WO2017145378A1 - バイポーラ電池 - Google Patents

バイポーラ電池 Download PDF

Info

Publication number
WO2017145378A1
WO2017145378A1 PCT/JP2016/055876 JP2016055876W WO2017145378A1 WO 2017145378 A1 WO2017145378 A1 WO 2017145378A1 JP 2016055876 W JP2016055876 W JP 2016055876W WO 2017145378 A1 WO2017145378 A1 WO 2017145378A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
bipolar battery
electrode
positive electrode
battery according
Prior art date
Application number
PCT/JP2016/055876
Other languages
English (en)
French (fr)
Inventor
堤 香津雄
太地 坂本
向井 孝志
勇太 池内
直人 山下
Original Assignee
エクセルギー・パワー・システムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エクセルギー・パワー・システムズ株式会社 filed Critical エクセルギー・パワー・システムズ株式会社
Priority to KR1020187006445A priority Critical patent/KR102040698B1/ko
Priority to BR112018003818-0A priority patent/BR112018003818B1/pt
Priority to US16/068,715 priority patent/US10720629B2/en
Priority to PCT/JP2016/055876 priority patent/WO2017145378A1/ja
Priority to EP16891535.3A priority patent/EP3422454A4/en
Priority to CN201680044346.9A priority patent/CN107949947B/zh
Priority to JP2017500393A priority patent/JP6286632B2/ja
Priority to RU2018131012A priority patent/RU2686841C1/ru
Publication of WO2017145378A1 publication Critical patent/WO2017145378A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • H01M10/0418Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes with bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • H01M10/044Small-sized flat cells or batteries for portable equipment with bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/28Construction or manufacture
    • H01M10/281Large cells or batteries with stacks of plate-like electrodes
    • H01M10/282Large cells or batteries with stacks of plate-like electrodes with bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/78Shapes other than plane or cylindrical, e.g. helical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/808Foamed, spongy materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/623Portable devices, e.g. mobile telephones, cameras or pacemakers
    • H01M10/6235Power tools
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/627Stationary installations, e.g. power plant buffering or backup power supplies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/227Organic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a structure of a bipolar battery, and more particularly to a structure of a bipolar battery that does not cause an ionic short circuit in an assembled battery state.
  • a bipolar battery refers to a battery in which a positive electrode active material layer is provided on one surface of a current collector and an electrode provided with a negative electrode active material layer on the other surface is laminated via a separator.
  • Bipolar batteries are widely used as power sources for electric vehicles and various electronic devices because they are relatively easy to increase the voltage, reduce the number of parts, reduce the electrical resistance between single cells, and increase the energy density by reducing unnecessary space. It is used.
  • Patent Document 1 in a bipolar battery using a polymer gel electrolyte or a liquid electrolyte as an electrolyte layer, the electrolyte layer is retained in order to prevent a liquid junction (short circuit) due to leakage of the electrolyte from the electrolyte portion.
  • a bipolar battery including a sealing resin that is molded and arranged on the outer peripheral portion of a separator is disclosed.
  • Patent Document 2 employs a sealing material containing a modified polyolefin-based resin graft-modified with a compound containing an ethylenic double bond and an epoxy group in the same molecule in a bipolar battery using a non-aqueous electrolyte.
  • a sealing material containing a modified polyolefin-based resin graft-modified with a compound containing an ethylenic double bond and an epoxy group in the same molecule in a bipolar battery using a non-aqueous electrolyte employs a sealing material containing a modified polyolefin-based resin graft-modified with a compound containing an ethylenic double bond and an epoxy group in the same molecule in a bipolar battery using a non-aqueous electrolyte.
  • Nickel hydroxide and manganese dioxide used as a positive electrode active material for alkaline secondary batteries are metal oxides and have extremely low conductivity.
  • Patent Document 4 discloses an active material obtained by adding a higher cobalt oxide as a conductive agent to nickel hydroxide. When this active material is used, a conductive network is formed by higher cobalt oxide between nickel hydroxide particles, so that the charge / discharge reaction is likely to proceed throughout the nickel hydroxide particles, thereby achieving high capacity. Can do.
  • a conventional assembled battery is configured by combining a unit cell composed of a positive electrode, a negative electrode, and an electrolytic solution, and a sealed unit cell is used in order to prevent carbon dioxide deterioration of the electrolytic solution and corrosion of peripheral devices due to liquid leakage.
  • the cells are electrically connected through a connection portion such as a wiring, an electrical resistance is generated in the connection portion that is a wiring, resulting in a decrease in output.
  • there are members that are not directly related to electricity generation such as a connection part and a sealing member, such as a lid, thereby reducing the output density and energy density of the assembled battery. ing.
  • a large number of parts increases the number of man-hours required for assembly.
  • High power characteristics are generally required for secondary batteries as well as bipolar batteries. If charging / discharging is performed at a high output, that is, a high charging / discharging rate, the internal temperature of the secondary battery rises to a high temperature, and the active material of the electrode is damaged. For this reason, the charge / discharge rate is limited, making it difficult to increase the output.
  • a graphitized carbon material is used as a conductive agent instead of an expensive higher-order cobalt oxide as a conductive agent, sufficient conductivity can be obtained.
  • the graphitized carbon material has poor corrosion resistance, repeated charge and discharge The carbon material is oxidized and deteriorated, and the conductivity gradually decreases.
  • oxygen generated at the positive electrode during charging oxidizes the hydrogen storage alloy of the negative electrode and lowers the hydrogen storage capacity.
  • the present invention has been made in view of the above circumstances, and even when the electrolyte is injected in a state where the battery is assembled, the electrolyte is uniformly distributed to each electrode group without causing an ionic short circuit (liquid junction).
  • a bipolar battery that can be injected is provided.
  • the number of parts can be reduced to reduce assembly man-hours, and the volume of the battery can be reduced to increase the capacity and energy density. To enable higher output.
  • a bipolar battery according to the present invention is a bipolar battery including a plurality of current collectors having a bottomed cylindrical conductor and a bottom portion protruding outward.
  • the battery includes a power generation element in which a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode are stacked, and the protruding portion connects the power generation element to the current collector.
  • a first electrode that is penetrating along the axial direction and that is one of the positive electrode and the negative electrode is in contact with an inner surface of a cylindrical portion of the current collector
  • the current collector A second electrode, which is one of the positive electrode and the negative electrode, is in contact with the one current collector, while being electrically connected to the body and not in contact with the other current collector
  • the other current collector is in contact with the outer surface of the protruding portion, They are collector electrically connected.
  • the current collector includes a cylindrical portion and a protruding portion, the cylindrical portion is a cylindrical conductive body, and the protruding portion protrudes outward in the axial direction of the cylindrical body. Yes.
  • the bipolar battery can be miniaturized and a high capacity can be expected. Furthermore, the energy density of the bipolar battery is improved and high output can be expected. In addition, the number of parts can be reduced, and the number of assembly steps can be reduced.
  • each cell is connected by a current collector having a cross-sectional area larger than that of the wiring, the electric resistance is small and high output can be achieved. Also, the ohmic loss is small.
  • the electrode since the electrode has a laminated structure, heat generated by the electrode due to charge / discharge is quickly transmitted to the outside via the current collector, limiting the rise in the internal temperature of the battery and increasing the output. Is possible.
  • an outer edge of the second electrode is covered with the separator, and a peripheral edge of a hole through which the other current collector passes through the first electrode is covered with the separator.
  • an insulator is interposed between the one current collector and the other current collector. According to this configuration, the current collectors stacked one above the other are electrically insulated by the insulating sheet.
  • a water repellent sheet is provided inside the current collector and between the protruding portion and the power generating element. According to this configuration, since the water-repellent sheet repels water and has insulation, the water-repellent sheet prevents liquid leakage between the cells.
  • the electrolytic solution and hydrogen gas supplied from a hole provided at the top of the protruding portion of the current collector pass through this water-repellent sheet and are supplied to each cell. A liquid junction can be prevented with a simple structure, and it is not necessary to inject an electrolytic solution for each cell. Therefore, it is possible to reduce manufacturing steps and costs.
  • the water-repellent sheet is a microporous film or a polyolefin nonwoven fabric.
  • the water repellent sheet is preferably polyethylene or polypropylene.
  • the first electrode of one of the power generation elements is in contact with the inner side surface of the cylindrical portion of the current collector, while the second electrode of the other power generation element is of the current collector. It abuts on the outer surface of the protrusion.
  • the current collector is made of a nickel-plated steel plate.
  • the current collector is sandwiched between a negative electrode terminal plate and a positive electrode terminal plate and stacked concentrically, and the negative electrode terminal plate and the positive electrode terminal plate cover an insulating tube. It is connected with.
  • the battery can be reduced in size.
  • the conductive flat plate-like fittings attached to both ends of the through-bolts are substantially along the negative electrode terminal plate and the positive electrode terminal plate from the flat plate portion and the flat plate portion. Thus, it has an extending portion bent at a right angle.
  • the bipolar battery according to the present invention is characterized in that the current collector located at the end of the stacked current collector in the opening direction does not have a cylindrical portion. According to this configuration, the dead space can be eliminated and the capacity of the battery can be increased by omitting the cylindrical portion of the current collector that constitutes the last-stage cell.
  • one of the first electrode and the second electrode is a negative electrode containing a hydrogen storage alloy
  • the other electrode is a positive electrode containing a positive electrode active material and a conductive agent
  • the conductive agent contains carbon and encloses hydrogen gas. According to this configuration, oxygen generated in the battery is combined with hydrogen gas sealed in the battery to form water, so that the conductive agent contained in the positive electrode is not oxidized.
  • the bipolar battery according to the present invention includes a hydrogen storage chamber for storing hydrogen gas generated by electrolysis of an electrolyte held in the bipolar battery and hydrogen gas supplied from the outside.
  • hydrogen gas can be produced by overcharging the battery.
  • the bipolar battery according to the present invention includes soft carbon in which the conductive agent is partially graphitized.
  • the separator has a polyolefin-based nonwoven fabric. Furthermore, in the bipolar battery according to the present invention, the separator has hydrophilicity.
  • An assembled battery according to the present invention is an assembled battery in which a plurality of bipolar batteries according to claim 9 are arranged in a direction orthogonal to the axial direction, and includes a blower that blows air in a direction orthogonal to the axial direction of the bipolar battery.
  • the blowing direction of the blower is a direction parallel to the extending portion of the connection fitting.
  • the connecting metal has a function of enhancing the cooling performance by disturbing the role of transmitting electricity and the flow of cooling air from the blower.
  • Bipolar batteries can inject electrolyte with the batteries assembled, and can evenly inject electrolyte into each electrode group without ionic short-circuiting (liquid junction).
  • a current collector with a special structure, it is possible to increase the output and capacity of the battery.
  • a nickel hydride battery will be described as an example of a secondary battery to which the present invention is applied.
  • the type of secondary battery is not limited to this, and may be a secondary battery such as a manganese dioxide battery, a lithium ion battery, or a nickel zinc battery.
  • the first electrode will be described as a positive electrode and the second electrode will be described as a negative electrode.
  • Examples of the hydrogen storage alloy used for the negative electrode include alloys such as AB5 type which is a rare earth alloy, AB2 type which is a Laves phase alloy, AB type which is a titanium-zirconium alloy, and A2B type which is a magnesium alloy.
  • alloys such as AB5 type which is a rare earth alloy, AB2 type which is a Laves phase alloy, AB type which is a titanium-zirconium alloy, and A2B type which is a magnesium alloy.
  • an AB5 type rare earth-nickel alloy which is a ternary alloy containing MmNiCoMnAl misch metal, is preferable.
  • the positive electrode active material is not particularly limited as long as it can be used for a positive electrode of an alkaline secondary battery, and may be nickel hydroxide or manganese dioxide.
  • the conductive agent for the positive electrode is preferably a carbon material that does not elute into the electrolyte during discharge and is not easily reduced by hydrogen.
  • amorphous carbon From the viewpoint of the resistance of the electrolytic solution and the oxidation resistance during charging, it is preferable to use amorphous carbon.
  • soft carbon is carbon that easily develops a graphite structure-a structure in which hexagonal network planes composed of carbon atoms are regularly stacked-when heated in an inert atmosphere. Also called carbon. Note that graphite is carbon obtained by graphitizing the soft carbon and is also referred to as graphite.
  • soft carbons partially graphitized carbon is preferred. Of these, those in which the surface portion of the soft carbon is graphitized are preferable. Soft carbon with advanced graphitization tends to deteriorate. If there is little graphitization, conductivity will not improve.
  • the ratio of graphitization is 100 wt. %, 10 to 90 wt. %, Preferably 20 to 60 wt. % Is more preferable.
  • the positive electrode using the carbon material as described above can realize a secondary battery having excellent cycle life characteristics.
  • the positive and negative electrode substrate is preferably Ni from the viewpoint of high electrical conductivity and good stability in the electrolyte and oxidation resistance, and specifically, a foamed nickel substrate or a nickel-plated steel plate is preferable.
  • the positive electrode active material powder, the binder, and the conductive powder are mixed and kneaded into a paste. This paste is applied or filled on the electrode substrate and dried. Thereafter, the electrode substrate was rolled with a roller press or the like to produce a positive electrode.
  • a paste is prepared for the negative electrode by mixing the hydrogen storage alloy powder, the binder, and the conductive powder. This paste is applied or filled on the electrode substrate and dried. Thereafter, the current collector was rolled with a roller press or the like to produce a negative electrode.
  • the electrolyte is not particularly limited as long as it is used in a battery using hydrogen as an active material.
  • a salt such as potassium hydroxide (KOH), lithium hydroxide (LiOH), or sodium hydroxide (NaOH) in water. What was melt
  • dissolved is suitable.
  • the electrolytic solution is preferably an aqueous potassium hydroxide solution.
  • Examples of the shape of the separator include microporous membranes, woven fabrics, non-woven fabrics, and green compacts, and among these, non-woven fabrics are preferable from the viewpoint of output characteristics and production cost.
  • the material of the separator is not particularly limited, but preferably has alkali resistance, oxidation resistance, and reduction resistance. Specifically, polyolefin fibers are preferable, and for example, polypropylene or polyethylene is preferable.
  • Polyolefin fibers are hydrophobic and need to be hydrophilic.
  • a separator subjected to fluorine gas treatment is preferred.
  • covered the metal oxide on the surface of the separator is preferable.
  • a Ni material is preferable from the viewpoint of high electrical conductivity and stability in the electrolytic solution and oxidation resistance. Specifically, a nickel-plated steel plate was used. By applying nickel plating, the current collector is prevented from being corroded by the electrolyte contained in the separator.
  • FIG. 1A is a plan view of a current collector of a bipolar battery according to the first embodiment of the present invention
  • FIG. 1B is a partial sectional view of a side surface.
  • 1B is a cross-sectional view taken along line AA of the plan view of FIG. 1A.
  • the current collector 4 has a protruding portion 5 that protrudes from the bottom of a bottomed cylindrical can made of a nickel-plated steel plate toward the outside in the axial direction of the cylindrical can. Therefore, the current collector 4 has a cylindrical portion 6 that was a cylindrical can, a protruding portion 5 that formed the bottom, and a flat shoulder portion 8 that connects the cylindrical portion 6 and the protruding portion 5.
  • a hole 7 is provided at the top of the protruding portion 5 so that the space surrounded by the current collector 4 and the external space communicate with each other through this hole.
  • the cylinder part 6, the protrusion part 5, and the hole 7 are arrange
  • a cylindrical can with a bottom is used, but a cylindrical body having an elliptical or rectangular cross section may be used.
  • a flange portion 9 is formed in the opening connected to the cylindrical portion 6 of the current collector 4 so as to extend radially outward from the cylindrical portion 6.
  • the flange 9 functions as a cooling fin and serves as a seat for an insulating sheet 14 to be described later, and functions as a sealing margin for battery sealing.
  • FIG. 2A is a plan view of components of the bipolar battery according to the first embodiment of the present invention
  • FIG. 2B is a cross-sectional view taken along line BB of the plan view of FIG. 2A.
  • the bipolar battery 10 includes two current collectors 4 and a set of electrode groups 11 housed inside the current collector 4 as main components.
  • Two current collectors 4 shown in FIG. 1 may be used.
  • the lower current collector has a form having no cylindrical portion.
  • the current collector that does not have the cylindrical portion is referred to as an end current collector 4T.
  • the current collector 4T when it is not necessary to distinguish between the current collector 4 and the end current collector 4T, they are collectively referred to as the current collector 4 simply.
  • the electrode group 11 which is a power generation element includes a negative electrode 1 containing a hydrogen storage alloy, a positive electrode 2 containing a positive electrode active material, and a separator 3 interposed between the negative electrode 1 and the positive electrode 2 that transmits ions but does not transmit electrons. It consists of The electrode group 11 is stacked in the axial direction of the current collector 4 and housed inside the current collector. And in the center of the negative electrode 1, the positive electrode 2, and the separator 3, the hole which the protrusion part 5 of the edge part collector 4T penetrates is provided. The protruding portion 5 of the end current collector 4T passes through the center of the electrode group 13 composed of the positive electrode 2, the negative electrode 1, and the separator 3 in the axial direction of the end current collector 4T.
  • the diameter of the hole provided in the negative electrode 1 is smaller than the outer diameter of the protruding portion of the end current collector 4T. Therefore, the peripheral edge portion of the hole of the negative electrode is in contact with the protruding portion of the end current collector 4T, and the negative electrode 1 and the end current collector 4T are electrically connected.
  • the diameter of the hole provided in the center of the positive electrode 2 is larger than the outer diameter of the protruding portion of the end current collector 4T, and the peripheral edge of the positive electrode hole does not contact the protruding portion of the end current collector 4T.
  • the positive electrode 2 and the end current collector 4T are electrically insulated.
  • the outer diameter of the negative electrode 1 is smaller than the inner diameter of the cylindrical portion of the current collector 4, the outer edge of the negative electrode and the inner surface of the cylindrical portion of the current collector 4 are not in contact, and the negative electrode and the current collector 4 are electrically Is insulated.
  • the outer diameter of the positive electrode 2 is larger than the inner diameter of the cylindrical portion of the current collector 4, the outer edge portion of the positive electrode 2 is in contact with the inner surface of the cylindrical portion of the current collector 4, and the positive electrode 2 and the current collector 4 are Electrically connected.
  • the diameter of the hole of the negative electrode is slightly smaller than the outer diameter of the protruding portion, and the outer diameter of the positive electrode 2 is slightly larger than the inner diameter of the cylindrical portion.
  • the outer edge of the separator 3 is covered with the positive electrode 2, and the outer edge of the negative electrode 1 is covered with the separator 3.
  • the peripheral edge of the hole of the positive electrode 2 is covered with the separator 3, and the peripheral edge of the hole of the separator 3 is covered with the negative electrode 1.
  • the outer diameter of the separator 3 is larger than the outer diameter of the negative electrode 1.
  • the negative electrode 1 and the positive electrode 2 are completely separated by the separator 3 in the vicinity of the inner peripheral surface of the cylindrical portion 6 of the current collector 4.
  • the diameter of the hole provided in the separator 3 is smaller than the diameter of the hole provided in the positive electrode 2.
  • the negative electrode 1 and the positive electrode 2 are completely separated by the separator 3 in the vicinity of the outer peripheral surface of the protruding portion 5 of the end current collector 4T. For this reason, even if an electrode deform
  • the outer diameter of the separator 3 is smaller than the outer diameter of the positive electrode 2. For this reason, the separator 3 is not interposed between the positive electrode 2 and the cylindrical portion 6 of the current collector 4. Furthermore, the diameter of the hole provided in the separator 3 is larger than the diameter of the hole provided in the center of the negative electrode 1. For this reason, the separator 3 does not intervene between the negative electrode 1 and the protruding portion 5 of the current collector 4T.
  • the current collector 4 and the end current collector 4T are overlapped so as to be concentric in the axial direction.
  • the height of the protruding portion 5 of the current collector is smaller than the height of the cylindrical portion 6 of the current collector, and the upper and lower current collectors 4 do not contact even in the vicinity of the center.
  • an insulating sheet 14 is disposed between the current collector 4 and the end current collector 4T to insulate the upper and lower current collectors.
  • a polypropylene sheet can be used as the insulating sheet 14.
  • the two current collectors 4 and 4T and the electrode group 11 surrounded by the current collectors 4 and 4T constitute one cell 15. This cell is sandwiched between two terminal plates 16 and 17, connected with bolts 20, and fixed with nuts 21 to form a bipolar battery 10.
  • the nut is a double nut. Since the bolt 20 is covered with the vinyl insulating tube 22, the current collector 4 and the bolt 20 are not in contact with each other at the peripheral edge of the flange 9 of the current collector 4, and an electrical short circuit does not occur. Further, the terminal plates 16 and 17 and the bolt 20 do not come into contact with each other and an electrical short circuit does not occur.
  • a hydrogen storage chamber 13 is formed in a space surrounded by the current collector 4 and the end current collector 4T, and can store hydrogen gas supplied from the outside and hydrogen gas generated inside.
  • the hydrogen gas generated from the negative electrode during overcharge can be stored in the hydrogen storage chamber 13.
  • the hydrogen storage chamber 13 also functions as a reservoir for the electrolytic solution.
  • the electrolytic solution is also held in the separator 3. Since the hydrogen gas stored in the hydrogen storage chamber 13 is combined with oxygen generated inside the battery to become water, it serves to prevent the positive electrode 2 from being oxidized, thereby improving the life characteristics of the positive electrode 2 and the negative electrode 1. Can be charged.
  • the two current collectors 4 and 4T are stacked concentrically in the axial direction of the bipolar battery 10 without contacting each other.
  • the protruding portion 5 of the current collector 4 is fitted in a hole provided in the center of the positive electrode terminal plate 17, and the shoulder portion 8 ′ of the end current collector 4 T that does not have the cylindrical portion 6 is connected to the negative electrode terminal plate 16. Is placed on top.
  • the shoulder 8 of the current collector 4 is in contact with the positive terminal plate 17, and the current collector 4 and the positive terminal plate 17 are electrically connected.
  • the shoulder 8 'of the end current collector 4T is in contact with the negative electrode current collector plate 16, and the end current collector 4T and the negative electrode current collector plate 16 are electrically connected.
  • the positive electrode terminal plate 17 constitutes a positive electrode terminal
  • the negative electrode terminal plate 16 constitutes a negative electrode terminal.
  • the insulating washer 23a is interposed between the left bolt 20a and the negative terminal plate 16
  • the bolt 20a and the negative terminal plate 16 are electrically insulated.
  • the metal flat washer 24a is interposed between the bolt 20a and the positive terminal plate 17, the bolt 20a and the positive terminal plate 17 are electrically connected. Therefore, the bolt 20a constitutes a positive electrode terminal.
  • a positive cable can be connected between the left nut 21a.
  • the bolt 20b and the positive terminal plate 17 are electrically insulated.
  • the metal flat washer 24b is interposed between the bolt 20b and the negative terminal plate 16, the bolt 20b and the negative terminal plate 16 are electrically connected. Therefore, the bolt 20b constitutes a negative electrode terminal. A negative cable can be connected between the right nut 21b.
  • the insulating washer has only to be insulative, and in this example, a polypropylene washer was used.
  • the pair of bolts 20a on the left side of the four bolts 20 is a positive electrode terminal
  • the pair of bolts 20b on the right side is a negative electrode terminal
  • three of the four bolts are negative terminals and the remaining one is a positive terminal.
  • three of the four may be positive terminals and the remaining one may be a negative terminal.
  • a microcoupler 26 can be attached to the hole 7 of the current collector 4, and the bipolar battery can be evacuated or replenished with electrolyte via the microcoupler 26. ing. Furthermore, hydrogen gas can be supplied into the bipolar battery from a hydrogen storage source provided outside via the microcoupler 26. An attachment port 28 for connecting the microcoupler 26 is also provided at the bottom of the negative terminal plate 16.
  • FIG. 3 shows an axial sectional side view of a bipolar battery according to a second embodiment of the present invention.
  • the bipolar battery 30 shown in FIG. 3 is a battery in which five cells are connected in series. The description will focus on the differences from the first embodiment shown in FIG. 2B.
  • the left bolt 20a constitutes the positive terminal and the right bolt 20b constitutes the negative terminal, which is the same as FIG. 2B, except that the nut 21b is arranged on the negative terminal plate 16 side. Is different.
  • the negative cable and the positive cable are taken out in the same direction, whereas in FIG. 3, the negative cable and the positive cable are taken out in opposite directions.
  • the direction in which the electrode cable is taken out is determined by the convenience of handling the electrode cable when the assembled battery is constructed.
  • the five current collectors 4-1 to 4-5 and one current collector 4 T are stacked concentrically in the axial direction of the bipolar battery 30, with the cylinder portion 6 facing up, without contacting each other.
  • Each current collector 4 is electrically insulated by an insulating sheet 14.
  • the protrusion 5 of the uppermost current collector 4-1 is fitted in a hole provided in the center of the positive electrode terminal plate 17, and the shoulder 8 ′ of the lowermost end current collector 4 T is the negative electrode current collector. It is disposed on the electric plate 16.
  • An electrode group 11 in which a plurality of negative electrodes 1 and positive electrodes 2 and a separator 3 interposed between the negative electrodes 1 and 2 is stacked is housed inside the current collector 4.
  • the two current collectors 4-1, 4-2 and the electrode group 11-1 surrounded by the current collectors 4-1, 4-2 constitute one cell 15-1.
  • the current collector 4-1 is a positive electrode current collector because the inner surface of the cylindrical portion 6 is in contact with the positive electrode 2
  • the current collector 4-2 is a negative electrode current collector because the protruding portion 5 is in contact with the negative electrode 1. It becomes an electric body.
  • the two current collectors 4-2 and 4-3 and the electrode group 11-2 surrounded by the current collectors constitute a cell 15-2.
  • the current collector 4-2 becomes the positive electrode current collector of the cell 15-2
  • the current collector 4-3 becomes the negative electrode current collector.
  • the current collectors 4-3 and 4-4 and the electrode group 11-3 surrounded by the current collectors 4-3 constitute a cell 15-3.
  • the current collectors 4-4 and 4-5 and the electrode group 11-4 surrounded by the current collectors 4-4 constitute a cell 15-4.
  • the current collectors 4-5 and 4T and the electrode group 11-5 surrounded by the current collectors 4-5 constitute a cell 15-5.
  • the bipolar battery 30 is a battery in which the cells 15-1 to 15-5 are electrically connected in series.
  • a microcoupler (see FIG. 2B) is attached to the hole 7 provided on the top of the current collector 4-1, and the electrolytic solution is injected into the bipolar battery 30 at a predetermined pressure.
  • the injected electrolyte reaches the inside of each cell 15 via the hole 7 provided in the current collector 4. It is possible to consolidate the electrolyte injection work, and it is not necessary to inject each cell, so that the liquid injection work can be simplified.
  • a disc-shaped water-repellent sheet 31 is disposed inside the protruding portion 5 of the current collector 4 so as to cover the cross section of the protruding portion 5.
  • a pressing plate 32 for holding the position of the water repellent sheet 31 is provided inside the protruding portion 5.
  • the water repellent sheet 31 allows the electrolytic solution and hydrogen gas supplied from the hole 7 of the protrusion 5 to pass therethrough. Since the water repellent sheet 31 is microporous, the hydrogen gas supplied to each cell can flow between the cells. However, since the electrolytic solution is divided into cells by the water-repellent sheet 31 having the property of repelling water, no liquid junction is generated between the cells via the electrolytic solution.
  • the water repellent sheet 31 is a polyolefin-based nonwoven fabric, and may be polyethylene or polypropylene.
  • the water repellent sheet 31 also functions as an insulating packing.
  • the water repellent sheet 31 does not have to be inward of the protruding portion 5, and may be between the hole 7 and the electrode group 11.
  • FIG. 4A is an assembled side view of the assembled battery 40 of a bipolar battery.
  • FIG. 4B is an assembly plan view of the assembled battery 40 of the bipolar battery.
  • the electrode group is not shown to simplify the drawing.
  • One bipolar battery is composed of a plurality of cells, and the case of five cells has been described with reference to FIG.
  • the assembled battery 40 is configured by housing five bipolar batteries in a resin battery case 41, and a cooling fan 42 for air cooling is provided outside.
  • the cooling fan 42 sucks cooling air from outside air and sends cooling air in a direction perpendicular to the axial direction of the bipolar battery. Cooling air sent into the battery case 41 passes through the outer surface of the cylindrical portion 6 of the current collector 4, is diffused by the connection fitting 43, and flows to the adjacent bipolar battery. Since the flow of the cooling air is disturbed by the connection fitting 43, the cooling effect is enhanced.
  • FIG. 5 shows an enlarged cross-sectional view of both ends of the bipolar battery.
  • Each cell is fixed by through bolts 44a and 44b.
  • the through bolt 44 is covered with an insulating tube (not shown) so that current collectors do not short-circuit through the through bolt.
  • connection fitting 43 is fixed to the through bolts 44 at both ends thereof by nuts 45 (see FIG. 4B).
  • the connection fitting 43 is made of a good electrical conductor.
  • aluminum was used for the connection fitting. Since aluminum has a lower electrical resistance than iron, the connection fitting 43 can transmit electricity to the outside with a smaller ohmic loss than the iron through bolt 44.
  • An insulating member 46 a is arranged between the negative electrode current collector plate 16 and the connection fitting 43 so that the bipolar battery is not short-circuited via the connection fitting 43.
  • an insulating member 46 b is disposed between the positive electrode current collector plate 17 and the connection fitting 43 so that the bipolar battery is not short-circuited via the connection fitting 43.
  • the through bolt 44 a serves as a positive terminal
  • the through bolt 44 b serves as a negative terminal, and electricity can be taken out from a hole provided in the battery case 41.
  • the assembled battery according to the present embodiment includes a safety valve that discharges gas in the battery to the outside when the internal pressure of each bipolar battery reaches a predetermined value, for example, 1 Mpa.
  • a safety valve that discharges gas in the battery to the outside when the internal pressure of each bipolar battery reaches a predetermined value, for example, 1 Mpa.
  • each gas outlet 50 provided in the battery case 41 of each bipolar battery is connected to one collecting pipe 52 via each connecting pipe 51.
  • a safety valve 53 is provided at the end of the collecting pipe 52. When the internal pressure of the bipolar battery exceeds a specified value, the safety valve 53 is activated to release the internal pressure of the bipolar battery.
  • a pressure gauge may be disposed in the collecting pipe 51.
  • FIG. 7 shows an example in which an assembled battery 60 is configured by connecting four bipolar batteries 61 in series.
  • the positive terminal 44 a and the negative terminal 44 b of the adjacent bipolar battery 61 are connected in series by the connection bar 62.
  • the two negative terminals 44 b of the bipolar battery 61 located at the end are connected by the connection bar 63 to serve as the negative terminal of the battery pack 60.
  • the two positive terminals 44 a of the bipolar battery 61 located at the other end are connected by a connection bar 64 to serve as the positive terminal of the assembled battery 60.
  • FIG. 8 is an example in which four bipolar batteries 61 'are connected in parallel.
  • the positive electrode terminal and the negative electrode terminal can be taken out in the same direction by adjusting the mounting position of the insulating member 46.
  • FIG. 8A shows the negative electrode terminal 44 b of the adjacent bipolar battery 61 ′ connected by the connection bar 64.
  • the connection bar 64 becomes a negative terminal of the assembled battery 60 '
  • the connection bar 65 becomes a positive terminal of the assembled battery 60'.
  • Oxygen generated by the battery reaction is combined with hydrogen sealed in the battery immediately after generation to form water, so that if the hydrogen gas is sealed inside the battery, the conductive additive contained in the positive electrode will not be oxidized and deteriorated. . Similarly, the hydrogen storage alloy is not oxidized and can be prevented from being deteriorated. The life characteristics of the electrode can be improved and the battery life can be expected to be extended.
  • the bipolar battery according to the present invention can be suitably used as a power storage device for consumer use as well as for industrial use.
  • Negative electrode 2 Positive electrode 3 Separator 4 Current collector, end current collector 4T DESCRIPTION OF SYMBOLS 5 Protrusion part 6 Cylindrical part 7 Hole 8 Shoulder part 9 Collar part 10 Bipolar battery 11 Electrode group 13 Hydrogen storage chamber 14 Insulation sheet 15 Cell 16 Negative electrode terminal board 17 Positive electrode terminal board 18 Negative electrode terminal 19 Positive electrode terminal 20 Bolt 21 Nut 22 Insulating tube 23 Insulating washer 24 Flat washer 25 Compact nut 26 Microcoupler 30 Bipolar battery 31 Water repellent sheet 32 Press plate 40 Battery assembly 41 Battery case 42 Cooling fan 43 Connection bracket 44 Through bolt 45 Nut 46 Insulating member 50 Gas outlet 51 Collecting pipe 52 Connection pipe 53 Safety valve 60 Battery assembly 61 Bipolar battery

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Battery Mounting, Suspending (AREA)
  • Cell Separators (AREA)

Abstract

従来のバイポーラ電池は、液漏れによる周辺機器の腐食防止および液絡を防ぐために密閉化した単電池を組合わせて構成されている。このため、単電池の数だけの注液作業が必要となり、電池の大型化には大きな製造時間とコストを必要としていた。また、単電池間を配線で結ぶため、配線スペースが必要であった。有底の筒状の導電体であって底部が外方に突き出た突出部を有した集電体を用いることにより、配線スペースをなくし、配線により生じるオーム損失の低減を図る。また、セル間の電解液を撥水シートで区分することにより、液絡の防止を図った。

Description

バイポーラ電池
 本発明は、バイポーラ電池の構造に関し、詳しくは、組電池状態でイオン的短絡が生じないバイポーラ電池の構造に関する。
 バイポーラ電池は、集電体の一方の面に正極活物質層を設け、他方の面に負極活物質層を設けた電極を、セパレータを介して積層した電池をいう。バイポーラ電池は、高電圧化、部品点数の低減、単セル同士の電気抵抗の低減、不要空間の削減による高エネルギー密度化などが比較的容易なことから、電気自動車や各種電子機器の電源として広く用いられている。
 特許文献1には、電解質層に高分子ゲル電解質や液体電解質を用いてなるバイポーラ電池において、電解質部分からの電解液の染み出しによる液絡(短絡)を防止するために、電解質層を保持するセパレータの外周部に成型配置されたシール用の樹脂を備えるバイポーラ電池が開示されている。
 特許文献2には、非水電解液を用いたバイポーラ電池において、エチレン性二重結合およびエポキシ基を同一分子内に含む化合物を用いてグラフト変性した変性ポリオレフィン系樹脂を含有するシール材を採用することにより、電解液の染み出しのないシール性に優れたバイポーラ電極を提供することが開示されている。
 バイポーラ電池では、電池要素を樹脂で被覆しているので、電池内部で発生する熱の外部への伝達性が低下するという問題がある。これに対して、特許文献3に記載のバイポーラ電池では、電池の被覆材として高い電気抵抗を有し、熱伝達性の優れた材質としてセラミックを用いることにより、電池内部で発生する熱を外部へ効率的に放散させることが可能となる2次電池が提案されている。
 アルカリ二次電池の正極活物質として使用されている水酸化ニッケルおよび二酸化マンガンは、金属酸化物であり、極めて電導度が低い。この問題を解決するために、例えば、特許文献4には、水酸化ニッケルに高次コバルト酸化物を導電剤として添加した活物質が開示されている。この活物質を用いれば、水酸化ニッケル粒子間に高次コバルト酸化物による導電性のネットワークが形成されるため、水酸化ニッケル粒子全体で充放電反応が進行しやすく、高容量化を達成することができる。
特開2011-151016号公報 特開2013-037946号公報 特開2008-186595号公報 特開平11-97008号公報
 従来の組電池は、正極、負極および電解液からなる単電池を組み合わせて構成されるところ、電解液の炭酸劣化や液漏れによる周辺機器の腐食を防ぐため、密閉化した単電池が用いられる。そして、単電池間を配線等の接続部を介して電気的に接続しているので、配線である接続部において電気抵抗が生じるため、出力の低下を招く。また、組電池の小型化を考えると、接続部や密閉化するための部材、例えば蓋等の電気発生とは直接関係のない部材があることにより、組電池の出力密度やエネルギー密度を低下させている。また、部品点数の多いことは、組立に要する工数が増えることになる。
 バイポーラ電極が積層されるバイポーラ電池において、各電極の電解質に含まれる電解液が染み出すと、それが各電極同士を電気的に接続する液絡が生じて、電池としての能力が大きく低下する。
 バイポーラ電池では、液絡を防ぐため、単電池-単電池間の電解液が共有化しないように、密閉化された単電池が用いられている。そのため、単電池の数だけ電解液の注液工程が存在することになり、組電池の大型化には多大な製造時間とコストが必要とされている。
 バイポーラ電池のみならず、一般に二次電池は高出力特性が求められる。高出力すなわち高い充放電レートで充放電を行えば二次電池の内部温度が上昇して高温度になり、電極の活物質が損傷を受ける。このため充放電レートは制限を受け、高出力化を困難にしている。
 導電剤として高価な高次コバルト酸化物に代えて、黒鉛化炭素材料を導電剤として用いれば、充分な導電性を得られるが、黒鉛化炭素材料は耐食性が良くないために充放電を繰り返すと炭素材料が酸化劣化し、導電性が次第に低下する。また、充電時に正極で発生した酸素は、負極の水素吸蔵合金を酸化して、水素吸蔵能力を低下させる。
 本発明は、以上の事情に鑑みなされたものであって、電池を組み上げた状態で電解液を注液してもイオン的短絡(液絡)することなく、各電極群に電解液を均一に注液することができるバイポーラ電池を提供する。また、部品点数の少なくして組立工数の削減を図ること、および、電池の体積を減らして、高容量化、高エネルギー密度化を図ること、および、配線の削減により接続部の電気抵抗を小さくして高出力化を可能にする。
 前記した目的を達成するために、本発明に係るバイポーラ電池は、有底の筒状の導電体であって底部が外方に突き出た突出部を有している複数の集電体を備えるバイポーラ電池であって、正極と、負極と、前記正極と前記負極との間に配されたセパレータとが積層された発電エレメントを備えており、前記突出部が、前記発電エレメントを前記集電体の軸方向に沿って貫通しており、前記正極および前記負極のいずれか一方の電極である第1電極が、一の前記集電体の筒部の内側面に当接して、前記一の集電体と電気的に接続されている一方、他の前記集電体と接触しておらず、前記正極および前記負極のいずれか他方の電極である第2電極が、前記一の集電体に接触していない一方、前記他の集電体の突出部外側面に当接して、前記他の集電体と電気的に接続されている。この構成において、集電体は、筒部と突出部を備えていて、筒部は筒状導電性の胴体であって、突出部は筒状体の軸方向外方に突き出した構造となっている。
 この構成によれば、各セルを接続する配線が存在しないため、配線の電気抵抗による出力の低下がない。また、配線や単電池の蓋等が不要なので、バイポーラ電池の小型化を図ることができ、高容量化が期待できる。更に、バイポーラ電池のエネルギー密度が向上して高出力化が期待できる。また、部品点数が減り組立工数の低減を図ることができる。
 各セルは配線より断面積の大きな集電体により接続されているため、電気抵抗が小さく、高出力化を図ることができる。また、オーム損失が小さい。さらに、電極は積層構造をしているので、充放電により電極で発生する熱は、集電体を介して速やかに外部に伝えられるので、電池の内部温度の上昇が制限されて、高出力化が可能となる。
 本発明に係るバイポーラ電池は、前記第2電極の外縁が、前記セパレータにより覆われており、前記第1電極における前記他の集電体が貫通する穴の周縁が、前記セパレータにより覆われている。
 本発明に係るバイポーラ電池は、前記一の集電体と前記他の集電体との間に絶縁体が介在している。この構成によれば、上下に重ねられた集電体の間は絶縁シートにより電気的に絶縁される。
 本発明に係るバイポーラ電池は、前記集電体の内方であって、前記突出部と前記発電エレメントの間に撥水シートが備えられている。この構成によれば、撥水シートは水をはじき、絶縁性を有しているので、撥水シートにより各セル間が液絡することが防止される。集電体の突出部頂部に設けた穴から供給される電解液と水素ガスはこの撥水シートを透過して各セルに供給される。簡単な構造で液絡を防ぐことができ、セルごとに電解液の注入の必要がなくなるので、製造工数およびコストの低減が可能となる。
 本発明に係るバイポーラ電池は、前記撥水シートが微多孔膜またはポリオレフィンの不織布である。ここに、撥水シートはポリエチレンもしくはポリプロピレンであることが好ましい。
 本発明に係るバイポーラ電池は、一の前記発電エレメントの第1電極が、前記集電体の筒部の内側面に当接する一方、他の前記発電エレメントの第2電極が、前記集電体の突出部外側面に当接してなる。また、本発明に係るバイポーラ電池は、前記集電体がニッケルメッキ鋼板製である。
 本発明に係るバイポーラ電池は、前記集電体が負極端子板と正極端子板の間に挟まれて同心状に積み重ねられていて、前記負極端子板と前記正極端子板とが絶縁チューブを被覆した通しボルトで連結されている。この構成において、集電体はバイポーラ電池の軸方向に積み重ねられた構造となっているので、電池の小型化を図ることができる。また、本発明に係るバイポーラ電池は、前記通しボルトの両端に取り付けられた導電性の平板状の接続金具が、平板部、およびこの平板部から、前記負極端子板および前記正極端子板にほぼ沿うように直角に曲げられた延伸部を有している。
 本発明に係るバイポーラ電池は、前記積み重ねられた集電体の開口方向端に位置する前記集電体が筒部を有さないことを特徴とする。この構成によれば、最終段のセルを構成する集電体の筒部を省略することにより、デッドスペースをなくすことができ、電池の高容量化を実現することができる。
 本発明に係るバイポーラ電池は、前記第1電極または第2電極の一方の電極が水素吸蔵合金を含んだ負極であり、他方の電極が正極活物質と導電剤とを含んだ正極であって、前記導電剤が炭素を含んでおり、水素ガスが封入されている。この構成によれば、電池内で発生する酸素は電池内に封入された水素ガスと結合して水となるので、正極に含まれる導電剤は酸化されることがない。
 本発明に係るバイポーラ電池は、バイポーラ電池内に保持された電解液が電気分解することにより発生する水素ガスおよび外部から供給される水素ガスを貯蔵する水素貯蔵室を備えている。この構成において、電池を過充電することにより水素ガスを作り出すことができる。
 本発明に係るバイポーラ電池は、前記導電剤が部分的にグラファイト化したソフトカーボンを含む。また、本発明に係るバイポーラ電池は、前記セパレータがポリオレフィン系不織布を有している。更に、本発明に係るバイポーラ電池は、前記セパレータが親水性を有している。
 本発明に係る組電池は、請求項9に記載の複数のバイポーラ電池を軸方向と直交する方向に配置した組電池であって、前記バイポーラ電池の軸方向に直交する方向に送風する送風機を備えており、前記送風機の送風方向が前記接続金具の延伸部と平行する方向である。この構成において、接続金具は電気を伝える役割と送風機からの冷却風の流れを乱して、冷却性能を高める機能を果たす。
 バイポーラ電池は電池を組み上げた状態で電解液を注液することができ、イオン的短絡(液絡)することなく、各電極群に電解液を均一に注液することができる。また、特別な構造の集電体を採用することにより、電池の高出力化、高容量化を可能にする。
集電体の平面図である。 集電体の側面図であって左右幅方向の中心を通る前後方向の部分断面図である。 バイポーラ電池の構成要素を示す平面図である。 バイポーラ電池の構成要素を示す軸方向断側面図である。 5セルからなるバイポーラ電池の軸方向断側面図である。 バイポーラ電池の組電池の組立断面図(側面)である。 バイポーラ電池の組電池の組立断面図(平面)である。 バイポーラ電池の両端部の拡大図である。 組電池における配管を説明するための図面である。 バイポーラ電池の接続方法を説明するための図面である。 バイポーラ電池の接続方法を説明するための別の図面である。 バイポーラ電池の接続方法を説明するための別の図面である。
 以下、本発明に係る実施形態を図面に従って説明するが、本発明はこの実施形態に限定されるものではない。
 本発明の各実施形態について説明するのに先立ち、本発明が適用される二次電池としてニッケル水素電池を例に取り説明する。なお、二次電池のタイプはこれに限定されるものでなく、二酸化マンガン電池、リチウムイオン電池、ニッケル亜鉛電池等の二次電池であってもよい。なお説明の都合上、第1電極を正極とし、第2電極を負極として説明する。
 負極に用いる水素吸蔵合金として、希土類系合金であるAB5型、ラーベス相合金であるAB2型、チタン-ジルコニウム系合金であるAB型、マグネシウム系合金であるA2B型などの合金系が挙げられる。このうち、水素貯蔵容量、充放電特性、自己放電特性およびサイクル寿命特性の観点から、AB5型の希土類-ニッケル合金である、MmNiCoMnAlのミッシュメタルを含んだ5元系合金であることが好ましい。
 正極活物質は、アルカリ二次電池の正極用として利用可能なものであれば特に限定されるものではなく、水酸化ニッケルであってもよく、二酸化マンガンであってもよい。正極用の導電剤は、放電時に電解液に溶出することなく、かつ、水素で還元されにくい炭素材料であることが好ましい。
 電解液の耐性と充電時における耐酸化性の観点から、アモルファスカーボンを用いることが好ましい。特に、ソフトカーボンを用いることが好ましい。ソフトカーボンとは、不活性雰囲気中で加熱処理を施した時、黒鉛構造-炭素原子が構成する六角網平面が規則性をもって積層した構造-が発達し易いカーボンのことであり、易黒鉛化性炭素とも言われる。なお、グラファイトとは、上記ソフトカーボンを黒鉛化したカーボンであり、黒鉛とも称される。
 ソフトカーボンのうち、部分的にグラファイト化したカーボンが好ましい。なかでも、ソフトカーボンの表面部分がグラファイト化したものが好ましい。グラファイト化が進展したソフトカーボンは、劣化しやすい。グラファイト化が少ないと導電性がよくならない。グラファイト化の割合は、ソフトカーボン全体を100wt.%とすると、10~90wt.%が好ましく、20~60wt.%が更に好ましい。上述のような炭素材料を用いた正極は、サイクル寿命特性に優れた二次電池を実現することができる。
 正負極の電極基板は、電気伝導性が高く、電解液中の安定性と耐酸化性がよい観点から、Niが好ましく、具体的には、発泡ニッケル基板もしくはニッケルメッキ鋼板が好ましい。
 正極活物質粉末、結着剤、および、導電性粉末を混合してペースト状に混練する。このペーストを、電極基板に塗布または充填し、乾燥させる。その後、ローラープレス等で電極基板を圧延することにより正極を作製した。
 同様に負極は、水素吸蔵合金粉末、結着剤、および、導電性粉末を混合することによって、ペーストを調製する。このペーストを、電極基板に塗布または充填し、乾燥させる。その後、ローラープレス等で集電体を圧延することにより負極を作製した。
 電解質は、水素を活物質とする電池で用いられるものであれば特に限定されないが、例えば、水酸化カリウム(KOH)、水酸化リチウム(LiOH)、水酸化ナトリウム(NaOH)などの塩を水に溶かしたものが好適である。電池の出力特性の観点から、電解液は水酸化カリウム水溶液であることが好ましい。
 セパレータの形状としては、微多孔膜、織布、不織布、圧粉体が挙げられ、このうち、出力特性と作製コストの観点から不織布が好ましい。セパレータの材質としては、特に限定されないが、耐アルカリ性、耐酸化性、耐還元性を有することが好ましい。具体的にはポリオレフィン系繊維が好ましく、例えば、ポリプロピレンもしくはポリエチレンが好ましい。
 ポリオレフィン系繊維は疎水性であるので、親水処理する必要がある。水素ガス雰囲気中で使用する場合は、フッ素ガス処理を施したセパレータが好ましい。また、金属酸化物をセパレータの表面に塗布もしくは被覆したセパレータが好ましい。
 集電体の材質として、電気伝導性が高く、電解液中の安定性と耐酸化性の観点から、Ni材が好ましく、具体的にはニッケルメッキ鋼板を用いた。ニッケルメッキを施すことにより、集電体がセパレータに含まれる電解液により腐食されるのを防止する。
 図1Aに本発明の第1の実施形態に係るバイポーラ電池の集電体の平面図を、図1Bに側面の部分断面図を示す。図1Bは、図1Aの平面図のA-A線に沿った断面図である。集電体4は、ニッケルメッキ鋼板製の有底の円筒缶の底部を、円筒缶の軸方向外方に向かって突き出した突出部5を有している。したがって、集電体4は、円筒缶であった筒部6と、底を形成していた突出部5と、筒部6と突出部5とをつなぐ平坦な肩部8とを有する。
 突出部5の頂部には穴7が設けられていて、集電体4で囲まれた空間と外部空間が、この穴を通じて連通するようになっている。筒部6と突出部5と穴7とは同心状の配置されている。本実施例では有底円筒缶を用いたが、楕円もしくは角形断面を有する筒状体であってもよい。集電体4の筒部6に繋がる開口部には筒部6から半径方向外方に広がる鍔部9が形成されている。鍔部9は冷却フィンとして作用するとともに後述する絶縁シート14の座となり電池密閉のためのシールしろとしての機能を果たす。
 図2Aに本発明の第1の実施形態に係るバイポーラ電池の構成要素の平面図を、図2Bに図2Aの平面図のB-B線に沿った断面図を示す。バイポーラ電池10は、2つの集電体4と集電体4の内方に収納される1組の電極群11とを主な構成要素として備えている。集電体4は図1に示したものを2つ用いてもよいが、よりコンパクトにするため、下側の集電体は筒部を有さない形態とした。ここで、筒部を有さない集電体を端部集電体4Tと称する。もっとも、集電体4と端部集電体4Tとを区別する必要がない場合、それらを総称して単に集電体4と称するものとする。
 発電エレメントである電極群11は、水素吸蔵合金を含む負極1と、正極活物質を含む正極2と、負極1と正極2の間に介在してイオンは透過するが電子を透過させないセパレータ3とで構成されている。電極群11は、集電体4の軸方向に積層され集電体の内方に収納されている。そして、負極1、正極2およびセパレータ3の中央には、端部集電体4Tの突出部5が貫通する穴が設けられている。端部集電体4Tの突出部5は、正極2と負極1とセパレータ3とから構成される電極群13の中央を、端部集電体4Tの軸方向に貫通している。
 負極1および正極2の寸法と、集電体4の寸法との関係について説明する。負極1に設けられた穴の径は、端部集電体4Tの突出部の外径より小さい。したがって、負極の穴の周縁部は端部集電体4Tの突出部と接触して、負極1と端部集電体4Tは、電気的に接続されている。一方、正極2の中央に設けられた穴の径は、端部集電体4Tの突出部の外径より大きく、正極の穴の周縁部は端部集電体4Tの突出部と接触せず、正極2と端部集電体4Tは、電気的に絶縁されている。
 負極1の外径は集電体4の筒部の内径よりも小さく、負極の外縁部と集電体4の筒部の内面は接触しておらず、負極と集電体4とは電気的に絶縁されている。一方、正極2の外径は集電体4の筒部の内径より大きく、正極2の外縁部は集電体4の筒部の内面と接触しており、正極2と集電体4とは電気的に接続されている。負極の穴の径は突出部の外径より少し小さく、正極2の外径は筒部の内径より少し大きい。
 次に、負極1および正極2とセパレータ3の寸法との関係について説明する。セパレータ3の外縁が、正極2により覆われており、負極1の外縁が、セパレータ3により覆われている。そして、正極2の穴の周縁が、セパレータ3により覆われており、セパレータ3の穴の周縁が、負極1により覆われている。
 すなわち、セパレータ3の外径は、負極1の外径より大きい。このため、負極1と正極2とは、集電体4の筒部6内周面近傍においてセパレータ3により完全に隔離されている。このため、電極が変形しても、正負の電極は互いに接触することがない。更に、セパレータ3に設けられた穴の径は、正極2に設けられた穴の径より小さい。このため、負極1と正極2とは、端部集電体4Tの突出部5の外周面近傍においてセパレータ3により完全に隔離されている。このため、電極が変形しても、正負の電極は互いに接触することがない。また、セパレータ3の外径は正極2の外径より小さい。このため、正極2と集電体4の筒部6の間にセパレータ3が介在することがない。更に、セパレータ3に設けられた穴の径は、負極1の中央に設けられた穴の径より大きい。このため、負極1と集電体4Tの突出部5の間にセパレータ3が介在することがない。
 集電体4と端部集電体4Tは軸方向に同心となるように重ねられている。集電体の突出部5の高さは、集電体の筒部6の高さより小さく、上下の集電体4が中央付近においても接触することはない。更に、集電体4と端部集電体4Tの間に絶縁シート14を配置して、上下の集電体の絶縁を図っている。絶縁シート14としては、例えば、ポリプロピレン製のシートを用いることができる。
 2つの集電体4,4Tとこれに囲まれた電極群11が、1つのセル15を構成する。このセルを2つの端子板16、17でサンドイッチして、ボルト20で連結してナット21で固定してバイポーラ電池10とする。なお、ナットはダブルナットとなっている。ボルト20はビニール製の絶縁チューブ22で覆われているので、集電体4の鍔部9の周縁端部において集電体4とボルト20が接触して電気的に短絡が生じることはなく、また、端子板16,17とボルト20が接触して電気的に短絡が生じることはない。
 集電体4と端部集電体4Tに囲まれた空間に水素貯蔵室13が形成されており、外部から供給された水素ガスおよび内部発生する水素ガスを貯蔵することができる。本実施例の電池において、負極容量を正極容量よりも小さく設定すれば、過充電時に負極から発生する水素ガスはこの水素貯蔵室13に貯えることができる。水素貯蔵室13は電解液の液溜まりとしても機能する。なお、電解液は、セパレータ3にも保持されている。
 水素貯蔵室13に蓄えられた水素ガスは、電池内部で発生する酸素と結合して水となるので、正極2が酸化するのを防ぐ役割を果たし、正極2の寿命特性を改善するとともに負極1を充電することができる。
 2つの集電体4、4Tが、バイポーラ電池10の軸方向に同心状に、互いに接触することなく積み重ねられている。集電体4の突出部5は正極端子板17の中央に設けた穴に嵌合しており、筒部6を有さない端部集電体4Tの肩部8’は負極端子板16の上に配置されている。集電体4の肩部8が正極端子板17に接触しており、集電体4と正極端子板17とが電気的に接続されている。また、端部集電体4Tの肩部8’が負極集電板16に接触しており、端部集電体4Tと負極集電板16とが電気的に接続されている。
 集電体4は正極2に接続されており、端部集電体4Tは負極1に接続されているので、正極端子板17は正極端子を構成し、負極端子板16は負極端子を構成する。左側のボルト20aと負極端子板16の間には絶縁ワッシャー23aが介在しているので、ボルト20aと負極端子板16は電気的に絶縁されている。一方、ボルト20aと正極端子板17の間には金属製の平ワッシャー24aが介在しているので、ボルト20aと正極端子板17は電気的に接続されている。よって、ボルト20aは正極端子を構成する。左側のナット21aの間に正極ケーブルを接続することができる。
 右側のボルト20bと正極端子板17の間には絶縁ワッシャー23bが介在しているので、ボルト20bと正極端子板17は電気的に絶縁されている。一方、ボルト20bと負極端子板16の間には金属製の平ワッシャー24bが介在しているので、ボルト20bと負極端子板16は電気的に接続されている。よって、ボルト20bは負極端子を構成する。右側のナット21bの間に負極ケーブルを接続することができる。なお、絶縁ワッシャーは絶縁性を有しておればよく、本実施例ではポリプロピレン製のものを用いた。
 4本のボルト20の左側の一対のボルト20aを正極端子とし、右側の一対のボルト20bを負極端子としたが、4本のうち3本を負極端子とし、残りの1本を正極端子としてもよく、また、4本のうち3本を正極端子とし、残りの1本を負極端子としてもよい。
 集電体4の穴7にはマイクロカプラ26が取り付け可能になっていて、このマイクロカプラ26を経由して、バイポーラ電池内の真空引きを行ったり、電解液を補充することができるようになっている。更に、マイクロカプラ26を経由して、外部に設けた水素貯蔵源から水素ガスをバイポーラ電池内に供給することが可能となっている。負極端子板16の底部にもマイクロカプラ26を接続するための取付口28が設けられている。
 図3に本発明の第2の実施形態に係るバイポーラ電池の軸方向断側面図を示す。図3に示すバイポーラ電池30は5つのセルが直列に接続された電池となっている。図2Bに示した実施例1との相違点を中心に説明する。
 図3において、左側のボルト20aが正極端子を構成し、右側のボルト20bが負極端子を構成することは図2Bと同じであるが、ナット21bが負極端子板16側に配置されている点が異なっている。図2Bにおいては、負極ケーブルと正極ケーブルは同じ方向に取り出すようになっているのに対して、図3では負極ケーブルと正極ケーブルは反対方向に取り出すようになっている。電極ケーブルの取り出し方向は、組電池を構成するときに、電極ケーブルの取り回しの便の都合によって定める。
 5つの集電体4-1~5と一つの集電体4Tとが、バイポーラ電池30の軸方向に同心状に、筒部6を上にして、互いに接触することなく積み重ねられている。各集電体4は絶縁シート14により電気的に絶縁されている。一番上の集電体4-1の突出部5は正極端子板17の中央に設けた穴に嵌合しており、一番下の端部集電体4Tの肩部8’は負極集電板16の上に配置されている。筒部6を有さない端部集電体4Tを用いることにより、電池のデッドスペースをなくすことができて、電池容量を維持したまま容積を小さくすることができる。
 複数の負極1と正極2および負極1と正極2の間に介在するセパレータ3を積層した電極群11が、集電体4の内方に収納されている。
 2つの集電体4-1,4-2とこれに囲まれた電極群11-1が、1つのセル15-1を構成する。集電体4-1は、筒部6の内面が正極2に当接しているので正極集電体となり、集電体4-2は、突出部5が負極1に当接しているので負極集電体となる。
 同様に、2つの集電体4-2,4-3とこれに囲まれた電極群11-2が、セル15-2を構成する。そして集電体4-2がセル15-2の正極集電体となり、集電体4-3が負極集電体となる。以下同様に、集電体4-3,4-4とこれに囲まれた電極群11-3が、セル15-3を構成する。集電体4-4,4-5とこれに囲まれた電極群11-4が、セル15-4を構成する。集電体4-5,4Tとこれに囲まれた電極群11-5が、セル15-5を構成する。以上のように、バイポーラ電池30はセル15-1~5が電気的に直列に接続された電池となる。
 集電体4-1の頂部に設けた穴7にマイクロカプラ(図2B参照)を取り付けて、電解液をバイポーラ電池30の内部に所定の圧力で注入する。注入された電解液は、集電体4に設けた穴7を経由して、各セル15内部に行き渡る。電解液の注液作業を集約することができ、各セルごとに注液する必要がないので注液作業を簡素化することができる。
 集電体4の突出部5の内方に、突出部5の断面を覆うように円盤状の撥水シート31が配置されている。そして、撥水シート31の位置を保持するための押え板32を突出部5の内部に設けられている。撥水シート31は、突出部5の穴7から供給された電解液と水素ガスを通す。撥水シート31は微多孔を有しているので、各セルに供給された水素ガスは各セル間を流通可能である。しかし、水をはじく性質を有する撥水シート31により、電解液は各セルに区分されるので、電解液を介してセル間で液絡を生じることはない。
 撥水シート31はポリオレフィン系の不織布であって、ポリエチレンもしくはポリプロピレンであってもよい。撥水シート31は、絶縁性を有するパッキンとしても作用する。なお、撥水シート31は突出部5の内方になくてもよく、穴7と電極群11の間にあればよい。
 図4Aは、バイポーラ電池の組電池40の組立断側面図である。図4Bは、バイポーラ電池の組電池40の組立平面図である。図4Aにおいて、図を簡単化するために電極群の記載は省略してある。1つのバイポーラ電池は複数のセルから構成されており、5セルの場合は図3を用いて説明した。組電池40は5つのバイポーラ電池を樹脂製の電池ケース41に収納して構成されており、外部に空冷用の冷却ファン42が設けられている。冷却ファン42は、外気から冷却用の空気を吸込み、バイポーラ電池の軸方向に直角の向きに冷却風を送る。電池ケース41内に送込まれた冷却風は集電体4の筒部6外側面を通過して、接続金具43により拡散されて隣のバイポーラ電池に流れる。接続金具43により冷却風の流れが乱されるので冷却効果が高まる。
 図5にバイポーラ電池の両端部の拡大断面図を示す。図を簡単にするためにバイポーラ電池の中間部の記載を省略してある。各セルは通しボルト44a、44bにより固定されている。通しボルト44は図示しない絶縁チューブにおり覆われており、通しボルトを介して集電体同士が短絡を起こすことがないようになっている。
 接続金具43はナット45(図4B参照)により、その両端において、通しボルト44に固定されている。接続金具43は、電気の良導体でできている。本実施例において接続金具にアルミニュームを用いた。アルミニュームは鉄より電気低抗が小さいので、接続金具43は鉄製の通しボルト44よりも小さなオーム損失で電気を外部に伝えることができる。
 負極集電板16と接続金具43の間に絶縁部材46aを配置して、接続金具43を介してバイポーラ電池が短絡しないようになっている。同様に、正極集電板17と接続金具43の間に絶縁部材46bを配置して、接続金具43を介してバイポーラ電池が短絡しないようになっている。通しボルト44aは正極端子となり、通しボルト44bは負極端子となり、電池ケース41に設けた穴から電気を取り出すことができる。
 本実施形態に係る組電池は、各バイポーラ電池の内圧が所定の値、例えば1Mpaに達すると、電池内のガスを外部に排出する安全弁を備えている。具体的には、図6に示すように、各バイポーラ電池の電池ケース41に設けられた各ガス排出口50が、各接続管51を介して1つの集合管52に接続されている。集合管52の端部には安全弁53が設けられていて、バイポーラ電池の内部圧力が規定値以上になると、安全弁53が作動してバイポーラ電池の内部圧力を開放する。集合管51に圧力計を配置してもよい。
 図7、8は、バイポーラ電池の接続方法を説明するための図面である。図7は、4つのバイポーラ電池61を直列に接続して組電池60を構成した例である。隣接するバイポーラ電池61の正極端子44aと負極端子44bとを接続バー62により直列に接続する。端部に位置するバイポーラ電池61の2つの負極端子44bは接続バー63により接続して組電池60の負極端子とする。他方の端部に位置するバイポーラ電池61の2つの正極端子44aは接続バー64により接続して組電池60の正極端子とする。
 図8に示す組電池60’は、4つのバイポーラ電池61’を並列に接続した場合の例である。バイポーラ電池61’は、絶縁部材46の装着位置を調整することにより、正極端子および負極端子を同じ方向に取り出し可能にしたものである。図8Aは、隣接するバイポーラ電池61’の負極端子44bを接続バー64により接続したものである。図8Bは、隣接するバイポーラ電池61’の正極端子44aを接続バー65により接続したものである。接続バー64は組電池60’の負極端子となり、接続バー65は組電池60’の正極端子となる。
 電池反応で生じる酸素は、発生後直ちに電池内に封入された水素と結合して水となるので、電池内部に水素ガスを封入すれば、正極に含まれる導電助剤も酸化劣化することがない。また、水素吸蔵合金も、同様に酸化されることがないので劣化を防ぐことができる。電極の寿命特性が改善されて電池の長寿命化が期待できる。
 本発明に係るバイポーラ電池は、産業用のみならず民生用の蓄電装置として好適に用いることができる。
 1 負極
 2 正極
 3 セパレータ
 4 集電体、端部集電体4T
 5 突出部
 6 筒部
 7 穴
 8 肩部
 9 鍔部
10 バイポーラ電池
11 電極群
13 水素貯蔵室
14 絶縁シート
15 セル
16 負極端子板
17 正極端子板
18 負極端子
19 正極端子
20 ボルト
21 ナット
22 絶縁チューブ
23 絶縁ワッシャー
24 平ワッシャー
25 コンパクトナット
26 マイクロカプラ
30 バイポーラ電池
31 撥水シート
32 押え板
40 組電池
41 電池ケース
42 冷却ファン
43 接続金具
44 通しボルト
45 ナット
46 絶縁部材
50 ガス排出口
51 集合管
52 接続管
53 安全弁
60 組電池
61 バイポーラ電池
 

 

Claims (16)

  1.  有底の筒状の導電体であって底部が外方に突き出た突出部を有している複数の集電体を備えるバイポーラ電池であって、
     正極と、負極と、前記正極と前記負極との間に配されたセパレータとが積層された発電エレメントを備えており、
     前記突出部が、前記発電エレメントを前記集電体の軸方向に沿って貫通しており、
     前記正極および前記負極のいずれか一方の電極である第1電極が、一の前記集電体の筒部の内側面に当接して、前記一の集電体と電気的に接続されている一方、他の前記集電体と接触しておらず、
     前記正極および前記負極のいずれか他方の電極である第2電極が、前記一の集電体に接触していない一方、前記他の集電体の突出部外側面に当接して、前記他の集電体と電気的に接続されている、バイポーラ電池。
  2.  前記第2電極の外縁が、前記セパレータにより覆われており、
     前記第1電極における前記他の集電体が貫通する穴の周縁が、前記セパレータにより覆われている、前記請求項1に記載のバイポーラ電池。
  3.  前記一の集電体と前記他の集電体との間に絶縁体が介在している請求項1または2のいずれか一項に記載のバイポーラ電池。
  4.  前記集電体の内方であって、前記突出部と前記発電エレメントの間に撥水シートが備えられている請求項1~3のいずれか一項に記載のバイポーラ電池。
  5.  前記撥水シートが微多孔膜またはポリオレフィンの不織布である請求項4に記載のバイポーラ電池。
  6.  一の前記発電エレメントの第1電極が、前記集電体の筒部の内側面に当接する一方、他の前記発電エレメントの第2電極が、前記集電体の突出部外側面に当接してなる請求項1~5のいずれか一項に記載のバイポーラ電池。
  7.  前記集電体がニッケルメッキ鋼板製である請求項1~4のいずれか一項に記載のバイポーラ電池。
  8.  前記集電体が負極端子板と正極端子板の間に挟まれて同心状に積み重ねられていて、前記負極端子板と前記正極端子板とが絶縁チューブを被覆した通しボルトで連結されている請求項1~4のいずれか一項に記載のバイポーラ電池。
  9.  前記通しボルトの両端に取り付けられた導電性の平板状の接続金具が、平板部、およびこの平板部から、前記負極端子板および前記正極端子板にほぼ沿うように直角に曲げられた延伸部を有している請求項8に記載のバイポーラ電池。
  10.  前記積み重ねられた集電体の開口方向端に位置する前記集電体が筒部を有さないことを特徴とする請求項8に記載のバイポーラ電池。
  11.  前記第1電極または第2電極の一方の電極が水素吸蔵合金を含んだ負極であり、他方の電極が正極活物質と導電剤とを含んだ正極であって、
     前記導電剤が炭素を含んでいる、
     水素ガスが封入された、請求項4に記載のバイポーラ電池。
  12.  バイポーラ電池内に保持された電解液が電気分解することにより発生する水素ガスおよび外部から供給される水素ガスを貯蔵する水素貯蔵室を備えた請求項11に記載のバイポーラ電池。
  13.  前記導電剤が部分的にグラファイト化したソフトカーボンを含む、請求項11に記載のバイポーラ電池。
  14.  前記セパレータがポリオレフィン系不織布である請求項11に記載のバイポーラ電池。
  15.  前記セパレータが親水性を有している請求項11に記載のバイポーラ電池。
  16.  請求項9に記載の複数のバイポーラ電池を軸方向と直交する方向に配置した組電池であって、前記バイポーラ電池の軸方向に直交する方向に送風する送風機を備えており、前記送風機の送風方向が前記接続金具の延伸部と平行する方向である組電池。
     
     
PCT/JP2016/055876 2016-02-26 2016-02-26 バイポーラ電池 WO2017145378A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020187006445A KR102040698B1 (ko) 2016-02-26 2016-02-26 바이폴러 전지
BR112018003818-0A BR112018003818B1 (pt) 2016-02-26 2016-02-26 Bateria bipolar e conjunto de baterias
US16/068,715 US10720629B2 (en) 2016-02-26 2016-02-26 Bipolar battery
PCT/JP2016/055876 WO2017145378A1 (ja) 2016-02-26 2016-02-26 バイポーラ電池
EP16891535.3A EP3422454A4 (en) 2016-02-26 2016-02-26 BIPOLAR BATTERY
CN201680044346.9A CN107949947B (zh) 2016-02-26 2016-02-26 双极性电池
JP2017500393A JP6286632B2 (ja) 2016-02-26 2016-02-26 バイポーラ電池
RU2018131012A RU2686841C1 (ru) 2016-02-26 2016-02-26 Биполярная батарея

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/055876 WO2017145378A1 (ja) 2016-02-26 2016-02-26 バイポーラ電池

Publications (1)

Publication Number Publication Date
WO2017145378A1 true WO2017145378A1 (ja) 2017-08-31

Family

ID=59684950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055876 WO2017145378A1 (ja) 2016-02-26 2016-02-26 バイポーラ電池

Country Status (8)

Country Link
US (1) US10720629B2 (ja)
EP (1) EP3422454A4 (ja)
JP (1) JP6286632B2 (ja)
KR (1) KR102040698B1 (ja)
CN (1) CN107949947B (ja)
BR (1) BR112018003818B1 (ja)
RU (1) RU2686841C1 (ja)
WO (1) WO2017145378A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020036505A (ja) * 2018-08-31 2020-03-05 エクセルギー・パワー・システムズ株式会社 直流電源
JPWO2021144928A1 (ja) * 2020-01-16 2021-07-22

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6473869B2 (ja) * 2017-06-02 2019-02-27 エクセルギー・パワー・システムズ株式会社 蓄電デバイス
JP6473870B2 (ja) * 2017-06-07 2019-02-27 エクセルギー・パワー・システムズ株式会社 蓄電デバイス
CN110828760B (zh) * 2018-08-08 2022-11-22 辉能科技股份有限公司 水平复合式电能供应单元群组
EP3608997A1 (en) * 2018-08-08 2020-02-12 Prologium Technology Co., Ltd. Horizontal composite electricity supply structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4262064A (en) * 1980-03-28 1981-04-14 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Toroidal cell and battery
US20110052965A1 (en) * 2009-09-01 2011-03-03 Samsung Sdi Co., Ltd. Battery module
WO2014092031A1 (ja) * 2012-12-16 2014-06-19 エクセルギー・パワー・システムズ株式会社 電極ブロック、積層電池および積層電池の組立方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5162172A (en) * 1990-12-14 1992-11-10 Arch Development Corporation Bipolar battery
US5441824A (en) * 1994-12-23 1995-08-15 Aerovironment, Inc. Quasi-bipolar battery requiring no casing
JP3223858B2 (ja) 1996-12-24 2001-10-29 松下電器産業株式会社 アルカリ蓄電池とその正極活物質およびその製造方法
CN1172400C (zh) * 1999-08-10 2004-10-20 三洋电机株式会社 非水电解液二次蓄电池及其制造方法
JP4056279B2 (ja) * 2002-03-29 2008-03-05 松下電器産業株式会社 電池
CN1419307A (zh) * 2002-12-10 2003-05-21 天津大学 多层双极单体电池及制造方法
CN1950967B (zh) * 2004-11-02 2010-05-12 日产自动车株式会社 双极电池单元、组合电池、车辆和双极电池单元制作方法
EP1841001B1 (en) 2004-12-10 2018-09-05 Nissan Motor Co., Ltd. Bipolar battery
CN101379650B (zh) * 2006-02-07 2012-11-21 株式会社杰士汤浅国际 电池的制造方法,根据这种方法制造的电池,以及电池的检查方法
JP4839955B2 (ja) * 2006-05-11 2011-12-21 トヨタ自動車株式会社 電池パックおよび車両
JP2008186595A (ja) 2007-01-26 2008-08-14 Toyota Motor Corp 2次電池
KR101222259B1 (ko) * 2009-11-18 2013-01-15 삼성에스디아이 주식회사 이차전지
JP5606947B2 (ja) * 2010-03-18 2014-10-15 三洋電機株式会社 円筒型二次電池およびその製造方法
US8501341B2 (en) * 2010-06-30 2013-08-06 Samsung Sdi Co., Ltd. Rechargeable battery
CN103081203B (zh) * 2010-09-01 2015-08-26 日产自动车株式会社 双极型电池
JP2013037946A (ja) * 2011-08-09 2013-02-21 Kaneka Corp バイポーラ電池用シール材、およびそれを用いた非水電解質バイポーラ電池
EP2833469B1 (en) * 2012-03-30 2018-06-06 The University of Tokyo Reversible fuel cell and reversible fuel cell system
KR101724013B1 (ko) * 2013-09-24 2017-04-06 삼성에스디아이 주식회사 결합이 용이한 단자 구조를 가지는 이차전지
JP2015128020A (ja) * 2013-12-27 2015-07-09 日産自動車株式会社 双極型二次電池、双極型二次電池モジュール及び双極型二次電池の製造方法
JP5648772B1 (ja) * 2014-02-10 2015-01-07 エクセルギー・パワー・システムズ株式会社 アルカリ二次電池
CN204991792U (zh) * 2015-07-30 2016-01-20 山东精工电子科技有限公司 锂电池保护板排线测试仪器用锂电池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4262064A (en) * 1980-03-28 1981-04-14 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Toroidal cell and battery
US20110052965A1 (en) * 2009-09-01 2011-03-03 Samsung Sdi Co., Ltd. Battery module
WO2014092031A1 (ja) * 2012-12-16 2014-06-19 エクセルギー・パワー・システムズ株式会社 電極ブロック、積層電池および積層電池の組立方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3422454A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020036505A (ja) * 2018-08-31 2020-03-05 エクセルギー・パワー・システムズ株式会社 直流電源
JPWO2021144928A1 (ja) * 2020-01-16 2021-07-22
WO2021144928A1 (ja) * 2020-01-16 2021-07-22 川崎重工業株式会社 蓄電素子およびその製造方法
JP7407208B2 (ja) 2020-01-16 2023-12-28 カワサキモータース株式会社 蓄電素子およびその製造方法

Also Published As

Publication number Publication date
JPWO2017145378A1 (ja) 2018-03-08
KR20180037259A (ko) 2018-04-11
BR112018003818B1 (pt) 2022-08-09
US20190027732A1 (en) 2019-01-24
BR112018003818A2 (ja) 2018-09-25
CN107949947A9 (zh) 2018-11-06
KR102040698B1 (ko) 2019-11-05
EP3422454A1 (en) 2019-01-02
EP3422454A4 (en) 2019-11-06
CN107949947A (zh) 2018-04-20
CN107949947B (zh) 2021-03-16
RU2686841C1 (ru) 2019-05-06
US10720629B2 (en) 2020-07-21
JP6286632B2 (ja) 2018-03-14

Similar Documents

Publication Publication Date Title
JP6286632B2 (ja) バイポーラ電池
JP4433650B2 (ja) リチウム二次単電池及びリチウム二次単電池の接続構造体
JP5538114B2 (ja) 二次電池
KR20080036250A (ko) 혼합형 스택 및 폴딩형 전극조립체와 이를 포함하고 있는이차전지
WO2019025235A1 (en) ENERGY STORAGE DEVICE
JP5135071B2 (ja) 集合電池
JPWO2012173091A1 (ja) リバーシブル燃料電池およびリバーシブル燃料電池モジュール
CN103026533A (zh) 具有互异的引线结构的二次电池
KR102141240B1 (ko) 전극 조립체 및 이를 포함하는 이차전지
KR20200024249A (ko) 배터리 셀
JP6473870B2 (ja) 蓄電デバイス
JP6473869B2 (ja) 蓄電デバイス
JP2010525552A (ja) 溶接点接続部を持つ電気化学単電池及びエネルギー貯蔵装置
KR101515672B1 (ko) 2 이상의 양극 및 음극을 포함하는 전극 조립체 및 이에 의한 전기 화학 소자
CN112687913A (zh) 锂空气电池包
KR20150066415A (ko) 고용량, 고출력 리튬이온전지 캡조립체의 제조방법 및 그에 의한 캡조립체
JP5359131B2 (ja) 二次電池用正極
KR101555654B1 (ko) 차등적 리드 구조의 이차전지
CN219350592U (zh) 电芯组件以及单体电池
CN219086204U (zh) 圆柱电池
KR101699861B1 (ko) 낮은 저항의 전극 탭을 포함하는 이차전지
CN219350593U (zh) 电芯组件以及单体电池
WO2022074709A1 (ja) 捲回電池
CN101355182A (zh) 动力锂离子电池
US20200091490A1 (en) Interface between jelly roll area of a battery cell and cell can

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017500393

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187006445

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018003818

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112018003818

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180227

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16891535

Country of ref document: EP

Kind code of ref document: A1