WO2017143694A1 - 一种低压均匀喷洒喷头空间流道的优化设计方法 - Google Patents

一种低压均匀喷洒喷头空间流道的优化设计方法 Download PDF

Info

Publication number
WO2017143694A1
WO2017143694A1 PCT/CN2016/085231 CN2016085231W WO2017143694A1 WO 2017143694 A1 WO2017143694 A1 WO 2017143694A1 CN 2016085231 W CN2016085231 W CN 2016085231W WO 2017143694 A1 WO2017143694 A1 WO 2017143694A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
shape
low
quadrant
outlet
Prior art date
Application number
PCT/CN2016/085231
Other languages
English (en)
French (fr)
Inventor
刘俊萍
袁寿其
李红
张前
朱兴业
鲍亚
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to US15/771,948 priority Critical patent/US10984149B2/en
Publication of WO2017143694A1 publication Critical patent/WO2017143694A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/06Multi-objective optimisation, e.g. Pareto optimisation using simulated annealing [SA], ant colony algorithms or genetic algorithms [GA]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/02Reliability analysis or reliability optimisation; Failure analysis, e.g. worst case scenario performance, failure mode and effects analysis [FMEA]

Definitions

  • the invention belongs to a structural optimization design method for a water-saving irrigation device, in particular to an optimized design method for a space flow path of a low-pressure uniform spray nozzle.
  • Sprinkler irrigation technology is one of the current high-efficiency water technologies, and the sprinkler is the key equipment for sprinkler irrigation. Its hydraulic performance and running performance largely determine the irrigation quality of the sprinkler irrigation system.
  • the flow path of the nozzle is to complete several tasks of pressure water flow entering, turning, energy exchange and injection.
  • the structural geometry of the runner, the cross-sectional shape and the surface roughness all affect the hydraulic performance of the nozzle.
  • the water-spraying mechanism is installed outside the nozzle, the special-shaped nozzle is installed or the nozzle is obliquely cut, and the atomization characteristics of the nozzle are increased. The amount of water near the nozzle, but the range tends to decrease.
  • the structural design mainly focuses on the design of auxiliary nozzle, multi-channel technology, water-spreading mechanism and special-shaped nozzle.
  • the optimal design of the nozzle flow channel parameters can improve the hydraulic performance of the nozzle and improve the working stability of the nozzle. It should be considered in the design process, but there are few related studies.
  • a design method of the space flow path of the low-pressure uniform spray nozzle is proposed to improve the uniformity of the nozzle and the short range, and it is of great significance to improve the design method of the nozzle flow channel.
  • the object of the present invention is to provide an optimized design method for the space flow path of the low-pressure uniform spray nozzle to solve the problem of poor uniformity of the nozzle under low-pressure conditions and to achieve an increase in range. .
  • An optimized design method for a space flow passage of a low-pressure uniform spray nozzle includes the following steps:
  • Step 1 The inlet section of the low-pressure uniform spray nozzle to be optimized is circular, the inlet diameter is D; the cross-sectional area of the nozzle outlet is S a ; the flow path profile between the inlet section and the outlet section is arc-shaped; the inlet diameter D and the outlet cross-sectional area S a are both fixed values;
  • Step 2 Establish a three-dimensional coordinate system with the center of the inlet section as the origin, with the vertical direction of the origin as the Y-axis of the coordinate system, the center of the flow-path line on the X-axis of the coordinate system, and the flow path line and Y The tangent point of the axis just falls at the origin of the coordinate system;
  • Step 3 Select the variable parameters required for the optimization of the space flow path of the low-pressure uniform spray nozzle: including the flow path deflection angle ⁇ , the arc radius r of the flow path profile line, the arc length L of the flow path profile line, the exit elevation angle ⁇ , and The shape of the outlet section; wherein: the deflection angle ⁇ of the flow passage is defined as the angle between the straight line formed by the center of the inlet section and the centroid of the outlet section and the Y axis; the arc length L of the flow path profile is defined from the center of the inlet section to the exit The length of the arc flow path of the section core; the exit elevation angle ⁇ is defined as the angle of intersection of the water jet sprayed by the low pressure uniform spray nozzle with the horizontal plane;
  • Step 4 Using the three-dimensional modeling software, draw the spatial flow path under the different variable parameters in step three;
  • Step Five Application of flow field flow channel space under the four different variable parameter numerical simulation analysis step of analyzing results of the simulation orthogonal test methods, to obtain the diameter D inlet and outlet cross-sectional area S a case where a fixed value
  • Step Six changing the diameter D of the inlet and outlet cross-sectional area S a fixed value, repeating the above steps, the diameter D obtained when the inlet and outlet cross-sectional area S a take several different sets of fixed values, uniformly low pressure spray nozzle flow passage optimal spatial Corresponding to different combinations of variable parameters;
  • Step 7 Using the mathematical fitting method, the variable parameters obtained in step 6 to achieve the optimal flow path of the low-pressure uniform spray nozzles of each group are fitted, and finally the optimal structural design of the space flow passage of the low-pressure uniform spray nozzle is obtained.
  • the space flow passage of the low-pressure uniform spray nozzle is produced according to the shape of the outlet section and the variable parameters.
  • the actual experimental verification of the processed spatial flow path is carried out to further demonstrate the reliability of the exit cross-sectional shape obtained in step 5 and its corresponding variable parameters.
  • step six in consideration of the difficulty of processing and uniformity of the product, after changing the diameter D of the inlet and outlet cross-sectional area S a fixed value, a sectional shape of the outlet is no longer as a variable parameter, a low pressure holding step 5 The shape of the outlet cross section when the spray performance of the uniform spray nozzle is optimal.
  • the shape of the outlet cross section is selected from six different outlet shapes, namely shape A, shape B, shape C, shape D, shape E, and shape F;
  • the deflection angle ⁇ of the flow path ranges from 4° to 7°;
  • the radius r of the flow path profile ranges from 22 to 24 mm;
  • the arc length L of the flow path profile ranges from 26 to 30 mm; and
  • the exit elevation angle ⁇ The value ranges from 28° to 32°.
  • the inlet diameter D Step Six were taken 4.8mm, 5.2mm, 6.0mm, 6.4mm, corresponding to the sectional area S a of the outlet were taken 16.7mm 2, 18.1mm 2, 20.9mm 2 , 22.3mm 2; outlet section
  • the optimal design structure design of the sprinkler space flow passage obtained by the step 7 satisfies the following conditions:
  • the shape of the nozzle outlet section is selected from the shape A; the outlet section first quadrant area S 1 , the second quadrant area S 2 , the third quadrant area S 3 and the fourth quadrant area S 4 satisfy:
  • D is the inlet diameter in mm
  • D 0 is the initial value in step a set of inlet diameter D
  • D 0 5.6mm
  • is the deflection angle of the flow path, the unit is °
  • S a is the cross-sectional area of the outlet , the unit is mm 2
  • S a0 is the initial value of the outlet cross-sectional area S a in the first step
  • S a0 19.5 mm 2 .
  • the technical effect of the invention designing and optimizing a novel low-pressure uniform spray nozzle spatial flow passage, realizing the optimization of the hydraulic performance of the nozzle, and high efficiency and energy saving.
  • Figure 1 is a schematic view showing the structure of a space flow path in the Y-axis and Z-axis directions.
  • Figure 2 is a schematic view showing the structure of the space flow path in the Y-axis and X-axis directions.
  • Fig. 3 is a schematic view showing the shape of six different shapes of the outlet section of the nozzle.
  • Fig. 4 is a schematic view showing the cross-sectional shape of the nozzle outlet formed by four quadrant areas.
  • the technical idea of the invention is to change the structural parameters of the sprinkler space flow passage, thereby realizing the purpose of optimizing the hydraulic performance of the nozzle under low pressure working conditions.
  • the technical solution of the present invention will be further described in detail below with reference to FIG. 1, FIG. 2, FIG. 3 and FIG.
  • Step 1 Determine the model number of the nozzle
  • the outlet section of the nozzle is an important factor affecting the uniformity of sprinkler irrigation.
  • Step 2 Establish a three-dimensional coordinate system with the center of the inlet section as the origin, with the vertical direction of the origin as the Y-axis of the coordinate system, the center of the flow-path line on the X-axis of the coordinate system, and the flow path line and Y The tangent point of the axis just falls at the origin of the coordinate system;
  • Step 3 Select the variable parameters required for the optimization of the space flow path of the low-pressure uniform spray nozzle: including the flow path deflection angle ⁇ , the arc radius r of the flow path profile line, the arc length L of the flow path profile line, the exit elevation angle ⁇ , and The shape of the outlet section (six different cross-sectional shapes are selected in this embodiment); wherein: the flow deflection angle ⁇ is defined as the angle between the straight line formed by the center of the inlet section and the centroid of the outlet section and the Y-axis; The arc length L of the profile is defined as the length of the arc flow path from the center of the inlet section to the exit section core; the outlet elevation angle ⁇ is defined as the angle of intersection of the water jet and the horizontal plane sprayed by the low pressure uniform spray nozzle; : The existence of the deflection angle ⁇ causes the water flow to generate a rotational driving torque on the inner wall surface of the flow passage, and drives the nozzle to perform a rotary motion.
  • the deflection angle ⁇ of the flow passage is used as an important parameter for evaluating the running stability of the nozzle; the arc radius r and the arc length L are the influence nozzles.
  • One of the important factors of the jet flow direction has a great influence on the velocity of the outlet jet; the outlet elevation angle ⁇ affects the range of the nozzle by affecting the direction of the outlet jet.
  • Step 4 According to the design experience of the space flow passage of the low-pressure uniform spray nozzle, the deflection angle ⁇ of the flow passage is generally in the range of 4° to 7°.
  • the radius r of the runner profile line ranges from 22 to 24 mm; in order to fully develop the movement of the water flow inside the runner, the arc length L of the runner profile slightly increases its size in the empirically designed dimension, and the value is 26 to 30 mm.
  • the exit elevation angle ⁇ ranges from 28° to 32°, which ensures the maximum range of the nozzle.
  • Step 5 According to the empirical design of each parameter size in step 4 and the given six different cross-sectional shapes, draw a three-dimensional spatial flow path structure diagram, and obtain the combination form of the different structural parameters of the nozzles listed in Table 1, and use the three-dimensional modeling software. Draw a schematic diagram of the flow channel structure.
  • Outlet section shape Flow deflection angle ⁇ (°) Flow path line radius r (mm) Flow path type line arc length L (mm) Exit elevation angle ⁇ (°) a 4 twenty two 26 28 a 5.5 twenty three 28 30 a 7 twenty four 30 32 b 4 twenty two 26 28 b 5.5 twenty three 28 30 b 7 twenty four 30 32 c 4 twenty two 26 28 c 5.5 twenty three 28 30 c 7 twenty four 30 32 d 4 twenty two 26 28 d 5.5 twenty three 28 30 d 7 twenty four 30 32 e 4 twenty two 26 28 e 5.5 twenty three 28 30 e 7 twenty four 30 32 f 4 twenty two 26 28 f 5.5 twenty three 28 30 f 7 twenty four 30 32
  • Step 6 Pre-selection optimization plan
  • the spatial flow paths of several typical combinations of parameters are processed to verify the accuracy of the simulation.
  • the uniformity of sprinkler irrigation after parameter optimization is higher than that of sprinkler irrigation before optimization, the water distribution is more reasonable, and the nozzle range is increased by about 20%, as shown in Table 2.
  • Step Eight select a different type of nozzle inlet diameter D, respectively 4.8mm, 5.2mm, 6.0mm, 6.4mm, corresponding to the sectional area S a of the outlet were taken 16.7mm 2, 18.1mm 2, 20.9mm 2 , 22.3mm 2 Considering the uniformity of the product and the difficulty of processing, the exit cross-sectional shape of this step is no longer used as a variable parameter, and the shape A is still used, and the above steps are repeated to determine the optimal combination of the spatial flow path structural parameters of different nozzle models.
  • the first quadrant area S 1 3.8 mm 2
  • the second quadrant area S 2 5.1 mm 2
  • the third quadrant area S 3 4.6 mm 2
  • the fourth quadrant area S 4 4.6 mm 2 ;
  • D is the inlet diameter in mm
  • D 0 is the initial value in step a set of inlet diameter D
  • D 0 5.6mm
  • is the deflection angle of the flow path, the unit is °
  • S a is the cross-sectional area of the outlet , the unit is mm 2
  • S a0 is the initial value of the outlet cross-sectional area S a in the first step
  • S a0 19.5 mm 2 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Nozzles (AREA)

Abstract

一种低压均匀喷洒喷头空间流道的优化设计方法,属于节水灌溉喷灌系统中的关键设备的设计方法。具体为:在确定喷头的型号及进口直径的情况下,确定出口截面形状大小、流道偏转角、流道型线的半径和弧长以及出口仰角的尺寸,实现喷头空间流道的结构优化;并且实现在不同进口直径条件下空间流道的参数化设计,得到喷头空间流道结构参数的确定方法。形成了低压工况下空间流道的设计方法,实现了喷头水力性能的优化,且高效节能。

Description

一种低压均匀喷洒喷头空间流道的优化设计方法 技术领域
本发明属于一种用于节水灌溉设备的结构优化设计方法,特别是一种低压均匀喷洒喷头空间流道的优化设计方法。
背景技术
我国作为人口众多的农业大国,缺水问题十分严重。因此,推广节水灌溉是我国农业技术发展的重中之重。喷灌技术是目前高效用水技术之一,而喷头作为实施喷灌的关键设备,其水力性能和运转性能在很大程度上决定喷灌系统的灌溉质量。
喷头的流道要完成压力水流进入、转弯、能量交换和喷射几项工作。流道的结构形式几何尺寸,断面形状和表面粗糙度等,都影响喷头的水力性能。为降低喷头流道内部水力损失,实现水力性能的优化,对于小型低压喷头,常采用喷嘴外侧安装碎水机构,安装异形喷嘴或将喷嘴处斜开切口等形式,提高喷头的雾化特性,增加近喷头处水量,但射程往往会有所降低。
在目前研究中结构设计主要集中在副喷嘴、多流道技术、散水机构和异形喷嘴等设计上,但喷头空间流道参数的优化设计,可以改善喷头水力性能,提高喷头工作稳定性。在设计过程中应重点考虑,但相关的研究却很少。为解决上述问题,提出一种低压均匀喷洒喷头空间流道的设计方法,以改善喷头均匀性差、射程短等问题,并且对完善喷头流道的设计方法具有重要意义。
经检索,目前还没有相关的申报专利。
发明内容
针对上述低压喷头存在的缺陷或不足,本发明的目的在于,提供一种低压均匀喷洒喷头空间流道的优化设计方法,以解决喷头在低压工况下工作均匀性差的问题,并且实现射程的增加。
为了实现上述任务,本发明采取如下的技术解决方案:
一种低压均匀喷洒喷头空间流道的优化设计方法,包括如下步骤进行:
步骤一:待优化的低压均匀喷洒喷头的进口截面为圆形,进口直径为D;喷头出口截面面积Sa;进口截面和出口截面之间的流道型线呈圆弧形;所述进口直径D和所述出口截面面积Sa均为固定值;
步骤二:建立三维坐标系,以进口截面的圆心为原点,以原点的竖直方向作为坐标系的Y轴,流道型线的圆心位于坐标系的X轴上,并且流道型线与Y轴的切点恰好落于坐标系的原点处;
步骤三;选定进行低压均匀喷洒喷头空间流道优化所需的变量参数:包括流道偏转角α、流道型线的圆弧半径r、流道型线的弧长L、出口仰角γ和出口截面的形状;其中:流道偏转角α定义为进口截面圆心和出口截面形心所形成的直线与Y轴的夹角;流道型线的弧长L定义为从进口截面的圆心到出口截面型心的弧线流道的长度;出口仰角γ定义为低压均匀喷洒喷头喷射的水流与水平面所成的交角;
步骤四:运用三维造型软件,绘制步骤三中不同变量参数下的空间流道;
步骤五:运用数值模拟技术分析步骤四中不同变量参数下的空间流道的流场特性,运用正交试验方法分析其模拟结果,得到进口直径D和出口截面面积Sa为固定值的情形下,低压均匀喷洒喷头喷洒性能达到最优时的出口截面形状和对应的变量参数。
步骤六:改变进口直径D和出口截面面积Sa的固定值,重复上述步骤,得到当进口直径D和出口截面面积Sa取若干组不同固定值下,低压均匀喷洒喷头空间流道达到最优的对应不同的变量参数组合;
步骤七:利用数学拟合的方法,将步骤六中得到的达到各组低压均匀喷洒喷头空间流道最优的变量参数进行拟合,最终得到低压均匀喷洒喷头空间流道的最优结构设计。
进一步地,根据步骤五中得到的低压均匀喷洒喷头喷洒性能达到最优时的出口截面形状及其对应的变量参数以后,将低压均匀喷洒喷头的空间流道按照出口截面形状和变量参数生产加工出来,并对加工好的空间流道进行实际的实验验证,进一步论证步骤五中获得的出口截面形状及其对应的变量参数的可靠性。
进一步地,步骤六中,考虑到产品的统一性以及加工的难度,在改变进口直径D和出口截面面积Sa的固定值以后,对出口截面的形状不再作为变量参数,保持步骤五中低压均匀喷洒喷头喷洒性能达到最优时的出口截面形状。
进一步地,步骤四中,绘制不同变量参数下的空间流道形状时,出口截面的形状选取六种不同出口形状,分别为形状A、形状B、形状C、形状D、形状E和形状F;流道偏转角α的取值范围为4°~7°;流道型线半径r的取值范围为22~24mm;流道型线弧长L的取值范围为26~30mm;出口仰角γ的取值范围为28°~32°。
进一步地,步骤一中进口直径D设定的初始值为5.6mm;出口截面面积Sa的初始值为19.5mm;步骤五中得到的低压均匀喷洒喷头空间喷洒性能达到最优时的变量参数为:偏转角度α=5.5°、流道型线半径r=23mm、流道型线弧长L=28mm、出口仰角γ=30°;出口截面的形状为形状A;所述形状A由第一象限、第二象限、第三象限和第四象限四个象限构成,并且第一象限面积S1=4.1mm2、第二象限面积S2=5.5mm2、第三象限面积S3=4.9mm2、第四象限面积S4=5.0mm2
进一步地,步骤六中进口直径D分别取4.8mm、5.2mm、6.0mm、6.4mm,对应的出口截面面积Sa分别取16.7mm2、18.1mm2、20.9mm2、22.3mm2;出口截面形状为形状A,则:进口直径为4.8mm时空间流道的最优结构参数为:流道在圆周方向的偏转角度α=5.2°、流道型线的半径r=22mm、弧长L=25.5mm、出口仰角γ=28°,第一象限面积S1=3.5mm2、第二象限面积S2=4.7mm2、第三象限面积S3=4.2mm2、第四象限面积S4=4.3mm2;进口直径为5.2mm时空间流道的最优结构参数为:流道在圆周方向的偏转角度α=5.4°、流道型线的半径r=22.5mm、弧长L=27mm、出口仰角γ=32°,第一象限面积S1=3.8mm2、第二象限面积S2=5.1mm2、第三象限面积S3=4.6mm2、第四象限面积S4=4.6mm2;进口直径为6.0mm时空间流道的最优结构参数为:流道在圆周方向的偏转角度α=5.6°、流道型线的半径r=23.5mm、弧长L=28.5mm、出口仰角γ=30°,第一象限面积S1=4.3mm2、第二象限面积S2=5.9mm2、第三象限面积S3=5.3mm2、第四象限面积S4=5.4mm2;进口直径为6.4mm时空间流道的最优结构参数为:流道在圆周方向的偏转角度α=5.8°、流道型线的半径r=24mm、弧长L=28.5mm、出口仰角γ=28°,第一象限面积S1=4.6mm2、第二象限面积S2=6.3mm2、第三象限面积S3=5.7mm2、第四象限面积S4=5.7mm2
进一步地,通过步骤七得到的喷头空间流道的最优设计结构设计,满足如下条件:
Figure PCTCN2016085231-appb-000001
喷嘴出口截面的形状选取形状A;出口截面第一象限面积S1、第二象限面积S2、第三象限面积S3和第四象限面积S4满足:
Figure PCTCN2016085231-appb-000002
其中,D为进口直径,单位为mm,D0为步骤一中进口直径D设定的初始值,并且D0=5.6mm;α为流道偏转角,单位为°;Sa为出口截面面积,单位为mm2,Sa0为步骤一中出口截面面积Sa的初始值,并且Sa0=19.5mm2
本发明的技术效果:设计优化一种新型的低压均匀喷洒喷头空间流道,实现了喷头水力性能的优化,且高效节能。
附图说明:
图1为空间流道在Y轴和Z轴方向上的结构示意图。
图2为空间流道在Y轴和X轴方向上的结构示意图。
图3为喷头出口截面取六种不同形状的形状示意图。
图4为由四个象限面积构成的喷头出口截面形状结构示意图。
图中,1.第一象限面积S1,2.第二象限面积S2,3.第三象限面积S3,4.第四象限面积S4
具体实施方式
本发明的技术思路是改变喷头空间流道的结构参数,从而实现低压工况下喷头水力性能优化的目的。下面结合图1、图2、图3和图4,对本发明的技术方案作进一步的详细说明。
本实施例提供的一种新型的低压均匀喷洒喷头空间流道的优化设计方法,主要包括:
步骤一:确定喷头的型号
喷头的型号主要由进口直径来确定,根据实施例的需要,此处喷头的进口直径D=5.6mm。喷头出口截面是影响喷灌均匀性的重要因素,此种型号下喷头的出口截面面积S=19.5mm2,绘制6种不同出口形状,3种异形,3种规则图形(如图3所示),分别为形状A、形状B、形状C、形状D、形状E和形状F,进行对比试验;
步骤二:建立三维坐标系,以进口截面的圆心为原点,以原点的竖直方向作为坐标系的Y轴,流道型线的圆心位于坐标系的X轴上,并且流道型线与Y轴的切点恰好落于坐标系的原点处;
步骤三;选定进行低压均匀喷洒喷头空间流道优化所需的变量参数:包括流道偏转角α、流道型线的圆弧半径r、流道型线的弧长L、出口仰角γ和出口截面的形状(本实施例中选定了六种不同的截面形状);其中:流道偏转角α定义为进口截面圆心和出口截面形心所形成的直线与Y轴的夹角;流道型线的弧长L定义为从进口截面的圆心到出口截面型心的弧线流道的长度;出口仰角γ定义为低压均匀喷洒喷头喷射的水流与水平面所成的交角;选定的依据为:偏转角度α的存在使得水流对流道内壁面产生旋转驱动力矩,驱动喷头做旋转运动,因此将流道偏转角α作为评价喷头运转稳定性的重要参数;圆弧半径r和弧长L是影响喷头喷射水流流向的重要因子之一,对出口射流的速度大小也有很大的影响;出口仰角γ通过影响出口射流的方向来影响喷头的射程大小。
步骤四:根据低压均匀喷洒喷头空间流道的设计经验,流道偏转角α的取值范围一般在4°~7°。流道型线半径r的取值范围为22~24mm;为了使水流在流道内部的运动充分发展,流道型线的弧长L在经验设计的尺寸上稍微增大其尺寸,取值为26~30mm。出口仰角γ的取值范围为28°~32°,可以保证喷头的射程最大。
步骤五:根据步骤四中各个参数尺寸的经验设计及给定的六个不同截面形状,绘制三维空间流道结构图,得到表1中所列的喷头不同结构参数的组合形式,运用三维造型软件绘制流道结构示意图。
表1 空间流道结构参数表
出口截面形状 流道偏转角α(°) 流道型线半径r(mm) 流道型线弧长L(mm) 出口仰角γ(°)
a 4 22 26 28
a 5.5 23 28 30
a 7 24 30 32
b 4 22 26 28
b 5.5 23 28 30
b 7 24 30 32
c 4 22 26 28
c 5.5 23 28 30
c 7 24 30 32
d 4 22 26 28
d 5.5 23 28 30
d 7 24 30 32
e 4 22 26 28
e 5.5 23 28 30
e 7 24 30 32
f 4 22 26 28
f 5.5 23 28 30
f 7 24 30 32
步骤六:预选优化方案
对根据上述表1所绘制的多种空间流道进行数值模拟计算,并运用正交试验方法分析其模拟结果,得到预选的优化方案:流道在圆周方向的偏转角度α=5.5°、流道型线的半径r=23mm、弧长L=28mm、出口仰角γ=30°、出口截面的最优结构形状如图3中形状A所示,其中形状A由第一象限、第二象限、第三象限和第四象限四个象限构成,并且第一象限面积S1=4.1mm2、第二象限面积S2=5.5mm2、第三象限面积S3=4.9mm2、第四象限面积S4=5.0mm2
步骤七:实验验证
对几组典型的参数组合形式的空间流道进行加工试验,验证模拟的准确性。结果与数值模拟得到的结果相一致:既:最优结构尺寸为:流道在圆周方向的偏转角度α=5.5°、流道型线的半径r=23mm、弧长L=28mm、出口仰角γ=30°、出口截面的形状如图3所示的形状A所示。经过实验测试得到:参数优化之后的喷灌均匀度要高于优化之前的喷灌均匀度,水量分布更为合理,且喷头射程提高了20%左右,如表2所示。
表2 参数优化前后喷灌性能对比表
Figure PCTCN2016085231-appb-000003
Figure PCTCN2016085231-appb-000004
步骤八:选取不同型号的喷头进口直径D,分别为4.8mm、5.2mm、6.0mm、6.4mm,对应的出口截面面积Sa分别取16.7mm2、18.1mm2、20.9mm2、22.3mm2,考虑到产品的统一性以及加工的难度,本步骤的出口截面形状不再作为变量参数,仍旧采用形状A,重复上述步骤,确定不同喷头型号下空间流道结构参数的最优组合。进口直径为4.8mm时空间流道的最优结构参数为:流道在圆周方向的偏转角度α=5.2°、流道型线的半径r=22mm、弧长L=25.5mm、出口仰角γ=28°,第一象限面积S1=3.5mm2、第二象限面积S2=4.7mm2、第三象限面积S3=4.2mm2、第四象限面积S4=4.3mm2;进口直径为5.2mm时空间流道的最优结构参数为:流道在圆周方向的偏转角度α=5.4°、流道型线的半径r=22.5mm、弧长L=27mm、出口仰角γ=32°,第一象限面积S1=3.8mm2、第二象限面积S2=5.1mm2、第三象限面积S3=4.6mm2、第四象限面积S4=4.6mm2;进口直径为6.0mm时空间流道的最优结构参数为:流道在圆周方向的偏转角度α=5.6°、流道型线的半径r=23.5mm、弧长L=28.5mm、出口仰角γ=30°,第一象限面积S1=4.3mm2、第二象限面积S2=5.9mm2、第三象限面积S3=5.3mm2、第四象限面积S4=5.4mm2;进口直径为6.4mm时空间流道的最优结构参数为:流道在圆周方向的偏转角度α=5.8°、流道型线的半径r=24mm、弧长L=28.5mm、出口仰角γ=28°,第一象限面积S1=4.6mm2、第二象限面积S2=6.3mm2、第三象限面积S3=5.7mm2、第四象限面积S4=5.7mm2。通过数据进行拟合,最终得到喷头空间流道的优化设计参数满足:
Figure PCTCN2016085231-appb-000005
Figure PCTCN2016085231-appb-000006
其中,D为进口直径,单位为mm,D0为步骤一中进口直径D设定的初始值,并且D0=5.6mm;α为流道偏转角,单位为°;Sa为出口截面面积,单位为mm2,Sa0为步骤一中出口截面面积Sa的初始值,并且Sa0=19.5mm2

Claims (7)

  1. 一种低压均匀喷洒喷头空间流道的优化设计方法,包括如下步骤进行:
    步骤一:待优化的低压均匀喷洒喷头的进口截面为圆形,进口直径为D;喷头出口截面面积Sa;进口截面和出口截面之间的流道型线呈圆弧形;所述进口直径D和所述出口截面面积Sa均为固定值;
    步骤二:建立三维坐标系,以进口截面的圆心为原点,以原点的竖直方向作为坐标系的Y轴,流道型线的圆心位于坐标系的X轴上,并且流道型线与Y轴的切点恰好落于坐标系的原点处;
    步骤三;选定进行低压均匀喷洒喷头空间流道优化所需的变量参数:包括流道偏转角α、流道型线的圆弧半径r、流道型线的弧长L、出口仰角γ和出口截面的形状;其中:流道偏转角α定义为进口截面圆心和出口截面形心所形成的直线与Y轴的夹角;流道型线的弧长L定义为从进口截面的圆心到出口截面型心的弧线流道的长度;出口仰角γ定义为低压均匀喷洒喷头喷射的水流与水平面所成的交角;
    步骤四:运用三维造型软件,绘制步骤三中不同变量参数下的空间流道;
    步骤五:运用数值模拟技术分析步骤四中不同变量参数下的空间流道的流场特性,运用正交试验方法分析其模拟结果,得到进口直径D和出口截面面积Sa为固定值的情形下,低压均匀喷洒喷头喷洒性能达到最优时的出口截面形状和对应的变量参数。
    步骤六:改变进口直径D和出口截面面积Sa的固定值,重复上述步骤,得到当进口直径D和出口截面面积Sa取若干组不同固定值下,低压均匀喷洒喷头空间流道达到最优的对应不同的变量参数组合;
    步骤七:利用数学拟合的方法,将步骤六中得到的达到各组低压均匀喷洒喷头空间流道最优的变量参数进行拟合,最终得到低压均匀喷洒喷头空间流道的最优结构设计。
  2. 根据权利要求1所述的一种低压均匀喷洒喷头空间流道的优化设计方法,其特征在于,根据步骤五中得到的低压均匀喷洒喷头喷洒性能达到最优时的出口截面形状及其对应的变量参数以后,将低压均匀喷洒喷头的空间流道按照出口截面形状和变量参数生产加工出来,并对加工好的空间流道进行实际的实验验证,进一步论证步骤五中获得的出口截面形状及其对应的变量参数的可靠性。
  3. 根据权利要求2所述的一种低压均匀喷洒喷头空间流道的优化设计方法,其特征 在于,步骤六中,考虑到产品的统一性以及加工的难度,在改变进口直径D和出口截面面积Sa的固定值以后,对出口截面的形状不再作为变量参数,保持步骤五中低压均匀喷洒喷头喷洒性能达到最优时的出口截面形状。
  4. 根据权利要求3所述的一种低压均匀喷洒喷头空间流道的优化设计方法,其特征在于,步骤四中,绘制不同变量参数下的空间流道形状时,出口截面的形状选取六种不同出口形状,分别为形状A、形状B、形状C、形状D、形状E和形状F;流道偏转角α的取值范围为4°~7°;流道型线半径r的取值范围为22~24mm;流道型线弧长L的取值范围为26~30mm;出口仰角γ的取值范围为28°~32°。
  5. 根据权利要求4所述的一种低压均匀喷洒喷头空间流道的优化设计方法,其特征在于,步骤一中进口直径D设定的初始值为5.6mm;出口截面面积Sa的初始值为19.5mm2;步骤五中得到的低压均匀喷洒喷头空间喷洒性能达到最优时的变量参数为:偏转角度α=5.5°、流道型线半径r=23mm、流道型线弧长L=28mm、出口仰角γ=30°;出口截面的形状为形状A;所述形状A由第一象限、第二象限、第三象限和第四象限四个象限构成,并且第一象限面积S1=4.1mm2、第二象限面积S2=5.5mm2、第三象限面积S3=4.9mm2、第四象限面积S4=5.0mm2
  6. 根据权利要求5所述的一种低压均匀喷洒喷头空间流道的优化设计方法,其特征在于,步骤六中进口直径D分别取4.8mm、5.2mm、6.0mm、6.4mm,对应的出口截面面积Sa分别取16.7mm2、18.1mm2、20.9mm2、22.3mm2;出口截面形状为形状A,则:进口直径为4.8mm时空间流道的最优结构参数为:流道在圆周方向的偏转角度α=5.2°、流道型线的半径r=22mm、弧长L=25.5mm、出口仰角γ=28°,第一象限面积S1=3.5mm2、第二象限面积S2=4.7mm2、第三象限面积S3=4.2mm2、第四象限面积S4=4.3mm2;进口直径为5.2mm时空间流道的最优结构参数为:流道在圆周方向的偏转角度α=5.4°、流道型线的半径r=22.5mm、弧长L=27mm、出口仰角γ=32°,第一象限面积S1=3.8mm2、第二象限面积S2=5.1mm2、第三象限面积S3=4.6mm2、第四象限面积S4=4.6mm2;进口直径为6.0mm时空间流道的最优结构参数为:流道在圆周方向的偏转角度α=5.6°、流道型线的半径r=23.5mm、弧长L=28.5mm、出口仰角γ=30°,第一象限面积S1=4.3mm2、第二象限面积S2=5.9mm2、第三象限面积S3=5.3mm2、第四象限面积S4=5.4mm2;进口直径为6.4mm时空间流道的最优结构参数为:流道在圆周方向的偏转角度α=5.8°、流道型线的半径r=24mm、弧长L=28.5mm、出口仰角γ=28°,第一象限面积S1=4.6mm2、第二象限面积 S2=6.3mm2、第三象限面积S3=5.7mm2、第四象限面积S4=5.7mm2
  7. 根据权利要求6所述的一种低压均匀喷洒喷头空间流道的优化设计方法,其特征在于,通过步骤七得到的喷头空间流道的最优设计结构设计,满足如下条件:
    Figure PCTCN2016085231-appb-100001
    喷嘴出口截面的形状选取形状A;出口截面第一象限面积S1、第二象限面积S2、第三象限面积S3和第四象限面积S4满足:
    Figure PCTCN2016085231-appb-100002
    其中,D为进口直径,单位为mm,D0为步骤一中进口直径D设定的初始值,并且D0=5.6mm;α为流道偏转角,单位为°;Sa为出口截面面积,单位为mm2,Sa0为步骤一中出口截面面积Sa的初始值,并且Sa0=19.5mm2
PCT/CN2016/085231 2016-02-25 2016-06-08 一种低压均匀喷洒喷头空间流道的优化设计方法 WO2017143694A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/771,948 US10984149B2 (en) 2016-02-25 2016-06-08 Optimization design method for spatial flow passage of low-pressure even spray nozzle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610103841.4 2016-02-25
CN201610103841.4A CN105760611B (zh) 2016-02-25 2016-02-25 一种低压均匀喷洒喷头空间流道的优化设计方法

Publications (1)

Publication Number Publication Date
WO2017143694A1 true WO2017143694A1 (zh) 2017-08-31

Family

ID=56331261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/085231 WO2017143694A1 (zh) 2016-02-25 2016-06-08 一种低压均匀喷洒喷头空间流道的优化设计方法

Country Status (3)

Country Link
US (1) US10984149B2 (zh)
CN (1) CN105760611B (zh)
WO (1) WO2017143694A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109063363A (zh) * 2018-08-20 2018-12-21 北京理工大学 一种基于数据库的喷水推进器的优化设计方法
CN109376368A (zh) * 2018-08-24 2019-02-22 农业部南京农业机械化研究所 一种带旋水芯压力雾化喷头设计方法
CN111737837A (zh) * 2020-07-02 2020-10-02 扬州大学 一种斜式轴伸泵进水流道参数化三维建模方法
CN113139248A (zh) * 2021-04-19 2021-07-20 大连理工大学 一种具有非对称过渡段结构的核主泵模型设计方法
CN115841088A (zh) * 2022-12-28 2023-03-24 南京农业大学 一种用于农田节水灌溉领域的三维异形射流喷咀设计方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3632638A1 (de) * 2018-10-01 2020-04-08 Hilti Aktiengesellschaft Absaugvorrichtung für eine kernbohreinrichtung
EP3632639A1 (de) * 2018-10-01 2020-04-08 Hilti Aktiengesellschaft Absaugvorrichtung für eine kernbohreinrichtung
CN111460571B (zh) * 2019-01-02 2023-07-21 中国航发商用航空发动机有限责任公司 中介机匣部件的型线的构造方法、构造装置以及计算机可读存储介质
CN109933944A (zh) * 2019-03-27 2019-06-25 广东轻工职业技术学院 一种灌溉低压管道结构优化设计方法
CN113408073B (zh) * 2021-06-24 2023-12-15 中国航发沈阳发动机研究所 一种不同部件间的流场数据转换结构
CN117436209B (zh) * 2023-12-18 2024-04-16 潍柴动力股份有限公司 一种空气弯管、空气弯管设计方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009073226A1 (en) * 2007-12-07 2009-06-11 Bowles Fluidics Corporation Irrigation nozzle assembly and method
CN101799841A (zh) * 2010-02-11 2010-08-11 重庆长安工业(集团)有限责任公司 基于t参数表达式的曲面建模方法
US20110077925A1 (en) * 2009-09-29 2011-03-31 Loren Vander Griend Method and apparatus for optimization of sprinkler head positions and nozzle sizes in an irrigation system
CN103962257A (zh) * 2014-04-17 2014-08-06 上海华维节水灌溉有限公司 一种高均匀度阻尼旋转喷头
CN104268313A (zh) * 2014-09-09 2015-01-07 江苏大学 垂直摇臂式喷头导流器安装位置的优化方法
CN105160096A (zh) * 2015-08-31 2015-12-16 江苏大学 一种变转速喷头三维动态水量分布模型建立方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003233568A1 (en) * 2002-05-20 2003-12-12 Central Sprinkler Corporation System and method for evaluation of fluid flow in a piping system
JP4606208B2 (ja) * 2004-07-27 2011-01-05 プラントエンジニアリング株式会社 流体噴射シミュレーション方法
US8170849B2 (en) * 2008-11-12 2012-05-01 Spraying Systems Co. Spray nozzle configuration and modeling system
DE102011002616A1 (de) * 2010-03-31 2011-12-15 Sms Siemag Ag Überschalldüse zum Einsatz in metallurgischen Anlagen sowie Verfahren zur Dimensionierung einer Überschalldüse
US10274364B2 (en) * 2013-01-14 2019-04-30 Virginia Tech Intellectual Properties, Inc. Analysis of component having engineered internal space for fluid flow

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009073226A1 (en) * 2007-12-07 2009-06-11 Bowles Fluidics Corporation Irrigation nozzle assembly and method
US20110077925A1 (en) * 2009-09-29 2011-03-31 Loren Vander Griend Method and apparatus for optimization of sprinkler head positions and nozzle sizes in an irrigation system
CN101799841A (zh) * 2010-02-11 2010-08-11 重庆长安工业(集团)有限责任公司 基于t参数表达式的曲面建模方法
CN103962257A (zh) * 2014-04-17 2014-08-06 上海华维节水灌溉有限公司 一种高均匀度阻尼旋转喷头
CN104268313A (zh) * 2014-09-09 2015-01-07 江苏大学 垂直摇臂式喷头导流器安装位置的优化方法
CN105160096A (zh) * 2015-08-31 2015-12-16 江苏大学 一种变转速喷头三维动态水量分布模型建立方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109063363A (zh) * 2018-08-20 2018-12-21 北京理工大学 一种基于数据库的喷水推进器的优化设计方法
CN109376368A (zh) * 2018-08-24 2019-02-22 农业部南京农业机械化研究所 一种带旋水芯压力雾化喷头设计方法
CN109376368B (zh) * 2018-08-24 2023-01-31 农业部南京农业机械化研究所 一种带旋水芯压力雾化喷头设计方法
CN111737837A (zh) * 2020-07-02 2020-10-02 扬州大学 一种斜式轴伸泵进水流道参数化三维建模方法
CN111737837B (zh) * 2020-07-02 2024-03-12 扬州大学 一种斜式轴伸泵进水流道参数化三维建模方法
CN113139248A (zh) * 2021-04-19 2021-07-20 大连理工大学 一种具有非对称过渡段结构的核主泵模型设计方法
CN113139248B (zh) * 2021-04-19 2024-03-22 大连理工大学 一种具有非对称过渡段结构的核主泵模型设计方法
CN115841088A (zh) * 2022-12-28 2023-03-24 南京农业大学 一种用于农田节水灌溉领域的三维异形射流喷咀设计方法
CN115841088B (zh) * 2022-12-28 2023-08-15 南京农业大学 一种用于农田节水灌溉领域的三维异形射流喷咀设计方法

Also Published As

Publication number Publication date
US20190251229A1 (en) 2019-08-15
CN105760611A (zh) 2016-07-13
CN105760611B (zh) 2019-08-27
US10984149B2 (en) 2021-04-20

Similar Documents

Publication Publication Date Title
WO2017143694A1 (zh) 一种低压均匀喷洒喷头空间流道的优化设计方法
CN105396714B (zh) 整流器及流体喷嘴
CN105781626B (zh) 一种大子午扩张涡轮的三维正交非定常设计方法
CN203329849U (zh) 一种湿式电除尘器喷淋系统
CN204082292U (zh) 仿生鱼皮纹内表面的汽车排气歧管
CN203404124U (zh) 一种低比转数叶轮
CN112275463A (zh) 一种新型自激振荡脉冲空化喷嘴
CN105464724A (zh) 一种用于预旋冷却系统的气动孔型预旋喷嘴
CN106552828B (zh) 二次冷轧机组喷淋系统的喷嘴以及该喷嘴的制造方法
CN105468819A (zh) 一种利用响应面法优化垂直摇臂式喷头工作参数的方法
CN103691604B (zh) 一种摇臂式喷头内部弯管结构的设计方法
CN103077317B (zh) 一种用于稳定激波的泄漏槽的流量计算方法
CN205406548U (zh) 太阳能光伏焊带锡炉过线装置
CN212398057U (zh) 一种易于加工定位的二冷喷淋装置
CN201644418U (zh) 泡沫产生装置
CN206550456U (zh) 一种电射流掩膜加工系统及其喷头
CN209726910U (zh) 一种变流量横流冷却塔播水装置
CN202316153U (zh) 边缘淡化无气喷涂机喷嘴
Liu et al. Distribution of Water Droplets of Non-circular Sprinkler Nozzles
CN103016398A (zh) 一种控制曲率分布的离心叶轮流道设计方法
CN201127939Y (zh) 风刀/水刀
CN203886067U (zh) 一种轴向泡沫灭火喷射装置
CN201558826U (zh) 一种高压定位喷头
WO2023197795A1 (zh) 一种用于农田节水灌溉领域的三维异形射流喷咀设计方法
CN106735642A (zh) 一种电射流掩膜加工系统及其喷头

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16891148

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16891148

Country of ref document: EP

Kind code of ref document: A1