  • the present inventor has found that a mineral base oil having a flash point of not less than a predetermined value can be solved by adjusting the kinematic viscosity at 40 ° C. and 100 ° C. to a predetermined range and lowering the viscosity. Completed the invention. That is, the present invention provides the following [1] to [3]. [1] The kinematic viscosity at 40 ° C. is 4.0 mm 2 / s or more and less than 6.0 mm 2 / s, and the kinematic viscosity at 100 ° C. is 1.0 mm 2 / s or more and less than 2.0 mm 2 / s, and, A mineral base oil having a flash point of 140 ° C. or higher.
  • a lubricating oil composition comprising the mineral base oil according to [1] above.
  • a lubricating oil composition containing the mineral oil base oil according to [1] above, a power transmission device, an engine, a hydraulic actuator, a turbine, a compressor, a machine tool, a cutting machine, a gear, a fluid bearing, and a rolling A method of using a lubricating oil composition used for lubrication of any mechanism of a bearing.
  • the mineral base oil of the present invention By using the mineral base oil of the present invention, it is easy to produce a lubricating oil composition having a high flash point, a low viscosity, and improved fuel efficiency when used as a drive system oil. obtain.
  • the mineral base oil of the present invention satisfies the following requirements (I) and (II).
  • the kinematic viscosity at 40 ° C. or 100 ° C. means a value measured in accordance with JIS K2283, and the flash point is in accordance with JIS K2265-4, based on the Cleveland Open Type (COC) method. Means the value measured by
  • the mineral base oil of the present invention has a high flash point of 140 ° C. or higher as defined in the requirement (II) while being reduced in viscosity as defined in the requirement (I).
  • Mineral oil base oil Therefore, by using the mineral base oil of the present invention, it is easy to obtain a lubricating oil composition that has a low flash point and has improved fuel economy when used as a drive system oil while having a high flash point. Can be manufactured.
  • the mineral base oil of the present invention has a relatively small difference between the kinematic viscosity at 40 ° C. and the kinematic viscosity at 100 ° C. as defined in the requirement (I), and the temperature dependency of the viscosity is low. Therefore, by using the mineral oil base oil of the present invention, a lubricating oil composition having a small viscosity change due to temperature can be produced.
  • Kinematic viscosity at 40 ° C. of mineral base oil of the present invention is at 4.0 mm 2 / s or more, preferably 4.2 mm 2 / s or more, more preferably 4.3 mm 2 / s or more More preferably, it is 4.4 mm 2 / s or more.
  • the kinematic viscosity (V 40 ) is less than 6.0 mm 2 / s, preferably 5.8 mm 2 / s or less, more preferably 5.7 mm 2 / s or less, and still more preferably 5.6 mm 2 / s. s or less.
  • the kinematic viscosity (V 100 ) at 100 ° C. of the mineral base oil of the present invention is 1.0 mm 2 / s or more, preferably 1.2 mm 2 / s or more, more preferably 1.3 mm 2 / s or more. More preferably, it is 1.4 mm 2 / s or more, and still more preferably 1.5 mm 2 / s or more.
  • the kinematic viscosity (V 100) is less than 2.0 mm 2 / s, preferably 1.95 mm 2 / s or less, more preferably 1.90 mm 2 / s or less, more preferably 1.85 mm 2 / s or less.
  • the mineral base oil of the present invention is a mineral oil whose viscosity index measured according to JIS K2283 cannot be calculated.
  • the flash point of the mineral base oil of the present invention is 140 ° C. or higher, preferably 142 ° C. or higher, more preferably 144 ° C. or higher, more preferably 146 ° C. or higher, more preferably 150 ° C. or higher. More preferably, it is 154 ° C. or higher, particularly preferably 160 ° C. or higher, and usually 180 ° C. or lower.
  • the 10% by volume distillation temperature of the mineral oil base oil is preferably 250 ° C. or higher, more preferably 255 ° C. or higher, still more preferably. Is 280 ° C. or higher, more preferably 285 ° C. or higher, and usually 305 ° C. or lower.
  • the 90 vol% distillation temperature of the mineral oil base oil is preferably 320 ° C or higher, more preferably 330 ° C or higher, More preferably, it is 340 degreeC or more, More preferably, it is 350 degreeC or more, and it is 365 degrees C or less normally.
  • the aniline point of the mineral base oil of one embodiment of the present invention is preferably 70 ° C or higher, more preferably 80 ° C or higher, still more preferably 85 ° C or higher, still more preferably 90 ° C or higher, particularly preferably 92 ° C or higher. Moreover, it is 110 degrees C or less normally. Mineral oil base oils having an aniline point of 70 ° C. or higher tend to have a high paraffin content and a low aromatic content and are likely to have a high flash point.
  • an aniline point means the value measured based on JISK2256 (U-shaped pipe method).
  • the density at 15 °C aspect mineral base oil of the present invention preferably 0.860 g / cm 3 or less, more preferably 0.850 g / cm 3 or less, more preferably 0.840 g / cm 3 or less, More preferably, it is 0.830 g / cm 3 or less, particularly preferably 0.825 g / cm 3 or less, and usually 0.800 g / cm 3 or more. If the mineral base oil having a density of 0.860 g / cm 3 or less while satisfying the requirements (I) and (II), the mineral base oil having a lower temperature dependency of viscosity and a higher flash point is obtained. can do.
  • the density at 15 ° C. is a value measured in accordance with JIS K2249.
  • the paraffin content (% C P ) of the mineral base oil of one embodiment of the present invention is preferably 60 to 80, more preferably 62 to 79, still more preferably 66 to 78, and even more preferably 68 to 77. .
  • the naphthene content (% C N ) of the mineral base oil of one embodiment of the present invention is preferably 10 to 40, more preferably 13 to 38, still more preferably 16 to 34, and still more preferably 20 to 32. .
  • the aromatic content (% C A ) of the mineral base oil of one embodiment of the present invention is preferably less than 2.0, more preferably less than 1.0, and still more preferably less than 0.1.
  • the paraffin content (% C P ), naphthene content (% C N ), and aromatic content (% C A ) are measured by ASTM D-3238 ring analysis (ndM method). The ratio (percentage) of the paraffin content, naphthene content, and aromatic content.
  • the mineral oil base oil of one embodiment of the present invention preferably further satisfies the following requirement (III).
  • (hereinafter, also simply referred to as “complex viscosity temperature gradient ⁇
  • the mineral base oil of 1 aspect of this invention is a mixed oil which combined 2 or more types of mineral oil, the said mixed oil should just satisfy said requirements (III).
  • strain amount described in the above requirement (III) is a value appropriately set in accordance with the temperature in the range of 0.1 to 100%.
  • of the complex viscosity indicates that the value of the complex viscosity ⁇ * at ⁇ 10 ° C. and the value of the complex viscosity ⁇ * at ⁇ 25 ° C.
  • the mineral base oil satisfying the requirement (III) has a complex viscosity temperature gradient ⁇
  • of the complex viscosity specified in the requirement (III) is preferably 0.08 Pa ⁇ s / ° C. or less, more preferably 0.05 Pa ⁇ s / ° C. or less, and still more preferably.
  • of the complex viscosity specified in the requirement (III) is not particularly limited as to the lower limit value, but is preferably 0.0001 Pa ⁇ s / ° C. or more, more preferably 0.0005 Pa ⁇ s. / ° C. or higher, more preferably 0.0010 Pa ⁇ s / ° C. or higher, and still more preferably 0.0018 Pa ⁇ s / ° C. or higher.
  • the mineral base oil of the present invention that satisfies the above requirements (I) to (III) is related to the selection of a raw material oil used as a raw material of the mineral oil base oil and a method for producing a mineral base oil using the raw material oil. It can prepare easily by considering the matter shown below suitably. That is, the mineral base oil of the present invention is preferably a mineral oil obtained by subjecting the following raw material oil to the following purification treatment. In addition, the following matters are examples of the preparation method, and the preparation can also be performed by considering other matters.
  • the raw material for the mineral base oil of the present invention is referred to as raw material oil.
  • the raw oil include atmospheric residual oil obtained by atmospheric distillation of crude oil such as paraffinic mineral oil, intermediate mineral oil, and naphthenic mineral oil; distillate oil obtained by vacuum distillation of the atmospheric residual oil Mineral oil or wax that has been subjected to one or more purification treatments such as solvent deburring, solvent extraction, hydrofinishing, solvent dewaxing, catalytic dewaxing, isomerization dewaxing, and vacuum distillation ( GTL wax etc.); These feedstock oils may be used alone or in combination of two or more.
  • the raw material oil is prepared as a mineral base oil having a high flash point as defined in Requirement (II) while having a low viscosity as defined in Requirement (I) and low viscosity dependency due to temperature. From the viewpoint, it is preferable to include a light oil fraction, and it is more preferable to include a light oil fraction obtained by hydrocracking heavy light oil. From the above viewpoint, the gas oil fraction preferably contains a large amount of paraffin.
  • the kinematic viscosity at 40 ° C. of the raw material oil is preferably 4.0 to 6.0 mm 2 / s, more preferably 4.2 to 5.8 mm 2 / s, and still more preferably 4.4 to 5.6 mm 2. / S.
  • the kinematic viscosity at 100 ° C. of the feedstock preferably 1.0 ⁇ 2.0mm 2 / s, more preferably 1.2 ⁇ 1.9mm 2 / s, more preferably 1.4 ⁇ 1.85 mm 2 / S.
  • the flash point of the raw material oil is usually 70 ° C or higher and lower than 140 ° C.
  • paraffin content (% C P ), aromatic content (% C A ) and naphthene content (% C N ) of the raw material oil measured according to ASTM D-3238 ring analysis (ndM method) Is preferably in the range shown below from the viewpoint of preparing a mineral oil-based base oil having a low viscosity dependency due to temperature while reducing the viscosity to the extent specified by the requirement (I).
  • Paraffin content (% C P ) preferably 60 or more, more preferably 65 or more, further preferably 68 or more, still more preferably 70 or more, and preferably 98 or less.
  • -Aromatic content (% C A ) preferably 10.0 or less, more preferably 5.0 or less, and still more preferably 4.4 or less.
  • -Naphthene content (% C N ) preferably 10 to 40, more preferably 11 to 35, still more preferably 12 to 32, still more preferably 13 to 32.
  • the proportion of each component with respect to the total amount of 100% by volume of the aroma, naphthene, n-paraffin, and isoparaffin components of the raw material oil measured according to ASTM D2786 and the GC-FID method is the requirement (I From the viewpoint of preparing a mineral base oil having a low viscosity dependency due to temperature, while reducing the viscosity to the extent specified in (1), the following range is preferable.
  • aromatic content means a generic name for hydrocarbon compounds having an aromatic ring, preferably 25% by volume or less, more preferably 15% by volume or less, and still more preferably 10% by volume or less. Is 1% by volume or more.
  • -"Naphthene content means a generic name of saturated cyclic hydrocarbon compounds, preferably 70% by volume or less, more preferably 60% by volume or less, still more preferably 50% by volume or less, and preferably 10% by volume. % Or more.
  • n-paraffin is a general term for linear saturated hydrocarbon compounds, and is preferably 50% by volume or less, more preferably 30% by volume or less, and still more preferably 15% by volume or less.
  • -"Isoparaffin content means a generic name of branched saturated hydrocarbon compounds, preferably 8% by volume or more, more preferably 25% by volume or more, still more preferably 30% by volume or more, and preferably 70%. % By volume or less.
  • the 10% by volume distillation temperature of the raw material oil measured by a distillation test according to JIS K2254 is preferably 250 ° C or higher, more preferably 260 ° C or higher, still more preferably 270 ° C or higher, and even more preferably 275 ° C. It is above, and it is usually below 290 ° C.
  • the 90% by volume distillation temperature of the raw material oil measured by the distillation test is preferably 320 ° C. or higher, more preferably 350 ° C. or higher, further preferably 355 ° C. or higher, still more preferably 360 ° C. or higher, Especially preferably, it is 366 degreeC or more, and is 400 degrees C or less normally.
  • the mass average molecular weight (Mw) of the raw oil is preferably 150 to 450, more preferably 180 to 400, and still more preferably 200 to 350.
  • the mass mean molecular weight (Mw) of raw material oil means the value measured based on ASTM D2502.
  • the kinematic viscosity at 40 ° C. and 100 ° C. of the raw material oil used in the present invention is not significantly different from the range defined in the requirement (I) as described above.
  • the flash point of the low-viscosity feedstock as described above is usually less than 140 ° C. and does not satisfy the requirement (II).
  • of the complex viscosity specified by the requirement (III) of the raw material oil is likely to be high, and there is a problem in terms of low-temperature viscosity characteristics.
  • the mineral base oil of the present invention uses such a raw material oil, and is subjected to a refining treatment as shown below, so that the flash point is high and the viscosity temperature is low. The dependence is kept low and the low-temperature viscosity characteristics are excellent.
  • the mineral base oil of one embodiment of the present invention is preferably obtained by subjecting the above-mentioned raw material oil to a purification treatment.
  • purification conditions are set suitably according to the kind of raw material oil to be used.
  • the purification treatment preferably includes at least hydroisomerization dewaxing treatment, and more preferably includes hydroisomerization dewaxing treatment and hydrofinishing treatment.
  • the mineral base oil of one embodiment of the present invention is preferably obtained by performing hydroisomerization dewaxing treatment, and further hydrofinishing treatment is performed after hydroisomerization dewaxing treatment. More preferably, it is obtained by applying.
  • hydroisomerization dewaxing treatment and “hydrofinishing treatment” will be described.
  • the hydroisomerization dewaxing process is a purification process performed for the purpose of isomerization in which a linear paraffin contained in a raw material oil is converted into a branched-chain isoparaffin.
  • the aromatic isomerization and dewaxing treatment can open the aromatic component to form a paraffin component, or remove impurities such as a sulfur component and a nitrogen component.
  • the presence of linear paraffin in the raw material oil is one of the factors that increase the value of the temperature gradient ⁇
  • the hydroisomerization dewaxing treatment is preferably performed in the presence of a hydroisomerization dewaxing catalyst.
  • a hydroisomerization dewaxing catalyst for example, a support such as silica aluminophosphate (SAPO) or zeolite, nickel (Ni) / tungsten (W), nickel (Ni) / molybdenum (Mo), cobalt (Co) / Catalysts supporting metal oxides such as molybdenum (Mo) and noble metals such as platinum (Pt) and lead (Pd).
  • the hydrogen partial pressure in the hydroisomerization dewaxing treatment is preferably 2.0 to 30 MPa, more preferably 2.5 to 2.5 from the viewpoint of a mineral oil-based mineral oil base oil that satisfies the requirements (III) and (IV).
  • the pressure is 27 MPa, more preferably 3.0 to 25 MPa, and still more preferably 3.5 to 22 MPa.
  • the reaction temperature in hydroisomerization dewaxing treatment should be higher than the reaction temperature in general hydroisomerization dewaxing treatment from the viewpoint of making the mineral oil base oil satisfying requirements (II) and (III). It is preferably set, and specifically, it is preferably 250 to 400 ° C, more preferably 275 to 380 ° C, still more preferably 280 to 370 ° C, still more preferably 285 to 360 ° C.
  • the reaction temperature is high, isomerization of linear paraffin to branched isoparaffin can be promoted, and preparation of a mineral oil base oil that satisfies the requirements (II) and (III) is facilitated.
  • the liquid hourly space velocity (LHSV) in the hydroisomerization dewaxing treatment is preferably 5.0 hr ⁇ 1 or less, more preferably from the viewpoint of a mineral oil base oil that satisfies the requirements (III) and (IV). Is 3.0 hr ⁇ 1 or less, more preferably 2.0 hr ⁇ 1 or less, and even more preferably 1.5 hr ⁇ 1 or less. From the viewpoint of improving productivity, the LHSV in the hydroisomerization dewaxing treatment is preferably 0.1 hr ⁇ 1 or more, more preferably 0.2 hr ⁇ 1 or more.
  • the hydrofinishing treatment is a purification treatment performed for the purpose of complete saturation of aromatic components contained in the raw material oil and removal of impurities such as sulfur and nitrogen.
  • the hydrofinishing treatment is preferably performed in the presence of a hydrogenation catalyst.
  • the hydrogenation catalyst include amorphous carriers such as silica / alumina and alumina, and crystalline carriers such as zeolite, nickel (Ni) / tungsten (W), nickel (Ni) / molybdenum (Mo), cobalt (Co ) / Metal oxide such as molybdenum (Mo), and a catalyst supporting a noble metal such as platinum (Pt) or lead (Pd).
  • the hydrogen partial pressure in the hydrofinishing treatment is preferably set higher than the pressure in the general hydrotreatment from the viewpoint of making the mineral base oil satisfying the requirement (III), specifically
  • the pressure is preferably 16 MPa or more, more preferably 17 MPa or more, still more preferably 18 MPa or more, and preferably 30 MPa or less, more preferably 22 MPa or less.
  • the reaction temperature in the hydrofinishing treatment is preferably 200 to 400 ° C., more preferably 250 to 350 ° C., and further preferably 280 to 330 ° C. from the viewpoint of obtaining a mineral oil base oil that satisfies the requirement (III).
  • the liquid hourly space velocity in the hydrofinishing process (LHSV), from the viewpoint of the mineral base oil satisfying the requirement (III), preferably 5.0Hr -1 or less, more preferably 2.0 hr -1 or less, further Preferably, it is 1.0 hr ⁇ 1 or less, and from the viewpoint of productivity, it is preferably 0.1 hr ⁇ 1 or more, more preferably 0.2 hr ⁇ 1 or more, and further preferably 0.3 hr ⁇ 1 or more.
  • the supply ratio of hydrogen gas in the hydrofinishing treatment is preferably 100 to 2000 Nm 3 , more preferably 200 to 200 liters per 1 liter of oil to be supplied (refined oil subjected to hydroisomerization dewaxing treatment). 1500 Nm 3 , more preferably 250 to 1100 Nm 3 .
  • the obtained refined oil is subjected to vacuum distillation, and the fraction having a kinematic viscosity at 40 ° C. within the range specified in the requirement (I) is recovered, whereby the mineral oil of the present invention is collected.
  • a base oil can be obtained.
  • the mineral base oil obtained here has a high flash point while being reduced in viscosity as defined in requirement (I).
  • various conditions (pressure, temperature, time, etc.) of the vacuum distillation are appropriately set so that the kinematic viscosity at 40 ° C. and 100 ° C. of the obtained mineral oil base oil is within the range specified in the requirement (I). Adjusted.
  • the lubricating oil composition of the present invention contains the mineral oil base oil of the present invention described above, but may contain a synthetic oil together with the mineral oil base oil.
  • the synthetic oil examples include an ⁇ -olefin homopolymer or an ⁇ -olefin copolymer (for example, an ⁇ -olefin copolymer having 8 to 14 carbon atoms such as an ethylene- ⁇ -olefin copolymer).
  • the content of the synthetic oil is preferably 0 to 30 masses with respect to 100 mass parts of the total amount of the mineral base oil of the present invention contained in the lubricating oil composition. Parts, more preferably 0 to 20 parts by mass, still more preferably 0 to 10 parts by mass, and still more preferably 0 to 5 parts by mass.
  • the content of the mineral base oil of the present invention contained in the lubricating oil composition of one embodiment of the present invention is usually 60% by mass or more, preferably based on the total amount (100% by mass) of the lubricating oil composition. 70% by mass or more, more preferably 80% by mass or more, still more preferably 85% by mass or more, still more preferably 90% by mass or more, and usually 100% by mass or less, more preferably 99.99% by mass or less, still more preferably. Is 99 mass% or less.
  • the lubricating oil composition of the present invention may further contain a generally used additive for lubricating oil as necessary, as long as the effects of the present invention are not impaired.
  • lubricant additives include pour point depressants, viscosity index improvers, metal detergents, dispersants, antiwear agents, extreme pressure agents, antioxidants, antifoaming agents, and friction modifiers. , Rust preventives, metal deactivators and the like.
  • a commercially available additive package containing a plurality of additives may be used.
  • each additive for lubricating oil may be used alone or in combination of two or more.
  • Each content of these lubricating oil additives can be appropriately adjusted according to the type of the additive within a range not impairing the effects of the present invention, but the total amount of the lubricating oil composition (100% by mass). ) Based on 0.001 to 15% by mass, preferably 0.005 to 10% by mass, more preferably 0.01 to 8% by mass.
  • the lubricating oil composition of the present invention contains the mineral base oil of the present invention described above, it has a high flash point and excellent fuel economy performance. Therefore, the lubricating oil composition of the present invention includes, for example, drive system oils such as automatic transmission oil (ATF), continuously variable transmission oil (CVTF), shock absorber oil (SAF), power steering oil, and electric motor oil; engine oil Hydraulic oil, turbine oil, compressor oil, machine tool lubricant, cutting oil, gear oil, fluid bearing oil, rolling bearing oil, and the like.
  • drive system oils such as automatic transmission oil (ATF), continuously variable transmission oil (CVTF), shock absorber oil (SAF), power steering oil, and electric motor oil
  • engine oil Hydraulic oil, turbine oil, compressor oil, machine tool lubricant, cutting oil, gear oil, fluid bearing oil, rolling bearing oil, and the like In particular, in recent years, electric vehicles and hybrid vehicles have been required to be reduced in size and weight by packaging a transmission and an electric motor.
  • lubricating oil composition In addition to performance required for transmission oil, cooling required for electric motor oil is required. There is a need for a lubricating oil composition that has both properties. Since the lubricating oil composition of the present invention has a low viscosity, it has a certain cooling performance and is suitable for use in such electric vehicles and hybrid vehicles.
  • the lubricating oil composition of the present invention can also be used as a refrigerating machine oil, rolling oil, insulating oil, and elastomer softener.
  • this invention can also provide the usage method of the lubricating oil composition of following (1) and (2).
  • a lubricating oil composition containing the mineral oil base oil of the present invention is converted into a power transmission device (automatic transmission, continuously variable transmission, shock absorber, power steering, electric motor, etc.), engine, hydraulic actuator, turbine, A method of using a lubricating oil composition used for lubrication of any one of a compressor, a machine tool, a cutting machine, a gear, a fluid bearing, and a rolling bearing.
  • the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
  • the measuring method or evaluation method of various physical properties is as follows.
  • vibration was performed under the conditions of a value appropriately set according to the measurement temperature within an angular velocity of 6.3 rad / s and a strain amount of 0.1 to 100%.
  • the complex viscosity ⁇ * at ⁇ 25 ° C. or ⁇ 10 ° C. was measured in the mode. From the value of the complex viscosity ⁇ * at ⁇ 25 ° C. and ⁇ 10 ° C., the “temperature gradient ⁇
  • Aroma content, naphthene content, n-paraffin content, and isoparaffin content Ratios Aroma content, naphthene content, and total paraffin content (n-paraffin content + isoparaffin content) were determined in accordance with ASTM D2786. Next, according to the GC-FID method, the n-paraffin content was determined, and the isoparaffin content was determined from the difference between the total paraffin content and the n-paraffin content. Then, the ratio of each component to the total amount of 100% by volume of aroma, naphthene, n-paraffin, and isoparaffin was calculated.
  • Table 1 shows various properties of the raw material oils (I) to (IV) used in Examples and Comparative Examples.
  • the feedstock oils (I) and (II) include a light oil fraction obtained by hydrocracking heavy gas oil using a hydrocracking apparatus.
  • the raw material oil (III) includes a light oil fraction obtained by hydrocracking a heavy oil under reduced pressure using a hydrocracker.
  • the feedstock oil (IV) includes a gas oil fraction obtained by deep desulfurization of a straight gas oil fraction.
  • Example 1 (Production of mineral oil base oil (1))
  • the raw material oil (I) shown in Table 1 was prepared using a platinum-zeolite-based catalyst (a catalyst in which platinum was supported on zeolite as a carrier), a reaction temperature of 290 ° C., a hydrogen partial pressure of 4 MPa, and hydrogen and the raw material oil (I).
  • the hydroisomerization dewaxing treatment was carried out under the conditions of the feed ratio [hydrogen / raw oil (I)] of 422 Nm 3 / kL and LHSV 1.1 hr ⁇ 1 to obtain refined oil (i).
  • the refined oil (i) was distilled under reduced pressure, and a fraction having a kinematic viscosity at 40 ° C. in the range of 4.0 to 6.0 mm 2 / s was recovered to obtain a mineral oil base oil (1).
  • Example 2 Production of mineral oil base oil (2)
  • a platinum-zeolite-based catalyst a catalyst in which platinum is supported on a support zeolite
  • a reaction temperature 292 ° C.
  • a hydrogen partial pressure of 4 MPa hydrogen and the raw material oil (II)
  • the hydroisomerization dewaxing treatment was carried out under the conditions of the feed ratio [hydrogen / raw oil (II)] 422 Nm 3 / kL, LHSV 1.1 hr ⁇ 1 to obtain refined oil (ii).
  • the refined oil (ii) was distilled under reduced pressure, and a fraction having a kinematic viscosity at 40 ° C. in the range of 4.0 to 6.0 mm 2 / s was recovered to obtain a mineral oil base oil (2).
  • Example 3 (Production of mineral oil base oil (3))
  • the raw material oil (I) shown in Table 1 was prepared using a platinum-zeolite-based catalyst (a catalyst in which platinum was supported on zeolite as a carrier), a reaction temperature of 287 ° C., a hydrogen partial pressure of 4 MPa, and hydrogen and the raw material oil (I).
  • the hydroisomerization dewaxing treatment was carried out under the conditions of the feed ratio [hydrogen / feed oil (I)] of 422 Nm 3 / kL and LHSV 1.1 hr ⁇ 1 to obtain refined oil (iii).
  • the refined oil (iii) was prepared using a nickel / tungsten-alumina catalyst (a catalyst in which nickel and tungsten are supported on alumina as a support), a reaction temperature of 290 ° C., a hydrogen partial pressure of 18.5 MPa, hydrogen and refined oil ( Supply ratio to iii) [hydrogen / refined oil (iii)] Hydrofinishing was performed under the conditions of 1000 Nm 3 / kL and LHSV 0.6 hr ⁇ 1 to obtain a refined oil (iii-1).
  • a nickel / tungsten-alumina catalyst a catalyst in which nickel and tungsten are supported on alumina as a support
  • a reaction temperature 290 ° C.
  • a hydrogen partial pressure 18.5 MPa
  • Hydrofinishing was performed under the conditions of 1000 Nm 3 / kL and LHSV 0.6 hr ⁇ 1 to obtain a refined oil (iii-1).
  • Example 4 (Production of mineral oil base oil (4))
  • the raw material oil (II) shown in Table 1 was prepared using a platinum-zeolite-based catalyst (a catalyst in which platinum was supported on zeolite as a support), a reaction temperature of 294 ° C., a hydrogen partial pressure of 4 MPa, and hydrogen and the raw material oil (II).
  • the hydroisomerization dewaxing treatment was performed under the conditions of the feed ratio [hydrogen / raw oil (II)] 422 Nm 3 / kL, LHSV 1.1 hr ⁇ 1 to obtain refined oil (iv).
  • the refined oil (iv) was prepared by using a nickel / tungsten-alumina catalyst (a catalyst in which nickel and tungsten are supported on alumina as a support), a reaction temperature of 290 ° C., a hydrogen partial pressure of 18.5 MPa, hydrogen and refined oil ( Supply ratio to iv) [hydrogen / refined oil (iv)] Hydrofinishing was performed under the conditions of 1000 Nm 3 / kL and LHSV 0.6 hr ⁇ 1 to obtain a refined oil (iv-1).
  • the refined oil (iv-1) was distilled under reduced pressure, and a fraction having a kinematic viscosity at 40 ° C. in the range of 5.0 mm 2 / s to 6.0 mm 2 / s was recovered. 4) was obtained.
  • Example 5 (Production of mineral base oil (5))
  • the raw material oil (III) shown in Table 1 was prepared using a platinum-zeolite-based catalyst (a catalyst in which platinum was supported on zeolite as a carrier), a reaction temperature of 285 ° C., a hydrogen partial pressure of 4 MPa, and hydrogen and the raw material oil (III).
  • a hydroisomerization dewaxing treatment was carried out under the conditions of a feed amount ratio [hydrogen / feed oil (III)] of 422 Nm 3 / kL and LHSV 1.1 hr ⁇ 1 to obtain a refined oil (v).
  • the refined oil (v) was prepared by using a nickel / tungsten-alumina catalyst (a catalyst in which nickel and tungsten are supported on alumina as a support), a reaction temperature of 290 ° C., a hydrogen partial pressure of 18.5 MPa, hydrogen and the refined oil.
  • Supply ratio to (v) [hydrogen / refined oil (v)] Hydrofinishing was performed under the conditions of 1000 Nm 3 / kL and LHSV 0.6 hr ⁇ 1 to obtain a refined oil (v-1).
  • the refined oil (v-1) is distilled under reduced pressure, and a fraction having a kinematic viscosity at 40 ° C. in the range of 4.0 to 6.0 mm 2 / s is recovered to obtain a mineral oil base oil (5). It was.
  • Example 6 Production of mineral oil base oil (6)
  • a platinum-zeolite-based catalyst a catalyst in which platinum is supported on a support zeolite
  • a reaction temperature 293 ° C.
  • a hydrogen partial pressure of 4 MPa hydrogen and the raw material oil (IV)
  • the hydroisomerization dewaxing treatment was carried out under the conditions of the feed ratio [hydrogen / raw oil (IV)] 422 Nm 3 / kL, LHSV 1.1 hr ⁇ 1 to obtain a refined oil (vi).
  • the refined oil (vi) was prepared using a nickel / tungsten-alumina catalyst (a catalyst in which nickel and tungsten are supported on alumina as a support), a reaction temperature of 290 ° C., a hydrogen partial pressure of 18.5 MPa, hydrogen and refined oil (
  • the ratio of supply amount to vi) [hydrogen / refined oil (vi)] was subjected to hydrofinishing treatment under the conditions of 1000 Nm 3 / kL and LHSV 0.6 hr ⁇ 1 to obtain refined oil (vi-1).
  • the refined oil (vi-1) is distilled under reduced pressure, and a fraction having a kinematic viscosity at 40 ° C. in the range of 4.0 to 6.0 mm 2 / s is recovered to obtain a mineral oil base oil (6). It was.
  • Example 7 Production of mineral base oil (7)
  • a platinum-zeolite-based catalyst a catalyst in which platinum is supported on a support zeolite
  • a reaction temperature 289 to 292 ° C.
  • a hydrogen partial pressure 20.6 MPa
  • hydrogen and a raw material Supply ratio with oil (I) [hydrogen / raw oil (I)] was subjected to hydroisomerization dewaxing under conditions of 1000 Nm 3 / kL, LHSV 0.65 hr ⁇ 1 to obtain refined oil (vii) .
  • the refined oil (vii) was treated with a nickel / tungsten-alumina catalyst (a catalyst in which nickel and tungsten are supported on alumina as a support), a reaction temperature of 290 ° C., a hydrogen partial pressure of 20.6 MPa, hydrogen and refined oil (
  • the ratio of supply amount to vii) [hydrogen / refined oil (vii)] was subjected to hydrofinishing treatment under the conditions of 1000 Nm 3 / kL and LHSV 0.65 hr ⁇ 1 to obtain a refined oil (vii-1).
  • the refined oil (vii-1) is distilled under reduced pressure, and a fraction having a kinematic viscosity in the range of 4.0 to 6.0 mm 2 / s at 40 ° C. is recovered to obtain a mineral oil base oil (7). It was.
  • Example 8 Production of mineral oil base oil (8)
  • the raw material oil (II) shown in Table 1 was prepared by using a platinum-zeolite-based catalyst (a catalyst in which platinum was supported on zeolite as a carrier), a reaction temperature of 294 ° C., a hydrogen partial pressure of 20.6 MPa, hydrogen and raw material oil ( The ratio of supply amount to II) [hydrogen / raw oil (II)] was subjected to hydroisomerization dewaxing treatment under the conditions of 1000 Nm 3 / kL and LHSV 0.65 hr ⁇ 1 to obtain refined oil (viii).
  • the refined oil (viii) was prepared by using a nickel / tungsten-alumina catalyst (a catalyst in which nickel and tungsten are supported on alumina as a support), a reaction temperature of 290 ° C., a hydrogen partial pressure of 20.6 MPa, hydrogen and refined oil ( Supply ratio to viii) [hydrogen / refined oil (viii)] Hydrofinishing was performed under the conditions of 1000 Nm 3 / kL and LHSV 0.65 hr ⁇ 1 to obtain a refined oil (viii-1).
  • the refined oil (viii-1) is distilled under reduced pressure, and a fraction having a kinematic viscosity at 40 ° C. in the range of 4.0 to 6.0 mm 2 / s is recovered to obtain a mineral oil base oil (8). It was.
  • Example 9 Production of mineral oil base oil (9)
  • Example 10 Production of mineral oil base oil (10)
  • a refined oil (iv-1) obtained by subjecting the raw oil (II) described in Table 1 to hydroisomerization dewaxing treatment and hydrofinishing treatment under the same conditions as in Example 4 was reduced in pressure. Distillation was performed, and a fraction having a kinematic viscosity at 40 ° C. in the range of 4.0 mm 2 / s to 5.0 mm 2 / s was collected to obtain a mineral oil base oil (10).
  • Example 11 (Production of mineral oil base oil (11))
  • the raw material oil (III) shown in Table 1 was prepared using a nickel / tungsten-alumina catalyst (a catalyst in which nickel and tungsten are supported on alumina as a carrier), a reaction temperature of 290 ° C., a hydrogen partial pressure of 20.6 MPa, Supply ratio with feedstock (III) [hydrogen / feedstock (III)] 1000 Nm 3 / kL, LHSV 0.6 hr ⁇ 1 , hydrofinishing treatment was performed to obtain refined oil (iii-2) .
  • the refined oil (iii-2) is distilled under reduced pressure, and a fraction having a kinematic viscosity at 40 ° C. in the range of 4.0 to 6.0 mm 2 / s is recovered to obtain a mineral oil base oil (11). It was.
  • Comparative Examples 1 and 2 In Comparative Example 1, the raw material oil (III) shown in Table 1 was directly used as a mineral oil base oil (a), and the above-described various properties were measured. Moreover, in the comparative example 2, raw material oil (IV) of Table 1 was made into mineral oil type base oil (b) as it was, and the above-mentioned various properties were measured.
  • Tables 2 and 3 show various properties of mineral oil base oils (1) to (12) and (a) to (b).
  • the mineral oil base oils (1) to (11) produced in Examples 1 to 11 had a low flash point and a high flash point of 140 ° C. or higher. Therefore, it is considered that a lubricating oil composition using these mineral oil base oils can have a fuel efficiency improved by further lowering the viscosity while having a high flash point.
  • the mineral base oils (a) to (b) of Comparative Examples 1 and 2 had a low viscosity but a low flash point of less than 140 ° C., resulting in safety problems.

Abstract

40℃における動粘度が4.0mm/s以上6.0mm/s未満であり、100℃における動粘度が1.0mm/s以上2.0mm/s未満であって、且つ、引火点が140℃以上である、鉱油系基油を提供する。当該鉱油系基油を含む潤滑油組成物は、高引火点でありつつも、低粘度であるため、駆動系油等として使用した際に省燃費性能に優れる。

Description

鉱油系基油、及び潤滑油組成物
 本発明は、鉱油系基油、及び、当該鉱油系基油を用いた潤滑油組成物、並びに、潤滑油組成物の使用方法に関する。
 近年、自動変速機油(ATF)、無段変速機油(CVTF)、ショックアブソーバー油(SAF)等の駆動系油や、エンジン油、油圧作動油等として用いられる潤滑油組成物には、各用途に応じて、様々な特性が求められている。
 潤滑油組成物の特性は、使用する基油の性状に大きく左右される場合が多いため、要求された特性を発現し得る潤滑油組成物を製造することができるような基油の開発も広く行われている。
 例えば、特許文献1には、引火点が170℃以上、40℃における動粘度が9.0~14.0mm/s、粘度指数が100以上、蒸留試験における5容積%留出温度が310℃以上、流動点が-30℃以下、及び芳香族分(%C)が0.1以下である、炭化水素系の潤滑油基油が記載されている。
 特許文献1の記載によれば、当該潤滑油基油は、従来の粘度を維持しつつ、引火点が高いため、自動車用のパワーステアリング油やトランスミッション油等の高温下で使用される潤滑油組成物に好適であるとされている。
特開2004-182931号公報
 ところで、近年、駆動系油として用いられる潤滑油組成物には、高引火点であって良好な安全性を維持しつつも、更なる低粘度化による省燃費性能の向上が要求されつつある。
 特許文献1に記載の潤滑油基油は、40℃における動粘度が9.0mm/s以上と高粘度の基油であるため、潤滑油組成物の低粘度化による省燃費性能の向上に適した基油とは言い難い。
 本発明は、高引火点でありつつも、更なる低粘度化による省燃費性能をより向上させた潤滑油組成物を容易に製造し得る鉱油系基油、及び、当該鉱油系基油を用いた潤滑油組成物、並びに、潤滑油組成物の使用方法を提供することを目的とする。
 本発明者は、40℃及び100℃における動粘度を所定の範囲に調製し低粘度化し、さらに引火点が所定値以上である鉱油系基油が、上記課題を解決し得ることを見出し、本発明を完成させた。すなわち本発明は、下記[1]~[3]を提供する。
[1]40℃における動粘度が4.0mm/s以上6.0mm/s未満であり、100℃における動粘度が1.0mm/s以上2.0mm/s未満であって、且つ、
 引火点が140℃以上である、鉱油系基油。
[2]上記[1]に記載の鉱油系基油を含む、潤滑油組成物。
[3]上記[1]に記載の鉱油系基油を含む潤滑油組成物を、動力伝達装置、エンジン、油圧作動機器、タービン、圧縮機、工作機械、切削機、歯車、流体軸受け、及び転がり軸受けのいずれかの機構の潤滑に用いる、潤滑油組成物の使用方法。
 本発明の鉱油系基油を用いることで、高引火点でありつつも、低粘度化し、駆動系油等として使用した際に省燃費性能をより向上させた潤滑油組成物を容易に製造し得る。
〔本発明の鉱油系基油の性状〕
 本発明の鉱油系基油は、下記要件(I)及び(II)を満たすものである。
・要件(I):40℃における動粘度が4.0mm/s以上6.0mm/s未満であり、100℃における動粘度が1.0mm/s以上2.0mm/s未満である。
・要件(II):引火点が140℃以上である。
 なお、本明細書において、40℃又は100℃における動粘度は、JIS K2283に準拠して測定された値を意味し、引火点は、JIS K2265-4に準拠し、クリーブランド開放式(COC)法により測定された値を意味する。
 一般的に鉱油系基油の性状として、低粘度化するほど、引火点は低くなる傾向にある。
 それに対して、本発明の鉱油系基油は、要件(I)で規定するほどに低粘度化されつつも、要件(II)で規定するように、引火点が140℃以上である高引火点の鉱油系基油である。
 そのため、本発明の鉱油系基油を用いることで、高引火点でありつつも、低粘度化し、駆動系油等として使用した際に省燃費性能をより向上させた潤滑油組成物を容易に製造し得る。
 また、本発明の鉱油系基油は、要件(I)で規定のとおり、40℃における動粘度と100℃における動粘度の差異が比較的小さく、粘度の温度依存性が低い。そのため、本発明の鉱油系基油を用いることで、温度による粘度変化が小さい潤滑油組成物を製造することができる。
 本発明の鉱油系基油の40℃における動粘度(V40)は、4.0mm/s以上であるが、好ましくは4.2mm/s以上、より好ましくは4.3mm/s以上、更に好ましくは4.4mm/s以上である。
 また、動粘度(V40)は、6.0mm/s未満であるが、好ましくは5.8mm/s以下、より好ましくは5.7mm/s以下、更に好ましくは5.6mm/s以下である。
 本発明の鉱油系基油の100℃における動粘度(V100)は、1.0mm/s以上であるが、好ましくは1.2mm/s以上、より好ましくは1.3mm/s以上、更に好ましくは1.4mm/s以上、より更に好ましくは1.5mm/s以上である。
 また、動粘度(V100)は、2.0mm/s未満であるが、好ましくは1.95mm/s以下、より好ましくは1.90mm/s以下、更に好ましくは1.85mm/s以下である。
 なお、本発明の鉱油系基油は、JIS K2283に準拠して測定される粘度指数が算出不能な鉱油である。
 また、本発明の鉱油系基油の引火点としては、140℃以上であるが、好ましくは142℃以上、より好ましくは144℃以上、更に好ましくは146℃以上、更に好ましくは150℃以上、より更に好ましくは154℃以上、特に好ましくは160℃以上であり、また、通常180℃以下である。
 本発明の一態様の鉱油系基油のJIS K2254に準拠した蒸留試験において、当該鉱油系基油の10容量%留出温度としては、好ましくは250℃以上、より好ましくは255℃以上、更に好ましくは280℃以上、より更に好ましくは285℃以上であり、また、通常305℃以下である。
 また、本発明の一態様の鉱油系基油のJIS K2254に準拠した蒸留試験において、当該鉱油系基油の90容量%留出温度としては、好ましくは320℃以上、より好ましくは330℃以上、更に好ましくは340℃以上、より更に好ましくは350℃以上であり、また、通常365℃以下である。
 本発明の一態様の鉱油系基油のアニリン点としては、好ましくは70℃以上、より好ましくは80℃以上、更に好ましくは85℃以上、より更に好ましくは90℃以上、特に好ましくは92℃以上であり、また、通常110℃以下である。
 アニリン点が70℃以上である鉱油系基油は、パラフィン分が多く、芳香族分が少ない傾向があり、高引火点となり易い。
 なお、本明細書において、アニリン点は、JIS K2256(U字管法)に準拠して測定された値を意味する。
 本発明の一態様の鉱油系基油の15℃における密度としては、好ましくは0.860g/cm以下、より好ましくは0.850g/cm以下、更に好ましくは0.840g/cm以下、より更に好ましくは0.830g/cm以下、特に好ましくは0.825g/cm以下であり、また、通常0.800g/cm以上である。
 要件(I)及び(II)を満たしつつ、さらに密度が0.860g/cm以下の鉱油系基油であれば、粘度の温度依存性がより低く、引火点がより高い鉱油系基油とすることができる。
 なお、本明細書において、15℃における密度は、JIS K2249に準拠して測定された値である。
 本発明の一態様の鉱油系基油のパラフィン分(%C)としては、好ましくは60~80、より好ましくは62~79、更に好ましくは66~78、より更に好ましくは68~77である。
 本発明の一態様の鉱油系基油のナフテン分(%C)としては、好ましくは10~40、より好ましくは13~38、更に好ましくは16~34、より更に好ましくは20~32である。
 本発明の一態様の鉱油系基油の芳香族分(%C)としては、好ましくは2.0未満、より好ましくは1.0未満、更に好ましくは0.1未満である。
 なお、本明細書において、パラフィン分(%C)、ナフテン分(%C)、及び芳香族分(%C)は、ASTM D-3238環分析(n-d-M法)により測定した、パラフィン分、ナフテン分、及び芳香族分の割合(百分率)を意味する。
 本発明の一態様の鉱油系基油としては、さらに下記要件(III)を満たすことが好ましい。
・要件(III):回転型レオメータを用いて、角速度6.3rad/s、歪み量0.1~100%の条件下で計測した、-10℃と-25℃の2点間における複素粘度の温度勾配Δ|η*|(以下、単に「複素粘度の温度勾配Δ|η*|」ともいう)が0.1Pa・s/℃以下である。
 なお、本発明の一態様の鉱油系基油が、2種以上の鉱油を組み合わせた混合油である場合、当該混合油が上記要件(III)を満たすものであればよい。
 上記要件(III)に記載の「歪み量」は、0.1~100%の範囲で、温度に応じて適宜設定される値である。
 また、上記の「複素粘度の温度勾配Δ|η*|」は、-10℃における複素粘度η*の値と、-25℃における複素粘度η*の値とを、それぞれ独立に、もしくは、-10℃から-25℃又は-25℃から-10℃まで温度を連続的に変化させながら測定し、当該値を温度-複素粘度の座標平面においた際、-10℃と-25℃の2点間における複素粘度の単位あたりの変化量(傾きの絶対値)を示す値である。より具体的には、下記計算式(f1)から算出される値を意味する。
・計算式(f1):複素粘度の温度勾配Δ|η*|=|([-25℃における複素粘度η*]-[-10℃における複素粘度η*])/(-25-(-10))|
 つまり、要件(III)で規定する「複素粘度の温度勾配Δ|η*|」は、温度を低下させた経時変化を鉱油の低温特性として示している。
 ところで、鉱油には、ワックス分が含まれているため、鉱油の温度を徐々に低下させていくと、鉱油中のワックス分が析出し、ゲル状構造を形成する。なお、ワックス分は、パラフィン等の構造によって、析出してくる温度が異なる。このワックス分のゲル状構造は、壊れ易いため、機械的な作用で、鉱油の粘度が変化してしまう。従来、使用されている低温粘度特性のパラメータは、このようなワックス分の析出を考慮したものではなかった。
 それに対して、要件(III)で規定する「複素粘度の温度勾配Δ|η*|」は、鉱油中に含まれるワックス分の析出速度を加味し、ワックス分の析出に伴う摩擦係数の変化を考慮した、鉱油の低温粘度特性をより示す正確に評価し得る指標である。
 要件(III)を満たす鉱油系基油は、複素粘度の温度勾配Δ|η*|が0.1Pa・s/℃以下であり、ワックス分の析出速度を速くならないように調整されているため、摩擦係数の上昇を引き起こし難く、より低粘度でありつつも、粘度の温度依存性がより低いものとなる。
 そのため、当該鉱油系基油を用いることで、省燃費性能に優れ、温度による粘度変化がより小さい潤滑油組成物を製造することができる。
 上記観点から、要件(III)で規定するの複素粘度の温度勾配Δ|η*|としては、好ましくは0.08Pa・s/℃以下、より好ましくは0.05Pa・s/℃以下、更に好ましくは0.02Pa・s/℃以下、更に好ましくは0.01Pa・s/℃以下、より更に好ましくは0.005Pa・s/℃以下、特に好ましくは0.0030Pa・s/℃以下である。
 また、要件(III)で規定する複素粘度の温度勾配Δ|η*|は、下限値については特に制限は無いが、好ましくは0.0001Pa・s/℃以上、より好ましくは0.0005Pa・s/℃以上、更に好ましくは0.0010Pa・s/℃以上、より更に好ましくは0.0018Pa・s/℃以上である。
<本発明の鉱油系基油の調製例>
 上記要件(I)~(III)を満たす、本発明の鉱油系基油は、当該鉱油系基油の原料となる原料油の選択と、原料油を用いた鉱油系基油の製造方法に関して、以下に示す事項を適宜考慮することで、容易に調製することができる。つまり、本発明の鉱油系基油は、以下に示す原料油を、以下に示す精製処理を施して得られた鉱油であることが好ましい。
 なお、以下の事項は、調製法の一例であって、これら以外の事項を考慮することによっても調製可能である。
[原料油の選択]
 本発明の鉱油系基油の原料を原料油という。当該原料油としては、例えば、パラフィン系鉱油、中間系鉱油、ナフテン系鉱油等の原油を常圧蒸留して得られる常圧残油;当該常圧残油を減圧蒸留して得られる留出油;当該留出油を、溶剤脱れき、溶剤抽出、水素化仕上げ、溶剤脱ろう、接触脱ろう、異性化脱ろう、減圧蒸留等の精製処理の一つ以上の処理を施した鉱油又はワックス(GTLワックス等);等が挙げられる。
 これらの原料油は、単独で用いてもよく、2種以上を併用してもよい。
 前記原料油は、要件(I)で規定する程に低粘度化しつつも、温度による粘度依存性が低く、且つ、要件(II)で規定するような高引火点の鉱油系基油に調製する観点から、軽油留分を含むことが好ましく、重質軽油を水素化分解して得られた軽油留分を含むことがより好ましい。
 なお、上記観点から、当該軽油留分は、パラフィン分が多く含まれていることが好ましい。
 前記原料油の40℃における動粘度としては、好ましくは4.0~6.0mm/s、より好ましくは4.2~5.8mm/s、更に好ましくは4.4~5.6mm/sである。
 前記原料油の100℃における動粘度としては、好ましくは1.0~2.0mm/s、より好ましくは1.2~1.9mm/s、更に好ましくは1.4~1.85mm/sである。
 前記原料油の引火点としては、通常70℃以上140℃未満である。
 ASTM D-3238環分析(n-d-M法)に準拠して測定した、前記原料油のパラフィン分(%C)、芳香族分(%C)及びナフテン分(%C)としては、要件(I)で規定する程に低粘度化しつつも、温度による粘度依存性が低い鉱油系基油に調製する観点から、以下に示す範囲であることが好ましい。
・パラフィン分(%C):好ましくは60以上、より好ましくは65以上、更に好ましくは68以上、より更に好ましくは70以上であり、また、好ましくは98以下である。
・芳香族分(%C):好ましくは10.0以下、より好ましくは5.0以下、更に好ましくは4.4以下である。
・ナフテン分(%C):好ましくは10~40、より好ましくは11~35、更に好ましくは12~32、より更に好ましくは13~32である。
 ASTM D2786及びGC-FID法に準拠して測定した、前記原料油のアロマ分、ナフテン分、n-パラフィン分、及びイソパラフィン分の全量100体積%に対する、各成分が占める割合としては、要件(I)で規定する程に低粘度化しつつも、温度による粘度依存性が低い鉱油系基油に調製する観点から、以下に示す範囲であることが好ましい。
・上記「アロマ分」は、芳香族環を有する炭化水素化合物の総称を意味し、好ましくは25体積%以下、より好ましくは15体積%以下、更に好ましくは10体積%以下であり、また、好ましくは1体積%以上である。
・上記「ナフテン分」は、飽和環状炭化水素化合物の総称を意味し、好ましくは70体積%以下、より好ましくは60体積%以下、更に好ましくは50体積%以下であり、また、好ましくは10体積%以上である。
・上記「n-パラフィン分」は、直鎖状飽和炭化水素化合物の総称を意味し、好ましくは50体積%以下、より好ましくは30体積%以下、更に好ましくは15体積%以下である。
・上記「イソパラフィン分」は、分岐状飽和炭化水素化合物の総称を意味し、好ましくは8体積%以上、より好ましくは25体積%以上、更に好ましくは30体積%以上であり、また、好ましくは70体積%以下である。
 JIS K2254に準拠した蒸留試験によって測定される、前記原料油の10容積%留出温度が、好ましくは250℃以上、より好ましくは260℃以上、更に好ましくは270℃以上、より更に好ましくは275℃以上であり、また、通常290℃以下である。
 また、上記蒸留試験によって測定される、前記原料油の90容積%留出温度が、好ましくは320℃以上、より好ましくは350℃以上、更に好ましくは355℃以上、より更に好ましくは360℃以上、特に好ましくは366℃以上であり、また、通常400℃以下である。
 原料油の10容積%留出温度及び90容積%留出温度が上記範囲であることで、要件(II)で規定するような高引火点の鉱油系基油に調製することができる。
 前記原料油の質量平均分子量(Mw)としては、好ましくは150~450、より好ましくは180~400、更に好ましくは200~350である。
 なお、本明細書において、原料油の質量平均分子量(Mw)は、ASTM D2502に準拠して測定された値を意味する。
 本発明で用いる原料油の40℃及び100℃における動粘度としては、上記のとおり、要件(I)で規定する範囲と大きな差異は無い。
 ただし、上記のような低粘度の原料油の引火点は、通常140℃未満であり、要件(II)を満たすものではない。また、当該原料油の要件(III)で規定する複素粘度の温度勾配Δ|η*|も高くなり易く、低温粘度特性の点でも問題がある。
 一方で、本発明の鉱油系基油は、このような原料油を用いつつも、以下に示すような精製処理を施すことによって、引火点が高く、且つ、低粘度でありつつも粘度の温度依存性を低く抑え、低温粘度特性に優れたものとしている。
[本発明の鉱油系基油の製造方法]
 本発明の一態様の鉱油系基油は、上述の原料油に対して、精製処理を施して得られたものであることが好ましい。なお、使用する原料油の種類に応じて、精製処理の種類や精製条件は適宜設定されることが好ましい。
 精製処理としては、少なくとも水素化異性化脱ろう処理を含むことが好ましく、水素化異性化脱ろう処理及び水素化仕上げ処理を含むことがより好ましい。
 つまり、本発明の一態様の鉱油系基油は、水素化異性化脱ろう処理を施して得られたものであることが好ましく、水素化異性化脱ろう処理の後に、さらに水素化仕上げ処理を施して得られたものであることがより好ましい。
 以下、「水素化異性化脱ろう処理」及び「水素化仕上げ処理」について説明する。
(水素化異性化脱ろう処理)
 水素化異性化脱ろう処理は、上述のとおり、原料油中に含まれる直鎖パラフィンを分岐鎖のイソパラフィンへとする異性化を目的に行われる精製処理である。
 また、水素化異性化脱ろう処理によって、芳香族分を開環させパラフィン分としたり、硫黄分や窒素分等の不純物の除去等も行うこともできる。
 この水素化異性化処理によって、分岐鎖のイソパラフィンの割合が多くなり、温度による粘度依存性が低く、高引火点の鉱油系基油に調製することができる。
 また、原料油中の直鎖パラフィンの存在については、要件(III)で規定する複素粘度の温度勾配Δ|η*|の値を大きくする要因の一つとなる。そのため、本処理では、直鎖パラフィンを分岐鎖のイソパラフィンへと異性化をし、複素粘度の温度勾配Δ|η*|の値を低く調整することが好ましい。
 他に、本処理を行うことで、鉱油系基油の流動点を低下させることもできるため、低温粘度特性をより向上させた鉱油系基油を得ることができる。
 水素化異性化脱ろう処理は、水素化異性化脱ろう触媒の存在下で行われることが好ましい。
 水素化異性化脱ろう触媒としては、例えば、シリカアルミノフォスフェート(SAPO)やゼオライト等の担体に、ニッケル(Ni)/タングステン(W)、ニッケル(Ni)/モリブデン(Mo)、コバルト(Co)/モリブデン(Mo)等の金属酸化物や、白金(Pt)や鉛(Pd)等の貴金属を担持した触媒が挙げられる。
 水素化異性化脱ろう処理における水素分圧としては、要件(III)及び(IV)を満たす鉱油系鉱油系基油とする観点から、好ましくは2.0~30MPa、より好ましくは2.5~27MPa、更に好ましくは3.0~25MPa、より更に好ましくは3.5~22MPaである。
 水素化異性化脱ろう処理における反応温度としては、要件(II)及び(III)を満たす鉱油系基油とする観点から、一般的な水素化異性化脱ろう処理での反応温度よりも高めに設定されることが好ましく、具体的には、好ましくは250~400℃、より好ましくは275~380℃、更に好ましくは280~370℃、より更に好ましくは285~360℃である。
 当該反応温度が高温であることで、直鎖パラフィンを分岐鎖のイソパラフィンへ異性化を促進させることができ、要件(II)及び(III)を満たす鉱油系基油の調製が容易となる。
 また、水素化異性化脱ろう処理における液時空間速度(LHSV)としては、要件(III)及び(IV)を満たす鉱油系基油とする観点から、好ましくは5.0hr-1以下、より好ましくは3.0hr-1以下、更に好ましくは2.0hr-1以下、より更に好ましくは1.5hr-1以下である。
 また、生産性の向上の観点から、水素化異性化脱ろう処理におけるLHSVは、好ましくは0.1hr-1以上、より好ましくは0.2hr-1以上である。
 水素化異性化脱ろう処理における水素ガスの供給割合としては、供給する原料油1キロリットルに対して、好ましくは100~2000Nm、より好ましくは200~1500Nm、更に好ましくは250~1000Nmである。
(水素化仕上げ処理)
 水素化仕上げ処理は、原料油中に含まれる芳香族分の完全飽和化、及び、硫黄分や窒素分等の不純物の除去等を目的に行われる精製処理である。
 水素化仕上げ処理は、水素化触媒の存在下で行われることが好ましい。
 水素化触媒としては、例えば、シリカ/アルミナ、アルミナ等の非晶質やゼオライト等の結晶質担体に、ニッケル(Ni)/タングステン(W)、ニッケル(Ni)/モリブデン(Mo)、コバルト(Co)/モリブデン(Mo)等の金属酸化物や、白金(Pt)や鉛(Pd)等の貴金属を担持した触媒が挙げられる。
 水素化仕上げ処理における水素分圧としては、要件(III)を満たす鉱油系基油とする観点から、一般的な水素化処理での圧力よりも高めに設定されることが好ましく、具体的には、好ましくは16MPa以上、より好ましくは17MPa以上、更に好ましくは18MPa以上であり、また、好ましくは30MPa以下、より好ましくは22MPa以下である。
 水素化仕上げ処理における反応温度としては、要件(III)を満たす鉱油系基油とする観点から、好ましくは200~400℃、より好ましくは250~350℃、更に好ましくは280~330℃である。
 水素化仕上げ処理における液時空間速度(LHSV)としては、要件(III)を満たす鉱油系基油とする観点から、好ましくは5.0hr-1以下、より好ましくは2.0hr-1以下、更に好ましくは1.0hr-1以下であり、また、生産性の観点から、好ましくは0.1hr-1以上、より好ましくは0.2hr-1以上、更に好ましくは0.3hr-1以上である。
 水素化仕上げ処理における水素ガスの供給割合としては、供給する油分(水素化異性化脱ろう処理が施された精製油)1キロリットルに対して、好ましくは100~2000Nm、より好ましくは200~1500Nm、更に好ましくは250~1100Nmである。
(後処理)
 上述の精製処理の終了後、得られた精製油に対して、減圧蒸留を施し、40℃における動粘度が要件(I)で規定の範囲となる留分を回収することで、本発明の鉱油系基油を得ることができる。
 ここで得られる鉱油系基油は、要件(I)で規定するように低粘度化されつつも、高引火点を有するものである。
 なお、減圧蒸留の諸条件(圧力、温度、時間等)としては、得られる鉱油系基油の40℃及び100℃における動粘度が、要件(I)で規定の範囲内となるように、適宜調整される。
〔潤滑油組成物〕
 本発明の潤滑油組成物は、上述の本発明の鉱油系基油を含むものであるが、当該鉱油系基油と共に、合成油を含有してもよい。
 前記合成油としては、例えば、α-オレフィン単独重合体、又はα-オレフィン共重合体(例えば、エチレン-α-オレフィン共重合体等の炭素数8~14のα-オレフィン共重合体)等のポリα-オレフィン;イソパラフィン;ポリオールエステル、二塩基酸エステル(例えば、ジトリデシルグルタレート等)、三塩基酸エステル(例えば、トリメリット酸2-エチルヘキシル)、リン酸エステル等の各種エステル;ポリフェニルエーテル等の各種エーテル;ポリアルキレングリコール;アルキルベンゼン;アルキルナフタレン;フィッシャー・トロプシュ法等により製造されるワックス(GTLワックス)を異性化することで得られる合成油等が挙げられる。
 これらの合成油は、単独で又は2種以上を併用してもよい。
 本発明の一態様の潤滑油組成物において、合成油の含有量は、当該潤滑油組成物中に含まれる本発明の鉱油系基油の全量100質量部に対して、好ましくは0~30質量部、より好ましくは0~20質量部、更に好ましくは0~10質量部、より更に好ましくは0~5質量部である。
 本発明の一態様の潤滑油組成物中に含まれる、本発明の鉱油系基油の含有量は、当該潤滑油組成物の全量(100質量%)基準で、通常60質量%以上、好ましくは70質量%以上、より好ましくは80質量%以上、更に好ましくは85質量%以上、より更に好ましくは90質量%以上、また、通常100質量%以下、より好ましくは99.99質量%以下、更に好ましくは99質量%以下である。
 なお、本発明の潤滑油組成物は、本発明の効果を損なわない範囲で、必要に応じて、さらに一般的に用いられる潤滑油用添加剤を含有してもよい。
 このような潤滑油用添加剤としては、例えば、流動点降下剤、粘度指数向上剤、金属系清浄剤、分散剤、耐摩耗剤、極圧剤、酸化防止剤、消泡剤、摩擦調整剤、防錆剤、金属不活性化剤等が挙げられる。
 なお、当該潤滑油用添加剤として、複数の添加剤を含有する市販品の添加剤パッケージを用いてもよい。
 また、上記の添加剤としての機能を複数有する化合物(例えば、耐摩耗剤及び極圧剤としての機能を有する化合物)を用いてもよい。
 さらに、各潤滑油用添加剤は、単独で又は2種以上を併用してもよい。
 これらの潤滑油用添加剤の各含有量は、本発明の効果を損なわない範囲内で、添加剤の種類に応じて、適宜調整することができるが、潤滑油組成物の全量(100質量%)基準で、通常0.001~15質量%、好ましくは0.005~10質量%、より好ましくは0.01~8質量%である。
<潤滑油組成物の用途>
 本発明の潤滑油組成物は、上述の本発明の鉱油系基油を含むため、高引火点であり、省燃費性能に優れる。
 そのため、本発明の潤滑油組成物は、例えば、自動変速機油(ATF)、無段変速機油(CVTF)、ショックアブソーバー油(SAF)、パワーステアリングオイル、電動モーター油等の駆動系油;エンジン油;油圧作動油;タービン油;圧縮機油;工作機械用潤滑油;切削油;歯車油;流体軸受け油;転がり軸受け油等に好適に用いることができる。
 特に、近年電気自動車やハイブリッド車においては、変速機と電動モーターとをパッケージ化することにより小型軽量化が求められており、変速機油に要求される性能に加え、電動モーター油に要求される冷却性も併せ持つ潤滑油組成物が必要とされている。本発明の潤滑油組成物は、低粘度であるため、一定の冷却性能もあり、このような電気自動車やハイブリッド車への用途にも好適である。
 また、本発明の潤滑油組成物は、冷凍機油、圧延油、絶縁油、エラストマー軟化剤としても使用することができる。
 つまり、本発明は、下記(1)及び(2)の潤滑油組成物の使用方法も提供し得る。
(1)本発明の鉱油系基油を含む潤滑油組成物を、動力伝達装置(自動変速機、無段変速機、ショックアブソーバー、パワーステアリング、電動モーター等)、エンジン、油圧作動機器、タービン、圧縮機、工作機械、切削機、歯車、流体軸受け、及び転がり軸受けのいずれかの機構の潤滑に用いる、潤滑油組成物の使用方法。
(2)本発明の鉱油系基油を含む潤滑油組成物を、冷凍機、圧延機、電気機器(変圧器、ケーブル、コンデンサー等)に用いる、潤滑油組成物の使用方法。
 次に、本発明を実施例により更に詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。なお、各種物性の測定法又は評価法は、下記のとおりである。
(1)40℃及び100℃における動粘度
 JIS K2283に準拠して測定した。
(2)引火点
 JIS K2265-4に準拠し、クリーブランド開放式(COC)法により測定した。
(3)芳香族分(%C)、ナフテン分(%C)、パラフィン分(%C
 ASTM D-3238環分析(n-d-M法)により測定した。
(4)15℃における密度
 JIS K2249に準拠して測定した。
(5)20℃における屈折率
 JIS K0062に準拠して測定した。
(6)10容量%留出温度、90容量%留出温度
 JIS K2254に準拠して測定した。
(7)アニリン点
 JIS K2256(U字管法)に準拠して測定した。
(8)質量平均分子量(Mw)
 ASTM D2502に準拠して測定した。
(9)-25℃と-10℃の2点間における複素粘度の温度勾配Δ|η*|
 Anton Paar社製レオメータ「Physica MCR 301」を用いて、以下の手順で測定した。
 まず、-25℃又は-10℃の測定温度に調整したコーンプレート(直径50mm、傾斜角1°)に、測定対象の鉱油系基油を挿入し、同じ温度で10分間保持した。なお、この際、挿入した溶液に歪みを与えないように留意した。
 そして、-25℃又は-10℃の測定温度にて、角速度6.3rad/s、歪み量0.1~100%の範囲で当該測定温度に応じて適宜設定した値の条件下にて、振動モードで、-25℃又は-10℃における複素粘度η*を測定した。
 そして、-25℃及び-10℃における複素粘度η*の値から、前記計算式(f1)から、「複素粘度の温度勾配Δ|η*|」を算出した。
(10)アロマ分、ナフテン分、n-パラフィン分、及びイソパラフィン分の割合
 ASTM D2786に準拠し、アロマ分、ナフテン分、総パラフィン分(n-パラフィン分+イソパラフィン分)を求めた。次いで、GC-FID法に準拠し、n-パラフィン分を求め、総パラフィン分とn-パラフィン分との差からイソパラフィン分を求めた。
 その上で、アロマ分、ナフテン分、n-パラフィン分、及びイソパラフィン分の全量100体積%に対する、各成分が占める割合を算出した。
 表1に、実施例及び比較例で使用した原料油(I)~(IV)の各種性状を示す。
 なお、原料油(I)及び(II)は、重質軽油を水素化分解装置によって水素化分解して得られた軽油留分を含むものである。
 原料油(III)は、減圧重質油を水素化分解装置によって水素化分解して得られた軽油留分を含むものである。
 原料油(IV)は、直留の軽油留分を深度脱硫して得られた軽油留分を含むものである。
Figure JPOXMLDOC01-appb-T000001
実施例1(鉱油系基油(1)の製造)
 表1に記載の原料油(I)を、白金-ゼオライト系触媒(担体であるゼオライトに白金が担持した触媒)を用いて、反応温度290℃、水素分圧4MPa、水素と原料油(I)との供給量比〔水素/原料油(I)〕422Nm/kL、LHSV1.1hr-1の条件下で水素化異性化脱ろう処理を施し、精製油(i)を得た。
 次いで、精製油(i)を、減圧蒸留し、40℃における動粘度が4.0~6.0mm/sの範囲となる留分を回収し、鉱油系基油(1)を得た。
実施例2(鉱油系基油(2)の製造)
 表1に記載の原料油(II)を、白金-ゼオライト系触媒(担体であるゼオライトに白金が担持した触媒)を用いて、反応温度292℃、水素分圧4MPa、水素と原料油(II)との供給量比〔水素/原料油(II)〕422Nm/kL、LHSV1.1hr-1の条件下で水素化異性化脱ろう処理を施し、精製油(ii)を得た。
 次いで、精製油(ii)を、減圧蒸留し、40℃における動粘度が4.0~6.0mm/sの範囲となる留分を回収し、鉱油系基油(2)を得た。
実施例3(鉱油系基油(3)の製造)
 表1に記載の原料油(I)を、白金-ゼオライト系触媒(担体であるゼオライトに白金が担持した触媒)を用いて、反応温度287℃、水素分圧4MPa、水素と原料油(I)との供給量比〔水素/原料油(I)〕422Nm/kL、LHSV1.1hr-1の条件下で水素化異性化脱ろう処理を施し、精製油(iii)を得た。
 次いで、精製油(iii)を、ニッケル・タングステン-アルミナ系触媒(担体であるアルミナにニッケル及びタングステンが担持した触媒)を用い、反応温度290℃、水素分圧18.5MPa、水素と精製油(iii)との供給量比〔水素/精製油(iii)〕1000Nm/kL、LHSV0.6hr-1の条件下で水素化仕上げ処理を施し、精製油(iii-1)を得た。
 そして、精製油(iii-1)を、減圧蒸留し、40℃における動粘度が4.0mm/s以上5.0mm/s未満の範囲となる留分を回収し、鉱油系基油(3)を得た。
実施例4(鉱油系基油(4)の製造)
 表1に記載の原料油(II)を、白金-ゼオライト系触媒(担体であるゼオライトに白金が担持した触媒)を用いて、反応温度294℃、水素分圧4MPa、水素と原料油(II)との供給量比〔水素/原料油(II)〕422Nm/kL、LHSV1.1hr-1の条件下で水素化異性化脱ろう処理を施し、精製油(iv)を得た。
 次いで、精製油(iv)を、ニッケル・タングステン-アルミナ系触媒(担体であるアルミナにニッケル及びタングステンが担持した触媒)を用い、反応温度290℃、水素分圧18.5MPa、水素と精製油(iv)との供給量比〔水素/精製油(iv)〕1000Nm/kL、LHSV0.6hr-1の条件下で水素化仕上げ処理を施し、精製油(iv-1)を得た。
 そして、精製油(iv-1)を、減圧蒸留し、40℃における動粘度が5.0mm/s以上6.0mm/s以下の範囲となる留分を回収し、鉱油系基油(4)を得た。
実施例5(鉱油系基油(5)の製造)
 表1に記載の原料油(III)を、白金-ゼオライト系触媒(担体であるゼオライトに白金が担持した触媒)を用いて、反応温度285℃、水素分圧4MPa、水素と原料油(III)との供給量比〔水素/原料油(III)〕422Nm/kL、LHSV1.1hr-1の条件下で水素化異性化脱ろう処理を施し、精製油(v)を得た。
 次いで、精製油(v)を、ニッケル・タングステン-アルミナ系触媒(担体であるアルミナにニッケル及びタングステンが担持した触媒)を用い、反応温度290℃、水素分圧18.5MPa、水素と当該精製油(v)との供給量比〔水素/精製油(v)〕1000Nm/kL、LHSV0.6hr-1の条件下で水素化仕上げ処理を施し、精製油(v-1)を得た。
 そして、精製油(v-1)を、減圧蒸留し、40℃における動粘度が4.0~6.0mm/sの範囲となる留分を回収し、鉱油系基油(5)を得た。
実施例6(鉱油系基油(6)の製造)
 表1に記載の原料油(IV)を、白金-ゼオライト系触媒(担体であるゼオライトに白金が担持した触媒)を用いて、反応温度293℃、水素分圧4MPa、水素と原料油(IV)との供給量比〔水素/原料油(IV)〕422Nm/kL、LHSV1.1hr-1の条件下で水素化異性化脱ろう処理を施し、精製油(vi)を得た。
 次いで、精製油(vi)を、ニッケル・タングステン-アルミナ系触媒(担体であるアルミナにニッケル及びタングステンが担持した触媒)を用い、反応温度290℃、水素分圧18.5MPa、水素と精製油(vi)との供給量比〔水素/精製油(vi)〕1000Nm/kL、LHSV0.6hr-1の条件下で水素化仕上げ処理を施し、精製油(vi-1)を得た。
 そして、精製油(vi-1)を、減圧蒸留し、40℃における動粘度が4.0~6.0mm/sの範囲となる留分を回収し、鉱油系基油(6)を得た。
実施例7(鉱油系基油(7)の製造)
 表1に記載の原料油(I)を、白金-ゼオライト系触媒(担体であるゼオライトに白金が担持した触媒)を用いて、反応温度289~292℃、水素分圧20.6MPa、水素と原料油(I)との供給量比〔水素/原料油(I)〕1000Nm/kL、LHSV0.65hr-1の条件下で水素化異性化脱ろう処理を施し、精製油(vii)を得た。
 次いで、精製油(vii)を、ニッケル・タングステン-アルミナ系触媒(担体であるアルミナにニッケル及びタングステンが担持した触媒)を用い、反応温度290℃、水素分圧20.6MPa、水素と精製油(vii)との供給量比〔水素/精製油(vii)〕1000Nm/kL、LHSV0.65hr-1の条件下で水素化仕上げ処理を施し、精製油(vii-1)を得た。
 そして、精製油(vii-1)を、減圧蒸留し、40℃における動粘度が4.0~6.0mm/sの範囲となる留分を回収し、鉱油系基油(7)を得た。
実施例8(鉱油系基油(8)の製造)
 表1に記載の原料油(II)を、白金-ゼオライト系触媒(担体であるゼオライトに白金が担持した触媒)を用いて、反応温度294℃、水素分圧20.6MPa、水素と原料油(II)との供給量比〔水素/原料油(II)〕1000Nm/kL、LHSV0.65hr-1の条件下で水素化異性化脱ろう処理を施し、精製油(viii)を得た。
 次いで、精製油(viii)を、ニッケル・タングステン-アルミナ系触媒(担体であるアルミナにニッケル及びタングステンが担持した触媒)を用い、反応温度290℃、水素分圧20.6MPa、水素と精製油(viii)との供給量比〔水素/精製油(viii)〕1000Nm/kL、LHSV0.65hr-1の条件下で水素化仕上げ処理を施し、精製油(viii-1)を得た。
 そして、精製油(viii-1)を、減圧蒸留し、40℃における動粘度が4.0~6.0mm/sの範囲となる留分を回収し、鉱油系基油(8)を得た。
実施例9(鉱油系基油(9)の製造)
 実施例3と同様の条件にて、表1に記載の原料油(I)を、水素化異性化脱ろう処理及び水素化仕上げ処理を施して得られた精製油(iii-1)を、減圧蒸留し、40℃における動粘度が5.0mm/s以上6.0mm/s以下の範囲となる留分を回収し、鉱油系基油(9)を得た。
実施例10(鉱油系基油(10)の製造)
 実施例4と同様の条件にて、表1に記載の原料油(II)を、水素化異性化脱ろう処理及び水素化仕上げ処理を施して得られた精製油(iv-1)を、減圧蒸留し、40℃における動粘度が4.0mm/s以上5.0mm/s以下の範囲となる留分を回収し、鉱油系基油(10)を得た。
実施例11(鉱油系基油(11)の製造)
 表1に記載の原料油(III)を、ニッケル・タングステン-アルミナ系触媒(担体であるアルミナにニッケル及びタングステンが担持した触媒)を用い、反応温度290℃、水素分圧20.6MPa、水素と原料油(III)との供給量比〔水素/原料油(III)〕1000Nm/kL、LHSV0.6hr-1の条件下で水素化仕上げ処理を施し、精製油(iii-2)を得た。
 そして、精製油(iii-2)を、減圧蒸留し、40℃における動粘度が4.0~6.0mm/sの範囲となる留分を回収し、鉱油系基油(11)を得た。
比較例1~2
 比較例1では、表1に記載の原料油(III)をそのまま鉱油系基油(a)とし、上述の各種性状を測定した。
 また、比較例2では、表1に記載の原料油(IV)をそのまま鉱油系基油(b)とし、上述の各種性状を測定した。
 鉱油系基油(1)~(12)及び(a)~(b)の各種性状を表2及び表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 実施例1~11で製造した鉱油系基油(1)~(11)は、低粘度でありつつも、引火点が140℃以上と高い結果となった。そのため、これらの鉱油系基油を用いた潤滑油組成物は、高引火点でありつつも、更なる低粘度化によって省燃費性能をより向上させたものとなり得ると考えられる。
 一方、比較例1~2の鉱油系基油(a)~(b)は、低粘度であるが、引火点が140℃未満と低く、安全性に問題がある結果となった。

Claims (14)

  1.  40℃における動粘度が4.0mm/s以上6.0mm/s未満であり、100℃における動粘度が1.0mm/s以上2.0mm/s未満であって、且つ、
     引火点が140℃以上である、鉱油系基油。
  2.  回転型レオメータを用いて、角速度6.3rad/s、歪み量0.1~100%の条件下で計測した、-10℃と-25℃の2点間における複素粘度の温度勾配Δ|η*|が、0.1Pa・s/℃以下である、請求項1に記載の鉱油系基油。
  3.  100℃における動粘度が1.5mm/s以上2.0mm/s未満である、請求項1又は2に記載の鉱油系基油。
  4.  前記鉱油系基油の原料油の、アロマ分、ナフテン分、n-パラフィン分、及びイソパラフィン分の全量100体積%に対する、n-パラフィン分が占める割合が50体積%以下である、請求項1~3のいずれか一項に記載の鉱油系基油。
  5.  前記鉱油系基油の原料油のJIS K2254に準拠した蒸留試験において、10容積%留出温度が250℃以上であり、90容積%留出温度が320℃以上である、請求項1~4のいずれか一項に記載の鉱油系基油。
  6.  前記鉱油系基油の原料油の40℃における動粘度が4.0~6.0mm/sであり、100℃における動粘度が1.0~2.0mm/sである、請求項1~5のいずれか一項に記載の鉱油系基油。
  7.  前記鉱油系基油の原料油を、水素化異性化脱ろう処理を施して得られたものである、請求項1~6のいずれか一項に記載の鉱油系基油。
  8.  前記原料油を、前記水素化異性化脱ろう処理の後に、さらに水素化仕上げ処理を施して得られたものである、請求項7に記載の鉱油系基油。
  9.  前記鉱油系基油の原料油が、重質軽油を水素化分解して得られる軽油留分を含む、請求項1~8のいずれか一項に記載の鉱油系基油。
  10.  前記鉱油系基油の原料油のパラフィン分(%C)が60以上である、請求項1~9のいずれか一項に記載の鉱油系基油。
  11.  前記鉱油系基油の原料油の芳香族分(%C)が10.0以下である、請求項1~10のいずれか一項に記載の鉱油系基油。
  12.  請求項1~11のいずれか一項に記載の鉱油系基油を含む、潤滑油組成物。
  13.  駆動系油、エンジン油、油圧作動油、タービン油、圧縮機油、工作機械用潤滑油、切削油、歯車油、流体軸受け油、及び転がり軸受け油のいずれかとして使用される、請求項12に記載の潤滑油組成物。
  14.  請求項1~11のいずれか一項に記載の鉱油系基油を含む潤滑油組成物を、動力伝達装置、エンジン、油圧作動機器、タービン、圧縮機、工作機械、切削機、歯車、流体軸受け、及び転がり軸受けのいずれかの機構の潤滑に用いる、潤滑油組成物の使用方法。
     
PCT/JP2017/004089 2016-02-25 2017-02-03 鉱油系基油、及び潤滑油組成物 WO2017145714A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780012973.9A CN108699469B (zh) 2016-02-25 2017-02-03 矿物油系基础油、和润滑油组合物
US16/078,415 US10647937B2 (en) 2016-02-25 2017-02-03 Mineral base oil and lubricating oil composition
JP2018501113A JP6905971B2 (ja) 2016-02-25 2017-02-03 鉱油系基油、及び潤滑油組成物
EP17756156.0A EP3421577A4 (en) 2016-02-25 2017-02-03 OIL ON MINERAL BASIS AND LUBE OIL COMPOSITION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-034165 2016-02-25
JP2016034165 2016-02-25

Publications (1)

Publication Number Publication Date
WO2017145714A1 true WO2017145714A1 (ja) 2017-08-31

Family

ID=59686162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004089 WO2017145714A1 (ja) 2016-02-25 2017-02-03 鉱油系基油、及び潤滑油組成物

Country Status (5)

Country Link
US (1) US10647937B2 (ja)
EP (1) EP3421577A4 (ja)
JP (1) JP6905971B2 (ja)
CN (1) CN108699469B (ja)
WO (1) WO2017145714A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018123300A (ja) * 2017-02-03 2018-08-09 Jxtgエネルギー株式会社 冷凍機油
WO2018143212A1 (ja) * 2017-02-03 2018-08-09 Jxtgエネルギー株式会社 冷凍機油
JP2019104777A (ja) * 2017-12-08 2019-06-27 Jxtgエネルギー株式会社 冷凍機油及び冷凍機用作動流体組成物
JP2022514810A (ja) * 2018-09-27 2022-02-16 エスケー イノベーション カンパニー リミテッド 低温性能が改善された鉱油系潤滑基油及びその製造方法、並びにそれを含む潤滑油製品

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI128090B (en) * 2016-12-22 2019-09-13 Neste Oyj Hydraulic fluid composition
JP6810657B2 (ja) * 2017-05-30 2021-01-06 シェルルブリカンツジャパン株式会社 自動変速機用潤滑油組成物
JP2019104778A (ja) * 2017-12-08 2019-06-27 Jxtgエネルギー株式会社 冷凍機油及び冷凍機用作動流体組成物
JP7016733B2 (ja) * 2018-03-13 2022-02-07 出光興産株式会社 潤滑油組成物、潤滑油組成物の製造方法及び無段変速機
JP7129035B2 (ja) * 2018-05-30 2022-09-01 出光興産株式会社 駆動系機器用潤滑油組成物及びその製造方法、駆動系機器の潤滑方法並びに駆動系機器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119505A1 (ja) * 2008-03-25 2009-10-01 新日本石油株式会社 潤滑油基油及びその製造方法並びに潤滑油組成物
JP2013053320A (ja) * 2012-12-20 2013-03-21 Jx Nippon Oil & Energy Corp 2サイクルエンジン油用の希釈油の製造方法
WO2013147305A1 (ja) * 2012-03-30 2013-10-03 Jx日鉱日石エネルギー株式会社 潤滑油基油及びその製造方法
WO2014157217A1 (ja) * 2013-03-25 2014-10-02 出光興産株式会社 電気絶縁油組成物

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004182931A (ja) 2002-12-05 2004-07-02 Idemitsu Kosan Co Ltd 潤滑油基油及びその製造方法
JP5108200B2 (ja) * 2003-11-04 2012-12-26 出光興産株式会社 潤滑油基油及びその製造方法、並びに該基油を含有する潤滑油組成物
JP5102966B2 (ja) * 2006-03-31 2012-12-19 Jx日鉱日石エネルギー株式会社 金属加工油組成物
EP2497819B1 (en) * 2008-10-07 2017-01-04 JX Nippon Oil & Energy Corporation Lubricant composition
JP2010090251A (ja) * 2008-10-07 2010-04-22 Nippon Oil Corp 潤滑油基油及びその製造方法、潤滑油組成物
US8378042B2 (en) * 2009-04-28 2013-02-19 Exxonmobil Chemical Patents Inc. Finishing process for amorphous polymers
CN102459543A (zh) * 2009-06-04 2012-05-16 吉坤日矿日石能源株式会社 润滑油组合物及其制造方法
JP5756337B2 (ja) * 2011-05-06 2015-07-29 Jx日鉱日石エネルギー株式会社 潤滑油組成物
JP6228742B2 (ja) * 2013-03-29 2017-11-08 Jxtgエネルギー株式会社 潤滑油組成物
EP3315592A1 (en) * 2016-10-27 2018-05-02 Total Marketing Services Use of biodegradable hydrocarbon fluids as drilling fluids

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119505A1 (ja) * 2008-03-25 2009-10-01 新日本石油株式会社 潤滑油基油及びその製造方法並びに潤滑油組成物
WO2013147305A1 (ja) * 2012-03-30 2013-10-03 Jx日鉱日石エネルギー株式会社 潤滑油基油及びその製造方法
JP2013053320A (ja) * 2012-12-20 2013-03-21 Jx Nippon Oil & Energy Corp 2サイクルエンジン油用の希釈油の製造方法
WO2014157217A1 (ja) * 2013-03-25 2014-10-02 出光興産株式会社 電気絶縁油組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3421577A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018123300A (ja) * 2017-02-03 2018-08-09 Jxtgエネルギー株式会社 冷凍機油
WO2018143212A1 (ja) * 2017-02-03 2018-08-09 Jxtgエネルギー株式会社 冷凍機油
JP7054330B2 (ja) 2017-02-03 2022-04-13 Eneos株式会社 冷凍機油
US11377619B2 (en) 2017-02-03 2022-07-05 Eneos Corporation Refrigerating machine oil
JP2019104777A (ja) * 2017-12-08 2019-06-27 Jxtgエネルギー株式会社 冷凍機油及び冷凍機用作動流体組成物
JP7146391B2 (ja) 2017-12-08 2022-10-04 Eneos株式会社 冷凍機油及び冷凍機用作動流体組成物
JP2022514810A (ja) * 2018-09-27 2022-02-16 エスケー イノベーション カンパニー リミテッド 低温性能が改善された鉱油系潤滑基油及びその製造方法、並びにそれを含む潤滑油製品

Also Published As

Publication number Publication date
US20190024004A1 (en) 2019-01-24
EP3421577A4 (en) 2019-10-30
JPWO2017145714A1 (ja) 2018-12-20
EP3421577A1 (en) 2019-01-02
JP6905971B2 (ja) 2021-07-21
CN108699469A (zh) 2018-10-23
US10647937B2 (en) 2020-05-12
CN108699469B (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
JP6905971B2 (ja) 鉱油系基油、及び潤滑油組成物
JP6513780B2 (ja) 潤滑油基油及びその製造方法並びに潤滑油組成物
EP2341122B1 (en) Lubricant base oil
JP5800449B2 (ja) 潤滑油基油及びその製造方法並びに潤滑油組成物
JP5800448B2 (ja) 潤滑油基油及びその製造方法並びに潤滑油組成物
JP5690042B2 (ja) 潤滑油基油及びその製造方法並びに潤滑油組成物
JP2010090251A (ja) 潤滑油基油及びその製造方法、潤滑油組成物
JP6749851B2 (ja) 潤滑油組成物、潤滑油組成物の製造方法及び変速機
JP2011506677A (ja) 潤滑油組成物
JP2008274237A (ja) 潤滑油基油及びその製造方法並びに潤滑油組成物
EP3438234B1 (en) Mineral oil-based base oil, lubricating oil composition, equipment, lubricating method, and grease composition
JP2010090257A (ja) 潤滑油基油及びその製造方法、潤滑油組成物
JP6228742B2 (ja) 潤滑油組成物
WO2018123341A1 (ja) 潤滑油組成物、潤滑油組成物の製造方法及び駆動系機器
JP2018100329A (ja) 鉱油系基油、潤滑油組成物、内燃機関、及び内燃機関の潤滑方法
JP2019035047A (ja) 鉱油系基油、及び潤滑油組成物
WO2017111081A1 (ja) 鉱油系基油、潤滑油組成物、内燃機関、及び内燃機関の潤滑方法
JP2011506632A (ja) 基油配合物
JP2015127427A (ja) 潤滑油基油及びその製造方法、潤滑油組成物
JP2007051174A (ja) 潤滑基油、潤滑基油組成物およびこれを用いた高性能自動変速機油
JP2018100328A (ja) 潤滑油組成物、内燃機関、及び内燃機関の潤滑方法
JP2014198856A (ja) 潤滑油基油及びその製造方法並びに潤滑油組成物
JP2014198857A (ja) 潤滑油基油及びその製造方法並びに潤滑油組成物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018501113

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017756156

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017756156

Country of ref document: EP

Effective date: 20180925

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756156

Country of ref document: EP

Kind code of ref document: A1