WO2017145245A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2017145245A1
WO2017145245A1 PCT/JP2016/055110 JP2016055110W WO2017145245A1 WO 2017145245 A1 WO2017145245 A1 WO 2017145245A1 JP 2016055110 W JP2016055110 W JP 2016055110W WO 2017145245 A1 WO2017145245 A1 WO 2017145245A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
mass
hfo
hfo1123
refrigeration cycle
Prior art date
Application number
PCT/JP2016/055110
Other languages
English (en)
French (fr)
Inventor
裕輔 島津
悟 梁池
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018501433A priority Critical patent/JP6608038B2/ja
Priority to PCT/JP2016/055110 priority patent/WO2017145245A1/ja
Publication of WO2017145245A1 publication Critical patent/WO2017145245A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present invention relates to a refrigeration cycle apparatus.
  • chlorofluorocarbon CFC
  • hydrochlorofluorocarbon HCFC
  • refrigerant working medium
  • refrigerants containing chlorine such as CFC and HCFC are currently restricted in use because they have a great influence on the ozone layer in the stratosphere (influence on global warming).
  • HFCs hydrofluorocarbons
  • R32 difluoromethane
  • R125 1,1,1,2,2-pentafluoroethane
  • R134a 1,1,1,2-tetrafluoroethane
  • the global warming potential is 1774 for R407C and 1430 for R134a (the GWP value is based on the IPCC fourth report).
  • GWP global warming potential
  • HFO1123 trifluoroethylene
  • R1234yf 2,3,3,3 -Tetrafluoropropene
  • hexafluoropropene 1,1,2,3 , 3,3-hexafluoro-1-propene
  • HFO1216 hexafluoropropene
  • HFO 1123 is disclosed in, for example, Patent Document 1 (International Publication No. 2012/157774). Further, for example, Patent Document 2 (International Publication No. 2015/005290) and Patent Document 3 (International Publication No. 2015/141676) disclose a mixed refrigerant containing HFO1123 and R1234yf.
  • HFO1123 is a refrigerant that has little influence on global warming (GWP is about 0.3) and can obtain sufficient performance.
  • GWP global warming
  • a refrigerant with a high content of HFO 1123 has a problem that a disproportionation reaction (self-decomposition reaction) easily occurs. For this reason, it is not preferable to increase the amount of HFO 1123 used.
  • R1234yf and HFO1216 have the merit that, for example, GWP can be significantly reduced by using it in a heat pump type hot water heater, and the discharge gas temperature becomes lower than that of the conventional one, so that water can be heated to a higher temperature. ing.
  • R1234yf and HFO1216 have a demerit that the capacity of the refrigeration cycle apparatus is greatly reduced because the density and latent heat of the refrigerant are small. Even when such a refrigerant is used, if the stroke volume, frequency, pipe diameter, etc. of the compressor are significantly increased (if the displacement is increased), it is possible to exert the same capability as the device. However, there are practical problems such as an increase in the size of the water heater and an increase in cost.
  • R1234yf and HFO1216 are further reduced on the low pressure side of the operating pressure in the refrigeration cycle as compared with the conventional refrigerant, and therefore a negative pressure (below atmospheric pressure) portion is generated in the refrigeration circuit of the refrigeration cycle apparatus.
  • a negative pressure below atmospheric pressure
  • a negative pressure is likely to be generated because the pressure in the original circuit is low.
  • the present invention has been made in view of the above-mentioned problems, has a sufficient performance, has a sufficient performance, does not generate a negative pressure in the refrigeration circuit, and has a high reliability.
  • the purpose is to provide.
  • a refrigeration cycle apparatus for a heat pump hot water heater includes a refrigeration circuit including a compressor, an outdoor heat exchanger, an indoor heat exchanger, and an expansion valve.
  • a refrigerant is sealed in the refrigeration circuit, and the refrigerant contains HFO1123 and R1234yf, and the ratio of HFO1123 to the total amount of HFO1123 and R1234yf is 15% by mass or more and 50% by mass or less.
  • the refrigeration cycle apparatus for a heat pump type hot water heater includes a refrigeration circuit including a compressor, an outdoor heat exchanger, an indoor heat exchanger, and an expansion valve.
  • a refrigerant is sealed in the refrigeration circuit, and the refrigerant contains HFO1123 and HFO1216, and the ratio of HFO1123 to the total amount of HFO1123 and HFO1216 is 10% by mass or more and 50% by mass or less.
  • FIG. 3 is a graph showing a saturation temperature of the refrigerant according to the first embodiment.
  • 6 is a graph showing the saturation temperature of the refrigerant according to the second embodiment.
  • 4 is a graph showing the discharge temperature of the refrigerant according to the first embodiment.
  • FIG. 10 is a schematic cross-sectional view for explaining an effect of a modification of the first embodiment.
  • 1 is a schematic configuration diagram illustrating a refrigeration cycle apparatus according to Embodiment 1.
  • FIG. 5 is a schematic configuration diagram illustrating the refrigeration cycle apparatus according to the first embodiment.
  • the refrigeration cycle apparatus includes a refrigeration circuit including a compressor 1, an outdoor heat exchanger 3, an expansion valve 4, and an indoor heat exchanger 5.
  • the high-temperature and high-pressure gaseous refrigerant compressed by the compressor 1 flows into the indoor heat exchanger 5 and condenses there.
  • the liquid refrigerant condensed in the indoor heat exchanger 5 flows into the outdoor heat exchanger 3 via the expansion valve 4 and evaporates (vaporizes) there.
  • the refrigerant evaporated in the outdoor heat exchanger 3 returns to the compressor 1.
  • the refrigerant circulates in the direction of the arrow shown in FIG. 5 in the refrigeration circuit of the refrigeration cycle apparatus.
  • the refrigeration cycle apparatus of the present embodiment may further include other devices such as a gas-liquid branching device, a receiver, an accumulator, and a high / low pressure heat exchanger.
  • the refrigerant includes HFO1123 and R1234yf.
  • the ratio of HFO1123 to the total amount of HFO1123 and R1234yf is 15% by mass or more and 50% by mass or less.
  • the lower limit of the ratio is preferably 33% by mass or more.
  • the upper limit of the ratio is preferably less than 40% by mass, more preferably less than 29% by mass, and even more preferably less than 21% by mass.
  • FIG. 1 is a graph showing the saturation temperature of the refrigerant according to the first embodiment (a graph indicated by a solid line described as HFO1123 / R1234yf).
  • This graph shows the saturation temperature for the mixed refrigerant composed of HFO1123 and R1234yf, and the “HFO1123 ratio” on the horizontal axis is the mass ratio of HFO1123 with respect to the total amount of HFO1123 and R1234yf.
  • the line (dashed line) which shows the saturation temperature of R407C is shown collectively.
  • FIG. 1 indicates that the saturation temperature is ⁇ 33 ° C. or lower when the HFO1123 ratio is 15% by mass or higher.
  • the lower limit of the outside air temperature at which the refrigeration cycle apparatus (heat pump type hot water heater) can be used is about ⁇ 20 ° C. For this reason, when the saturation temperature of the refrigerant is about ⁇ 33 ° C. or lower, the generation of negative pressure in the refrigeration circuit is suppressed. Therefore, in the refrigerant used in the refrigeration cycle apparatus of the present embodiment, the generation of negative pressure in the refrigeration circuit can be suppressed by setting the HFO 1123 ratio to 15% by mass or more.
  • a negative pressure is likely to be generated because the pressure in the original circuit is low. For this reason, according to this embodiment, generation
  • the refrigerant used in this embodiment has an HFO1123 ratio set to 50% by mass or less. This is because when the HFO1123 ratio exceeds 50 mass%, the possibility of a disproportionation reaction (self-decomposition reaction) increases.
  • FIG. 3 is a graph showing the discharge temperature of the refrigerant according to the first embodiment.
  • the refrigeration cycle apparatus is a heat pump type hot water heater and the HFO1123 ratio is 50% by mass or less
  • the discharge gas temperature is lower by 10 ° C. or more than the conventional case (when R407C is used as the refrigerant). (See FIG. 3).
  • the high pressure side of the operating pressure can be increased correspondingly, and the hot water supply temperature can be increased.
  • the GWP of the refrigerant of the present embodiment is significantly reduced compared to the GWP (1774) of R407A and the GWP (1430) of R134a. Therefore, the refrigeration cycle apparatus of this embodiment has little influence on global warming.
  • the refrigeration cycle apparatus of the present embodiment is highly reliable with little influence of global warming, sufficient performance, and no negative pressure generated in the refrigeration circuit. I understand.
  • the refrigerant used in the present embodiment may be a three-component mixed refrigerant composed of only the above three components, and may further include other refrigerant components.
  • refrigerant components include R290, R1270, R134a, R125, and other HFCs.
  • the blending ratio of other components is set within a range that does not hinder the main effects of this embodiment. Specifically, the blending ratio of the other components is preferably set so that the total ratio of HFO 1123 and HFO 1216 to the mass of the entire refrigerant is 90% by mass or more.
  • the refrigerant may further contain refrigeration oil.
  • the refrigerating machine oil include commonly used refrigerating machine oils (such as ester-based lubricating oils, ether-based lubricating oils, fluorine-based lubricating oils, mineral-based lubricating oils, and hydrocarbon-based lubricating oils). In that case, it is preferable to select a refrigerating machine oil that is superior in terms of compatibility with the refrigerant and stability.
  • the refrigerant may further contain a stabilizer as necessary, for example, when high stability is required under severe use conditions.
  • a stabilizer is a component that improves the stability of the refrigerant against heat and oxidation.
  • the well-known stabilizer conventionally used for the refrigerating-cycle apparatus for example, an oxidation resistance improver, a heat resistance improver, a metal deactivator, etc. are mentioned.
  • the refrigerant may further contain a polymerization inhibitor.
  • a polymerization inhibitor examples include hydroquinone, hydroquinone methyl ether, benzotriazole, and the like.
  • FIG. 4 is a schematic cross-sectional view for explaining the effect of this modification.
  • FIG. 4 shows a scroll compressor, which is basically the same as FIG. 1 of JP2013-181516A.
  • the lubricating oil (refrigerating machine oil) in the oil supply path moves downward.
  • the path from the oil level of the oil sump 23 in the compressor to the oil supply pump (oil pump) 22 is filled with a low-pressure working medium. Thereafter, when the refrigeration cycle apparatus is started, it is necessary to suck up the oil in the oil reservoir 23 in the compressor by the oil supply pump 22 and circulate it in the compressor.
  • the pressure in the space between the oil level of the oil sump 23 and the oil supply pump 22 is assumed to be Ps. , ⁇ gh ⁇ Ps If so, the refrigerating machine oil can be sucked up from the oil sump 23 to the oil supply pump 22.
  • Emodiment 2 The present embodiment is different from the first embodiment in that HFO 1216 is used instead of R1234yf contained in the refrigerant. Since the other points are basically the same as those of the first embodiment, a duplicate description is omitted.
  • the refrigerant sealed in the refrigeration circuit includes HFO1123 and HFO1216.
  • the refrigerant used in the present embodiment may be a three-component mixed refrigerant composed of only the above three components, and may further include other refrigerant components.
  • the total ratio of HFO 1123 and HFO 1216 to the mass of the entire refrigerant is preferably 90% by mass or more.
  • the ratio of HFO 1123 to the total amount of HFO 1123 and HFO 1216 is 10% by mass or more and 50% by mass or less.
  • the lower limit of the ratio is preferably 24% by mass or more.
  • the upper limit of the ratio is preferably less than 40% by mass, more preferably less than 30% by mass.
  • FIG. 2 is a graph showing a saturation temperature of the refrigerant according to the second embodiment (a graph indicated by a solid line described as HFO1123 / HFO1216).
  • This graph shows the saturation temperature for the mixed refrigerant composed of HFO1123 and HFO1216, and the “HFO1123 ratio” on the horizontal axis is the mass ratio of HFO1123 to the total amount of HFO1123 and HFO1216.
  • the line (dashed line) which shows the saturation temperature of R407C is shown collectively.
  • FIG. 2 shows that when the HFO1123 ratio is 10% by mass or more, the saturation temperature is ⁇ 33 ° C. or less. Therefore, for the same reason as in the first embodiment, in the refrigerant used in the refrigeration cycle apparatus of the present embodiment, the generation of negative pressure in the refrigeration circuit can be suppressed by setting the HFO1123 ratio to 10% by mass or more. .
  • the HFO 1123 ratio is set to 50% by mass or less, which is the same as that of the first embodiment, and the same effect as that of the first embodiment is achieved.
  • the GWP of the refrigerant of the present embodiment is significantly reduced compared to the GWP (1774) of R407A and the GWP (1430) of R134a. Therefore, the refrigeration cycle apparatus of this embodiment has little influence on global warming.
  • the refrigeration cycle apparatus of the present embodiment is highly reliable with little influence of global warming, sufficient performance, and no negative pressure generated in the refrigeration circuit. I understand.
  • the present modification is different from the second embodiment in that the lower limit of the HFO 1123 ratio (the ratio of HFO 1123 to the total amount of HFO 1123 and HFO 1216) is 24 mass%. Since the other points are the same as those of the second embodiment, the overlapping description is omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

本発明に係るヒートポンプ式給湯機用の冷凍サイクル装置は、圧縮機、室外熱交換器、室内熱交換器および膨張弁を含む冷凍回路を備える。冷凍回路内に冷媒が封入されており、冷媒は、HFO1123およびR1234yfを含有し、HFO1123およびR1234yfの合計量に対するHFO1123の比率が15質量%以上50質量%以下である。

Description

冷凍サイクル装置
 本発明は、冷凍サイクル装置に関する。
 従来、冷凍サイクル装置に用いられる冷媒(作動媒体)としては、クロロフルオロカーボン(CFC)、ハイドロクロロフルオロカーボン(HCFC)などが用いられていた。しかし、CFC、HCFCなどの塩素を含む冷媒は、成層圏のオゾン層への影響(地球温暖化への影響)が大きいため、現在、使用が規制されている。
 このため、近年は、冷媒として、塩素を含まずオゾン層への影響が少ないハイドロフルオロカーボン(HFC)を用いるようになっている。HFCとしては、例えば、R32(ジフルオロメタン)、R125(1,1,1,2,2-ペンタフルオロエタン)、R134a(1,1,1,2-テトラフルオロエタン)が知られている。
 例えば、ヒートポンプ式給湯機などの冷凍サイクル装置(特に高温水を供給するもの)については、圧縮機の吐出ガス温度が高温となり、冷凍サイクルにおける作動圧力の高圧側が増大する(凝縮温度が65℃より大きくなる)。これを抑制するために、冷媒(作動媒体)として、R134a、R407C(R32、R125およびR134aからなる3種混合冷媒)などが使用されており、近年は、主にR407Cが使用されている。
 しかし、地球温暖化係数(GWP)は、R407Cが1774、R134aが1430である(GWP値は、IPCC4次報告に基づく値)。地球温暖化の抑制のためには、さらにGWPの小さい冷媒を使用することが望ましい。
 GWPが10未満である冷媒としては、トリフルオロエチレン(1,1,2-トリフルオロエテン、HFO-1123、R1123などとも呼ばれる。以下、「HFO1123」と呼ぶ。)、2,3,3,3-テトラフルオロプロペン(2,3,3,3-テトラフルオロ-1-プロペン、HFO-1234yf、R1234yfなどとも呼ばれる。以下、「R1234yf」と呼ぶ。)、ヘキサフルオロプロペン(1,1,2,3,3,3-ヘキサフルオロ-1-プロペン、HFO1216、R1216とも呼ばれる。以下、「HFO1216」と呼ぶ。)などが知られている。なお、これらの冷媒は、大気中のOHラジカルによって分解されやすい炭素-炭素二重結合を有しているため、オゾン層への影響が少ないと考えられている。
 なお、HFO1123は、例えば、特許文献1(国際公開第2012/157764号)に開示されている。また、例えば、特許文献2(国際公開第2015/005290号)、および、特許文献3(国際公開第2015/141676号)には、HFO1123およびR1234yfを含む混合冷媒が開示されている。
国際公開第2012/157764号 国際公開第2015/005290号 国際公開第2015/141676号
 HFO1123は、地球温暖化への影響が少なく(GWPが約0.3)、かつ充分な性能を得ることのできる冷媒である。しかし、HFO1123の含有量が多い冷媒は、不均化反応(自己分解反応)が発生しやすいという問題がある。このため、HFO1123の使用量を多くすることは好ましくない。
 一方、R1234yfおよびHFO1216は、例えば、ヒートポンプ式給湯機に用いることで、GWPを大幅に低減できると共に、吐出ガス温度が従来より低くなり、その分高温まで水を加熱可能となるといったメリットを有している。
 しかし、R1234yfおよびHFO1216は、冷媒の密度や潜熱が小さいため、冷凍サイクル装置の能力が大幅に低下するというデメリットがある。なお、このような冷媒を用いる場合でも、圧縮機の行程容積、周波数、配管径等を大幅に増加すれば(押しのけ量を増加させれば)、装置としては同等の能力を発揮することも可能であるが、給湯機の大型化、コスト増加などの実用上の課題がある。
 また、R1234yfおよびHFO1216は、従来の冷媒と比べて、冷凍サイクルにおける作動圧力の低圧側がさらに低下するため、冷凍サイクル装置の冷凍回路内に負圧(大気圧以下)の部分が発生し、冷凍回路の密封性が低下したような場合に回路内に空気を吸い込んでしまう可能性がある。内部に吸い込まれた空気は、冷媒、油等と反応することで、冷凍回路を劣化させるため、冷凍サイクル装置の信頼性が損われる可能性がある。なお、特に、ヒートポンプ式の給湯装置などの作動圧力が比較的低い冷凍サイクル装置においては、元々の回路内の圧力が低いため、負圧が発生しやすい。
 本発明は、上記課題に鑑みてなされたものであり、地球温暖化の影響が少なく、十分な性能を有し、かつ、冷凍回路内に負圧が発生せず、信頼性の高い冷凍サイクル装置を提供することを目的とする。
 本発明に係るヒートポンプ式給湯機用の冷凍サイクル装置は、圧縮機、室外熱交換器、室内熱交換器および膨張弁を含む冷凍回路を備える。冷凍回路内に冷媒が封入されており、冷媒は、HFO1123およびR1234yfを含有し、HFO1123およびR1234yfの合計量に対するHFO1123の比率が15質量%以上50質量%以下である。
 また、本発明に係るヒートポンプ式給湯機用の冷凍サイクル装置は、圧縮機、室外熱交換器、室内熱交換器および膨張弁を含む冷凍回路を備える。冷凍回路内に冷媒が封入されており、冷媒は、HFO1123およびHFO1216を含有し、HFO1123およびHFO1216の合計量に対するHFO1123の比率が10質量%以上50質量%以下である。
 本発明によれば、地球温暖化の影響が少なく、十分な性能を有し、かつ、冷凍回路内に負圧が発生せず、信頼性の高い冷凍サイクル装置を提供することができる。
実施形態1に係る冷媒の飽和温度を示すグラフである。 実施形態2に係る冷媒の飽和温度を示すグラフである。 実施形態1に係る冷媒の吐出温度を示すグラフである。 実施形態1の変形例の効果を説明するための概略断面図である。 実施形態1に係る冷凍サイクル装置を示す概略構成図である。
 以下、本発明の実施形態を図面に基づいて説明する。
 [実施形態1]
 まず、本実施形態の冷凍サイクル装置の概要について簡単に説明する。図5は、実施形態1に係る冷凍サイクル装置を示す概略構成図である。冷凍サイクル装置は、圧縮機1と、室外熱交換器3と、膨張弁4と、室内熱交換器5とを含む冷凍回路を備える。
 給湯時においては、圧縮機1で圧縮された高温高圧のガス状冷媒は、室内熱交換器5へと流入し、そこで凝縮する。室内熱交換器5で凝縮した液状冷媒は、膨張弁4を経由して室外熱交換器3へと流入し、そこで蒸発(気化)する。室外熱交換器3で蒸発した冷媒は、圧縮機1へ戻る。このように、暖房時において、冷媒は、冷凍サイクル装置の冷凍回路内を図5に示す矢印の方向に循環する。
 本実施形態の冷凍サイクル装置は、さらに、気液分岐器、レシーバー、アキュームレータ、高低圧熱交換器等の他の機器を備えていてもよい。
 次に、本実施形態において、冷凍回路内に封入される冷媒について説明する。該冷媒は、HFO1123およびR1234yfを含んでいる。
 HFO1123およびR1234yfの合計量に対するHFO1123の比率は、15質量%以上50質量%以下である。該比率の下限は、好ましくは33質量%以上である。該比率の上限は、好ましくは40質量%未満であり、より好ましくは29質量%未満であり、さらに好ましくは21質量%未満である。
 図1は、実施形態1に係る冷媒の飽和温度を示すグラフ(HFO1123/R1234yfと記載した実線で示すグラフ)である。このグラフは、HFO1123およびR1234yfからなる混合冷媒についての飽和温度を示しており、横軸の「HFO1123比率」は、HFO1123およびR1234yfの合計量に対するHFO1123の質量比率である。なお、図1では、R407Cの飽和温度を示す線(一点鎖線)を併せて示している。
 図1から、HFO1123比率が15質量%以上である場合、飽和温度が-33℃以下となることが分かる。冷凍サイクル装置(ヒートポンプ式給湯機)が使用可能な外気温度の下限は-20℃程度である。このため、冷媒の飽和温度が-33℃程度以下であれば、冷凍回路内での負圧の発生が抑制される。したがって、本実施形態の冷凍サイクル装置に用いる冷媒において、HFO1123比率を15質量%以上とすることで、冷凍回路内での負圧の発生を抑制することができる。
 なお、ヒートポンプ式の給湯装置などの作動圧力が比較的低い冷凍サイクル装置においては、元々の回路内の圧力が低いため、負圧が発生しやすい。このため、本実施形態によれば、ヒートポンプ式給湯機用の冷凍サイクル装置において、特に有効に負圧の発生を抑制することができる。
 一方で、本実施形態に用いる冷媒は、HFO1123比率が50質量%以下に設定されている。これは、HFO1123比率が50質量%を超えると、不均化反応(自己分解反応)が発生する可能性が高まるためである。
 図3は、実施形態1に係る冷媒の吐出温度を示すグラフである。図3に示されるように、冷凍サイクル装置がヒートポンプ式の給湯機であり、HFO1123比率が50質量%以下である場合、吐出ガス温度が従来(冷媒としてR407Cを用いた場合)より10℃以上低下する(図3参照)。このため、その分、作動圧力の高圧側を増加させることができ、給湯温度を上昇させることが出来る。
 また、本実施形態の冷媒のGWPは、R407AのGWP(1774)、および、R134aのGWP(1430)に対して大幅に低減されたものとなる。したがって、本実施形態の冷凍サイクル装置は、地球温暖化への影響が少ない。
 以上のことから、本実施形態の冷凍サイクル装置は、地球温暖化の影響が少なく、十分な性能を有し、かつ、冷凍回路内に負圧が発生せず、信頼性の高いものであることが分かる。
 なお、本実施形態において用いられる冷媒は、上記三成分のみからなる三成分混合冷媒であってもよく、さらに他の冷媒成分を含んでいてもよい。他の冷媒成分としては、例えば、R290、R1270、R134a、R125等または他のHFCが挙げられる。
 他の成分の配合比率等は、本実施形態の主要な効果を妨げない範囲内において設定される。具体的には、冷媒全体の質量に対するHFO1123およびHFO1216の合計の比率が、90質量%以上となるように、他の成分の配合比率を設定することが好ましい。
 また、冷媒は、さらに冷凍機油を含有してもよい。冷凍機油としては、例えば、一般に用いられる冷凍機油(エステル系潤滑油、エーテル系潤滑油、フッ素系潤滑油、鉱物系潤滑油、炭化水素系潤滑油等)が挙げられる。その場合、冷媒との相溶性および安定性等の面で優れている冷凍機油を選択することが好ましい。
 また、冷媒は、例えば過酷な使用条件において高度の安定性を要求される場合などには、必要に応じて安定剤をさらに含有してもよい。安定剤は熱および酸化に対する冷媒の安定性を向上させる成分である。安定剤としては、従来から冷凍サイクル装置に用いられる公知の安定剤、例えば、耐酸化性向上剤、耐熱性向上剤、金属不活性剤等が挙げられる。
 また、冷媒は、さらに重合禁止剤を含んでいてもよい。重合禁止剤としては、例えば、ハイドロキノン、ハイドロキノンメチルエーテル、ベンゾトリアゾール等が挙げられる。
 (実施形態1の変形例)
 本変形例は、HFO1123比率(HFO1123およびR1234yfの合計量に対するHFO1123の比率)の下限が33質量%である点で、実施形態1とは異なる。それ以外の点は実施形態1と同様であるため、重複する説明は省略する。
 図1から、HFO1123比率が33質量%以上である場合、HFO1123およびR1234yfの混合冷媒の飽和温度が、R407Cの飽和温度(4℃)より低くなることが分かる。この場合、冷媒としてR407Cが用いられていた既存の冷凍サイクル装置において、冷媒を本実施形態に係る冷媒に切り替えた場合でも、起動時の給油不良を抑制し、装置の信頼性を確保することができる。この点について、図4を参照して以下に説明する。
 図4は、本変形例の効果を説明するための概略断面図である。なお、図4は、スクロール圧縮機を示しており、基本的に特開2013-181516号公報の図1と同じ図である。
 冷凍サイクル装置が停止(特に長時間)していると、給油経路内の潤滑油(冷凍機油)は下方に移動する。圧縮機内の油溜め23の油面から給油ポンプ(オイルポンプ)22までの経路は、低圧の作動媒体で満たされる。その後、冷凍サイクル装置の起動時は、圧縮機内の油溜め23の油を給油ポンプ22で吸い上げて圧縮機内に循環させる必要がある。
 冷凍機油の密度をρ、油溜め23の油面から給油ポンプ22までの垂直距離をhとし、とすれば、油溜め23の油面と給油ポンプ22との間の空間の圧力をPsとすると、
  ρgh<Ps
 であれば、油溜め23から給油ポンプ22まで冷凍機油を吸い上げることができる。
 既存の冷凍サイクル装置(ヒートポンプ式給湯機)では、従来の冷媒(R407Cなど)について、上記式が成立するように設計されている。すなわち、Psが従来の冷媒の最低動作圧力であるときに、上記式が成立するように設計されている。
 そして、本変形例のように、使用する冷媒の飽和温度が、R407Cの飽和温度より低い場合、該冷媒の最低作動圧力はR407Cより高くなる。このため、既存の冷凍サイクル装置において、冷媒を本実施形態に係る冷媒に切り替えた場合でも、上記式が成立すると考えられる。
 したがって、本変形例によれば、既存の冷凍サイクル装置において、冷媒を本実施形態に係る冷媒に切り替えた場合でも、冷凍サイクル装置の起動時の給油不良を回避して、装置の信頼性を確保できる。
 [実施形態2]
 本実施形態は、冷媒中に含まれるR1234yfの代わりにHFO1216を用いる点で、実施形態1とは異なる。それ以外の点は、基本的に実施形態1と同様であるため、重複する説明については省略する。
 本実施形態において、冷凍回路内に封入される冷媒は、HFO1123およびHFO1216を含んでいる。なお、本実施形態において用いられる冷媒は、上記三成分のみからなる三成分混合冷媒であってもよく、さらに他の冷媒成分を含んでいてもよい。冷媒が他の成分を含んでいる場合、冷媒全体の質量に対するHFO1123およびHFO1216の合計の比率が、90質量%以上であることが好ましい。
 HFO1123およびHFO1216の合計量に対するHFO1123の比率は、10質量%以上50質量%以下である。該比率の下限は、好ましくは24質量%以上である。該比率の上限は、好ましくは40質量%未満であり、より好ましくは30質量%未満である。
 図2は、実施形態2に係る冷媒の飽和温度を示すグラフ(HFO1123/HFO1216と記載した実線で示すグラフ)である。このグラフは、HFO1123およびHFO1216からなる混合冷媒についての飽和温度を示しており、横軸の「HFO1123比率」は、HFO1123およびHFO1216の合計量に対するHFO1123の質量比率である。なお、図2では、R407Cの飽和温度を示す線(一点鎖線)を併せて示している。
 図2から、HFO1123比率が10質量%以上である場合、飽和温度が-33℃以下となることが分かる。したがって、実施形態1と同様の理由から、本実施形態の冷凍サイクル装置に用いる冷媒において、HFO1123比率を10質量%以上とすることで、冷凍回路内での負圧の発生を抑制することができる。
 なお、本実施形態に用いる冷媒において、HFO1123比率が50質量%以下に設定されている点については、実施形態1と同様であり、実施形態1と同様の効果が奏される。
 また、本実施形態の冷媒のGWPは、R407AのGWP(1774)、および、R134aのGWP(1430)に対して大幅に低減されたものとなる。したがって、本実施形態の冷凍サイクル装置は、地球温暖化への影響が少ない。
 以上のことから、本実施形態の冷凍サイクル装置は、地球温暖化の影響が少なく、十分な性能を有し、かつ、冷凍回路内に負圧が発生せず、信頼性の高いものであることが分かる。
 (実施形態2の変形例)
 本変形例は、HFO1123比率(HFO1123およびHFO1216の合計量に対するHFO1123の比率)の下限が24質量%である点で、実施形態2とは異なる。それ以外の点は実施形態2と同様であるため、重複する説明は省略する。
 図2から、HFO1123比率が24質量%以上である場合、HFO1123およびHFO1216の混合冷媒の飽和温度が、R407Cの飽和温度(4℃)より低くなることが分かる。この場合、冷媒としてR407Cが用いられていた既存の冷凍サイクル装置において、冷媒を本実施形態に係る冷媒に切り替えた場合でも、起動時の給油不良を抑制し、装置の信頼性を確保することができる。この理由については、実施形態1の変形例において説明したとおりである。
 1 圧縮機、2 流路切替弁、3 室外熱交換器、4 膨張弁、5 室内熱交換器。

Claims (4)

  1.  圧縮機、室外熱交換器、室内熱交換器および膨張弁を含む冷凍回路を備え、
     前記冷凍回路内に冷媒が封入されており、
     前記冷媒は、HFO1123およびR1234yfを含有し、
     HFO1123およびR1234yfの合計量に対するHFO1123の比率が15質量%以上50質量%以下である、ヒートポンプ式給湯機用の冷凍サイクル装置。
  2.  HFO1123およびR1234yfの合計量に対するHFO1123の比率が33質量%以上50質量%以下である、請求項1に記載の冷凍サイクル装置。
  3.  圧縮機、室外熱交換器、室内熱交換器および膨張弁を含む冷凍回路を備え、
     前記冷凍回路内に冷媒が封入されており、
     前記冷媒は、HFO1123およびHFO1216を含有し、
     HFO1123およびHFO1216の合計量に対するHFO1123の比率が10質量%以上50質量%以下である、ヒートポンプ式給湯機用の冷凍サイクル装置。
  4.  HFO1123およびHFO1216の合計量に対するHFO1123の比率が24質量%以上50質量%以下である、請求項3に記載の冷凍サイクル装置。
PCT/JP2016/055110 2016-02-22 2016-02-22 冷凍サイクル装置 WO2017145245A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018501433A JP6608038B2 (ja) 2016-02-22 2016-02-22 冷凍サイクル装置
PCT/JP2016/055110 WO2017145245A1 (ja) 2016-02-22 2016-02-22 冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/055110 WO2017145245A1 (ja) 2016-02-22 2016-02-22 冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2017145245A1 true WO2017145245A1 (ja) 2017-08-31

Family

ID=59684949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055110 WO2017145245A1 (ja) 2016-02-22 2016-02-22 冷凍サイクル装置

Country Status (2)

Country Link
JP (1) JP6608038B2 (ja)
WO (1) WO2017145245A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6450896B1 (ja) * 2018-06-13 2019-01-09 日立ジョンソンコントロールズ空調株式会社 冷媒組成物及びこれを用いた冷凍サイクル装置
WO2019021726A1 (ja) * 2017-07-24 2019-01-31 ダイキン工業株式会社 冷媒組成物
JP2019023278A (ja) * 2017-07-24 2019-02-14 ダイキン工業株式会社 冷媒組成物
WO2023047784A1 (ja) * 2021-09-27 2023-03-30 ダイキン工業株式会社 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014178352A1 (ja) * 2013-04-30 2014-11-06 旭硝子株式会社 トリフルオロエチレンを含む組成物
WO2015125534A1 (ja) * 2014-02-20 2015-08-27 旭硝子株式会社 熱サイクルシステム用組成物および熱サイクルシステム
WO2015137166A1 (ja) * 2014-03-14 2015-09-17 Jx日鉱日石エネルギー株式会社 冷凍機油及び冷凍機用作動流体組成物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106029823B (zh) * 2014-02-20 2020-11-06 Agc株式会社 热循环用工作介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014178352A1 (ja) * 2013-04-30 2014-11-06 旭硝子株式会社 トリフルオロエチレンを含む組成物
WO2015125534A1 (ja) * 2014-02-20 2015-08-27 旭硝子株式会社 熱サイクルシステム用組成物および熱サイクルシステム
WO2015137166A1 (ja) * 2014-03-14 2015-09-17 Jx日鉱日石エネルギー株式会社 冷凍機油及び冷凍機用作動流体組成物

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3985079A1 (en) * 2017-07-24 2022-04-20 Daikin Industries, Ltd. Refrigerant composition
US11091679B2 (en) 2017-07-24 2021-08-17 Daikin Industries, Ltd. Refrigerant composition
JP2019023278A (ja) * 2017-07-24 2019-02-14 ダイキン工業株式会社 冷媒組成物
US11447675B2 (en) 2017-07-24 2022-09-20 Daikin Industries, Ltd. Refrigerant composition
CN110945100A (zh) * 2017-07-24 2020-03-31 大金工业株式会社 致冷剂组合物
WO2019021726A1 (ja) * 2017-07-24 2019-01-31 ダイキン工業株式会社 冷媒組成物
US10570323B2 (en) 2018-06-13 2020-02-25 Hitachi-Johnson Controls Air Conditioning, Inc. Refrigerant composition and refrigeration cycle apparatus including refrigerant composition
CN110832051A (zh) * 2018-06-13 2020-02-21 日立江森自控空调有限公司 制冷剂组合物以及使用其的冷冻循环装置
WO2019239528A1 (ja) * 2018-06-13 2019-12-19 日立ジョンソンコントロールズ空調株式会社 冷媒組成物及びこれを用いた冷凍サイクル装置
JP6450896B1 (ja) * 2018-06-13 2019-01-09 日立ジョンソンコントロールズ空調株式会社 冷媒組成物及びこれを用いた冷凍サイクル装置
CN110832051B (zh) * 2018-06-13 2020-12-18 日立江森自控空调有限公司 制冷剂组合物以及使用其的冷冻循环装置
WO2023047784A1 (ja) * 2021-09-27 2023-03-30 ダイキン工業株式会社 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
JP7249498B1 (ja) 2021-09-27 2023-03-31 ダイキン工業株式会社 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
JP2023049055A (ja) * 2021-09-27 2023-04-10 ダイキン工業株式会社 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法

Also Published As

Publication number Publication date
JP6608038B2 (ja) 2019-11-20
JPWO2017145245A1 (ja) 2018-09-13

Similar Documents

Publication Publication Date Title
JP6934627B2 (ja) 冷凍サイクル用作動媒体および冷凍サイクルシステム
US20200393178A1 (en) Refrigeration cycle apparatus
EP3730871A1 (en) Heat source unit and refrigeration cycle device
US11435118B2 (en) Heat source unit and refrigeration cycle apparatus
EP3666848B1 (en) Working medium for refrigeration cycle, and refrigeration cycle system
US11493244B2 (en) Air-conditioning unit
JP6877998B2 (ja) 冷凍サイクル用作動媒体および冷凍サイクルシステム
WO2020256134A1 (ja) 冷凍サイクル用作動媒体及び冷凍サイクルシステム
JP6608038B2 (ja) 冷凍サイクル装置
JP6979565B2 (ja) 冷凍サイクル装置
JP6979564B2 (ja) 冷凍サイクル装置
JP6895622B2 (ja) 冷凍サイクル用作動媒体および冷凍サイクルシステム
JP2016503450A (ja) 低gwpの熱伝達組成物
JP2013500373A (ja) 熱伝達方法
JP2018179404A (ja) 冷凍サイクル装置
JP6736019B2 (ja) 冷凍機、冷凍機の製造方法及びcopの向上方法
JP2015214632A (ja) 混合冷媒
WO2017145244A1 (ja) 冷凍サイクル装置
JP2020094698A (ja) 冷凍装置
WO2021199725A1 (ja) 冷凍サイクル用作動媒体および冷凍サイクルシステム
JP2020193344A (ja) 冷凍サイクル用作動媒体の不均化反応の抑制方法および冷凍サイクル用作動媒体の製造方法
JP7171511B2 (ja) 冷凍サイクル装置
JP6899360B2 (ja) 冷凍サイクル装置
JP2020073696A (ja) 冷凍サイクル用作動媒体および冷凍サイクルシステム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018501433

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16891404

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16891404

Country of ref document: EP

Kind code of ref document: A1