WO2017144002A1 - 探测参考信号的传输方法、装置、芯片及终端 - Google Patents

探测参考信号的传输方法、装置、芯片及终端 Download PDF

Info

Publication number
WO2017144002A1
WO2017144002A1 PCT/CN2017/074671 CN2017074671W WO2017144002A1 WO 2017144002 A1 WO2017144002 A1 WO 2017144002A1 CN 2017074671 W CN2017074671 W CN 2017074671W WO 2017144002 A1 WO2017144002 A1 WO 2017144002A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
uplink control
control channel
channel
resource
Prior art date
Application number
PCT/CN2017/074671
Other languages
English (en)
French (fr)
Inventor
周明宇
Original Assignee
北京佰才邦技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京佰才邦技术有限公司 filed Critical 北京佰才邦技术有限公司
Priority to EP17755831.9A priority Critical patent/EP3422624B1/en
Priority to JP2018544822A priority patent/JP6875413B2/ja
Priority to US16/079,297 priority patent/US10925040B2/en
Publication of WO2017144002A1 publication Critical patent/WO2017144002A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a method, an apparatus, a chip, and a terminal for transmitting a sounding reference signal.
  • the first generation of mobile communication refers to the original analog, voice-only cellular phone standard, mainly using analog technology and frequency division multiple access (FDMA) access method; second generation mobile communication introduced Digital technology, improved network capacity, improved voice quality and confidentiality, with "GSM, Global System for Mobile Communication” and "Code Division Multiple Access” (CDMA IS-95, Code Division Multiple Access) As the representative; the third generation mobile communication is based on code division multiple access as the access technology, mainly CDMA2000, WCDMA, TD-SCDMA three technologies; the fourth generation mobile communication system is the long-term evolution of the International Organization for Standardization 3GPP Access technology (LTE/LTE-A, Long Term Evolution/Long Term Evolution-Advanced), whose standards are relatively uniform internationally, and its downlink is based on Orthogonal Frequency Division Multiple Access (OFDMA).
  • FDMA frequency division multiple access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • the uplink is based on the single carrier frequency division multiple access (SC-FDMA, Single Carrier-Frequency Division Multiple Access) access method. According to its flexible bandwidth and adaptive modulation and coding scheme, the downlink peak rate reached 1Gbps, up peak rate of 500Mbps high-speed transmission.
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • the MulteFire (MF) network is a new LTE-based network that can operate independently in the unlicensed spectrum and does not need to have an "anchor point" in the licensed spectrum for the LTE R13LAA (Licensed-Assisted Access, The authorization-assisted access) downlink transmission method is based on the newly defined uplink transmission method, namely stand-alone LTE-U (independent LTE-U). Among them, on the MuLTEfire The line multiplexing method uses a block-interleaved frequency division multiple access (B-IFDMA) method different from the traditional LTE uplink SC-FDMA, and is used to meet the regional specification requirements for the bandwidth occupation of the unlicensed frequency band.
  • B-IFDMA block-interleaved frequency division multiple access
  • An extended physical uplink control channel (MF-ePUCCH, MF Extended Physical Uplink Control Channel) and a short physical uplink control channel (MF-sPUCCH, MF Short Physical Uplink Control Channel) are introduced in the uplink physical channel to transmit the traditional LTE.
  • Uplink Control Information (UCI) transmitted through a Physical Uplink Control Channel (PUCCH), for example, ACK/NACK (Acknowledgement/Rejection Response), CSI (Channel State Information), SR (uplink scheduling request, scheduling request), and the like.
  • the MF network may also use the same physical channel format as the PUCCH to transmit uplink physical channel information such as a Sounding Reference Signal (SRS) and a Physical Random Access Channel (PRACH).
  • SRS Sounding Reference Signal
  • PRACH Physical Random Access Channel
  • the MF-ePUCCH in the uplink control channel occupies one subframe consisting of 14 B-IFDMA symbols in the time domain, and for the MF-sPUCCH, its time domain only occupies 1 to 4 B-IFDMA symbols.
  • the MF-sPUCCH can be sent separately periodically. For example, it is mainly used to transmit RACH (Random Access Channel), perform random access, or transmit opportunities (TXOP, Transmission Opportunity).
  • RACH Random Access Channel
  • TXOP Transmission Opportunity
  • the transmission in the downlink is transmitted to the subframe of the uplink transmission handover for transmission, that is, the MF-sPUCCH region is transmitted at the beginning of the uplink transmission.
  • the description of the MF-s PUCCH region may also have other equivalent names, such as an uplink partial subframe, an uplink partial TTI, an UpPTS, etc., and the MF-sPUCCH region is uniformly used in the present disclosure for simplicity of description.
  • the UE's Listening Mechanism (LBT, Listen Before Talk) is Before MF-sPUCCH;
  • the UE When the UE transmits only on the adjacent PUSCH/MF-ePUCCH after scheduling the MF-sPUCCH, the UE needs to perform LBT before the MF-sPUCCH region and transmit a specific signal (such as SRS or other signals) on the MF-sPUCCH region to ensure that the channel is in the LBT.
  • a specific signal such as SRS or other signals
  • the time before success to the scheduled PUSCH/MF-ePUCCH is continuously occupied; wherein the SRS is used to estimate the uplink channel frequency domain information for frequency selective scheduling; and the uplink channel is estimated for downlink beamforming.
  • the resources of the signals transmitted in the MF-sPUCCH region may not be scheduled by the eNB (evolved Node B), but are selected by the UE.
  • the resources in the MF-sPUCCH area are transmitted. Therefore, different UEs may select resources in the same MF-sPUCCH area, which may cause resource collisions between multiple UEs. The worst result may result in the MF being scheduled.
  • -sPUCCH collides and affects the correct reception of information such as UCI.
  • the inventors have found in the related art that the unscheduled MF is still unavoidable in the related art.
  • - Collision problem in the -sPUCCH region which causes the signal transmitted in the unscheduled MF-sPUCCH region to be untrustworthy.
  • the channel estimation error of the base station may occur due to the collision, thereby affecting the subsequent uplink scheduling. Performance, if you ignore this part of the signal information is equivalent to wasting this part of the transmit power and spectrum resources.
  • the SRS transmitted in the MF-sPUCCH and the immediately adjacent PUSCH/MF-ePUCCH are due to the frequency domain resource allocation characteristics of the B-IFDMA.
  • the transmitted DMRS (for uplink control and related demodulation of the data channel) is uniformly distributed in the frequency domain within the entire system bandwidth, so the contribution of the SRS to estimating the channel quality in the entire system bandwidth channel is much smaller than that in the conventional LTE uplink.
  • the frequency domain resource allocation mode of SC-OFDMA so how to improve the estimation accuracy of SRS for channel quality estimation within the system bandwidth is also an urgent problem to be solved.
  • the present disclosure provides a method, an apparatus, and a terminal for transmitting a sounding reference signal, which solves the problem of resource collision in a non-scheduled MF-sPUCCH region in the related art.
  • a method for transmitting a sounding reference signal including:
  • the sounding reference signal SRS is transmitted using resources used by the uplink control channel.
  • a transmission apparatus for detecting a reference signal including:
  • An acquiring module configured to acquire scheduling information when an uplink transport channel is scheduled
  • the processing module is configured to determine, according to a preset mapping relationship between the scheduling information of the uplink transport channel and the resource used by the uplink control channel for transmitting the uplink control signal, the uplink control channel corresponding to the scheduling information when the uplink transport channel is scheduled. Resources used;
  • a sending module configured to transmit the sounding reference signal SRS by using resources used by the uplink control channel.
  • a terminal including:
  • a receiver configured to receive scheduling information when an uplink transport channel is scheduled
  • the processor is connected to the receiver, and is configured to: determine that the uplink transport channel is scheduled according to a preset mapping relationship between the scheduling information of the uplink transport channel and the resource used by the uplink control channel used for transmitting the uplink control signal.
  • the transmitter is coupled to the processor for transmitting the sounding reference signal SRS by using resources used by the uplink control channel.
  • the method, device, and terminal for transmitting a sounding reference signal determine a resource location of a non-scheduled uplink control channel according to a preset mapping relationship between scheduling information of an uplink transport channel and resources used by an uplink control channel, to reduce It even avoids the collision problem of occupying uplink control resources between different user terminals.
  • FIG. 1 shows a schematic diagram of a basic architecture of a mobile communication network
  • 2 is a schematic diagram showing frequency domain resource allocation of an uplink channel
  • Figure 3 is a schematic diagram showing the transmission of a data transmission opportunity
  • FIG. 4 is a flow chart showing a method for transmitting a sounding reference signal according to some embodiments of the present disclosure
  • FIG. 5 is a flow chart showing a method for transmitting a sounding reference signal according to some embodiments of the present disclosure
  • FIG. 6 is a flow chart showing a method for transmitting a sounding reference signal according to some embodiments of the present disclosure
  • FIG. 7 is a flow chart showing a method for transmitting a sounding reference signal according to some embodiments of the present disclosure
  • FIG. 8 is a schematic diagram showing resource mapping of SRS of scenario 1 in some embodiments of the present disclosure.
  • FIG. 9 is a schematic diagram showing resource mapping of SRS of scenario 2 in some embodiments of the present disclosure.
  • FIG. 10 is a schematic diagram showing resource mapping of SRS of scenario 3 in some embodiments of the present disclosure.
  • FIG. 11 is a schematic diagram showing resource mapping of SRS of scenario 4 in some embodiments of the present disclosure.
  • FIG. 12 is a block diagram showing a transmission of a sounding reference signal transmission device according to some embodiments of the present disclosure
  • Figure 13 is a block diagram showing the structure of a terminal of some embodiments of the present disclosure.
  • FIG. 14 is a flow chart showing a method for transmitting a sounding reference signal according to some embodiments.
  • 15 is a flow chart showing a method for transmitting a sounding reference signal according to some embodiments.
  • 16 is a flow chart showing a method for transmitting a sounding reference signal according to some embodiments.
  • Figure 17 is a diagram showing resource mapping of SRS in some embodiments.
  • Figure 18 is a block diagram showing the transmission of a sounding reference signal of some embodiments.
  • Figure 19 is a block diagram showing the structure of a terminal of some embodiments.
  • Figure 20 is a block diagram showing the structure of a computer system suitable for implementing the transmission method of the sounding reference signal or the transmission device for detecting the reference signal in the embodiment of the present application.
  • the present disclosure is directed to the MF network in the related art. Since only UEs that are transmitted on the PUSCH/MF-ePUCCH are scheduled, the uplink control signal is within the resources in the MF-sPUCCH region selected by the UE. The transmission is performed, so different UEs may select resources in the same MF-sPUCCH area, thereby causing a problem of resource collision.
  • the following embodiments of the present disclosure provide a method, an apparatus, and a terminal for transmitting a sounding reference signal, and determining a non-scheduled uplink according to a mapping relationship between a preset uplink transmission channel scheduling information and a resource used by an uplink control channel. The resource location of the control channel is used to reduce or even avoid the collision problem of occupying uplink control resources between different user terminals.
  • FIG. 1 shows a schematic diagram of the basic architecture of a mobile communication network.
  • the mobile communication system refers to an operator providing communication services for user terminals (such as mobile terminals such as mobile phones) by deploying radio access network devices (such as base stations) and core network devices (such as Home Location Registers). system.
  • radio access network devices such as base stations
  • core network devices such as Home Location Registers
  • FIG. 2 shows a frequency domain resource allocation mode B-IFDMA of an uplink channel (including a physical uplink control channel and/or a physical uplink shared channel), and 10 interlaces (interleaving units) in a 20 MHz bandwidth, the size of each interleaved unit It is a physical resource block (PRB) that is equally spaced in the 10 frequency domains.
  • PRB physical resource block
  • the interleaved unit of No. 0 corresponds to 10 PRBs with slashes in the figure.
  • the MF-sPUCCH may be transmitted in a downlink transmission to a subframe of an uplink transmission handover in a transmission opportunity (TXOP, Transmission Opportunity), that is, the MF-sPUCCH region is transmitted at the beginning of the uplink transmission.
  • TXOP Transmission Opportunity
  • some embodiments of the present disclosure provide a method for transmitting a sounding reference signal, which specifically includes the following steps:
  • Step 41 Obtain scheduling information of the uplink transport channel when the uplink transport channel is scheduled.
  • the uplink transmission channel may be an uplink transmission channel for transmitting an uplink data signal, such as a PUSCH, or an uplink transmission channel for transmitting a control signal, such as MF-ePUCCH or MF-sPUCCH.
  • the scheduling information of the uplink transmission channel carries information indicating the location of the resource occupied by the uplink transmission channel, such as the number of the occupied resource location.
  • the UE may directly receive the scheduling information when the uplink transmission channel for transmitting the uplink data signal is scheduled from the base station, and may obtain the scheduling information by parsing the channel information of the scheduled uplink transmission channel by itself.
  • Step 42 Determine a resource used by the uplink control channel corresponding to the scheduling information of the uplink transport channel according to a preset mapping relationship between the scheduling information of the uplink transport channel and the resource used by the uplink control channel for transmitting the uplink control signal.
  • the preset mapping relationship between the scheduling information of the uplink transport channel and the resources used by the uplink control channel for transmitting the uplink control signal refers to the identifier of the resource used by the uplink transport channel and the identifier of the resource used by the uplink control channel.
  • the mapping relationship between the uplink transmission channel scheduling information and all resources used by the uplink control channel for transmitting the uplink control signal is preset; or the scheduling information of the uplink transmission channel is used for A preset mapping relationship between non-scheduled resources used by the uplink control channel for transmitting the uplink control signal.
  • the resource identifier used by the corresponding uplink control channel may be determined according to the mapping relationship, thereby determining the resource location of the resource used.
  • Step 43 Transmit the SRS by using resources used by the uplink control channel.
  • the SRS is mapped to the resource used by the uplink control channel determined in step 42, or
  • the resource used by the uplink control channel determined in step 42 is used as a resource for transmitting the SRS.
  • the user terminal determines the mapping relationship between the scheduling information of the uplink transmission channel and the resources used by the uplink control channel, and the acquired scheduling information of the scheduled uplink transmission channel.
  • the resource location used by the corresponding uplink control channel to reduce or even avoid the collision problem of the uplink control channel resources occupied by different user terminals.
  • some embodiments of the present disclosure provide a method for transmitting a sounding reference signal, which specifically includes the following steps:
  • Step 51 Acquire scheduling information of an uplink transport channel when the uplink transport channel is scheduled.
  • Step 52 Determine a non-scheduled uplink control channel corresponding to the scheduling information of the uplink transport channel in a preset mapping relationship between the scheduling information of the uplink transport channel and the resource used for the uplink control channel used for transmitting the uplink control signal. Resources used;
  • Step 53 Transmit the SRS by using resources used by the uplink control channel.
  • the transmission method of the sounding reference signal provided by this embodiment is performed after the LBT is performed.
  • the uplink transmission generally includes: an MF-s PUCCH area for transmitting uplink control information or special information (such as SRS) and an uplink subframe (PUSCH/MF-ePUCCH) adjacent thereto.
  • uplink control information or special information such as SRS
  • PUSCH/MF-ePUCCH uplink subframe
  • the UE simultaneously selects the SRS in the MF-sPUCCH region according to the scheduling information (or
  • the transmission resource location referred to as the uplink partial subframe and the transmission resource location of the PUSCH/MF-ePUCCH in the uplink subframe.
  • a UE configured to trigger type 2 (S2) SRS transmission on the serving cell c is configured, and when the subframe n-1 of the serving cell c is detected, MF- exists. sPUCCH and when there is no UCI transmission on the subframe in which the MF-sPUCCH exists, and when the subframe #0 position for the subframe n from the serving cell c is received in the subframe no later than the subframe n-4
  • the SRS transmission is started using the MF-sPUCCH resource in the subframe n-1.
  • the preset mapping relationship between the scheduling information of the uplink transport channel and the resource used for the uplink control channel used for transmitting the uplink control signal is that the resource identifier used by the uplink transport channel is not allocated (it is also understandable)
  • the resource identifier used by the corresponding unallocated unscheduled uplink control channel may be determined according to the mapping relationship, thereby determining the resource location of the resource used.
  • the uplink transport channel is a PUSCH/MF-ePUCCH; and the uplink control channel is an MF-sPUCCH.
  • step 52 includes:
  • the uplink transport channel is The resources used by the unscheduled uplink control channel corresponding to the scheduling information at the time of scheduling.
  • the base station first informs the UE of the current scheduling resource and the split information of the non-scheduled resource, so that the UE determines the corresponding resource location according to the split information and the scheduling information.
  • the resource grouping of resources used by the uplink control channel is specifically divided into: scheduling uplink control channel resources (scheduling MF-sPUCCH) and non-scheduled uplink control channel resources (unscheduled MF-sPUCCH), and the SRS transmission format may be adopted.
  • the demodulation reference signal DMRS sequence has the same sequence, and the DMRS multiplexing mode (or bearer mode) is related to the data transmission format, and the specific resource grouping can be divided according to the data transmission format.
  • Scheduling uplink control channel resources (scheduling)
  • the MF-sPUCCH) and the unscheduled uplink control channel resource (non-scheduled MF-sPUCCH) are divided into: only the resource number range of the scheduling uplink control channel resource (scheduling MF-sPUCCH) is notified, and only the non-scheduled uplink control channel resource is notified ( Non-scheduled MF-s PUCCH), or simultaneously notify scheduling uplink control channel resources (scheduling MF-sPUCCH) and non-scheduled uplink control channel resources (non-scheduled MF-sPUCCH).
  • the notification manner of scheduling the uplink control channel resource (scheduling MF-sPUCCH) and the non-scheduled uplink control channel resource (non-scheduled MF-sPUCCH) includes: pre-specifying, through RRC configuration, or through a common physical downlink common channel (C-PDCCH) ) instructions and so on.
  • different SRS time-frequency resource allocation modes are used to distinguish the unscheduled MF-s PUCCH region resources (sending SRS) and the scheduled MF-sPUCCH region resources, specifically :
  • the SRS adopts the SRS transmission format in the existing LTE and the IFDMA (Interleaved Frequency Division Multiple Access) with the subcarrier spacing of 2, that is, only the odd or even subcarriers in the consecutive multiple PRBs are occupied. Because of the difference between B-IFDMA and IFDMA, the continuous PRB occupied by the SRS needs to be allocated outside the PRB occupied by the scheduled MF-s PUCCH, and the SRS occupies consecutive symbols in the time domain, for example, the time domain occupies all of the MF-sPUCCH area. symbol.
  • IFDMA Interleaved Frequency Division Multiple Access
  • the SRS and the MF-sPUCCH may be allocated the same or different interlaces, and may be implemented in the same PRB and interlace by assigning different cyclic shifts of the same sequence and/or OCC (Orthogonal Cover Code).
  • the SRS time domain occupies consecutive symbols, for example, the time domain occupies all symbols of the MF-sPUCCH region.
  • the SRS adopts the mapping mode of the odd or even subcarriers in the interleaving unit of the B-IFDMA, that is, the odd or even subcarriers in the multiple PRBs of the frequency domain equally spaced, due to the B-IFDMA and the interleaving unit
  • the difference between IFDMA, SRS and MF-sPUCCH allocates different interleaving units, and the SRS time domain occupies consecutive symbols, for example, all symbols of the MF-sPUCCH region are occupied by the time domain.
  • Scheduling MF-sPUCCH resources and non-scheduled according to different transmission formats of SRS The resources of the MF-s PUCCH are separated, so that the resources used by the unscheduled MF-sPUCCH corresponding to the scheduling information of the uplink transport channel are determined from the resources of the unscheduled MF-s PUCCH, thereby reducing or even avoiding resource collision between different users. .
  • the foregoing scheduling information includes: a Control Channel Element (CCE) number carried in the uplink grant information of the uplink transport channel, an Enhanced Control Channel Element (ECCE) number, a frequency domain resource number occupied by the uplink transport channel when scheduled, and an uplink transport channel. At least one of the sequence number occupied by the scheduling and the cyclic shift number and the OCC sequence number occupied when the uplink transport channel is scheduled.
  • CCE Control Channel Element
  • ECCE Enhanced Control Channel Element
  • the CCE number or ECCE number occupied by the uplink grant information (UL Grant) of the uplink transport channel that is, the CCE number or ECCE number occupied by the UL grant of the scheduled PUSCH/MF-ePUCCH, for example, when the PDCCH transmits the UL grant
  • the number of the Nth CCEs occupied by the UL grant may be numbered, for example, the number corresponding to the first CCE.
  • the CCE is an abbreviation of the Control Channel Element, that is, a control channel unit, a time-frequency resource unit of the LTE transmission control channel
  • the ECCE is an abbreviation of the Enhanced Control Channel Element, that is, an enhanced control channel unit, and another transmission control channel of the LTE. Time-frequency resource unit.
  • the frequency domain resource number occupied by the uplink transport channel when it is scheduled that is, the resource allocation indication information in the DCI (Downlink Control Information) carrying the UL grant and/or the RRC configured scheduled PUSCH/MF-ePUCCH occupation
  • the numbers of the N interleaved units or PRBs for example, the number of the first interleaved unit or the PRB.
  • the sequence number occupied by the uplink transport channel and the cyclic shift number that is, the DMRS sequence occupied by the MF-ePUCCH or the sequence number thereof and the number of the cyclic shift size information.
  • the OCC sequence number occupied when the uplink transport channel is scheduled such as the Walsh code and the number of the orthogonal mask based on DFT (Discrete Fourier Transformation) or the like.
  • the mapping relationship includes a mapping relationship between scheduling information of an uplink transport channel and a number of resources used by the uplink control channel.
  • the mapping relationship between the scheduling information of the uplink transmission channel and the resource used by the uplink control channel for transmitting the uplink control signal specifically refers to: establishing scheduling The mapping relationship between the (E)CCE number occupied by the UL grant of the PUSCH/MF-ePUCCH and the resource number of all MF-s PUCCHs, or the interleaving unit or PRB number occupied by the PUSCH/MF-ePUCCH and the resource number of all MF-sPUCCHs Mapping relationship, or the frequency domain sequence number occupied by the MF-ePUCCH and the mapping relationship between the cyclic shift number of the sequence and the resource number of all MF-s PUCCHs, or the OCC sequence number occupied by the PUSCH/MF-ePUCCH and all MF- The mapping relationship of resource numbers of sPUCCH.
  • the mapping relationship between the scheduling information of the uplink transmission channel and the resource used by the uplink control channel for transmitting the uplink control signal specifically refers to: occupying a UL grant of the scheduled PUSCH/MF-ePUCCH ( E) mapping relationship between the CCE number and the resource number of the unscheduled MF-s PUCCH, or the mapping relationship between the interleaved unit or the PRB number occupied by the PUSCH/MF-ePUCCH and the resource number of the unscheduled MF-s PUCCH, or occupied by the MF-ePUCCH
  • E mapping relationship between the frequency domain sequence number and the cyclic shift number of the sequence and the resource number of the unscheduled MF-s PUCCH, or the mapping relationship between the OCC sequence number occupied by the PUSCH/MF-ePUCCH and the resource number of the unscheduled MF-sPUCCH.
  • the foregoing embodiment determines the resource location used by the corresponding unscheduled MF-sPUCCH according to the mapping relationship between the scheduling information of the uplink transport channel and the number of the resource used by the uplink control channel, and scheduling the scheduling information of the PUSCH/MF-ePUCCH. Therefore, the resource collision problem of the same MF-s PUCCH resource location is avoided by multiple user terminals at the same time.
  • some embodiments of the present disclosure provide a method for transmitting a sounding reference signal, which specifically includes:
  • Step 61 is the same as step 41 above;
  • Step 62 is the same as step 42 above;
  • Step 63 The SRS is transmitted to the base station by using resources used by the uplink control channel by occupying different frequency domain resources in different time domain resource symbols.
  • the SRS is mapped to the resource location used by the uplink control channel determined in step 62 above, and the resource location occupied by the MF-sPUCCH/SRS determined in step 62.
  • the MF-sPUCCH/SRS occupies different time domain symbols on different time domain symbols, that is, the frequency resource location selected on the first time domain symbol of the MF-sPUCCH/SRS, and the MF-sPUCCH/SRS
  • the frequency domain resources selected on the two time domain symbols are different in position, so that multiple When the time domain symbols are combined, the frequency resources occupied by the channels transmitting the SRS are dense, which can reduce the frequency interval between the frequency domain resources for transmitting the SRS, thereby improving the channel estimation accuracy to a certain extent.
  • some embodiments of the present disclosure provide a method for transmitting a sounding reference signal, which specifically includes:
  • Step 71 is the same as step 41 above;
  • Step 72 is the same as step 42 above;
  • Step 73 Map the SRS to different frequency domain resources in different time domain resources according to the cyclic shift on the frequency domain resource location, and transmit the SRS to the base station.
  • the cyclic shift size on the frequency domain resource location is determined by the number of time domain resource symbols of the resource used by the uplink control channel and the frequency interval of the frequency domain resources occupied by the SRS in the same time domain resource.
  • the frequency resource location (interleaving unit number) selected on the first symbol of the MF-sPUCCH/SRS is determined by the scheduling information of the PUSCH/MF-ePUCCH, and the frequency resource location of the second symbol is the first symbol frequency resource location. Based on the cyclic shift of the T bit, and so on until the time domain symbols are transmitted.
  • the frequency interval of the frequency domain resources occupied by the SRS in the same time domain resource may be determined by the frequency interval of the total time domain resource symbol of the MF-sPUCCH/SRS, and optionally, the same time domain may be used.
  • the frequency interval of the frequency domain resources occupied by the SRS and the PUSCH/MF-ePUCCH in the resource determines the cyclic shift T on the frequency domain resource. In this way, the frequency interval between frequency resources used for SRS transmission can be reduced, thereby improving the accuracy of SRS evaluation.
  • the multiplexing mode (or the bearer mode) of the DMRS is related to the data transmission format.
  • the MF-s PUCCH resource including the scheduling MF-s PUCCH and the unscheduled MF-s PUCCH
  • the MF-sPUCCH adopts an orthogonal multiplexing manner of the B-IFDMA code (the B-IFDMA code is essentially a special resource allocation).
  • the OFDMA code occupies 1 to 4 time domain resource symbols. When more than 2 time domain resource symbols are occupied, the demodulation reference signal DMRS may be transmitted by some symbols, and some symbols are used for transmitting data.
  • the multiplexing manner of the MF-sPUCCH includes multiplexing of DMRS symbols and multiplexing of data symbols.
  • frequency division of frequency domain can be achieved by transmitting different cyclic shifts of the same sequence on each symbol, such as Zadoff-Chu sequence adopted by DMRS in LTE, and/or OCC between multiple symbols.
  • the time domain is orthogonal, for example, 2 symbols pass Walsh codes with a code length of 2: 00 and 01.
  • the multiplexing mode of DMRS can depend on how the data symbols are mapped. For the symbols of the transmitted data, the number of modulation symbols that can be transmitted by each data symbol on each PRB is different, and the multiplexing manner is also different. The following will be described in conjunction with specific application scenarios.
  • different data symbols on one PRB transmit different modulation symbols
  • one data symbol on one PRB can transmit one modulation symbol
  • the modulation symbol is mapped to the cyclically shifted sequence of 12 code lengths.
  • 12 REs Resource Element
  • the data symbols of different UEs are frequency domain orthogonalized by different cyclic shifts.
  • the DMRS can also use a cyclically shifted sequence for frequency domain orthogonality.
  • two data symbols of one PRB can transmit two modulation symbols, and one interleaving unit (10 PRBs) at 20 MHz can transmit 20 modulation symbols, and 40 codes can be transmitted under QPSK modulation.
  • different data symbols on one PRB transmit the same modulation symbol, and the modulation symbol is extended to multiple data symbols by OCC, and one data symbol on one PRB can transmit one modulation symbol, and the modulation symbol is multiplied by 12
  • the cyclically shifted sequence of code lengths is mapped to 12 REs, for example, Zadoff-Chu sequences, and data of different UEs are simultaneously time-domain orthogonalized by frequency domain orthogonality and different OCCs by different cyclic shifts.
  • two data symbols of one PRB can transmit one modulation symbol, and one interleaving unit (10 PRBs) at 20 MHz can transmit 10 modulation symbols in QPSK (Quadrature Phase Shift Keying, orthogonal). Under phase shift keying modulation, 20 coded bits can be transmitted.
  • different data symbols on one PRB transmit the same modulation symbol
  • the modulation symbol is extended to multiple data symbols by OCC
  • one data symbol on one PRB can transmit 12 modulation symbols
  • 12 modulation symbols are mapped to 12
  • data of different UEs are time-domain orthogonal through different OCCs.
  • two data symbols as an example, two data symbols of one PRB can transmit 12 modulation symbols, and one interleaving unit (10 PRBs) at 20 MHz can transmit 120.
  • the modulation symbol can transmit 240 coded bits under QPSK modulation.
  • the cyclic shift interval of the sequence is 1, one interleaving unit supports the MF-sPUCCH of 2 UEs at the same time.
  • the transmission format of the SRS can be the same sequence as the DMRS sequence of the demodulation reference signal, for example, a Zadoff-Chu sequence
  • the SRS can also adopt multiple mapping modes in the frequency domain, including:
  • Manner 1 The existing LTE SRS transmission format, IFDMA with subcarrier spacing of 2, that is, only occupying odd or even subcarriers in consecutive PRBs in the frequency domain.
  • Manner 2 The same B-IFDMA mapping mode as MF-sPUCCH/PUSCH/MF-ePUCCH in MuLTEfire is adopted, that is, all subcarriers in multiple PRBs with equal intervals in the frequency domain.
  • Manner 3 The mapping mode of occupying only odd or even subcarriers in the interleaving unit of B-IFDMA is adopted, that is, odd or even subcarriers in multiple PRBs of equal frequency interval in the frequency domain.
  • the scenario corresponds to the SRS adopting the mapping mode of the foregoing mode 2 or mode 3.
  • the resource used by the uplink control channel occupies N time domain resource symbols and the M time zone resource symbols occupy M interleaving units, the N indicators of the SRS are indicated.
  • the different time domain resources in the time domain resource symbols are respectively matched with different M interleaving units, and the SRS is mapped to the resources used by the uplink control channel, and transmitted to the base station.
  • the frequency interval between the physical resource blocks of the frequency domain non-contiguous discontinuous inter-units is determined according to the cyclic shift of the frequency domain resource positions, M and N Both are positive integers.
  • the SRS adopts a B-IFDMA mapping mode, occupies one interleaving unit and four time domain resource symbols, and the MF-sPUCCH and the SRS are on each time domain resource symbol.
  • the frequency domain orthogonality is performed by using different cyclic shifts of the same sequence, and the multiple symbols of the MF-sPUCCH or SRS are not orthogonal to the time domain OCC, so each symbol of the SRS can be mapped to a different interleaving unit. As shown in FIG.
  • the base station performs joint time-frequency domain interpolation on the SRS information in the above four B-IFDMA symbols, so that the minimum frequency interval is reduced from 10 PRBs to 3 PRBs, and the evaluation accuracy is greatly improved.
  • the scenario corresponds to another scenario in which the SRS adopts the mapping mode of the foregoing mode 2 or mode 3.
  • the indication is
  • Each L adjacent resource symbol of the SRS is a group of the same interleaved unit, and performs time domain orthogonal code division; the SRS is mapped to resources used by the uplink control channel, and transmitted to the base station.
  • the frequency of the interleaved units occupied by the resource symbols of different groups is different, and among all the frequency resource positions occupied by the N time domain resource symbols, the physical resource blocks PRB of the interleaved units that are not adjacent to the frequency domain are in the frequency domain.
  • the frequency spacing is determined based on the cyclic shift at the location of the frequency domain resource, where M, N, and L are all positive integers.
  • the SRS adopts the B-IFDMA mapping mode, occupies one interleaving unit and four time domain resource symbols, and the MF-sPUCCH and the SRS use the same at the same time on the first two symbols.
  • the different cyclic shifts of the sequence are performed in the frequency domain orthogonal manner and the time domain orthogonal of different OCCs (for example, the first two symbols are DMRS, and the last two symbols are data), so the first two symbols of the SRS can be combined with the last two symbols. Symbols are mapped to different interleaved units. As shown in FIG.
  • interleaving units there are 10 interleaving units in the 20 MHz system bandwidth, SRS of the same UE (with a hatched portion in the figure), and the first B-IFDMA symbol and the second B-IFDMA symbol occupy the first one.
  • the interleaving unit (the interleaving unit numbered 0), the third B-IFDMA symbol and the fourth B-IFDMA symbol occupy the sixth interleaving unit (the interleaving unit numbered 5), so that the interval of the SRS in the frequency domain is as far as possible Small and uniform
  • the base station performs joint time-frequency interpolation on the SRS information in the above four B-IFDMA symbols, so that the minimum frequency interval is reduced from 10 PRBs to 5 PRBs, which improves the channel estimation accuracy of the SRS to some extent.
  • the scenario corresponds to the mapping manner of the SRS in the foregoing manner, and is used when the uplink control channel is used.
  • the resource occupies N time domain resource symbols, each time domain resource symbol indicating that the SRS occupies different M frequency bands consecutive uninterleaved (or allocated to SRS transmission) interlace unit combination, and the SRS is mapped to the uplink.
  • the resources used by the control channel are transmitted to the base station.
  • the frequency interval between the physical resource blocks PRB of the frequency domain non-contiguous discontinuous interleaving unit combination is determined according to the cyclic shift on the frequency domain resource location
  • M and N are both positive integers.
  • the frequency hopping of the SRS needs to be performed in an area other than the resources allocated to the MF-sPUCCH.
  • FIG. 10 there are 10 interleaving units in the 20 MHz system bandwidth, and it is assumed that the interleaved units 0 to 5 (the black background portion in the figure) are allocated for the scheduled MF-s PUCCH, and the interleaving unit 6 is allocated for the unscheduled SRS.
  • the SRS of the same UE occupies the odd or even subcarriers in 4 consecutive PRBs, and the first IFDMA symbol occupies the PRB.
  • the odd or even subcarriers numbered 6 to 9 the second IFDMA symbol occupying an odd or even subcarrier with a PRB number of 26 to 29, and the third IFDMA symbol occupying an odd or even subcarrier with a PRB number of 56 to 59
  • the fourth IFDMA symbol occupies an odd or even subcarrier with a PRB number of 76 to 79.
  • the base station can perform joint frequency and frequency interpolation on the SRS information in the four symbols, so that the interval of the SRS in the frequency domain is as small as possible, and the minimum frequency interval is It is 17 PRBs.
  • the scenario corresponds to another scenario in which the SRS adopts the mode of the third mode.
  • the resource used by the uplink control channel occupies N time domain resource symbols
  • different time domain resource symbols in the N time domain resource symbols of the SRS are respectively indicated.
  • the M interleaving units that are not allocated to other channels are occupied, and the SRS is mapped to the resources used by the uplink control channel and transmitted to the base station.
  • the frequency interval between the physical resource blocks PRB of the interleaved units that are not adjacent to each other in the frequency domain is determined according to the cyclic shift in the frequency domain position, where all the frequency resource positions occupied by the N time domain resource symbols are determined, wherein , M and N are both positive integers.
  • the frequency hopping of the SRS needs to be performed in an area other than the resource allocated to the MF-sPUCCH.
  • FIG. 11 there are 10 interleaving units in the 20 MHz system bandwidth, and it is assumed that the scheduled MF-sPUCCH is assigned an even-numbered interleaving unit (numbered 0/2/4/6/8), which is an unscheduled SRS. Odd numbered Interleaved unit (numbered as 1/3/5/7/9).
  • the SRS of the same UE occupies the odd or even subcarriers of one interleaving unit.
  • the first IFDMA symbol occupies the odd or even subcarrier of the interleaved unit numbered 1
  • the second IFDMA symbol occupies the odd or even subcarrier of the interleaved unit numbered 3
  • the third IFDMA symbol occupies the interlace numbered 7.
  • the odd or even subcarrier of the unit, the fourth IFDMA symbol occupies the odd or even subcarrier of the interleaved unit numbered 9, and the base station performs joint frequency-frequency interpolation on the SRS information in the four IFDMA symbols due to the minimum frequency interval
  • the 10 PRBs are reduced to 3 PRBs, so that the interval of the SRS in the frequency domain is as small and uniform as possible, thereby improving the channel estimation accuracy of the SRS to some extent.
  • the user terminal determines the corresponding uplink according to the mapping relationship between the scheduling information of the preset uplink transmission channel and the resource used by the uplink control channel, and the acquired scheduling information of the scheduled uplink transmission channel. Control the resource location used by the channel to reduce or even avoid the collision of uplink control channel resources between different user terminals. Further, after determining the uplink control channel, the sounding reference signal SRS to be transmitted is mapped to the uplink control channel and transmitted to the base station to narrow the frequency domain of the transmitted SRS by adopting different time domain resource symbols occupying different frequency domain resources. The frequency spacing between resources can improve channel estimation accuracy to some extent.
  • some embodiments of the present disclosure provide a transmission apparatus 120 for detecting a reference signal, including:
  • the obtaining module 121 is configured to acquire scheduling information of an uplink transport channel when the uplink transport channel is scheduled;
  • the processing module 122 is configured to determine, according to a preset mapping relationship between the scheduling information of the uplink transport channel and the resource used by the uplink control channel for transmitting the uplink control signal, the uplink control channel corresponding to the scheduling information of the uplink transport channel. resource of;
  • the sending module 123 is configured to transmit the sounding reference signal by using resources used by the uplink control channel.
  • the obtaining module 121 includes:
  • an acquiring unit configured to acquire scheduling information of the uplink transport channel from the base station when the uplink transport channel used for transmitting the uplink data signal is scheduled.
  • the processing module 122 includes:
  • a processing unit configured to determine a non-scheduled uplink control corresponding to scheduling information of the uplink transport channel in a preset mapping relationship between the scheduling information of the uplink transport channel and the resource used by the uplink control channel used for transmitting the uplink control signal The resources used by the channel.
  • the processing unit includes:
  • Obtaining a sub-unit configured to acquire, by the eNB, the division information of the scheduling resource and the non-scheduled resource indicated by the RRC configuration or by using the common physical downlink common channel;
  • a processing subunit configured to determine, according to the split information, the scheduling information, and a preset mapping relationship between the scheduling information of the uplink transport channel and the resource used by the uplink control channel used for transmitting the uplink control signal, to determine that the uplink transport channel is scheduled
  • the scheduling information corresponds to the resources used by the non-scheduled uplink control channel.
  • the scheduling information includes: a CCE number or an ECCE number carried in the uplink grant information of the uplink transport channel, a frequency domain resource number occupied when the uplink transport channel is scheduled, and a sequence number occupied when the uplink transport channel is scheduled, and At least one of a cyclic shift number and an OCC sequence number occupied when the uplink transport channel is scheduled;
  • the mapping relationship includes a mapping relationship between scheduling information of an uplink transport channel and a number of resources used by the uplink control channel.
  • the sending module 123 includes:
  • the sending unit is configured to transmit the SRS to the base station by using resources used by the uplink control channel by using different frequency domain resources in different time domain resource symbols.
  • the specific sending unit is mainly used for:
  • the SRS is mapped to different frequency domain resources in different time domain resources according to cyclic shifts in the frequency domain resource locations, and transmitted to the base station; wherein the cyclic shift in the frequency domain resource location is adopted by the uplink control channel.
  • the number of time domain resource symbols of the resource and the frequency interval of the frequency domain resources occupied by the SRS within the same time domain resource are determined.
  • the sending unit includes:
  • a first indicator sub-unit configured to: when the resource used by the uplink control channel occupies N time-domain resource symbols, and when the M-interlace units are occupied in one time-domain resource symbol, indicating different time in the N time-domain resource symbols of the SRS
  • the domain resources are respectively occupied by different M interleaving units, wherein in the frequency resource positions occupied by the N time domain resource symbols, the frequency domain is not adjacent to the discontinuous interleaving unit.
  • the frequency interval between physical resource blocks is determined according to a cyclic shift of a frequency domain resource location, where M and N are positive integers;
  • the first sending subunit is configured to map the SRS into a resource used by the uplink control channel, and transmit the signal to the base station.
  • the sending unit further includes:
  • a second indicator sub-unit configured to: when the resource used by the uplink control channel occupies N time-domain resource symbols, and when the M-interleave unit is occupied by one time domain resource symbol, each L adjacent resource symbol indicating the SRS is one
  • the group occupies the same interleaving unit and performs time domain orthogonal code division; wherein, the frequency of the interleaving unit occupied by the resource symbols of different groups is different, and within all frequency resource positions occupied by the N time domain resource symbols, the frequency The frequency interval between the physical resource blocks PRB of the interleaving unit that is not adjacent to the domain is determined according to the cyclic shift in the frequency domain resource position, where M, N, and L are positive integers;
  • a second sending subunit configured to map the SRS into a resource used by the uplink control channel, and transmit the signal to the base station.
  • the sending unit also includes:
  • a third indication subunit configured to: when each resource used by the uplink control channel occupies N time domain resource symbols, indicating that each time domain resource symbol of the SRS occupies different M frequency domain continuous unallocated interleaving units Combining, wherein, among all the frequency resource positions occupied in the N time domain resource symbols, the frequency interval between the physical resource blocks PRB of the frequency domain non-contiguous discontinuous interleaving unit combination is cyclically shifted according to the frequency domain resource position Bit determined, where M and N are both positive integers;
  • a third sending subunit configured to map the SRS into a resource used by the uplink control channel, and transmit the signal to the base station.
  • the sending unit also includes:
  • a fourth indicator subunit configured to: when the resource used by the uplink control channel occupies N time domain resource symbols, the different time domain resource symbols in the N time domain resource symbols indicating the SRS respectively occupy different assignments and are not allocated to other M interleaving units of the channel, wherein, among all the frequency resource positions occupied in the N time domain resource symbols, the frequency interval between the physical resource blocks PRB of the frequency domain non-contiguous discontinuous interleaving units is according to the frequency domain position The cyclic shift is determined, wherein M and N are both positive integers;
  • a fourth sending subunit configured to map the SRS to a resource used by the uplink control channel, and Transfer to the base station.
  • the uplink transmission channel is a physical uplink shared channel (PUSCH)/extended physical uplink control channel (MF-ePUCCH), and the uplink control channel is a short physical uplink control channel (MF-sPUCCH).
  • PUSCH physical uplink shared channel
  • MF-ePUCCH extended physical uplink control channel
  • MF-sPUCCH short physical uplink control channel
  • the resource location used by the corresponding unscheduled MF-sPUCCH is determined. Therefore, the resource collision problem of the same MF-s PUCCH resource location is avoided by multiple user terminals at the same time.
  • the sounding reference signal SRS to be transmitted is mapped to the uplink control channel and transmitted to the base station to narrow the frequency domain of the transmitted SRS by adopting different time domain resource symbols occupying different frequency domain resources. The frequency spacing between resources can improve channel estimation accuracy to some extent.
  • the device embodiment of the present disclosure is a device corresponding to the embodiment of the foregoing method, and all the implementation means in the foregoing method embodiments are applicable to the embodiment of the device, and the same technical effects can be achieved.
  • some embodiments of the present disclosure provide a terminal, including:
  • the receiver 131 is configured to receive scheduling information of an uplink transport channel when the uplink transport channel is scheduled;
  • the processor 132 is connected to the receiver, and is configured to: determine the uplink transmission channel according to the mapping relationship between the scheduling information of the uplink transmission channel and the resource preset used by the uplink control channel for transmitting the uplink control signal.
  • the transmitter 133 is coupled to the processor and configured to transmit the sounding reference signal by using resources used by the uplink control channel.
  • the processor 152 can also be configured and implement the functions implemented by all the modules in the foregoing device embodiments, and can achieve the same technical effects as those of the foregoing device embodiments.
  • some embodiments provide a method for transmitting a sounding reference signal, which specifically includes:
  • Step 141 Determine a resource location used by the uplink control channel of the sounding reference signal SRS.
  • the uplink control channel is used to transmit various control signals.
  • the resource location used for determining the uplink control channel of the sounding reference signal SRS may be scheduled by the base station, or may be terminated by the user. The way of independent monitoring.
  • Step 142 The SRS is transmitted to the base station by using resources used by the uplink control channel by occupying different frequency domain resources in different time domain resource symbols.
  • the MF-sPUCCH uses multiple frequency domain resource locations on multiple time domain symbols, that is, the frequency resource location selected on the first symbol of the MF-sPUCCH, and the frequency domain selected on the second symbol of the MF-sPUCCH.
  • the resource locations are different, so that the multiple time domain symbols are combined, which is equivalent to the frequency resources occupied by the channel for transmitting the SRS, so that the frequency interval between the frequency domain resources for transmitting the SRS can be narrowed, so that the frequency interval can be reduced to some extent. Improve channel estimation accuracy.
  • some embodiments provide a method for transmitting a sounding reference signal, which specifically includes:
  • Step 151 is the same as step 141 above;
  • Step 152 Map the SRS to different frequency domain resources in different time domain resources according to the cyclic shift on the frequency domain resource location, and transmit the SRS to the base station.
  • the cyclic shift on the frequency domain resource location is determined by the number of time domain resource symbols of the resource used by the uplink control channel and the frequency interval of the frequency domain resources occupied by the SRS in the same time domain resource.
  • the frequency resource location (interleaving unit number) selected on the first symbol of the MF-sPUCCH is determined by the scheduling information of the PUSCH/MF-ePUCCH, and the frequency resource location of the second symbol is the basis of the first symbol frequency resource location.
  • the frequency interval of the frequency domain resource occupied by the SRS in the same time domain resource may be determined by the frequency interval of the frequency domain resource occupied by the SRS in the same time domain resource, and optionally, may also be used in the same time domain resource.
  • the frequency interval of the frequency domain resources occupied by the SRS and the PUSCH/MF-ePUCCH determines the cyclic shift T on the frequency domain resources. In this way, the frequency interval between frequency resources used for SRS transmission can be reduced, thereby improving the accuracy of SRS evaluation.
  • the multiplexing mode (or the bearer mode) of the DMRS is related to the data transmission format.
  • the transmission format is specifically as described in the fourth embodiment.
  • the SRS may also adopt multiple mapping manners, such as the DMRS sequence, in the frequency domain, including: the first mode, the second mode, and the third mode listed in the fourth embodiment.
  • the following describes the process of mapping the SRS to the frequency domain resources occupied by the MF-sPUCCH and transmitting them in combination with specific application scenarios.
  • the SRS adopts the mapping mode of the foregoing mode 2 or mode 3.
  • the N time domain resource symbols indicating the SRS are used.
  • the different time domain resources in the network are consistent with the different M interleaving units, and the SRS is mapped to the resources used by the uplink control channel, and transmitted to the base station.
  • the frequency interval between the physical resource blocks of the frequency domain non-contiguous discontinuous inter-units is determined according to the cyclic shift of the frequency domain resource positions, M and N Both are positive integers. For specific examples, reference may be made to scenario one in the above embodiment.
  • the SRS adopts the mapping mode of the foregoing mode 2 or mode 3, when the resources used by the uplink control channel occupy N time domain resource symbols, and when one time domain resource symbol occupies M interleaving units, each L of the SRS is indicated.
  • the adjacent resource symbols are a group of the same interleaved unit, and the time domain orthogonal code division is performed; the SRS is mapped to the resources used by the uplink control channel, and transmitted to the base station.
  • the frequency of the interleaved units occupied by the resource symbols of different groups is different, and among all the frequency resource positions occupied by the N time domain resource symbols, the physical resource blocks PRB of the interleaved units that are not adjacent to the frequency domain are in the frequency domain.
  • the frequency spacing is determined based on the cyclic shift at the location of the frequency domain resource, where M, N, and L are all positive integers. For specific example description, reference may be made to scenario 2 in the above embodiment.
  • the SRS adopts the mapping mode of the foregoing mode 1.
  • each time domain resource symbol indicating the SRS occupies different M frequency domain continuous unallocated interlaces.
  • the unit combines the SRS into the resources used by the uplink control channel and transmits the data to the base station.
  • the frequency interval between the physical resource blocks PRB of the frequency domain non-contiguous discontinuous interleaving unit combination is determined according to the cyclic shift on the frequency domain resource location
  • M and N are both positive integers.
  • the SRS adopts the mode 1 mapping mode
  • the different time domain resource symbols in the N time domain resource symbols indicating the SRS respectively occupy different
  • the M interleaving units allocated to other channels map the SRS to the resources used by the uplink control channel and transmit to the base station.
  • the frequency interval between the physical resource blocks PRB of the interleaved units that are not adjacent to each other in the frequency domain is determined according to the cyclic shift in the frequency domain position, where all the frequency resource positions occupied by the N time domain resource symbols are determined, wherein , M and N are both positive integers.
  • M and N are both positive integers.
  • the sounding reference signal SRS to be transmitted is mapped to the uplink control channel and transmitted to the base station to reduce the transmission by using different time domain resource symbols occupying different frequency domain resources.
  • the frequency spacing between the frequency domain resources of the SRS can improve the channel estimation accuracy to some extent.
  • some embodiments provide a method for transmitting a sounding reference signal, which specifically includes:
  • Step S161 Determine the time domain resource location used by the first A symbol or the last A symbols of the uplink transport channel as the uplink control channel of the fixed sounding reference signal SRS.
  • the uplink transport channel includes: a PUSCH/MF-ePUCCH, and the first A or the last A symbols of the PUSCH/MF-ePUCCH subframe are used as an uplink control channel of the SRS, that is, in the time domain, the SRS may be
  • the PUSCH/MF-ePUCCH is transmitted in the first A symbols or may be transmitted in the last A symbols of the PUSCH/MF-ePUCCH.
  • Step S162 Mapping the SRS to the uplink control channel by using the first A symbol of the uplink control channel or the frequency domain resource location occupied by the last A symbol is different from the frequency domain resource location occupied by other symbols of the uplink transmission channel.
  • the first A symbol or the last A symbols are transmitted to the base station.
  • the frequency domain resource location occupied by other data transmitted in the PUSCH/MF-ePUCCH is different from the frequency domain resource location occupied by the transmission SRS, thus by combining the PUSCH.
  • /MF-ePUCCH other control signals (such as DMRS) and SRS to improve the frequency domain density of the reference signal, thereby improving channel estimation accuracy.
  • the SRS occupation is different from the PUSCH/MF-ePUCCH occupation.
  • the SRS in the time domain may be after the PUSCH/MF-ePUCCH (case1) or before (case2), and the interlace occupied by the SRS in the frequency domain may be the intermediate frequency position of the resource interval occupied by the PUSCH/MF-ePUCCH, by combining PUSCH/MF-
  • the DMRS and SRS in the ePUCCH improve the frequency domain density of the reference signal, thereby improving channel estimation accuracy.
  • some embodiments provide a transmission apparatus 160 for detecting a reference signal, including:
  • the processing module 181 is configured to determine a resource location used by the uplink control channel of the sounding reference signal SRS;
  • the sending module 182 is configured to transmit the SRS to the base station by using resources used by the uplink control channel by using different time domain resource symbols to occupy different frequency domain resources.
  • the sending module 182 includes:
  • a sending unit configured to map the SRS to different frequency domain resources in different time domain resources according to a cyclic shift on a frequency domain resource location, and transmit the data to a base station; where the frequency domain resource location is cyclically shifted
  • the bit is determined by the number of time domain resource symbols of the resource used by the uplink control channel and the frequency interval of the frequency domain resources occupied by the SRS in the same time domain resource.
  • the sending unit includes:
  • a first indicator sub-unit configured to: when the resource used by the uplink control channel occupies N time-domain resource symbols, and when the M-interlace units are occupied in one time-domain resource symbol, indicating different time in the N time-domain resource symbols of the SRS
  • the domain resources are respectively occupied by different M interleaving units, wherein, among all the frequency resource positions occupied by the N time domain resource symbols, the frequency interval between the physical resource blocks of the interleaved units in the frequency domain not adjacent to each other is frequency A cyclic shift of a location of a domain resource, where M and N are both positive integers;
  • the first sending subunit is configured to map the SRS into a resource used by the uplink control channel, and transmit the signal to the base station.
  • the sending unit further includes:
  • a second indicator sub-unit configured to: when the resource used by the uplink control channel occupies N time-domain resource symbols, and when the M-interleave unit is occupied by one time domain resource symbol, each L adjacent resource symbol indicating the SRS is one
  • the group occupies the same interleaving unit and performs time domain orthogonal code division; wherein, the frequency of the interleaving unit occupied by the resource symbols of different groups is different, and within all frequency resource positions occupied by the N time domain resource symbols,
  • the frequency interval between the physical resource blocks PRB of the interleaving unit that is not adjacent to the frequency domain is a cyclic shift in the frequency domain resource position, where M, N, and L are positive integers;
  • a second sending unit configured to map the SRS into a resource used by the uplink control channel, and transmit the signal to the base station.
  • the sending unit also includes:
  • a third indication subunit configured to: when each resource used by the uplink control channel occupies N time domain resource symbols, indicating that each time domain resource symbol of the SRS occupies different M frequency domain continuous unallocated interleaving units Combination, wherein, in all frequency resource locations occupied by N time domain resource symbols, a frequency interval between physical resource blocks PRB combined by frequency domain non-contiguous discontinuous interleaving units is a cycle on a frequency domain resource location Shift, wherein M and N are both positive integers;
  • a third sending subunit configured to map the SRS into a resource used by the uplink control channel, and transmit the signal to the base station.
  • the sending unit also includes:
  • a fourth indicator subunit configured to: when the resource used by the uplink control channel occupies N time domain resource symbols, the different time domain resource symbols in the N time domain resource symbols indicating the SRS respectively occupy different assignments and are not allocated to other M interleaving units of the channel, wherein, among all the frequency resource positions occupied in the N time domain resource symbols, the frequency interval between the physical resource blocks PRB of the interleaving units that are not adjacent to each other in the frequency domain is the frequency domain position a cyclic shift on which M and N are both positive integers;
  • a fourth sending subunit configured to map the SRS into a resource used by the uplink control channel, and transmit the signal to the base station.
  • the processing module 181 further includes:
  • a processing unit configured to determine a time domain resource location used by the first A symbol or the last A symbols of the uplink transport channel as an uplink control channel of the fixed sounding reference signal SRS; wherein A is a positive integer.
  • sending module 182 further includes:
  • a transmitting unit configured to adopt a manner that a frequency domain resource location occupied by a first A symbol or a last A symbol of the uplink control channel is different from a frequency domain resource location occupied by other symbols of the uplink transmission channel,
  • the SRS is mapped to the first A symbol or the last A symbols of the uplink control channel and transmitted to the base station.
  • some embodiments provide a terminal, including:
  • the processor 191 is configured to: determine a resource location used by the uplink control channel of the sounding reference signal SRS;
  • the transmitter 192 is connected to the processor, and is configured to transmit the SRS to the base station by using resources used by the uplink control channel by using different time domain resource symbols to occupy different frequency domain resources.
  • FIG 20 shows a structure suitable for realizing a schematic diagram of a computer system of the present application, or a terminal transmission apparatus 200 according to an embodiment.
  • computer system 200 includes a central processing unit (CPU) 201 that can be loaded from a program stored in read only memory (ROM) 202 or a program loaded from random storage memory (RAM) 203 from storage portion 208. And perform various appropriate actions and processes.
  • ROM read only memory
  • RAM random storage memory
  • various programs and data required for the operation of the system 200 are also stored.
  • the CPU 201, the ROM 202, and the RAM 203 are connected to each other through a bus 204.
  • An input/output (I/O) interface 205 is also coupled to bus 204.
  • the following components are connected to the I/O interface 205: an input portion 206 including a keyboard, a mouse, etc.; an output portion 207 including, for example, a cathode ray tube (CRT), a liquid crystal display (LCD), and the like, and a storage portion 208 including a hard disk or the like. And a communication portion 209 including a network interface card such as a LAN card, a modem, or the like. The communication section 209 performs communication processing via a network such as the Internet.
  • Driver 210 is also connected to I/O interface 205 as needed.
  • a removable medium 211 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory or the like, is mounted on the drive 210 as needed so that a computer program read therefrom is installed into the storage portion 208 as needed.
  • an embodiment of the present disclosure includes a computer program product comprising a computer program tangibly embodied on a machine readable medium, the computer program comprising program code for performing the method of the above flow chart.
  • the computer program can be downloaded and installed from the network via communication portion 209, and/or installed from removable media 211.
  • each block of the flowchart or block diagrams can represent a module, a program segment, or a portion of code that includes one or more logic for implementing the specified.
  • Functional executable instructions can also occur in a different order than that illustrated in the drawings. For example, two successively represented blocks may in fact be executed substantially in parallel, and they may sometimes be executed in the reverse order, depending upon the functionality involved.
  • each block of the block diagrams and/or flowcharts, and combinations of blocks in the block diagrams and/or flowcharts can be implemented in a dedicated hardware-based system that performs the specified function or operation. Implementation, or can be implemented in a combination of dedicated hardware and computer instructions.
  • the units or modules described in the embodiments of the present application may be implemented by software or by hardware.
  • the described unit or module can also be provided in the processor.
  • the names of these units or modules do not in any way constitute a limitation on the unit or module itself.
  • the various components or steps may be decomposed and/or recombined. These decompositions and/or recombinations should be considered as equivalents to the present disclosure.
  • the steps of performing the series of processes described above may naturally be performed in chronological order in the order illustrated, but need not necessarily be performed in chronological order. Certain steps may be performed in parallel or independently of one another.
  • a method for transmitting a sounding reference signal comprising:
  • the SRS is transmitted to the base station by using channel resources used by the uplink control channel in a manner of occupying different frequency domain resources in different time domain resource symbols.
  • A2 The method for transmitting a sounding reference signal according to A1, wherein the SRS is transmitted to a base station by using a channel resource used by the uplink control channel by using different frequency domain resources in different time domain resource symbols.
  • the steps include:
  • A3 The method for transmitting a sounding reference signal according to A2, wherein the SRS is mapped to different frequency domain resources in different time domain resources according to a cyclic shift in a frequency domain resource position, and is transmitted to the base station.
  • the SRS is mapped to a channel resource used by the uplink control channel and transmitted to a base station.
  • the method for transmitting a sounding reference signal according to A2, wherein the step of mapping the SRS to different frequency domain resources in different time domain resources according to a cyclic shift in a frequency domain resource location, and transmitting to the base station include:
  • each L adjacent resource symbols indicating the SRS are occupied by the same group.
  • the frequency interval between physical resource blocks PRB of the adjacent discontinuous interleaving unit is determined according to a cyclic shift in the frequency domain resource location, where M, N, and L are positive integers;
  • the SRS is mapped to a channel resource used by the uplink control channel and transmitted to a base station.
  • A5. The method for transmitting a sounding reference signal according to A2, wherein the step of mapping the SRS to different frequency domain resources in different time domain resources according to a cyclic shift in a frequency domain resource location, and transmitting to the base station include:
  • each time domain resource symbol indicating the SRS occupies different M frequency domain continuous uninterleaved interleaving unit combinations, where The frequency interval between the physical resource blocks PRB of the frequency domain non-contiguous discontinuous interleaving unit combination is cyclically shifted according to the frequency domain resource position in all frequency resource locations occupied by the N time domain resource symbols Determine, wherein M and N are positive integers;
  • the SRS is mapped to a channel resource used by the uplink control channel and transmitted to a base station.
  • A6 The method for transmitting a sounding reference signal according to A2, wherein the SRS is mapped to different frequency domain resources in different time domain resources according to a cyclic shift in a frequency domain resource position, and is transmitted to the base station.
  • the channel resources used by the uplink control channel occupy N time domain resource symbols
  • different time domain resource symbols in the N time domain resource symbols indicating the SRS respectively occupy different unassigned points.
  • M interleaving units allocated to other channels wherein, among all frequency resource positions occupied in the N time domain resource symbols, the frequency interval between the physical resource blocks PRB of the frequency domain non-contiguous discontinuous interleaving units is according to the A cyclic shift in the frequency domain position is determined, wherein M and N are positive integers;
  • the SRS is mapped to a channel resource used by the uplink control channel and transmitted to a base station.
  • A7 The method for transmitting a sounding reference signal according to A1, wherein the determining the resource location used by the uplink control channel of the sounding reference signal SRS comprises:
  • A8 The method for transmitting a sounding reference signal according to A7, wherein the SRS is transmitted to a base station by using a channel resource used by the uplink control channel by using different frequency domain resources in different time domain resource symbols.
  • the steps include:
  • the first A symbols or the last A symbols of the uplink control channel are transmitted to the base station.
  • a transmission device for detecting a reference signal comprising:
  • a processing module configured to determine a resource location used by an uplink control channel of the sounding reference signal SRS;
  • a sending module configured to transmit the SRS to the base station by using a channel resource used by the uplink control channel by using different frequency domain resources in different time domain resource symbols.
  • a terminal comprising:
  • a processor configured to: determine a resource location used by an uplink control channel of the sounding reference signal SRS;
  • the transmitter is connected to the processor, and is configured to transmit the SRS to the base station by using a channel resource used by the uplink control channel by using different frequency domain resources in different time domain resource symbols.
  • a method for transmitting a sounding reference signal comprising:
  • Determining the scheduling when the uplink transport channel is scheduled according to a preset mapping relationship between the scheduling information of the uplink transport channel and the resource used by the uplink control channel for transmitting the uplink control signal The resources used by the uplink control channel corresponding to the information;
  • the sounding reference signal SRS is transmitted by using resources used by the uplink control channel.
  • the method for transmitting a sounding reference signal according to D1, wherein the step of acquiring scheduling information when the uplink transport channel is scheduled comprises:
  • the scheduling information when the uplink transport channel is scheduled is obtained from the base station.
  • the steps of the resources used by the uplink control channel corresponding to the scheduling information when the transport channel is scheduled include:
  • the unscheduled scheduling information corresponding to the scheduling information when the uplink transport channel is scheduled The resources used by the uplink control channel.
  • D4 The method for transmitting a sounding reference signal according to D1, wherein the scheduling information comprises: a control channel unit CCE number or an enhanced control channel unit ECCE number carried in uplink grant information of the uplink transport channel, a frequency domain resource number occupied when the uplink transport channel is scheduled, a sequence number occupied by the uplink transport channel when scheduled, and a cyclic shift number, or an orthogonal mask OCC occupied when the uplink transport channel is scheduled At least one of the sequence numbers;
  • the mapping relationship includes a mapping relationship between scheduling information of the uplink transport channel and a number of resources used by the uplink control channel.
  • D5. The method for transmitting a sounding reference signal according to D1, wherein the step of transmitting the sounding reference signal SRS by using the resource used by the uplink control channel comprises:
  • the SRS is transmitted to the base station by using resources used by the uplink control channel in a manner of occupying different frequency domain resources in different time domain resource symbols.
  • D6 The method for transmitting a sounding reference signal according to D5, wherein the SRS is transmitted to a base station by using a resource used by the uplink control channel by using different frequency domain resources in different time domain resource symbols.
  • the steps include:
  • the SRS is mapped to different frequency domain resources in different time domain resources according to cyclic shifts in frequency domain resource locations, and transmitted to the base station;
  • the cyclic shift on the frequency domain resource location is determined by the number of time domain resource symbols of the resource used by the uplink control channel and the frequency interval of the frequency domain resource occupied by the SRS in the same time domain resource. of.
  • D7 The method for transmitting a sounding reference signal according to D6, wherein the SRS is mapped to different frequency domain resources in different time domain resources according to a cyclic shift in a frequency domain resource location, and transmitted to a base station.
  • the steps include:
  • a frequency interval between physical resource blocks of the frequency domain non-contiguous discontinuous interleaving units is determined according to a cyclic shift of the frequency domain resource locations, where , M and N are positive integers;
  • D8 The method for transmitting a sounding reference signal according to D6, wherein the SRS is mapped to different frequency domain resources in different time domain resources according to a cyclic shift in a frequency domain resource location, and transmitted to a base station.
  • the steps include:
  • each L adjacent resource symbols indicating the SRS are occupied by the same group. Interleaving units and performing time domain orthogonal code division;
  • the frequency of the interleaved units occupied by the different groups of time domain resource symbols is different, and the physical resource blocks PRB of the interleaved units that are not adjacent to each other in the frequency domain are located in all the frequency resource positions occupied by the N time domain resource symbols.
  • the frequency interval between the two is determined according to a cyclic shift in the frequency domain resource location, wherein M, N, and L are positive integers;
  • D9 The method for transmitting a sounding reference signal according to D6, wherein the SRS is mapped to different frequency domain resources in different time domain resources according to a cyclic shift in a frequency domain resource location, and transmitted to a base station.
  • the steps include:
  • each time domain resource symbol indicating the SRS occupies different M frequency domain continuous unallocated interleaving units combination
  • the frequency interval between the physical resource blocks PRB of the frequency domain non-contiguous interleaving unit combination is cyclically shifted according to the frequency domain resource position in all the frequency resource positions occupied by the N time domain resource symbols. Bit determined, where M and N are both positive integers;
  • the steps include:
  • the frequency interval between the physical resource blocks PRB of the frequency domain non-contiguous discontinuous inter-units is determined according to the cyclic shift in the frequency domain position.
  • the method for transmitting a sounding reference signal according to any one of D7 to D10, wherein the uplink transmission channel is a physical uplink shared channel PUSCH/physical uplink control channel MF-ePUCCH; and the uplink control channel is a short physical uplink Control channel MF-sPUCCH.
  • the method for transmitting the sounding reference signal according to D1, wherein the preset mapping relationship between the scheduling information of the uplink transport channel and the resource used by the uplink control channel for transmitting the uplink control signal comprises:
  • the steps of the resources used by the unscheduled uplink control channel corresponding to the scheduling information when the uplink transmission channel is scheduled include:
  • the scheduling information corresponds to the resources used by the non-scheduled uplink control channel.
  • a transmission device for detecting a reference signal comprising:
  • An acquiring module configured to acquire scheduling information when an uplink transport channel is scheduled
  • the processing module is configured to determine, according to a preset mapping relationship between the scheduling information of the uplink transport channel and the resource used by the uplink control channel used for transmitting the uplink control signal, the uplink corresponding to the scheduling information when the uplink transport channel is scheduled.
  • the resources used by the control channel
  • a sending module configured to transmit the sounding reference signal SRS by using resources used by the uplink control channel.
  • a terminal comprising:
  • a receiver configured to receive scheduling information when an uplink transport channel is scheduled
  • the processor is connected to the receiver, and is configured to: determine the uplink according to a preset mapping relationship between scheduling information of the uplink transport channel and resources used by the uplink control channel for transmitting the uplink control signal. a resource used by the uplink control channel corresponding to the scheduling information when the transport channel is scheduled;
  • a transmitter coupled to the processor, configured to transmit the sounding reference signal SRS by using resources used by the uplink control channel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了一种探测参考信号的传输方法、装置、芯片及终端,其方法包括:当上行传输信道被调度时,获取上行传输信道的调度信息;根据上行传输信道的调度信息与用于传输上行控制信号的上行控制信道所采用的资源之间预设的映射关系,确定上行传输信道的调度信息对应的上行控制信道所采用的资源;利用上行控制信道所采用的资源,传输探测参考信号。

Description

探测参考信号的传输方法、装置、芯片及终端
相关申请的交叉引用
本申请主张在2016年2月26日在中国提交的中国专利申请号No.201610109196.7的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种探测参考信号的传输方法、装置、芯片及终端。
背景技术
移动通信经历了第一代、第二代、第三代、第四代。第一代移动通信是指最初的模拟、仅限语音通话的蜂窝电话标准,主要采用的是模拟技术和频分多址(FDMA,Frequency Division Multiple Access)的接入方法;第二代移动通信引入了数字技术,提高了网络容量、改善了话音质量和保密性,以“全球移动通信系统”(GSM,Global System for Mobile Communication)和“码分多址”(CDMA IS-95,Code Division Multiple Access)为代表;第三代移动通信均是以码分多址作为接入技术的,主要有CDMA2000、WCDMA、TD-SCDMA三种技术;第四代移动通信系统是国际标准化组织3GPP制定的长期演进接入技术(LTE/LTE-A,Long Term Evolution/Long Term Evolution-Advanced),其标准在国际上相对统一,其下行基于正交频分多址接入(OFDMA,Orthogonal Frequency Division Multiple Access),上行基于单载波频分多址接入(SC-FDMA,Single Carrier-Frequency Division Multiple Access)的接入方式,依据其灵活的带宽和自适应的调制编码方式,达到了下行峰值速率1Gbps,上行峰值速率500Mbps的高速传输。
MulteFire(MF)网络是一种新的基于LTE的网络,它能独立运行于非授权频谱中,并且不需要在授权频谱中有一个“锚点”,是为在LTE R13LAA(Licensed-Assisted Access,授权协助访问)下行传输方法的基础上新定义上行传输方法,即stand-alone LTE-U(独立LTE-U)。其中,MuLTEfire的上 行复用方式采用与传统LTE上行SC-FDMA不同的B-IFDMA(block-interleaved frequency division multiple access,块交织频分多址)方式,用于满足非授权频段的带宽占用的地区性规范要求,并在其上行物理信道中引入了扩展的物理上行控制信道(MF-ePUCCH,MF Extended Physical Uplink Control Channel)和短物理上行控制信道(MF-sPUCCH,MF Short Physical Uplink Control Channel)来传输,传统LTE中通过物理上行控制信道(PUCCH,Physical Uplink Control Channel)传输的上行控制信息(UCI,Uplink Control Information),例如:ACK/NACK(应答/拒绝应答)、CSI(信道状态信息,Channel State Information)、SR(上行调度请求,Scheduling Request)等。
MF网络同样也可以采用与PUCCH相同的物理信道格式来传输探测参考信号(SRS,Sounding Reference Signal)、物理随机接入信道(PRACH,Physical RandomAccess Channel)等上行物理信道信息。
对于上行控制信道中的MF-ePUCCH,其在时域占用由14个B-IFDMA符号构成的一个子帧,而对于MF-sPUCCH,其时域仅占用1到4个B-IFDMA符号。
在MF-sPUCCH发送时,MF-sPUCCH可以周期性的单独发送,例如主要用于发送RACH(上行随机接入信道,Random Access Channel),进行随机接入,也可以在传输机会(TXOP,Transmission Opportunity)中的传输下行传输到上行传输切换的子帧进行传输,即MF-sPUCCH区域在上行传输的开始部分传输。其中,对于MF-sPUCCH区域的描述也可以有其他等效的称谓,例如上行部分子帧,上行部分TTI,UpPTS等,为了描述简便在本公开中统一使用MF-sPUCCH区域。
对于在数据传输机会(TXOP)中的MF-sPUCCH和紧随其后的上行子帧PUSCH(物理上行共享信道,Physical Uplink Shared Channel)/MF-ePUCCH之间不存在空隙,即
当用户终端(UE,User Equipment)同时调度了在MF-sPUCCH和其后相邻的PUSCH/MF-ePUCCH上传输上行信号时,UE的先听后说的监听机制(LBT,Listen Before Talk)在MF-sPUCCH前进行;
当UE仅在调度MF-sPUCCH其后相邻的PUSCH/MF-ePUCCH上传输上 行信号时,而没有调度在MF-sPUCCH上传输时,UE需要在MF-sPUCCH区域前进行LBT,并在MF-sPUCCH区域上传输特定的信号(例如SRS或其他信号等)来保证信道在LBT成功后到被调度的PUSCH/MF-ePUCCH前的时间持续被占用;其中,SRS用于估计上行信道频域信息,做频率选择性调度;以及估计上行信道,做下行波束赋形。
针对上述仅调度在PUSCH/MF-ePUCCH上传输的UE,由于其在MF-sPUCCH区域传输的信号的资源可以不是经过eNB(evolved Node B,演进型基站)调度的,而是在UE自行选择的MF-sPUCCH区域内的资源内进行传输的,因此不同UE可能会选择到同一MF-sPUCCH区域内的资源,这样就会产生多UE间的资源碰撞,最坏的结果可以导致与被调度的MF-sPUCCH发生碰撞而影响UCI等信息的正确接收。
虽然可以通过对MF-sPUCCH区域的资源进行分组来避免调度MF-sPUCCH与非调度的信号的碰撞问题,但发明人在实现本公开的过程中,发现相关技术中,仍无法避免在非调度MF-sPUCCH区域内的碰撞问题,这就会导致在非调度MF-sPUCCH区域内传输的信号不可信,例如对于传输SRS的情况,由于存在碰撞会导致基站的信道估计错误,从而影响后续的上行调度性能,如果忽略这部分信号信息就等同于浪费了这部分的发送功率和频谱资源。
此外,如果当SRS采用与MF-sPUCCH相同的B-IFDMA的传输方式时,由于B-IFDMA的频域资源分配特性,在MF-sPUCCH中发送的SRS与紧邻其后的PUSCH/MF-ePUCCH中发送的DMRS(用于上行控制和数据信道的相关解调)均在整个系统带宽内的频域均匀分布,因此SRS对估计整个系统带宽信道内的信道质量的贡献要远小于传统LTE上行中基于SC-OFDMA的频域资源分配方式,因此如何提高SRS对于系统带宽内的信道质量估计的估计精度也是亟待解决的问题。
发明内容
本公开提供了一种探测参考信号的传输方法、装置及终端,解决了相关技术中在非调度MF-sPUCCH区域内的资源碰撞问题。
依据本公开的一个方面,提供了一种探测参考信号的传输方法,包括:
获取上行传输信道被调度时的调度信息;
根据上行传输信道的调度信息与用于传输上行控制信号的上行控制信道所采用的资源之间预设的映射关系,确定上行传输信道被调度时的调度信息对应的上行控制信道所采用的资源;
利用上行控制信道所采用的资源,传输探测参考信号SRS。
依据本公开的另一个方面,还提供了一种探测参考信号的传输装置,包括:
获取模块,用于获取上行传输信道被调度时的调度信息;
处理模块,用于根据上行传输信道的调度信息与用于传输上行控制信号的上行控制信道所采用的资源之间预设的映射关系,确定上行传输信道被调度时的调度信息对应的上行控制信道所采用的资源;
发送模块,用于利用上行控制信道所采用的资源,传输探测参考信号SRS。
依据本公开的再一个方面,还提供了一种终端,包括:
接收机,用于接收上行传输信道被调度时的调度信息;
处理器,与接收机连接,用于实现如下功能:根据上行传输信道的调度信息与用于传输上行控制信号的上行控制信道所采用的资源之间预设的映射关系,确定上行传输信道被调度时的调度信息对应的上行控制信道所采用的资源;
发射机,与处理器连接,用于利用上行控制信道所采用的资源,传输探测参考信号SRS。
本公开的实施例的有益效果是:
本公开提出的探测参考信号的传输方法、装置及终端,根据上行传输信道的调度信息与上行控制信道所采用的资源之间预设的映射关系,确定非调度上行控制信道的资源位置,以降低甚至避免不同用户终端间占用上行控制资源的碰撞问题。
附图说明
图1表示移动通信网络的基本架构示意图;
图2表示上行信道的频域资源分配示意图;
图3表示数据传输机会的传输示意图;
图4表示本公开的一些实施例的探测参考信号的传输方法流程示意图;
图5表示本公开的一些实施例的探测参考信号的传输方法流程示意图;
图6表示本公开的一些实施例的探测参考信号的传输方法流程示意图;
图7表示本公开的一些实施例的探测参考信号的传输方法流程示意图;
图8表示本公开的一些实施例中场景一的SRS的资源映射示意图;
图9表示本公开的一些实施例中场景二的SRS的资源映射示意图;
图10表示本公开的一些实施例中场景三的SRS的资源映射示意图;
图11表示本公开的一些实施例中场景四的SRS的资源映射示意图;
图12表示本公开的一些实施例的探测参考信号的传输装置的模块框图;
图13表示本公开的一些实施例的终端的结构框图;
图14表示一些实施例的探测参考信号的传输方法流程示意图;
图15表示一些实施例的探测参考信号的传输方法流程示意图;
图16表示一些实施例的探测参考信号的传输方法流程示意图;
图17表示一些实施例中SRS的资源映射示意图;
图18表示一些实施例的探测参考信号的传输装置的模块框图;
图19表示一些实施例的终端的结构框图;以及
图20表示适于用来实现本申请实施例的探测参考信号的传输方法或探测参考信号的传输装置的计算机系统的结构示意图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本公开针对相关技术中MF网络中,由于仅调度在PUSCH/MF-ePUCCH上传输的UE,上行控制信号在UE自行选择的MF-sPUCCH区域内的资源内 进行传输的,因此不同UE可能会选择同一MF-sPUCCH区域内的资源,从而产生资源碰撞的问题。本公开的下述实施例提供了一种探测参考信号的传输方法、装置及终端,根据预设的上行传输信道的调度信息与上行控制信道所采用的资源之间的映射关系,确定非调度上行控制信道的资源位置,以降低甚至避免不同用户终端间占用上行控制资源的碰撞问题。
图1示出了移动通信网络的基本架构示意图。移动通信系统是指运营商通过部署无线接入网设备(如基站),和核心网设备(如归属位置寄存器HLR,Home Location Register)等,为用户终端(如手机等移动终端)提供通信服务的系统。
图2示出了上行信道(包括物理上行控制信道和/或物理上行共享信道)的频域资源分配方式B-IFDMA,20MHz带宽下的有10个interlace(交织单元),每个交织单元的大小为10个频域上等间隔的物理资源块(PRB,Physical Resource Block),如第0号交织单元对应图中带斜线的10个PRB。
如图3所示,MF-sPUCCH可在传输机会(TXOP,Transmission Opportunity)中的传输下行传输到上行传输切换的子帧进行传输,即MF-sPUCCH区域在上行传输的开始部分传输。
如图4所示,本公开的一些实施例提供了一种探测参考信号的传输方法,具体包括以下步骤:
步骤41:当上行传输信道被调度时,获取上行传输信道的调度信息。
其中,该上行传输信道可以是传输上行数据信号的上行传输信道,如PUSCH,亦可以是传输控制信号的上行传输信道,如MF-ePUCCH或者MF-sPUCCH。当上行传输信道被调度时,上行传输信道的调度信息中携带有表征上行传输信道所占用资源位置的信息,如所占用资源位置的编号等。其中,UE可以直接从基站接收用于传输上行数据信号的上行传输信道被调度时的调度信息,亦可以通过自身解析被调度的上行传输信道的信道信息得到其调度信息。
步骤42:根据上行传输信道的调度信息与用于传输上行控制信号的上行控制信道所采用的资源之间预设的映射关系,确定上行传输信道的调度信息对应的上行控制信道所采用的资源。
这里所说的,上行传输信道的调度信息与用于传输上行控制信号的上行控制信道所采用的资源之间预设的映射关系是指,上行传输信道所用资源标识与上行控制信道所用资源的标识之间存在映射关系,具体包括:上行传输信道的调度信息与用于传输上行控制信号的上行控制信道所采用的所有资源之间预设的映射关系;或者,上行传输信道的调度信息与用于传输上行控制信号的上行控制信道所采用的非调度资源之间预设的映射关系。当确定上行传输信道所用资源标识后,即可根据映射关系确定对应的上行控制信道所用资源标识,进而确定其所用资源的资源位置。
步骤43:利用上行控制信道所采用的资源,传输SRS。
具体的,将SRS映射至步骤42中确定的上行控制信道所采用的资源中进行传输,或者
将步骤42中确定的上行控制信道所采用的资源作为传输SRS的资源。
本公开的上述实施例中,用户终端根据预设的上行传输信道的调度信息与上行控制信道所采用的资源之间的映射关系,以及获取到的被调度的上行传输信道的调度信息,确定其对应的上行控制信道所采用的资源位置,以降低甚至避免不同用户终端间占用上行控制信道资源的碰撞问题。
如图5所示,本公开的一些实施例提供了一种探测参考信号的传输方法,具体包括以下步骤:
步骤51,当上行传输信道被调度时,获取上行传输信道的调度信息;
步骤52:在上行传输信道的调度信息与用于传输上行控制信号的上行控制信道所采用的资源之间预设的映射关系中,确定上行传输信道的调度信息对应的非调度的上行控制信道所采用的资源;
步骤53:利用上行控制信道所采用的资源,传输SRS。
应该理解,本实施例提供的探测参考信号的传输方法是在进行LBT之后执行的。
其中,在上行传输中,一般包括:用于传输上行控制信息或者特殊信息(如SRS)的MF-sPUCCH区域以及其后相邻的上行子帧(PUSCH/MF-ePUCCH)。对于UE仅在MF-sPUCCH区域后相邻的上行子帧被调度传输的场景,UE根据调度信息来同时选择SRS在MF-sPUCCH区域(或 称之为上行部分子帧)的传输资源位置以及PUSCH/MF-ePUCCH在上行子帧的传输资源位置。具体地,对于作为MF小区的服务小区c,配置用于在该服务小区c上触发类型2(type 2)SRS传输的UE,当检测到该服务小区c的子帧n-1中存在MF-sPUCCH而在该MF-sPUCCH所存在的子帧上没有UCI传输时,且当在不晚于子帧n-4的子帧中接收到用于从服务小区c的子帧n的Symbol#0位置开始调度PUSCH或MF-ePUCCH的DCI格式0A/0B/4A/4B时,在子帧n-1中使用MF-sPUCCH资源开始进行SRS传输。
上述实施例中,上行传输信道的调度信息与用于传输上行控制信号的上行控制信道所采用的资源之间预设的映射关系是指,上行传输信道所用资源标识与未被分配(也可理解为分配给非调度上行控制信道的资源)的非调度上行控制信道所用资源的标识之间存在映射关系。当确定上行传输信道所用资源标识后,即可根据映射关系确定对应的未被分配的非调度上行控制信道所用资源标识,进而确定其所用资源的资源位置。
进一步地,上述上行传输信道为PUSCH/MF-ePUCCH;上述上行控制信道为MF-sPUCCH。
具体地,步骤52包括:
1.获取基站通过RRC(Radio Resource Control,无线电资源控制)配置或者通过公共物理下行公共信道指示的调度资源和非调度资源的划分信息。
2.根据所述划分信息、所述调度信息、以及上行传输信道的调度信息与用于传输上行控制信号的上行控制信道所采用的资源之间预设的映射关系,确定所述上行传输信道被调度时的调度信息对应的非调度的上行控制信道所采用的资源。
这里是说,基站先将当前的调度资源和非调度资源的划分信息告知UE,以便UE根据该划分信息以及调度信息确定对应的资源位置。
其中,将上行控制信道所用资源的资源分组,具体分为:调度上行控制信道资源(调度MF-sPUCCH)和非调度上行控制信道资源(非调度MF-sPUCCH),由于SRS的传输格式可采用与解调参考信号DMRS序列相同的序列,而DMRS的复用方式(或称为承载方式)与数据传输格式相关,具体资源分组可根据数据传输格式划分。其中,调度上行控制信道资源(调度 MF-sPUCCH)和非调度上行控制信道资源(非调度MF-sPUCCH)的划分方式包括:仅通知调度上行控制信道资源(调度MF-sPUCCH)的资源编号范围,仅通知非调度上行控制信道资源(非调度MF-sPUCCH),或者同时通知调度上行控制信道资源(调度MF-sPUCCH)和非调度上行控制信道资源(非调度MF-sPUCCH)等。进一步,调度上行控制信道资源(调度MF-sPUCCH)和非调度上行控制信道资源(非调度MF-sPUCCH)的通知方式包括:预先规定,通过RRC配置,或者通过公共物理下行公共信道(C-PDCCH)指示等。
针对MF-sPUCCH区域中的SRS使用不同的传输格式时,有不同的SRS时频资源分配方式用于区分非调度的MF-sPUCCH区域资源(发送SRS)和调度的MF-sPUCCH区域资源,具体为:
一:当SRS采用现有LTE中的SRS传输格式,子载波间隔为2的IFDMA(Interleaved Frequency Division Multiple Access,交织频分多址),即仅占用连续多个PRB中的奇数或偶数子载波时,由于B-IFDMA与IFDMA的区别,需在调度的MF-sPUCCH占用的PRB以外分配SRS占用的连续PRB,同时SRS在时域占用连续的多个符号,例如时域占用MF-sPUCCH区域的所有符号。
二:当SRS采用与MuLTEfire中MF-sPUCCH/PUSCH/MF-ePUCCH相同的B-IFDMA映射方式,即频域等间隔的多个PRB中的所有子载波时,由于采用相同参数的B-IFDMA,SRS与MF-sPUCCH可以分配相同或不同的交织单元(interlace),可以通过分配同一序列的不同循环移位和/或OCC(Orthogonal Cover Code,正交掩码)实现在相同PRB及interlace内的正交,SRS时域占用连续的多个符号,例如时域占用MF-sPUCCH区域的所有符号。
三:当SRS采用在B-IFDMA的交织单元中仅占用奇数或偶数子载波的映射方式,即频域等间隔的多个PRB中的奇数或偶数子载波时,由于B-IFDMA与交织单元内的IFDMA的区别,SRS与MF-sPUCCH分配不同的交织单元,SRS时域占用连续的多个符号,例如时域占用MF-sPUCCH区域的所有符号。
根据SRS不同的传输格式,可将调度MF-sPUCCH的资源和非调度 MF-sPUCCH的资源区分开,从而便于从非调度MF-sPUCCH的资源中确定上行传输信道的调度信息对应的非调度MF-sPUCCH所采用的资源,从而降低甚至避免不同用户之间的资源碰撞问题。
上述调度信息包括:上行传输信道的上行授权信息中所携带的控制信道单元(CCE)编号、增强控制信道单元(ECCE)编号、上行传输信道被调度时所占用的频域资源编号、上行传输信道被调度时所占用的序列编号以及循环移位编号、以及上行传输信道被调度时所占用的OCC序列编号中的至少一项。
其中,上行传输信道的上行授权信息(UL Grant)中所占用的CCE编号或ECCE编号,即调度的PUSCH/MF-ePUCCH的UL grant所占用的CCE编号或ECCE编号,例如,当PDCCH传输UL grant时,可以为UL grant占用的第N个CCE位置编号,例如第1个CCE对应的编号。其中,CCE为Control Channel Element的缩写,即控制信道单元,LTE的一种发送控制信道的时频资源单位,ECCE为EnhancedControl Channel Element的缩写,即增强控制信道单元,LTE的另一种发送控制信道的时频资源单位。
上行传输信道被调度时所占用的频域资源编号,即通过承载UL grant的DCI(Downlink Control Information,下行控制信息)中的资源分配指示信息和/或RRC配置的调度的PUSCH/MF-ePUCCH占用的N个交织单元或PRB对应的编号,例如占用的第一个交织单元或PRB对应的编号。
上行传输信道被调度时所占用的序列编号以及循环移位编号,即MF-ePUCCH占用的DMRS序列或者其序列的编号以及循环移位大小信息的编号。
上行传输信道被调度时所占用的OCC序列编号,例如Walsh码和基于DFT(Discrete Fourier Transformation,离散傅里叶变换)等的正交掩码的编号等。
映射关系包括:上行传输信道的调度信息与上行控制信道所采用的资源的编号之间的映射关系。
也就是说,上述上行传输信道的调度信息与用于传输上行控制信号的上行控制信道所采用的资源之间的映射关系具体指的是:建立调度的 PUSCH/MF-ePUCCH的UL grant所占用的(E)CCE编号与所有MF-sPUCCH的资源编号的映射关系,或PUSCH/MF-ePUCCH所占用的交织单元或PRB编号与所有MF-sPUCCH的资源编号的映射关系,或MF-ePUCCH占用的频域序列编号以及该序列的循环移位编号与所有MF-sPUCCH的资源编号的映射关系,或PUSCH/MF-ePUCCH所占用的OCC序列编号与所有MF-sPUCCH的资源编号的映射关系。
亦或者,上述上行传输信道的调度信息与用于传输上行控制信号的上行控制信道所采用的资源之间的映射关系具体指的是:建立调度的PUSCH/MF-ePUCCH的UL grant所占用的(E)CCE编号与非调度MF-sPUCCH的资源编号的映射关系,或PUSCH/MF-ePUCCH所占用的交织单元或PRB编号与非调度MF-sPUCCH的资源编号的映射关系,或MF-ePUCCH占用的频域序列编号以及该序列的循环移位编号与非调度MF-sPUCCH的资源编号的映射关系,或PUSCH/MF-ePUCCH所占用的OCC序列编号与非调度MF-sPUCCH的资源编号的映射关系。
上述实施例根据上行传输信道的调度信息与上行控制信道所采用的资源的编号之间的映射关系,以及调度PUSCH/MF-ePUCCH的调度信息,确定其对应的非调度MF-sPUCCH所用的资源位置,从而避免多个用户终端同时采用同一MF-sPUCCH资源位置的资源碰撞问题。
如图6所示,本公开的一些实施例提供了一种探测参考信号的传输方法,具体包括:
步骤61,与上述步骤41相同;
步骤62,与上述步骤42相同;
步骤63:采用在不同的时域资源符号内占用不同频域资源的方式,通过上行控制信道所采用的资源向基站传输SRS。
这里,将SRS映射至上述步骤62确定的上行控制信道所采用的资源位置上进行传输,及步骤62确定的MF-sPUCCH/SRS所占用的资源位置。
其中,MF-sPUCCH/SRS占用的多个时域符号上采用不同频域资源位置,即MF-sPUCCH/SRS的第一个时域符号上选择的频率资源位置,与MF-sPUCCH/SRS的第二个时域符号上选择的频域资源位置不同,这样多个 时域符号结合来看的话,相当于发送SRS的信道所占用的频率资源密集了,这样可以缩小传输SRS的频域资源之间的频率间隔,从而可在一定程度上提高信道估计精度。
如图7所示,本公开的一些实施例提供了一种探测参考信号的传输方法,具体包括:
步骤71,与上述步骤41相同;
步骤72,与上述步骤42相同;
步骤73:按照频域资源位置上的循环移位将SRS在不同时域资源内映射至不同频域资源上,并传输至基站。
其中,频域资源位置上的循环移位大小是由上行控制信道所采用的资源的时域资源符号数目以及在同一时域资源内SRS所占用的频域资源的频率间隔确定的。
例如:MF-sPUCCH/SRS的第一个符号上选择的频率资源位置(交织单元编号)由PUSCH/MF-ePUCCH的调度信息决定,第二个符号的频率资源位置为第一个符号频率资源位置的基础上循环移位T位,以此类推直至时域符号均传输完毕。其中T可以由MF-sPUCCH/SRS的总的时域资源符号占用数目,在同一时域资源内所述SRS所占用的频域资源的频率间隔确定,可选地,还可以采用在同一时域资源内SRS和PUSCH/MF-ePUCCH所占用的频域资源的频率间隔确定频域资源上的循环移位T。采用这种方式可缩小SRS传输所用的频率资源之间的频率间隔,从而提高SRS的评估精度。
由于SRS的传输格式可采用与解调参考信号DMRS序列相同的序列,而DMRS的复用方式(或称为承载方式)与数据传输格式相关。具体地,在MF-sPUCCH资源(包括调度MF-sPUCCH和非调度MF-sPUCCH)区域中,MF-sPUCCH采用B-IFDMA码的正交复用方式(B-IFDMA码本质为一种特殊资源分配的OFDMA码),并占用1到4个时域资源符号,当占用大于2个时域资源符号时,可以一些符号来传输解调参考信号DMRS,一些符号用于传输数据。以MF-sPUCCH占用4个符号为例,假设其前两个符号可以用于传输DMRS,后两个符号可以用于传输数据。则MF-sPUCCH的复用方式包括DMRS符号的复用和数据符号的复用两部分。
对于传输DMRS的符号,每个符号上可以通过发送相同序列的不同循环移位来实现频域的码分,例如LTE中DMRS采用的Zadoff-Chu序列,和/或多个符号间的OCC来实现时域正交,例如2个符号通过码长为2的Walsh码:00和01。DMRS的复用方式可以取决于数据符号的映射方式。而对于传输数据的符号,每个PRB上的每个数据符号可以传输的调制符号数目不同,其复用方式也不同。下面将结合具体应用场景对其进行说明。
例如:一个PRB上的不同数据符号传输不同的调制符号,一个PRB上的一个数据符号可以传输1个调制符号,那么该调制符号经过乘以12码长的经过循环移位过的序列后映射到12个RE(资源单元,Resource Element)上,例如Zadoff-Chu序列,那么不同UE的数据符号通过不同的循环移位进行频域正交。与数据符号的复用方式类似,DMRS亦可采用循环移位的序列进行频域正交。以2个数据符号为例,一个PRB的2个数据符号可以传输2个调制符号,20MHz下的一个交织单元(10个PRB)可以传输20个调制符号,在QPSK调制下可以传输40个编码后的比特,当序列的循环移位间隔为1时,1个交织单元最多同时支持传输12个用户终端的MF-sPUCCH。
再例如:一个PRB上的不同数据符号传输相同的调制符号,该调制符号通过OCC扩展到多个数据符号上,一个PRB上的一个数据符号可以传输1个调制符号,该调制符号经过乘以12码长的循环移位过的序列后映射到12个RE上,例如Zadoff-Chu序列,不同UE的数据同时通过不同的循环移位进行频域正交和不同的OCC进行时域正交。以2个数据符号为例,一个PRB的2个数据符号可以传输1个调制符号,20MHz下的一个交织单元(10个PRB)可以传输10个调制符号,在QPSK(Quadrature Phase Shift Keying,正交相移键控)调制下可以传输20个编码后的比特,当序列的循环移位间隔为1时,1个交织单元最多同时支持传输12×2=24个UE的MF-sPUCCH。
再例如:一个PRB上的不同数据符号传输相同的调制符号,该调制符号通过OCC扩展到多个数据符号上,一个PRB上的一个数据符号可以传输12个调制符号,12个调制符号映射到12个RE上,不同UE的数据通过不同的OCC进行时域正交。以2个数据符号为例,一个PRB的2个数据符号可以传输12个调制符号,20MHz下的一个交织单元(10个PRB)可以传输120个 调制符号,在QPSK调制下可以传输240个编码后的比特,当序列的循环移位间隔为1时,1个交织单元最多同时支持传输2个UE的MF-sPUCCH。
由于SRS的传输格式可采用与解调参考信号DMRS序列相同的序列,例如Zadoff-Chu序列,那么SRS在频域亦可采用多种映射方式,具体包括:
方式一:采用现有LTE中的SRS传输格式,子载波间隔为2的IFDMA,即仅占用频域上连续多个PRB中的奇数或偶数子载波。
方式二:采用与MuLTEfire中MF-sPUCCH/PUSCH/MF-ePUCCH相同的B-IFDMA映射方式,即频域等间隔的多个PRB中的所有子载波。
方式三:采用在B-IFDMA的交织单元中仅占用奇数或偶数子载波的映射方式,即频域等间隔的多个PRB中的奇数或偶数子载波。
下面将结合附图和具体应用场景,对SRS映射至MF-sPUCCH所占用的频域资源并传输的过程做详细介绍。
场景一
该场景对应于SRS采用上述方式二或方式三的映射方式,当上行控制信道所采用的资源占用N个时域资源符号,一个时域资源符号内占用M个交织单元时,指示SRS的N个时域资源符号中的不同时域资源符合分别占用不同的M个交织单元,将SRS映射至上行控制信道所采用的资源中,并传输至基站。
其中,在N个时域资源符号占用的所有频率资源位置内,频域不相邻不连续的交织单元的物理资源块之间的频率间隔根据频域资源位置的循环移位确定,M和N均为正整数。
当MF-sPUCCH区域占用四个时域资源符号时,SRS采用B-IFDMA的映射方式,占用一个交织单元和4个时域资源符号,且MF-sPUCCH与SRS在每个时域资源符号上均采用相同序列的不同循环移位的方式进行频域正交,MF-sPUCCH或SRS的多个符号间无时域OCC正交,因此SRS的每个符号可以映射到不同的交织单元上。如图8所示,在20MHz系统带宽中具有10个交织单元,同一个UE的SRS(图中带斜线部分),第1个B-IFDMA符号占用第1个交织单元(编号为0的交织单元),第2个B-IFDMA符号占用第3个交织单元(编号为2的交织单元),第3个B-IFDMA符号占用第6个 交织单元(编号为5的交织单元),第4个B-IFDMA符号占用第9个交织单元(编号为8的交织单元),从而使得SRS在频域资源上所占的频率之间的间隔尽量小并且均匀,基站对上述4个B-IFDMA符号内的SRS信息进行时频域联合插值,这样最小频率间隔由10个PRB减低为3个PRB,评估精度大大提高。
场景二
该场景对应于SRS采用上述方式二或方式三的映射方式的另一场景,当上行控制信道所采用的资源占用N个时域资源符号,一个时域资源符号内占用M个交织单元时,指示SRS的每L个相邻的资源符号为一组占用相同的交织单元,并进行时域正交码分;将SRS映射至上行控制信道所采用的资源中,并传输至基站。
其中,不同组的资源符号所占用的交织单元的频率不同,且在N个时域资源符号中占用的所有频率资源位置内,频域不相邻不连续的交织单元的物理资源块PRB之间的频率间隔根据频域资源位置上的循环移位确定,其中,M、N和L均为正整数。
当MF-sPUCCH区域占用四个符号时,SRS采用B-IFDMA的映射方式,占用一个交织单元和4个时域资源符号,且MF-sPUCCH与SRS在前和后2个符号上分别同时采用相同序列的不同循环移位的方式进行频域正交以及不同OCC的时域正交(例如前两个符号为DMRS,后两个符号为数据),因此SRS的前两个符号可以和后两个符号映射到不同的交织单元上。如图9所示,在20MHz系统带宽中具有10个交织单元,同一个UE的SRS(图中带斜线部分),第1个B-IFDMA符号和第2个B-IFDMA符号占用第1个交织单元(编号为0的交织单元),第3个B-IFDMA符号和第4个B-IFDMA符号占用第6个交织单元(编号为5的交织单元),从而使得SRS在频域的间隔尽量小而且均匀,基站对上述4个B-IFDMA符号内的SRS信息进行时频域联合插值,这样最小频率间隔由10个PRB减低为5个PRB,在一定程度上提高了SRS的信道评估精度。
场景三
该场景对应于SRS采用上述方式一的映射方式,当上行控制信道所采用 的资源占用N个时域资源符号时,指示SRS的每个时域资源符号均占用不同的M个频域连续的未被分配(或分配给SRS传输)的交织单元组合,将SRS映射至上行控制信道所采用的资源中,并传输至基站。
其中,在N个时域资源符号中占用的所有频率资源位置内,频域不相邻不连续的交织单元组合的物理资源块PRB之间的频率间隔根据频域资源位置上的循环移位确定,其中,M和N均为正整数。
当SRS采用子载波间隔为2的IFDMA时,SRS的跳频需要在给MF-sPUCCH分配的资源以外的区域进行。如图10所示,在20MHz系统带宽中具有10个交织单元,假设为调度的MF-sPUCCH分配了交织单元0至5(图中带黑点背景部分),为非调度的SRS分配交织单元6至9,当SRS使用现有LTE中的IFDMA的格式时,同一个UE的SRS(图中带斜线部分)占用4个连续的PRB中的奇数或偶数子载波,第一个IFDMA符号占用PRB编号为6至9的奇数或偶数子载波,第二个IFDMA符号占用PRB编号为26至29的奇数或偶数子载波,第三个IFDMA符号占用PRB编号为56至59的奇数或偶数子载波,第四个IFDMA符号占用PRB编号为76至79的奇数或偶数子载波,基站可以对4个符号内的SRS信息进行时频域联合插值,从而使得SRS在频域的间隔尽量小,最小频率间隔为17个PRB。
场景四
该场景对应于SRS采用方式三的映射方式的另一场景,当上行控制信道所采用的资源占用N个时域资源符号时,指示SRS的N个时域资源符号中的不同时域资源符号分别占用不同的未被分配给其他信道的M个交织单元,将SRS映射至上行控制信道所采用的资源中,并传输至基站。
其中,在N个时域资源符号中占用的所有频率资源位置内,频域不相邻不连续的交织单元的物理资源块PRB之间的频率间隔根据频域位置上的循环移位确定,其中,M和N均为正整数。
当SRS采用B-IFDMA的交织单元内仅占用奇数或偶数子载波时,SRS的跳频需要在给MF-sPUCCH分配的资源以外的区域进行。如图11所示,在20MHz系统带宽中具有10个交织单元,假设为调度的MF-sPUCCH分配了偶数编号的交织单元(编号为0/2/4/6/8),为非调度的SRS分配了奇数编号的 交织单元(编号为1/3/5/7/9),当SRS使用交织单元内的子载波间隔为2的IFDMA的格式时,同一个UE的SRS占用1个交织单元的奇数或偶数子载波,第一个IFDMA符号占用编号为1的交织单元的奇数或偶数子载波,第二个IFDMA符号占用编号为3的交织单元的奇数或偶数子载波,第三个IFDMA符号占用编号为7的交织单元的奇数或偶数子载波,第四个IFDMA符号占用编号为9的交织单元的奇数或偶数子载波,基站对这4个IFDMA符号内的SRS信息进行时频域联合插值,由于最小频率间隔由10个PRB减低为3个PRB,使得SRS在频域的间隔尽量小而均匀,从而在一定程度上提高了SRS的信道评估精度。
该实施例中,用户终端根据预设的上行传输信道的调度信息与上行控制信道所采用的资源之间的映射关系,以及获取到的被调度的上行传输信道的调度信息,确定其对应的上行控制信道所采用的资源位置,以降低甚至避免不同用户终端间占用上行控制信道资源的碰撞问题。进一步地,在确定了上行控制信道后,采用不同时域资源符号占用不同频域资源的方式,将待传输的探测参考信号SRS映射至上行控制信道并传输至基站,以缩小传输SRS的频域资源之间的频率间隔,从而可在一定程度上提高信道估计精度。
如图12所示,本公开的一些实施例提供了一种探测参考信号的传输装置120,包括:
获取模块121,用于当上行传输信道被调度时,获取上行传输信道的调度信息;
处理模块122,用于根据上行传输信道的调度信息与用于传输上行控制信号的上行控制信道所采用的资源之间预设的映射关系,确定上行传输信道的调度信息对应的上行控制信道所采用的资源;
发送模块123,用于利用上行控制信道所采用的资源,传输探测参考信号。
其中,获取模块121包括:
获取单元,用于当用于传输上行数据信号的上行传输信道被调度时,从基站获取上行传输信道的调度信息。
其中,处理模块122包括:
处理单元,用于在上行传输信道的调度信息与用于传输上行控制信号的上行控制信道所采用的资源之间预设的映射关系中,确定上行传输信道的调度信息对应的非调度的上行控制信道所采用的资源。
具体地,该处理单元包括:
获取子单元,用于获取基站通过RRC配置或者通过公共物理下行公共信道指示的调度资源和非调度资源的划分信息;
处理子单元,用于根据划分信息、调度信息、以及上行传输信道的调度信息与用于传输上行控制信号的上行控制信道所采用的资源之间预设的映射关系,确定上行传输信道被调度时的调度信息对应的非调度的上行控制信道所采用的资源。
其中,上述调度信息包括:上行传输信道的上行授权信息中所携带的CCE编号或ECCE编号、上行传输信道被调度时所占用的频域资源编号、上行传输信道被调度时所占用的序列编号以及循环移位编号、以及上行传输信道被调度时所占用的OCC序列编号中的至少一项;
映射关系包括:上行传输信道的调度信息与上行控制信道所采用的资源的编号之间的映射关系。
其中,发送模块123包括:
发送单元,用于采用在不同的时域资源符号内占用不同频域资源的方式,通过上行控制信道所采用的资源向基站传输SRS。
具体发送单元的主要用于:
按照频域资源位置上的循环移位将SRS在不同时域资源内映射至不同频域资源上,并传输至基站;其中,频域资源位置上的循环移位是由上行控制信道所采用的资源的时域资源符号数目以及在同一时域资源内SRS所占用的频域资源的频率间隔确定的。
其中,发送单元包括:
第一指示子单元,用于当上行控制信道所采用的资源占用N个时域资源符号,一个时域资源符号内占用M个交织单元时,指示SRS的N个时域资源符号中的不同时域资源符合分别占用不同的M个交织单元,其中,在N个时域资源符号占用的所有频率资源位置内,频域不相邻不连续的交织单元的 物理资源块之间的频率间隔根据频域资源位置的循环移位确定,其中,M和N均为正整数;
第一发送子单元,用于将SRS映射至上行控制信道所采用的资源中,并传输至基站。
其中,发送单元还包括:
第二指示子单元,用于当上行控制信道所采用的资源占用N个时域资源符号,一个时域资源符号内占用M个交织单元时,指示SRS的每L个相邻的资源符号为一组占用相同的交织单元,并进行时域正交码分;其中,不同组的资源符号所占用的交织单元的频率不同,且在N个时域资源符号中占用的所有频率资源位置内,频域不相邻不连续的交织单元的物理资源块PRB之间的频率间隔根据频域资源位置上的循环移位确定,其中,M、N和L均为正整数;
第二发送子单元,用于将SRS映射至上行控制信道所采用的资源中,并传输至基站。
发送单元还包括:
第三指示子单元,用于当上行控制信道所采用的资源占用N个时域资源符号时,指示SRS的每个时域资源符号均占用不同的M个频域连续的未被分配的交织单元组合,其中,在N个时域资源符号中占用的所有频率资源位置内,频域不相邻不连续的交织单元组合的物理资源块PRB之间的频率间隔根据频域资源位置上的循环移位确定,其中,M和N均为正整数;
第三发送子单元,用于将SRS映射至上行控制信道所采用的资源中,并传输至基站。
发送单元还包括:
第四指示子单元,用于当上行控制信道所采用的资源占用N个时域资源符号时,指示SRS的N个时域资源符号中的不同时域资源符号分别占用不同的未被分配给其他信道的M个交织单元,其中,在N个时域资源符号中占用的所有频率资源位置内,频域不相邻不连续的交织单元的物理资源块PRB之间的频率间隔根据频域位置上的循环移位确定,其中,M和N均为正整数;
第四发送子单元,用于将SRS映射至上行控制信道所采用的资源中,并 传输至基站。
其中,上述上行传输信道为物理上行共享信道(PUSCH)/扩展的物理上行控制信道(MF-ePUCCH);上行控制信道为短物理上行控制信道(MF-sPUCCH)。
该实施例根据上行传输信道的调度信息与上行控制信道所采用的资源的编号之间的映射关系,以及调度PUSCH/MF-ePUCCH的调度信息,确定其对应的非调度MF-sPUCCH所用的资源位置,从而避免多个用户终端同时采用同一MF-sPUCCH资源位置的资源碰撞问题。进一步地,在确定了上行控制信道后,采用不同时域资源符号占用不同频域资源的方式,将待传输的探测参考信号SRS映射至上行控制信道并传输至基站,以缩小传输SRS的频域资源之间的频率间隔,从而可在一定程度上提高信道估计精度。
本公开的该装置实施例是与上述方法的实施例对应的装置,上述方法实施例中的所有实现手段均适用于该装置的实施例中,也能达到相同的技术效果。
如图13所示,本公开的一些实施例提供了一种终端,包括:
接收机131,用于当上行传输信道被调度时,接收上行传输信道的调度信息;
处理器132,与接收机连接,用于实现如下功能:根据上行传输信道的调度信息与用于传输上行控制信号的上行控制信道所采用的资源预设之间的映射关系,确定上行传输信道的调度信息对应的上行控制信道所采用的资源;
发射机133,与处理器连接,用于利用上行控制信道所采用的资源,传输探测参考信号。
其中,处理器152还可以被配置并实现上述装置实施例中所有模块实现的功能,也能达到和上述装置实施例所能达到的相同的技术效果。
如图14所示,一些实施例提供了一种探测参考信号的传输方法,具体包括:
步骤141:确定探测参考信号SRS的上行控制信道所用的资源位置。
其中,上行控制信道用于传输各种控制信号。这里确定探测参考信号SRS的上行控制信道所用的资源位置可以通过基站调度的方式,亦可采用用户终 端自主监听的方式。
步骤142:采用在不同的时域资源符号内占用不同频域资源的方式,通过上行控制信道所采用的资源向基站传输SRS。
其中,MF-sPUCCH占用的多个时域符号上采用不同频域资源位置,即MF-sPUCCH的第一个符号上选择的频率资源位置,与MF-sPUCCH的第二个符号上选择的频域资源位置不同,这样多个时域符号结合来看的话,相当于发送SRS的信道所占用的频率资源密集了,这样可以缩小传输SRS的频域资源之间的频率间隔,从而可在一定程度上提高信道估计精度。
如图15所示,一些实施例提供了一种探测参考信号的传输方法,具体包括:
步骤151,与上述步骤141相同;
步骤152:按照频域资源位置上的循环移位将SRS在不同时域资源内映射至不同频域资源上,并传输至基站。
其中,频域资源位置上的循环移位是由上行控制信道所采用的资源的时域资源符号数目以及在同一时域资源内SRS所占用的频域资源的频率间隔确定的。例如:MF-sPUCCH的第一个符号上选择的频率资源位置(交织单元编号)由PUSCH/MF-ePUCCH的调度信息决定,第二个符号的频率资源位置为第一个符号频率资源位置的基础上循环移位T位,以此类推直至时域符号均传输完毕。其中T可以由MF-sPUCCH的总的时域资源符号占用数目,在同一时域资源内所述SRS所占用的频域资源的频率间隔确定,可选地,还可以采用在同一时域资源内SRS和PUSCH/MF-ePUCCH所占用的频域资源的频率间隔确定频域资源上的循环移位T。采用这种方式可缩小SRS传输所用的频率资源之间的频率间隔,从而提高SRS的评估精度。
由于SRS的传输格式可采用与解调参考信号DMRS序列相同的序列,而DMRS的复用方式(或称为承载方式)与数据传输格式相关。具体地传输格式如上第四实施例所述。SRS在频域亦可采用如DMRS序列的多种映射方式,具体包括:如上第四实施例中所列举的方式一、方式二和方式三。
下面将结合具体应用场景,对SRS映射至MF-sPUCCH所占用的频域资源并传输的过程做详细介绍。
SRS采用上述方式二或方式三的映射方式,当上行控制信道所采用的资源占用N个时域资源符号,一个时域资源符号内占用M个交织单元时,指示SRS的N个时域资源符号中的不同时域资源符合分别占用不同的M个交织单元,将SRS映射至上行控制信道所采用的资源中,并传输至基站。其中,在N个时域资源符号占用的所有频率资源位置内,频域不相邻不连续的交织单元的物理资源块之间的频率间隔根据频域资源位置的循环移位确定,M和N均为正整数。具体示例可参照上述实施例中的场景一。
SRS采用上述方式二或方式三的映射方式的另一场景,当上行控制信道所采用的资源占用N个时域资源符号,一个时域资源符号内占用M个交织单元时,指示SRS的每L个相邻的资源符号为一组占用相同的交织单元,并进行时域正交码分;将SRS映射至上行控制信道所采用的资源中,并传输至基站。其中,不同组的资源符号所占用的交织单元的频率不同,且在N个时域资源符号中占用的所有频率资源位置内,频域不相邻不连续的交织单元的物理资源块PRB之间的频率间隔根据频域资源位置上的循环移位确定,其中,M、N和L均为正整数。具体示例说明可参照上述实施例中的场景二。
SRS采用上述方式一的映射方式,当上行控制信道所采用的资源占用N个时域资源符号时,指示SRS的每个时域资源符号均占用不同的M个频域连续的未被分配的交织单元组合,将SRS映射至上行控制信道所采用的资源中,并传输至基站。其中,在N个时域资源符号中占用的所有频率资源位置内,频域不相邻不连续的交织单元组合的物理资源块PRB之间的频率间隔根据频域资源位置上的循环移位确定,其中,M和N均为正整数。具体示例说明可参照上述实施例中的场景三。
SRS采用方式一的映射方式的另一场景,当上行控制信道所采用的资源占用N个时域资源符号时,指示SRS的N个时域资源符号中的不同时域资源符号分别占用不同的未被分配给其他信道的M个交织单元,将SRS映射至上行控制信道所采用的资源中,并传输至基站。其中,在N个时域资源符号中占用的所有频率资源位置内,频域不相邻不连续的交织单元的物理资源块PRB之间的频率间隔根据频域位置上的循环移位确定,其中,M和N均为正整数。具体示例说明可参照上述实施例中的场景四。
该实施例中在确定了上行控制信道所用资源位置后,采用不同时域资源符号占用不同频域资源的方式,将待传输的探测参考信号SRS映射至上行控制信道并传输至基站,以缩小传输SRS的频域资源之间的频率间隔,从而可在一定程度上提高信道估计精度。
如图16所示,一些实施例提供了一种探测参考信号的传输方法,具体包括:
步骤S161:确定上行传输信道的前A个符号或后A个符号为定探测参考信号SRS的上行控制信道所用的时域资源位置。
其中,A为正整数。如图17所示,上行传输信道包括:PUSCH/MF-ePUCCH,将PUSCH/MF-ePUCCH子帧的前A个或后A个符号作为SRS的上行控制信道,即在时域上,SRS可以在PUSCH/MF-ePUCCH的前A个符号中发送,或者可以在PUSCH/MF-ePUCCH的后A个符号中发送。
步骤S162:采用上行控制信道的前A个符号或后A个符号所占用的频域资源位置与上行传输信道的其他符号所占用的频域资源位置不同的方式,将SRS映射至上行控制信道的前A个符号或后A个符号中向基站传输。
也就是说,如图17所示,在同一子帧中,在PUSCH/MF-ePUCCH中传输的其他数据所占用的频域资源位置与传输SRS所占用的频域资源位置不同,这样通过联合PUSCH/MF-ePUCCH中其他控制信号(如DMRS)和SRS的方式来提高参考信号的频域密度,从而提高信道评估精度。
例如,当同一用户终端的SRS与PUSCH/MF-ePUCCH在同一个子帧传输时,SRS采用B-IFDMA或者interlace内的子载波间隔为2的IFDMA时,SRS占用与PUSCH/MF-ePUCCH占用不同的interlace。时域上SRS可以在PUSCH/MF-ePUCCH之后(case1)或者之前(case2),频域上SRS占用的interlace可以为PUSCH/MF-ePUCCH占用的资源间隔的中间频率位置,通过联合PUSCH/MF-ePUCCH中的DMRS与SRS来提高参考信号频域密度,从而提高信道估计精度。
如图18所示,一些实施例提供了一种探测参考信号的传输装置160,包括:
处理模块181,用于确定探测参考信号SRS的上行控制信道所用的资源位置;
发送模块182,用于采用不同的时域资源符号占用不同频域资源的方式,通过上行控制信道所采用的资源向基站传输所述SRS。
其中,发送模块182包括:
发送单元,用于按照频域资源位置上的循环移位将所述SRS在不同时域资源内映射至不同频域资源上,并传输至基站;其中,所述频域资源位置上的循环移位是由所述上行控制信道所采用的资源的时域资源符号数目以及在同一时域资源内所述SRS所占用的频域资源的频率间隔确定的。
其中,发送单元包括:
第一指示子单元,用于当上行控制信道所采用的资源占用N个时域资源符号,一个时域资源符号内占用M个交织单元时,指示SRS的N个时域资源符号中的不同时域资源符合分别占用不同的M个交织单元,其中,在N个时域资源符号占用的所有频率资源位置内,频域不相邻不连续的交织单元的物理资源块之间的频率间隔为频域资源位置的循环移位,其中,M和N均为正整数;
第一发送子单元,用于将SRS映射至上行控制信道所采用的资源中,并传输至基站。
其中,发送单元还包括:
第二指示子单元,用于当上行控制信道所采用的资源占用N个时域资源符号,一个时域资源符号内占用M个交织单元时,指示SRS的每L个相邻的资源符号为一组占用相同的交织单元,并进行时域正交码分;其中,不同组的资源符号所占用的交织单元的频率不同,且在N个时域资源符号中占用的所有频率资源位置内,以频域不相邻不连续的交织单元的物理资源块PRB之间的频率间隔为频域资源位置上的循环移位,其中,M、N和L均为正整数;
第二发送自单元,用于将SRS映射至上行控制信道所采用的资源中,并传输至基站。
发送单元还包括:
第三指示子单元,用于当上行控制信道所采用的资源占用N个时域资源符号时,指示SRS的每个时域资源符号均占用不同的M个频域连续的未被分配的交织单元组合,其中,在N个时域资源符号中占用的所有频率资源位置内,以频域不相邻不连续的交织单元组合的物理资源块PRB之间的频率间隔为频域资源位置上的循环移位,其中,M和N均为正整数;
第三发送子单元,用于将SRS映射至上行控制信道所采用的资源中,并传输至基站。
发送单元还包括:
第四指示子单元,用于当上行控制信道所采用的资源占用N个时域资源符号时,指示SRS的N个时域资源符号中的不同时域资源符号分别占用不同的未被分配给其他信道的M个交织单元,其中,在N个时域资源符号中占用的所有频率资源位置内,以频域不相邻不连续的交织单元的物理资源块PRB之间的频率间隔为频域位置上的循环移位,其中,M和N均为正整数;
第四发送子单元,用于将SRS映射至上行控制信道所采用的资源中,并传输至基站。
其中,处理模块181还包括:
处理单元,用于确定上行传输信道的前A个符号或后A个符号为定探测参考信号SRS的上行控制信道所用的时域资源位置;其中,A为正整数。
进一步地,发送模块182还包括:
传输单元,用于采用所述上行控制信道的前A个符号或后A个符号所占用的频域资源位置与所述上行传输信道的其他符号所占用的频域资源位置不同的方式,将所述SRS映射至所述上行控制信道的前A个符号或后A个符号中向基站传输。
如图19所示,一些实施例提供了一种终端,包括:
处理器191,用于实现如下功能:确定探测参考信号SRS的上行控制信道所用的资源位置;
发射机192,与所述处理器连接,用于采用不同的时域资源符号占用不同频域资源的方式,通过所述上行控制信道所采用的资源向基站传输所述SRS。
下面参考图20,其示出了适于用来实现本申请实施例的传输装置或终端 计算机系统200的结构示意图。
如图20所示,计算机系统200包括中央处理单元(CPU)201,其可以根据存储在只读存储器(ROM)202中的程序或者从存储部分208加载到随机访问存储器(RAM)203中的程序而执行各种适当的动作和处理。在RAM203中,还存储有系统200操作所需的各种程序和数据。CPU 201、ROM 202以及RAM 203通过总线204彼此相连。输入/输出(I/O)接口205也连接至总线204。
以下部件连接至I/O接口205:包括键盘、鼠标等的输入部分206;包括诸如阴极射线管(CRT)、液晶显示器(LCD)等以及扬声器等的输出部分207;包括硬盘等的存储部分208;以及包括诸如LAN卡、调制解调器等的网络接口卡的通信部分209。通信部分209经由诸如因特网的网络执行通信处理。驱动器210也根据需要连接至I/O接口205。可拆卸介质211,诸如磁盘、光盘、磁光盘、半导体存储器等等,根据需要安装在驱动器210上,以便于从其上读出的计算机程序根据需要被安装入存储部分208。
特别地,根据本公开的实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本公开的实施例包括一种计算机程序产品,其包括有形地包含在机器可读介质上的计算机程序,所述计算机程序包含用于执行上述流程图的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信部分209从网络上被下载和安装,和/或从可拆卸介质211被安装。
附图中的流程图和框图,图示了按照本公开各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,所述模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来 实现,或者可以用专用硬件与计算机指令的组合来实现。
描述于本申请实施例中所涉及到的单元或模块可以通过软件的方式实现,也可以通过硬件的方式来实现。所描述的单元或模块也可以设置在处理器中。这些单元或模块的名称在某种情况下并不构成对该单元或模块本身的限定。此外,需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
A1.一种探测参考信号的传输方法,包括:
确定探测参考信号SRS的上行控制信道所用的资源位置;
采用在不同的时域资源符号内占用不同频域资源的方式,通过所述上行控制信道所采用的信道资源向基站传输所述SRS。
A2.根据A1所述的探测参考信号的传输方法,其中,采用在不同的时域资源符号内占用不同频域资源的方式,通过所述上行控制信道所采用的信道资源向基站传输所述SRS的步骤包括:
按照频域资源位置上的循环移位将所述SRS在不同时域资源内映射至不同频域资源上,并传输至基站;其中,所述频域资源位置上的循环移位是由所述上行控制信道所采用的信道资源的时域资源符号数目以及在同一时域资源内所述SRS所占用的频域资源的频率间隔确定的。
A3.根据A2所述的探测参考信号的传输方法,其中,按照频域资源位置上的循环移位将所述SRS在不同时域资源内映射至不同频域资源上,并传输至基站的步骤包括:
当所述上行控制信道所采用的信道资源占用N个时域资源符号,一个时域资源符号内占用M个交织单元时,指示所述SRS的N个时域资源符号中的不同时域资源符合分别占用不同的M个交织单元,其中,在N个时域资源符号占用的所有频率资源位置内,频域不相邻不连续的交织单元的物理资源块之间的频率间隔根据所述频域资源位置的循环移位确定,其中,M和N均为正整数;
将所述SRS映射至所述上行控制信道所采用的信道资源中,并传输至基站。
A4.根据A2所述的探测参考信号的传输方法,其中,按照频域资源位置上的循环移位将所述SRS在不同时域资源内映射至不同频域资源上,并传输至基站的步骤包括:
当所述上行控制信道所采用的信道资源占用N个时域资源符号,一个时域资源符号内占用M个交织单元时,指示所述SRS的每L个相邻的资源符号为一组占用相同的交织单元,并进行时域正交码分;其中,不同组的资源符号所占用的交织单元的频率不同,且在N个时域资源符号中占用的所有频率资源位置内,频域不相邻不连续的交织单元的物理资源块PRB之间的频率间隔根据所述频域资源位置上的循环移位确定,其中,M、N和L均为正整数;
将所述SRS映射至所述上行控制信道所采用的信道资源中,并传输至基站。
A5.根据A2所述的探测参考信号的传输方法,其中,按照频域资源位置上的循环移位将所述SRS在不同时域资源内映射至不同频域资源上,并传输至基站的步骤包括:
当所述上行控制信道所采用的信道资源占用N个时域资源符号时,指示所述SRS的每个时域资源符号均占用不同的M个频域连续的未被分配的交织单元组合,其中,在N个时域资源符号中占用的所有频率资源位置内,频域不相邻不连续的交织单元组合的物理资源块PRB之间的频率间隔根据所述频域资源位置上的循环移位确定,其中,M和N均为正整数;
将所述SRS映射至所述上行控制信道所采用的信道资源中,并传输至基站。
A6.根据A2所述的探测参考信号的传输方法,其中,按照频域资源位置上的循环移位将所述SRS在不同时域资源内映射至不同频域资源上,并传输至基站的步骤包括:
当所述上行控制信道所采用的信道资源占用N个时域资源符号时,指示所述SRS的N个时域资源符号中的不同时域资源符号分别占用不同的未被分 配给其他信道的M个交织单元,其中,在N个时域资源符号中占用的所有频率资源位置内,频域不相邻不连续的交织单元的物理资源块PRB之间的频率间隔根据所述频域位置上的循环移位确定,其中,M和N均为正整数;
将所述SRS映射至所述上行控制信道所采用的信道资源中,并传输至基站。
A7.根据A1所述的探测参考信号的传输方法,其中,确定探测参考信号SRS的上行控制信道所用的资源位置的步骤包括:
确定上行传输信道的前A个符号或后A个符号为定探测参考信号SRS的上行控制信道所用的时域资源位置;其中,A为正整数。
A8.根据A7所述的探测参考信号的传输方法,其中,采用在不同的时域资源符号内占用不同频域资源的方式,通过所述上行控制信道所采用的信道资源向基站传输所述SRS的步骤包括:
采用所述上行控制信道的前A个符号或后A个符号所占用的频域资源位置与所述上行传输信道的其他符号所占用的频域资源位置不同的方式,将所述SRS映射至所述上行控制信道的前A个符号或后A个符号中向基站传输。
B1.一种探测参考信号的传输装置,包括:
处理模块,用于确定探测参考信号SRS的上行控制信道所用的资源位置;
发送模块,用于采用在不同的时域资源符号内占用不同频域资源的方式,通过所述上行控制信道所采用的信道资源向基站传输所述SRS。
C1.一种终端,包括:
处理器,用于实现如下功能:确定探测参考信号SRS的上行控制信道所用的资源位置;
发射机,与所述处理器连接,用于采用在不同的时域资源符号内占用不同频域资源的方式,通过所述上行控制信道所采用的信道资源向基站传输所述SRS。
D1.一种探测参考信号的传输方法,包括:
获取上行传输信道被调度时的调度信息;
根据上行传输信道的调度信息与用于传输上行控制信号的上行控制信道所采用的资源之间预设的映射关系,确定所述上行传输信道被调度时的调度 信息对应的上行控制信道所采用的资源;
利用所述上行控制信道所采用的资源,传输探测参考信号SRS。
D2.根据D1所述的探测参考信号的传输方法,其中,获取上行传输信道被调度时的调度信息的步骤包括:
从基站获取上行传输信道被调度时的调度信息。
D3.根据D1所述的探测参考信号的传输方法,其中,根据上行传输信道的调度信息与用于传输上行控制信号的上行控制信道所采用的资源之间预设的映射关系,确定所述上行传输信道被调度时的调度信息对应的上行控制信道所采用的资源的步骤包括:
在所述上行传输信道的调度信息与用于传输上行控制信号的上行控制信道所采用的资源之间预设的映射关系中,确定所述上行传输信道被调度时的调度信息对应的非调度的上行控制信道所采用的资源。
D4.根据D1所述的探测参考信号的传输方法,其中,所述调度信息包括:所述上行传输信道的上行授权信息中所携带的控制信道单元CCE编号或增强控制信道单元ECCE编号、所述上行传输信道被调度时所占用的频域资源编号、所述上行传输信道被调度时所占用的序列编号以及循环移位编号、或者所述上行传输信道被调度时所占用的正交掩码OCC序列编号中的至少一项;
所述映射关系包括:所述上行传输信道的调度信息与上行控制信道所采用的资源的编号之间的映射关系。
D5.根据D1所述的探测参考信号的传输方法,其中,利用所述上行控制信道所采用的资源,传输探测参考信号SRS的步骤包括:
采用在不同的时域资源符号内占用不同频域资源的方式,通过所述上行控制信道所采用的资源向基站传输所述SRS。
D6.根据D5所述的探测参考信号的传输方法,其中,采用在不同的时域资源符号内占用不同频域资源的方式,通过所述上行控制信道所采用的资源向基站传输所述SRS的步骤包括:
按照频域资源位置上的循环移位,将所述SRS在不同时域资源内映射至不同频域资源上,并传输至基站;
其中,所述频域资源位置上的循环移位是由所述上行控制信道所采用的资源的时域资源符号数目以及在同一时域资源内所述SRS所占用的频域资源的频率间隔确定的。
D7.根据D6所述的探测参考信号的传输方法,其中,按照频域资源位置上的循环移位,将所述SRS在不同时域资源内映射至不同频域资源上,并传输至基站的步骤包括:
当所述上行控制信道所采用的资源占用N个时域资源符号,一个时域资源符号内占用M个交织单元时,指示所述SRS的N个时域资源符号中的不同时域资源符号分别占用不同的M个交织单元;
其中,在N个时域资源符号占用的所有频率资源位置内,频域不相邻不连续的交织单元的物理资源块之间的频率间隔根据所述频域资源位置的循环移位确定,其中,M和N均为正整数;
将所述SRS映射至所述上行控制信道所采用的资源中,并传输至基站。
D8.根据D6所述的探测参考信号的传输方法,其中,按照频域资源位置上的循环移位,将所述SRS在不同时域资源内映射至不同频域资源上,并传输至基站的步骤包括:
当所述上行控制信道所采用的资源占用N个时域资源符号,一个时域资源符号内占用M个交织单元时,指示所述SRS的每L个相邻的资源符号为一组占用相同的交织单元,并进行时域正交码分;
其中,不同组的时域资源符号所占用的交织单元的频率不同,且在N个时域资源符号中占用的所有频率资源位置内,频域不相邻不连续的交织单元的物理资源块PRB之间的频率间隔根据所述频域资源位置上的循环移位确定,其中,M、N和L均为正整数;
将所述SRS映射至所述上行控制信道所采用的资源中,并传输至基站。
D9.根据D6所述的探测参考信号的传输方法,其中,按照频域资源位置上的循环移位,将所述SRS在不同时域资源内映射至不同频域资源上,并传输至基站的步骤包括:
当所述上行控制信道所采用的资源占用N个时域资源符号时,指示所述SRS的每个时域资源符号均占用不同的M个频域连续的未被分配的交织单元 组合;
其中,在N个时域资源符号中占用的所有频率资源位置内,频域不相邻不连续的交织单元组合的物理资源块PRB之间的频率间隔根据所述频域资源位置上的循环移位确定,其中,M和N均为正整数;
将所述SRS映射至所述上行控制信道所采用的资源中,并传输至基站。
D10.根据D6所述的探测参考信号的传输方法,其中,按照频域资源位置上的循环移位,将所述SRS在不同时域资源内映射至不同频域资源上,并传输至基站的步骤包括:
当所述上行控制信道所采用的资源占用N个时域资源符号时,指示所述SRS的N个时域资源符号中的不同时域资源符号分别占用不同的未被分配给其他信道的M个交织单元;
其中,在N个时域资源符号中占用的所有频率资源位置内,频域不相邻不连续的交织单元的物理资源块PRB之间的频率间隔根据所述频域位置上的循环移位确定,其中,M和N均为正整数;
将所述SRS映射至所述上行控制信道所采用的资源中,并传输至基站。
D11.根据D7至D10任一项所述的探测参考信号的传输方法,其中,所述上行传输信道为物理上行共享信道PUSCH/物理上行控制信道MF-ePUCCH;所述上行控制信道为短物理上行控制信道MF-sPUCCH。
D12.根据D1所述的探测参考信号的传输方法,其中,所述上行传输信道的调度信息与用于传输上行控制信号的上行控制信道所采用的资源之间预设的映射关系包括:
所述上行传输信道的调度信息与用于传输上行控制信号的上行控制信道所采用的所有资源之间预设的映射关系;或者,
所述上行传输信道的调度信息与用于传输上行控制信号的上行控制信道所采用的非调度资源之间预设的映射关系。
D13.根据D3所述的探测参考信号的传输方法,其中,在所述上行传输信道的调度信息与用于传输上行控制信号的上行控制信道所采用的资源之间预设的映射关系中,确定所述上行传输信道被调度时的调度信息对应的非调度的上行控制信道所采用的资源的步骤包括:
获取基站通过RRC配置或者通过公共物理下行公共信道指示的调度资源和非调度资源的划分信息;
根据所述划分信息、所述调度信息、以及上行传输信道的调度信息与用于传输上行控制信号的上行控制信道所采用的资源之间预设的映射关系,确定所述上行传输信道被调度时的调度信息对应的非调度的上行控制信道所采用的资源。
E 14.一种探测参考信号的传输装置,包括:
获取模块,用于获取上行传输信道被调度时的调度信息;
处理模块,用于根据上行传输信道的调度信息与用于传输上行控制信号的上行控制信道所采用的资源之间预设的映射关系,确定所述上行传输信道被调度时的调度信息对应的上行控制信道所采用的资源;
发送模块,用于利用所述上行控制信道所采用的资源,传输探测参考信号SRS。
F15.一种终端,包括:
接收机,用于接收上行传输信道被调度时的调度信息;
处理器,与所述接收机连接,用于实现如下功能:根据上行传输信道的调度信息与用于传输上行控制信号的上行控制信道所采用的资源之间预设的映射关系,确定所述上行传输信道被调度时的调度信息对应的上行控制信道所采用的资源;
发射机,与所述处理器连接,用于利用所述上行控制信道所采用的资源,传输探测参考信号SRS。
以上所述的是本公开的可选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本公开的保护范围内。

Claims (27)

  1. 一种探测参考信号的传输方法,包括:
    当上行传输信道被调度时,获取所述上行传输信道的调度信息;
    根据所述上行传输信道的所述调度信息与用于传输上行控制信号的上行控制信道所采用的资源之间预设的映射关系,确定所述上行传输信道的所述调度信息对应的上行控制信道所采用的资源;
    利用所述上行控制信道所采用的资源,传输探测参考信号。
  2. 根据权利要求1所述的探测参考信号的传输方法,其中,当上行传输信道被调度,获取所述上行传输信道的所述调度信息的步骤包括:
    当所述上行传输信道被调度时,从基站获取所述上行传输信道的所述调度信息。
  3. 根据权利要求1所述的探测参考信号的传输方法,其中,根据上行传输信道的调度信息与用于传输上行控制信号的上行控制信道所采用的资源之间预设的映射关系,确定所述上行传输信道的所述调度信息对应的上行控制信道所采用的资源的步骤包括:
    在所述上行传输信道的调度信息与用于传输上行控制信号的上行控制信道所采用的资源之间预设的映射关系中,确定所述上行传输信道的所述调度信息对应的非调度的上行控制信道所采用的资源。
  4. 根据权利要求1所述的探测参考信号的传输方法,其中,所述调度信息包括:所述上行传输信道的上行授权信息中所携带的控制信道单元编号或增强控制信道单元编号、所述上行传输信道被调度时所占用的频域资源编号、所述上行传输信道被调度时所占用的序列编号以及循环移位编号、以及所述上行传输信道被调度时所占用的正交掩码序列编号中的至少一项;
    所述映射关系包括:所述上行传输信道的调度信息与上行控制信道所采用的资源的编号之间的映射关系。
  5. 根据权利要求1所述的探测参考信号的传输方法,其中,利用所述上行控制信道所采用的资源,传输探测参考信号的步骤包括:
    采用在不同的时域资源符号内占用不同频域资源的方式,通过所述上行 控制信道所采用的资源向基站传输所述探测参考信号。
  6. 根据权利要求5所述的探测参考信号的传输方法,其中,采用在不同的时域资源符号内占用不同频域资源的方式,通过所述上行控制信道所采用的资源向基站传输所述探测参考信号的步骤包括:
    按照频域资源位置上的循环移位,将所述探测参考信号在不同时域资源内映射至不同频域资源上,并传输至基站;
    其中,所述频域资源位置上的循环移位是由所述上行控制信道所采用的资源的时域资源符号数目以及在同一时域资源内所述探测参考信号所占用的频域资源的频率间隔确定的。
  7. 根据权利要求6所述的探测参考信号的传输方法,其中,按照频域资源位置上的循环移位,将所述探测参考信号在不同时域资源内映射至不同频域资源上,并传输至基站的步骤包括:
    当所述上行控制信道所采用的资源占用N个时域资源符号,一个时域资源符号内占用M个交织单元时,指示所述探测参考信号的N个时域资源符号中的不同时域资源符号分别占用不同的M个交织单元;以及
    将所述探测参考信号映射至所述上行控制信道所采用的资源中,并传输至基站,
    其中,在N个时域资源符号占用的所有频率资源位置内,频域不相邻不连续的交织单元的物理资源块之间的频率间隔根据所述频域资源位置的循环移位确定,其中,M和N均为正整数。
  8. 根据权利要求6所述的探测参考信号的传输方法,其中,按照频域资源位置上的循环移位,将所述探测参考信号在不同时域资源内映射至不同频域资源上,并传输至基站的步骤包括:
    当所述上行控制信道所采用的资源占用N个时域资源符号,一个时域资源符号内占用M个交织单元时,指示所述探测参考信号的每L个相邻的资源符号为一组占用相同的交织单元,并进行时域正交码分;以及
    将所述探测参考信号映射至所述上行控制信道所采用的资源中,并传输至基站,
    其中,不同组的时域资源符号所占用的交织单元的频率不同,且在N个 时域资源符号中占用的所有频率资源位置内,频域不相邻不连续的交织单元的物理资源块之间的频率间隔根据所述频域资源位置上的循环移位确定,其中,M、N和L均为正整数。
  9. 根据权利要求6所述的探测参考信号的传输方法,其中,按照频域资源位置上的循环移位,将所述探测参考信号在不同时域资源内映射至不同频域资源上,并传输至基站的步骤包括:
    当所述上行控制信道所采用的资源占用N个时域资源符号时,指示所述探测参考信号的每个时域资源符号均占用不同的M个频域连续的未被分配的交织单元组合;以及
    将所述探测参考信号映射至所述上行控制信道所采用的资源中,并传输至基站,
    其中,在N个时域资源符号中占用的所有频率资源位置内,频域不相邻不连续的交织单元组合的物理资源块之间的频率间隔根据所述频域资源位置上的循环移位确定,其中,M和N均为正整数。
  10. 根据权利要求6所述的探测参考信号的传输方法,其中,按照频域资源位置上的循环移位,将所述探测参考信号在不同时域资源内映射至不同频域资源上,并传输至基站的步骤包括:
    当所述上行控制信道所采用的资源占用N个时域资源符号时,指示所述探测参考信号的N个时域资源符号中的不同时域资源符号分别占用不同的未被分配给其他信道的M个交织单元;以及
    将所述探测参考信号映射至所述上行控制信道所采用的资源中,并传输至基站,
    其中,在N个时域资源符号中占用的所有频率资源位置内,频域不相邻不连续的交织单元的物理资源块之间的频率间隔根据所述频域位置上的循环移位确定,其中,M和N均为正整数。
  11. 根据权利要求7至10中任一项所述的探测参考信号的传输方法,其中,所述上行传输信道为物理上行共享信道或扩展的物理上行控制信道;所述上行控制信道为短物理上行控制信道。
  12. 根据权利要求1所述的探测参考信号的传输方法,其中,所述上行 传输信道的调度信息与用于传输上行控制信号的上行控制信道所采用的资源之间预设的映射关系包括:
    所述上行传输信道的调度信息与用于传输上行控制信号的上行控制信道所采用的所有资源之间预设的映射关系;或者,
    所述上行传输信道的调度信息与用于传输上行控制信号的上行控制信道所采用的非调度资源之间预设的映射关系。
  13. 根据权利要求3所述的探测参考信号的传输方法,其中,在所述上行传输信道的调度信息与用于传输上行控制信号的上行控制信道所采用的资源之间预设的映射关系中,确定所述上行传输信道被调度时的调度信息对应的非调度的上行控制信道所采用的资源的步骤包括:
    获取基站通过无线电资源控制配置或者通过公共物理下行公共信道指示的调度资源和非调度资源的划分信息;
    根据所述划分信息、所述调度信息、以及上行传输信道的调度信息与用于传输上行控制信号的上行控制信道所采用的资源之间预设的映射关系,确定所述上行传输信道被调度时的调度信息对应的非调度的上行控制信道所采用的资源。
  14. 根据权利要求1至13中任一项所述的探测参考信号的传输方法,还包括:在当上行传输信道被调度时,获取所述上行传输信道的调度信息的步骤之前,执行先听后说的监听机制。
  15. 根据权利要求1至13中任一项所述的探测参考信号的传输方法,其中所述上行控制信道为短物理上行控制信道。
  16. 一种探测参考信号的传输方法,包括:
    当上行传输信道被调度时,获取所述上行传输信道的调度信息;
    根据所述调度信息确定对应的上行控制信道;以及
    利用所述上行控制信道,传输探测参考信号。
  17. 根据权利要求16所述的探测参考信号的传输方法,其中,所述利用所述上行控制信道,传输探测参考信号的步骤包括:
    根据下行控制信息,如果仅在所述上行控制信道后相邻的上行传输信道进行上行调度传输,则在所述上行控制信道上传输所述探测参考信号。
  18. 根据权利要求17所述的探测参考信号的传输方法,其中,如果仅在上行控制信道后相邻的上行传输信道进行上行调度传输,则在所述上行控制信道上传输所述探测参考信号的步骤包括:
    当检测到在子帧n-1中存在所述上行控制信道而在该上行控制信道所存在的子帧上没有上行控制信息传输时,并且当在不晚于子帧n-4的子帧中接收到用于从子帧n的起始位置开始调度上行传输信道的下行控制信息时,在子帧n-1中使用所述上行控制信道开始传输所述探测参考信号。
  19. 根据权利要求16-18中任一项所述的探测参考信号的传输方法,其中所述上行控制信道为短物理上行控制信道。
  20. 根据权利要求16-18中任一项所述的探测参考信号的传输方法,还包括:在当上行传输信道被调度时,获取所述上行传输信道的调度信息的步骤之前,执行先听后说的监听机制。
  21. 一种探测参考信号的传输装置,包括:
    获取模块,用于当上行传输信道被调度时,获取所述上行传输信道的调度信息;
    处理模块,用于根据所述上行传输信道的所述调度信息与用于传输上行控制信号的上行控制信道所采用的资源之间预设的映射关系,确定所述上行传输信道的所述调度信息对应的上行控制信道所采用的资源;
    发送模块,用于利用所述上行控制信道所采用的资源,传输探测参考信号。
  22. 一种终端,包括:
    接收机,用于当上行传输信道被调度时,接收所述上行传输信道的调度信息;
    处理器,与所述接收机连接,用于:根据所述上行传输信道的所述调度信息与用于传输上行控制信号的上行控制信道所采用的资源之间预设的映射关系,确定所述上行传输信道的所述调度信息对应的上行控制信道所采用的资源;
    发射机,与所述处理器连接,用于利用所述上行控制信道所采用的资源,传输探测参考信号。
  23. 一种探测参考信号的传输装置,包括:
    处理器;以及
    存储器,
    所述存储器中存储有能够被所述处理器执行的计算机可读指令,在所述计算机可读指令被执行时,所述处理器执行以下操作:
    当上行传输信道被调度时,获取所述上行传输信道的调度信息;
    根据所述上行传输信道的所述调度信息与用于传输上行控制信号的上行控制信道所采用的资源之间预设的映射关系,确定所述上行传输信道的所述调度信息对应的上行控制信道所采用的资源;以及
    利用所述上行控制信道所采用的资源,传输探测参考信号。
  24. 一种探测参考信号的传输芯片,包括:
    处理器;以及
    存储器,
    所述存储器中存储有能够被所述处理器执行的指令,在所述指令被执行时,所述处理器执行以下操作:
    当上行传输信道被调度时,获取所述上行传输信道的调度信息;
    根据所述上行传输信道的所述调度信息与用于传输上行控制信号的上行控制信道所采用的资源之间预设的映射关系,确定所述上行传输信道的所述调度信息对应的上行控制信道所采用的资源;以及
    利用所述上行控制信道所采用的资源,传输探测参考信号。
  25. 一种终端,包括探测参考信号的传输芯片,其中
    所述传输芯片包括:
    处理器;以及
    存储器,
    所述存储器中存储有能够被所述处理器执行的指令,在所述指令被执行时,所述处理器执行以下操作:
    当上行传输信道被调度时,获取所述上行传输信道的调度信息;
    根据所述上行传输信道的所述调度信息与用于传输上行控制信号的上行控制信道所采用的资源之间预设的映射关系,确定所述上行传输 信道的所述调度信息对应的上行控制信道所采用的资源;以及
    利用所述上行控制信道所采用的资源,传输探测参考信号。
  26. 一种探测参考信号的传输芯片,包括:
    处理器;以及
    存储器,
    所述存储器中存储有能够被所述处理器执行的指令,在所述指令被执行时,所述处理器执行以下操作:
    当上行传输信道被调度时,获取所述上行传输信道的调度信息;
    根据所述调度信息确定对应的上行控制信道;以及
    利用所述上行控制信道,传输探测参考信号。
  27. 一种终端,包括探测参考信号的传输芯片,其中
    所述传输芯片包括:
    处理器;以及
    存储器,
    所述存储器中存储有能够被所述处理器执行的指令,在所述指令被执行时,所述处理器执行以下操作:
    当上行传输信道被调度时,获取所述上行传输信道的调度信息;
    根据所述调度信息确定对应的上行控制信道;以及
    利用所述上行控制信道,传输探测参考信号。
PCT/CN2017/074671 2016-02-26 2017-02-24 探测参考信号的传输方法、装置、芯片及终端 WO2017144002A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17755831.9A EP3422624B1 (en) 2016-02-26 2017-02-24 Method and device for transmitting sounding reference signal
JP2018544822A JP6875413B2 (ja) 2016-02-26 2017-02-24 サウンディング参照信号の伝送方法、伝送装置および端末
US16/079,297 US10925040B2 (en) 2016-02-26 2017-02-24 Method and device for transmitting sounding reference signal, chip and user equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610109196.7A CN107135053B (zh) 2016-02-26 2016-02-26 探测参考信号的传输方法、装置及终端
CN201610109196.7 2016-02-26

Publications (1)

Publication Number Publication Date
WO2017144002A1 true WO2017144002A1 (zh) 2017-08-31

Family

ID=59685841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/074671 WO2017144002A1 (zh) 2016-02-26 2017-02-24 探测参考信号的传输方法、装置、芯片及终端

Country Status (5)

Country Link
US (1) US10925040B2 (zh)
EP (1) EP3422624B1 (zh)
JP (1) JP6875413B2 (zh)
CN (2) CN107135053B (zh)
WO (1) WO2017144002A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109842950A (zh) * 2017-11-28 2019-06-04 珠海市魅族科技有限公司 用于基站或终端的资源调度方法及装置
WO2022150991A1 (zh) * 2021-01-12 2022-07-21 Oppo广东移动通信有限公司 无线通信的方法和设备
WO2023130889A1 (zh) * 2022-01-05 2023-07-13 华为技术有限公司 一种通信方法及装置

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10616912B2 (en) * 2016-04-22 2020-04-07 Qualcomm Incorporated Uplink payload determination and uplink grant indication for multefire
CN108023722B (zh) 2016-11-04 2022-11-11 中兴通讯股份有限公司 一种控制信道的发送方法和装置
WO2018128296A1 (ko) * 2017-01-03 2018-07-12 엘지전자 주식회사 상향링크 제어 채널 및 사운딩 참조 심볼의 전송 및 수신 방법과 이를 위한 장치
CN113067689A (zh) * 2017-01-17 2021-07-02 Oppo广东移动通信有限公司 传输探测参考信号的方法、终端设备和网络设备
US10707939B2 (en) * 2017-10-03 2020-07-07 Mediatek Inc. Codebook-based uplink transmission in wireless communications
CN111201817A (zh) * 2017-10-30 2020-05-26 Oppo广东移动通信有限公司 上行控制信道传输方法及终端和基站
CN107919929B (zh) * 2017-11-16 2021-02-23 宇龙计算机通信科技(深圳)有限公司 一种基于波束的信道检测方法和设备
CN115720348A (zh) * 2017-12-07 2023-02-28 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
EP3731591A4 (en) * 2017-12-29 2021-01-13 Guangdong Oppo Mobile Telecommunications Corp., Ltd. WIRELESS COMMUNICATION METHOD, TERMINAL DEVICE AND NETWORK DEVICE
CN111294926B (zh) 2018-12-06 2023-01-06 华为技术有限公司 Srs传输的方法、接入网设备和终端设备
WO2020150937A1 (zh) * 2019-01-23 2020-07-30 北京小米移动软件有限公司 参考信号传输方法及装置
CN112512119B (zh) * 2019-01-31 2022-02-25 华为技术有限公司 信号传输方法及装置
CN111586857B (zh) 2019-02-15 2022-04-05 华为技术有限公司 参考信号的传输方法和通信装置
WO2020168494A1 (en) * 2019-02-20 2020-08-27 Qualcomm Incorporated Scheme for associating a reference signal with an uplink control channel
CN112398618B (zh) * 2019-08-16 2022-03-29 中国移动通信有限公司研究院 探测参考信号的发送方法、接收方法、终端及网络设备
WO2021088078A1 (zh) * 2019-11-08 2021-05-14 华为技术有限公司 参考信号传输方法及装置
CN114902771A (zh) * 2020-02-17 2022-08-12 Oppo广东移动通信有限公司 通信方法及通信装置、用户设备及网络器件
CN113677007B (zh) * 2020-05-15 2024-04-23 大唐移动通信设备有限公司 一种上行信道状态信息的获取方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101500242A (zh) * 2008-02-01 2009-08-05 大唐移动通信设备有限公司 一种配置上行探测参考信号的方法和装置
CN101971550A (zh) * 2008-01-08 2011-02-09 诺基亚西门子通信公司 探测参考信号布置
CN102469607A (zh) * 2010-11-09 2012-05-23 上海贝尔股份有限公司 上行探测参考信号的触发和传输方法及其设备
CN102668437A (zh) * 2009-11-02 2012-09-12 诺基亚西门子通信公司 探测参考信号配置
CN102714869A (zh) * 2010-01-08 2012-10-03 夏普株式会社 用于探测参考信号传输的移动通信方法和系统以及基站、用户设备和其中的集成电路
WO2014051494A1 (en) * 2012-08-09 2014-04-03 Telefonaktiebolaget L M Ericsson (Publ) Reference signal mapping
CN104170506A (zh) * 2011-10-08 2014-11-26 华为技术有限公司 探测参考信号传输
US20150223213A1 (en) * 2014-02-06 2015-08-06 Electronics And Telecommunications Research Institute Method and apparatus for transmitting uplink signal or uplink channel

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2894822A1 (en) * 2007-07-30 2015-07-15 Samsung Electronics Co., Ltd Method and apparatus for transmitting and receiving different types of reference signals in communication systems
WO2009041881A2 (en) * 2007-09-28 2009-04-02 Telefonaktiebolaget L M Ericsson (Publ) Transmission of reference signal between uplink and downlink timeslots
US8391234B2 (en) * 2008-01-30 2013-03-05 Mitsubishi Electric Corporation Wireless communication system, mobile station, base station, and wireless communication method
WO2010008180A2 (ko) * 2008-07-14 2010-01-21 엘지전자 주식회사 상향링크 다중 접속 전송 모드를 지원하는 시스템에서 상향링크 전송 제어 방법
US8964621B2 (en) 2009-05-08 2015-02-24 Qualcomm Incorporated Transmission and reception of a reference signal supporting positioning in a wireless communication network
KR20110019284A (ko) 2009-08-19 2011-02-25 주식회사 팬택 무선통신시스템에서 상향링크 광대역 측정 신호 전송방법 및 장치, 그를 이용한 하향링크 채널 추정방법
CN102035631B (zh) * 2009-10-08 2014-12-10 中兴通讯股份有限公司 上行接入链路信道质量指示的反馈方法及装置
CN105049165B (zh) * 2009-11-02 2019-09-10 诺基亚通信公司 用于电信的方法和设备
CN102065545A (zh) * 2009-11-12 2011-05-18 大唐移动通信设备有限公司 资源位置通知与确定方法、系统和设备
KR101327131B1 (ko) * 2010-02-12 2013-11-07 엘지전자 주식회사 무선 통신 시스템에서 데이터 전송 방법 및 장치
JP5132723B2 (ja) * 2010-02-15 2013-01-30 株式会社エヌ・ティ・ティ・ドコモ 参照信号送信方法、移動局装置及び基地局装置
JP5443317B2 (ja) * 2010-04-30 2014-03-19 株式会社Nttドコモ 移動端末装置及び無線通信方法
CN102111886B (zh) * 2010-07-02 2013-07-31 电信科学技术研究院 上行控制信息的传输方法和设备
CN102404074B (zh) * 2010-09-17 2014-06-18 电信科学技术研究院 Tdd系统中的非周期srs的传输方法和设备
CN102761968B (zh) * 2011-04-27 2017-03-01 艾利森电话股份有限公司 多用户设备的探测参考信号上行资源分配方法及基站
CN102892199B (zh) * 2011-07-20 2018-03-09 中兴通讯股份有限公司 一种实现信号发送的方法和系统
JP5914918B2 (ja) * 2011-08-02 2016-05-11 シャープ株式会社 基地局、端末および通信方法
CN102932932B (zh) * 2011-08-12 2017-10-27 中兴通讯股份有限公司 Srs与pusch的协调传输方法及系统
CN103428868B (zh) * 2012-05-15 2016-08-24 华为技术有限公司 上行发射方法和用户设备
CN103517344B (zh) * 2012-06-20 2016-06-29 普天信息技术研究院有限公司 上行侦听参考信号的传输方法
CN104756436A (zh) * 2012-09-04 2015-07-01 瑞典爱立信有限公司 上行链路参考信号资源分配
KR20150093162A (ko) * 2012-12-04 2015-08-17 엘지전자 주식회사 무선 통신 시스템에서 랭크 변화에 따른 참조 신호의 패턴 변경 방법 및 이를 위한 장치
CN104684027A (zh) * 2013-11-28 2015-06-03 中兴通讯股份有限公司 一种非对称带宽的分配方法、装置及演进型基站
CN103648103A (zh) * 2013-12-20 2014-03-19 上海交通大学无锡研究院 一种网络覆盖下有网络协助的d2d通信技术的信令控制方法
US10123323B2 (en) * 2014-10-24 2018-11-06 Qualcomm Incorporated Dynamic uplink/downlink frame structure for enhanced component carriers
US10856313B2 (en) * 2015-06-29 2020-12-01 Telefonaktiebolaget Lm Ericsson (Publ) Network node, wireless device and methods therein for managing uplink resources
CN108886445B (zh) * 2016-02-05 2022-01-14 瑞典爱立信有限公司 针对未授权载波的srs设计方法和装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101971550A (zh) * 2008-01-08 2011-02-09 诺基亚西门子通信公司 探测参考信号布置
CN101500242A (zh) * 2008-02-01 2009-08-05 大唐移动通信设备有限公司 一种配置上行探测参考信号的方法和装置
CN102668437A (zh) * 2009-11-02 2012-09-12 诺基亚西门子通信公司 探测参考信号配置
CN102714869A (zh) * 2010-01-08 2012-10-03 夏普株式会社 用于探测参考信号传输的移动通信方法和系统以及基站、用户设备和其中的集成电路
CN102469607A (zh) * 2010-11-09 2012-05-23 上海贝尔股份有限公司 上行探测参考信号的触发和传输方法及其设备
CN104170506A (zh) * 2011-10-08 2014-11-26 华为技术有限公司 探测参考信号传输
WO2014051494A1 (en) * 2012-08-09 2014-04-03 Telefonaktiebolaget L M Ericsson (Publ) Reference signal mapping
US20150223213A1 (en) * 2014-02-06 2015-08-06 Electronics And Telecommunications Research Institute Method and apparatus for transmitting uplink signal or uplink channel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3422624A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109842950A (zh) * 2017-11-28 2019-06-04 珠海市魅族科技有限公司 用于基站或终端的资源调度方法及装置
CN109842950B (zh) * 2017-11-28 2022-12-23 珠海市魅族科技有限公司 用于基站或终端的资源调度方法及装置
WO2022150991A1 (zh) * 2021-01-12 2022-07-21 Oppo广东移动通信有限公司 无线通信的方法和设备
WO2023130889A1 (zh) * 2022-01-05 2023-07-13 华为技术有限公司 一种通信方法及装置

Also Published As

Publication number Publication date
US10925040B2 (en) 2021-02-16
US20190053223A1 (en) 2019-02-14
EP3422624A1 (en) 2019-01-02
CN110247748B (zh) 2021-06-22
JP2019507987A (ja) 2019-03-22
EP3422624A4 (en) 2019-09-18
CN107135053B (zh) 2019-08-16
CN110247748A (zh) 2019-09-17
CN107135053A (zh) 2017-09-05
EP3422624B1 (en) 2023-07-12
JP6875413B2 (ja) 2021-05-26

Similar Documents

Publication Publication Date Title
WO2017144002A1 (zh) 探测参考信号的传输方法、装置、芯片及终端
CN111587554B (zh) 无线通信系统的信道复用方法和复用的信道传输方法及使用该方法的设备
US10470170B2 (en) Uplink control channel for low latency communications
JP6717942B2 (ja) 未ライセンスキャリアのためのアップリンク制御チャネル構成
US10542439B2 (en) Multi-subframe grant with scheduling of both data and control channels
US9854569B2 (en) Uplink control channel configuration for unlicensed carriers
US11523426B2 (en) Methods, network nodes and devices for communicating at an unlicensed frequency spectrum
EP3576482A1 (en) Terminal device, base station device, and communication method
TWI772312B (zh) 基於無線網絡的通信方法、終端設備和網絡設備
CN111316731A (zh) 无线通信系统中的上行链路传输和下行链路接收的方法、设备和系统
US10412758B2 (en) Handling number of repetitions in coverage extension mode
EP3554118B1 (en) Grant-free transmission method, terminal device and network device
CN111818647B (zh) 数据传输方法及装置
CN116669205A (zh) 在无线通信系统中发送和接收共享信道的方法以及支持该方法的装置
CN109152026B (zh) 一种上行免授权传输的配置方法及设备
CN110999490B (zh) 在无线通信系统中发送或接收无线信号的方法和设备
JP2024045657A (ja) 無線通信システムにおいて上りリンク共有チャネルの送信方法及びこれを用いる装置
CN113498630A (zh) 用于在未经许可的nr中配置rach机会的方法和装置
CN116743323A (zh) 无线通信系统中的下行数据接收和harq-ack传输的方法、装置和系统
CN108702772B (zh) 调度数据和控制信道二者的多子帧准许
CN109076582B (zh) 在未许可无线电资源上调度上行链路传输的系统和方法
KR20160134475A (ko) 비면허 주파수 대역의 무선 통신 셀룰러 시스템에서 시간 상향 프레임 및 시간 하향 프레임 구조를 획득하는 방법 및 장치, 그리고 신호 송수신 방법 및 장치
KR20170111755A (ko) 비면허 스펙트럼에서 상향링크 제어 정보 송수신 방법 및 장치
CN116584139A (zh) 无线通信系统中上行链路传输的方法、设备和系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018544822

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017755831

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017755831

Country of ref document: EP

Effective date: 20180926

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17755831

Country of ref document: EP

Kind code of ref document: A1